WorldWideScience

Sample records for alveolar epithelial cells

  1. Alveolar epithelial type II cell: defender of the alveolus revisited

    OpenAIRE

    Fehrenbach Heinz

    2001-01-01

    Abstract In 1977, Mason and Williams developed the concept of the alveolar epithelial type II (AE2) cell as a defender of the alveolus. It is well known that AE2 cells synthesise, secrete, and recycle all components of the surfactant that regulates alveolar surface tension in mammalian lungs. AE2 cells influence extracellular surfactant transformation by regulating, for example, pH and [Ca2+] of the hypophase. AE2 cells play various roles in alveolar fluid balance, coagulation/fibrinolysis, a...

  2. Cell mechanics of alveolar epithelial cells (AECs) and macrophages (AMs).

    OpenAIRE

    Féréol, Sophie; Fodil, Redouane; Pelle, Gabriel; Louis, Bruno; Isabey, Daniel

    2008-01-01

    Cell mechanics provides an integrated view of many biological phenomena which are intimately related to cell structure and function. Because breathing constitutes a sustained motion synonymous with life, pulmonary cells are normally designed to support permanent cyclic stretch without breaking, while receiving mechanical cues from their environment. The authors study the mechanical responses of alveolar cells, namely epithelial cells and macrophages, exposed to well-controlled mechanical stre...

  3. Oxidative Stress, Cell Death, and Other Damage to Alveolar Epithelial Cells Induced by Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Nagai A

    2003-09-01

    Full Text Available Abstract Cigarette smoking is a major risk factor in the development of various lung diseases, including pulmonary emphysema, pulmonary fibrosis, and lung cancer. The mechanisms of these diseases include alterations in alveolar epithelial cells, which are essential in the maintenance of normal alveolar architecture and function. Following cigarette smoking, alterations in alveolar epithelial cells induce an increase in epithelial permeability, a decrease in surfactant production, the inappropriate production of inflammatory cytokines and growth factors, and an increased risk of lung cancer. However, the most deleterious effect of cigarette smoke on alveolar epithelial cells is cell death, i.e., either apoptosis or necrosis depending on the magnitude of cigarette smoke exposure. Cell death induced by cigarette smoke exposure can largely be accounted for by an enhancement in oxidative stress. In fact, cigarette smoke contains and generates many reactive oxygen species that damage alveolar epithelial cells. Whether apoptosis and/or necrosis in alveolar epithelial cells is enhanced in healthy cigarette smokers is presently unclear. However, recent evidence indicates that the apoptosis of alveolar epithelial cells and alveolar endothelial cells is involved in the pathogenesis of pulmonary emphysema, an important cigarette smoke-induced lung disease characterized by the loss of alveolar structures. This review will discuss oxidative stress, cell death, and other damage to alveolar epithelial cells induced by cigarette smoke.

  4. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells

    OpenAIRE

    Wang, Dachun; Haviland, David L.; Burns, Alan R.; Zsigmond, Eva; Wetsel, Rick A.

    2007-01-01

    Alveolar epithelial type II (ATII) cells are small, cuboidal cells that constitute ≈60% of the pulmonary alveolar epithelium. These cells are crucial for repair of the injured alveolus by differentiating into alveolar epithelial type I cells. ATII cells derived from human ES (hES) cells are a promising source of cells that could be used therapeutically to treat distal lung diseases. We have developed a reliable transfection and culture procedure, which facilitates, via genetic selection, the ...

  5. Oxidative Stress, Cell Death, and Other Damage to Alveolar Epithelial Cells Induced by Cigarette Smoke

    OpenAIRE

    Aoshiba K; Nagai A

    2003-01-01

    Abstract Cigarette smoking is a major risk factor in the development of various lung diseases, including pulmonary emphysema, pulmonary fibrosis, and lung cancer. The mechanisms of these diseases include alterations in alveolar epithelial cells, which are essential in the maintenance of normal alveolar architecture and function. Following cigarette smoking, alterations in alveolar epithelial cells induce an increase in epithelial permeability, a decrease in surfactant production, the inapprop...

  6. Alveolar epithelial type II cell: defender of the alveolus revisited

    Directory of Open Access Journals (Sweden)

    Fehrenbach Heinz

    2001-01-01

    Full Text Available Abstract In 1977, Mason and Williams developed the concept of the alveolar epithelial type II (AE2 cell as a defender of the alveolus. It is well known that AE2 cells synthesise, secrete, and recycle all components of the surfactant that regulates alveolar surface tension in mammalian lungs. AE2 cells influence extracellular surfactant transformation by regulating, for example, pH and [Ca2+] of the hypophase. AE2 cells play various roles in alveolar fluid balance, coagulation/fibrinolysis, and host defence. AE2 cells proliferate, differentiate into AE1 cells, and remove apoptotic AE2 cells by phagocytosis, thus contributing to epithelial repair. AE2 cells may act as immunoregulatory cells. AE2 cells interact with resident and mobile cells, either directly by membrane contact or indirectly via cytokines/growth factors and their receptors, thus representing an integrative unit within the alveolus. Although most data support the concept, the controversy about the character of hyperplastic AE2 cells, reported to synthesise profibrotic factors, proscribes drawing a definite conclusion today.

  7. Hemoglobin is Expressed in Alveolar Epithelial Type II Cells

    OpenAIRE

    Bhaskaran, Manoj; Chen, Haifeng; Chen, Zhongmong; Liu, Lin

    2005-01-01

    Hemoglobin is the main oxygen carrying heme protein in erythrocytes. In an effort to study the differential gene expression of alveolar epithelial type I and type II cells using DNA microarray technique, we found that the mRNAs of hemoglobin α- and β-chains were expressed in type II cells, but not in type I cells. The microarray data were confirmed by RT-PCR. The mRNA expression of both chains decreased when type II cells trans-differentiated into type I-like cells. Immunocyto/histochemistry ...

  8. Dexmedetomidine Attenuates Bilirubin-Induced Lung Alveolar Epithelial Cell Death In Vitro and In Vivo*

    OpenAIRE

    Cui, Jian; Zhao, Hailin; Yi, Bin; Zeng, Jing; Lu, Kaizhi; Ma, Daqing

    2015-01-01

    Objective: To investigate bilirubin-induced lung alveolar epithelial cell injury together with the protection afforded by dexmedetomidine. Design: Prospective, randomized, controlled study. Setting: Research laboratory. Subjects: Sprague Dawley rats. Interventions: Alveolar epithelial A549 cell lines were cultured and received bilirubin (from 0 to 160 μM) to explore the protective pathway of dexmedetomidine on bilirubin-induced alveolar epithelial cell injury assessed by immunochemistry and f...

  9. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  10. Human alveolar epithelial type II cells in primary culture.

    Science.gov (United States)

    Mao, Pu; Wu, Songling; Li, Jianchun; Fu, Wei; He, Weiqun; Liu, Xiaoqing; Slutsky, Arthur S; Zhang, Haibo; Li, Yimin

    2015-02-01

    Alveolar epithelial type II (AEII) cells are a key structure and defender in the lung but also are the targets in many lung diseases, including acute respiratory distress syndrome, ventilator-induced lung injury, and pulmonary fibrosis. We sought to establish an optimized method for high yielding and long maintenance of characteristics of primary human AEII cells to facilitate the investigation of the mechanisms of lung diseases at the cellular and molecular levels. Adult human peripheral normal lung tissues of oncologic patients undergoing lung resection were collected. The AEII cells were isolated and identified by the expression of pro-surfactant protein (SP)C, epithelial sodium channel (αENaC) and cytokeratin (CK)-8, the lamellar bodies specific for AEII cells, and confirmed by the histology using electron microscopy. The phenotype of AEII cells was characterized by the expression of surfactant proteins (SP-A, SP-B, SP-C, SP-D), CK-8, KL-6, αENaC, and aquaporin (AQP)-3, which was maintained over 20 days. The biological activity of the primary human AEII cells producing SP-C, cytokines, and intercellular adhesion molecule-1 was vigorous in response to stimulation with tumor necrosis factor-α. We have modified previous methods and optimized a method for isolation of high purity and long maintenance of the human AEII cell phenotype in primary culture. This method provides an important tool for studies aiming at elucidating the molecular mechanisms of lung diseases exclusively in AEII cells. PMID:25677546

  11. Targeted Injury of Type II Alveolar Epithelial Cells Induces Pulmonary Fibrosis

    OpenAIRE

    Sisson, Thomas H.; Mendez, Michael; Choi, Karen; Subbotina, Natalya; Courey, Anthony; Cunningham, Andrew; Dave, Aditi; Engelhardt, John F.; Liu, Xiaoming; White, Eric S.; Thannickal, Victor J.; Bethany B Moore; Christensen, Paul J; Simon, Richard H

    2009-01-01

    Rationale: Ineffective repair of a damaged alveolar epithelium has been postulated to cause pulmonary fibrosis. In support of this theory, epithelial cell abnormalities, including hyperplasia, apoptosis, and persistent denudation of the alveolar basement membrane, are found in the lungs of humans with idiopathic pulmonary fibrosis and in animal models of fibrotic lung disease. Furthermore, mutations in genes that affect regenerative capacity or that cause injury/apoptosis of type II alveolar ...

  12. Alveolar epithelial type II cells induce T cell tolerance to specific antigen

    DEFF Research Database (Denmark)

    Lo, Bernice; Hansen, Søren; Evans, Kathy; Heath, John K; Wright, Jo Rae

    2008-01-01

    The lungs face the immunologic challenge of rapidly eliminating inhaled pathogens while maintaining tolerance to innocuous Ags. A break in this immune homeostasis may result in pulmonary inflammatory diseases, such as allergies or asthma. The observation that alveolar epithelial type II cells (Ty...

  13. Type I Alveolar Epithelial Cells Mount Innate Immune Responses during Pneumococcal Pneumonia

    OpenAIRE

    Yamamoto, Kazuko; Ferrari, Joseph D.; Cao, Yuxia; Ramirez, Maria I.; Jones, Matthew R.; Quinton, Lee J.; Mizgerd, Joseph P.

    2012-01-01

    Pneumonia results from bacteria in the alveoli. The alveolar epithelium consists of type II cells, which secrete surfactant and associated proteins, and type I cells, which constitute 95% of the surface area and met anatomic and structural needs. Other than constitutively expressed surfactant proteins, it is unknown whether alveolar epithelial cells have distinct roles in innate immunity. Since innate immunity gene induction depends on NF-κB RelA (also known as p65) during pneumonia, we gener...

  14. Human Vγ9Vδ2-T cells efficiently kill influenza virus-infected lung alveolar epithelial cells

    OpenAIRE

    LI Hong; Xiang, Zheng; Feng, Ting; Li, Jinrong; Liu, Yinping; Fan, Yingying; Lu, Qiao; Yin, Zhongwei; Yu, Meixing; Shen, Chongyang; Tu, Wenwei

    2013-01-01

    γδ-T cells play an indispensable role in host defense against different viruses, including influenza A virus. However, whether these cells have cytotoxic activity against influenza virus-infected lung alveolar epithelial cells and subsequently contribute to virus clearance remains unknown. Using influenza virus-infected A549 cells, human lung alveolar epithelial cells, we investigated the cytotoxic activity of aminobisphosphonate pamidronate (PAM)-expanded human Vγ9Vδ2-T cells and their under...

  15. Barrier-protective effects of activated protein C in human alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ferranda Puig

    Full Text Available Acute lung injury (ALI is a clinical manifestation of respiratory failure, caused by lung inflammation and the disruption of the alveolar-capillary barrier. Preservation of the physical integrity of the alveolar epithelial monolayer is of critical importance to prevent alveolar edema. Barrier integrity depends largely on the balance between physical forces on cell-cell and cell-matrix contacts, and this balance might be affected by alterations in the coagulation cascade in patients with ALI. We aimed to study the effects of activated protein C (APC on mechanical tension and barrier integrity in human alveolar epithelial cells (A549 exposed to thrombin. Cells were pretreated for 3 h with APC (50 µg/ml or vehicle (control. Subsequently, thrombin (50 nM or medium was added to the cell culture. APC significantly reduced thrombin-induced cell monolayer permeability, cell stiffening, and cell contraction, measured by electrical impedance, optical magnetic twisting cytometry, and traction microscopy, respectively, suggesting a barrier-protective response. The dynamics of the barrier integrity was also assessed by western blotting and immunofluorescence analysis of the tight junction ZO-1. Thrombin resulted in more elongated ZO-1 aggregates at cell-cell interface areas and induced an increase in ZO-1 membrane protein content. APC attenuated the length of these ZO-1 aggregates and reduced the ZO-1 membrane protein levels induced by thrombin. In conclusion, pretreatment with APC reduced the disruption of barrier integrity induced by thrombin, thus contributing to alveolar epithelial barrier protection.

  16. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells.

    Science.gov (United States)

    Wang, Dachun; Haviland, David L; Burns, Alan R; Zsigmond, Eva; Wetsel, Rick A

    2007-03-13

    Alveolar epithelial type II (ATII) cells are small, cuboidal cells that constitute approximately 60% of the pulmonary alveolar epithelium. These cells are crucial for repair of the injured alveolus by differentiating into alveolar epithelial type I cells. ATII cells derived from human ES (hES) cells are a promising source of cells that could be used therapeutically to treat distal lung diseases. We have developed a reliable transfection and culture procedure, which facilitates, via genetic selection, the differentiation of hES cells into an essentially pure (>99%) population of ATII cells (hES-ATII). Purity, as well as biological features and morphological characteristics of normal ATII cells, was demonstrated for the hES-ATII cells, including lamellar body formation, expression of surfactant proteins A, B, and C, alpha-1-antitrypsin, and the cystic fibrosis transmembrane conductance receptor, as well as the synthesis and secretion of complement proteins C3 and C5. Collectively, these data document the successful generation of a pure population of ATII cells derived from hES cells, providing a practical source of ATII cells to explore in disease models their potential in the regeneration and repair of the injured alveolus and in the therapeutic treatment of genetic diseases affecting the lung. PMID:17360544

  17. Generation of Alveolar Epithelial Spheroids via Isolated Progenitor Cells from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Shimpei Gotoh

    2014-09-01

    Full Text Available No methods for isolating induced alveolar epithelial progenitor cells (AEPCs from human embryonic stem cells (hESCs and induced pluripotent stem cells (hiPSCs have been reported. Based on a study of the stepwise induction of alveolar epithelial cells (AECs, we identified carboxypeptidase M (CPM as a surface marker of NKX2-1+ “ventralized” anterior foregut endoderm cells (VAFECs in vitro and in fetal human and murine lungs. Using SFTPC-GFP reporter hPSCs and a 3D coculture system with fetal human lung fibroblasts, we showed that CPM+ cells isolated from VAFECs differentiate into AECs, demonstrating that CPM is a marker of AEPCs. Moreover, 3D coculture differentiation of CPM+ cells formed spheroids with lamellar-body-like structures and an increased expression of surfactant proteins compared with 2D differentiation. Methods to induce and isolate AEPCs using CPM and consequently generate alveolar epithelial spheroids would aid human pulmonary disease modeling and regenerative medicine.

  18. Cell Stress Induces Upregulation of Osteopontin via the ERK Pathway in Type II Alveolar Epithelial Cells

    OpenAIRE

    Aki Kato; Takafumi Okura; Chizuru Hamada; Seigo Miyoshi; Hitoshi Katayama; Jitsuo Higaki; Ryoji Ito

    2014-01-01

    Osteopontin (OPN) is a multifunctional protein that plays important roles in cell growth, differentiation, migration and tissue fibrosis. In human idiopathic pulmonary fibrosis and murine bleomycin-induced lung fibrosis, OPN is upregulated in type II alveolar epithelial cells (AEC II). However, the mechanism of OPN induction in AEC II is not fully understood. In this study, we demonstrate the molecular mechanism of OPN induction in AEC II and elucidate the functions of OPN in AEC II and lung ...

  19. Interactions of 3 nm, 8 nm, and 15 nm gold particles with human alveolar epithelial cells : a microscopy study

    OpenAIRE

    Böse, Katharina

    2013-01-01

    The inhalation of nanoparticles can cause interactions with pulmonary structures. Human alveolar epithelial cells type II organize the alveolar epithelium and thus can be regarded as barrier against pulmonary nanoparticle uptake. Within the present work, interactions of differently sized gold nanoparticles with A549 cells, a model for type II human alveolar epithelial cells, were studied. The intracellular location of the fluorescently labeled gold particles was analyzed by STED (stimulated e...

  20. Endothelial-monocyte activating polypeptide II disrupts alveolar epithelial type II to type I cell transdifferentiation

    Directory of Open Access Journals (Sweden)

    Chen Yao

    2012-01-01

    Full Text Available Abstract Background Distal alveolar morphogenesis is marked by differentiation of alveolar type (AT-II to AT-I cells that give rise to the primary site of gas exchange, the alveolar/vascular interface. Endothelial-Monocyte Activating Polypeptide (EMAP II, an endogenous protein with anti-angiogenic properties, profoundly disrupts distal lung neovascularization and alveolar formation during lung morphogenesis, and is robustly expressed in the dysplastic alveolar regions of infants with Bronchopulmonary dysplasia. Determination as to whether EMAP II has a direct or indirect affect on ATII→ATI trans-differentiation has not been explored. Method In a controlled nonvascular environment, an in vitro model of ATII→ATI cell trans-differentiation was utilized to demonstrate the contribution that one vascular mediator has on distal epithelial cell differentiation. Results Here, we show that EMAP II significantly blocked ATII→ATI cell transdifferentiation by increasing cellular apoptosis and inhibiting expression of ATI markers. Moreover, EMAP II-treated ATII cells displayed myofibroblast characteristics, including elevated cellular proliferation, increased actin cytoskeleton stress fibers and Rho-GTPase activity, and increased nuclear:cytoplasmic volume. However, EMAP II-treated cells did not express the myofibroblast markers desmin or αSMA. Conclusion Our findings demonstrate that EMAP II interferes with ATII → ATI transdifferentiation resulting in a proliferating non-myofibroblast cell. These data identify the transdifferentiating alveolar cell as a possible target for EMAP II's induction of alveolar dysplasia.

  1. Glucose-6-phosphate dehydrogenase in rat lung alveolar epithelial cells. An ultrastructural enzyme-cytochemical study

    Directory of Open Access Journals (Sweden)

    S Matsubara

    2010-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is the key enzyme of the pentose phosphate pathway in carbohydrate metabolism, and it plays an important role in cell proliferation and antioxidant regulation within cells in various organs. Although marked cell proliferation and oxidant/antioxidant metabolism occur in lung alveolar epithelial cells, definite data has been lacking as to whether cytochemically detectable G6PD is present in alveolar epithelial cells. The distribution pattern of G6PD within these cells, if it is present, is also unknown. The purpose of the present study was to investigate the subcellular localization of G6PD in alveolar cells in the rat lung using a newly- developed enzyme-cytochemistry (copper-ferrocyanide method. Type I cells and stromal endothelia and fibroblasts showed no activities. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of type II alveolar epithelial cells. The cytochemical controls ensured specific detection of enzyme activity. This enzyme may play a role in airway defense by delivering substances for cell proliferation and antioxidant forces, thus maintaining the airway architecture.

  2. Cultured alveolar epithelial cells from septic rats mimic in vivo septic lung.

    Directory of Open Access Journals (Sweden)

    Taylor S Cohen

    Full Text Available Sepsis results in the formation of pulmonary edema by increasing in epithelial permeability. Therefore we hypothesized that alveolar epithelial cells isolated from septic animals develop tight junctions with different protein composition and reduced barrier function relative to alveolar epithelial cells from healthy animals. Male rats (200-300 g were sacrificed 24 hours after cecal ligation and double puncture (2CLP or sham surgery. Alveolar epithelial cells were isolated and plated on fibronectin-coated flexible membranes or permeable, non-flexible transwell substrates. After a 5 day culture period, cells were either lysed for western analysis of tight junction protein expressin (claudin 3, 4, 5, 7, 8, and 18, occludin, ZO-1, and JAM-A and MAPk (JNK, ERK, an p38 signaling activation, or barrier function was examined by measuring transepithelial resistance (TER or the flux of two molecular tracers (5 and 20 A. Inhibitors of JNK (SP600125, 20 microM and ERK (U0126, 10 microM were used to determine the role of these pathways in sepsis induced epithelial barrier dysfunction. Expression of claudin 4, claudin 18, and occludin was significantly lower, and activation of JNK and ERK signaling pathways was significantly increased in 2CLP monolayers, relative to sham monolayers. Transepithelial resistance of the 2CLP monolayers was reduced significantly compared to sham (769 and 1234 ohm-cm(2, respectively, however no significant difference in the flux of either tracer was observed. Inhibition of ERK, not JNK, significantly increased TER and expression of claudin 4 in 2CLP monolayers, and prevented significant differences in claudin 18 expression between 2CLP and sham monolayers. We conclude that alveolar epithelial cells isolated from septic animals form confluent monolayers with impaired barrier function compared to healthy monolayers, and inhibition of ERK signaling partially reverses differences between these monolayers. This model provides a unique

  3. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Marco Checa

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a progressive and lethal disease of unknown etiology. A growing body of evidence indicates that it may result from an aberrant activation of alveolar epithelium, which induces the expansion of the fibroblast population, their differentiation to myofibroblasts and the excessive accumulation of extracellular matrix. The mechanisms that activate the alveolar epithelium are unknown, but several studies indicate that smoking is the main environmental risk factor for the development of IPF. In this study we explored the effect of cigarette smoke on the gene expression profile and signaling pathways in alveolar epithelial cells. Lung epithelial cell line from human (A549, was exposed to cigarette smoke extract (CSE for 1, 3, and 5 weeks at 1, 5 and 10% and gene expression was evaluated by complete transcriptome microarrays. Signaling networks were analyzed with the Ingenuity Pathway Analysis software. At 5 weeks of exposure, alveolar epithelial cells acquired a fibroblast-like phenotype. At this time, gene expression profile revealed a significant increase of more than 1000 genes and deregulation of canonical signaling pathways such as TGF-β and Wnt. Several profibrotic genes involved in EMT were over-expressed, and incomplete EMT was observed in these cells, and corroborated in mouse (MLE-12 and rat (RLE-6TN epithelial cells. The secretion of activated TGF-β1 increased in cells exposed to cigarette smoke, which decreased when the integrin alpha v gene was silenced. These findings suggest that the exposure of alveolar epithelial cells to CSE induces the expression and release of a variety of profibrotic genes, and the activation of TGF-β1, which may explain at least partially, the increased risk of developing IPF in smokers.

  4. Expression and function of aquaporin-1 in hyperoxia-exposed alveolar epithelial type II cells

    OpenAIRE

    ZHANG, QIU-YUE; Fu, Jian-Hua(Department of Physics, Henan University of Technology, Zhengzhou 450001, China); XUE, XIN-DONG

    2014-01-01

    The aim of the present study was to investigate water transport dysfunction in alveolar epithelial type II cells (AECII), which were exposed to hyperoxia, and to investigate the mechanism of pulmonary edema resulting from hyperoxic lung injury. The lung cells of newborn rats were isolated for primary cell culture and divided into control and experimental groups. The control and experimental group cells were placed into a normoxic incubator (oxygen volume fraction, 0.21) or hyperoxic incubator...

  5. Alveolar epithelial stem and progenitor cells: emerging evidence for their role in lung regeneration.

    Science.gov (United States)

    Hoffman, A M; Ingenito, E P

    2012-01-01

    Lung injuries that impact the alveolus, such as emphysema, pulmonary fibrosis, and acute lung injury, are costly and prevalent problems. Moreover, the extent of alveolar injury and impairment of gas exchange is strongly associated with prognosis and survival. Thus, mechanisms of repair and regeneration of the lung alveolar compartment have received mounting attention as newer approaches to the study of stem and progenitor cells in this region unfold. The role of type II alveolar epithelial as the sole source of type I (AECI) and II (AECII) alveolar epithelial cells following lung injury has been recently challenged; recently, investigators have described stemprogenitor cells that function like precursors to AECII either in vitro or in vivo, both in mice and humans. Techniques to explore selfrenewal and multipotency have been rigorously applied to these putative stem-progenitor cell populations and the data thus far is compelling. This review provides background to the study of alveolar regeneration with the aim to provide context to the recent discoveries of putative stem-progenitor cells that may contribute to this process. PMID:23016551

  6. Dexmedetomidine Attenuates Oxidative Stress Induced Lung Alveolar Epithelial Cell Apoptosis In Vitro

    Directory of Open Access Journals (Sweden)

    Jian Cui

    2015-01-01

    Full Text Available Background. Oxidative stress plays a pivotal role in the lung injuries of critical ill patients. This study investigates the protection conferred by α2 adrenoceptor agonist dexmedetomidine (Dex from lung alveolar epithelial cell injury induced by hydrogen peroxide (H2O2 and the underlying mechanisms. Methods. The lung alveolar epithelial cell line, A549, was cultured and then treated with 500 μM H2O2 with or without Dex (1 nM or Dex in combination with atipamezole (10 nM, an antagonist of α2 receptors. Their effect on mitochondrial membrane potential (Δψm, reactive oxygen species (ROS, and the cell cycle was assessed by flow cytometry. Cleaved-caspases 3 and 9, BAX, Bcl-2, phospho-mTOR (p-mTOR, ERK1/2, and E-cadherin expression were also determined with immunocytochemistry. Results. Upregulation of cleaved-caspases 3 and 9 and BAX and downregulation of Bcl-2, p-mTOR, and E-cadherin were found following H2O2 treatment, and all of these were reversed by Dex. Dex also prevented the ROS generation, cytochrome C release, and cell cycle arrest induced by H2O2. The effects of Dex were partially reversed by atipamezole. Conclusion. Our study demonstrated that Dex protected lung alveolar epithelial cells from apoptotic injury, cell cycle arrest, and loss of cell adhesion induced by H2O2 through enhancing the cell survival and proliferation.

  7. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    OpenAIRE

    Seok-Jo Kim; Paul Cheresh; Jablonski, Renea P.; Williams, David B.; Kamp, David W.

    2015-01-01

    Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidenc...

  8. Regulation of epithelial sodium channel a-subunit expression by adenosine receptor A2a in alveolar epithelial cells

    Institute of Scientific and Technical Information of China (English)

    DENG Wang; WANG Dao-xin; ZHANG Wei; LI Chang-yi

    2011-01-01

    Background The amiloride-sensitive epithelial sodium channel a-subunit (a-ENaC) is an important factor for alveolar fluid clearance during acute lung injury. The relationship between adenosine receptor A2a (A2aAR) expressed in alveolar epithelial cells and aα-ENaC is poorly understood. We targeted the A2aAR in this study to investigate its role in the expression of αa-ENaC and in acute lung injury.Methods A549 cells were incubated with different concentrations of A2aAR agonist CGS-21680 and with 100 μmol/L CGS-21680 for various times. Rats were treated with lipopolysaccharide (LPS) after CGS-21680 was injected. Animals were sacrificed and tissue was harvested for evaluation of lung injury by analysis of the lung wet-to-dry weight ratio, lung permeability and myeloperoxidase activity. RT-PCR and Western blotting were used to determine the mRNA and protein expression levels of α-ENaC in A549 cells and alveolar type II epithelial cells.Results Both mRNA and protein levels of α-ENaC were markedly higher from 4 hours to 24 hours after exposure to 100μmol/L CGS-21680. There were significant changes from 0.1 umol/L to 100 μmol/L CGS-21680, with a positive correlation between increased concentrations of CGS-21680 and expression of α-ENaC. Treatment with CGS-21680during LPS induced lung injury protected the lung and promoted α-ENaC expression in the alveolar epithelial cells.Conclusion Activation of A2aAR has a protective effect during the lung injury, which may be beneficial to the prognosis of acute lung injury.

  9. Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells.

    Science.gov (United States)

    Sweeney, Sinbad; Leo, Bey Fen; Chen, Shu; Abraham-Thomas, Nisha; Thorley, Andrew J; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng Jim; Shaffer, Milo S P; Chung, Kian Fan; Ryan, Mary P; Porter, Alexandra E; Tetley, Teresa D

    2016-09-01

    Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs. PMID:27182651

  10. TGF-β1 induces human alveolar epithelial to mesenchymal cell transition (EMT

    Directory of Open Access Journals (Sweden)

    Kamimura Takashi

    2005-06-01

    Full Text Available Abstract Background Fibroblastic foci are characteristic features in lung parenchyma of patients with idiopathic pulmonary fibrosis (IPF. They comprise aggregates of mesenchymal cells which underlie sites of unresolved epithelial injury and are associated with progression of fibrosis. However, the cellular origins of these mesenchymal phenotypes remain unclear. We examined whether the potent fibrogenic cytokine TGF-β1 could induce epithelial mesenchymal transition (EMT in the human alveolar epithelial cell line, A549, and investigated the signaling pathway of TGF-β1-mediated EMT. Methods A549 cells were examined for evidence of EMT after treatment with TGF-β1. EMT was assessed by: morphology under phase-contrast microscopy; Western analysis of cell lysates for expression of mesenchymal phenotypic markers including fibronectin EDA (Fn-EDA, and expression of epithelial phenotypic markers including E-cadherin (E-cad. Markers of fibrogenesis, including collagens and connective tissue growth factor (CTGF were also evaluated by measuring mRNA level using RT-PCR, and protein by immunofluorescence or Western blotting. Signaling pathways for EMT were characterized by Western analysis of cell lysates using monoclonal antibodies to detect phosphorylated Erk1/2 and Smad2 after TGF-β1 treatment in the presence or absence of MEK inhibitors. The role of Smad2 in TGF-β1-mediated EMT was investigated using siRNA. Results The data showed that TGF-β1, but not TNF-α or IL-1β, induced A549 cells with an alveolar epithelial type II cell phenotype to undergo EMT in a time-and concentration-dependent manner. The process of EMT was accompanied by morphological alteration and expression of the fibroblast phenotypic markers Fn-EDA and vimentin, concomitant with a downregulation of the epithelial phenotype marker E-cad. Furthermore, cells that had undergone EMT showed enhanced expression of markers of fibrogenesis including collagens type I and III and CTGF. MMP-2

  11. Establishment and evaluation of a stable cattle type II alveolar epithelial cell line.

    Directory of Open Access Journals (Sweden)

    Feng Su

    Full Text Available Macrophages and dendritic cells are recognized as key players in the defense against mycobacterial infection. Recent research has confirmed that alveolar epithelial cells (AECs also play important roles against mycobacterium infections. Thus, establishing a stable cattle AEC line for future endogenous immune research on bacterial invasion is necessary. In the present study, we first purified and immortalized type II AECs (AEC II cells by transfecting them with a plasmid containing the human telomerase reverse trancriptase gene. We then tested whether or not the immortalized cells retained the basic physiological properties of primary AECs by reverse-transcription polymerase chain reaction and Western blot. Finally, we tested the secretion capacity of immortalized AEC II cells upon stimulation by bacterial invasion. The cattle type II alveolar epithelial cell line (HTERT-AEC II that we established retained lung epithelial cell characteristics: the cells were positive for surfactants A and B, and they secreted tumor necrosis factor-α and interleukin-6 in response to bacterial invasion. Thus, the cell line we established is a potential tool for research on the relationship between AECs and Mycobacterium tuberculosis.

  12. Isolation and characterization of alveolar epithelial type II cells derived from mouse embryonic stem cells.

    Science.gov (United States)

    Sun, Huanhuan; Quan, Yuan; Yan, Qing; Peng, Xinmiao; Mao, Zhengmei; Wetsel, Rick A; Wang, Dachun

    2014-06-01

    The use of embryonic stem cells (ESCs) to regenerate distal lung epithelia damaged by injuries or diseases requires development of safe and efficient methodologies that direct ESC differentiation into transplantable distal lung epithelial progenitors. Time-consuming culture procedure and low differentiation efficiency are major problems that are associated with conventional differentiation approaches via embryoid body formation. The use of a growth factor cocktail or a lung-specific cell-conditioned medium to enrich definitive endoderm for efficient differentiation of mouse ESCs (mESC) into alveolar epithelial progenitor type II cells (ATIICs) has been reported, but not yet successful for generating a homogenous population of ATIICs for tissue regeneration purpose, and it remains unclear whether or not those mESC-derived ATIICs possess normal biological functions. Here, we report a novel method using a genetically modified mESC line harboring an ATIIC-specific neomycin(R) transgene in Rosa 26 locus. We showed that ATIICs can be efficiently differentiated from mESCs as early as day 7 by culturing them directly on Matrigel-coated plates in DMEM containing 15% knockout serum replacement. With this culture condition, the genetically modified mESCs can be selectively differentiated into a homogenous population (>99%) of ATIICs. Importantly, the mESC-derived ATIICs (mESC-ATIICs) exhibited typical lamellar bodies and expressed surfactant protein A, B, and C as normal control ATIICs. When cultured with an air-liquid-interface culture system in Small Airway Epithelial Cell Growth Medium, the mESC-ATIICs can be induced to secrete surfactant proteins after being treated with dibutyryl cAMP+dexamethasone. These mESC-ATIICs can synthesize and secrete surfactant lipid in response to secretagogue, demonstrating active surfactant metabolism in mESC-ATIICs as that seen in normal control ATIICs. In addition, we demonstrated that the selected mESC-ATIICs can be maintained on Matrigel

  13. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells

    Science.gov (United States)

    Sweeney, Sinbad; Theodorou, Ioannis G.; Zambianchi, Marta; Chen, Shu; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Shaffer, Milo S. P.; Ryan, Mary P.; Porter, Alexandra E.; Tetley, Teresa D.

    2015-06-01

    Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit.Inhaled nanoparticles have a high deposition rate in

  14. Cigarette Smoke Extract Inhibits the Proliferation of Alveolar Epithelial Cells and Augments the Expression of P21WAF1

    Institute of Scientific and Technical Information of China (English)

    Zongxian JIAO; Qilin AO; Xiaona GE; Mi XIONG

    2008-01-01

    Cigarette smoking is intimately related with the development of chronic obstructive pulmonary diseases, and alveolar epithelium is a major target for the exposure of cigarette smoke ex- tract. In order to investigate the effect of cigarette smoke extract on the proliferation of alveolar epithelial cell type Ⅱand its relationship with P21WAF1, the alveolar epithelial type Ⅱ cell line (A549) cells were chosen as surrogate cells to represent alveolar epithelial type Ⅱ cells. MTT assay was used to detect cell viability after interfered with different concentrations of cigarette smoke ex-tract. It was observed cigarette smoke extract inhibited the growth of A549 cells in a dose- and time-dependent manner. The morphological changes, involving the condensation and margination of nuclear chromatin, even karyorrhexis, were observed by both Hoechst staining and electronic mi-croscopy. Flow cytometry analysis demonstrated the increased cell percentages in G1 and subG1phases after the cells were incubated with cigarette smoke extract. The expression of p21WAF1 protein and mRNA was also significantly increased as detected by the methods of Western blot or reverse transcription-polymerase chain reaction respectively. In conclusion, cigarette smoke extract inhibits the proliferation of alveolar epithelial cell type Ⅱ and blocks them in G1/S phase. The intracellular accumulation of P21WAF1 may be one of the mechanisms which contribute to cigarette smoke ex-tract-induced inhibition of cell proliferation.

  15. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  16. Human Vγ9Vδ2-T cells efficiently kill influenza virus-infected lung alveolar epithelial cells

    Science.gov (United States)

    Li, Hong; Xiang, Zheng; Feng, Ting; Li, Jinrong; Liu, Yinping; Fan, Yingying; Lu, Qiao; Yin, Zhongwei; Yu, Meixing; Shen, Chongyang; Tu, Wenwei

    2013-01-01

    γδ-T cells play an indispensable role in host defense against different viruses, including influenza A virus. However, whether these cells have cytotoxic activity against influenza virus-infected lung alveolar epithelial cells and subsequently contribute to virus clearance remains unknown. Using influenza virus-infected A549 cells, human lung alveolar epithelial cells, we investigated the cytotoxic activity of aminobisphosphonate pamidronate (PAM)-expanded human Vγ9Vδ2-T cells and their underlying mechanisms. We found that PAM could selectively activate and expand human Vγ9Vδ2-T cells. PAM-expanded human Vγ9Vδ2-T cells efficiently killed influenza virus-infected lung alveolar epithelial cells and inhibited virus replication. The cytotoxic activity of PAM-expanded Vγ9Vδ2-T cells was dependent on cell-to-cell contact and required NKG2D activation. Perforin–granzyme B, tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas–Fas ligand (FasL) pathways were involved in their cytotoxicity. Our study suggests that targeting γδ-T cells by PAM can potentially offer an alternative option for the treatment of influenza virus. PMID:23353835

  17. Electron microscopic studies of various cells in the alveolar wall of mice with special reference to spheroid alveolar epithelial cells after intravenous injection of squid-ink (sepia-melanin solution

    Directory of Open Access Journals (Sweden)

    Suwa,Kiichi

    1977-02-01

    Full Text Available The effect of an intravenous injection of squid-ink (sepia-melanin solution on adult mouse spheroid alveolar epithelial cells was observed by the electron microscope. Sepia-melanin particles were seen in all alveolar wall cells examined that seems to suggest the entrance of sepia-melanin particles into the spheroid alveolar epithlial cells from the alveolar blood capillary. In cases of large penetrations of sepia-melanin particles into spheroid alveolar epithelial cells, a greater increase was found in the intramitochondrial granules. In addition, the so-called inclusion body believed to be formed by the degeneration of mitochondria had very high electron density and its quantity was abundant. On the contrary, in cases where the quantity of sepia-melanin entrance into the spheroid alveolar epithelial cell was small, neither an increase of intramitochondrial granules, an increase of the electron density nor an increase in the quantity of specific inclusion body was found.

  18. Role of cytoskeleton in cytokine production from lung alveolar epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Cytokines are involved in both host defense and inflammatory lung injury. Recent work from our laboratory and others has demonstrated that in addition to classical immune cells, lung alveolar epithelial cells (or pneumocytes) can also produce cytokines in response to various stimuli. This new knowledge has advanced our view of the host defense system in the lung. The regulatory mechanisms of cytokine production have been studied in great detail at various cellular and molecular levels, but the mechanisms of intracellular cytokine transport are largely unknown. Our recent studies suggest that the cytoskeleton could play an important role in mediating intracellular cytokine trafficking. This could be an important regulatory step for cytokine production. For example, lipopolyssacharide (LPS) induced tumor necrosis factor-α (TNF-α) from rat pneumocytes, which was further enhanced by a microfilament-disrupting agent. LPS also induced macrophage inflammatory protein-2(MIP-2), a chemokine for neutrophil recruitment and activation, from rat pneumocytes. This effect was enhanced by microtubule-disrupting agents. We speculate that both microfilaments and microtubules are involved in regulating cytokine transportation in pneumocytes through different mechanisms. Further investigation in on going in my laboratory. From a clinical perspective, if we understand the mechanisms regulating cytokine production and release from lung alveolar epithelial cells, we may be able to enhance or inhibit release of crucial cytokines depending on the clinical situation.

  19. CXCR4 regulates migration of lung alveolar epithelial cells through activation of Rac1 and matrix metalloproteinase-2

    OpenAIRE

    Ghosh, Manik C.; Makena, Patrudu S.; Gorantla, Vijay; Sinclair, Scott E.; Waters, Christopher M.

    2012-01-01

    Restoration of the epithelial barrier following acute lung injury is critical for recovery of lung homeostasis. After injury, alveolar type II epithelial (ATII) cells spread and migrate to cover the denuded surface and, eventually, proliferate and differentiate into type I cells. The chemokine CXCL12, also known as stromal cell-derived factor 1α, has well-recognized roles in organogenesis, hematopoiesis, and immune responses through its binding to the chemokine receptor CXCR4. While CXCL12/CX...

  20. Prognostic value of immunohistochemical surfactant protein A expression in regenerative/hyperplastic alveolar epithelial cells in idiopathic interstitial pneumonias

    Directory of Open Access Journals (Sweden)

    Kajiki Akira

    2011-03-01

    Full Text Available Abstract Background It is difficult to predict survival in patients with idiopathic pulmonary fibrosis. Recently, several proteins, such as surfactant protein (SP and KL-6, have been reported to be useful biologic markers for prediction of prognosis for interstitial pneumonias. It is not clear whether there is any relationship between expression of these proteins in regenerative/hyperplastic alveolar epithelial cells and prognosis of idiopathic interstitial pneumonias (IIPs. Objectives This study aimed to elucidate the clinical significance of the expression of such lung secretory proteins as SP-A and KL-6 in lung tissues of patients with IIPs. Methods We retrospectively investigated the immunohistochemical expression of SP-A, KL-6, cytokeratin (CK, and epithelial membrane antigen (EMA in alveolar epithelial cells in lung tissues obtained from surgical lung biopsy in 43 patients with IIPs, and analyzed the correlation between expression of these markers and the prognosis of each IIP patient. CK and EMA were used as general markers for epithelial cells. Results In patients with usual interstitial pneumonia (UIP, the ratio of SP-A positive epithelial cells to all alveolar epithelial cells (SP-A positive ratio in the collapsed and mural fibrosis areas varied, ranging from cases where almost all alveolar epithelial cells expressed SP-A to cases where only a few did. On the other hand, in many patients with nonspecific interstitial pneumonia (NSIP, many of the alveolar epithelial cells in the diseased areas expressed SP-A. The SP-A positive ratio was significantly lower in patients who died from progression of UIP than in patients with UIP who remained stable or deteriorated but did not die. In NSIP patients, a similar tendency was noted between the SP-A positive ratio and prognosis. Conclusions The results suggest that the paucity of immunohistochemical SP-A expression in alveolar epithelial cells in diseased areas (i.e. regenerative

  1. FXYD1 negatively regulates Na(+)/K(+)-ATPase activity in lung alveolar epithelial cells.

    Science.gov (United States)

    Wujak, Łukasz A; Blume, Anna; Baloğlu, Emel; Wygrecka, Małgorzata; Wygowski, Jegor; Herold, Susanne; Mayer, Konstantin; Vadász, István; Besuch, Petra; Mairbäurl, Heimo; Seeger, Werner; Morty, Rory E

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is clinical syndrome characterized by decreased lung fluid reabsorption, causing alveolar edema. Defective alveolar ion transport undertaken in part by the Na(+)/K(+)-ATPase underlies this compromised fluid balance, although the molecular mechanisms at play are not understood. We describe here increased expression of FXYD1, FXYD3 and FXYD5, three regulatory subunits of the Na(+)/K(+)-ATPase, in the lungs of ARDS patients. Transforming growth factor (TGF)-β, a pathogenic mediator of ARDS, drove increased FXYD1 expression in A549 human lung alveolar epithelial cells, suggesting that pathogenic TGF-β signaling altered Na(+)/K(+)-ATPase activity in affected lungs. Lentivirus-mediated delivery of FXYD1 and FXYD3 allowed for overexpression of both regulatory subunits in polarized H441 cell monolayers on an air/liquid interface. FXYD1 but not FXYD3 overexpression inhibited amphotericin B-sensitive equivalent short-circuit current in Ussing chamber studies. Thus, we speculate that FXYD1 overexpression in ARDS patient lungs may limit Na(+)/K(+)-ATPase activity, and contribute to edema persistence. PMID:26410457

  2. Role of primary human alveolar epithelial cells in host defense against Francisella tularensis infection.

    Science.gov (United States)

    Gentry, Megan; Taormina, Joanna; Pyles, Richard B; Yeager, Linsey; Kirtley, Michelle; Popov, Vsevolod L; Klimpel, Gary; Eaves-Pyles, Tonyia

    2007-08-01

    Francisella tularensis, an intracellular pathogen, is highly virulent when inhaled. Alveolar epithelial type I (ATI) and type II (ATII) cells line the majority of the alveolar surface and respond to inhaled pathogenic bacteria via cytokine secretion. We hypothesized that these cells contribute to the lung innate immune response to F. tularensis. Results demonstrated that the live vaccine strain (LVS) contacted ATI and ATII cells by 2 h following intranasal inoculation of mice. In culture, primary human ATI or ATII cells, grown on transwell filters, were stimulated on the apical (AP) surface with virulent F. tularensis Schu 4 or LVS. Basolateral (BL) conditioned medium (CM), collected 6 and 24 h later, was added to the BL surfaces of transwell cultures of primary human pulmonary microvasculature endothelial cells (HPMEC) prior to the addition of polymorphonuclear leukocytes (PMNs) or dendritic cells (DCs) to the AP surface. HPMEC responded to S4- or LVS-stimulated ATII, but not ATI, CM as evidenced by PMN and DC migration. Analysis of the AP and BL ATII CM revealed that both F. tularensis strains induced various levels of a variety of cytokines via NF-kappaB activation. ATII cells pretreated with an NF-kappaB inhibitor prior to F. tularensis stimulation substantially decreased interleukin-8 secretion, which did not occur through Toll-like receptor 2, 2/6, 4, or 5 stimulation. These data indicate a crucial role for ATII cells in the innate immune response to F. tularensis. PMID:17502386

  3. Role of Primary Human Alveolar Epithelial Cells in Host Defense against Francisella tularensis Infection▿

    Science.gov (United States)

    Gentry, Megan; Taormina, Joanna; Pyles, Richard B.; Yeager, Linsey; Kirtley, Michelle; Popov, Vsevolod L.; Klimpel, Gary; Eaves-Pyles, Tonyia

    2007-01-01

    Francisella tularensis, an intracellular pathogen, is highly virulent when inhaled. Alveolar epithelial type I (ATI) and type II (ATII) cells line the majority of the alveolar surface and respond to inhaled pathogenic bacteria via cytokine secretion. We hypothesized that these cells contribute to the lung innate immune response to F. tularensis. Results demonstrated that the live vaccine strain (LVS) contacted ATI and ATII cells by 2 h following intranasal inoculation of mice. In culture, primary human ATI or ATII cells, grown on transwell filters, were stimulated on the apical (AP) surface with virulent F. tularensis Schu 4 or LVS. Basolateral (BL) conditioned medium (CM), collected 6 and 24 h later, was added to the BL surfaces of transwell cultures of primary human pulmonary microvasculature endothelial cells (HPMEC) prior to the addition of polymorphonuclear leukocytes (PMNs) or dendritic cells (DCs) to the AP surface. HPMEC responded to S4- or LVS-stimulated ATII, but not ATI, CM as evidenced by PMN and DC migration. Analysis of the AP and BL ATII CM revealed that both F. tularensis strains induced various levels of a variety of cytokines via NF-κB activation. ATII cells pretreated with an NF-κB inhibitor prior to F. tularensis stimulation substantially decreased interleukin-8 secretion, which did not occur through Toll-like receptor 2, 2/6, 4, or 5 stimulation. These data indicate a crucial role for ATII cells in the innate immune response to F. tularensis. PMID:17502386

  4. Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition.

    Science.gov (United States)

    Uzunhan, Yurdagül; Bernard, Olivier; Marchant, Dominique; Dard, Nicolas; Vanneaux, Valérie; Larghero, Jérôme; Gille, Thomas; Clerici, Christine; Valeyre, Dominique; Nunes, Hilario; Boncoeur, Emilie; Planès, Carole

    2016-03-01

    Administration of bone marrow-derived human mesenchymal stem cells (hMSC) reduces lung inflammation, fibrosis, and mortality in animal models of lung injury, by a mechanism not completely understood. We investigated whether hMSC would prevent epithelial-mesenchymal transition (EMT) induced by hypoxia in primary rat alveolar epithelial cell (AEC). In AEC cultured on semipermeable filters, prolonged hypoxic exposure (1.5% O2 for up to 12 days) induced phenotypic changes consistent with EMT, i.e., a change in cell morphology, a decrease in transepithelial resistance (Rte) and in the expression of epithelial markers [zonula occludens-1 (ZO-1), E-cadherin, AQP-5, TTF-1], together with an increase in mesenchymal markers [vimentin, α-smooth muscle actin (α-SMA)]. Expression of transcription factors driving EMT such as SNAIL1, ZEB1, and TWIST1 increased after 2, 24, and 48 h of hypoxia, respectively. Hypoxia also induced TGF-β1 mRNA expression and the secretion of active TGF-β1 in apical medium, and the expression of connective tissue growth factor (CTGF), two inducers of EMT. Coculture of AEC with hMSC partially prevented the decrease in Rte and in ZO-1, E-cadherin, and TTF-1 expression, and the increase in vimentin expression induced by hypoxia. It also abolished the increase in TGF-β1 expression and in TGF-β1-induced genes ZEB1, TWIST1, and CTGF. Finally, incubation with human recombinant KGF at a concentration similar to what was measured in hMSC-conditioned media restored the expression of TTF-1 and prevented the increase in TWIST1, TGF-β1, and CTGF in hypoxic AEC. Our results indicate that hMSC prevent hypoxia-induced alveolar EMT through the paracrine modulation of EMT signaling pathways and suggest that this effect is partly mediated by KGF. PMID:26702148

  5. Breakdown of Epithelial Barrier Integrity and Overdrive Activation of Alveolar Epithelial Cells in the Pathogenesis of Acute Respiratory Distress Syndrome and Lung Fibrosis

    OpenAIRE

    Shigehisa Yanagi; Hironobu Tsubouchi; Ayako Miura; Nobuhiro Matsumoto; Masamitsu Nakazato

    2015-01-01

    Individual alveolar epithelial cells (AECs) collaboratively form a tight barrier between atmosphere and fluid-filled tissue to enable normal gas exchange. The tight junctions of AECs provide intercellular sealing and are integral to the maintenance of the AEC barrier integrity. Disruption and failure of reconstitution of AEC barrier result in catastrophic consequences, leading to alveolar flooding and subsequent devastating fibrotic scarring. Recent evidences reveal that many of the fibrotic ...

  6. Alveolar macrophages modulate the epithelial cell response to coal dust in vitro.

    Science.gov (United States)

    Lee, Y C; Rannels, D E

    1996-01-01

    The response of the alveolar epithelium to coal dust exposure is poorly understood. Coal or other dusts may act on the epithelium directly or indirectly through nearby alveolar macrophages (AM) that produce cytokines and other soluble products. AM and type II pneumocytes (T2P) were thus exposed to dust in coculture to evaluate their possible interactions. Anthracite coal dust PSOC 867 increased synthesis of extracellular matrix (ECM) components by T2P. AM alone did not produce ECM. Similarly, coculture of T2P with AM (3.75:1) had little effect on epithelial ECM synthesis. In contrast, coculture of T2P with AM significantly increased PSOC 867 effects on T2P rates of ECM synthesis, ECM fibronectin content, and T2P levels of fibronectin mRNA. AM-conditioned medium did not change the PSOC 867 effect on T2P. Neither control nor PSOC 867-treated AM on Falcon culture inserts (0.45-micron pore size) over T2P stimulated ECM synthesis by either untreated or dust-exposed epithelium. Thus AM-mediated changes in ECM synthesis by PSOC 867-treated T2P require close cell-cell interactions, suggesting a role for cell-cell contact or for short-lived soluble mediators of the AM effects. PMID:8772535

  7. Effects of PPARγ ligands on TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Dagher Hayat

    2010-02-01

    Full Text Available Abstract Background Transforming growth factor β1 (TGF-β1-mediated epithelial mesenchymal transition (EMT of alveolar epithelial cells (AEC may contribute to lung fibrosis. Since PPARγ ligands have been shown to inhibit fibroblast activation by TGF-β1, we assessed the ability of the thiazolidinediones rosiglitazone (RGZ and ciglitazone (CGZ to regulate TGF-β1-mediated EMT of A549 cells, assessing changes in cell morphology, and expression of cell adhesion molecules E-cadherin (epithelial cell marker and N-cadherin (mesenchymal cell marker, and collagen 1α1 (COL1A1, CTGF and MMP-2 mRNA. Methods Serum-deprived A549 cells (human AEC cell line were pre-incubated with RGZ and CGZ (1 - 30 μM in the absence or presence of the PPARγ antagonist GW9662 (10 μM before TGFβ-1 (0.075-7.5 ng/ml treatment for up to 72 hrs. Changes in E-cadherin, N-cadherin and phosphorylated Smad2 and Smad3 levels were analysed by Western blot, and changes in mRNA levels including COL1A1 assessed by RT-PCR. Results TGFβ-1 (2.5 ng/ml-induced reductions in E-cadherin expression were associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin, MMP-2, CTGF and COL1A1 were evident in predominantly elongated fibroblast-like cells. Neither RGZ nor CGZ prevented TGFβ1-induced changes in cell morphology, and PPARγ-dependent inhibitory effects of both ligands on changes in E-cadherin were only evident at submaximal TGF-β1 (0.25 ng/ml. However, both RGZ and CGZ inhibited the marked elevation of N-cadherin and COL1A1 induced by TGF-β1 (2.5 ng/ml, with effects on COL1A1 prevented by GW9662. Phosphorylation of Smad2 and Smad3 by TGF-β1 was not inhibited by RGZ or CGZ. Conclusions RGZ and CGZ inhibited profibrotic changes in TGF-β1-stimulated A549 cells independently of inhibition of Smad phosphorylation. Their inhibitory effects on changes in collagen I and E-cadherin, but not N-cadherin or CTGF, appeared to be PPAR

  8. Differential effects of cigarette smoke on oxidative stress and proinflammatory cytokine release in primary human airway epithelial cells and in a variety of transformed alveolar epithelial cells

    OpenAIRE

    Kode, Aruna; Yang, Se-Ran; Rahman, Irfan

    2006-01-01

    BACKGROUND:Cigarette smoke mediated oxidative stress and inflammatory events in the airway and alveolar epithelium are important processes in the pathogenesis of smoking related pulmonary diseases. Previously, individual cell lines were used to assess the oxidative and proinflammatory effects of cigarette smoke with confounding results. In this study, a panel of human and rodent transformed epithelial cell lines were used to determine the effects of cigarette smoke extract (CSE) on oxidative ...

  9. Differential effects of cigarette smoke on oxidative stress and proinflammatory cytokine release in primary human airway epithelial cells and in a variety of transformed alveolar epithelial cells

    OpenAIRE

    Rahman Irfan; Yang Se-Ran; Kode Aruna

    2006-01-01

    Abstract Background Cigarette smoke mediated oxidative stress and inflammatory events in the airway and alveolar epithelium are important processes in the pathogenesis of smoking related pulmonary diseases. Previously, individual cell lines were used to assess the oxidative and proinflammatory effects of cigarette smoke with confounding results. In this study, a panel of human and rodent transformed epithelial cell lines were used to determine the effects of cigarette smoke extract (CSE) on o...

  10. The alveolar epithelial differentiation of glandular inner lining cells in a mucoepidermoid carcinoma of the lung: a case report

    Directory of Open Access Journals (Sweden)

    Xu Hong-Tao

    2012-10-01

    Full Text Available Abstract Mucoepidermoid carcinoma is a common malignant epithelial tumor of salivary glands, but relatively rare in lung. The histological features of mucoepidermoid carcinoma of the lung are similar to its counterpart arising from the salivary glands. Here, we reported a special tumor that occurred in the medial segment of the right lower lobe in a 22-year-old man. This tumor exhibited typical features of mucoepidermoid carcinoma with 3 cell types: squamoid cells, mucin-secreting cells and cells of intermediate type. These 3 types of cells organized into cysts, nests, glands and solid patterns. Specially, the inner lining cells of some glandular structures were uniform cuboidal and hobnail-like, similar to the alveolar epithelial cells. Immunohistochemistry staining revealed that the inner lining cells of glandular structures were positive for thyroid transcription factor-1 and surfactant protein-B, used as markers of alveolar epithelial cells, and were negative for p63. These findings for the first time demonstrated a rare alveolar epithelial differentiation of glandular inner lining cells in a mucoepidermoid carcinoma of the lung. Virtual Slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/7095988968057804

  11. Protein Expression Profile of Rat Type Two Alveolar Epithelial Cells During Hyperoxic Stress and Recovery

    Science.gov (United States)

    Bhargava, Maneesh

    Rationale: In rodent model systems, the sequential changes in lung morphology resulting from hyperoxic injury are well characterized, and are similar to changes in human acute respiratory distress syndrome (ARDS). In the injured lung, alveolar type two (AT2) epithelial cells play a critical role restoring the normal alveolar structure. Thus characterizing the changes in AT2 cells will provide insights into the mechanisms underpinning the recovery from lung injury. Methods: We applied an unbiased systems level proteomics approach to elucidate molecular mechanisms contributing to lung repair in a rat hyperoxic lung injury model. AT2 cells were isolated from rat lungs at predetermined intervals during hyperoxic injury and recovery. Protein expression profiles were determined by using iTRAQRTM with tandem mass spectrometry. Results: Of 959 distinct proteins identified, 183 significantly changed in abundance during the injury-recovery cycle. Gene Ontology enrichment analysis identified cell cycle, cell differentiation, cell metabolism, ion homeostasis, programmed cell death, ubiquitination, and cell migration to be significantly enriched by these proteins. Gene Set Enrichment Analysis of data acquired during lung repair revealed differential expression of gene sets that control multicellular organismal development, systems development, organ development, and chemical homeostasis. More detailed analysis identified activity in two regulatory pathways, JNK and miR 374. A Short Time-series Expression Miner (STEM) algorithm identified protein clusters with coherent changes during injury and repair. Conclusion: Coherent changes occur in the AT2 cell proteome in response to hyperoxic stress. These findings offer guidance regarding the specific molecular mechanisms governing repair of the injured lung.

  12. Autophagy protects type II alveolar epithelial cells from Mycobacterium tuberculosis infection

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xu-Guang [Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Department of Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Ji, Tian-Xing [Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Xia, Yong, E-mail: gysyxy@gmail.com [Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Ma, Yue-Yun, E-mail: cmbmayy@fmmu.edu.cn [Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi' an (China)

    2013-03-08

    Highlights: ► We investigated the protective effect of autophagy pathway against MTB infection. ► MTB-infected A549 cells had higher LDH release. ► Inhibition of autophagy signaling significantly enhanced the MTB-induced necrosis. ► Autophagy prevents apoptosis and promotes cell survival in infected cells. -- Abstract: This study was designed to investigate the protective effect of the autophagy signaling pathway against Mycobacterium tuberculosis infection in type II alveolar epithelial cells. An in vitro M. tuberculosis system was established using human A549 cells. Infection-induced changes in the expression of the autophagic marker LC3 were assessed by reverse transcription-PCR and Western blotting. Morphological changes in autophagosomes were detected by transmission electron microscopy (TEM). The function of the autophagy signaling pathway during infection was assessed by measuring the level of cell death and the amount of lactate dehydrogenase (LDH) released in the presence or absence of the inhibitor 3-methyladenine (3-MA). In addition, effects on LDH release were assessed after the siRNA-mediated knockdown of the essential autophagosomal structural membrane protein Atg5. LC3 mRNA expression was significantly reduced in M.tuberculosis-infected A549 cells (16888.76 ± 1576.34 vs. uninfected: 12744.29 ± 1089.37; P < 0.05). TEM revealed M.tuberculosis bacilli-containing compartments that were surrounded by double membranes characteristic of the autophagic process. M.tuberculosis-infected A549 cells released more LDH (1.45 ± 0.12 vs. uninfected: 0.45 ± 0.04; P < 0.05). The inhibition of autophagy signaling significantly enhanced M.tuberculosis-induced necrosis (3-MA: 75 ± 5% vs. untreated: 15 ± 1%; P < 0.05) and LDH release (3-MA: 2.50 ± 0.24 vs. untreated: 0.45 ± 0.04; Atg5 knockdown: 3.19 ± 0.29 vs. untreated: 1.28 ± 0.11; P < 0.05). Our results indicate that autophagy signaling pathway prevents apoptosis in type II alveolar epithelial cells

  13. Autophagy protects type II alveolar epithelial cells from Mycobacterium tuberculosis infection

    International Nuclear Information System (INIS)

    Highlights: ► We investigated the protective effect of autophagy pathway against MTB infection. ► MTB-infected A549 cells had higher LDH release. ► Inhibition of autophagy signaling significantly enhanced the MTB-induced necrosis. ► Autophagy prevents apoptosis and promotes cell survival in infected cells. -- Abstract: This study was designed to investigate the protective effect of the autophagy signaling pathway against Mycobacterium tuberculosis infection in type II alveolar epithelial cells. An in vitro M. tuberculosis system was established using human A549 cells. Infection-induced changes in the expression of the autophagic marker LC3 were assessed by reverse transcription-PCR and Western blotting. Morphological changes in autophagosomes were detected by transmission electron microscopy (TEM). The function of the autophagy signaling pathway during infection was assessed by measuring the level of cell death and the amount of lactate dehydrogenase (LDH) released in the presence or absence of the inhibitor 3-methyladenine (3-MA). In addition, effects on LDH release were assessed after the siRNA-mediated knockdown of the essential autophagosomal structural membrane protein Atg5. LC3 mRNA expression was significantly reduced in M.tuberculosis-infected A549 cells (16888.76 ± 1576.34 vs. uninfected: 12744.29 ± 1089.37; P < 0.05). TEM revealed M.tuberculosis bacilli-containing compartments that were surrounded by double membranes characteristic of the autophagic process. M.tuberculosis-infected A549 cells released more LDH (1.45 ± 0.12 vs. uninfected: 0.45 ± 0.04; P < 0.05). The inhibition of autophagy signaling significantly enhanced M.tuberculosis-induced necrosis (3-MA: 75 ± 5% vs. untreated: 15 ± 1%; P < 0.05) and LDH release (3-MA: 2.50 ± 0.24 vs. untreated: 0.45 ± 0.04; Atg5 knockdown: 3.19 ± 0.29 vs. untreated: 1.28 ± 0.11; P < 0.05). Our results indicate that autophagy signaling pathway prevents apoptosis in type II alveolar epithelial cells

  14. Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayers

    Directory of Open Access Journals (Sweden)

    Fazlollahi F

    2011-11-01

    Full Text Available Farnoosh Fazlollahi1,8, Arnold Sipos1,2, Yong Ho Kim1,2, Sarah F Hamm-Alvarez6, Zea Borok1–3, Kwang-Jin Kim1,2,5–7, Edward D Crandall1,2,4,8 1Will Rogers Institute Pulmonary Research Center, 2Department of Medicine, 3Department of Biochemistry and Molecular Biology, 4Department of Pathology, 5Department of Physiology and Biophysics, 6Department of Pharmacology and Pharmaceutical Sciences, 7Department of Biomedical Engineering, 8Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA Background: In this study, primary rat alveolar epithelial cell monolayers (RAECM were used to investigate transalveolar epithelial quantum dot trafficking rates and underlying transport mechanisms. Methods: Trafficking rates of quantum dots (PEGylated CdSe/ZnS, core size 5.3 nm, hydrodynamic size 25 nm in the apical-to-basolateral direction across RAECM were determined. Changes in bioelectric properties (ie, transmonolayer resistance and equivalent active ion transport rate of RAECM in the presence or absence of quantum dots were measured. Involvement of endocytic pathways in quantum dot trafficking across RAECM was assessed using specific inhibitors (eg, methyl-ß-cyclodextrin, chlorpromazine, and dynasore for caveolin-, clathrin-, and dynamin-mediated endocytosis, respectively. The effects of lowering tight junctional resistance on quantum dot trafficking were determined by depleting Ca2+ in apical and basolateral bathing fluids of RAECM using 2 mM EGTA. Effects of temperature on quantum dot trafficking were studied by lowering temperature from 37°C to 4°C. Results: Apical exposure of RAECM to quantum dots did not elicit changes in transmonolayer resistance or ion transport rate for up to 24 hours; quantum dot trafficking rates were not surface charge-dependent; methyl-ß-cyclodextrin, chlorpromazine, and dynasore did not decrease quantum dot trafficking rates; lowering of temperature

  15. MicroRNA 16 Modulates Epithelial Sodium Channel in Human Alveolar Epithelial Cells

    OpenAIRE

    Parthasarathy, Prasanna Tamarapu; Galam, Lakshmi; Huynh, Bao; Yunus, Asfiya; Abuelenen, Toaa; Castillo, Annie; Ramanathan, Gurukumar Kollongod; Ruan, Cox; Kolliputi, Narasaiah

    2012-01-01

    Acute lung injury (ALI) is a devastating disease characterized by pulmonary edema. Removal of edema from the air spaces is a critical function of the epithelial sodium channel (ENaC) in ALI. The molecular mechanisms behind resolution of pulmonary edema are incompletely understood. MicroRNA’s (miRNA) are crucial gene regulators and are dysregulated in various diseases including ALI. Recent studies suggest that microRNA-16 (miR-16) targets serotonin transporter (SERT) involved in the serotonin ...

  16. Incorporation of tritiated thymidine by epithelial and interstitial cells in bronchiolar-alveolar regions of asbestos-exposed rats

    International Nuclear Information System (INIS)

    Inhaled asbestos causes progressive interstitial lung disease. The authors have performed a series of studies to elucidate early pathogenetic events at sites of fiber deposition in asbestos-exposed rats. This study reports that a single 5-hour exposure to chrysotile asbestos induces significant increases in incorporation of tritiated thymidine (3HTdR) into nuclei of epithelial and interstitial cells of bronchiolar-alveolar regions. No cell populations in air-exposed or carbonyl iron-exposed control animals exhibited more than 1% labeling at any point in time. Immediately after the 5-hour asbestos exposure, incorporation was normal. By 19 hours after exposure there was a significant increase in incorporation of 3HTdR, particularly by Type II epithelial cells of the first alveolar duct bifurcations. The greatest increase in degree of incorporation (up to 18-fold) was observed 24 hours after exposure, and increased percentages of 3HTdR-labeled cells were maintained through the 48 hours postexposure period. Normal labeling was present by 8 days after exposure, and this level remained through the 1-month period studied. This apparent mitogenic response correlates with increased numbers of bronchiolar-alveolar epithelial and interstitial cells demonstrated by ultrastructural morphometry in correlative studies. The authors speculate that the incorporation of 3HTdR could be induced by the direct effects of inhaled fibers or by mitogenic factors released from macrophages attracted to the inhaled asbestos

  17. Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Stoehr Linda C

    2011-12-01

    Full Text Available Abstract Background In nanotoxicology, the exact role of particle shape, in relation to the composition, on the capacity to induce toxicity is largely unknown. We investigated the toxic and immunotoxic effects of silver wires (length: 1.5 - 25 μm; diameter 100 - 160 nm, spherical silver nanoparticles (30 nm and silver microparticles ( Methods Wires and nanoparticles were synthesized by wet-chemistry methods and extensively characterized. Cell viability and cytotoxicity were assessed and potential immunotoxic effects were investigated. To compare the effects on an activated and a resting immune system, cells were stimulated with rhTNF-α or left untreated. Changes in intracellular free calcium levels were determined using calcium imaging. Finally, ion release from the particles was assessed by ICP-MS and the effects of released ions on cell viability and cytotoxicity were tested. Results No effects were observed for the spherical particles, whereas the silver wires significantly reduced cell viability and increased LDH release from A549 cells. Cytokine promoter induction and NF-κB activation decreased in a concentration dependent manner similar to the decrease seen in cell viability. In addition, a strong increase of intracellular calcium levels within minutes after addition of wires was observed. This toxicity was not due to free silver ions, since the samples with the highest ion release did not induce toxicity and ion release control experiments with cells treated with pre-incubated medium did not show any effects either. Conclusions These data showed that silver wires strongly affect the alveolar epithelial cells, whereas spherical silver particles had no effect. This supports the hypothesis that shape is one of the important factors that determine particle toxicity.

  18. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Seok-Jo Kim

    2015-09-01

    Full Text Available Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC programmed cell death (apoptosis that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF and asbestosis (pulmonary fibrosis following asbestos exposure. The mammalian mitochondrial DNA (mtDNA encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1 and mitochondrial aconitase (ACO-2 in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer.

  19. Macrophages programmed by apoptotic cells inhibit epithelial-mesenchymal transition in lung alveolar epithelial cells via PGE2, PGD2, and HGF

    Science.gov (United States)

    Yoon, Young-So; Lee, Ye-Ji; Choi, Youn-Hee; Park, Young Mi; Kang, Jihee Lee

    2016-01-01

    Apoptotic cell clearance results in the release of growth factors and the action of signaling molecules involved in tissue homeostasis maintenance. Here, we investigated whether and how macrophages programmed by apoptotic cells inhibit the TGF-β1-induced Epithelial-mesenchymal transition (EMT) process in lung alveolar epithelial cells. Treatment with conditioned medium derived from macrophages exposed to apoptotic cells, but not viable or necrotic cells, inhibited TGF-β1-induced EMT, including loss of E-cadherin, synthesis of N-cadherin and α-smooth muscle actin, and induction of EMT-activating transcription factors, such as Snail1/2, Zeb1/2, and Twist1. Exposure of macrophages to cyclooxygenase (COX-2) inhibitors (NS-398 and COX-2 siRNA) or RhoA/Rho kinase inhibitors (Y-27632 and RhoA siRNA) and LA-4 cells to antagonists of prostaglandin E2 (PGE2) receptor (EP4 [AH-23848]), PGD2 receptors (DP1 [BW-A868C] and DP2 [BAY-u3405]), or the hepatocyte growth factor (HGF) receptor c-Met (PHA-665752), reversed EMT inhibition by the conditioned medium. Additionally, we found that apoptotic cell instillation inhibited bleomycin-mediated EMT in primary mouse alveolar type II epithelial cells in vivo. Our data suggest a new model for epithelial cell homeostasis, by which the anti-EMT programming of macrophages by apoptotic cells may control the progressive fibrotic reaction via the production of potent paracrine EMT inhibitors. PMID:26875548

  20. Macrophages programmed by apoptotic cells inhibit epithelial-mesenchymal transition in lung alveolar epithelial cells via PGE2, PGD2, and HGF.

    Science.gov (United States)

    Yoon, Young-So; Lee, Ye-Ji; Choi, Youn-Hee; Park, Young Mi; Kang, Jihee Lee

    2016-01-01

    Apoptotic cell clearance results in the release of growth factors and the action of signaling molecules involved in tissue homeostasis maintenance. Here, we investigated whether and how macrophages programmed by apoptotic cells inhibit the TGF-β1-induced Epithelial-mesenchymal transition (EMT) process in lung alveolar epithelial cells. Treatment with conditioned medium derived from macrophages exposed to apoptotic cells, but not viable or necrotic cells, inhibited TGF-β1-induced EMT, including loss of E-cadherin, synthesis of N-cadherin and α-smooth muscle actin, and induction of EMT-activating transcription factors, such as Snail1/2, Zeb1/2, and Twist1. Exposure of macrophages to cyclooxygenase (COX-2) inhibitors (NS-398 and COX-2 siRNA) or RhoA/Rho kinase inhibitors (Y-27632 and RhoA siRNA) and LA-4 cells to antagonists of prostaglandin E2 (PGE2) receptor (EP4 [AH-23848]), PGD2 receptors (DP1 [BW-A868C] and DP2 [BAY-u3405]), or the hepatocyte growth factor (HGF) receptor c-Met (PHA-665752), reversed EMT inhibition by the conditioned medium. Additionally, we found that apoptotic cell instillation inhibited bleomycin-mediated EMT in primary mouse alveolar type II epithelial cells in vivo. Our data suggest a new model for epithelial cell homeostasis, by which the anti-EMT programming of macrophages by apoptotic cells may control the progressive fibrotic reaction via the production of potent paracrine EMT inhibitors. PMID:26875548

  1. Effect of P2X7 receptor knockout on AQP-5 expression of type I alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Georg Ebeling

    Full Text Available P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis.

  2. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Directory of Open Access Journals (Sweden)

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  3. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia.

    Directory of Open Access Journals (Sweden)

    Katrin Högner

    2013-02-01

    Full Text Available Influenza viruses (IV cause pneumonia in humans with progression to lung failure and fatal outcome. Dysregulated release of cytokines including type I interferons (IFNs has been attributed a crucial role in immune-mediated pulmonary injury during severe IV infection. Using ex vivo and in vivo IV infection models, we demonstrate that alveolar macrophage (AM-expressed IFN-β significantly contributes to IV-induced alveolar epithelial cell (AEC injury by autocrine induction of the pro-apoptotic factor TNF-related apoptosis-inducing ligand (TRAIL. Of note, TRAIL was highly upregulated in and released from AM of patients with pandemic H1N1 IV-induced acute lung injury. Elucidating the cell-specific underlying signalling pathways revealed that IV infection induced IFN-β release in AM in a protein kinase R- (PKR- and NF-κB-dependent way. Bone marrow chimeric mice lacking these signalling mediators in resident and lung-recruited AM and mice subjected to alveolar neutralization of IFN-β and TRAIL displayed reduced alveolar epithelial cell apoptosis and attenuated lung injury during severe IV pneumonia. Together, we demonstrate that macrophage-released type I IFNs, apart from their well-known anti-viral properties, contribute to IV-induced AEC damage and lung injury by autocrine induction of the pro-apoptotic factor TRAIL. Our data suggest that therapeutic targeting of the macrophage IFN-β-TRAIL axis might represent a promising strategy to attenuate IV-induced acute lung injury.

  4. Differential effects of cigarette smoke on oxidative stress and proinflammatory cytokine release in primary human airway epithelial cells and in a variety of transformed alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Rahman Irfan

    2006-10-01

    Full Text Available Abstract Background Cigarette smoke mediated oxidative stress and inflammatory events in the airway and alveolar epithelium are important processes in the pathogenesis of smoking related pulmonary diseases. Previously, individual cell lines were used to assess the oxidative and proinflammatory effects of cigarette smoke with confounding results. In this study, a panel of human and rodent transformed epithelial cell lines were used to determine the effects of cigarette smoke extract (CSE on oxidative stress markers, cell toxicity and proinflammatory cytokine release and compared the effects with that of primary human small airway epithelial cells (SAEC. Methods Primary human SAEC, transformed human (A549, H1299, H441, and rodent (murine MLE-15, rat L2 alveolar epithelial cells were treated with different concentrations of CSE (0.2–10% ranging from 20 min to 24 hr. Cytotoxicity was assessed by lactate dehydrogenase release assay, trypan blue exclusion method and double staining with acridine orange and ethidium bromide. Glutathione concentration was measured by enzymatic recycling assay and 4-hydroxy-2-nonenal levels by using lipid peroxidation assay kit. The levels of proinflammatory cytokines (e.g. IL-8 and IL-6 were measured by ELISA. Nuclear translocation of the transcription factor, NF-κB was assessed by immunocytochemistry and immunoblotting. Results Cigarette smoke extract dose-dependently depleted glutathione concentration, increased 4-hydroxy-2-nonenal (4-HNE levels, and caused necrosis in the transformed cell lines as well as in SAEC. None of the transformed cell lines showed any significant release of cytokines in response to CSE. CSE, however, induced IL-8 and IL-6 release in primary cell lines in a dose-dependent manner, which was associated with the nuclear translocation of NF-κB in SAEC. Conclusion This study suggests that primary, but not transformed, lung epithelial cells are an appropriate model to study the inflammatory

  5. Prognostic value of immunohistochemical surfactant protein A expression in regenerative/hyperplastic alveolar epithelial cells in idiopathic interstitial pneumonias

    OpenAIRE

    Kajiki Akira; Fukushima Kazuo; Kawabata Masaharu; Wakamatsu Kentaro; Kitasato Yasuhiko; Nagata Nobuhiko; Kitahara Yoshinari; Watanabe Kentaro

    2011-01-01

    Abstract Background It is difficult to predict survival in patients with idiopathic pulmonary fibrosis. Recently, several proteins, such as surfactant protein (SP) and KL-6, have been reported to be useful biologic markers for prediction of prognosis for interstitial pneumonias. It is not clear whether there is any relationship between expression of these proteins in regenerative/hyperplastic alveolar epithelial cells and prognosis of idiopathic interstitial pneumonias (IIPs). Objectives This...

  6. Prognostic value of immunohistochemical surfactant protein A expression in regenerative/hyperplastic alveolar epithelial cells in idiopathic interstitial pneumonias

    OpenAIRE

    Nagata, Nobuhiko; Kitasato, Yasuhiko; Wakamatsu, Kentaro; Kawabata, Masaharu; Fukushima, Kazuo; Kajiki, Akira; Kitahara, Yoshinari; Watanabe, Kentaro

    2011-01-01

    Background It is difficult to predict survival in patients with idiopathic pulmonary fibrosis. Recently, several proteins, such as surfactant protein (SP) and KL-6, have been reported to be useful biologic markers for prediction of prognosis for interstitial pneumonias. It is not clear whether there is any relationship between expression of these proteins in regenerative/hyperplastic alveolar epithelial cells and prognosis of idiopathic interstitial pneumonias (IIPs). Objectives This study ai...

  7. Interactions of Francisella tularensis with Alveolar Type II Epithelial Cells and the Murine Respiratory Epithelium.

    Directory of Open Access Journals (Sweden)

    Matthew Faron

    Full Text Available Francisella tularensis is classified as a Tier 1 select agent by the CDC due to its low infectious dose and the possibility that the organism can be used as a bioweapon. The low dose of infection suggests that Francisella is unusually efficient at evading host defenses. Although ~50 cfu are necessary to cause human respiratory infection, the early interactions of virulent Francisella with the lung environment are not well understood. To provide additional insights into these interactions during early Francisella infection of mice, we performed TEM analysis on mouse lungs infected with F. tularensis strains Schu S4, LVS and the O-antigen mutant Schu S4 waaY::TrgTn. For all three strains, the majority of the bacteria that we could detect were observed within alveolar type II epithelial cells at 16 hours post infection. Although there were no detectable differences in the amount of bacteria within an infected cell between the three strains, there was a significant increase in the amount of cellular debris observed in the air spaces of the lungs in the Schu S4 waaY::TrgTn mutant compared to either the Schu S4 or LVS strain. We also studied the interactions of Francisella strains with human AT-II cells in vitro by characterizing the ability of these three strains to invade and replicate within these cells. Gentamicin assay and confocal microscopy both confirmed that F. tularensis Schu S4 replicated robustly within these cells while F. tularensis LVS displayed significantly lower levels of growth over 24 hours, although the strain was able to enter these cells at about the same level as Schu S4 (1 organism per cell, as determined by confocal imaging. The Schu S4 waaY::TrgTn mutant that we have previously described as attenuated for growth in macrophages and mouse virulence displayed interesting properties as well. This mutant induced significant airway inflammation (cell debris and had an attenuated growth phenotype in the human AT-II cells. These

  8. Linking progression of fibrotic lung remodeling and ultrastructural alterations of alveolar epithelial type II cells in the amiodarone mouse model.

    Science.gov (United States)

    Birkelbach, Bastian; Lutz, Dennis; Ruppert, Clemens; Henneke, Ingrid; Lopez-Rodriguez, Elena; Günther, Andreas; Ochs, Matthias; Mahavadi, Poornima; Knudsen, Lars

    2015-07-01

    Chronic injury of alveolar epithelial type II cells (AE2 cells) represents a key event in the development of lung fibrosis in animal models and in humans, such as idiopathic pulmonary fibrosis (IPF). Intratracheal delivery of amiodarone to mice results in a profound injury and macroautophagy-dependent apoptosis of AE2 cells. Increased autophagy manifested in AE2 cells by disturbances of the intracellular surfactant. Hence, we hypothesized that ultrastructural alterations of the intracellular surfactant pool are signs of epithelial stress correlating with the severity of fibrotic remodeling. With the use of design-based stereology, the amiodarone model of pulmonary fibrosis in mice was characterized at the light and ultrastructural level during progression. Mean volume of AE2 cells, volume of lamellar bodies per AE2 cell, and mean size of lamellar bodies were correlated to structural parameters reflecting severity of fibrosis like collagen content. Within 2 wk amiodarone leads to an increase in septal wall thickness and a decrease in alveolar numbers due to irreversible alveolar collapse associated with alveolar surfactant dysfunction. Progressive hypertrophy of AE2 cells and increase in mean individual size and total volume of lamellar bodies per AE2 cell were observed. A high positive correlation of these AE2 cell-related ultrastructural changes and the deposition of collagen fibrils within septal walls were established. Qualitatively, similar alterations could be found in IPF samples with mild to moderate fibrosis. We conclude that ultrastructural alterations of AE2 cells including the surfactant system are tightly correlated with the progression of fibrotic remodeling. PMID:25957292

  9. Isolation of alveolar epithelial type II progenitor cells from adult human lungs

    OpenAIRE

    Fujino, Naoya; Kubo, Hiroshi; Suzuki, Takaya; Ota, Chiharu; Hegab, Ahmed E.; He, Mei; Suzuki, Satoshi; Suzuki, Takashi; Yamada, Mitsuhiro; Kondo, Takashi; Kato, Hidemasa; Yamaya, Mutsuo

    2010-01-01

    Resident stem/progenitor cells in the lung are important for tissue homeostasis and repair. However, a progenitor population for alveolar type II (ATII) cells in adult human lungs has not been identified. The aim of this study is to isolate progenitor cells from adult human lungs with the ability to differentiate into ATII cells. We isolated colony-forming cells that had the capability for self-renewal and the potential to generate ATII cells in vitro. These undifferentiated progenitor cells ...

  10. Breakdown of Epithelial Barrier Integrity and Overdrive Activation of Alveolar Epithelial Cells in the Pathogenesis of Acute Respiratory Distress Syndrome and Lung Fibrosis

    Directory of Open Access Journals (Sweden)

    Shigehisa Yanagi

    2015-01-01

    Full Text Available Individual alveolar epithelial cells (AECs collaboratively form a tight barrier between atmosphere and fluid-filled tissue to enable normal gas exchange. The tight junctions of AECs provide intercellular sealing and are integral to the maintenance of the AEC barrier integrity. Disruption and failure of reconstitution of AEC barrier result in catastrophic consequences, leading to alveolar flooding and subsequent devastating fibrotic scarring. Recent evidences reveal that many of the fibrotic lung diseases involve AECs both as a frequent target of injury and as a driver of ongoing pathological processes. Aberrantly activated AECs express most of the growth factors and chemokines responsible for the proliferation, migration, and activation of fibroblasts. Current evidences suggest that AECs may acquire overdrive activation in the initial step of fibrosis by several mechanisms, including abnormal recapitulation of the developmental pathway, defects of the molecules essential for epithelial integrity, and acceleration of aging-related properties. Among these initial triggering events, epithelial Pten, a multiple phosphatase that negatively regulates the PI3K/Akt pathway and is crucial for lung development, is essential for the prevention of alveolar flooding and lung fibrosis through the regulation of AEC barrier integrity after injury. Reestablishment of AEC barrier integrity also involves the deployment of specialized stem/progenitor cells.

  11. Activated Alveolar Epithelial Cells Initiate Fibrosis through Secretion of Mesenchymal Proteins

    OpenAIRE

    Yang, Jibing; Wheeler, Sarah E.; Velikoff, Miranda; Kleaveland, Kathryn R.; LaFemina, Michael J.; Frank, James A.; Chapman, Harold A.; Christensen, Paul J; Kim, Kevin K.

    2013-01-01

    Fibrosis is characterized by accumulation of activated fibroblasts and pathological deposition of fibrillar collagens. Activated fibroblasts overexpress matrix proteins and release factors that promote further recruitment of activated fibroblasts, leading to progressive fibrosis. The contribution of epithelial cells to this process remains unknown. Epithelium-directed injury may lead to activation of epithelial cells with phenotypes and functions similar to activated fibroblasts. Prior report...

  12. The vitronectin RGD motif regulates TGF-β-induced alveolar epithelial cell apoptosis.

    Science.gov (United States)

    Wheaton, Amanda K; Velikoff, Miranda; Agarwal, Manisha; Loo, Tiffany T; Horowitz, Jeffrey C; Sisson, Thomas H; Kim, Kevin K

    2016-06-01

    Transforming growth factor-β (TGF-β) is a critical driver of acute lung injury and fibrosis. Injury leads to activation of TGF-β, which regulates changes in the cellular and matrix makeup of the lung during the repair and fibrosis phase. TGF-β can also initiate alveolar epithelial cell (AEC) apoptosis. Injury leads to destruction of the laminin-rich basement membrane, which is replaced by a provisional matrix composed of arginine-glycine-aspartate (RGD) motif-containing plasma matrix proteins, including vitronectin and fibronectin. To determine the role of specific matrix proteins on TGF-β-induced apoptosis, we studied primary AECs cultured on different matrix conditions and utilized mice with deletion of vitronectin (Vtn(-/-)) or mice in which the vitronectin RGD motif is mutated to nonintegrin-binding arginine-glycine-glutamate (RGE) (Vtn(RGE/RGE)). We found that AECs cultured on fibronectin and vitronectin or in wild-type mouse serum are resistant to TGF-β-induced apoptosis. In contrast, AECs cultured on laminin or in serum from Vtn(-/-) or Vtn(RGE/RGE) mice undergo robust TGF-β-induced apoptosis. Plasminogen activator inhibitor-1 (PAI-1) sensitizes AECs to greater apoptosis by disrupting AEC engagement to vitronectin. Inhibition of integrin-associated signaling proteins augments AEC apoptosis. Mice with transgenic deletion of PAI-1 have less apoptosis after bleomycin, but deletion of vitronectin or disruption of the vitronectin RGD motif reverses this protection, suggesting that the proapoptotic function of PAI-1 is mediated through vitronectin inhibition. Collectively, these data suggest that integrin-matrix signaling is an important regulator of TGF-β-mediated AEC apoptosis and that PAI-1 functions as a natural regulator of this interaction. PMID:27106291

  13. Construction of p66Shc gene interfering lentivirus vectors and its effects on alveolar epithelial cells apoptosis induced by hyperoxia

    Science.gov (United States)

    Zhang, Chan; Dong, Wen-Bin; Zhao, Shuai; Li, Qing-Ping; Kang, Lan; Lei, Xiao-Ping; Guo, Lin; Zhai, Xue-Song

    2016-01-01

    Background The aim of this study is to observe the inhibitive effects of p66Shc gene interfering lentivirus vectors on the expression of p66Shc, and to explore its effects on alveolar epithelial cells apoptosis induced by hyperoxia. Methods The gene sequences were cloned into the pLenR-GPH-shRNA lentiviral vector, which was selected by Genebank searches. The pLenR-GPH-shRNA and lentiviral vector packaging plasmid mix were cotransfected into 293T cells to package lentiviral particles. Culture virus supernatant was harvested, and then the virus titer was determined by serial dilution assay. A549 cells were transduced with the constructed lentiviral vectors, and real-time polymerase chain reaction (RT-PCR) and Western blot were used to evaluate p66Shc expression. This study is divided into a control group, a hyperoxia group, an A549-p66ShcshRNA hyperoxia group, and a negative lentivirus group. Cell apoptosis was detected by flow cytometry after 24 hours; the expression of X-linked inhibitor of apoptosis protein (XIAP) and caspase-9 were detected by immunohistochemistry assay. The production of reactive oxygen species and cellular mitochondria membrane potential (ΔΨm) were determined by fluorescence microscopy. Results We successfully established the p66Shc gene interfering lentivirus vectors, A549-p66ShcshRNA. The A549-p66ShcshRNA was transfected into alveolar epithelial cells, and the inhibitive effects on the expression of p66Shc were observed. Both RT-PCR and Western blot demonstrated downregulation of p66Shc expression in A549 cells. In the A549-p66ShcshRNA hyperoxia group, we found dampened oxidative stress. A549-p66ShcshRNA can cause p66Shc gene silencing, reduce mitochondrial reactive oxygen species generation, reduce membrane potential decrease, reduce the apoptosis of A549 cells, and reduce alveolar epithelial cell injury, while the lentiviral empty vector group had no such changes. Conclusion p66Shc gene interfering lentivirus vector can affect the

  14. Differential replication of avian influenza H9N2 viruses in human alveolar epithelial A549 cells

    Directory of Open Access Journals (Sweden)

    Peiris Malik

    2010-03-01

    Full Text Available Abstract Avian influenza virus H9N2 isolates cause a mild influenza-like illness in humans. However, the pathogenesis of the H9N2 subtypes in human remains to be investigated. Using a human alveolar epithelial cell line A549 as host, we found that A/Quail/Hong Kong/G1/97 (H9N2/G1, which shares 6 viral "internal genes" with the lethal A/Hong Kong/156/97 (H5N1/97 virus, replicates efficiently whereas other H9N2 viruses, A/Duck/Hong Kong/Y280/97 (H9N2/Y280 and A/Chicken/Hong Kong/G9/97 (H9N2/G9, replicate poorly. Interestingly, we found that there is a difference in the translation of viral protein but not in the infectivity or transcription of viral genes of these H9N2 viruses in the infected cells. This difference may possibly be explained by H9N2/G1 being more efficient on viral protein production in specific cell types. These findings suggest that the H9N2/G1 virus like its counterpart H5N1/97 may be better adapted to the human host and replicates efficiently in human alveolar epithelial cells.

  15. Elastolytic activity and alveolar epithelial type-1 cell damage after chronic LPS inhalation: Effects of dexamethasone and rolipram

    International Nuclear Information System (INIS)

    This study investigated whether a correlation between leukocyte-derived elastolytic activity, alveolar epithelial type-1 cell damage, and leukocyte infiltration of the airways existed in guinea-pigs chronically exposed to inhaled lipopolysaccharide (LPS). The airway pathology of this model, notably the neutrophilia, resembles chronic obstructive pulmonary disease (COPD). The effect of the corticosteroid, dexamethasone, or the phosphodiesterase-4 (PDE4)-inhibitor, rolipram, on these features was studied. Conscious guinea-pigs were exposed for 1 h to single or repeated (nine) doses of LPS (30 μg ml-1). Dexamethasone (20 mg kg-1, ip) or rolipram (1 mg kg-1, ip) was administered 24 and 0.5 h before the first exposure and daily thereafter. Bronchoalveolar lavage fluid (BALF) was removed and elastolytic activity determined as the elastase-like release of Congo Red from impregnated elastin. The presence of the specific epithelial cell type-1 protein (40-42 kDa) RT140 in BALF was identified by Western blotting using a rat monoclonal antibody and semi-quantified by dot-blot analysis. The antibody was found to identify guinea-pig RT140. BALF inflammatory cells, particularly neutrophils and macrophages, and elastolytic activity were increased in chronic LPS-exposed guinea-pigs, the latter by 90%. Chronic LPS exposure also increased (10.5-fold) RT140 levels, indicating significant alveolar epithelial type-1 cell damage. Dexamethasone or rolipram treatment reduced the influx of inflammatory cells, the elastolytic activity (by 40% and 38%, respectively), and RT140 levels (by 50% and 57%, respectively). In conclusion, chronic LPS-exposed guinea-pigs, like COPD, exhibit elastolytic lung damage. This was prevented by a PDE4 inhibitor and supports their development for suppressing this leukocyte-mediated pathology

  16. Exacerbation of benzene pneumotoxicity in connexin 32 knockout mice: enhanced proliferation of CYP2E1-immunoreactive alveolar epithelial cells

    International Nuclear Information System (INIS)

    The pulmonary pathogenesis triggered by benzene exposure was studied. Since the role of the connexin 32 (Cx32) gap junction protein in mouse pulmonary pathogenesis has been suggested, in the present study, we explored a possible role of Cx32 in benzene-induced pulmonary pathogenesis using the wild-type (WT) and Cx32 knockout (KO) mice. The mice were exposed to 300 ppm benzene by inhalation for 6 h per day, 5 days per week for a total of 26 weeks, and then sacrificed to evaluate the pneumotoxicity or allowed to live out their life span to evaluate the reversibility of the lesions and tumor incidence. Our results clearly revealed exacerbated pneumotoxicity in the benzene-exposed Cx32 KO mice, characterized by diffuse granulomatous interstitial pneumonia, markedly increased mucin secretion of bronchial/bronchiolar and alveolar epithelial cells, and hyperplastic alveolar epithelial cells positive for CYP2E1. But the results did not indicate any enhancement of pulmonary tumorigenesis in the Cx32 KO mice though the number of animals was small

  17. Increased ectodomain shedding of cell adhesion molecule 1 as a cause of type II alveolar epithelial cell apoptosis in patients with idiopathic interstitial pneumonia

    OpenAIRE

    Yoneshige, Azusa; Hagiyama, Man; Inoue, Takao; Mimae, Takahiro; Kato, Takashi; Okada, Morihito; Enoki, Eisuke; Ito, Akihiko

    2015-01-01

    Background Lung alveolar epithelial cell (AEC) apoptosis has attracted attention as an early pathogenic event in the development of idiopathic interstitial pneumonia (IIP); however, the causative mechanism remains unclear. Cell adhesion molecule 1 (CADM1) is an AEC adhesion molecule in the immunoglobulin superfamily. It generates a membrane-associated C-terminal fragment, αCTF, through protease-mediated ectodomain shedding, termed α-shedding. Increased CADM1 α-shedding contributes to AEC apop...

  18. Intratracheal Administration of Recombinant Human Keratinocyte Growth Factor Promotes Alveolar Epithelial Cell Proliferation during Compensatory Lung Growth in Rat

    International Nuclear Information System (INIS)

    Keratinocyte growth factor (KGF) is considered to be one of the most important mitogens for lung epithelial cells. The objectives of this study were to confirm the effectiveness of intratracheal injection of recombinant human KGF (rhKGF) during compensatory lung growth and to optimize the instillation protocol. Here, trilobectomy in adult rat was performed, followed by intratracheal rhKGF instillation with low (0.4 mg/kg) and high (4 mg/kg) doses at various time-points. The proliferation of alveolar cells was assessed by the immunostaining for proliferating cell nuclear antigen (PCNA) in the residual lung. We also investigated other immunohistochemical parameters such as KGF, KGF receptor and surfactant protein A as well as terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. Consequently, intratracheal single injection of rhKGF in high dose group significantly increased PCNA labeling index (LI) of alveolar cells in the remaining lung. Surprisingly, there was no difference in PCNA LI between low and high doses of rhKGF with daily injection, and PCNA LI reached a plateau level with 2 days-consecutive administration (about 60%). Our results indicate that even at low dose, daily intratracheal injection is effective to maintain high proliferative states during the early phase of compensatory lung growth

  19. Enolase 1 (ENO1 and protein disulfide-isomerase associated 3 (PDIA3 regulate Wnt/β-catenin-driven trans-differentiation of murine alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Kathrin Mutze

    2015-08-01

    Full Text Available The alveolar epithelium represents a major site of tissue destruction during lung injury. It consists of alveolar epithelial type I (ATI and type II (ATII cells. ATII cells are capable of self-renewal and exert progenitor function for ATI cells upon alveolar epithelial injury. Cell differentiation pathways enabling this plasticity and allowing for proper repair, however, are poorly understood. Here, we applied proteomics, expression analysis and functional studies in primary murine ATII cells to identify proteins and molecular mechanisms involved in alveolar epithelial plasticity. Mass spectrometry of cultured ATII cells revealed a reduction of carbonyl reductase 2 (CBR2 and an increase in enolase 1 (ENO1 and protein disulfide-isomerase associated 3 (PDIA3 protein expression during ATII-to-ATI cell trans-differentiation. This was accompanied by increased Wnt/β-catenin signaling, as analyzed by qRT-PCR and immunoblotting. Notably, ENO1 and PDIA3, along with T1α (podoplanin; an ATI cell marker, exhibited decreased protein expression upon pharmacological and molecular Wnt/β-catenin inhibition in cultured ATII cells, whereas CBR2 levels were stabilized. Moreover, we analyzed primary ATII cells from mice with bleomycin-induced lung injury, a model exhibiting activated Wnt/β-catenin signaling in vivo. We observed reduced CBR2 significantly correlating with surfactant protein C (SFTPC, whereas ENO1 and PDIA3 along with T1α were increased in injured ATII cells. Finally, siRNA-mediated knockdown of ENO1, as well as PDIA3, in primary ATII cells led to reduced T1α expression, indicating diminished cell trans-differentiation. Our data thus identified proteins involved in ATII-to-ATI cell trans-differentiation and suggest a Wnt/β-catenin-driven functional role of ENO1 and PDIA3 in alveolar epithelial cell plasticity in lung injury and repair.

  20. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor

    OpenAIRE

    Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto; Horowitz, Jeffrey C.; Kim, Kevin K.

    2014-01-01

    Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis...

  1. Cytotoxicity and inflammation in human alveolar epithelial cells following exposure to occupational levels of gold and silver nanoparticles

    International Nuclear Information System (INIS)

    While inhalation represents one of the most likely routes of exposure, the toxicity and response of nanoparticles at concentrations expected from such an exposure are not well understood. Here we characterized the in vitro response of human A549 adenocarcinomic alveolar epithelial cells following exposure to gold (AuNP) and silver (AgNP) nanoparticles at levels approximating an occupational exposure. Changes in neither oxidative stress nor cytotoxicity were significantly affected by exposure to AgNPs and AuNPs, regardless of NP type (Ag vs. Au), concentration, surface ligand (citrate or tannic acid), or size. An inflammatory response was, however, observed in response to 20 nm AgNPs and 20 nm AuNPs, where significant differences in the release of interleukin (IL)-8 but not IL-6 were observed. Additional data demonstrated that increased IL-8 secretion was strongly dependent on both nanoparticle size and concentration. Overall these data suggest that, while not acutely toxic, occupational exposure to AuNPs and AgNPs may trigger a significant inflammatory response in alveolar epithelium. Moreover, the differential responses in IL-8 and IL-6 secretion suggest that NPs may induce a response pathway that is distinct from those commonly elicited by allergens and pathogens.

  2. Environmental particulate (PM2.5 augments stiffness-induced alveolar epithelial cell mechanoactivation of transforming growth factor beta.

    Directory of Open Access Journals (Sweden)

    Marilyn M Dysart

    Full Text Available Dysfunctional pulmonary homeostasis and repair, including diseases such as pulmonary fibrosis (PF, chronic obstructive pulmonary disease (COPD, and tumorigenesis have been increasing over the past decade, a fact that heavily implicates environmental influences. Several investigations have suggested that in response to increased transforming growth factor--beta (TGFβ signaling, the alveolar type II (ATII epithelial cell undergoes phenotypic changes that may contribute to the complex pathobiology of PF. We have previously demonstrated that increased tissue stiffness associated with PF is a potent extracellular matrix (ECM signal for epithelial cell activation of TGFβ. The work reported here explores the relationship between tissue stiffness and exposure to environmental stimuli in the activation of TGFβ. We hypothesized that exposure of ATII cells to fine particulate matter (PM2.5 will result in enhanced cell contractility, TGFβ activation, and subsequent changes to ATII cell phenotype. ATII cells were cultured on increasingly stiff substrates with or without addition of PM2.5. Exposure to PM2.5 resulted in increased activation of TGFβ, increased cell contractility, and elongation of ATII cells. Most notably, on 8 kPa substrates, a stiffness greater than normal but less than established fibrotic lung, addition of PM2.5 resulted in increased cortical cell stiffness, enhanced actin staining and cell elongation; a result not seen in the absence of PM2.5. Our work suggests that PM2.5 exposure additionally enhances the existing interaction between ECM stiffness and TGFβ that has been previously reported. Furthermore, we show that this additional enhancement is likely a consequence of intracellular reactive oxygen species (ROS leading to increased TGFβ signaling events. These results highlight the importance of both the micromechanical and biochemical environment in lung disease initiation and suggest that individuals in early stages of lung

  3. Direct and indirect air particle cytotoxicity in human alveolar epithelial cells.

    Science.gov (United States)

    Orona, N S; Astort, F; Maglione, G A; Saldiva, P H N; Yakisich, J S; Tasat, D R

    2014-08-01

    Air particulate matter has been associated with adverse impact on the respiratory system leading to cytotoxic and proinflammatory effects. The biological mechanisms behind these associations may be initiated by inhaled small size particles, particle components (soluble fraction) and/or mediators released by particle-exposed cells (conditioned media). The effect of Urban Air Particles from Buenos Aires (UAP-BA) and Residual Oil Fly Ash (ROFA) a surrogate of ambient air pollution, their Soluble Fractions (SF) and Conditioned Media (CM) on A549 lung epithelial cells was examined. After 24 h exposure to TP (10 and 100 μg/ml), SF or CM, several biological parameters were assayed on cultured A549 cells. We tested cell viability by MTT, superoxide anion (O₂(-)) generation by NBT and proinflammatory cytokine (TNFα, IL-6 and IL-8) production by ELISA. UAP-BA particles or its SF (direct effect) did not modify cell viability and generation of O₂(-) for any of the doses tested. On the contrary, UAP-BA CM (indirect effect) reduced cell viability and increased both generation of O₂(-) and IL-8 production. Exposure to ROFA particles, SF or ROFA CM reduced proliferation and O₂(-) but, stimulated IL-8. It is worth to note that UAP-BA and ROFA depicted distinct effects on particle-exposed A549 cells implicating morphochemical dependence. These in vitro findings support the hypothesis that particle-induced lung inflammation and disease may involve lung-derived mediators. PMID:24590061

  4. Genomic signature and toxicogenomics comparison of polycationic gene delivery nanosystems in human alveolar epithelial A549 cells

    Directory of Open Access Journals (Sweden)

    J Barar

    2009-10-01

    Full Text Available "nBackground and the purpose of the study: Of the gene delivery systems, non-viral polycationic gene delivery nanosystems have been alternatively exploited as a relatively safe delivery reagents compared to viral vectors. However, little is known about the genomic impacts of these delivery systems in target cells/tissues. In this study, the toxicogenomics and genotoxicity potential of some selected polycationic lipid/polymer based nanostructures (i.e., Oligofectamine® (OF, starburst polyamidoamine Polyfect® (PF and diaminobutane (DAB dendrimers were investigated in human alveolar epithelial A549 cells. "nMethods: To study the nature and the ontology of the gene expression changes in A549 cells upon treatment with polycationic nanostructures, MTT assay and microarray gene expression profiling methodology were employed. For microarray analysis, cyanine (Cy3/Cy5 labeled cDNA samples from treated and untreated cells were hybridized on target arrays housing 200 genes. "nResults and major conclusions: The polycationic nanosystems induced significant gene expression changes belonging to different genomic ontologies such as cell defence and apoptosis pathways. These data suggest that polycationic nanosystems can elicit multiple gene expression changes in A549 cells upon their chemical structures and interactions with cellular/subcellular components. Such impacts may interfere with the main goals of the desired genemedicine.

  5. Electron microscope study on the relationship between macrophages of the alevolar space and spheroid alveolar epithelial cells on mice after injection of squid-ink (sepia-melanin solution into the trachea

    Directory of Open Access Journals (Sweden)

    Suwa,Kiichi

    1977-02-01

    Full Text Available The relationship between alveolar macrophages and spheroid alveolar epithelial cells was studied with the electron microscope after injection of squid-ink solution into the trachea of the mouse. At 20 hours after injection of squid-ink solution slight degeneration was evident in alveolar macrophages with sepia-melanin particles being phagocytized with partial digestion by lysosmes. Furthermore, hardly any changes were seen in mitochondria and inclusion bodies of the spheroid alveolar epithelial cells. In contrast, at one week after injection of squid-ink solution, almost all alveolar macrophages were degenerated with destruction of the ectoplasm in which the ingested sepia-melanin particles were digested by lysosomes into fine particles, and the mitochondria of spheroid alveolar epithelial cells were degenerated and the inclusion bodies were hardly formed. At three weeks after injection of squid-ink solution, alveolar macrophages as well as speroid alveolar epithelial cells showed almost complete recovery of functional structure. As the phagocyte in the alveolar space, neutrophile leucocytes were also observed in addition to the so-called alveolar macrophage.

  6. Cadmium exposure down-regulates 8-oxoguanine DNA glycosylase expression in rat lung and alveolar epithelial cells

    International Nuclear Information System (INIS)

    The current study tested the hypothesis that the pulmonary carcinogenic potential of cadmium (Cd) is related to its ability to inhibit the expression (mRNA and protein) and activity of 8-oxoguanine-DNA glycosylase (OGG1), a base excision repair (BER) enzyme that functions to preferentially excise pre-mutagenic 7,8-dihydro-8-oxoguanine (8-oxoG) from DNA. We demonstrate that a single Cd aerosol exposure of adult male Lewis rats causes time- and dose-dependent down-regulation in the pulmonary levels of rOGG1 mRNA and OGG1 protein, quantified by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assays and western analyses, respectively. Immunohistochemical studies confirmed that Cd inhalation reduces the relative amount of OGG1 in lungs of exposed animals without altering its over-all distribution within the lung, which appears to be more prominent within the alveolar epithelium. In agreement with our in vivo studies, we show that OGG1 expression is also attenuated in alveolar epithelial cell cultures exposed to CdCl2 either acutely or by repeated passaging in Cd-containing medium. The effects caused by Cd were observed in cells that show no loss in viability, as assessed by colony forming ability, the MTT assay, and propidium iodide membrane permeability studies. Nuclear extracts prepared from Cd-treated cells also exhibit a reduction in the ability to nick a synthetic oligonucleotide containing 8-oxoG. We conclude from these studies that Cd causes suppression of OGG1 in the lung and that this mechanism may, in part, play a role in the Cd carcinogenic process

  7. CCR2 and CXCR3 agonistic chemokines are differently expressed and regulated in human alveolar epithelial cells type II

    Directory of Open Access Journals (Sweden)

    Prasse Antje

    2005-07-01

    Full Text Available Abstract The attraction of leukocytes from circulation to inflamed lungs depends on the activation of both the leukocytes and the resident cells within the lung. In this study we determined gene expression and secretion patterns for monocyte chemoattractant protein-1 (MCP-1/CCL2 and T-cell specific CXCR3 agonistic chemokines (Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11 in TNF-α-, IFN-γ-, and IL-1β-stimulated human alveolar epithelial cells type II (AEC-II. AEC-II constitutively expressed high level of CCL2 mRNA in vitro and in situ , and released CCL2 protein in vitro . Treatment of AEC-II with proinflammatory cytokines up-regulated both CCL2 mRNA expression and release of immunoreactive CCL2, whereas IFN-γ had no effect on CCL2 release. In contrast, CXCR3 agonistic chemokines were not detected in freshly isolated AEC-II or in non-stimulated epithelial like cell line A549. IFN-γ, alone or in combination with IL-1β and TNF-α resulted in an increase in CXCL10, CXCL11, and CXCL9 mRNA expression and generation of CXCL10 protein by AEC-II or A549 cells. CXCL10 gene expression and secretion were induced in dose-dependent manner after cytokine-stimulation of AEC-II with an order of potency IFN-γ>>IL-1β ≥ TNF-α. Additionally, we localized the CCL2 and CXCL10 mRNAs in human lung tissue explants by in situ hybridization, and demonstrated the selective effects of cytokines and dexamethasone on CCL2 and CXCL10 expression. These data suggest that the regulation of the CCL2 and CXCL10 expression exhibit significant differences in their mechanisms, and also demonstrate that the alveolar epithelium contributes to the cytokine milieu of the lung, with the ability to respond to locally generated cytokines and to produce potent mediators of the local inflammatory response.

  8. A Novel Approach for Ovine Primary Alveolar Epithelial Type II Cell Isolation and Culture from Fresh and Cryopreserved Tissue Obtained from Premature and Juvenile Animals

    OpenAIRE

    Marcinkiewicz, Mariola M.; Baker, Sandy T.; Jichuan Wu; Terrence L Hubert; Wolfson, Marla R.

    2016-01-01

    The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII) cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established ...

  9. Biophysical determinants of alveolar epithelial plasma membrane wounding associated with mechanical ventilation

    OpenAIRE

    Hussein, Omar; Walters, Bruce; Stroetz, Randolph; Valencia, Paul; McCall, Deborah; Hubmayr, Rolf D.

    2013-01-01

    Mechanical ventilation may cause harm by straining lungs at a time they are particularly prone to injury from deforming stress. The objective of this study was to define the relative contributions of alveolar overdistension and cyclic recruitment and “collapse” of unstable lung units to membrane wounding of alveolar epithelial cells. We measured the interactive effects of tidal volume (VT), transpulmonary pressure (PTP), and of airspace liquid on the number of alveolar epithelial cells with p...

  10. Microarray identifies ADAM family members as key responders to TGF-β1 in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Walls Dermot

    2006-09-01

    Full Text Available Abstract The molecular mechanisms of Idiopathic Pulmonary Fibrosis (IPF remain elusive. Transforming Growth Factor beta 1(TGF-β1 is a key effector cytokine in the development of lung fibrosis. We used microarray and computational biology strategies to identify genes whose expression is significantly altered in alveolar epithelial cells (A549 in response to TGF-β1, IL-4 and IL-13 and Epstein Barr virus. A549 cells were exposed to 10 ng/ml TGF-β1, IL-4 and IL-13 at serial time points. Total RNA was used for hybridisation to Affymetrix Human Genome U133A microarrays. Each in vitro time-point was studied in duplicate and an average RMA value computed. Expression data for each time point was compared to control and a signal log ratio of 0.6 or greater taken to identify significant differential regulation. Using normalised RMA values and unsupervised Average Linkage Hierarchical Cluster Analysis, a list of 312 extracellular matrix (ECM proteins or modulators of matrix turnover was curated via Onto-Compare and Gene-Ontology (GO databases for baited cluster analysis of ECM associated genes. Interrogation of the dataset using ontological classification focused cluster analysis revealed coordinate differential expression of a large cohort of extracellular matrix associated genes. Of this grouping members of the ADAM (A disintegrin and Metalloproteinase domain containing family of genes were differentially expressed. ADAM gene expression was also identified in EBV infected A549 cells as well as IL-13 and IL-4 stimulated cells. We probed pathologenomic activities (activation and functional activity of ADAM19 and ADAMTS9 using siRNA and collagen assays. Knockdown of these genes resulted in diminished production of collagen in A549 cells exposed to TGF-β1, suggesting a potential role for these molecules in ECM accumulation in IPF.

  11. Hypoxia inducible factor 3α plays a critical role in alveolarization and distal epithelial cell differentiation during mouse lung development.

    Directory of Open Access Journals (Sweden)

    Yadi Huang

    Full Text Available Lung development occurs under relative hypoxia and the most important oxygen-sensitive response pathway is driven by Hypoxia Inducible Factors (HIF. HIFs are heterodimeric transcription factors of an oxygen-sensitive subunit, HIFα, and a constitutively expressed subunit, HIF1β. HIF1α and HIF2α, encoded by two separate genes, contribute to the activation of hypoxia inducible genes. A third HIFα gene, HIF3α, is subject to alternative promoter usage and splicing, leading to three major isoforms, HIF3α, NEPAS and IPAS. HIF3α gene products add to the complexity of the hypoxia response as they function as dominant negative inhibitors (IPAS or weak transcriptional activators (HIF3α/NEPAS. Previously, we and others have shown the importance of the Hif1α and Hif2α factors in lung development, and here we investigated the role of Hif3α during pulmonary development. Therefore, HIF3α was conditionally expressed in airway epithelial cells during gestation and although HIF3α transgenic mice were born alive and appeared normal, their lungs showed clear abnormalities, including a post-pseudoglandular branching defect and a decreased number of alveoli. The HIF3α expressing lungs displayed reduced numbers of Clara cells, alveolar epithelial type I and type II cells. As a result of HIF3α expression, the level of Hif2α was reduced, but that of Hif1α was not affected. Two regulatory genes, Rarβ, involved in alveologenesis, and Foxp2, a transcriptional repressor of the Clara cell specific Ccsp gene, were significantly upregulated in the HIF3α expressing lungs. In addition, aberrant basal cells were observed distally as determined by the expression of Sox2 and p63. We show that Hif3α binds a conserved HRE site in the Sox2 promoter and weakly transactivated a reporter construct containing the Sox2 promoter region. Moreover, Hif3α affected the expression of genes not typically involved in the hypoxia response, providing evidence for a novel

  12. Legionella pneumophila infection induces programmed cell death, caspase activation, and release of high-mobility group box 1 protein in A549 alveolar epithelial cells: inhibition by methyl prednisolone

    Directory of Open Access Journals (Sweden)

    Koide Michio

    2008-05-01

    Full Text Available Abstract Background Legionella pneumophila pneumonia often exacerbates acute lung injury (ALI and acute respiratory distress syndrome (ARDS. Apoptosis of alveolar epithelial cells is considered to play an important role in the pathogenesis of ALI and ARDS. In this study, we investigated the precise mechanism by which A549 alveolar epithelial cells induced by L. pneumophila undergo apoptosis. We also studied the effect of methyl prednisolone on apoptosis in these cells. Methods Nuclear deoxyribonucleic acid (DNA fragmentation and caspase activation in L. pneumophila-infected A549 alveolar epithelial cells were assessed using the terminal deoxyribonucleotidyl transferase-mediated triphosphate (dUTP-biotin nick end labeling method (TUNEL method and colorimetric caspase activity assays. The virulent L. pneumophila strain AA100jm and the avirulent dotO mutant were used and compared in this study. In addition, we investigated whether methyl prednisolone has any influence on nuclear DNA fragmentation and caspase activation in A549 alveolar epithelial cells infected with L. pneumophila. Results The virulent strain of L. pneumophila grew within A549 alveolar epithelial cells and induced subsequent cell death in a dose-dependent manner. The avirulent strain dotO mutant showed no such effect. The virulent strains of L. pneumophila induced DNA fragmentation (shown by TUNEL staining and activation of caspases 3, 8, 9, and 1 in A549 cells, while the avirulent strain did not. High-mobility group box 1 (HMGB1 protein was released from A549 cells infected with virulent Legionella. Methyl prednisolone (53.4 μM did not influence the intracellular growth of L. pneumophila within alveolar epithelial cells, but affected DNA fragmentation and caspase activation of infected A549 cells. Conclusion Infection of A549 alveolar epithelial cells with L. pneumophila caused programmed cell death, activation of various caspases, and release of HMGB1. The dot/icm system, a

  13. cDNA microarray analysis of rat alveolar epithelial cells following exposure to organic extract of diesel exhaust particles

    International Nuclear Information System (INIS)

    Diesel exhaust particles (DEP) induce pulmonary diseases including asthma and chronic bronchitis. Comprehensive evaluation is required to know the mechanisms underlying the effects of air pollutants including DEP on lung diseases. Using a cDNA microarray, we examined changes in gene expression in SV40T2 cells, a rat alveolar type II epithelial cell line, following exposure to an organic extract of DEP. We identified candidate sensitive genes that were up- or down-regulated in response to DEP. The cDNA microarray analysis revealed that a 6-h exposure to the DEP extract (30 μg/ml) increased (>2-fold) the expression of 51 genes associated with drug metabolism, antioxidation, cell cycle/proliferation/apoptosis, coagulation/fibrinolysis, and expressed sequence tags (ESTs), and decreased (<0.5-fold) that of 20 genes. In the present study, heme oxygenase (HO)-1, an antioxidative enzyme, showed the maximum increase in gene expression; and type II transglutaminase (TGM-2), a regulator of coagulation, showed the most prominent decrease among the genes. We confirmed the change in the HO-1 protein level by Western blot analysis and that in the enzyme activity of TGM-2. The organic extract of DEP increased the expression of HO-1 protein and decreased the enzyme activity of TGM-2. Furthermore, these effects of DEP on either HO-1 or TGM-2 were reduced by N-acetyl-L-cysteine (NAC), thus suggesting that oxidative stress caused by this organic fraction of DEP may have induced these cellular responses. Therefore, an increase in HO-1 and a decrease in TGM-2 might be good markers of the biological response to organic compounds of airborne particulate substances

  14. Macrophage control of phagocytosed mycobacteria is increased by factors secreted by alveolar epithelial cells through nitric oxide independent mechanisms.

    Directory of Open Access Journals (Sweden)

    Dagbjort H Petursdottir

    Full Text Available Tissue-resident macrophages are heterogeneous with tissue-specific and niche-specific functions. Thus, simplified models of macrophage activation do not explain the extent of heterogeneity seen in vivo. We focus here on the respiratory tract and ask whether factors secreted by alveolar epithelial cells (AEC can influence the functionality of resident pulmonary macrophages (PuM. We have previously reported that factors secreted by AEC increase control of intracellular growth of BCG in macrophages. In the current study, we also aimed to investigate possible mechanisms by which AEC-derived factors increase intracellular control of BCG in both primary murine interstitial macrophages, and bone marrow-derived macrophages and characterize further the effect of these factors on macrophage differentiation. We show that; a in contrast to other macrophage types, IFN-γ did not increase intracellular growth control of Mycobacterium bovis, Bacillus Calmette-Guérin (BCG by interstitial pulmonary macrophages although the same macrophages could be activated by factors secreted by AEC; b the lack of response of pulmonary macrophages to IFN-γ was apparently regulated by suppressor of cytokine signaling (SOCS1; c AEC-derived factors did not induce pro-inflammatory pathways induced by IFN-γ e.g. expression of inducible nitric oxide synthase (iNOS, secretion of nitric oxide (NO, or IL-12, d in contrast to IFN-γ, intracellular bacterial destruction induced by AEC-derived factors was not dependent on iNOS transcription and NO production. Collectively, our data show that PuM were restricted in inflammatory responses mediated by IFN-γ through SOCS1 and that factors secreted by AEC- enhanced the microbicidal capacities of macrophages by iNOS independent mechanisms.

  15. Fas Activation in Alveolar Epithelial Cells Induces KC (CXCL1) Release by a MyD88-Dependent Mechanism

    OpenAIRE

    Farnand, Alex W.; Eastman, Alison J.; Herrero, Raquel; Hanson, Josiah F.; Mongovin, Steve; Altemeier, William A.; Matute-Bello, Gustavo

    2011-01-01

    Activation of the Fas/Fas ligand (FasL) system is associated with activation of apoptotic and proinflammatory pathways that lead to the development of acute lung injury. Previous studies in chimeric mice and macrophage-depleted mice suggested that the main effector cell in Fas-mediated lung injury is not a myeloid cell, but likely an epithelial cell. The goal of this study was to determine whether epithelial cells release proinflammatory cytokines after Fas activation, and to identify the rel...

  16. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines

    Directory of Open Access Journals (Sweden)

    Boczkowski Jorge

    2009-04-01

    Full Text Available Abstract Background A critical issue with nanomaterials is the clear understanding of their potential toxicity. We evaluated the toxic effect of 24 nanoparticles of similar equivalent spherical diameter and various elemental compositions on 2 human pulmonary cell lines: A549 and THP-1. A secondary aim was to elaborate a generic experimental set-up that would allow the rapid screening of cytotoxic effect of nanoparticles. We therefore compared 2 cytotoxicity assays (MTT and Neutral Red and analyzed 2 time points (3 and 24 hours for each cell type and nanoparticle. When possible, TC50 (Toxic Concentration 50 i.e. nanoparticle concentration inducing 50% cell mortality was calculated. Results The use of MTT assay on THP-1 cells exposed for 24 hours appears to be the most sensitive experimental design to assess the cytotoxic effect of one nanoparticle. With this experimental set-up, Copper- and Zinc-based nanoparticles appear to be the most toxic. Titania, Alumina, Ceria and Zirconia-based nanoparticles show moderate toxicity, and no toxicity was observed for Tungsten Carbide. No correlation between cytotoxicity and equivalent spherical diameter or specific surface area was found. Conclusion Our study clearly highlights the difference of sensitivity between cell types and cytotoxicity assays that has to be carefully taken into account when assessing nanoparticles toxicity.

  17. Regulation and function of the two-pore-domain (K2P) potassium channel Trek-1 in alveolar epithelial cells

    OpenAIRE

    Schwingshackl, Andreas; Teng, Bin; Ghosh, Manik; West, Alina Nico; Makena, Patrudu; Gorantla, Vijay; Sinclair, Scott E.; Waters, Christopher M.

    2011-01-01

    Hyperoxia can lead to a myriad of deleterious effects in the lung including epithelial damage and diffuse inflammation. The specific mechanisms by which hyperoxia promotes these pathological changes are not completely understood. Activation of ion channels has been proposed as one of the mechanisms required for cell activation and mediator secretion. The two-pore-domain K+ channel (K2P) Trek-1 has recently been described in lung epithelial cells, but its function remains elusive. In this stud...

  18. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines

    OpenAIRE

    Boczkowski Jorge; Maillot-Marechal Emmanuelle; Dupont Aurélie; Rogerieux Françoise; Geys Jorina; Lanone Sophie; Lacroix Ghislaine; Hoet Peter

    2009-01-01

    Abstract Background A critical issue with nanomaterials is the clear understanding of their potential toxicity. We evaluated the toxic effect of 24 nanoparticles of similar equivalent spherical diameter and various elemental compositions on 2 human pulmonary cell lines: A549 and THP-1. A secondary aim was to elaborate a generic experimental set-up that would allow the rapid screening of cytotoxic effect of nanoparticles. We therefore compared 2 cytotoxicity assays (MTT and Neutral Red) and an...

  19. In vivo autoradiographic demonstration of β-adrenergic binding sites in adult rat type II alveolar epithelial cells

    International Nuclear Information System (INIS)

    Adult male rats were injected intravenously with the muscarinic binding probe 3H-Quinuclidinyl benzilate (QNB) or the β-adrenergic probe 3H-dihydroalprenolol (DHA). Other rats were pre-treated with an intraperitoneal injection of a 500-fold excess of L-isoproterenol prior to the DHA. Light microscopic autoradiography of 0.5 μm sections of lung from the QNB group demonstrated very little labelling even after 6 months of exposure. In constrast, trachealis smooth muscle from these animals contained substantial labelling. Autoradiographs of lung from rats injected with DHA demonstrated labelling which was well localized over alveolar septa and concentrated over the cytoplasm of type II cells. Quantitative analysis of labelling in the DHA groups indicated a significant reduction of labelling in animals treated with L-isoproterenol prior to DHA, in both the alveolar parenchyma in general and over type II cells. The results of this study provide morphologic evidence for the uptake and specific binding of β-adrenergic antagonists by the adult lung in vivo, while failing to demonstrate similar binding of a muscarinic probe. In addition, the results demonstrate specific β-adrenergic receptors on type II cells in vivo and substantiate the view of a direct effect of β-adrenergic agonists on alveolar type II cells

  20. Nemo-like kinase regulates the expression of vascular endothelial growth factor (VEGF) in alveolar epithelial cells.

    Science.gov (United States)

    Ke, Hengning; Masoumi, Katarzyna Chmielarska; Ahlqvist, Kristofer; Seckl, Michael J; Rydell-Törmänen, Kristina; Massoumi, Ramin

    2016-01-01

    The canonical Wnt signaling can be silenced either through β-catenin-mediated ubiquitination and degradation or through phosphorylation of Tcf and Lef by nemo-like kinase (NLK). In the present study, we generated NLK deficient animals and found that these mice become cyanotic shortly before death because of lung maturation defects. NLK-/- lungs exhibited smaller and compressed alveoli and the mesenchyme remained thick and hyperplastic. This phenotype was caused by epithelial activation of vascular endothelial growth factor (VEGF) via recruitment of Lef1 to the promoter of VEGF. Elevated expression of VEGF and activation of the VEGF receptor through phosphorylation promoted an increase in the proliferation rate of epithelial and endothelial cells. In summary, our study identifies NLK as a novel signaling molecule for proper lung development through the interconnection between epithelial and endothelial cells during lung morphogenesis. PMID:27035511

  1. Oncostatin M, but not interleukin-6 or leukemia inhibitory factor, stimulates expression of alpha1-proteinase inhibitor in A549 human alveolar epithelial cells.

    Science.gov (United States)

    Sallenave, J M; Tremblay, G M; Gauldie, J; Richards, C D

    1997-06-01

    Alpha-1 proteinase inhibitor (A1-Pi) is the main serine proteinase inhibitor found in human plasma and is a potent elastase inhibitor in various tissues, including lung. A1-Pi is expressed and induced in liver during inflammatory responses but can also be produced by epithelial cells. Since hepatocyte A1-Pi production is stimulated by interleukin-6 (IL-6) and other gp130-cytokines, such as leukemia inhibitory factor (LIF) and oncostatin M (OM), we investigated the role of these cytokines in regulating A1-Pi in lung epithelial cells. We show that OM, a monocyte and T cell product, can specifically and potently induce A1-Pi production in lung-derived A549 alveolar (epithelial) cells, as well as in liver-derived HepG2 cells. Both A1-Pi protein (as detected by ELISA and Western blots) and mRNA levels were enhanced 20-fold to 30-fold in A549 cells. OM was also able to stimulate the expression of tissue inhibitor of metalloproteinase-1 in these cells. Interestingly, other members of the IL-6 family (IL-6 and LIF) had little or no effect on A549 cells, and proinflammatory cytokines, such as IL-1 beta and tumor necrosis factor-alpha (TNF-alpha) also had no stimulatory effect on A1-Pi synthesis in A549 cells. Costimulation with IL-1 beta resulted in a decrease in A1-Pi production from OM-stimulated A549 cells. However, IL-6 production was synergistically enhanced. OM was also able to stimulate A1-Pi production from a bronchial epithelial primary cell line, whereas an intestinal epithelial cell line HT29 responded to IL-6 but not OM. These results suggest that lung levels A1-Pi could be derived not only from liver and inflammatory cells but also from epithelial cells, which can be upregulated on stimulation by OM. This may have implications for regulation of local activity of human neutrophil elastase (HNE) in such diseases as emphysema and cystic fibrosis. PMID:9198001

  2. Hyperoxia-mediated LC3B activation contributes to the impaired transdifferentiation of type II alveolar epithelial cells (AECIIs) to type I cells (AECIs).

    Science.gov (United States)

    Zhang, Liang; Zhao, Shuang; Yuan, Lijie; Wu, Hongmin; Jiang, Hong; Luo, Gang

    2016-09-01

    Life-saving mechanical ventilation can also cause lung injury through the overproduction of reactive oxygen species (ROS), leading to bronchopulmonary dysplasia (BPD)-like symptoms in preterm infants. It is reported that the autophagic protein microtubule-associated protein-1 light chain (LC)-3B can confer protection against hyperoxia-induced DNA damage in lung alveolar epithelium. However, its role in the transdifferentiation of type II alveolar epithelial cells (AECIIs) to type I cells (AECIs) is unclear and requires further investigation. In this study, newborn Sprague-Dawley rats were exposed to 90% oxygen for up to 14 days to mimic BPD in human infants, with neonatal pups exposed to room air (21% oxygen) as controls. Primary rat AECIIs were cultured under hyperoxic conditions for up to 24 hours to further investigate the underlying mechanisms. This study found that hyperoxia promoted a significant and time-dependent increase of AECII marker surfactant protein (SP)-C in the lung. The increase of AECI marker T1α was repressed by hyperoxia during lung development. These results indicated an impaired AECII transdifferentiation. Pulmonary ROS concentration and expression of autophagic protein LC-3B were increased gradually in response to hyperoxia exposure. Furthermore, AECIIs produced more ROS when cultured under hyperoxic conditions in vitro. Both the LC3B expression and the conversion from LC3BI to LC3BII were enhanced in hyperoxic AECs. Interestingly, inhibition of LC3B either by ROS inhibitor N-acetyl-l-cysteine (NAC) or adenovirus-mediated LC3B shRNA could partly restore AECII transdifferentiation under hyperoxia condition. In summary, the current study reveals a novel role of activated LC3B induced by hyperoxia in AECII transdifferentiation. PMID:27187184

  3. Claudins and alveolar epithelial barrier function in the lung

    OpenAIRE

    Frank, James A.

    2012-01-01

    The alveolar epithelium of the lung constitutes a unique interface with the outside environment. This thin barrier must maintain a surface for gas transfer while being continuously exposed to potentially hazardous environmental stimuli. Small differences in alveolar epithelial barrier properties could therefore have a large impact on disease susceptibility or outcome. Moreover, recent work has focused attention on the alveolar epithelium as central to several lung diseases, including acute lu...

  4. Canonical pathways, networks and transcriptional factor regulation by clinical strains of Mycobacterium tuberculosis in pulmonary alveolar epithelial cells.

    Science.gov (United States)

    Mvubu, Nontobeko E; Pillay, Balakrishna; Gamieldien, Junaid; Bishai, William; Pillay, Manormoney

    2016-03-01

    Limited knowledge exists on pathways, networks and transcriptional factors regulated within epithelial cells by diverse Mycobacterium tuberculosis genotypes. This study aimed to elucidate these mechanisms induced in A549 epithelial cells by dominant clinical strains in KwaZulu-Natal, South Africa. RNA for sequencing was extracted from epithelial cells at 48 h post-infection with 5 strains at a multiplicity of infection of approximately 10:1. Bioinformatics analysis performed with the RNA-Seq Tuxedo pipeline identified differentially expressed genes. Changes in pathways, networks and transcriptional factors were identified using Ingenuity Pathway Analysis (IPA). The interferon signalling and hepatic fibrosis/hepatic stellate cell activation pathways were among the top 5 canonical pathways in all strains. Hierarchical clustering for enrichment of cholesterol biosynthesis and immune associated pathways revealed similar patterns for Beijing and Unique; F15/LAM4/KZN and F11; and, F28 and H37Rv strains, respectively. However, the induction of top scoring networks varied among the strains. Among the transcriptional factors, only EHL, IRF7, PML, STAT1, STAT2 and VDR were induced by all clinical strains. Activation of the different pathways, networks and transcriptional factors revealed in the current study may be an underlying mechanism that results in the differential host response by clinical strains of M. tuberculosis. PMID:26980499

  5. Internalization of SiO₂ nanoparticles by alveolar macrophages and lung epithelial cells and its modulation by the lung surfactant substitute Curosurf.

    Science.gov (United States)

    Vranic, Sandra; Garcia-Verdugo, Ignacio; Darnis, Cécile; Sallenave, Jean-Michel; Boggetto, Nicole; Marano, Francelyne; Boland, Sonja; Baeza-Squiban, Armelle

    2013-05-01

    Because of an increasing exposure to environmental and occupational nanoparticles (NPs), the potential risk of these materials for human health should be better assessed. Since one of the main routes of entry of NPs is via the lungs, it is of paramount importance to further characterize their impact on the respiratory system. Here, we have studied the uptake of fluorescently labeled SiO₂ NPs (50 and 100 nm) by epithelial cells (NCI-H292) and alveolar macrophages (MHS) in the presence or absence of pulmonary surfactant. The quantification of NP uptake was performed by measuring cell-associated fluorescence using flow cytometry and spectrometric techniques in order to identify the most suitable methodology. Internalization was shown to be time and dose dependent, and differences in terms of uptake were noted between epithelial cells and macrophages. In the light of our observations, we conclude that flow cytometry is a more reliable technique for the study of NP internalization, and importantly, that the hydrophobic fraction of lung surfactant is critical for downregulating NP uptake in both cell types. PMID:23288678

  6. Mycoplasma bovis isolates recovered from cattle and bison (Bison bison) show differential in vitro effects on PBMC proliferation, alveolar macrophage apoptosis and invasion of epithelial and immune cells.

    Science.gov (United States)

    Suleman, Muhammad; Prysliak, Tracy; Clarke, Kyle; Burrage, Pat; Windeyer, Claire; Perez-Casal, Jose

    2016-04-15

    In the last few years, several outbreaks of pneumonia, systemically disseminated infection, and high mortality associated with Mycoplasma bovis (M. bovis) in North American bison (Bison bison) have been reported in Alberta, Manitoba, Saskatchewan, Nebraska, New Mexico, Montana, North Dakota, and Kansas. M. bovis causes Chronic Pneumonia and Polyarthritis Syndrome (CPPS) in young, stressed calves in intensively-managed feedlots. M. bovis is not classified as a primary pathogen in cattle, but in bison it appears to be a primary causative agent with rapid progression of disease with fatal outcomes and an average 20% mature herd mortality. Thus, there is a possibility that M. bovis isolates from cattle and bison differ in their pathogenicity. Hence, we decided to compare selected cattle isolates to several bison isolates obtained from clinical cases. We show differences in modulation of PBMC proliferation, invasion of trachea and lung epithelial cells, along with modulation of apoptosis and survival in alveolar macrophages. We concluded that some bison isolates showed less inhibition of cattle and bison PBMC proliferation, were not able to suppress alveolar macrophage apoptosis as efficiently as cattle isolates, and were more or less invasive than the cattle isolate in various cells. These findings provide evidence about the differential properties of M. bovis isolated from the two species and has helped in the selection of bison isolates for genomic sequencing. PMID:27016754

  7. Caffeic acid phenethyl ester protects lung alveolar epithelial cellsfrom cigarette smoke-induced damage

    OpenAIRE

    BARLAS, FIRAT BARIŞ; ERDOGAN, SUAT

    2015-01-01

    Background/aim: To evaluate the influence of caffeic acid phenethyl ester (CAPE) on cigarette smoke (CS)-induced cell damage, oxidative stress, and inflammation in human alveolar epithelial cells. Materials and methods: A549 alveolar epithelial cells were divided into control, CS exposure, CAPE, and CS+CAPE treatment groups. Undiluted CS-exposed medium (100%) and three dilutions (50%, 25%, and 10%) of CS-exposed media were applied to cultured A549 cells, which were analyzed after 3 h of inc...

  8. Alveolocapillary model system to study alveolar re-epithelialization

    Energy Technology Data Exchange (ETDEWEB)

    Willems, Coen H.M.P.; Zimmermann, Luc J.I.; Sanders, Patricia J.L.T.; Wagendorp, Margot; Kloosterboer, Nico [Department of Paediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht (Netherlands); Cohen Tervaert, Jan Willem [Division of Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht (Netherlands); Duimel, Hans J.Q.; Verheyen, Fons K.C.P. [Electron Microscopy Unit, Department of Molecular Cell Biology, Maastricht University Medical Centre, Maastricht (Netherlands); Iwaarden, J. Freek van, E-mail: f.vaniwaarden@maastrichtuniversity.nl [Department of Paediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht (Netherlands)

    2013-01-01

    In the present study an in vitro bilayer model system of the pulmonary alveolocapillary barrier was established to investigate the role of the microvascular endothelium on re-epithelialization. The model system, confluent monolayer cultures on opposing sides of a porous membrane, consisted of a human microvascular endothelial cell line (HPMEC-ST1.6R) and an alveolar type II like cell line (A549), stably expressing EGFP and mCherry, respectively. These fluorescent proteins allowed the real time assessment of the integrity of the monolayers and the automated analysis of the wound healing process after a scratch injury. The HPMECs significantly attenuated the speed of re-epithelialization, which was associated with the proximity to the A549 layer. Examination of cross-sectional transmission electron micrographs of the model system revealed protrusions through the membrane pores and close contact between the A549 cells and the HPMECs. Immunohistochemical analysis showed that these close contacts consisted of heterocellular gap-, tight- and adherens-junctions. Additional analysis, using a fluorescent probe to assess gap-junctional communication, revealed that the HPMECs and A549 cells were able to exchange the fluorophore, which could be abrogated by disrupting the gap junctions using connexin mimetic peptides. These data suggest that the pulmonary microvascular endothelium may impact the re-epithelialization process. -- Highlights: ► Model system for vital imaging and high throughput screening. ► Microvascular endothelium influences re-epithelialization. ► A549 cells form protrusions through membrane to contact HPMEC. ► A549 cells and HPMECs form heterocellular tight-, gap- and adherens-junctions.

  9. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air-liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Mihai, Cosmin; Chrisler, William B.; Xie, Yumei; Hu, Dehong; Szymanski, Craig J.; Tolic, Ana; Klein, Jessica; Smith, Jordan N.; Tarasevich, Barbara J.; Orr, Galya

    2015-02-01

    Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn2+, together with organelle-specific fluorescent proteins, we quantified Zn2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submersed cultures, intracellular Zn2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn2+ values that were nearly 3 folds lower than the peak values generated by the lowest toxic dose of NPs in submersed cultures, and 8 folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn2+. At the ALI, the majority of intracellular Zn2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn2+ following exposures to ZnSO4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. Together, our observations indicate that low but critical levels of intracellular Zn2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.

  10. Phagocytic properties of lung alveolar wall cells

    Directory of Open Access Journals (Sweden)

    Tanaka,Akisuke

    1974-04-01

    Full Text Available For the purpose to define the mechanism of heavy metal intoxication by inhalation, morphologic observations were made on rat lungs after nasal instillation of iron colloid particles of positive and negative electric charges. Histochemical observation was also made on the liver and spleen of these animals. The instilled iron colloid particles reach the alveolar cavity easily, as can be seen in the tissue sections stained by Prussian blue reaction. Alveolar macrophages do take up them avidly both of positive and negative charges, though much less the positive particles than negative ones. In contrast, the alveolar epithelial cells take up solely positive particles by phagocytosis but not negative ones. Electron microscope observation revealed that the positive particles are ingested by Type I epithelial cells by pinocytosis and by Type II cells by phagocytosis as well. Then the iron colloid particles are transferred into the basement membrane by exocytosis. Travelling through the basement membrane they are again taken up by capillary endothelial cells by phagocytosis. Some particles were found in the intercellular clefts of capillary endothelial cells but not any iron colloid particles in the intercellular spaces of epithelial cells and in the capillary lumen. However, the liver and spleen tissues of the animals given iron colloid showed a strong positive iron reaction. On the basis of these observations, the mechanism of acute intoxication by inhaling heavy metal dusts like lead fume is discussed from the view point of selective uptake of alveolar epithelial and capillary endothelial cells for the particles of the positive electric cha'rge.

  11. A Novel Approach for Ovine Primary Alveolar Epithelial Type II Cell Isolation and Culture from Fresh and Cryopreserved Tissue Obtained from Premature and Juvenile Animals.

    Directory of Open Access Journals (Sweden)

    Mariola M Marcinkiewicz

    Full Text Available The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established in vitro submerged and air-liquid interface cultures of primary ovine ATII cells isolated from fresh or cryopreserved lung tissues obtained from mechanically ventilated sheep (128 days gestation-6 months of age. Presence, abundance, and mRNA expression of surfactant proteins was assessed by immunocytochemistry, Western Blot, and quantitative PCR respectively on the day of isolation, and throughout the 7 day cell culture study period. All biomarkers were significantly greater from cells isolated from fresh than cryopreserved tissue, and those cultured in air-liquid interface as compared to submerged culture conditions at all time points. Surfactant protein expression remained in the air-liquid interface culture system while that of cells cultured in the submerged system dissipated over time. Despite differences in biomarker magnitude between cells isolated from fresh and cryopreserved tissue, cells isolated from cryopreserved tissue remained metabolically active and demonstrated a similar response as cells from fresh tissue through 72 hr period of hyperoxia. These data demonstrate a cell culture methodology using fresh or cryopreserved tissue to support study of ovine primary ATII cell function and responses, to support expanded use of biobanked tissues, and to further understanding of mechanisms that contribute to in vivo function of the lung.

  12. A Novel Approach for Ovine Primary Alveolar Epithelial Type II Cell Isolation and Culture from Fresh and Cryopreserved Tissue Obtained from Premature and Juvenile Animals.

    Science.gov (United States)

    Marcinkiewicz, Mariola M; Baker, Sandy T; Wu, Jichuan; Hubert, Terrence L; Wolfson, Marla R

    2016-01-01

    The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII) cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established in vitro submerged and air-liquid interface cultures of primary ovine ATII cells isolated from fresh or cryopreserved lung tissues obtained from mechanically ventilated sheep (128 days gestation-6 months of age). Presence, abundance, and mRNA expression of surfactant proteins was assessed by immunocytochemistry, Western Blot, and quantitative PCR respectively on the day of isolation, and throughout the 7 day cell culture study period. All biomarkers were significantly greater from cells isolated from fresh than cryopreserved tissue, and those cultured in air-liquid interface as compared to submerged culture conditions at all time points. Surfactant protein expression remained in the air-liquid interface culture system while that of cells cultured in the submerged system dissipated over time. Despite differences in biomarker magnitude between cells isolated from fresh and cryopreserved tissue, cells isolated from cryopreserved tissue remained metabolically active and demonstrated a similar response as cells from fresh tissue through 72 hr period of hyperoxia. These data demonstrate a cell culture methodology using fresh or cryopreserved tissue to support study of ovine primary ATII cell function and responses, to support expanded use of biobanked tissues, and to further understanding of mechanisms that contribute to in vivo function of the lung. PMID:26999050

  13. Human neutrophil elastase regulates the expression and secretion of elafin (elastase-specific inhibitor) in type II alveolar epithelial cells.

    Science.gov (United States)

    Reid, P T; Marsden, M E; Cunningham, G A; Haslett, C; Sallenave, J M

    1999-08-20

    Elafin is a low molecular weight antiproteinase believed to be important in the regulation of elastase mediated tissue damage. The expression of elafin is known to be regulated by proinflammatory cytokines such as interleukin-1 beta and tumour necrosis factor but little was known regarding the effect of human neutrophil elastase (HNE). Employing a chloramphenicol acetyltransferase reporter construct of the human elafin gene, reverse transcription PCR from total cellular RNA and ELISA techniques, we have examined the effect of human neutrophil elastase on the transcription and secretion of human elafin in the pulmonary epithelial A549 cell line. Stimulation with HNE at concentrations of 10(-10) and 10(-11) M resulted in a significant upregulation of elafin promoter activity. Similarly, transcription of the endogenous human elafin gene was upregulated with HNE concentrations ranging from 10(-10) to 10(-12) M. In addition, we demonstrate that stimulation with HNE at concentrations ranging from 10(-9) and 10(-12) M resulted in a significant reduction in the secreted elafin protein as measured in the cell supernatant. These results provide further evidence for a role of elafin in the regulation of HNE driven proteolysis of the extracellular matrix. PMID:10486558

  14. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles.

    Science.gov (United States)

    Bhattacharya, Kunal; Naha, Pratap C; Naydenova, Izabela; Mintova, Svetlana; Byrne, Hugh J

    2012-12-17

    MFI-50 nanoparticles was found to accumulate over a longer period of time as compared to MFI-100 nanoparticles. The study therefore points towards the capability of the non-cytotoxic zeolite nanoparticles to induce oxidative stress resulting in short-term altered cellular metabolism up-regulation and genomic instability. Although the damage was found to be short-lived, its persistence over longer durations, or stabilization cannot be neglected. Further studies are in progress to yield a better understanding of the mechanisms for oxidative stress and resulting cascade of events leading to genetic damage in the human lung alveolar epithelial cells following exposure to zeolite nanoparticles of different sizes. PMID:23103338

  15. Repopulation of denuded tracheal grafts with alveolar type II cells

    International Nuclear Information System (INIS)

    Repopulation of denuded heterotopic tracheal grafts with populations of specific epithelial cell types is one approach to study the differentiation potential of various cell types. This technique has been adopted to delineate the differentiation pathways of alveolar type II cells isolated from rat lungs. Under the conditions of this experiment, the reestablished epithelial lining was alveolar-like, however, ultrastructural analysis of the cells showed them to be like Clara cells. These preliminary results suggest that the secretary cells of the lung parenchyma and terminal airways may share a common ancestry. (author)

  16. Alveolar epithelial permeability in bronchial asthma in children

    International Nuclear Information System (INIS)

    To evaluate alveolar epithelial permeability (kep) in children with bronchial asthma, 99mTc-DTPA (diethylene triamine penta acetate) aerosol lung inhalation scintigraphies were performed. There was no correlation between the kep value and the severity of asthma. On the other hand, out of 10 cases which had no aerosol deposition defect in the lung field, 4 showed high kep values on the whole lung field and 7 had high kep value areas, particularly apparent in the upper lung field. These results suggest that even when the central airway lesions are mild, severe damage exists in the alveolar region of the peripheral airway. (author)

  17. Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles: Further mechanistic studies

    International Nuclear Information System (INIS)

    In order to better understand how ambient air particulate matter (PM) affect lung health, the two main airway cell types likely to interact with inhaled particles, alveolar macrophages (AM) and airway epithelial cells have been exposed to particles in vitro and followed for endpoints of inflammation, and oxidant stress. Separation of Chapel Hill PM 10 into fine and coarse size particles revealed that the main proinflammatory response (TNF, IL-6, COX-2) in AM was driven by material present in the coarse PM, containing 90-95% of the stimulatory material in PM10. The particles did not affect expression of hemoxygenase-1 (HO-1), a sensitive marker of oxidant stress. Primary cultures of normal human bronchial epithelial cells (NHBE) also responded to the coarse fraction with higher levels of IL-8 and COX-2, than induced by fine or ultrafine PM. All size PM induced oxidant stress in NHBE, while fine PM induced the highest levels of HO-1 expression. The production of cytokines in AM by both coarse and fine particles was blocked by the toll like receptor 4 (TLR4) antagonist E5531 involved in the recognition of LPS and Gram negative bacteria. The NHBE were found to recognize coarse and fine PM through TLR2, a receptor with preference for recognition of Gram positive bacteria. Compared to ambient PM, diesel PM induced only a minimal cytokine response in both AM and NHBE. Instead, diesel suppressed LPS-induced TNF and IL-8 release in AM. Both coarse and fine ambient air PM were also found to inhibit LPS-induced TNF release while silica, volcanic ash or carbon black had no inhibitory effect. Diesel particles did not affect cytokine mRNA induction nor protein accumulation but interfered with the release of cytokine from the cells. Ambient coarse and fine PM, on the other hand, inhibited both mRNA induction and protein production. Exposure to coarse and fine PM decreased the expression of TLR4 in the macrophages. Particle-induced decrease in TLR4 and hyporesponsiveness to LPS

  18. Pneumocystis carinii major surface glycoprotein induces interleukin-8 and monocyte chemoattractant protein-1 release from a human alveolar epithelial cell line

    DEFF Research Database (Denmark)

    Benfield, T L; Lundgren, Bettina; Shelhamer, J H;

    1999-01-01

    BACKGROUND: The major surface glycoprotein (MSG) is an abundant, immunogenic glycoprotein located on the surface of Pneumocystis carinii. Little is known about the proinflammatory effects of MSG. DESIGN: We have investigated the effect of human MSG on the secretion of the chemokines interleukin 8...... in response to MSG stimulation occurred by 4 h and persisted throughout 8 h of stimulation. CONCLUSION: These findings suggest that MSG can alter alveolar epithelial cytokine release and may be capable of modulating the local inflammatory response in this manner....

  19. Biophysical determinants of alveolar epithelial plasma membrane wounding associated with mechanical ventilation.

    Science.gov (United States)

    Hussein, Omar; Walters, Bruce; Stroetz, Randolph; Valencia, Paul; McCall, Deborah; Hubmayr, Rolf D

    2013-10-01

    Mechanical ventilation may cause harm by straining lungs at a time they are particularly prone to injury from deforming stress. The objective of this study was to define the relative contributions of alveolar overdistension and cyclic recruitment and "collapse" of unstable lung units to membrane wounding of alveolar epithelial cells. We measured the interactive effects of tidal volume (VT), transpulmonary pressure (PTP), and of airspace liquid on the number of alveolar epithelial cells with plasma membrane wounds in ex vivo mechanically ventilated rat lungs. Plasma membrane integrity was assessed by propidium iodide (PI) exclusion in confocal images of subpleural alveoli. Cyclic inflations of normal lungs from zero end-expiratory pressure to 40 cmH2O produced VT values of 56.9 ± 3.1 ml/kg and were associated with 0.12 ± 0.12 PI-positive cells/alveolus. A preceding tracheal instillation of normal saline (3 ml) reduced VT to 49.1 ± 6 ml/kg but was associated with a significantly greater number of wounded alveolar epithelial cells (0.52 ± 0.16 cells/alveolus; P < 0.01). Mechanical ventilation of completely saline-filled lungs with saline (VT = 52 ml/kg) to pressures between 10 and 15 cmH2O was associated with the least number of wounded epithelial cells (0.02 ± 0.02 cells/alveolus; P < 0.01). In mechanically ventilated, partially saline-filled lungs, the number of wounded cells increased substantially with VT, but, once VT was accounted for, wounding was independent of maximal PTP. We found that interfacial stress associated with the generation and destruction of liquid bridges in airspaces is the primary biophysical cell injury mechanism in mechanically ventilated lungs. PMID:23997173

  20. NO2 decreases paracellular resistance to ion and solute flow in alveolar epithelial monolayers

    International Nuclear Information System (INIS)

    Primary cultured monolayers of rat alveolar epithelial cells grown on tissue culture-treated Nuclepore filters were exposed to 2.5 ppm nitrogen dioxide NO2 for 2-20 min. Changes in monolayer bioelectric properties and solute permeabilities were subsequently measured. Exposure to NO2 produced a dose-dependent decrease in monolayer transepithelial electrical resistance (Rt), whereas monolayer short-circuit current was unaffected. Post-exposure monolayer permeability to 14C-sucrose (which primarily crosses alveolar epithelium via the paracellular pathway) increased markedly. That for 3H-glycerol (which permeates through both paracellular and transcellular pathways) increased to a lesser extent. Partial recovery of Rt and solute permeabilities was noted by 48-h post-exposure. The time courses of the decrease in Rt and increase in solute permeabilities were similar. These results suggest that NO2 primarily impairs passive alveolar epithelial barrier functions in vitro, probably by altering intercellular junctions, and does not appear to directly affect cell membrane active ion transport processes. When correlated with results obtained from experimental approaches, studies of in vitro alveolar epithelial monolayers may facilitate investigations of dosimetry, sites, and mechanisms of oxidant injury in the lung

  1. Effects of elastase and cigarette smoke on alveolar epithelial permeability

    International Nuclear Information System (INIS)

    To determine whether instilled porcine pancreatic elastase (PPE) increases alveolar epithelial permeability, the authors measured alveolar epithelium permeability X surface area (PS) for [14C]sucrose and 125I-bovine serum albumin in isolated perfused lungs from hamsters previously exposed to PPE and/or cigarette smoke. Saline (0.5 ml) with 0, 5, or 20 units PPE was instilled intratracheally in anesthetized hamsters. Those exposed to smoke for 4-6 wk received 0 or 5 units; PS was measured 3 h later. Nonsmokers received 0, 5, or 20 units; PS was measured 3 h, 24 h, or 5 days later. Control PS values were (cm3/s X 10(-4), +/- SE) 0.84 +/- 0.11 for sucrose and 0.030 +/- 0.006 for BSA. Three and 24 h following 20 units PPE, (PS)sucrose was twice the control valve. (PS)BSA was four times control at 3 h but not significantly increased at 24 h. Five days after PPE both were back to control levels. Five units PPE or smoke exposure alone caused no PS changes. Smoke exposure and 5 units PPE caused (PS)sucrose to increase markedly (1.85 +/- 0.32); (PS)BSA was not significantly increased (0.076 +/- 0.026). Thus, instilled PPE causes reversible increases in alveolar epithelial PS; cigarette smoking potentiates this effect

  2. Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis

    Directory of Open Access Journals (Sweden)

    Li Changgong

    2011-10-01

    Full Text Available Abstract Background Alveolar septation marks the beginning of the transition from the saccular to alveolar stage of lung development. Inflammation can disrupt this process and permanently impair alveolar formation resulting in alveolar hypoplasia as seen in bronchopulmonary dysplasia in preterm newborns. NF-κB is a transcription factor central to multiple inflammatory and developmental pathways including dorsal-ventral patterning in fruit flies; limb, mammary and submandibular gland development in mice; and branching morphogenesis in chick lungs. We have previously shown that epithelial overexpression of NF-κB accelerates lung maturity using transgenic mice. The purpose of this study was to test our hypothesis that targeted deletion of NF-κB signaling in lung epithelium would impair alveolar formation. Methods We generated double transgenic mice with lung epithelium-specific deletion of IKKβ, a known activating kinase upstream of NF-κB, using a cre-loxP transgenic recombination strategy. Lungs of resulting progeny were analyzed at embryonic and early postnatal stages to determine specific effects on lung histology, and mRNA and protein expression of relevant lung morphoreulatory genes. Lastly, results measuring expression of the angiogenic factor, VEGF, were confirmed in vitro using a siRNA-knockdown strategy in cultured mouse lung epithelial cells. Results Our results showed that IKKβ deletion in the lung epithelium transiently decreased alveolar type I and type II cells and myofibroblasts and delayed alveolar formation. These effects were mediated through increased alveolar type II cell apoptosis and decreased epithelial VEGF expression. Conclusions These results suggest that epithelial NF-κB plays a critical role in early alveolar development possibly through regulation of VEGF.

  3. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells

    OpenAIRE

    Majumdar, Arnab; Arold, Stephen P.; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Suki, Béla

    2011-01-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less...

  4. In vivo metabolism of pulmonary alveolar epithelial type II pneumonocytes and macrophages from Syrian hamsters

    International Nuclear Information System (INIS)

    Young adult Syrian hamsters were injected intraperitoneally with 14C-glycerol and 3H-palmitate 17 hr before they were sacrificed and pulmonary alveolar epithelial type II cells and pulmonary alveolar macrophages (PAM) were isolated. Incorporation of the two labeled components into the cellular lipids showed that the 3H-specific activity of the phospholipids from the type II cells was three times that of the PAM and the utilization of 14C-glycerol into phosphatidyl choline (PC) was 50% greater than incorporation into the PC from PAMs. The PC from type II cells showed that 30% was disaturated and from PAMs 21% was disaturated. Another phosphatide, phosphatidyl glycerol contained about one-third of the molecules in disaturated form. These data are consistent with the view that both type II cells and PAMs can synthesize surface-active phospholipids but it is generally accepted that only the pulmonary alveolar epithelial type II cells excrete the disaturated phospholipids which comprise the surface-active components of pulmonary surfactant

  5. The potential of microfluidic lung epithelial wounding: towards in vivo-like alveolar microinjuries

    OpenAIRE

    Felder, Marcel; Stucki, Andreas; Stucki, Janick; Geiser, Thomas; Guenat, Olivier Thierry

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) remains a major clinical challenge to date. Repeated alveolar epithelial microinjuries are considered as the starting point and the key event in both the development and the progression of IPF. Various pro-fibrotic agents have been identified and shown to cause alveolar damage. In IPF, however, no leading cause of alveolar epithelial microinjuries can be identified and the exact etiology remains elusive. New results from epidemiologic studies suggest a caus...

  6. Lipoteichoic acid induces surfactant protein-A biosynthesis in human alveolar type II epithelial cells through activating the MEK1/2-ERK1/2-NF-κB pathway

    Directory of Open Access Journals (Sweden)

    Liu Feng-Lin

    2012-10-01

    Full Text Available Abstract Background Lipoteichoic acid (LTA, a gram-positive bacterial outer membrane component, can cause septic shock. Our previous studies showed that the gram-negative endotoxin, lipopolysaccharide (LPS, could induce surfactant protein-A (SP-A production in human alveolar epithelial (A549 cells. Objectives In this study, we further evaluated the effect of LTA on SP-A biosynthesis and its possible signal-transducing mechanisms. Methods A549 cells were exposed to LTA. Levels of SP-A, nuclear factor (NF-κB, extracellular signal-regulated kinase 1/2 (ERK1/2, and mitogen-activated/extracellular signal-regulated kinase kinase (MEK1 were determined. Results Exposure of A549 cells to 10, 30, and 50 μg/ml LTA for 24 h did not affect cell viability. Meanwhile, when exposed to 30 μg/ml LTA for 1, 6, and 24 h, the biosynthesis of SP-A mRNA and protein in A549 cells significantly increased. As to the mechanism, LTA enhanced cytosolic and nuclear NF-κB levels in time-dependent manners. Pretreatment with BAY 11–7082, an inhibitor of NF-κB activation, significantly inhibited LTA-induced SP-A mRNA expression. Sequentially, LTA time-dependently augmented phosphorylation of ERK1/2. In addition, levels of phosphorylated MEK1 were augmented following treatment with LTA. Conclusions Therefore, this study showed that LTA can increase SP-A synthesis in human alveolar type II epithelial cells through sequentially activating the MEK1-ERK1/2-NF-κB-dependent pathway.

  7. Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1

    OpenAIRE

    Zhou, Guofei; Dada, Laura A.; Wu, Minghua; Kelly, Aileen; Trejo, Humberto; Zhou, Qiyuan; Varga, John; Sznajder, Jacob I.

    2009-01-01

    Patients with acute lung injury develop hypoxia, which may lead to lung dysfunction and aberrant tissue repair. Recent studies have suggested that epithelial-mesenchymal transition (EMT) contributes to pulmonary fibrosis. We sought to determine whether hypoxia induces EMT in alveolar epithelial cells (AEC). We found that hypoxia induced the expression of α-smooth muscle actin (α-SMA) and vimentin and decreased the expression of E-cadherin in transformed and primary human, rat, and mouse AEC, ...

  8. Protective effect of Ac-SDKP on alveolar epithelial cells through inhibition of EMT via TGF-β1/ROCK1 pathway in silicosis in rat.

    Science.gov (United States)

    Deng, Haijing; Xu, Hong; Zhang, Xianghong; Sun, Yue; Wang, Ruimin; Brann, Darrell; Yang, Fang

    2016-03-01

    The epithelial-mesenchymal transition (EMT) is a critical stage during the development of silicosis fibrosis. In the current study, we hypothesized that the anti-fibrotic tetrapeptide, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) may exert its anti-fibrotic effects via activation of the TGF-β1/ROCK1 pathway, leading to inhibition of EMT. To address this hypothesis, we first examined the effect of Ac-SDKP upon EMT using an in vivo rat silicosis model, as well as in an in vitro model of TGF-β1-induced EMT. Confocal laser scanning microscopy was used to examine colocalization of surfactant protein A (SP-A), fibroblast specific protein-1 (FSP-1) and α-smooth muscle actin (α-SMA) in vivo. Western blot analysis was used to examine for changes in the protein levels of E-cadherin (E-cad) and SP-A (epithelial cell markers), vimentin (mesenchymal cell marker), α-SMA (active myofibroblast marker), and collagen I and III in both in vivo and in vitro experiments. Secondly, we utilized Western blot analysis and confocal laser scanning microscopy to examine the protein expression of TGF-β1 and ROCK1 in in vivo and in vitro studies. The results revealed that Ac-SDKP treatment prevented increases in the expression of mesenchymal markers as well as TGF-β1, ROCK1, collagen I and III. Furthermore, Ac-SDKP treatment prevented decreases in the expression of epithelial cell markers in both in vivo and in vitro experiments. Based on the results, we conclude that Ac-SDKP inhibits the transition of epithelial cell-myofibroblast in silicosis via activation of the TGF-β1/ROCK1 signaling pathway, which may serve as a novel mechanism by which it exerts its anti-fibrosis properties. PMID:26785300

  9. Rapid elevation of sodium transport through insulin is mediated by AKT in alveolar cells

    OpenAIRE

    Mattes, Charlott; Laube, Mandy; Thome, Ulrich H.

    2014-01-01

    Abstract Alveolar fluid clearance is driven by vectorial Na+ transport and promotes postnatal lung adaptation. The effect of insulin on alveolar epithelial Na+ transport was studied in isolated alveolar cells from 18–19‐day gestational age rat fetuses. Equivalent short‐circuit currents (I SC) were measured in Ussing chambers and different kinase inhibitors were used to determine the pathway of insulin stimulation. In Western Blot measurements the activation of mediators stimulated by insulin ...

  10. Rapid elevation of sodium transport through insulin is mediated by AKT in alveolar cells

    OpenAIRE

    Mattes, Charlott; Thome, Ulrich H.

    2014-01-01

    Alveolar fluid clearance is driven by vectorial Na+ transport and promotes postnatal lung adaptation. The effect of insulin on alveolar epithelial Na+ transport was studied in isolated alveolar cells from 18–19-day gestational age rat fetuses. Equivalent short-circuit currents (ISC) were measured in Ussing chambers and different kinase inhibitors were used to determine the pathway of insulin stimulation. In Western Blot measurements the activation of mediators stimulated by ...

  11. Mammary epithelial cell

    DEFF Research Database (Denmark)

    Kass, Laura; Erler, Janine Terra; Dembo, Micah;

    2007-01-01

    mammary gland. During breast development and cancer progression, the extracellular matrix is dynamically altered such that its composition, turnover, processing and orientation change dramatically. These modifications influence mammary epithelial cell shape, and modulate growth factor and hormonal...... organization, and promote cell invasion and survival. In this review, we discuss the role of stromal-epithelial interactions in normal and malignant mammary epithelial cell behavior. We specifically focus on how dynamic modulation of the biochemical and biophysical properties of the extracellular matrix elicit...

  12. Bulky PAH-DNA induced by exposure of a co-culture model of human alveolar macrophages and embryonic epithelial cells to atmospheric particulate pollution

    International Nuclear Information System (INIS)

    Because of their deep penetration in human lungs, fine airborne particulate matter were described as mainly responsible for the deleterious effects of exposure to air pollution on health. Organic constituents are adsorbed on particles surface and, after inhalation, some (polycyclic aromatic hydrocarbons, PAHs) can be activated into reactive metabolites and can bind to DNA. The formation of bulky DNA adducts has been researched after exposure of mono-and co-cultures of alveolar macrophages (AM) and human embryonic human lung epithelial (L132), to fine air pollution particulate matter Air samples have been collected with cascade impactor and characterized: size distribution (92.15% 2/g), inorganic (Fe, AI, Ca, Na, K, Mg, Pb, etc.) and organic compounds (PAHs, etc.). 32P post-labeling method was applied to detect bulky DNA adducts in AM and L132, in mono-and co-cultures, 72 h after their exposure to atmospheric particles at their Lethals and Effects concentrations or (LC or CE) to 50% (i.e. MA: EC50 = 74.63 μg/mL and L132: LC-5-0 = 75.36 μg/mL). Exposure to desorbed particles (MA: C1= 61.11 μg/mL and L132 : C2 = 61.71 μg/mL) and B[a]P (1 μM) were included. Bulky PAH-DNA adducts were detected in AM in mono-culture after exposure to total particles (Pt), to B[a]P and desorbed particles (Pd). Whatever the exposure, no DNA adduct was detected in L132 in mono-culture. These results are coherent with the enzymatic activities of cytochrome P450 l Al in AM and L132. Exposure of co-culture to Pt, or Pd induced bulky adducts to DNA in AM but not in L132. Exposure to B[a]P alone has altered the DNA of AM and L132, in co-culture. Exposure to Pt is closer to the environmental conditions, but conferred an exposure to amounts of genotoxic agents compared to studies using organic extracts. The formation of bulky DNA adducts was nevertheless observed in AM exposed to Pt, in mono- or co-culture, indicating that they were competent in terms of metabolic activation of PAHs. The DNA

  13. Male Sex is Associated with a Reduced Alveolar Epithelial Sodium Transport

    Science.gov (United States)

    Kaltofen, Till; Haase, Melanie; Thome, Ulrich H.; Laube, Mandy

    2015-01-01

    Respiratory distress syndrome (RDS) is the most frequent pulmonary complication in preterm infants. RDS incidence differs between genders, which has been called the male disadvantage. Besides maturation of the surfactant system, Na+ transport driven alveolar fluid clearance is crucial for the prevention of RDS. Na+ transport is mediated by the epithelial Na+ channel (ENaC) and the Na,K-ATPase, therefore potential differences in their expression or activity possibly contribute to the gender imbalance observed in RDS. Fetal distal lung epithelial (FDLE) cells of rat fetuses were separated by sex and analyzed regarding expression and activity of the Na+ transporters. Ussing chamber experiments showed a higher baseline short-circuit current (ISC) and amiloride-sensitive ΔISC in FDLE cells of female origin. In addition, maximal amiloride-sensitive ΔISC and maximal ouabain-sensitive ΔISC of female cells were higher when measured in the presence of a permeabilized basolateral or apical membrane, respectively. The number of FDLE cells per fetus recoverable during cell isolation was also significantly higher in females. In addition, lung wet-to-dry weight ratio was lower in fetal and newborn female pups. Female derived FDLE cells had higher mRNA levels of the ENaC- and Na,K-ATPase subunits. Furthermore, estrogen (ER) and progesterone receptor (PR) mRNA levels were higher in female cells, which might render female cells more responsive, while concentrations of placenta-derived sex steroids do not differ between both genders during fetal life. Inhibition of ER-β abolished the sex differences in Na+ transport and female cells were more responsive to estradiol stimulation. In conclusion, a higher alveolar Na+ transport, possibly attributable to a higher expression of hormone receptors in female FDLE cells, provides an explanation for the well known sex-related difference in RDS occurrence and outcome. PMID:26291531

  14. Male Sex is Associated with a Reduced Alveolar Epithelial Sodium Transport.

    Directory of Open Access Journals (Sweden)

    Till Kaltofen

    Full Text Available Respiratory distress syndrome (RDS is the most frequent pulmonary complication in preterm infants. RDS incidence differs between genders, which has been called the male disadvantage. Besides maturation of the surfactant system, Na+ transport driven alveolar fluid clearance is crucial for the prevention of RDS. Na+ transport is mediated by the epithelial Na+ channel (ENaC and the Na,K-ATPase, therefore potential differences in their expression or activity possibly contribute to the gender imbalance observed in RDS. Fetal distal lung epithelial (FDLE cells of rat fetuses were separated by sex and analyzed regarding expression and activity of the Na+ transporters. Ussing chamber experiments showed a higher baseline short-circuit current (ISC and amiloride-sensitive ΔISC in FDLE cells of female origin. In addition, maximal amiloride-sensitive ΔISC and maximal ouabain-sensitive ΔISC of female cells were higher when measured in the presence of a permeabilized basolateral or apical membrane, respectively. The number of FDLE cells per fetus recoverable during cell isolation was also significantly higher in females. In addition, lung wet-to-dry weight ratio was lower in fetal and newborn female pups. Female derived FDLE cells had higher mRNA levels of the ENaC- and Na,K-ATPase subunits. Furthermore, estrogen (ER and progesterone receptor (PR mRNA levels were higher in female cells, which might render female cells more responsive, while concentrations of placenta-derived sex steroids do not differ between both genders during fetal life. Inhibition of ER-β abolished the sex differences in Na+ transport and female cells were more responsive to estradiol stimulation. In conclusion, a higher alveolar Na+ transport, possibly attributable to a higher expression of hormone receptors in female FDLE cells, provides an explanation for the well known sex-related difference in RDS occurrence and outcome.

  15. Regulation of alveolar procoagulant activity and permeability in direct acute lung injury by lung epithelial tissue factor.

    Science.gov (United States)

    Shaver, Ciara M; Grove, Brandon S; Putz, Nathan D; Clune, Jennifer K; Lawson, William E; Carnahan, Robert H; Mackman, Nigel; Ware, Lorraine B; Bastarache, Julie A

    2015-11-01

    Tissue factor (TF) initiates the extrinsic coagulation cascade in response to tissue injury, leading to local fibrin deposition. Low levels of TF in mice are associated with increased severity of acute lung injury (ALI) after intratracheal LPS administration. However, the cellular sources of the TF required for protection from LPS-induced ALI remain unknown. In the current study, transgenic mice with cell-specific deletions of TF in the lung epithelium or myeloid cells were treated with intratracheal LPS to determine the cellular sources of TF important in direct ALI. Cell-specific deletion of TF in the lung epithelium reduced total lung TF expression to 39% of wild-type (WT) levels at baseline and to 29% of WT levels after intratracheal LPS. In contrast, there was no reduction of TF with myeloid cell TF deletion. Mice lacking myeloid cell TF did not differ from WT mice in coagulation, inflammation, permeability, or hemorrhage. However, mice lacking lung epithelial TF had increased tissue injury, impaired activation of coagulation in the airspace, disrupted alveolar permeability, and increased alveolar hemorrhage after intratracheal LPS. Deletion of epithelial TF did not affect alveolar permeability in an indirect model of ALI caused by systemic LPS infusion. These studies demonstrate that the lung epithelium is the primary source of TF in the lung, contributing 60-70% of total lung TF, and that lung epithelial, but not myeloid, TF may be protective in direct ALI. PMID:25884207

  16. Atomic force microscope elastography reveals phenotypic differences in alveolar cell stiffness

    OpenAIRE

    Azeloglu, Evren U.; Bhattacharya, Jahar; COSTA, KEVIN D.

    2008-01-01

    To understand the connection between alveolar mechanics and key biochemical events such as surfactant secretion, one first needs to characterize the underlying mechanical properties of the lung parenchyma and its cellular constituents. In this study, the mechanics of three major cell types from the neonatal rat lung were studied; primary alveolar type I (AT1) and type II (AT2) epithelial cells and lung fibroblasts were isolated using enzymatic digestion. Atomic force microscopy indentation wa...

  17. Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model.

    Science.gov (United States)

    Douville, Nicholas J; Zamankhan, Parsa; Tung, Yi-Chung; Li, Ran; Vaughan, Benjamin L; Tai, Cheng-Feng; White, Joshua; Christensen, Paul J; Grotberg, James B; Takayama, Shuichi

    2011-02-21

    Studies using this micro-system demonstrated significant morphological differences between alveolar epithelial cells (transformed human alveolar epithelial cell line, A549 and primary murine alveolar epithelial cells, AECs) exposed to combination of solid mechanical and surface-tension stresses (cyclic propagation of air-liquid interface and wall stretch) compared to cell populations exposed solely to cyclic stretch. We have also measured significant differences in both cell death and cell detachment rates in cell monolayers experiencing combination of stresses. This research describes new tools for studying the combined effects of fluid mechanical and solid mechanical stress on alveolar cells. It also highlights the role that surface tension forces may play in the development of clinical pathology, especially under conditions of surfactant dysfunction. The results support the need for further research and improved understanding on techniques to reduce and eliminate fluid stresses in clinical settings. PMID:21152526

  18. Sustained distribution of aerosolized PEGylated liposomes in epithelial lining fluids on alveolar surfaces.

    Science.gov (United States)

    Kaneko, Keita; Togami, Kohei; Yamamoto, Eri; Wang, Shujun; Morimoto, Kazuhiro; Itagaki, Shirou; Chono, Sumio

    2016-10-01

    The distribution characteristics of aerosolized PEGylated liposomes in alveolar epithelial lining fluid (ELF) were examined in rats, and the ensuing mechanisms were investigated in the in vitro uptake and protein adsorption experiments. Nonmodified or PEGylated liposomes (particle size 100 nm) were aerosolized into rat lungs. PEGylated liposomes were distributed more sustainably in ELFs than nonmodified liposomes. Furthermore, the uptake of PEGylated liposomes by alveolar macrophages (AMs) was less than that of nonmodified liposomes. In further in vitro uptake experiments, nonmodified and PEGylated liposomes were opsonized with rat ELF components and then added to NR8383 cells as cultured rat AMs. The uptake of opsonized PEGylated liposomes by NR8383 cells was lower than that of opsonized nonmodified liposomes. Moreover, the protein absorption levels in opsonized PEGylated liposomes were lower than those in opsonized nonmodified liposomes. These findings suggest that sustained distributions of aerosolized PEGylated liposomes in ELFs reflect evasion of liposomal opsonization with surfactant proteins and consequent reductions in uptake by AMs. These data indicate the potential of PEGylated liposomes as aerosol-based drug delivery system that target ELF for the treatment of respiratory diseases. PMID:27334278

  19. Inhibitory effect of receptor for advanced glycation end products (RAGE) on the TGF-β-induced alveolar epithelial to mesenchymal transition

    OpenAIRE

    Song, Jeong Sup; Kang, Chun Mi; Park, Chan Kwon; Yoon, Hyung Kyu; Lee, Sook Young; Ahn, Joong Hyun; Moon, Hwa-Sik

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal parenchymal lung disease characterized by myofibroblast proliferation. Alveolar epithelial cells (AECs) are thought to produce myofibroblasts through the epithelial to mesenchymal transition (EMT). Receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface receptors whose activation is associated with renal fibrosis during diabetes and liver fibrosis. RAGE is expressed at low basal levels in...

  20. Src激酶在机械通气性牵张致肺泡上皮细胞损伤中的作用%Role of Src tyrosine kinase in damage to alveolar epithelial cells caused by mechanical stretch

    Institute of Scientific and Technical Information of China (English)

    赵涛; 刘孟洁; 谷长平; 王月兰

    2014-01-01

    Objective To evaluate the role of Src tyrosine kinase in damage to alveolar epithelial cells caused by mechanical stretch.Methods MLE-12 cells cultured in vitro were randomly divided into 3 groups using a random number table:mechanical stretch group (group S),dimethyl sulfoxide control group (group D),and Src tyrosine kinase inhibitor PP2 group (group P).In D and P groups,dimethyl sulfoxide 30 μl/ml and PP2 100 μmol/L were added to the culture medium,respectively,and the cells were then cultured for 30 min.The cells underwent mechanical stretch for 8 h with frequency of0.5 Hz and amplitude of 20% in the three groups.At 0,2,4 and 8 h of mechanical stretch,MLE-12 cells in 3 wells of each group were collected for determination of cell apoptosis with flow cytometry and expression of occludin using Western blot.The apoptosis rate was calculated.Results Compared with S group,no significant changes were found in the apoptosis rate and expression of occludin at each time point in group D,and the apoptosis rate was significantly decreased,and the expression of occludin was up-regulated at 2,4 and 8 h of mechanical stretch in group P.Conclusion The activation of Src tyrosine kinase is involved in damage to alveolar epithelial cells caused by mechanical stretch.%目的 评价Src激酶在机械通气性牵张致肺泡上皮细胞损伤中的作用.方法 采用随机数字表法,将体外培养的MEL12细胞分为3组:机械通气性牵张组(S组)、二甲基亚砜对照组(D组)和Src激酶抑制剂PP2组(P组).D组和P组分别加入二甲基亚砜30 μl/ml和Src激酶抑制剂PP2100 μmol/L(用二甲基亚砜溶解)孵育30 min,然后3组给予20%应变率的机械牵张,频率0.5 Hz.分别于机械牵张即刻、2、4和8h时,每组取3孔 MLE-12细胞,测定细胞凋亡情况,计算细胞凋亡率,采用Western blot法测定Occludin蛋白的表达.结果 与S组比较,D组各时点细胞凋亡率和Occludin蛋白表达差异无统计学意义(P>0.05),P

  1. Clinical value of the alveolar epithelial permeability in various pulmonary diseases

    International Nuclear Information System (INIS)

    The authors have measured the pulmonary epithelial permeability in normals, smokers, ex-smokers and in various pulmonary diseases, using the sup(99m)Tc-DTPA monodisperse radioaerosol delivered by a newly designed nebulizer. Reference values for alveolar epithelial permeability were those of their own laboratory. Accelerated clearance of small idrophylic solutes from the lungs to the blood was found in smokers and in all the patients with idiopathic diffuse pulmonary fibrosis, chronic obstructive lung disease, congestive heart failure, acute viral pneumonia and adult respiratory distress syndrome. The greatest increase of alveolar epithelial clearance was found in the lung zone affected by the viral infection. The normal upper-lover lobe gradient of epithelial clearance was lost only in some patients. The increased permeability of the alveolar wall, although not specific, is characteristic and early feature of many acute and chronic pulmonary disease. For practical purposes, this parameter, rather than diagnostic, should be considered as a sensitive index of alveolar damage and repair, especially suitable for the follow-up of patients with spontaneous or therapeutic reversibility of parenchimal lung diseases. (orig.)

  2. Functional ion channels in pulmonary alveolar type I cells support a role for type I cells in lung ion transport

    OpenAIRE

    Johnson, Meshell D.; Bao, Hui-Fang; Helms, My N.; Chen, Xi-Juan; Tigue, Zac; Jain, Lucky; Dobbs, Leland G.; Eaton, Douglas C.

    2006-01-01

    Efficient gas exchange in the lungs depends on regulation of the amount of fluid in the thin (average 0.2 μm) liquid layer lining the alveolar epithelium. Fluid fluxes are regulated by ion transport across the alveolar epithelium, which is composed of alveolar type I (TI) and type II (TII) cells. The accepted paradigm has been that TII cells, which cover 95% of the surface area, provide a route for water absorption. Here we present data that TI cells contain functional epithelial Na+ channels...

  3. Coronaviruses in polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Bekker, C P; Voorhout, W F; Horzinek, M C; Van der Ende, A; Strous, G J; Rottier, P J

    1995-01-01

    Coronaviruses have a marked tropism for epithelial cells. In this paper the interactions of the porcine transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV-A59) with epithelial cells are compared. Porcine (LLC-PK1) and murine (mTAL) epithelial cells were grown on permeable supp

  4. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    International Nuclear Information System (INIS)

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGFβ1-mediated lytic phase. EBV lytic reactivation by TGFβ1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM181552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  5. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Malizia, Andrea P.; Lacey, Noreen [Clinical Research Centre, School of Medicine and Medical Science, University College Dublin. 21, Nelson Street. Dublin, 7. Ireland (Ireland); Walls, Dermot [School of Biotechnology, Dublin City University. Dublin, 9. Ireland (Ireland); Egan, Jim J. [Advanced Lung Disease and Lung Transplant Program, Mater Misericordiae University Hospital. 44, Eccles Street. Dublin, 7. Ireland (Ireland); Doran, Peter P., E-mail: peter.doran@ucd.ie [Clinical Research Centre, School of Medicine and Medical Science, University College Dublin. 21, Nelson Street. Dublin, 7. Ireland (Ireland)

    2009-07-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  6. Effect of Napsin A transfection into type Ⅱ alveolar epithelial cells on pulmonary fibrosis%Ⅱ型肺泡上皮细胞转染Napsin A基因对肺纤维化的干预作用

    Institute of Scientific and Technical Information of China (English)

    郑金旭; 管淑红; 许清; 汤艳; 刘继柱; 吕晓婷

    2010-01-01

    信号传导通路有关.%Objective To study the in vitro effect and mechanism of Napsin A gene transfection into type Ⅱ alveolar epithelial cells on pulmonary fibrosis. Methods A recombinant lentiviral plasmid PLJM1Napsin A was constructed and transfected into human type Ⅱ alveolar epithelial cell line A549. The model of pulmonary fibrosis was established by the in vitro stimulation of A549 cells by transforming growth factor beta-1 (TGF-β1). The morphological changes were observed continuously under inverted microscopy. The proliferation of transgenic and non-transgenic cells was detected by MTT. To observe the degree of epithelialmesenchymal transition ( EMT ) by TGF-β1 intervening A549 cells, the expressions of E-cadherin and fibronectin were determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot.Lastly the protein expression of focal adhesion kinase (FAK) was detected by Western blot to investigate the mechanism. Results The result of sequencing the recombinant lentiviral plasmid PLJM1-Napsin A was the same as the design sequence. Napsin A mRNA and protein were expressed in transgenic A549 cells( P <0. 01 ). The model of pulmonary fibrosis was established successfully based on the morphology of transformed interstitial cell. As compared with the control group, the proliferation rate of transgenic cells decreased significantly (P <0. 05 ). The mRNA and protein expression of E-cadherin significantly decreased in the model of pulmonary fibrosis ( P < 0. 01 ), while the expression of fibronectin markedly increased ( P < 0. 01 ).But the change rate of transgenic cells decreased ( P < 0. 01, P < 0. 05 ). The expression of FAK was significantly elevated after the stimulation of TGF-β1 ( P < 0. 01 ). But the upward trend of the transgenic cells was smaller as compared with the control group (P < 0. 01 ). Conclusion Pulmonary fibrosis may be suppressed by the transfection of Napsin A gene into type Ⅱ alveolar epithelial cells. And the mechanism may

  7. Abberent expression of oncogenic and tumor-suppressive microRNAs and their target genes in human adenocarcinoma alveolar basal epithelial cells

    Directory of Open Access Journals (Sweden)

    Elham Tafsiri

    2016-01-01

    Conclusion: The significant differential expression level of these miRNAs made them as candidate biomarkers in NSCLC tumor tissues of patients. Perhaps Bcl-2 down-regulation and Akt-3 up-regulation can be linked with survival signals in A549 cell line. We can conclude that Bcl-2 and Akt-3 might be therapeutic targets to inhibit cell proliferation in NSCLC.

  8. The Role of Alveolar Epithelial Type II-Like Cells in Uptake of Structurally Different Antigens and in Polarisation of Local Immune Responses

    Czech Academy of Sciences Publication Activity Database

    Akgün, J.; Schabussova, I.; Schwarzer, Martin; Kozáková, Hana; Kundi, M.; Wiedermann, U.

    2015-01-01

    Roč. 10, č. 4 (2015). E-ISSN 1932-6203 Institutional support: RVO:61388971 Keywords : BIRCH POLLEN ALLERGEN * DENDRITIC CELLS * AIRWAY INFLAMMATION Subject RIV: EC - Immunology Impact factor: 3.234, year: 2014

  9. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  10. Intratracheal transplantation of alveolar type II cells reverses bleomycin-induced lung fibrosis

    OpenAIRE

    Serrano-Mollar, Anna; Nácher, María; Gay-Jordi, Gemma; Closa, Daniel; Xaubet, Antoni; Bulbena, Oriol

    2007-01-01

    [Rationale]: Transplantation of stem cells has been proposed as a strategy for repair of lung fibrosis. Nevertheless, many studies have yielded controversial results that currently limit the potential use of these cells as an efficient treatment. Alveolar type II cells are the progenitor cells of the pulmonary epithelium and usually proliferate after epithelial cell injury. During lung fibrosis, however, the altered regeneration process leads to uncontrolled fibroblast proliferation. [Objecti...

  11. CCAAT/Enhancer-Binding Protein \\(\\gamma\\) Is a Critical Regulator of IL-1\\(\\beta\\)-Induced IL-6 Production in Alveolar Epithelial Cells

    OpenAIRE

    Chunguang Yan; Ximo Wang; Jay Cao; Min Wu; Hongwei Gao

    2012-01-01

    CCAAT/enhancer binding protein \\(\\gamma\\) (C/EBPγ) is a member of the C/EBP family of transcription factors, which lacks known activation domains. C/EBP\\(\\gamma\\) was originally described as an inhibitor of C/EBP transactivation potential. However, previous study demonstrates that C/EBP\\(\\gamma\\) augments the C/EBP\\(\\beta\\) stimulatory activity in lipopolysaccharide induction of IL-6 promoter in a B lymphoblast cell line. These data indicate a complexing functional role for C/EBP\\(\\gamma\\) in...

  12. 高氧及TGF-β1对肺泡Ⅱ型细胞上皮间质转化的影响%Effect of hyperoxia and TGF-β1 on epithelial-mesenchymal transition of type Ⅱ alveolar epithelial cells

    Institute of Scientific and Technical Information of China (English)

    刘芳君; 邓春; 郭春宝; 符州

    2012-01-01

    AIM: To investigate the effect of hyperoxia and TGF-pi on epithelial-mesenchymal transition (EMT)of type II alveolar epithelial cells (AEC-Ⅱ ) of mice. METHODS; AEC-Ⅱ cells (MLE-12 lines) were randomly divided into following groups: air exposure group, hyperoxia exposure group, air exposure combined with TGF-pi treatment group, hyperoxia exposure combined with TGF-pi treatment group. The morphological changes of cells in each group were observed at 6, 12, 24, 48 hours. The protein and mR-NA expressions of AEC Ⅱ specific marker lung surfactant protein B ( SP-B) and fibroblast specific marker fibroblast specific protein ( FSP1) were detected by double-labeled immunoflu orescence and real time-PCR at the same time point, respectively. RESULTS: Along with the time of exposure to hyperoxia and TGF-pi, AEC Ⅱ cells gradually changed from pebble-like shape to spindle shape, and showed some fibroblast appearances. Synchronously, the protein expression of SP-B in AEC Ⅱ cells decreased, whereas the expression of FSP1 increased. The co-expressed were observed at 24 hours. Comparing with that of the air exposure group, the mRNA expression of SP-B in the hyperoxia exposure group, air exposure combined with TGF-pi treatment group, hyperoxia exposure combined with TGF-pi treatment group decreaseed significantly, whereas the mRNA expression of FSPl increased significantly at 24 hours and 48 hours (P<0.01). CONCLUSION; Hyperoxia and TGF-β1 can induce EMT of type II alveolar epithelial cells in a time-dependent manner.%目的:探讨高氧及TGF-β1干预小鼠肺泡Ⅱ型细胞(AECⅡ)后,是否发生上皮间质转化(EMT)及其影响.方法:小鼠肺泡Ⅱ型细胞系MLE-12,随机分为空气暴露组、高氧暴露组、TGF-β1干预空气暴露组、TGF-β1干预高氧暴露组.观察各组6、12、24、48 h细胞形态变化.应用细胞免疫荧光双标法及荧光定量PCR法检测各组各时间点肺表面活性物质B (SP-B)及成纤维细胞特异性蛋白1(FSP

  13. IL-8 inhibits cAMP-stimulated alveolar epithelial fluid transport via a GRK2/PI3K-dependent mechanism

    Science.gov (United States)

    Roux, Jérémie; McNicholas, Carmel M.; Carles, Michel; Goolaerts, Arnaud; Houseman, Benjamin T.; Dickinson, Dale A.; Iles, Karen E.; Ware, Lorraine B.; Matthay, Michael A.; Pittet, Jean-François

    2013-01-01

    Patients with acute lung injury (ALI) who retain maximal alveolar fluid clearance (AFC) have better clinical outcomes. Experimental and small clinical studies have shown that β2-adrenergic receptor (β2AR) agonists enhance AFC via a cAMP-dependent mechanism. However, two multicenter phase 3 clinical trials failed to show that β2AR agonists provide a survival advantage in patients with ALI. We hypothesized that IL-8, an important mediator of ALI, directly antagonizes the alveolar epithelial response to β2AR agonists. Short-circuit current and whole-cell patch-clamping experiments revealed that IL-8 or its rat analog CINC-1 decreases by 50% β2AR agonist-stimulated vectorial Cl− and net fluid transport across rat and human alveolar epithelial type II cells via a reduction in the cystic fibrosis transmembrane conductance regulator activity and biosynthesis. This reduction was mediated by heterologous β2AR desensitization and down-regulation (50%) via the G-protein-coupled receptor kinase 2 (GRK2)/PI3K signaling pathway. Inhibition of CINC-1 restored β2AR agonist-stimulated AFC in an experimental model of ALI in rats. Finally, consistent with the experimental results, high pulmonary edema fluid levels of IL-8 (>4000 pg/ml) were associated with impaired AFC in patients with ALI. These results demonstrate a novel role for IL-8 in inhibiting β2AR agonist-stimulated alveolar epithelial fluid transport via GRK2/PI3K-dependent mechanisms.—Roux, J., McNicholas, C. M., Carles, M., Goolaerts, A., Houseman, B. T., Dickinson, D. A., Iles, K. E., Ware, L. B., Matthay, M. A., Pittet, J.-F. IL-8 inhibits cAMP-stimulated alveolar epithelial fluid transport via a GRK2/PI3K-dependent mechanism. PMID:23221335

  14. Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture

    OpenAIRE

    Arold, Stephen P.; Bartolák-Suki, Erzsébet; Suki, Béla

    2009-01-01

    Secretion of pulmonary surfactant that maintains low surface tension within the lung is primarily mediated by mechanical stretching of alveolar epithelial type II (AEII) cells. We have shown that guinea pigs ventilated with random variations in frequency and tidal volume had significantly larger pools of surfactant in the lung than animals ventilated in a monotonous manner. Here, we test the hypothesis that variable stretch patterns imparted on the AEII cells results in enhanced surfactant se...

  15. Vacuolar ATPase Regulates Surfactant Secretion in Rat Alveolar Type II Cells by Modulating Lamellar Body Calcium

    OpenAIRE

    Chintagari, Narendranath Reddy; Mishra, Amarjit; Su, Lijing; Wang, Yang; Ayalew, Sahlu; Hartson, Steven D; Liu, Lin

    2010-01-01

    Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase) dominated the alveol...

  16. Epithelial cell apoptosis causes acute lung injury masquerading as emphysema.

    Science.gov (United States)

    Mouded, Majd; Egea, Eduardo E; Brown, Matthew J; Hanlon, Shane M; Houghton, A McGarry; Tsai, Larry W; Ingenito, Edward P; Shapiro, Steven D

    2009-10-01

    Theories of emphysema traditionally revolved around proteolytic destruction of extracellular matrix. Models have recently been developed that show airspace enlargement with the induction of pulmonary cell apoptosis. The purpose of this study was to determine the mechanism by which a model of epithelial cell apoptosis caused airspace enlargement. Mice were treated with either intratracheal microcystin (MC) to induce apoptosis, intratracheal porcine pancreatic elastase (PPE), or their respective vehicles. Mice from all groups were inflated and morphometry was measured at various time points. Physiology measurements were performed for airway resistance, tissue elastance, and lung volumes. The groups were further analyzed by air-saline quasistatic measurements, surfactant staining, and surfactant functional studies. Mice treated with MC showed evidence of reversible airspace enlargement. In contrast, PPE-treated mice showed irreversible airspace enlargement. The airspace enlargement in MC-treated mice was associated with an increase in elastic recoil due to an increase in alveolar surface tension. PPE-treated mice showed a loss of lung elastic recoil and normal alveolar surface tension, a pattern more consistent with human emphysema. Airspace enlargement that occurs with the MC model of pulmonary epithelial cell apoptosis displays physiology distinct from human emphysema. Reversibility, restrictive physiology due to changes in surface tension, and alveolar enlargement associated with heterogeneous alveolar collapse are most consistent with a mild acute lung injury. Inflation near total lung capacity gives the appearance of enlarged alveoli as neighboring collapsed alveoli exert tethering forces. PMID:19188661

  17. IDIOPATHIC PULMONARY FIBROSIS: A DISORDER OF EPITHELIAL CELL DYSFUNCTION

    OpenAIRE

    Zoz, Donald F.; Lawson, William E.; Blackwell, Timothy S.

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by progressive dyspnea, interstitial infiltrates in lung parenchyma, and restriction on pulmonary function testing. IPF is the most common and severe of the idiopathic interstitial pneumonias (IIPs), with most individuals progressing to respiratory failure. Multiple lines of evidence reveal prominent roles for alveolar epithelial cells (AECs) in disease. Our current disease paradigm is that ongoing or repetitive injurious stimuli in the pre...

  18. Experimental radiation pneumonitis. Corticosteroids increase the replicative activity of alveolar type 2 cells

    International Nuclear Information System (INIS)

    Corticosteroid administration during radiation pneumonitis in mice markedly improves the physiologic abnormalities and decreases mortality, an effect that has been attributed to the stimulation of surfactant synthesis and secretion by type 2 alveolar epithelial cells. In the present experiments we explored the effects of corticosteroids on the replicative activity of type 2 cells of lethally irradiated lungs at the height of the radiation reaction. The labeling index of type 2 cells of irradiated mice was increased threefold above that of sham-irradiated controls. Corticosteroids given continuously from 10 weeks after thoracic irradiation further increased the type 2 cell labeling index another threefold above that of irradiated untreated mice. The enhanced reproductive activity of type 2 cells following thoracic irradiation is seen as a protective response that is augmented by corticosteroids, whose effect may be both to improve the physiology of the alveolar surface and to maintain the population of alveolar epithelial cells. The bearing of this result on the controversial role of the type 2 cell as a target in radiation pneumonitis is discussed

  19. AIRWAY EPITHELIAL CELL RESPONSE TO HUMAN METAPNEUMOVIRUS INFECTION

    Science.gov (United States)

    X, Bao; T, Liu; L, Spetch; D, Kolli; R.P, Garofalo; A, Casola

    2007-01-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-κB, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immuno-modulatory mediators. PMID:17655903

  20. Depletion of resident alveolar macrophages does not prevent Fas-mediated lung injury in mice

    OpenAIRE

    Bem, R. A.; Farnand, A. W.; Wong, V; Koski, A; Rosenfeld, M. E.; Van Rooijen, N.; C. W. Frevert; Martin, T R; Matute-Bello, G.

    2008-01-01

    Activation of the Fas/Fas ligand (FasL) system in the lungs results in a form of injury characterized by alveolar epithelial apoptosis and neutrophilic inflammation. Studies in vitro show that Fas activation induces apoptosis in alveolar epithelial cells and cytokine production in alveolar macrophages. The main goal of this study was to determine the contribution of alveolar macrophages to Fas-induced lung inflammation in mice, by depleting alveolar macrophages using clodronate-containing lip...

  1. Dynamics of surfactant release in alveolar type II cells

    OpenAIRE

    Haller, Thomas; Ortmayr, Jörg; Friedrich, Franz; Völkl, Harald; Dietl, Paul

    1998-01-01

    Pulmonary surfactant, secreted via exocytosis of lamellar bodies (LB) by alveolar type II (AT II) cells, maintains low alveolar surface tension and is therefore essential for normal lung function. Here we describe real-time monitoring of exocytotic activity in these cells by visualizing and quantifying LB fusion with the plasma membrane (PM). Two approaches were used. First, fluorescence of LysoTracker Green DND-26 (LTG) in LB disappeared when the dye was released after exocytosis. Second, ph...

  2. Identification of a cell membrane protein that binds alveolar surfactant.

    OpenAIRE

    Strayer, D. S.

    1991-01-01

    Alveolar surfactants are complex mixtures of proteins and phospholipids produced by type II alveolar cells and responsible for lowering pulmonary surface tension. The process by which surfactant is produced and exported and by which its production by pulmonary cells is regulated are not well understood. This study was designed to identify a cellular receptor for surfactant constituents. To do so, monoclonal anti-idiotypic antibodies directed against antibodies to porcine and rabbit surfactant...

  3. Intestinal Epithelial Cells In Vitro

    OpenAIRE

    Chopra, Dharam P.; Dombkowski, Alan A.; Stemmer, Paul M.; Parker, Graham C.

    2009-01-01

    Recent advances in the biology of stem cells has resulted in significant interest in the development of normal epithelial cell lines from the intestinal mucosa, both to exploit the therapeutic potential of stem cells in tissue regeneration and to develop treatment models of degenerative disorders of the digestive tract. However, the difficulty of propagating cell lines of normal intestinal epithelium has impeded research into the molecular mechanisms underlying differentiation of stem/progeni...

  4. Resolvins Decrease Oxidative Stress Mediated Macrophage and Epithelial Cell Interaction through Decreased Cytokine Secretion

    OpenAIRE

    Cox, Ruan; Phillips, Oluwakemi; Fukumoto, Jutaro; Fukumoto, Itsuko; Tamarapu Parthasarathy, Prasanna; Mandry, Maria; Cho, Young; Lockey, Richard; Kolliputi, Narasaiah

    2015-01-01

    Background Inflammation is a key hallmark of ALI and is mediated through ungoverned cytokine signaling. One such cytokine, interleukin-1beta (IL-1β) has been demonstrated to be the most bioactive cytokine in ALI patients. Macrophages are the key players responsible for IL-1β secretion into the alveolar space. Following the binding of IL-1β to its receptor, “activated” alveolar epithelial cells show enhanced barrier dysfunction, adhesion molecule expression, cytokine secretion, and leukocyte a...

  5. Overexpression of sICAM-1 in the Alveolar Epithelial Space Results in an Exaggerated Inflammatory Response and Early Death in Gram Negative Pneumonia

    Directory of Open Access Journals (Sweden)

    Curtis Jeffery L

    2011-01-01

    Full Text Available Abstract Background A sizeable body of data demonstrates that membrane ICAM-1 (mICAM-1 plays a significant role in host defense in a site-specific fashion. On the pulmonary vascular endothelium, mICAM-1 is necessary for normal leukocyte recruitment during acute inflammation. On alveolar epithelial cells (AECs, we have shown previously that the presence of normal mICAM-1 is essential for optimal alveolar macrophage (AM function. We have also shown that ICAM-1 is present in the alveolar space as a soluble protein that is likely produced through cleavage of mICAM-1. Soluble intercellular adhesion molecule-1 (sICAM-1 is abundantly present in the alveolar lining fluid of the normal lung and could be generated by proteolytic cleavage of mICAM-1, which is highly expressed on type I AECs. Although a growing body of data suggesting that intravascular sICAM-1 has functional effects, little is known about sICAM-1 in the alveolus. We hypothesized that sICAM-1 in the alveolar space modulates the innate immune response and alters the response to pulmonary infection. Methods Using the surfactant protein C (SPC promoter, we developed a transgenic mouse (SPC-sICAM-1 that constitutively overexpresses sICAM-1 in the distal lung, and compared the responses of wild-type and SPC-sICAM-1 mice following intranasal inoculation with K. pneumoniae. Results SPC-sICAM-1 mice demonstrated increased mortality and increased systemic dissemination of organisms compared with wild-type mice. We also found that inflammatory responses were significantly increased in SPC-sICAM-1 mice compared with wild-type mice but there were no difference in lung CFU between groups. Conclusions We conclude that alveolar sICAM-1 modulates pulmonary inflammation. Manipulating ICAM-1 interactions therapeutically may modulate the host response to Gram negative pulmonary infections.

  6. Effects of Pseudomonas aeruginosa elastase on alveolar epithelial permeability in guinea pigs

    International Nuclear Information System (INIS)

    Elastase-deficient mutants of Pseudomonas aeruginosa are less virulent than the wild type and are easily cleared from the lungs of guinea pigs. The effect of P. aeruginosa elastase on lung epithelium, however, is not yet understood. We addressed the hypothesis that breach of the epithelial barrier by elastase from P. aeruginosa allows invading organisms and toxic substances to penetrate the interstitium. We measured the clearance of aerosolized technetium-labeled albumin (molecular weight, 69,000) from the lungs of anesthetized guinea pigs with the aid of a gamma camera and a dedicated computer. Aerosols of the elastase (0.1 to 5 micrograms) increased the rate of clearance of labeled albumin from the lungs in proportion to the elastase dose. Electron microscopic studies using horseradish peroxidase as a tracer revealed that elastase interrupts intercellular tight junctions of the epithelial lining, thereby increasing the permeability to macromolecules. The amounts of elastase used in this report did not cause interstitial or alveolar edema, as determined by both postmortem extravascular lung water volume measurement and morphological examination. The data indicate that the elastase is a potentially important virulence factor in acute lung infection

  7. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells.

    Science.gov (United States)

    Majumdar, Arnab; Arold, Stephen P; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Suki, Béla

    2012-03-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes. PMID:22033531

  8. Case Report: Multifocal biphasic squamoid alveolar renal cell carcinoma

    Science.gov (United States)

    Lopez, Jose Ignacio

    2016-01-01

    A multifocal biphasic squamoid alveolar renal cell carcinoma in a 68-year-old man is reported. Four different peripheral tumor nodules were identified on gross examination. A fifth central tumor corresponded to a conventional clear cell renal cell carcinoma. Biphasic squamoid alveolar renal cell carcinoma is a rare tumor that has been very recently characterized as a distinct histotype within the spectrum of papillary renal cell carcinoma. Immunostaining with cyclin D1 seems to be specific of this tumor subtype. This is the first reported case with multifocal presentation. PMID:27158455

  9. Capsaicinoids Cause Inflammation and Epithelial Cell Death through Activation of Vanilloid Receptors

    OpenAIRE

    Reilly, Christopher A.; Taylor, Jack L.; Lanza, Diane L.; Carr, Brian A.; Crouch, Dennis J.; Yost, Garold S.

    2003-01-01

    Capsaicinoids, found in less-than-lethal self-defense weapons, have been associated with respiratory failure and death in exposed animals and people. The studies described herein provide evidence for acute respiratory inflammation and damage to epithelial cells in experimental animals, and provide precise molecular mechanisms that mediate these effects using human bronchiolar and alveolar epithelial cells. Inhalation exposure of rats to pepper sprays (capsaicinoids) produced acute inflammatio...

  10. Epithelial Stem Cells: Turning over New Leaves

    OpenAIRE

    Blanpain, Cédric; Horsley, Valerie; Fuchs, Elaine

    2007-01-01

    Most epithelial tissues self-renew throughout adult life due to the presence of multipotent stem cells and/or unipotent progenitor cells. Epithelial stem cells are specified during development and are controlled by epithelial-mesenchymal interactions. Despite morphological and functional differences among epithelia, common signaling pathways appear to control epithelial stem cell maintenance, activation, lineage determination, and differentiation. Additionally, deregulation of these pathways ...

  11. STAT6 expression in T cells, alveolar macrophages and bronchial biopsies of normal and asthmatic subjects

    Directory of Open Access Journals (Sweden)

    Tomita Katsuyuki

    2012-03-01

    Full Text Available Abstract Background Asthma is characterised by increased numbers of Th2-like cells in the airways and IgE secretion. Generation of Th2 cells requires interleukin (IL-4 and IL-13 acting through their specific receptors and activating the transcription factor, signal transducer and activator of transcription 6 (STAT6. STAT6 knockout mice fail to produce IgE, airway hyperresponsiveness and bronchoalveolar lavage eosinophilia after allergen sensitisation, suggesting a critical role for STAT6 in allergic responses. Methods We have investigated the expression of STAT6 in peripheral blood T-lymphocytes, alveolar macrophages and bronchial biopsies from 17 normal subjects and 18 mild-moderate steroid-naïve stable asthmatic patients. Results STAT6 expression was variable and was detected in T-lymphocytes, macrophages and bronchial epithelial cells from all subjects with no difference between normal and stable asthmatic subjects. Conclusions STAT6 expression in different cells suggests that it may be important in regulating the expression of not only Th2-like cytokines in T cells of man, but may also regulate STAT-inducible genes in alveolar macrophages and airway epithelial cells.

  12. Roles of neuropeptide substance P in transdifferentiation of premature rat type Ⅱ alveolar epithelial cells induced by hyperxia%神经肽P物质促进高氧诱导的胎鼠肺泡Ⅱ型上皮细胞转分化

    Institute of Scientific and Technical Information of China (English)

    黄波; 付红敏; 杨鸣; 方芳; 匡凤梧; 许峰

    2009-01-01

    目的 探讨感觉神经肽P物质(substance P,SP)对高氧诱导的胎鼠Ⅱ型肺泡上皮细胞(type Ⅱ alveolar epithelial cells,AECⅡ)转分化的影响.方法 剖官取出孕21 d(足月为22 d)SD胎鼠,分离纯化原代培养AECⅡ,采用随机分组法分为:空气暴露组(氧体积分数为0.21)、高氧暴露组(氧体积分数为0.95)、SP干预组,SP干预组于暴露前加入SP 1×10-6 mol/L,在置于氧体积分数为0.21和0.95中分别暴露12、24、和48 h,电镜观察AECⅡ的形态变化;免疫细胞化学染色法和流式细胞仪检测AECⅡ特异性肺泡表而活性蛋白-C(surfactant protein C,sp-C)及Ⅰ型肺泡上皮细胞(type Ⅰ alveolar epithelial cells,AEC Ⅰ)特异性水通道蛋5(aquaporin5,AQP5)的表达.结果 与空气组比较,高氧暴露后,AECⅡ SP-C的表达、SP-C细胞的表达率及荧光指数(fluorescence index,FI)明显降低,AQP5表达明显增加;而SP干预后,SP-C、AQP5表达都明显增加,形态学的损伤也有明显的改善.结论 SP可促进高氧诱导的胎鼠AECⅡ的转分化,在肺损伤修复中可能起重要作用.

  13. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  14. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    International Nuclear Information System (INIS)

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H2O2) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H2O2 treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells

  15. 石棉暴露下内质网应激在肺泡上皮细胞凋亡中的作用机制%THE MECHANISM OF ENDOPLASMIC RETICULUM STRESS INDUCING ALVEOLAR EPI-THELIAL CELLS APOPTOSIS UNDERLYING ASBESTOS EXPOSURE

    Institute of Scientific and Technical Information of China (English)

    周煦; 刘刚

    2014-01-01

    Objective To investigate the role of endoplasmic reticulum stress ( ERS) in asbestos-induced Alveolar epithelial cell apoptosis.Methods A549 cells were treated with asbestos to observe the expression of ERS proteins and apop-tosis gene by immunofluorescence staining and western blotting.Results Under asbestos exposure, the expression of Bip, GRP94, IRE-1α, BAX and BAK are up-regulated.There is a positive correlativity of the expression of proteins to the ex-posure time of asbestos.Conclusion Endoplasmic reticulum stress takes part in asbestos-induced apoptosis.%目的:探讨石棉暴露下内质网应激在细胞凋亡中的作用机制。方法应用石棉处理A549细胞,免疫荧光染色免疫法和免疫印迹法观察内质网应激( ERS)相关蛋白与促凋亡基因的变化。结果石棉暴露下,ERS相关蛋白Bip、IRE-1α和GRP94,以及促凋亡基因BAX、BAK蛋白表达均上调,且与石棉暴露时间呈正相关。结论内质网应激参与了石棉诱导的细胞凋亡。

  16. Eosinophils promote epithelial to mesenchymal transition of bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Atsushi Yasukawa

    Full Text Available Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was assessed in mice that received intra-tracheal instillation of mouse bone marrow derived eosinophils and in human bronchial epithelial cells co-cultured with eosinophils freshly purified from healthy individuals or with eosinophilic leukemia cell lines. Intra-tracheal instillation of eosinophils was associated with enhanced bronchial inflammation and fibrosis and increased lung concentration of growth factors. Mice instilled with eosinophils pre-treated with transforming growth factor(TGF-β1 siRNA had decreased bronchial wall fibrosis compared to controls. EMT was induced in bronchial epithelial cells co-cultured with human eosinophils and it was associated with increased expression of TGF-β1 and Smad3 phosphorylation in the bronchial epithelial cells. Treatment with anti-TGF-β1 antibody blocked EMT in bronchial epithelial cells. Eosinophils induced EMT in bronchial epithelial cells, suggesting their contribution to the pathogenesis of airway remodelling.

  17. Alteration in Intrapulmonary Pharmacokinetics of Aerosolized Model Compounds Due to Disruption of the Alveolar Epithelial Barriers Following Bleomycin-Induced Pulmonary Fibrosis in Rats.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Tada, Hitoshi

    2016-03-01

    Idiopathic pulmonary fibrosis is a lethal lung disease that is characterized by the accumulation of extracellular matrix and a change in lung structure. In this study, intrapulmonary pharmacokinetics of aerosolized model compounds were evaluated using rats with bleomycin-induced pulmonary fibrosis. Aerosol formulations of indocyanine green, 6-carboxyfluorescein (6-CF), and fluorescein isothiocyanate dextrans (FD; 4.4, 10, 70, and 250 kDa) were administered to rat lungs using a MicroSprayer. Indocyanine green fluorescence signals were significantly weaker in fibrotic lungs than in control lungs and 6-CF and FD concentrations in the plasma of pulmonary fibrotic animals were markedly higher than in the plasma of control animals. Moreover, disrupted epithelial tight junctions, including claudins-1, -3, and -5, were observed in pulmonary fibrotic lesions using immunofluorescence microscopy. In addition, destruction of tight junctions on model alveolar epithelial cells (NCI-H441) by transforming growth factor-β1 treatment enhanced the permeability of 6-CF and FDs through NCI-H441 cell monolayers. These results indicate that aerosolized drugs are easily distributed into the plasma after leakage through damaged tight junctions of alveolar epithelium. Therefore, the development of delivery systems for anti-fibrotic agents to improve intrapulmonary pharmacokinetics may be necessary for effective idiopathic pulmonary fibrosis therapy. PMID:26886341

  18. Transforming Growth Factor β1 Inhibits Cystic Fibrosis Transmembrane Conductance Regulator-dependent cAMP-stimulated Alveolar Epithelial Fluid Transport via a Phosphatidylinositol 3-Kinase-dependent Mechanism*

    OpenAIRE

    Roux, Jérémie; Carles, Michel; Koh, Hidefumi; Goolaerts, Arnaud; Ganter, Michael T.; Chesebro, Brian B; Howard, Marybeth; Houseman, Benjamin T.; Finkbeiner, Walter; Shokat, Kevan M.; Paquet, Agnès C.; Matthay, Michael A; Pittet, Jean-François

    2009-01-01

    Exogenous or endogenous β2-adrenergic receptor agonists enhance alveolar epithelial fluid transport via a cAMP-dependent mechanism that protects the lungs from alveolar flooding in acute lung injury. However, impaired alveolar fluid clearance is present in most of the patients with acute lung injury and is associated with increased mortality, although the mechanisms responsible for this inhibition of the alveolar epithelial fluid transport are not completely understood. Here, we found that tr...

  19. Detection of alveolar epithelial injury by 99mTc-DTPA radioaerosol inhalation lung scan following blunt chest trauma

    International Nuclear Information System (INIS)

    DTPA clearance rate is a reliable index of alveolar epithelial permeability, and is a highly sensitive marker of pulmonary epithelial damage, even of mild degree. In this study, 99mTc-DTPA aerosol inhalation scintigraphy was used to assess the pulmonary epithelial membrane permeability and to investigate the possible application of this permeability value as an indicator of early alveolar or interstitial changes in patients with blunt chest trauma. A total of 26 patients was chest trauma (4 female, 22 male, 31-80 yrs, mean age; 53±13 yrs) who were referred to the emergency department in our hospital participated in this study. Technetium-99m diethylene triamine pentaacetic acid (DTPA) aerosol inhalation scintigraphy was performed on the first and thirtieth days after trauma. Clearance half times (T1/2) were calculated by placing a mono-exponential fit on the curves. Penetration index (PI) was calculated on the first-minute image. On the first day, mean T1/2 value of the whole lung was 63±19 minutes (min), and thirtieth day mean T1/2 value was 67±21 min. On the first day, mean PI values of the lung and 30th day mean PI value were 0.60±0.05, and 0.63 ±0.05, respectively. Significant changes were observed in radioaerosol clearance and penetration indices. Following chest trauma, clearance of 99mTc-DTPA increased owing to breakdown of the alveolar-capillary barrier. This increase in the epithelial permeability of the lung appears to be an early manifestation of lung disease that may lead to efficient therapy in the early phase. (author)

  20. The role of alveolar type II cells in swine leptospirosis

    Directory of Open Access Journals (Sweden)

    Ângela P. Campos

    2015-07-01

    Full Text Available Abstract: This study aimed to investigate a possible relationship between alveolar type II cells and the inflammatory response to infection with Leptospira spp., and thus comprise a further element that can be involved in the pathogenesis of lung injury in naturally infected pigs. The study group consisted of 73 adult pigs that were extensively reared and slaughtered in Teresina, Piauí state, and Timon, Maranhão state, Brazil. The diagnosis of leptospirosis was made using the microscopic agglutination test (MAT aided by immunohistochemistry and polymerase chain reaction. The MAT registered the occurrence of anti-Leptospira antibodies in 10.96% (8/73 of the pigs. Immunohistochemistry allowed for the visualization of the Leptospira spp. antigen in the lungs of 87.67% (64/73 of the pigs. There was hyperplasia of bronchus-associated lymphoid tissue and circulatory changes, such as congestion of alveolar septa, parenchymal hemorrhage and edema within the alveoli. Lung inflammation was more intense (p = 0.0312 in infected animals, which also showed increased thickening of the alveolar septa (p = 0.0006. Evaluation of alveolar type II (ATII cells using an anti-TTF-1 (Thyroid Transcription Factor-1 antibody showed that there were more immunostained cells in the non-infected pigs (53.8% than in the infected animals (46.2% and that there was an inverse correlation between TTF-1 positive cells and the inflammatory infiltrate. There was no amplification of Leptospira DNA in the lung samples, but leptospiral DNA amplification was observed in the kidneys. The results of this study showed that a relationship exists between a decrease in alveolar type II cells and a leptospire infection. Thus, this work points to the importance of studying the ATII cells as a potential marker of the level of lung innate immune response during leptospirosis in pigs.

  1. Acute respiratory bronchiolitis: an ultrastructural and autoradiographic study of epithelial cell injury and renewal in Rhesus monkeys exposed to ozone

    International Nuclear Information System (INIS)

    The pathogenesis of acute respiratory bronchiolitis was examined in Rhesus monkeys exposed to 0.8 ppM ozone for 4 to 50 hours. Epithelial injury and renewal were qualitatively and quantitatively characterized by correlated techniques of scanning and transmission electron microscopy as well as by light-microscopic autoradiography following labeling with tritiated thymidine. Extensive degeneration and necrosis of Type 1 epithelial cells occurred on the respiratory bronchiolar wall during the initial 4 to 12 hours of exposure. Increased numbers of labeled epithelial cells were present in this region after 18 hours of exposure, and the highest labeling index (18%) was measured after 50 hours of exposure. Most (67 to 80%) of the labeled cells and all the mitotic epithelial cells (22) observed ultrastructurally were cuboidal bronchiolar epithelial cells. Of the labeled epithelial cells, 20 to 33% were Type 2 epithelial cells. After 50 hours of exposure the respiratory bronchiolar epithelium was hyperplastic. The predominant inflammatory cell in respiratory bronchiolar exudate was the alveolar macrophage. Monkeys that were exposed for 50 hours and allowed to recover in unozonized air for 7 days had incomplete resolution of respiratory bronchiolar epithelial hyperplasia. The results indicate that Type 1 epithelial cells lining respiratory bronchioles are the cell types most sensitive to injury and that both cuboidal bronchiolar epithelial cells and Type 2 epithelial cells function as stem cells in epithelial renewal

  2. 油烟中细颗粒物致胎鼠肺泡Ⅱ型上皮细胞DNA损伤的研究%Assessment of DNA Damage Induced by Cooking Oil Fumes Particulate in the Mice Alveolar Type Ⅱ Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    梁春梅; 操基玉; 王勇; 冯哲伟; 汪磊

    2011-01-01

    目的 探讨油烟中的细颗粒物(PM2.5)对原代培养的胎鼠肺泡Ⅱ型上皮细胞(AECⅡ)DNA的损伤效应.方法 将1只妊娠18d的SPF级ICR小鼠体内的胎鼠肺组织制成AECⅡ细胞悬液,取对数生长期细胞,调整细胞密度为1×106/ml,分别加入终浓度为0(溶剂对照,含10% FBS的DMEM)、12.5、25、50、100μg/ml的PM2.5(来源于烹调油烟)溶液,培养6、12h后进行MTT试验和彗星试验,并检测AECⅡ细胞的尾长、尾部DNA百分比、尾矩和Olive尾矩.结果与溶剂对照组比较,50、100 μg/ml PM2.5染毒6、12 h时胎鼠AECⅡ存活率下降,差异均有统计学意义(P<0.05);12.5、25、50μg/mlPM2.5染毒6、12h时胎鼠AECⅡ的尾长、尾部DNA百分比、尾矩和Olive尾矩升高,差异均有统计学意义(P<0.05).随着PM2.5染毒浓度的升高,AECⅡ细胞存活率呈下降趋势,尾长、尾部DNA百分比、尾矩和Olive尾矩均呈上升趋势.结论油烟中的PM2.5可降低AECⅡ的细胞活性,对AECⅡ的DNA具有损伤效应.%Objective To investigate DNA damage induced by cooking oil fume participate (PM2.5) in the mice alveolar type II epithelial cells in primary cultured. Methods The mice alveolar type Ⅱ epithelial cells were isolated from 18 days old fetuses of ICR mice. The cells in exponential phase were cultured at a density of 1×106 cells/ml,AEC II cells were treated with PM2.5 at the doses of 0 μg/ml (the solvent control, 10% FBS of DMEM), 12.5,25,50 and 100 μg/ml for 6 and 12 h. AEC Ⅱ cell proliferation were detected with MTT assays and the comet assay was used to detect the Olive tail moment,tail moment,tail length and tail intensity. Results The survival rate of AEC II was decreased with a dose-dependent manner; Olive tail moment, tail moment, tail length and tail intensity were increased with a dose-dependent manner. Conclusion Cooking oil fume participate may decrease the viability of AEC II cells and produce evident DNA damage.

  3. Cell culture models using rat primary alveolar type I cells.

    Science.gov (United States)

    Downs, Charles A; Montgomery, David W; Merkle, Carrie J

    2011-10-01

    There is a lack of cell culture models using primary alveolar type I (AT I) cells. The purpose of this study was to develop cell culture models using rat AT I cells and microvascular endothelial cells from the lung (MVECL). Two types of model systems were developed: single and co-culture systems; additionally a 3-dimensional model system was developed. Pure AT I cell (96.3 ± 2.7%) and MVECL (97.9 ± 1.1%) preparations were used. AT I cell morphology, mitochondrial number and distribution, actin filament arrangement and number of apoptotic cells at confluence, and telomere attrition were characterized. AT I cells maintained their morphometric characteristics through at least population doubling (PD) 35, while demonstrating telomere attrition through at least PD 100. Furthermore, AT I cells maintained the expression of their specific markers, T1α and AQ-5, through PD 42. For the co-cultures, AT I cells were grown on the top and MVECL were grown on the bottom of fibronectin-coated 24-well Transwell Fluroblok™ filter inserts. Neither cell type transmigrated the 1 μm pores. Additionally, AT I cells were grown in a thick layer of Matrigel(®) to create a 3-dimensional model in which primary AT I cells form ring-like structures that resemble an alveolus. The development of these model systems offers the opportunities to investigate AT I cells and their interactions with MVECL in response to pharmacological interventions and in the processes of disease, repair and regeneration. PMID:21624488

  4. Epithelial hyperplasia, alveoli —

    Science.gov (United States)

    Solitary or multiple foci of increased cellularity distal to terminal bronchioles. The background of broncho-alveolar architecture remains detectable, and epithelial cells are usually single layered. Round to oval hypertrophic type II pneumocytes with abundant eosinophilic cytoplasm line alveolar walls. In bronchiolar subvariant, also called bronchiolization of alveoli, alveolar walls are lined by cuboidal to columnar cells with features of bronchiolar differentiation, such as formation of cilia, Clara cell resemblance, and presence of mucous granules. Foci of consolidation may indicate early stages of adenoma formation. Macrophages may be present in the alveolar lumens.

  5. Alveolar inflammation in cystic fibrosis

    DEFF Research Database (Denmark)

    Ulrich, Martina; Worlitzsch, Dieter; Viglio, Simona;

    2010-01-01

    BACKGROUND: In infected lungs of the cystic fibrosis (CF) patients, opportunistic pathogens and mutated cystic fibrosis transmembrane conductance regulator protein (CFTR) contribute to chronic airway inflammation that is characterized by neutrophil/macrophage infiltration, cytokine release and...... accumulated in type II alveolar epithelial cells, lacking CFTR. P. aeruginosa organisms were rarely present in inflamed alveoli. CONCLUSIONS: Chronic inflammation and remodeling is present in alveolar tissues of the CF lung and needs to be addressed by anti-inflammatory therapies....

  6. Arachidonate metabolism increases as rat alveolar type II cells differentiate in vitro

    International Nuclear Information System (INIS)

    Rat type II alveolar epithelial cells are known to undergo morphological and functional changes when maintained in culture for several days. Having previously demonstrated that these cells can deacylate free arachidonic acid (AA) and metabolize it to products of the cyclooxygenase pathway, the present study was undertaken to determine whether in vitro differentiation was accompanied by alterations in the availability and metabolism of AA. We assessed the constitutive and ionophore A23187-induced deacylation and metabolism of endogenous AA, as well as the metabolism of exogenously supplied AA, in primary cultures of rat type II cells at days 2, 4, and 7 after isolation. Levels of free endogenous AA were increased at day 4, whereas eicosanoid synthesis, predominantly prostaglandin E2 and prostacyclin, increased markedly only at day 7. A similar time course of augmentation of prostanoid release was seen in response to exogenous AA. Type II cells cultured on fibronectin, intended to hasten cell flattening and spreading, demonstrated accelerated increases in available free AA in response to A23187; cells cultured on basement membrane derived from Engelbreth-Holm-Swarm mouse sarcoma, known to maintain the type II phenotype, exhibited diminished levels of available free AA. From these findings, we conclude that alterations in arachidonate metabolism are linked to alterations in cellular phenotype. The potentiation of eicosanoid synthesis accompanying in vitro differentiation suggests a possible role for the alveolar epithelium in the modulation of inflammation and fibrosis in the distal lung

  7. Alveolar type II cells express a high-affinity receptor for pulmonary surfactant protein A

    International Nuclear Information System (INIS)

    Primary cultures of rat alveolar type II cells bind radiolabeled pulmonary surfactant protein A (SP-A) with high affinity. The binding of 125I-labeled SP-A is time- and temperature-dependent and is not accompanied by significant degradation. The binding process is saturable at low concentrations of SP-A, and unlabeled SP-A readily competes with labeled SP-A for cellular binding sites. Subsequent to binding, two pools of cell-associated 125I-labeled SP-A can be identified based upon sensitivity to trypsin at 0 degree C. It is likely that the trypsin-sensitive pool comprises 125I-labeled SP-A bound to the cell surface and the trypsin-insensitive pool comprises the internalized protein. Scatchard analysis of cell surface binding of SP-A at 0.1-10 μg/ml shows positive cooperativity at concentrations between 0.1 and 1 μg/ml. Hill plots give nH = 1.34 ± 0.08 with an apparent dissociation constant K'd = 1.02 ± 0.32 μg/ml. The binding of SP-A to type II cells shows an absolute requirement for Ca2+. The putative receptor for SP-A is unaffected by treatment of type II cells with a variety of proteases and N-Glycanase. Alveolar macrophages also exhibit high-affinity binding of SP-A, but rat lung fibroblasts and the alveolar epithelial cell line L2 exhibit only nonspecific binding

  8. Endothelial and Epithelial Cell Transition to a Mesenchymal Phenotype Was Delineated by Nestin Expression.

    Science.gov (United States)

    Chabot, Andréanne; Hertig, Vanessa; Boscher, Elena; Nguyen, Quang Trinh; Boivin, Benoît; Chebli, Jasmine; Bissonnette, Lyse; Villeneuve, Louis; Brochiero, Emmanuelle; Dupuis, Jocelyn; Calderone, Angelino

    2016-07-01

    Endothelial and epithelial cell transition to a mesenchymal phenotype was identified as cellular paradigms implicated in the appearance of fibroblasts and development of reactive fibrosis in interstitial lung disease. The intermediate filament protein nestin was highly expressed in fibrotic tissue, detected in fibroblasts and participated in proliferation and migration. The present study tested the hypothesis that the transition of endothelial and epithelial cells to a mesenchymal phenotype was delineated by nestin expression. Three weeks following hypobaric hypoxia, adult male Sprague-Dawley rats characterized by alveolar and perivascular lung fibrosis were associated with increased nestin protein and mRNA levels and marked appearance of nestin/collagen type I((+)) -fibroblasts. In the perivascular region of hypobaric hypoxic rats, displaced CD31((+)) -endothelial cells were detected, exhibited a mesenchymal phenotype and co-expressed nestin. Likewise, epithelial cells in the lungs of hypobaric hypoxic rats transitioned to a mesenchymal phenotype distinguished by the co-expression of E-cadherin and collagen. Following the removal of FBS from primary passage rat alveolar epithelial cells, TGF-β1 was detected in the media and a subpopulation acquired a mesenchymal phenotype characterized by E-cadherin downregulation and concomitant induction of collagen and nestin. Bone morphogenic protein-7 treatment of alveolar epithelial cells prevented E-cadherin downregulation, suppressed collagen induction but partially inhibited nestin expression. These data support the premise that the transition of endothelial and epithelial cells to a mesenchymal cell may have contributed in part to the appearance nestin/collagen type I((+)) -fibroblasts and the reactive fibrotic response in the lungs of hypobaric hypoxic rats. J. Cell. Physiol. 231: 1601-1610, 2016. © 2015 Wiley Periodicals, Inc. PMID:26574905

  9. The influence of volatile anesthetics on alveolar epithelial permeability measured by noninvasive radionuclide lung scan

    International Nuclear Information System (INIS)

    Many volatile anesthetics have long been thought to affect pulmonary functions including lung ventilation (LV) and alveolar epithelial permeability (AEP). The purpose of this study is to examine the influence of volatile anesthetics on LV and AEP by noninvasive radionuclide lung imaging of technetium-99m labeled diethylene triamine pentaacetic acid radioaerosol inhalation lung scan (DTPA lung scan). Twenty patients undergoing surgery and receiving volatile anesthesia with 1% halothane were enrolled as the study group 1. The other 20 patients undergoing surgery and receiving volatile anesthesia with 1.5% isoflurane were enrolled as the study group 2. At the same time, 20 patients undergoing surgery with intravenous anesthesia drugs were included as a control group. Before surgery, 1 hour after surgery, and 1 week after surgery, we investigated the 3 groups of patients with DTPA lung scan to evaluate LV and AEP by 99mTc DTPA clearance halftime (T1/2). No significant change or abnormality of LV before surgery, 1 hour after surgery, or 1 week after surgery was found among the 3 groups of patients. In the control group, the 99mTc DTPA clearance T1/2 was 63.5±16.4, 63.1±18.4, and 62.8±17.0 minutes, before surgery, 1 hour after surgery, and 1 week after surgery, respectively. In group 1, it was 65.9±9.3, 62.5±9.1, and 65.8±10.3 minutes, respectively. No significant change in AEP before surgery, 1 hour after surgery, or 1 week after surgery was found. However, in group 2, the99mTc DTPA clearance T1/2 was 65.5±13.2, 44.9±10.5, and 66.1±14.0 minutes, respectively. A significant transient change in AEP was found 1 hour after surgery, but it recovered 1 week after surgery. We conclude that volatile anesthesia is safe for LV and AEP, and only isoflurane can induce transient change of AEP. (author)

  10. Effects of simvastatin on the transdifferentiation of hypoxia and reoxygenation injury of alveolar epithelial type Ⅱ cells%辛伐他汀促进缺氧复氧损伤后肺泡Ⅱ型上皮细胞转分化的研究

    Institute of Scientific and Technical Information of China (English)

    武雅琴; 冯冬杰; 蒋峰; 张治; 黄建峰; 张帅; 尹荣; 许林

    2012-01-01

    目的 观察辛伐他汀是否能在体外促进缺氧复氧损伤后肺泡Ⅱ型上皮细胞向Ⅰ型细胞转分化,并探讨其作用机制.方法 体外培养小鼠肺泡上皮细胞MLE-12,建立缺氧复氧损伤模型,分为空白对照组(Blank)、辛伐他汀组(Sim)及缺氧复氧组(H/R),分别于缺氧2h后复氧0h、1d、3d和7d共4个时间点获取细胞,流式细胞仪检测肺泡Ⅰ型/Ⅱ型细胞表面特异性标志Caveolin- 1/Pro-SP-C 阳性细胞数百分比,Western blot法测定各组Pro-SP-C和Caveolin-1蛋白水平,最后行甲羟戊酸通路竞争实验观察左旋甲羟戊酸( L-meva)对辛伐他汀作用的影响.结果 流式细胞术结果显示:在缺氧复氧早期(d0及d1),Sim组较H/R组Caveolin-1/Pro-SP-C百分比显著降低;至d3和d7百分比则显著升高;Western blot结果显示:与H/R组比较,Sim组Pro-SP-C蛋白水平在d0及d1最高,至d3和d7则显著下降,Caveolin-1蛋白水平在d1最低,至d3和d7则逐渐升高,两者比较均有显著统计学差异(P<0.01).L-meva竞争试验显示:与Sim组比较,Sim+ L-meva组在各个时间点Pro-SP-C和Caveolin-1蛋白水平差异无统计学意义(P>0.05).结论 辛伐他汀可以促进缺氧复氧损伤后肺泡Ⅱ型上皮细胞向Ⅰ型细胞的转分化,但其作用机制不依赖于甲羟戊酸通路.%Objective To investigate the role of simvastatin in the transdifferentiation of hypoxia and reoxygenation injury of type Ⅱ alveolar epithelial cells and explore the underlying mechanisms.Methods Mouse AT Ⅱ cell line MLE-12 were subjected to hypoxia reoxygenation (H/R) injury.Blank,control and simvastatin-treated groups (20 μmol/L) were designed in the present study.The percentage of Caveolin-1/Pro-SP-C expression in the different points was assessed by flow cytometry double-staining.The protein levels of pro-surfactant protein-C (Pro-SP-C) and Caveolin-1 in AT Ⅱ cells was determined by Western blotting.And the protein levels of Pro-SP-C and Caveolin-1 was

  11. The role of alveolar type II cells in swine leptospirosis

    OpenAIRE

    Ângela P. Campos; Dayane F.H. Miranda; Geórgia B.B. Alves; Micherlene S. Carneiro; Prianti, Maria G; Larissa M.F. Gonçalves; Vanessa Castro; Francisco A.L. Costa

    2015-01-01

    Abstract: This study aimed to investigate a possible relationship between alveolar type II cells and the inflammatory response to infection with Leptospira spp., and thus comprise a further element that can be involved in the pathogenesis of lung injury in naturally infected pigs. The study group consisted of 73 adult pigs that were extensively reared and slaughtered in Teresina, Piauí state, and Timon, Maranhão state, Brazil. The diagnosis of leptospirosis was made using the microscopic aggl...

  12. Microrheology of human lung epithelial cells measured by atomic force microscopy

    OpenAIRE

    Alcaraz, Jordi; Buscemi, Lara; Grabulosa, Mireia; Trepat, Xavier; Fabry, Ben; Farré, Ramon; Navajas, Daniel

    2003-01-01

    Lung epithelial cells are subjected to large cyclic forces from breathing. However, their response to dynamic stresses is poorly defined. We measured the complex shear modulus (G*(ω)) of human alveolar (A549) and bronchial (BEAS-2B) epithelial cells over three frequency decades (0.1–100 Hz) and at different loading forces (0.1–0.9 nN) with atomic force microscopy. G*(ω) was computed by correcting force-indentation oscillatory data for the tip-cell contact geometry and for the hydrodynamic vis...

  13. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    Full Text Available BACKGROUND: Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo. METHODOLOGY/PRINCIPAL FINDINGS: To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo. CONCLUSIONS/SIGNIFICANCE: Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  14. Protective effects of amygdalin on hyperoxia-exposed type Ⅱ alveolar epithelial cells isolated from premature rat lungs in vitro%苦杏仁甙对高氧暴露早产鼠肺泡Ⅱ型细胞的保护作用

    Institute of Scientific and Technical Information of China (English)

    常立文; 祝华平; 李文斌; 刘汉楚; 张谦慎; 陈红兵

    2005-01-01

    目的探讨苦杏仁甙对体外高氧暴露早产鼠肺泡Ⅱ型细胞( type 2 alveolar epithelial cell,AECⅡ)的保护作用机制.方法原代培养早产鼠AECⅡ,建立高氧细胞模型,采用MTT比色法、流式细胞术、免疫印迹(Western blot)、逆转录聚合酶链反应(RT-PCR)等方法,观察苦杏仁甙对高氧暴露早产鼠AECⅡ增殖及表面活性物质蛋白(surfactant associated protein, SP)mRNA表达的影响.结果高氧暴露导致早产鼠AECⅡ增殖抑制,AECⅡSPs mRNA表达降低.MTT试验显示,苦杏仁甙50~200μmol/L时呈剂量依赖方式促进早产鼠AECⅡ细胞增殖,200 μmol/L浓度时,其作用最强,400 μmol/L浓度时反而呈抑制作用.200 μmol/L苦杏仁甙可显著促进体外高氧暴露AECⅡ增殖,提高其SP mRNA表达水平.结论高氧暴露导致早产鼠AECⅡ增殖抑制及SP mRNA表达降低,200 μmol/L苦杏仁甙对体外高氧暴露的早产鼠AECⅡ有一定保护作用.

  15. Epithelial TRPV1 Signaling Accelerates Gingival Epithelial Cell Proliferation

    OpenAIRE

    Takahashi, N; Matsuda, Y; Yamada, H; Tabeta, K; Nakajima, T; Murakami, S.; Yamazaki, K.

    2014-01-01

    Transient receptor potential cation channel subfamily V member 1 (TRPV1), a member of the calcium-permeable thermosensitive transient receptor potential superfamily, is a sensor of thermal and chemical stimuli. TRPV1 is activated by noxious heat (> 43°C), acidic conditions (pH < 6.6), capsaicin, and endovanilloids. This pain receptor was discovered on nociceptive fibers in the peripheral nervous system. TRPV1 was recently found to be expressed by non-neuronal cells, such as epithelial cells. ...

  16. Alveolar Development and Disease

    OpenAIRE

    Jeffrey A Whitsett; Weaver, Timothy E.

    2015-01-01

    Gas exchange after birth is entirely dependent on the remarkable architecture of the alveolus, its formation and function being mediated by the interactions of numerous cell types whose precise positions and activities are controlled by a diversity of signaling and transcriptional networks. In the later stages of gestation, alveolar epithelial cells lining the peripheral lung saccules produce increasing amounts of surfactant lipids and proteins that are secreted into the airspaces at birth. T...

  17. Conditional deletion of Abca3 in alveolar type II cells alters surfactant homeostasis in newborn and adult mice

    OpenAIRE

    Besnard, Valérie; Matsuzaki, Yohei; Clark, Jean; Xu, Yan; Wert, Susan E.; Ikegami, Machiko; Stahlman, Mildred T.; Weaver, Timothy E.; Hunt, Alan N.; Postle, Anthony D.; Whitsett, Jeffrey A.

    2010-01-01

    ATP-binding cassette A3 (ABCA3) is a lipid transport protein required for synthesis and storage of pulmonary surfactant in type II cells in the alveoli. Abca3 was conditionally deleted in respiratory epithelial cells (Abca3Δ/Δ) in vivo. The majority of mice in which Abca3 was deleted in alveolar type II cells died shortly after birth from respiratory distress related to surfactant deficiency. Approximately 30% of the Abca3Δ/Δ mice survived after birth. Surviving Abca3Δ/Δ mice developed emphys...

  18. DNA repair in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    The purpose of this investigation was to compare the response of human cell types (bronchial epithelial cells and fibroblasts and skin fibroblasts) to various DNA damaging agents. Repair of DNA single strand breaks (SSB) induced by 5 krads of X-ray was similar for all cell types; approximately 90% of the DNA SSB were rejoined within one hour. During excision repair of DNA damage from u.v.-radiation, the frequencies of DNA SSB as estimated by the alkaline elution technique, were similar in all cell types. Repair replication as measured by BND cellulose chromatography was also similar in epithelial and fibroblastic cells after u.v.-irradiation. Similar levels of SSB were also observed in epithelial and fibroblastic cells after exposure to chemical carcinogens: 7,12-dimethylbenz[a]anthracene; benzo[a]pyrene diol epoxide (BPDE); or N-methyl-N-nitro-N-nitrosoguanidine. Significant repair replication of BPDE-induced DNA damage was detected in both bronchial epithelial and fibroblastic cells, although the level in fibroblasts was approximately 40% of that in epithelial cells. The pulmonary carcinogen asbestos did not damage DNA. DNA-protein crosslinks induced by formaldehyde were rapidly removed in bronchial cells. Further, epithelial and fibroblastic cells, which were incubated with formaldehyde and the polymerase inhibitor combination of cytosine arabinoside and hydroxyurea, accumulated DNA SSB at approximately equal frequencies. These results should provide a useful background for further investigations of the response of human bronchial cells to various DNA damaging agents

  19. Alveolar macrophages are the main target cells in feline calicivirus-associated pneumonia.

    Science.gov (United States)

    Monné Rodriguez, J M; Soare, T; Malbon, A; Blundell, R; Papoula-Pereira, R; Leeming, G; Köhler, K; Kipar, A

    2014-08-01

    Feline calicivirus (FCV) is a pathogen of felids and one of the most common causative agents of feline upper respiratory disease (URD). Reports of natural FCV pneumonia in the course of respiratory tract infections are sparse. Therefore, knowledge on the pathogenesis of FCV-induced lung lesions comes only from experimental studies. The aim of the present study was to assess the type and extent of pulmonary involvement in natural respiratory FCV infections of domestic cats and to identify the viral target cells in the lung. For this purpose, histology, immunohistochemistry and RNA-in situ hybridisation for FCV and relevant cell markers were performed on diagnostic post-mortem specimens collected after fatal URD, virulent systemic FCV or other conditions. All groups of cats exhibited similar acute pathological changes, dominated by multifocal desquamation of activated alveolar macrophages (AM) and occasional type II pneumocytes with fibrin exudation, consistent with diffuse alveolar damage (DAD). In fatal cases, this was generally seen without evidence of epithelial regeneration. In cats without clinical respiratory signs, type II pneumocyte hyperplasia was present alongside the other changes, consistent with the post-damage proliferative phase of DAD. FCV infected and replicated in AM and, to a lesser extent, type II pneumocytes. This study shows that lung involvement is an infrequent but important feature of FCV-induced URD. AM are the main viral target cell and pulmonary replication site, and their infection is associated with desquamation and activation, as well as death via apoptosis. PMID:24857252

  20. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells

    Directory of Open Access Journals (Sweden)

    NirOsherov

    2012-09-01

    Full Text Available Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just “innocent bystanders” or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome.

  1. Generation of ESC-derived Mouse Airway Epithelial Cells Using Decellularized Lung Scaffolds.

    Science.gov (United States)

    Shojaie, Sharareh; Lee, Joyce; Wang, Jinxia; Ackerley, Cameron; Post, Martin

    2016-01-01

    Lung lineage differentiation requires integration of complex environmental cues that include growth factor signaling, cell-cell interactions and cell-matrix interactions. Due to this complexity, recapitulation of lung development in vitro to promote differentiation of stem cells to lung epithelial cells has been challenging. In this protocol, decellularized lung scaffolds are used to mimic the 3-dimensional environment of the lung and generate stem cell-derived airway epithelial cells. Mouse embryonic stem cell are first differentiated to the endoderm lineage using an embryoid body (EB) culture method with activin A. Endoderm cells are then seeded onto decellularized scaffolds and cultured at air-liquid interface for up to 21 days. This technique promotes differentiation of seeded cells to functional airway epithelial cells (ciliated cells, club cells, and basal cells) without additional growth factor supplementation. This culture setup is defined, serum-free, inexpensive, and reproducible. Although there is limited contamination from non-lung endoderm lineages in culture, this protocol only generates airway epithelial populations and does not give rise to alveolar epithelial cells. Airway epithelia generated with this protocol can be used to study cell-matrix interactions during lung organogenesis and for disease modeling or drug-discovery platforms of airway-related pathologies such as cystic fibrosis. PMID:27214388

  2. Simultaneous occurrence of pulmonary interstitial fibrosis and alveolar cell carcinoma in one family.

    OpenAIRE

    Beaumont, F; Jansen, H. M.; Elema, J D; ten Kate, L P; Sluiter, H J

    1981-01-01

    The coexistence of interstitial pulmonary fibrosis and alveolar cell carcinoma is well known. The familial occurrence of a combination of these two entities, however, is very rare. We present a family of which five members had diffuse interstitial pulmonary fibrosis. Three of them had in addition alveolar cell carcinoma. In a sixth family member, evidence of alveolar cell carcinoma was present without proven interstitial fibrosis. An autosomal dominant trait is suggested as the mode of inheri...

  3. Cell-cell interactions promote mammary epithelial cell differentiation

    OpenAIRE

    1985-01-01

    Mammary epithelium differentiates in a stromal milieu of adipocytes and fibroblasts. To investigate cell-cell interactions that may influence mammary epithelial cell differentiation, we developed a co-culture system of murine mammary epithelium and adipocytes and other fibroblasts. Insofar as caseins are specific molecular markers of mammary epithelial differentiation, rat anti-mouse casein monoclonal antibodies were raised against the three major mouse casein components to study this interac...

  4. Recruited alveolar macrophages, in response to airway epithelial-derived monocyte chemoattractant protein 1/CCl2, regulate airway inflammation and remodeling in allergic asthma.

    Science.gov (United States)

    Lee, Yong Gyu; Jeong, Jong Jin; Nyenhuis, Sharmilee; Berdyshev, Evgeny; Chung, Sangwoon; Ranjan, Ravi; Karpurapu, Manjula; Deng, Jing; Qian, Feng; Kelly, Elizabeth A B; Jarjour, Nizar N; Ackerman, Steven J; Natarajan, Viswanathan; Christman, John W; Park, Gye Young

    2015-06-01

    Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM phenotypic and functional transformation in response to acute allergic airway inflammation. The phenotype and functional characteristics of AMs obtained from human subjects with asthma after subsegmental bronchoprovocation with allergen was studied. Using macrophage-depleted mice, the role and trafficking of AM populations was determined using an acute allergic lung inflammation model. We observed that depletion of AMs in a mouse allergic asthma model attenuates Th2-type allergic lung inflammation and its consequent airway remodeling. In both human and mouse, endobronchial challenge with allergen induced a marked increase in monocyte chemotactic proteins (MCPs) in bronchoalveolar fluid, concomitant with the rapid appearance of a monocyte-derived population of AMs. Furthermore, airway allergen challenge of allergic subjects with mild asthma skewed the pattern of AM gene expression toward high levels of the receptor for MCP1 (CCR2/MCP1R) and expression of M2 phenotypic proteins, whereas most proinflammatory genes were highly suppressed. CCL2/MCP-1 gene expression was prominent in bronchial epithelial cells in a mouse allergic asthma model, and in vitro studies indicate that bronchial epithelial cells produced abundant MCP-1 in response to house dust mite allergen. Thus, our study indicates that bronchial allergen challenge induces the recruitment of blood monocytes along a chemotactic gradient generated by allergen-exposed bronchial epithelial cells. PMID:25360868

  5. Design-based stereological analysis of the lung parenchymal architecture and alveolar type II cells in surfactant protein A and D double deficient mice

    DEFF Research Database (Denmark)

    Jung, A; Allen, L; Nyengaard, Jens Randel;

    2005-01-01

    (-)D(-) mice have fewer and larger alveoli, an increase in the number and size of type II cells, as well as more numerous and larger alveolar macrophages. More surfactant-storing lamellar bodies are seen in type II cells, leading to a threefold increase in the total volume of lamellar bodies per lung, but the......Alveolar epithelial type II cells synthesize and secrete surfactant. The surfactant-associated proteins A and D (SP-A and SP-D), members of the collectin protein family, participate in pulmonary immune defense, modulation of inflammation, and surfactant metabolism. Both proteins are known to have...... overlapping as well as distinct functions. The present study provides a design-based stereological analysis of adult mice deficient in both SP-A and SP-D (A(-)D(-)) with special emphasis on parameters characterizing alveolar architecture and surfactant-producing type II cells. Compared to wild-type, A...

  6. Polarized sorting and trafficking in epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Xinwang Cao; Michal A Surma; Kai Simons

    2012-01-01

    The polarized distribution of proteins and lipids at the surface membrane of epithelial cells results in the formation of an apical and a basolateral domain,which are separated by tight junctions.The generation and maintenance of epithelial polarity require elaborate mechanisms that guarantee correct sorting and vectorial delivery of cargo molecules.This dynamic process involves the interaction of sorting signals with sorting machineries and the formation of transport carriers.Here we review the recent advances in the field of polarized sorting in epithelial cells.We especially highlight the role of lipid rafts in apical sorting.

  7. Porphyromonas gingivalis invasion of gingival epithelial cells.

    OpenAIRE

    Lamont, R.J.; Chan, A.; Belton, C M; Izutsu, K. T.; Vasel, D; Weinberg, A

    1995-01-01

    Porphyromonas gingivalis, a periodontal pathogen, can invade primary cultures of gingival epithelial cells. Optimal invasion occurred at a relatively low multiplicity of infection (i.e., 100) and demonstrated saturation at a higher multiplicity of infection. Following the lag phase, during which bacteria invaded poorly, invasion was independent of growth phase. P. gingivalis was capable of replicating within the epithelial cells. Invasion was an active process requiring both bacterial and epi...

  8. Protein kinase D is increased and activated in lung epithelial cells and macrophages in idiopathic pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Huachen Gan

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. Hence, there is a profound need for the identification of novel drugable targets to develop more specific and efficacious therapeutic intervention in IPF. In this study, we performed immunohistochemical analyses to assess the cell type-specific expression and activation of protein kinase D (PKD family kinases in normal and IPF lung tissue sections. We also analyzed PKD activation and function in human lung epithelial cells. We found that PKD family kinases (PKD1, PKD2 and PKD3 were increased and activated in the hyperplastic and regenerative alveolar epithelial cells lining remodeled fibrotic alveolar septa and/or fibroblast foci in IPF lungs compared with normal controls. We also found that PKD family kinases were increased and activated in alveolar macrophages, bronchiolar epithelium, and honeycomb cysts in IPF lungs. Interestingly, PKD1 was highly expressed and activated in the cilia of IPF bronchiolar epithelial cells, while PKD2 and PKD3 were expressed in the cell cytoplasm and nuclei. In contrast, PKD family kinases were not apparently increased and activated in IPF fibroblasts or myofibroblasts. We lastly found that PKD was predominantly activated by poly-L-arginine, lysophosphatidic acid and thrombin in human lung epithelial cells and that PKD promoted epithelial barrier dysfunction. These findings suggest that PKD may participate in the pathogenesis of IPF and may be a novel target for therapeutic intervention in this disease.

  9. Detection of alveolar epithelial injury by Tc-99m DTPA radioaerosol inhalation lung scan in rheumatoid arthritis patients

    International Nuclear Information System (INIS)

    Rheumatoid arthritis (RA) is a systemic autoimmune disorder primarily involving the joints. Lung alterations in RA may be primary or secondary to pharmacological treatments and may involve the alveoli, interstitium, airways and/or pleura. Technetium-99 m diethylenetriaminepentaacetic acid (Tc-99m DTPA) aerosol inhalation scintigraphy is a sensitive and noninvasive test commonly employed to assess pulmonary epithelial membrane permeability. The purpose of this study was to investigate the changes of pulmonary alveolar epithelial permeability in patients with RA, to determine the relationship between the clearance rate of Tc-99m DTPA and pulmonary function test (PFT) results, and to determine the relationship between the clearance rate of Tc-99m DTPA and clinical parameters of disease. Twenty-five patients with RA but without lung alterations were included in the study. The patients were 22 females, and 3 males; mean age 53.6±8.7 years. Technetium-99m DTPA aerosol inhalation scintigraphy was performed on the study and healthy control groups. Clearance half times (T1/2) were calculated by placing a mono-exponential fit on the curves. Penetration index (PI) was calculated on the first-minute image. There were no significant differences in the mean T1/2 or mean PI values between the RA patients and control subjects. No correlation was found between the mean T1/2 values of Tc-99m DTPA clearance and activity of RA, clinical values, or the spirometric measurements except FEV1/FVC and functional status in RA patients (p=0.02, p=0.01, respectively). However, a weak correlation was found between duration of disease and T1/2 values of Tc-99m DTPA clearance (p=0.006). PI values tended to correlate with FEF25-75, although, this was not statistically significant (p=0.057). This study shows that no changes occur in alveolar-capillary permeability in RA patients without lung alterations. (author)

  10. Bronchiolo-alveolar cell carcinoma: A review of 11 cases

    International Nuclear Information System (INIS)

    Eleven patients with proved Bronchiolo-alveolar cell carcinoma were found in the chest department of the national menical center from 1975 to 1981. The clinical od Bronchiolo-alveolar cell carcinoma is recently increased as primary lung carcinoma. The results were as follow. 1. The ratio of male and female was 5 : 6, and an incidence of 4.4% among total primary lung cancer patients. The highest incidence (3 of cases) was seen in the sixth decade, and the remaining cases were evenly distributed in the third, fourth, and fifth decades of life. Among them youngest was 29 years old and the oldest was 66 years old. 2. Clinical and radiological initial diagnosis prior to the final diagnosis were as follows; pulmonary tuberculosis; 7 cases, pneumonia; 1 case, bronchiectasis; 1 case, and lung cancer; 2 cases. 3. Radiological examination of chest presented several pictures; most commonly, homogenous or patchy infiltration; 6 cases, nodular or mass like densities; 2 cases, disseminated nodular or military patterns; 2 cases, and reticular pattern; 1 case. 4. Bronchogram revealed no contributable findings except one case of complete tappering obstruction of the segmental bronchus. Therefore we arrive at the conclusion that early diagnosis will result in increased resectability and improved survival so aggressive diagnostic work-up for suspicious pulmonary infiltrate is necessary

  11. Coronavirus infection of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Horzinek, M C; Rottier, P J

    1995-01-01

    Epithelial cells are the first host cells to be infected by incoming c oronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for

  12. Thymic epithelial cells. I. Expression of strong suppressive (veto) activity in mouse thymic epithelial cell cultures

    DEFF Research Database (Denmark)

    Claesson, Mogens Helweg; Ropke, C

    1990-01-01

    We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level. It is...... concluded that the epithelial stromal cells of the thymus, by acting as veto cells, may be responsible for the negative intrathymic selection of self-reactive thymocytes leading to elimination of the vast majority of immature thymic lymphocytes....

  13. Wound healing of intestinal epithelial cells

    Directory of Open Access Journals (Sweden)

    Shiho Konno

    2011-01-01

    Full Text Available The intestinal epithelial cells (IECs form a selective permeability barrier separating luminal content from underlying tissues. Upon injury, the intestinal epithelium undergoes a wound healing process. Intestinal wound healing is dependent on the balance of three cellular events; restitution, proliferation, and differentiation of epithelial cells adjacent to the wounded area. Previous studies have shown that various regulatory peptides, including growth factors and cytokines, modulate intestinal epithelial wound healing. Recent studies have revealed that novel factors, which include toll-like receptors (TLRs, regulatory peptides, particular dietary factors, and some gastroprotective agents, also modulate intestinal epithelial wound repair. Among these factors, the activation of TLRs by commensal bacteria is suggested to play an essential role in the maintenance of gut homeostasis. Recent studies suggest that mutations and dysregulation of TLRs could be major contributing factors in the predisposition and perpetuation of inflammatory bowel disease. Additionally, studies have shown that specific signaling pathways are involved in IEC wound repair. In this review, we summarize the function of IECs, the process of intestinal epithelial wound healing, and the functions and mechanisms of the various factors that contribute to gut homeostasis and intestinal epithelial wound healing.

  14. Uptake of palmitic acid by rabbit alveolar type II cells

    International Nuclear Information System (INIS)

    Alveolar type II cells require a source of palmitic acid for synthesis of dipalmitoyl phosphatidylcholine (DPPC), a major constituent of pulmonary surfactant. Previous studies indicated that maximal rates of DPPC synthesis are achieved only if exogenous palmitate is available to the type II cell. Little is known of the mechanisms by which fatty acids enter type II cells. To determine if uptake is mediated by a membrane carrier system, as described in other cell types, we examined the kinetics of palmitate uptake. Using freshly isolated rabbit type II cells, we demonstrated that radiolabeled palmitate uptake was maximal and linear for 45 s; after 1 min the apparent rate of uptake declined. The initial uptake phase was taken as a measure of cellular fatty acid influx because intracellular radiolabeled palmitate remained 80% nonesterified at this time but was 55% esterified by 2 min. Cellular influx of palmitate showed saturation kinetics with increasing concentration of nonalbumin bound palmitate. Michaelis constant was 52.6 nM, and maximum velocity was 152 pmol.10(6) cells-1.min-1. The hypothesis that saturable cellular influx of palmitate is likely linked to the previously identified membrane fatty acid binding protein (MFABP) was supported by Western-blot analysis of rat lung tissue with an antibody to MFABP that demonstrated the presence of this carrier protein in lung tissue. These data suggest that palmitate uptake by type II cells is saturable and may be mediated by a membrane-associated carrier as described in other cell types

  15. Integrin α6β4 identifies human distal lung epithelial progenitor cells with potential as a cell-based therapy for cystic fibrosis lung disease.

    Directory of Open Access Journals (Sweden)

    Xiaopeng Li

    Full Text Available To develop stem/progenitor cell-based therapy for cystic fibrosis (CF lung disease, it is first necessary to identify markers of human lung epithelial progenitor/stem cells and to better understand the potential for differentiation into distinct lineages. Here we investigated integrin α6β4 as an epithelial progenitor cell marker in the human distal lung. We identified a subpopulation of α6β4(+ cells that localized in distal small airways and alveolar walls and were devoid of pro-surfactant protein C expression. The α6β4(+ epithelial cells demonstrated key properties of stem cells ex vivo as compared to α6β4(- epithelial cells, including higher colony forming efficiency, expression of stem cell-specific transcription factor Nanog, and the potential to differentiate into multiple distinct lineages including basal and Clara cells. Co-culture of α6β4(+ epithelial cells with endothelial cells enhanced proliferation. We identified a subset of adeno-associated virus (AAVs serotypes, AAV2 and AAV8, capable of transducing α6β4(+ cells. In addition, reconstitution of bronchi epithelial cells from CF patients with only 5% normal α6β4(+ epithelial cells significantly rescued defects in Cl(- transport. Therefore, targeting the α6β4(+ epithelial population via either gene delivery or progenitor cell-based reconstitution represents a potential new strategy to treat CF lung disease.

  16. Epithelial Cell Apoptosis and Lung Remodeling

    Institute of Scientific and Technical Information of China (English)

    Kazuyoshi Kuwano

    2007-01-01

    Lung epithelium is the primary site of lung damage in various lung diseases. Epithelial cell apoptosis has been considered to be initial event in various lung diseases. Apoptosis signaling is classically composed of two principle pathways. One is a direct pathway from death receptor ligation to caspase cascade activation and cell death. The other pathway triggered by stresses such as drugs, radiation, infectious agents and reactive oxygen species is mediated by mitochondria. Endoplasmic reticulum has also been shown to be the organelle to mediate apoptosis.Epithelial cell death is followed by remodeling processes, which consist of epithelial and fibroblast activation,cytokine production, activation of coagulation pathway, neoangiogenesis, re-epithelialization and fibrosis.Epithelial and mesenchymal interaction plays important roles in these processes. Further understanding of apoptosis signaling and its regulation by novel strategies may lead to effective treatments against various lung diseases. We review the recent advances in the understanding of apoptosis signaling and discuss the involvement of apoptosis in lung remodeling.

  17. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Directory of Open Access Journals (Sweden)

    Narendranath Reddy Chintagari

    Full Text Available Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase is the enzyme responsible for pumping H(+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1, an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+ chelator, BAPTA-AM, the protein kinase C (PKC inhibitor, staurosporine, and the Ca(2+/calmodulin-dependent protein kinase II (CaMKII, KN-62. Baf A1 induced Ca(2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion.

  18. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Science.gov (United States)

    Chintagari, Narendranath Reddy; Mishra, Amarjit; Su, Lijing; Wang, Yang; Ayalew, Sahlu; Hartson, Steven D; Liu, Lin

    2010-01-01

    Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H(+) into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase) dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1), an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+) chelator, BAPTA-AM, the protein kinase C (PKC) inhibitor, staurosporine, and the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), KN-62. Baf A1 induced Ca(2+) release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+) pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+) mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion. PMID:20169059

  19. Potential in vitro model for testing the effect of exposure to nanoparticles on the lung alveolar epithelial barrier

    Directory of Open Access Journals (Sweden)

    Raymond Derk

    2015-03-01

    Full Text Available Pulmonary barrier function plays a pivotal role in protection from inhaled particles. However, some nano-scaled particles, such as carbon nanotubes (CNT, have demonstrated the ability to penetrate this barrier in animal models, resulting in an unusual, rapid interstitial fibrosis. To delineate the underlying mechanism and specific bio-effect of inhaled nanoparticles in respiratory toxicity, models of lung epithelial barriers are required that allow accurate representation of in vivo systems; however, there is currently a lack of consistent methods to do so. Thus, this work demonstrates a well-characterized in vitro model of pulmonary barrier function using Calu-3 cells, and provides the experimental conditions required for achieving tight junction complexes in cell culture, with trans-epithelial electrical resistance measurement used as a biosensor for proper barrier formation and integrity. The effects of cell number and serum constituents have been examined and we found that changes in each of these parameters can greatly affect barrier formation. Our data demonstrate that use of 5.0 × 104 Calu-3 cells/well in the Transwell cell culture system, with 10% serum concentrations in culture media is optimal for assessing epithelial barrier function. In addition, we have utilized CNT exposure to analyze the dose-, time-, and nanoparticle property-dependent alterations of epithelial barrier permeability as a means to validate this model. Such high throughput in vitro cell models of the epithelium could be used to predict the interaction of other nanoparticles with lung epithelial barriers to mimic respiratory behavior in vivo, thus providing essential tools and bio-sensing techniques that can be uniformly employed.

  20. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian;

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology to an...... epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to glycosphingolipid, together with an increase in plasmalogen, phosphatidylethanolamine, and cholesterol content, whereas the opposite changes took place during an epithelial-to-mesenchymal transition. Moreover, during polarization, the sphingolipids became longer, more saturated, and more...

  1. The effect of phospholipid transfer protein on cigarette smoke extract induced epithelial-mesenchymal transition of rat alveolar type Ⅱ cells%磷脂转运蛋白在烟草诱导RLE-6TN细胞株发生上皮间质转化中的作用

    Institute of Scientific and Technical Information of China (English)

    巫凤苹; 陈亚娟; 余秀英; 廖科; 李丹丹; 陈虹

    2016-01-01

    Objective To investigate the effect of phospholipid transfer protein(PLTP) on cigarette smoke extract(CSE) induced epithelial-mesenchymal transition(EMT) in rat alveolar Type Ⅱ cells (RLE-6TN).Methods CSE of different concentrations (0%,0.25%,0.5% and 1%) was co-cultured for 2 or 3days with RLE-6TN,either pre-treated or not pre-treated with siRNA-PLTP for 6 h.Expression levels of E-cadherin mRNA and Vimentin mRNA were examined by RT-PCR,while expression levels of PLTP,E-cadherin,N-cadherin and Vimentin were examined by Western blot.Results Our results showed that the expression of E-cadherin mRNA decreased in CSE-treated groups:1.01 ± 0.05,0.74 ± 0.05,0.65 ± 0.03,0.30 ±0.08 respectively at different concentrations of CSE (0 %,0.25%,0.5 %,and 1.0%);while the level of Vimentin mRNA increased significantly in 1% CSE treated cells (1.88 ± O.49),compared with control cells (1.01 ±0.20).Treatment with CSE at different concentrations (0%,0.25%,0.5% and 1%) showed that the protein levels of PLTP were 0.42 ± 0.02,0.89 ± 0.25,1.08 ± 0.18,1.61 ± 0.06 respectively;those of E-cadherin were 1.61 ± 0.04,1.08 ± 0.10,0.62 ± 0.08,0.68 ± 0.17,respectively;those of N-cadherin were 0.60 ± 0.14,0.57 ± 0.26,0.88 ± 0.30,1.94 ± 0.54,respectively;and those of Vimentin were 0.61 ± 0.05,0.98 ± 0.16,1.07 ± 0.14,1.34 ± 0.19,respectively;all P < 0.05 when the 1% CSE group was compared with the control group.EMT induced by CSE was significantly inhibited by siRNA-PLTP.Conclusion PLTP may be involved in CSE induced EMT of rat alveolar cells.%目的 探讨磷脂转运蛋白(PLTP)在烟草提取物(CSE)诱导大鼠Ⅱ型肺泡上皮细胞株RLE-6TN发生上皮间质转化(EMT)中的作用.方法 体外培养RLE-6TN细胞株24 h,分为4组,每组3孔,分别加入0%、0.25%、0.5%和1% CSE培养2d,检测E-钙黏蛋白和波形蛋白mRNA表达以及细胞和CSE共培养3d检测PLTP、EMT相关蛋白(E-钙黏蛋白、N-钙黏蛋白和波形

  2. HES6 enhances the motility of alveolar rhabdomyosarcoma cells

    International Nuclear Information System (INIS)

    Absract: HES6, a member of the hairy-enhancer-of-split family of transcription factors, plays multiple roles in myogenesis. It is a direct target of the myogenic transcription factor MyoD and has been shown to regulate the formation of the myotome in development, myoblast cell cycle exit and the organization of the actin cytoskeleton during terminal differentiation. Here we investigate the expression and function of HES6 in rhabdomyosarcoma, a soft tissue tumor which expresses myogenic genes but fails to differentiate into muscle. We show that HES6 is expressed at high levels in the subset of alveolar rhabdomyosarcomas expressing PAX/FOXO1 fusion genes (ARMSp). Knockdown of HES6 mRNA in the ARMSp cell line RH30 reduces proliferation and cell motility. This phenotype is rescued by expression of mouse Hes6 which is insensitive to HES6 siRNA. Furthermore, expression microarray analysis indicates that the HES6 knockdown is associated with a decrease in the levels of Transgelin, (TAGLN), a regulator of the actin cytoskeleton. Knockdown of TAGLN decreases cell motility, whilst TAGLN overexpression rescues the motility defect resulting from HES6 knockdown. These findings indicate HES6 contributes to the pathogenesis of ARMSp by enhancing both proliferation and cell motility.

  3. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages

    Directory of Open Access Journals (Sweden)

    Dagmar A. Kuhn

    2014-09-01

    Full Text Available Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1 and a human alveolar epithelial type II cell line (A549. In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis. Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.

  4. Expression of histone deacetylase 3 instructs alveolar type I cell differentiation by regulating a Wnt signaling niche in the lung.

    Science.gov (United States)

    Wang, Xiaoru; Wang, Yi; Snitow, Melinda E; Stewart, Kathleen M; Li, Shanru; Lu, MinMin; Morrisey, Edward E

    2016-06-15

    The commitment and differentiation of the alveolar type I (AT1) cell lineage is a critical step for the formation of distal lung saccules, which are the primitive alveolar units required for postnatal respiration. How AT1 cells arise from the distal lung epithelial progenitor cells prior to birth and whether this process depends on a developmental niche instructed by mesenchymal cells is poorly understood. We show that mice lacking histone deacetylase 3 specifically in the developing lung mesenchyme display lung hypoplasia including decreased mesenchymal proliferation and a severe impairment of AT1 cell differentiation. This is correlated with a decrease in Wnt/β-catenin signaling in the lung epithelium. We demonstrate that inhibition of Wnt signaling causes defective AT1 cell lineage differentiation ex vivo. Importantly, systemic activation of Wnt signaling at specific stages of lung development can partially rescue the AT1 cell differentiation defect in vivo. These studies show that histone deacetylase 3 expression generates an important developmental niche in the lung mesenchyme through regulation of Wnt signaling, which is required for proper AT1 cell differentiation and lung sacculation. PMID:27141870

  5. Alveolar epithelial permeability in patients with primary spontaneous pneumothorax as determined by Tc-99m DTPA aerosol scintigraphy

    International Nuclear Information System (INIS)

    Primary spontaneous pneumothorax (PSP) occurs subsequent to a disruption in the continuity of visceral pleura and escape of air into the pleural space. The cause of PSP is most often the rupture of subpleural blebs or bullae. It is usually difficult to detect evidence of pulmonary pathology. The purposes of the present study were to investigate the changes of pulmonary alveolar epithelial permeability in patients with PSP as determined by Tc-99m DTPA aerosol lung scintigraphy, to assess whether or not some differences exist between apical and basal parts of the lungs, and to determine the relationship between the clearance rate of Tc-99m DTPA and the pulmonary function test (PFT) results, the recurrence rate of PSP, and the percentage of pneumothorax in affected lung. Thirteen PSP patients (two females, 11 males; mean age 32.5±11.8 years) with normal chest X-ray were studied. Thirteen healthy non-smoking volunteers (1 female, 12 males; mean age, 35.8±10 years) were selected as a control group. Tc-99m DTPA aerosol lung scintigraphy and PFT were performed in all patients and controls. Clearance rates (%/min) of Tc-99m DTPA aerosol in right and left lung field, and apical and basal parts of each lung were calculated from dynamic images for 15 min. There was no significant difference (p>0.05) between patients and controls, or between apical and basal parts of each lung. No correlation was found between the clearance rate of Tc-99m DTPA and PFT results, the recurrence rate of PSP, or the percentage of pneumothorax. This study demonstrates that pulmonary epithelial permeability is not altered in PSP patients; the clearance rate of Tc-99m DTPA shows no difference between apical and basal parts of each lung. (author)

  6. Expression of human carcinoembryonic antigen-related cell adhesion molecule 6 and alveolar progenitor cells in normal and injured lungs of transgenic mice.

    Science.gov (United States)

    Lin, Shin-E; Barrette, Anne Marie; Chapin, Cheryl; Gonzales, Linda W; Gonzalez, Robert F; Dobbs, Leland G; Ballard, Philip L

    2015-12-01

    Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is expressed in the epithelium of various primate tissues, including lung airway and alveoli. In human lung, CEACAM6 is developmentally and hormonally regulated, protects surfactant function, has anti-apoptotic activity and is dysregulated in cancers. We hypothesized that alveolar CEACAM6 expression increases in lung injury and promotes cell proliferation during repair. Studies were performed in CEABAC transgenic mice-containing human CEACAM genes. The level of CEACAM6 in adult CEABAC lung was comparable to that in human infants; expression occurred in epithelium of airways and of some alveoli but rarely co-localized with markers of type I or type II cells. Ten days after bleomycin instillation, both the number of CEACAM6(+) cells and immunostaining intensity were elevated in injured lung areas, and there was increased co-localization with type I and II cell markers. To specifically address type II cells, we crossed CEABAC mice with animals expressing EGFP driven by the SP-C promoter. After bleomycin injury, partially flattened, elongated epithelial cells were observed that expressed type I cell markers and were primarily either EGFP(+) or CEACAM6(+). In cell cycle studies, mitosis was greater in CEACAM6(+) non-type II cells versus CEACAM6(+)/EGFP(+) cells. CEACAM6 epithelial expression was also increased after hyperoxic exposure and LPS instillation, suggesting a generalized response to acute lung injuries. We conclude that CEACAM6 expression is comparable in human lung and the CEABAC mouse. CEACAM6 in this model appears to be a marker of a progenitor cell population that contributes to alveolar epithelial cell replenishment after lung injury. PMID:26702074

  7. Airway epithelial cell tolerance to Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Verghese Margrith W

    2005-04-01

    Full Text Available Abstract Background The respiratory tract epithelium is a critical environmental interface that regulates inflammation. In chronic infectious airway diseases, pathogens may permanently colonize normally sterile luminal environments. Host-pathogen interactions determine the intensity of inflammation and thus, rates of tissue injury. Although many cells become refractory to stimulation by pathogen products, it is unknown whether the airway epithelium becomes either tolerant or hypersensitive in the setting of chronic infection. Our goals were to characterize the response of well-differentiated primary human tracheobronchial epithelial cells to Pseudomonas aeruginosa, to understand whether repeated exposure induced tolerance and, if so, to explore the mechanism(s. Methods The apical surface of well-differentiated primary human tracheobronchial epithelial cell cultures was repetitively challenged with Pseudomonas aeruginosa culture filtrates or the bacterial media control. Toxicity, cytokine production, signal transduction events and specific effects of dominant negative forms of signaling molecules were examined. Additional experiments included using IL-1β and TNFα as challenge agents, and performing comparative studies with a novel airway epithelial cell line. Results An initial challenge of the apical surface of polarized human airway epithelial cells with Pseudomonas aeruginosa culture filtrates induced phosphorylation of IRAK1, JNK, p38, and ERK, caused degradation of IκBα, generation of NF-κB and AP-1 transcription factor activity, and resulted in IL-8 secretion, consistent with activation of the Toll-like receptor signal transduction pathway. These responses were strongly attenuated following a second Pseudomonas aeruginosa, or IL-1β, but not TNFα, challenge. Tolerance was associated with decreased IRAK1 protein content and kinase activity and dominant negative IRAK1 inhibited Pseudomonas aeruginosa -stimulated NF-κB transcriptional

  8. Protons sensitize epithelial cells to mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Minli Wang

    Full Text Available Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1-mediated epithelial-mesenchymal transition (EMT, a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu and hTERT- immortalized human esophageal epithelial cells (EPC were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1 kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1.

  9. Protons Sensitize Epithelial Cells to Mesenchymal Transition

    Science.gov (United States)

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M.; Pluth, Janice M.; Cucinotta, Francis A.

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1. PMID:22844446

  10. Adiponectin ameliorates the apoptotic effects of paraquat on alveolar type II cells via improvements in mitochondrial function

    Science.gov (United States)

    HE, YARONG; ZOU, LIQUN; ZHOU, YAXIONG; HU, HAI; YAO, RONG; JIANG, YAOWEN; LAU, WAYNE BOND; YUAN, TUN; HUANG, WEN; ZENG, ZHI; CAO, YU

    2016-01-01

    Previous studies have demonstrated that excessive reactive oxygen/nitrogen species (ROS/RNS)-induced apoptosis is an important feature of the injury to the lung epithelium in paraquat (PQ) poisoning. However the precise mechanisms of PQ-induced dysfunction of the mitochondria, where ROS/RNS are predominantly produced, remain to be fully elucidated. Whether globular adiponectin (gAd), a potent molecule protective to mitochondria, regulates the mitochondrial function of alveolar type II cells to reduce PQ-induced ROS/RNS production remains to be investigated. The current study aimed to investigate the precise mechanisms of PQ poisoning in the mitochondria of alveolar type II cells, and to elucidate the role of gAd in protecting against PQ-induced lung epithelium injury. Therefore, lung epithelial injury was induced by PQ co-culture of alveolar type II A549 cells for 24 h. gAd was administrated to and removed from the injured cells in after 24 h. PQ was observed to reduce cell viability and increase apoptosis by ~1.5 fold in A549 cells. The oxidative/nitrative stress, resulting from ROS/RNS and disordered mitochondrial function were evidenced by increased O2−., NO production and reduced mitochondrial membrane potential (ΔΨ), adenosine 5′-triphosphate (ATP) content in PQ-poisoned A549 cells. gAd treatment significantly reversed the PQ-induced cell injury and mitochondrial dysfunction in A549 cells. The protective effects of gAd were partly abrogated by an adenosine 5′-monophosphate-activated protein kinase (AMPK) inhibitor, compound C. The results suggest that reduced ΔΨ and ATP content may result in PQ-induced mitochondrial dysfunction of the lung epithelium, which constitutes a novel mechanism for gAd exerting pulmonary protection against PQ poisoning via AMPK activation. PMID:27220901

  11. Lung Cancer in Pulmonary Fibrosis: Tales of Epithelial Cell Plasticity

    OpenAIRE

    Königshoff, Melanie

    2011-01-01

    Lung epithelial cells exhibit a high degree of plasticity. Alterations to lung epithelial cell function are critically involved in several chronic lung diseases such as pulmonary fibrosis. Pulmonary fibrosis is characterized by repetitive injury and subsequent impaired repair of epithelial cells, which leads to aberrant growth factor activation and fibroblast accumulation. Increased proliferation and hyper- and metaplasia of epithelial cells upon injury have also been observed in pulmonary fi...

  12. Respiratory epithelial cells orchestrate pulmonary innate immunity.

    Science.gov (United States)

    Whitsett, Jeffrey A; Alenghat, Theresa

    2015-01-01

    The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of respiratory epithelial cells to respond to and 'instruct' the professional immune system to protect the lungs from infection and injury. PMID:25521682

  13. Alveolar Type II cell transplantation restores pulmonary surfactant protein levels in lung fibrosis

    OpenAIRE

    Guillamat-Prats, Raquel; Gay-Jordi, Gemma; Xaubet, Antoni; Peinado, Victor; Serrano-Mollar, Anna

    2014-01-01

    Background Alveolar Type II cell transplantation has been proposed as a cell therapy for the treatment of idiopathic pulmonary fibrosis. Its long-term benefits include repair of lung fibrosis, but its success partly depends on the restoration of lung homeostasis. Our aim was to evaluate surfactant protein restoration after alveolar Type II cell transplantation in an experimental model of bleomycin-induced lung fibrosis in rats. Methods Lung fibrosis was induced by intratracheal instillation o...

  14. Assessment of alveolar epithelial permeability in Behcet's disease with 99mTc-DTPA aerosol scintigraphy

    International Nuclear Information System (INIS)

    Behcet's disease (BD) is a multisystem disorder characterized by vasculitis, and consists of a triad of recurrent ulcers of the oral and genital mucosa with relapsing uveitis. The prevalance of pulmonary involvement varies in the range of 1-10% in various studies and its complications are severe and life threatening. In this study, we investigated the changes of pulmonary epithelial permeability of patients with BD using technetium-99m diethylene triamine penta-acetic acid (99mTc-DTPA) aerosol scintigraphy, so as to begin the therapy regimen as soon as possible. Twenty-one nonsmoking patients with BD (8 women, 13 men; mean age 38.67±8.86 years) and 15 healthy volunteer nonsmoking controls (8 women, 7 men; mean age 50.87±12.45 years) underwent 99mTc-DTPA aerosol inhalation scintigraphy and pulmonary function tests (PFTs). Subjects inhaled 1480 MBq of 99mTc-DTPA for 4 min in the supine position. Scintigraphic data were recorded dynamically (1 frame/min) in the posterior projection on a 64 x 64 matrix for a 30-min period using a double-headed gamma camera (Infinia, GE, Tirat Hacarmel, Israel) equipped with a low-energy all-purpose parallel hole collimator. Half time of 99mTc-DTPA clearance (T1/2) was calculated by placing a mono-exponential fit on the curves. Penetration index (PI) was also calculated by dividing the peripheral total counts by the sum of the peripheral and central total counts on the first minute image, in order to quantify the distribution of the inhaled aerosol. The clearance half time of 99mTc-DTPA radioaerosols in the BD patients (24.81±6.22 min) was faster than in the normal control group (46.53±22.41 min) (P=0.004). There was also a significant difference between PI of the patients with BD (0.15±0.03) and that of the controls (0.21±0.06) (P=0.002). No correlation was found between the mean T1/2 values of 99mTc-DTPA clearance or the spirometric measurements in the BD patients. Penetration indices were not correlated with PET in the BD

  15. Perivascular epithelial cell tumor (PEComa) of the pancreas: a case report and review of previous literatures.

    Science.gov (United States)

    Mizuuchi, Yusuke; Nishihara, Kazuyoshi; Hayashi, Akifumi; Tamiya, Sadafumi; Toyoshima, Satoshi; Oda, Yoshinao; Nakano, Toru

    2016-12-01

    Perivascular epithelial cell tumors (PEComas), firstly described by Bonetti in 1992, are a family of mesenchymal tumor composed of perivascular epithelioid cells having epithelioid or spindle morphology and exhibiting melanocytic and myogenic immunoreactivities. We herein described a 61-year-old woman who presented with epigastric pain. Preoperative imaging studies showed that 7-cm-sized mass was located in pancreatic head and body, and pancreaticoduodenectomy was performed. Histological findings showed that the tumor was composed of clear epithelioid cells with abundant glycogen granules, which grew in a nested and alveolar pattern around blood vessels. The tumor cells showed immunoreactivities for HMB-45 but did not express epithelial or endocrine markers. These histological features indicated those of PEComa. This report underlines that we should recognize PEComa as a preoperative differential diagnosis of pancreatic tumors. PMID:27307283

  16. Lipid polarity and sorting in epithelial cells

    OpenAIRE

    van Meer, G.; Simons, K.

    1988-01-01

    Apical and basolateral membrane domains of epithelial cell plasma membranes possess unique lipid compositions. The tight junction, the structure separating the two domains, forms a diffusion barrier for membrane components and thereby prevents intermixing of the two sets of lipids. The barrier apparently resides in the outer, exoplasmic leaflet of the plasma membrane bilayer. First data are now available on the generation of these differences in Madin-Darby canine kidney (MDCK) cells, grown o...

  17. Isolation and Culture of Human Alveolar Type II Pneumocytes.

    Science.gov (United States)

    Witherden, I R; Tetley, T D

    2001-01-01

    Alveolar type II pneumocytes (alveolar type II cells; TII cells) play an important role in the homeostasis of the alveolar unit. They are the progenitor cells to the type I pneumocyte and are therefore responsible for regeneration of alveolar epithelium following alveolar epithelial cell damage. The type I cell covers over 90% of the alveolar surface, reflecting its capacity to stretch into a flattened cell with very little depth (approx. 0.1 µm), but with a large surface area, to facilitate gas exchange. Nevertheless, the type II cell outnumbers type I cells, estimated to be by 2:1 in rodents. Most of the type II cell lies buried in the interstitium of the alveolus, with only the apical tip of the cell reaching into the airspace, through which another crucial function, provision of alveolar surfactant, occurs. Surfactant synthesis and secretion is a unique feature of type II cells; surfactant consists of a high proportion of phospholipids (approx. 90%) and a small proportion of protein (approx. 10%), which contains surfactant apoprotein (SP), of which four have so far been described, SP-A, SP-B, SP-C, and SP-D (1,2). Surfactant is highly surface active and is essential to prevent alveolar collapse. In addition, surfactant has many other roles, including pulmonary host defense. Compromised surfactant synthesis and function are believed to be a feature of numerous disease states (1,2), including infant respiratory distress syndrome, adult respiratory distress syndrome, alveolar proteinosis, and microbial infection. PMID:21336897

  18. Epithelial morphogenesis in three-dimensional cell culture system

    OpenAIRE

    Liu, Mengfei; 刘梦菲

    2014-01-01

    In human body, the most common structures formed by epithelial cells are hollow cysts or tubules. The key feature of the cysts and tubules is the central lumen, which is lined by epithelial cell sheets. The central lumen allows material exchange, thus it is indispensable for the proper function of the epithelial tissue. In order to understand the way that the epithelial cells form highly specialized structure, an in vitro three-dimensional (3D) culture system was established. The Caco-2 c...

  19. EDAC: Epithelial defence against cancer-cell competition between normal and transformed epithelial cells in mammals.

    Science.gov (United States)

    Kajita, Mihoko; Fujita, Yasuyuki

    2015-07-01

    During embryonic development or under certain pathological conditions, viable but suboptimal cells are often eliminated from the cellular society through a process termed cell competition. Cell competition was originally identified in Drosophila where cells with different properties compete for survival; 'loser' cells are eliminated from tissues and consequently 'winner' cells become dominant. Recent studies have shown that cell competition also occurs in mammals. While apoptotic cell death is the major fate for losers in Drosophila, outcompeted cells show more variable phenotypes in mammals, such as cell death-independent apical extrusion and cellular senescence. Molecular mechanisms underlying these processes have been recently revealed. Especially, in epithelial tissues, normal cells sense and actively eliminate the neighbouring transformed cells via cytoskeletal proteins by the process named epithelial defence against cancer (EDAC). Here, we introduce this newly emerging research field: cell competition in mammals. PMID:25991731

  20. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway.

    Science.gov (United States)

    Moon, H-G; Cao, Y; Yang, J; Lee, J H; Choi, H S; Jin, Y

    2015-01-01

    Despite decades of research, the pathogenesis of acute respiratory distress syndrome (ARDS) remains poorly understood, thus impeding the development of effective treatment. Diffuse alveolar damage (DAD) and lung epithelial cell death are prominent features of ARDS. Lung epithelial cells are the first line of defense after inhaled stimuli, such as in the case of hyperoxia. We hypothesized that lung epithelial cells release 'messenger' or signaling molecules to adjacent or distant macrophages, thereby initiating or propagating inflammatory responses after noxious insult. We found that, after hyperoxia, a large amount of extracellular vesicles (EVs) were generated and released into bronchoalveolar lavage fluid (BALF). These hyperoxia-induced EVs were mainly derived from live lung epithelial cells as the result of hyperoxia-associated endoplasmic reticulum (ER) stress. These EVs were remarkably different from epithelial 'apoptotic bodies', as reflected by the significantly smaller size and differentially expressed protein markers. These EVs fall mainly in the size range of the exosomes and smaller microvesicles (MVs) (50-120 nm). The commonly featured protein markers of apoptotic bodies were not found in these EVs. Treating alveolar macrophages with hyperoxia-induced, epithelial cell-derived EVs led to an increased secretion of pro-inflammatory cytokines and macrophage inflammatory protein 2 (MIP-2). Robustly increased macrophage and neutrophil influx was found in the lung tissue of the mice intranasally treated with hyperoxia-induced EVs. It was determined that EV-encapsulated caspase-3 was largely responsible for the alveolar macrophage activation via the ROCK1 pathway. Caspase-3-deficient EVs induced less cytokine/MIP-2 release, reduced cell counts in BALF, less neutrophil infiltration and less inflammation in lung parenchyma, both in vitro and in vivo. Furthermore, the serum circulating EVs were increased and mainly derived from lung epithelial cells after

  1. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  2. N-acetyl-L-cysteine inhibits adenoviral E1A-involved transactivation of nuclear factor-κB in rat alveolar epithelial cells%腺病毒E1A蛋白对核因子-κB活化的影响及N-乙酰半胱氨酸的干预作用

    Institute of Scientific and Technical Information of China (English)

    陈娟; 李冰; 冉丕鑫

    2010-01-01

    Objective The relationship between latent adenvorius infection and airway inflammation had not been well documented.The aim of this study was to illustrate the roles of adenovirus E1 A protein on the transactivation of NF-κ inflammatory stimuli and the effect of N-Acetylcysteine (NAC)upon the transactivation of NF-κB and AP-1 in cells stably expressing E1 A protein.Methods Rat alveolar epithelial cells stably expressing adenoviral E1 A or control plasmid were developed.For isolation of nuclear extracts,5×10~5 cells were plated and grown overnight in 60 mm dishes.Experiments were repeated 3 times.The cell model of stably expressing adenoviral E1 A was stimulated by LPS or TNF-aκ and treated with NAC,a precursor for cysteine.The NF-κB and AP-1 transcriptional activity were measured by LUC report system.The expression of NF-κB and AP-1 were measured by Western blot.Differences between groups were assessed for significance by Student't test,and multiple comparisons were made by one-way ANOVA.Results The luciferage activity drived by NF-κB element wag(9 698±98)RLU in untreated E1 A-positive clones and(101 195±234),and(170 385 4±443)RLU in LPS and TNF-α-stimulated cells,which were significantly higher than that of the control group 2 077±107,67 846±332,95 743-1-211 respectively.The luciferage activity drived by AP-1 element wag 9 034±78 RLU in untreated E1 A-positive clones and 26 343 4±398 and 31 731 4±332 RLU in LPS and TNF-α-stimulated cells.which were significantly higher than that of the control group 2 845±93,10 772±432,11 005±556 respectively.The densitometry of the NF-κB expression in E1 A-positive clones were 79.3±4.6 and 80.3±3.8 respectively without treatment and were 81.8 4±3.9-89.9±1.6 and 94.1 4-1.9 to 99.8±1.6 respectively under LPS or TNF-α stimulation,which were significantly higher than that of the control group(68.3±3.8,69.4±4.3 respectively)without stimulation and 70.1 4±2.8 to 80.8±3.6.73.4±4.9 to 83.2 4±6

  3. Arylamine N-acetyltransferase activity in bronchial epithelial cells and its inhibition by cellular oxidants

    International Nuclear Information System (INIS)

    Bronchial epithelial cells express xenobiotic-metabolizing enzymes (XMEs) that are involved in the biotransformation of inhaled toxic compounds. The activities of these XMEs in the lung may modulate respiratory toxicity and have been linked to several diseases of the airways. Arylamine N-acetyltransferases (NAT) are conjugating XMEs that play a key role in the biotransformation of aromatic amine pollutants such as the tobacco-smoke carcinogens 4-aminobiphenyl (4-ABP) and β-naphthylamine (β-NA). We show here that functional human NAT1 or its murine counterpart Nat2 are present in different lung epithelial cells i.e. Clara cells, type II alveolar cells and bronchial epithelial cells, thus indicating that inhaled aromatic amines may undergo NAT-dependent biotransformation in lung epithelium. Exposure of these cells to pathophysiologically relevant amounts of oxidants known to contribute to lung dysfunction, such as H2O2 or peroxynitrite, was found to impair the NAT1/Nat2-dependent cellular biotransformation of aromatic amines. Genetic and non genetic impairment of intracellular NAT enzyme activities has been suggested to compromise the important detoxification pathway of aromatic amine N-acetylation and subsequently to contribute to an exacerbation of untoward effects of these pollutants on health. Our study suggests that oxidative/nitroxidative stress in lung epithelial cells, due to air pollution and/or inflammation, could contribute to local and/or systemic dysfunctions through the alteration of the functions of pulmonary NAT enzymes.

  4. Exogenous surfactant application in a rat lung ischemia reperfusion injury model: effects on edema formation and alveolar type II cells

    Directory of Open Access Journals (Sweden)

    Richter Joachim

    2008-01-01

    Full Text Available Abstract Background Prophylactic exogenous surfactant therapy is a promising way to attenuate the ischemia and reperfusion (I/R injury associated with lung transplantation and thereby to decrease the clinical occurrence of acute lung injury and acute respiratory distress syndrome. However, there is little information on the mode by which exogenous surfactant attenuates I/R injury of the lung. We hypothesized that exogenous surfactant may act by limiting pulmonary edema formation and by enhancing alveolar type II cell and lamellar body preservation. Therefore, we investigated the effect of exogenous surfactant therapy on the formation of pulmonary edema in different lung compartments and on the ultrastructure of the surfactant producing alveolar epithelial type II cells. Methods Rats were randomly assigned to a control, Celsior (CE or Celsior + surfactant (CE+S group (n = 5 each. In both Celsior groups, the lungs were flush-perfused with Celsior and subsequently exposed to 4 h of extracorporeal ischemia at 4°C and 50 min of reperfusion at 37°C. The CE+S group received an intratracheal bolus of a modified natural bovine surfactant at a dosage of 50 mg/kg body weight before flush perfusion. After reperfusion (Celsior groups or immediately after sacrifice (Control, the lungs were fixed by vascular perfusion and processed for light and electron microscopy. Stereology was used to quantify edematous changes as well as alterations of the alveolar epithelial type II cells. Results Surfactant treatment decreased the intraalveolar edema formation (mean (coefficient of variation: CE: 160 mm3 (0.61 vs. CE+S: 4 mm3 (0.75; p 3 (0.90 vs. CE+S: 0 mm3; p 3 (0.39 vs. CE+S: 268 mm3 (0.43; p 3(0.10 and CE+S (481 μm3(0.10 compared with controls (323 μm3(0.07; p Conclusion Intratracheal surfactant application before I/R significantly reduces the intraalveolar edema formation and development of atelectases but leads to an increased development of

  5. Alveolar macrophages regulate neutrophil recruitment in endotoxin-induced lung injury

    Directory of Open Access Journals (Sweden)

    Reyes Livia

    2005-06-01

    Full Text Available Abstract Background Alveolar macrophages play an important role during the development of acute inflammatory lung injury. In the present study, in vivo alveolar macrophage depletion was performed by intratracheal application of dichloromethylene diphosphonate-liposomes in order to study the role of these effector cells in the early endotoxin-induced lung injury. Methods Lipopolysaccharide was applied intratracheally and the inflammatory reaction was assessed 4 hours later. Neutrophil accumulation and expression of inflammatory mediators were determined. To further analyze in vivo observations, in vitro experiments with alveolar epithelial cells and alveolar macrophages were performed. Results A 320% increase of polymorphonuclear leukocytes in bronchoalveolar lavage fluid was observed in macrophage-depleted compared to macrophage-competent lipopolysaccharide-animals. This neutrophil recruitment was also confirmed in the interstitial space. Monocyte chemoattractant protein-1 concentration in bronchoalveolar lavage fluid was significantly increased in the absence of alveolar macrophages. This phenomenon was underlined by in vitro experiments with alveolar epithelial cells and alveolar macrophages. Neutralizing monocyte chemoattractant protein-1 in the airways diminished neutrophil accumulation. Conclusion These data suggest that alveolar macorphages play an important role in early endotoxin-induced lung injury. They prevent neutrophil influx by controlling monocyte chemoattractant protein-1 production through alveolar epithelial cells. Alveolar macrophages might therefore possess robust anti-inflammatory effects.

  6. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Yuka; Hagiwara, Natsumi [Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, 2-1 Gakuen, Sanda 669-1337 Japan (Japan); Radisky, Derek C. [Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32225 (United States); Hirai, Yohei, E-mail: y-hirai@kwansei.ac.jp [Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, 2-1 Gakuen, Sanda 669-1337 Japan (Japan)

    2014-09-10

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells. Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination.

  7. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells. Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination

  8. DNA typing of epithelial cells after strangulation.

    Science.gov (United States)

    Wiegand, P; Kleiber, M

    1997-01-01

    DNA typing was carried out on epithelial cells which were transferred from the hands of the suspect onto the neck of the victim. In an experimental study 16 suspect-victim combinations were investigated for estimating the typing success. Alternatively to an attack against the neck, the upper arm was used for "strangulation". PCR typing was carried out using the short tandem repeat systems (STRs) HumCD4, HumVWF31A (VWA) and Hum-FIBRA (FGA) and the success rate was > 70% for all 3 systems. In most of the cases mixed patterns containing the phenotype of the suspect and the victim were obtained. In a case where strangulation was the cause of death, epithelial cells could be removed from the neck of the victim. The DNA pattern of the suspect could be successfully amplified using four STRs, demonstrating the applicability of this approach for practical casework. PMID:9274940

  9. Alveolar type II cells possess the capability of initiating lung tumor development.

    Directory of Open Access Journals (Sweden)

    Chuwen Lin

    Full Text Available Identifying cells of tumor origin is a fundamental question in tumor biology. Answers to this central question will not only advance our understanding of tumor initiation and progression but also have important therapeutic implications. In this study, we aimed to uncover the cells of origin of lung adenocarcinoma, a major subtype of non-small cell lung cancer. To this end, we developed new mouse models of lung adenocarcinoma that enabled selective manipulation of gene activity in surfactant associated protein C (SPC-expressing cells, including alveolar type II cells and bronchioalveolar stem cells (BASCs that reside at the bronchioalveolar duct junction (BADJ. Our findings showed that activation of oncogenic Kras alone or in combination with the removal of the tumor suppressor p53 in SPC⁺ cells resulted in development of alveolar tumors. Similarly, sustained EGF signaling in SPC⁺ cells led to alveolar tumors. By contrast, BASCs failed to proliferate or produce tumors under these conditions. Importantly, in a mouse strain in which Kras/p53 activity was selectively altered in type II cells but not BASCs, alveolar tumors developed while BADJs retained normal architecture. These results confirm and extend previous findings and support a model in which lung adenocarcinoma can initiate in alveolar type II cells. Our results establish the foundation for elucidating the molecular mechanisms by which lung cancer initiates and progresses in a specific lung cell type.

  10. Transcriptional Landscape of Glomerular Parietal Epithelial Cells

    OpenAIRE

    Gharib, Sina A; Pippin, Jeffrey W.; Takamoto Ohse; Pickering, Scott G.; Krofft, Ronald D.; Shankland, Stuart J.

    2014-01-01

    Very little is known about the function of glomerular parietal epithelial cells (PECs). In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs ...

  11. Intestinal epithelial cells in inflammatory bowel diseases

    Institute of Scientific and Technical Information of China (English)

    Giulia; Roda; Alessandro; Sartini; Elisabetta; Zambon; Andrea; Calafiore; Margherita; Marocchi; Alessandra; Caponi; Andrea; Belluzzi; Enrico; Roda

    2010-01-01

    The pathogenesis of inflammatory bowel diseases (IBDs) seems to involve a primary defect in one or more of the elements responsible for the maintenance of intestinal homeostasis and oral tolerance. The most important element is represented by the intestinal barrier, a complex system formed mostly by intestinal epithelial cells (IECs). IECs have an active role in producing mucus and regulating its composition; they provide a physical barrier capable of controlling antigen traff ic through the intestinal muco...

  12. Paraquat-induced injury of type II alveolar cells. An in vitro model of oxidant injury

    International Nuclear Information System (INIS)

    Paraquat, a widely used herbicide, causes severe, often fatal lung damage. In vivo studies suggest the alveolar epithelial cells (types I and II) are specific targets of paraquat toxicity. This study used 51Cr-labeled type II cells to demonstrate that paraquat (10-5 M) resulted in type II cell injury in vitro, independent of interacting immune effector agents. With 51Cr release expressed as the cytotoxic index (Cl), type II cell injury was found to accelerate with increasing paraquat concentrations (10(-5) M, 10(-4) M, and 10(-3) M, resulting in a Cl of 12.5 +/- 2.2, 22.8 +/- 1.8, and 35.1 +/- 1.9, respectively). Paraquat-induced cytotoxicity (10(-4) M, with a Cl of 22.8 +/- 1.8) was effectively reduced by catalase 1,100 U/ml (Cl 8.0 +/- 3.2, p less than 0.001), superoxide dismutase, 300 U/ml (Cl 17.4 +/- 1.7, p less than 0.05), alpha tocopherol, 10 micrograms/ml (Cl 17.8 +/- 1.6, p less than 0.05). Paraquat toxicity (10(-3) M) was potentiated in the presence of 95% O2 with an increase in Cl from 31.1 +/- 1.7 to 36.4 +/- 2.3 (p less than 0.05). Paraquat-induced type II cell injury was noted as early as 4 h incubation by electron microscopic evidence of swelling of mitochondrial cristae and dispersion of nuclear chromatin. Thus, this in vitro model indicates that paraquat-induced type II cell injury can be quantified, confirmed by morphologic ultrastructural changes, significantly reduced by antioxidants, and potentiated by hyperoxia

  13. Specialized membrane biogenesis in mammary epithelial cells

    International Nuclear Information System (INIS)

    The apical membrane of the mammary gland epithelial cell is highly differentiated and adapted to participate in the process of fat secretion. Certain of the apical membrane differentiation antigens are frequently expressed on membrane carcinoma cells, and knowledge of the normal mechanisms by which these antigens are regulated may have implications for a better understanding of tumor antigen expression. Because the apical membrane of the cell is lost during secretion, active membrane biosynthesis must accompany fat secretion, and the cell represents a good model for studying membrane biogenesis in polarized epithelial cells. Experiments have been carried out using primary cultures of cells established from mammary glands of late pregnant mice and also a mouse cell line, COMMA-1-D, that differentiates in an appropriate milieu. When fat globule membranes are purified from mouse milk and the protein composition analyzed by SDS-polyacrylamide gel electrophoresis, four major proteins are identifiable with molecular weights of 55, 67, 90, and 150 kDa. The 67-kDa component was identified as butyrophilin and the 150-kDa one as xanthine oxidase. In addition, a high molecular weight carbohydrate rich glycoprotein, PAS-O, is also present. 3 refs., 3 figs

  14. Assessment of alveolar epithelial permeability in progressive systemic sclerosis (PSS) using 99mTc-DTPA (diethylene triamine penta acetate) aerosol inhalation

    International Nuclear Information System (INIS)

    To evaluate alveolar epithelial damage in PSS, we studied pulmonary epithelial permeability by measuring the clearance of inhaled 99mTc-DTPA aerosol and performing thin slice CT scan, pulmonary function tests and right heart catheterization in 28 patients with PSS. The 99mTc-DTPA clearance rate (kep value) in PSS was greater than in 11 non-smoking normal subjects (18.2±7.63x10-3/min vs. 9.12±0.77x10-3/min, p2. In contrast, the kep value showed significant correlations with %DLco (diffusing capacity for carbon monoxide), extent of interstitial lesions evaluated by CT scan (CT score), and mean pulmonary artery pressure. On the other hand, the kep value was high in some patients with normal CT scan and normal %DLco. These findings indicate that pulmonary interstitial lesions in PSS are accompanied by alveolar epithelial damage, and that the clearance of 99mTc-DTPA may be an early predictor of interstitial change. (author)

  15. Influenza Virus Infects Epithelial Stem/Progenitor Cells of the Distal Lung: Impact on Fgfr2b-Driven Epithelial Repair

    Science.gov (United States)

    Quantius, Jennifer; Schmoldt, Carole; Vazquez-Armendariz, Ana I.; Becker, Christin; El Agha, Elie; Wilhelm, Jochen; Morty, Rory E.; Vadász, István; Mayer, Konstantin; Gattenloehner, Stefan; Fink, Ludger; Matrosovich, Mikhail; Li, Xiaokun; Seeger, Werner; Lohmeyer, Juergen; Bellusci, Saverio; Herold, Susanne

    2016-01-01

    Influenza Virus (IV) pneumonia is associated with severe damage of the lung epithelium and respiratory failure. Apart from efficient host defense, structural repair of the injured epithelium is crucial for survival of severe pneumonia. The molecular mechanisms underlying stem/progenitor cell mediated regenerative responses are not well characterized. In particular, the impact of IV infection on lung stem cells and their regenerative responses remains elusive. Our study demonstrates that a highly pathogenic IV infects various cell populations in the murine lung, but displays a strong tropism to an epithelial cell subset with high proliferative capacity, defined by the signature EpCamhighCD24lowintegrin(α6)high. This cell fraction expressed the stem cell antigen-1, highly enriched lung stem/progenitor cells previously characterized by the signature integrin(β4)+CD200+, and upregulated the p63/krt5 regeneration program after IV-induced injury. Using 3-dimensional organoid cultures derived from these epithelial stem/progenitor cells (EpiSPC), and in vivo infection models including transgenic mice, we reveal that their expansion, barrier renewal and outcome after IV-induced injury critically depended on Fgfr2b signaling. Importantly, IV infected EpiSPC exhibited severely impaired renewal capacity due to IV-induced blockade of β-catenin-dependent Fgfr2b signaling, evidenced by loss of alveolar tissue repair capacity after intrapulmonary EpiSPC transplantation in vivo. Intratracheal application of exogenous Fgf10, however, resulted in increased engagement of non-infected EpiSPC for tissue regeneration, demonstrated by improved proliferative potential, restoration of alveolar barrier function and increased survival following IV pneumonia. Together, these data suggest that tropism of IV to distal lung stem cell niches represents an important factor of pathogenicity and highlight impaired Fgfr2b signaling as underlying mechanism. Furthermore, increase of alveolar Fgf10

  16. Transcriptional Landscape of Glomerular Parietal Epithelial Cells

    Science.gov (United States)

    Gharib, Sina A.; Pippin, Jeffrey W.; Ohse, Takamoto; Pickering, Scott G.; Krofft, Ronald D.; Shankland, Stuart J.

    2014-01-01

    Very little is known about the function of glomerular parietal epithelial cells (PECs). In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs were highly enriched in PECs, we characterized several of their candidate members at the protein level. Collectively, our findings confirm that PECs are multifaceted cells and help define their diverse functional repertoire. PMID:25127402

  17. Transcriptional landscape of glomerular parietal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sina A Gharib

    Full Text Available Very little is known about the function of glomerular parietal epithelial cells (PECs. In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs were highly enriched in PECs, we characterized several of their candidate members at the protein level. Collectively, our findings confirm that PECs are multifaceted cells and help define their diverse functional repertoire.

  18. Dedifferentiation of committed epithelial cells into stem cells in vivo

    OpenAIRE

    Tata, Purushothama Rao; Mou, Hongmei; Pardo-Saganta, Ana; Zhao, Rui; Prabhu, Mythili; Law, Brandon M.; Vinarsky, Vladimir; Josalyn L Cho; Breton, Sylvie; Sahay, Amar; Medoff, Benjamin D.; Rajagopal, Jayaraj

    2013-01-01

    Summary Cellular plasticity contributes to the regenerative capacity of plants, invertebrates, teleost fishes, and amphibians. In vertebrates, differentiated cells are known to revert into replicating progenitors, but these cells do not persist as stable stem cells. We now present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. Following the ablation of airway stem cells, we observed a surprising increase in the proliferation of c...

  19. Dedifferentiation of committed epithelial cells into stem cells in vivo

    OpenAIRE

    Tata, Purushothama Rao; Mou, Hongmei; Pardo-Saganta, Ana; Zhao, Rui; Prabhu, Mythili; Law, Brandon M.; Vinarsky, Vladimir; Josalyn L Cho; Breton, Sylvie; Sahay, Amar; Medoff, Benjamin D.; Rajagopal, Jayaraj

    2014-01-01

    Summary Cellular plasticity contributes to the regenerative capacity of plants, invertebrates, teleost fishes, and amphibians. In vertebrates, differentiated cells are known to revert into replicating progenitors, but these cells do not persist as stable stem cells. We now present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. Following the ablation of airway stem cells, we observed a surprising increase in the proliferation of c...

  20. Histophilus somni Stimulates Expression of Antiviral Proteins and Inhibits BRSV Replication in Bovine Respiratory Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    C Lin

    Full Text Available Our previous studies showed that bovine respiratory syncytial virus (BRSV followed by Histophilus somni causes more severe bovine respiratory disease and a more permeable alveolar barrier in vitro than either agent alone. However, microarray analysis revealed the treatment of bovine alveolar type 2 (BAT2 epithelial cells with H. somni concentrated culture supernatant (CCS stimulated up-regulation of four antiviral protein genes as compared with BRSV infection or dual treatment. This suggested that inhibition of viral infection, rather than synergy, may occur if the bacterial infection occurred before the viral infection. Viperin (or radical S-adenosyl methionine domain containing 2--RSAD2 and ISG15 (IFN-stimulated gene 15--ubiquitin-like modifier were most up-regulated. CCS dose and time course for up-regulation of viperin protein levels were determined in treated bovine turbinate (BT upper respiratory cells and BAT2 lower respiratory cells by Western blotting. Treatment of BAT2 cells with H. somni culture supernatant before BRSV infection dramatically reduced viral replication as determined by qRT PCR, supporting the hypothesis that the bacterial infection may inhibit viral infection. Studies of the role of the two known H. somni cytotoxins showed that viperin protein expression was induced by endotoxin (lipooligosaccharide but not by IbpA, which mediates alveolar permeability and H. somni invasion. A naturally occurring IbpA negative asymptomatic carrier strain of H. somni (129Pt does not cause BAT2 cell retraction or permeability of alveolar cell monolayers, so lacks virulence in vitro. To investigate initial steps of pathogenesis, we showed that strain 129Pt attached to BT cells and induced a strong viperin response in vitro. Thus colonization of the bovine upper respiratory tract with an asymptomatic carrier strain lacking virulence may decrease viral infection and the subsequent enhancement of bacterial respiratory infection in vivo.

  1. Attachment of Actinomyces naeslundii to human buccal epithelial cells.

    OpenAIRE

    Saunders, J M; MILLER, C. H.

    1980-01-01

    A standardized assay was used to measure the attachment of Actinomyces naeslundii ATCC 12104 to washed human buccal epithelial cells. Treatment of the A. naeslundii cells with hyaluronidases, wheat germ lipase, protease, trypsin, heat, or sonic oscillation significantly reduced their ability to attach to epithelial cells. Treatment of the epithelial cells with the above enzymes did not influence the attachment of A. naeslundii. Extraction of A. naeslundii with NaOH also significantly reduced ...

  2. Growth of cultured porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair;

    2003-01-01

    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  3. A method to measure mechanical properties of pulmonary epithelial cell layers.

    Science.gov (United States)

    Dassow, Constanze; Armbruster, Caroline; Friedrich, Christian; Smudde, Eva; Guttmann, Josef; Schumann, Stefan

    2013-10-01

    The lung has a huge inner alveolar surface composed of epithelial cell layers. The knowledge about mechanical properties of lung epithelia is helpful to understand the complex lung mechanics and biomechanical interactions. Methods have been developed to determine mechanical indices (e.g., tissue elasticity) which are both very complex and in need of costly equipment. Therefore, in this study, a mechanostimulator is presented to dynamically stimulate lung epithelial cell monolayers in order to determine their mechanical properties based on a simple mathematical model. First, the method was evaluated by comparison to classical tensile testing using silicone membranes as substitute for biological tissue. Second, human pulmonary epithelial cells (A549 cell line) were grown on flexible silicone membranes and stretched at a defined magnitude. Equal secant moduli were determined in the mechanostimulator and in a conventional tension testing machine (0.49 ± 0.05 MPa and 0.51 ± 0.03 MPa, respectively). The elasticity of the cell monolayer could be calculated by the volume-pressure relationship resulting from inflation of the membrane-cell construct. The secant modulus of the A549 cell layer was calculated as 0.04 ± 0.008 MPa. These findings suggest that the mechanostimulator may represent an adequate device to determine mechanical properties of cell layers. PMID:23564730

  4. Alterations in the alveolar epithelium after injury leading to pulmonary fibrosis

    OpenAIRE

    Kasper, M; Haroske, G.

    1996-01-01

    This review discusses current knowledge of the involvement of the alveolar epithelium in tissue remodelling during fibrogenesis. The purpose of the present paper is to give an overview, including the authors' own results, of knowledge of ultrastructural alterations, proliferation kinetics and phenotypic changes of pneumocytes in experimental and clinical pathology of pulmonary fibrosis. After lung injury, the alveolar epithelial cells show ultrastructural alter...

  5. Alveolar progenitor and stem cells in lung development, renewal and cancer

    OpenAIRE

    Desai, Tushar J.; Brownfield, Douglas G.; Krasnow, Mark A.

    2014-01-01

    Alveoli are gas-exchange sacs lined by squamous alveolar type (AT) 1 cells and cuboidal, surfactant-secreting AT2 cells. Classical studies suggested AT1 arise from AT2 cells, but recent studies propose other sources. Here we use molecular markers, lineage tracing, and clonal analysis to map alveolar progenitors throughout the mouse lifespan. We show that during development AT1 and AT2 cells arise directly from a bipotent progenitor, whereas after birth new AT1 derive from rare, self-renewing,...

  6. Gene expression profiles of human dendritic cells interacting with Aspergillus fumigatus in a bilayer model of the alveolar epithelium/endothelium interface.

    Directory of Open Access Journals (Sweden)

    Charles Oliver Morton

    Full Text Available The initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium (human lung adenocarcinoma epithelial cell line, A549 and endothelium (human pulmonary artery epithelial cells, HPAEC on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells (DC, monocyte-derived DC (moDC and myeloid DC (mDC, were included in the model to examine immune responses to fungal infection at the alveolar surface. RNA in high quantity and quality was extracted from the cell layers on the transwell membrane to allow gene expression analysis using tailored custom-made microarrays, containing probes for 117 immune-relevant genes. This microarray data indicated minimal induction of immune gene expression in A549 alveolar epithelial cells in response to germ tubes of A. fumigatus. In contrast, the addition of DC to the system greatly increased the number of differentially expressed immune genes. moDC exhibited increased expression of genes including CLEC7A, CD209 and CCL18 in the absence of A. fumigatus compared to mDC. In the presence of A. fumigatus, both DC subgroups exhibited up-regulation of genes identified in previous studies as being associated with the exposure of DC to A. fumigatus and exhibiting chemotactic properties for neutrophils, including CXCL2, CXCL5, CCL20, and IL1B. This model closely approximated the human alveolus allowing for an analysis of the host pathogen interface that complements existing animal models of IA.

  7. Apoptosis of human intestinal epithelial cells after bacterial invasion.

    OpenAIRE

    Kim, J. M.; Eckmann, L; Savidge, T. C.; Lowe, D C; Witthöft, T; Kagnoff, M F

    1998-01-01

    Epithelial cells that line the human intestinal mucosa are the initial site of host invasion by bacterial pathogens. The studies herein define apoptosis as a new category of intestinal epithelial cell response to bacterial infection. Human colon epithelial cells are shown to undergo apoptosis following infection with invasive enteric pathogens, such as Salmonella or enteroinvasive Escherichia coli. In contrast to the rapid onset of apoptosis seen after bacterial infection of mouse monocyte-ma...

  8. Porphyromonas gingivalis Fimbriae Bind to Cytokeratin of Epithelial Cells

    OpenAIRE

    Sojar, Hakimuddin T.; Sharma, Ashu; Genco, Robert J.

    2002-01-01

    The adherence of Porphyromonas gingivalis to host cells is likely a prerequisite step in the pathogenesis of P. gingivalis-induced periodontal disease. P. gingivalis binds to and invades epithelial cells, and fimbriae are shown to be involved in this process. Little is known regarding epithelial receptor(s) involved in binding of P. gingivalis fimbriae. Using an overlay assay with purified P. gingivalis fimbriae as a probe, two major epithelial cell proteins with masses of 50 and 40 kDa were ...

  9. Effect of exogenous surfactants on viability and DNA synthesis in A549, immortalized mouse type II and isolated rat alveolar type II cells

    Directory of Open Access Journals (Sweden)

    Haller Thomas

    2011-02-01

    Full Text Available Abstract Background In mechanically ventilated preterm infants with respiratory distress syndrome (RDS, exogenous surfactant application has been demonstrated both to decrease DNA-synthesis but also and paradoxically to increase epithelial cell proliferation. However, the effect of exogenous surfactant has not been studied directly on alveolar type II cells (ATII cells, a key cell type responsible for alveolar function and repair. Objective The aim of this study was to investigate the effects of two commercially available surfactant preparations on ATII cell viability and DNA synthesis. Methods Curosurf® and Alveofact® were applied to two ATII cell lines (human A549 and mouse iMATII cells and to primary rat ATII cells for periods of up to 24 h. Cell viability was measured using the redox indicator resazurin and DNA synthesis was measured using BrdU incorporation. Results Curosurf® resulted in slightly decreased cell viability in all cell culture models. However, DNA synthesis was increased in A549 and rat ATII cells but decreased in iMATII cells. Alveofact® exhibited the opposite effects on A549 cells and had very mild effects on the other two cell models. Conclusion This study showed that commercially available exogenous surfactants used to treat preterm infants with RDS can have profound effects on cell viability and DNA synthesis.

  10. Apoptosis of Alveolar Wall Cells in Chronic Obstructive Pulmonary Disease Patients with Pulmonary Emphysema Is Involved in Emphysematous Changes

    Institute of Scientific and Technical Information of China (English)

    Hongmei LIU; Lijun MA; Jizhen WU; Kai WANG; Xianliang CHEN

    2009-01-01

    s of alveolar wall cells, espe-cially apoptosis of type-Ⅱ cells, may take part in the pathogenesis of emphysema. Up-regulation of Bax expression may be responsible for the apoptosis of alveolar wall cells in the COPD patients with pulmonary emphysema.

  11. Eosinophils Promote Epithelial to Mesenchymal Transition of Bronchial Epithelial Cells

    OpenAIRE

    Yasukawa, Atsushi; Hosoki, Koa; Toda, Masaaki; Miyake, Yasushi; Matsushima, Yuki; Matsumoto, Takahiro; Boveda-Ruiz, Daniel; Gil-Bernabe, Paloma; Nagao, Mizuho; Sugimoto, Mayumi; Hiraguchi, Yukiko; Tokuda, Reiko; Naito, Masahiro; Takagi, Takehiro; D'Alessandro-Gabazza, Corina N.

    2013-01-01

    Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT) plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was a...

  12. The First Case of Pulmonary Alveolar Proteinosis With Small Cell Lung Carcinoma.

    Science.gov (United States)

    Hiraki, Tsubasa; Goto, Yuko; Kitazono, Ikumi; Tasaki, Takashi; Higashi, Michiyo; Hatanaka, Kazuhito; Tanimoto, Akihide

    2016-04-01

    Pulmonary alveolar proteinosis (PAP) is a rare pulmonary disease characterized by alveolar accumulation of surfactant lipids and proteins. It is usually autoimmune and secondary to hematologic malignancy or infection. To date, only 5 case reports of PAP associated with lung cancers, including 2 cases of squamous cell carcinoma and 3 cases of adenocarcinoma, have been published. To the best of our knowledge, no case of PAP with small cell lung carcinoma has been reported thus far. We herein report the first case of PAP associated with small cell lung carcinoma. PMID:26519525

  13. Alveolar development and disease.

    Science.gov (United States)

    Whitsett, Jeffrey A; Weaver, Timothy E

    2015-07-01

    Gas exchange after birth is entirely dependent on the remarkable architecture of the alveolus, its formation and function being mediated by the interactions of numerous cell types whose precise positions and activities are controlled by a diversity of signaling and transcriptional networks. In the later stages of gestation, alveolar epithelial cells lining the peripheral lung saccules produce increasing amounts of surfactant lipids and proteins that are secreted into the airspaces at birth. The lack of lung maturation and the associated lack of pulmonary surfactant in preterm infants causes respiratory distress syndrome, a common cause of morbidity and mortality associated with premature birth. At the time of birth, surfactant homeostasis begins to be established by balanced processes involved in surfactant production, storage, secretion, recycling, and catabolism. Insights from physiology and engineering made in the 20th century enabled survival of newborn infants requiring mechanical ventilation for the first time. Thereafter, advances in biochemistry, biophysics, and molecular biology led to an understanding of the pulmonary surfactant system that made possible exogenous surfactant replacement for the treatment of preterm infants. Identification of surfactant proteins, cloning of the genes encoding them, and elucidation of their roles in the regulation of surfactant synthesis, structure, and function have provided increasing understanding of alveolar homeostasis in health and disease. This Perspective seeks to consider developmental aspects of the pulmonary surfactant system and its importance in the pathogenesis of acute and chronic lung diseases related to alveolar homeostasis. PMID:25932959

  14. Mechanical strain of alveolar type II cells in culture: changes in the transcellular cytokeratin network and adaptations.

    Science.gov (United States)

    Felder, Edward; Siebenbrunner, Marcus; Busch, Tobias; Fois, Giorgio; Miklavc, Pika; Walther, Paul; Dietl, Paul

    2008-11-01

    Mechanical forces exert multiple effects in cells, ranging from altered protein expression patterns to cell damage and death. Despite undisputable biological importance, little is known about structural changes in cells subjected to strain ex vivo. Here, we undertake the first transmission electron microscopy investigation combined with fluorescence imaging on pulmonary alveolar type II cells that are subjected to equibiaxial strain. When cells are investigated immediately after stretch, we demonstrate that curved cytokeratin (CK) fibers are straightened out at 10% increase in cell surface area (CSA) and that this is accompanied by a widened extracellular gap of desmosomes-the insertion points of CK fibers. Surprisingly, a CSA increase by 20% led to higher fiber curvatures of CK fibers and a concurrent return of the desmosomal gap to normal values. Since 20% CSA increase also induced a significant phosphorylation of CK8-ser431, we suggest CK phosphorylation might lower the tensile force of the transcellular CK network, which could explain the morphological observations. Stretch durations of 5 min caused membrane injury in up to 24% of the cells stretched by 30%, but the CK network remained surprisingly intact even in dead cells. We conclude that CK and desmosomes constitute a strong transcellular scaffold that survives cell death and hypothesize that phosphorylation of CK fibers is a mechano-induced adaptive mechanism to maintain epithelial overall integrity. PMID:18708634

  15. Nuclear microscopy of rat colon epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, M., E-mail: phyrenmq@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Rajendran, Reshmi [Lab of Molecular Imaging, Singapore Bioimaging Consotium, 11 Biopolis Way, 02-02 Helios, Singapore 138667 (Singapore); Ng, Mary [Department of Pharmacology, National University of Singapore (Singapore); Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Jenner, Andrew Michael [Illawara Health and Medical Research Institute (IHMRI), University of Wollongong, NSW 2522 (Australia)

    2011-10-15

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  16. Nuclear microscopy of rat colon epithelial cells

    Science.gov (United States)

    Ren, M.; Rajendran, Reshmi; Ng, Mary; Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank; Jenner, Andrew Michael

    2011-10-01

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  17. Capsaicinoids cause inflammation and epithelial cell death through activation of vanilloid receptors.

    Science.gov (United States)

    Reilly, Christopher A; Taylor, Jack L; Lanza, Diane L; Carr, Brian A; Crouch, Dennis J; Yost, Garold S

    2003-05-01

    Capsaicinoids, found in less-than-lethal self-defense weapons, have been associated with respiratory failure and death in exposed animals and people. The studies described herein provide evidence for acute respiratory inflammation and damage to epithelial cells in experimental animals, and provide precise molecular mechanisms that mediate these effects using human bronchiolar and alveolar epithelial cells. Inhalation exposure of rats to pepper sprays (capsaicinoids) produced acute inflammation and damage to nasal, tracheal, bronchiolar, and alveolar cells in a dose-related manner. In vitro cytotoxicity assays demonstrated that cultured human lung cells (BEAS-2B and A549) were more susceptible to necrotic cell death than liver (HepG2) cells. Transcription of the human vanilloid receptor type-1, VR1 or TRPV1, was demonstrated by RT-PCR in all of these cells, and the relative transcript levels were correlated to cellular susceptibility. TRPV1 receptor activation was presumably responsible for cellular cytotoxicity, but prototypical functional antagonists of this receptor were cytotoxic themselves, and did not ameliorate capsaicinoid-induced damage. Conversely, the TRPV1 antagonist capsazepine, as well as calcium chelation by EGTA ablated cytokine (IL-6) production after capsaicin exposure. To address these seemingly contradictory results, recombinant human TRPV1 was cloned and overexpressed in BEAS-2B cells. These cells exhibited dramatically increased cellular susceptibility to capsaicinoids, measured using IL-6 production and cytotoxicity, and an apoptotic mechanism of cell death. Surprisingly, the cytotoxic effects of capsaicin in TRPV1 overexpressing cells were also not inhibited by TRPV1 antagonists or by treatments that modified extracellular calcium. Thus, capsaicin interacted with TRPV1 expressed by BEAS-2B and other airway epithelial cells to cause the calcium-dependent production of cytokines and, conversely, calcium-independent cell death. These results

  18. Bulky PAH-DNA induced by exposure of a co-culture model of human alveolar macrophages and embryonic epithelial cells to atmospheric particulate pollution; Adduits encombrants a l'ADN dans des cocultures de cellules pulmonaires humaines exposees a une pollution atmospherique particulaire

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Imane; Garcon, Guillaume; Billet, Sylvain; Shirali, Pirouz [Universite Lille Nord de France - Lille (France); Unite de Chimie Environnementale et Interactions sur le Vivant, MREI, Universite du Littoral Cote d' Opale, Dunkerque (France); Andre, Veronique; Le Goff, Jeremie; Sichel, Francois [GRECAN, Universite de Caen Basse-Normandie et centre Francois Baclesse, Caen (France); Roy Saint-Georges, Francoise; Mulliez, Philippe [Service de Pneumologie, Hopital Saint-Philibert, GHICL, Lille (France)

    2012-01-15

    Because of their deep penetration in human lungs, fine airborne particulate matter were described as mainly responsible for the deleterious effects of exposure to air pollution on health. Organic constituents are adsorbed on particles surface and, after inhalation, some (polycyclic aromatic hydrocarbons, PAHs) can be activated into reactive metabolites and can bind to DNA. The formation of bulky DNA adducts has been researched after exposure of mono-and co-cultures of alveolar macrophages (AM) and human embryonic human lung epithelial (L132), to fine air pollution particulate matter Air samples have been collected with cascade impactor and characterized: size distribution (92.15% < 2.5{mu}.m), specific surface area (1 m{sup 2}/g), inorganic (Fe, AI, Ca, Na, K, Mg, Pb, etc.) and organic compounds (PAHs, etc.). {sup 32}P post-labeling method was applied to detect bulky DNA adducts in AM and L132, in mono-and co-cultures, 72 h after their exposure to atmospheric particles at their Lethals and Effects concentrations or (LC or CE) to 50% (i.e. MA: EC{sub 50} = 74.63 {mu}g/mL and L132: LC-5-0 = 75.36 {mu}g/mL). Exposure to desorbed particles (MA: C1= 61.11 {mu}g/mL and L132 : C2 = 61.71 {mu}g/mL) and B[a]P (1 {mu}M) were included. Bulky PAH-DNA adducts were detected in AM in mono-culture after exposure to total particles (Pt), to B[a]P and desorbed particles (Pd). Whatever the exposure, no DNA adduct was detected in L132 in mono-culture. These results are coherent with the enzymatic activities of cytochrome P450 l Al in AM and L132. Exposure of co-culture to Pt, or Pd induced bulky adducts to DNA in AM but not in L132. Exposure to B[a]P alone has altered the DNA of AM and L132, in co-culture. Exposure to Pt is closer to the environmental conditions, but conferred an exposure to amounts of genotoxic agents compared to studies using organic extracts. The formation of bulky DNA adducts was nevertheless observed in AM exposed to Pt, in mono- or co-culture, indicating that

  19. Computational investigation of epithelial cell dynamic phenotype in vitro

    OpenAIRE

    Debnath Jayanta; Mostov Keith; Park Sunwoo; Kim Sean HJ; Hunt C Anthony

    2009-01-01

    Abstract Background When grown in three-dimensional (3D) cultures, epithelial cells typically form cystic organoids that recapitulate cardinal features of in vivo epithelial structures. Characterizing essential cell actions and their roles, which constitute the system's dynamic phenotype, is critical to gaining deeper insight into the cystogenesis phenomena. Methods Starting with an earlier in silico epithelial analogue (ISEA1) that validated for several Madin-Darby canine kidney (MDCK) epith...

  20. Modeling pulmonary alveolar microlithiasis by epithelial deletion of the Npt2b sodium phosphate cotransporter reveals putative biomarkers and strategies for treatment.

    Science.gov (United States)

    Saito, Atsushi; Nikolaidis, Nikolaos M; Amlal, Hassane; Uehara, Yasuaki; Gardner, Jason C; LaSance, Kathleen; Pitstick, Lori B; Bridges, James P; Wikenheiser-Brokamp, Kathryn A; McGraw, Dennis W; Woods, Jason C; Sabbagh, Yves; Schiavi, Susan C; Altinişik, Göksel; Jakopović, Marko; Inoue, Yoshikazu; McCormack, Francis X

    2015-11-11

    Pulmonary alveolar microlithiasis (PAM) is a rare, autosomal recessive lung disorder associated with progressive accumulation of calcium phosphate microliths. Inactivating mutations in SLC34A2, which encodes the NPT2b sodium-dependent phosphate cotransporter, has been proposed as a cause of PAM. We show that epithelial deletion of Npt2b in mice results in a progressive pulmonary process characterized by diffuse alveolar microlith accumulation, radiographic opacification, restrictive physiology, inflammation, fibrosis, and an unexpected alveolar phospholipidosis. Cytokine and surfactant protein elevations in the alveolar lavage and serum of PAM mice and confirmed in serum from PAM patients identify serum MCP-1 (monocyte chemotactic protein 1) and SP-D (surfactant protein D) as potential biomarkers. Microliths introduced by adoptive transfer into the lungs of wild-type mice produce marked macrophage-rich inflammation and elevation of serum MCP-1 that peaks at 1 week and resolves at 1 month, concomitant with clearance of stones. Microliths isolated by bronchoalveolar lavage readily dissolve in EDTA, and therapeutic whole-lung EDTA lavage reduces the burden of stones in the lungs. A low-phosphate diet prevents microlith formation in young animals and reduces lung injury on the basis of reduction in serum SP-D. The burden of pulmonary calcium deposits in established PAM is also diminished within 4 weeks by a low-phosphate diet challenge. These data support a causative role for Npt2b in the pathogenesis of PAM and the use of the PAM mouse model as a preclinical platform for the development of biomarkers and therapeutic strategies. PMID:26560359

  1. Documentation of angiotensin II receptors in glomerular epithelial cells

    Science.gov (United States)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial

  2. Human lung epithelial cells contain Mycobacterium tuberculosis in a late endosomal vacuole and are efficiently recognized by CD8⁺ T cells.

    Directory of Open Access Journals (Sweden)

    Melanie J Harriff

    Full Text Available Mycobacterium tuberculosis (Mtb is transmitted via inhalation of aerosolized particles. While alveolar macrophages are thought to play a central role in the acquisition and control of this infection, Mtb also has ample opportunity to interact with the airway epithelium. In this regard, we have recently shown that the upper airways are enriched with a population of non-classical, MR1-restricted, Mtb-reactive CD8⁺ T cells (MAIT cells. Additionally, we have demonstrated that Mtb-infected epithelial cells lining the upper airways are capable of stimulating IFNγ production by MAIT cells. In this study, we demonstrate that airway epithelial cells efficiently stimulate IFNγ release by MAIT cells as well as HLA-B45 and HLA-E restricted T cell clones. Characterization of the intracellular localization of Mtb in epithelial cells indicates that the vacuole occupied by Mtb in epithelial cells is distinct from DC in that it acquires Rab7 molecules and does not retain markers of early endosomes such as Rab5. The Mtb vacuole is also heterogeneous as there is a varying degree of association with Lamp1 and HLA-I. Although the Mtb vacuole shares markers associated with the late endosome, it does not acidify, and the bacteria are able to replicate within the cell. This work demonstrates that Mtb infected lung epithelial cells are surprisingly efficient at stimulating IFNγ release by CD8⁺ T cells.

  3. Human epithelial cells exposed to functionalized multiwalled carbon nanotubes: interactions and cell surface modifications.

    Science.gov (United States)

    Fanizza, C; Casciardi, S; Incoronato, F; Cavallo, D; Ursini, C L; Ciervo, A; Maiello, R; Fresegna, A M; Marcelloni, A M; Lega, D; Alvino, A; Baiguera, S

    2015-09-01

    With the expansion of the production and applications of multiwalled carbon nanotubes (MWCNTs) in several industrial and science branches, the potential adverse effects on human health have attracted attention. Numerous studies have been conducted to evaluate how chemical functionalization may affect MWCNT effects; however, controversial data have been reported, showing either increased or reduced toxicity. In particular, the impact of carboxylation on MWCNT cytotoxicity is far from being completely understood. The aim of this work was the evaluation of the modifications induced by carboxylated-MWCNTs (MWCNTs-COOH) on cell surface and the study of cell-MWCNT-COOH interactions by means of field emission scanning electron microscope (FESEM). Human pulmonary epithelial cells (A549) were incubated with MWCNTs-COOH for different exposure times and concentrations (10 μg/mL for 1, 2, 4 h; 5, 10, 20 μg/mL for 24 h). At short incubation time, MWCNTs-COOH were easily observed associated with plasma membrane and in contact with microvilli. After 24 h exposure, FESEM analysis revealed that MWCNTs-COOH induced evident changes in the cellular surface in comparison to control cells: treated cells showed blebs, holes and a depletion of the microvilli density in association with structure modifications, such as widening and/or lengthening. In particular, an increase of cells showing holes and microvilli structure alterations was observed at 20 μg/mL concentration. FESEM analysis showed nanotube agglomerates, of different sizes, entering into the cell with two different mechanisms: inward bending of the membrane followed by nanotube sinking, and nanotube internalization directly through holes. The observed morphological microvilli modifications, induced by MWCNTs-COOH, could affect epithelial functions, such as the control of surfactant production and secretion, leading to pathological conditions, such as alveolar proteinosis. More detailed studies will be, however, necessary to

  4. Multipotent Capacity of Immortalized Human Bronchial Epithelial Cells

    OpenAIRE

    Delgado, Oliver; Kaisani, Aadil A.; Spinola, Monica; Xie, Xian-Jin; Batten, Kimberly G.; Minna, John D.; Wright, Woodring E; Shay, Jerry W.

    2011-01-01

    While the adult murine lung utilizes multiple compartmentally restricted progenitor cells during homeostasis and repair, much less is known about the progenitor cells from the human lung. Translating the murine stem cell model to humans is hindered by anatomical differences between species. Here we show that human bronchial epithelial cells (HBECs) display characteristics of multipotent stem cells of the lung. These HBECs express markers indicative of several epithelial types of the adult lun...

  5. Hypoxia-Inducible Factor Regulates Expression of Surfactant Protein in Alveolar Type II Cells In Vitro

    OpenAIRE

    Ito, Yoko; Ahmad, Aftab; Kewley, Emily; Mason, Robert J

    2011-01-01

    Alveolar type II (ATII) cells cultured at an air–liquid (A/L) interface maintain differentiation, but they lose these properties when they are submerged. Others showed that an oxygen tension gradient develops in the culture medium as ATII cells consume oxygen. Therefore, we wondered whether hypoxia inducible factor (HIF) signaling could explain differences in the phenotypes of ATII cells cultured under A/L interface or submerged conditions. ATII cells were isolated from male Sprague-Dawley ra...

  6. The Preliminary Experimental Study of Induced Differentiation of Embryonic Stem Cells into Corneal Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Ling Yu; Jian Ge; Zhichong Wang; Bing Huang; Keming Yu; Chongde Long; Xigu Chen

    2001-01-01

    Purpose:To study preliminarily induced differentiation of embryonic stem cells intocorneal epithelial cells in vitro.Methods: Murine embryonic stem cells were co-cultured with Rabbit limbal cornealepithelial cells in Transwell system to induce differentiation. Mophological andimmunohistochemical examination were implemented.Results: The induced cells from embryonic stem cells have an epithelial appearance.The cells formed a network and were confluent into film gradually after beingco-cultured with rabbit limbal corneal epithelial cells for 24 ~ 96 hours. The cells rangedmosaic structure and localized together with clear rim. Most of the cells showedpolygonal appearance. Transmission electron microscope showed lots of microvilli on thesurface of induced cells and tight junctions between them. These epithelial-like cellsexpressed the corneal epithelial cell specific marker cytokeratin3/cytokeratinl2.Conclusion: The potential mechanism of the differentiation of murine embryonic stemcells into corneal epithelial cells induced by limbal corneal epithelial cell-derivedinducing activity is to be further verified.

  7. Dissociation of DNA damage and mitochondrial injury caused by hydrogen peroxide in SV-40 transformed lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Adcock Ian M

    2002-11-01

    Full Text Available Abstract Background Since lung epithelial cells are constantly being exposed to reactive oxygen intermediates (ROIs, the alveolar surface is a major site of oxidative stress, and each cell type may respond differently to oxidative stress. We compared the extent of oxidative DNA damage with that of mitochondrial injury in lung epithelial cells at the single cell level. Result DNA damage and mitochondrial injury were measured after oxidative stress in the SV-40 transformed lung epithelial cell line challenged with hydrogen peroxide (H2O2. Single cell analysis of DNA damage was determined by assessing the number of 8-oxo-2-deoxyguanosine (8-oxo-dG positive cells, a marker of DNA modification, and the length of a comet tail. Mitochondrial membrane potential, ΔΨm, was determined using JC-1. A 1 h pulse of H2O2 induced small amounts of apoptosis (3%. 8-oxo-dG-positive cells and the length of the comet tail increased within 1 h of exposure to H2O2. The number of cells with reduced ΔΨm increased after the addition of H2O2 in a concentration-dependent manner. In spite of a continual loss of ΔΨm, DNA fragmentation was reduced 2 h after exposure to H2O2. Conclusion The data suggest that SV-40 transformed lung epithelial cells are resistant to oxidative stress, showing that DNA damage can be dissociated from mitochondrial injury.

  8. Transplantation of retinal pigment epithelial cells - a possible future treatment for age-related macular degeneration

    DEFF Research Database (Denmark)

    Wiencke, Anne Katrine

    2001-01-01

    ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment......ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment...

  9. Transplantation of retinal pigment epithelial cells - a possible future treatment for age-related macular degeneration

    DEFF Research Database (Denmark)

    Wiencke, Anne Katrine

    2001-01-01

    ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment......ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment...

  10. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  11. Airway Delivery of Mesenchymal Stem Cells Prevents Arrested Alveolar Growth in Neonatal Lung Injury in Rats

    OpenAIRE

    van Haaften, Timothy; Byrne, Roisin; Bonnet, Sebastien; Rochefort, Gael Y.; Akabutu, John; Bouchentouf, Manaf; Rey-Parra, Gloria J.; Galipeau, Jacques; Haromy, Alois; Eaton, Farah; Chen, Ming; Hashimoto, Kyoko; Abley, Doris; Korbutt, Greg; Archer, Stephen L.

    2009-01-01

    Rationale: Bronchopulmonary dysplasia (BPD) and emphysema are characterized by arrested alveolar development or loss of alveoli; both are significant global health problems and currently lack effective therapy. Bone marrow–derived mesenchymal stem cells (BMSCs) prevent adult lung injury, but their therapeutic potential in neonatal lung disease is unknown.

  12. A non-BRICHOS surfactant protein c mutation disrupts epithelial cell function and intercellular signaling

    Directory of Open Access Journals (Sweden)

    Beers Michael F

    2010-11-01

    Full Text Available Abstract Background Heterozygous mutations of SFTPC, the gene encoding surfactant protein C (SP-C, cause sporadic and familial interstitial lung disease (ILD in children and adults. The most frequent SFTPC mutation in ILD patients leads to a threonine for isoleucine substitution at position 73 (I73T of the SP-C preprotein (proSP-C, however little is known about the cellular consequences of SP-CI73T expression. Results To address this, we stably expressed SP-CI73T in cultured MLE-12 alveolar epithelial cells. This resulted in increased intracellular accumulation of proSP-C processing intermediates, which matched proSP-C species recovered in bronchial lavage fluid from patients with this mutation. Exposure of SP-CI73T cells to drugs currently used empirically in ILD therapy, cyclophosphamide, azathioprine, hydroxychloroquine or methylprednisolone, enhanced expression of the chaperones HSP90, HSP70, calreticulin and calnexin. SP-CI73T mutants had decreased intracellular phosphatidylcholine level (PC and increased lyso-PC level without appreciable changes of other phospholipids. Treatment with methylprednisolone or hydroxychloroquine partially restored these lipid alterations. Furthermore, SP-CI73T cells secreted into the medium soluble factors that modulated surface expression of CCR2 or CXCR1 receptors on CD4+ lymphocytes and neutrophils, suggesting a direct paracrine influence of SP-CI73T on neighboring cells in the alveolar space. Conclusion We show that I73T mutation leads to impaired processing of proSP-C in alveolar type II cells, alters their stress tolerance and surfactant lipid composition, and activates cells of the immune system. In addition, we show that some of the mentioned cellular aspects behind the disease can be modulated by application of pharmaceutical drugs commonly applied in the ILD therapy.

  13. Epithelial cells as alternative human biomatrices for comet assay

    OpenAIRE

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many org...

  14. Adrenomedullin Expression by Gastric Epithelial Cells in Response to Infection

    OpenAIRE

    Robert P. Allaker; Kapas, Supriya

    2003-01-01

    Many surface epithelial cells express adrenomedullin, a multifunctional peptide found in a wide number of body and cell systems. Recently, we and others have proposed that adrenomedullin has an important novel role in host defense. This peptide has many properties in common with other cationic antimicrobial peptides, including the human β-defensins. Upon exposure of human gastric epithelial cells to viable cells of invasive or noninvasive strains of Helicobacter pylori, Escherichia coli, Salm...

  15. Ciliated epithelial cell lifespan in the mouse trachea and lung

    OpenAIRE

    Rawlins, Emma L.; Brigid L M Hogan

    2008-01-01

    The steady-state turnover of epithelial cells in the lung and trachea is highly relevant to investigators who are studying endogenous stem cells, manipulating gene expression in vivo, or using viral vectors for gene therapy. However, the average lifetime of different airway epithelial cell types has not previously been assessed using currently available genetic techniques. Here, we use Cre/loxP genetic technology to indelibly label a random fraction of ciliated cells throughout the airways of...

  16. Case Report: Multifocal biphasic squamoid alveolar renal cell carcinoma [version 1; referees: 2 approved, 1 approved with reservations

    OpenAIRE

    Jose Ignacio Lopez

    2016-01-01

    A multifocal biphasic squamoid alveolar renal cell carcinoma in a 68-year-old man is reported. Four different peripheral tumor nodules were identified on gross examination. A fifth central tumor corresponded to a conventional clear cell renal cell carcinoma. Biphasic squamoid alveolar renal cell carcinoma is a rare tumor that has been very recently characterized as a distinct histotype within the spectrum of papillary renal cell carcinoma. Immunostaining with cyclin D1 seems to be specific of...

  17. Role of alveolar type II cells and of surfactant-associated protein C mRNA levels in the pathogenesis of respiratory distress in mink kits infected with Aleutian mink disease parvovirus.

    OpenAIRE

    Viuff, B; Aasted, B; Alexandersen, S.

    1994-01-01

    Neonatal mink kits infected with Aleutian mink disease parvovirus (ADV) develop an acute interstitial pneumonia with clinical symptoms and pathological lesions that resemble those seen in preterm human infants with respiratory distress syndrome and in human adults with adult respiratory distress syndrome. We have previously suggested that ADV replicates in the alveolar type II epithelial cells of the lung. By using double in situ hybridization, with the simultaneous use of a probe to detect A...

  18. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yuan Liu; Yueling Zhang; Zhaohui Gu; Lina Hao; Juan Du; Qian Yang; Suping Li; Liying Wang; Shilei Gong

    2014-01-01

    Although cholecystokinin octapeptide-8 is important for neurological function, its neuropro-tective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epi-thelial cells against apoptosis induced by peroxynitrite.

  19. Adenosine regulation of alveolar fluid clearance

    OpenAIRE

    Factor, Phillip; Mutlu, Göskhan M.; Chen, Lan; Mohameed, Jameel; Akhmedov, Alexander T.; Meng, Fan Jing; Jilling, Tamas; Lewis, Erin Rachel; Johnson, Meshell D.; Xu, Anna; Kass, Daniel; Martino, Janice M.; Bellmeyer, Amy; Albazi, John S.; Emala, Charles

    2007-01-01

    Adenosine is a purine nucleoside that regulates cell function through G protein-coupled receptors that activate or inhibit adenylyl cyclase. Based on the understanding that cAMP regulates alveolar epithelial active Na+ transport, we hypothesized that adenosine and its receptors have the potential to regulate alveolar ion transport and airspace fluid content. Herein, we report that type 1 (A1R), 2a (A2aR), 2b (A2bR), and 3 (A3R) adenosine receptors are present in rat and mouse lungs and alveol...

  20. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    NARCIS (Netherlands)

    P. Aparicio-Domingo (Patricia); M. Romera-Hernandez (Monica); J.J. Karrich (Julien J.); F.H.J. Cornelissen (Ferry); N. Papazian (Natalie); D.J. Lindenbergh-Kortleve (Dicky); J.A. Butler (James A.); L. Boon (Louis); M. Coles (Mark); J.N. Samsom (Janneke); T. Cupedo (Tom)

    2015-01-01

    textabstractDisruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence

  1. Therapeutic effect of lung mixed culture-derived epithelial cells on lung fibrosis.

    Science.gov (United States)

    Tanaka, Kensuke; Fujita, Tetsuo; Umezawa, Hiroki; Namiki, Kana; Yoshioka, Kento; Hagihara, Masahiko; Sudo, Tatsuhiko; Kimura, Sadao; Tatsumi, Koichiro; Kasuya, Yoshitoshi

    2014-11-01

    Cell-based therapy is recognized as one of potential therapeutic options for lung fibrosis. However, preparing stem/progenitor cells is complicated and not always efficient. Here, we show easily prepared cell populations having therapeutic capacity for lung inflammatory disease that are named as 'lung mixed culture-derived epithelial cells' (LMDECs). LMDECs expressed surfactant protein (SP)-C and gave rise to type I alveolar epithelial cells (AECs) in vitro and in vivo that partly satisfied type II AEC-like characteristics. An intratracheal delivery of not HEK 293 cells but LMDECs to the lung ameliorated bleomycin (BLM)-induced lung injury. A comprehensive analysis of bronchoalveolar fluid by western blot array revealed that LMDEC engraftment could improve the microenvironment in the BLM-instilled lung in association with stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 signaling axis. SDF-1 enhanced both migration activity and differentiating efficiency of LMDECs. Further classification of LMDECs by flow cytometric study showed that a major population of LMDECs (LMDEC(Maj), 84% of total LMDECs) was simultaneously SP-C(+), CD44(+), CD45(+), and hematopoietic cell lineage(+) and that LMDECs included bronchioalveolar stem cells (BASCs) showing SP-C(+)Clara cell secretory protein(+)stem cell antigen (Sca)1(+) as a small population (1.8% of total LMDECs). CD44(+)-sorted LMDEC(Maj) and Sca1(+)-sorted LMDECs equally ameliorated fibrosis induced by BLM like LMDECs did. However, infiltrated neutrophils were observed in Sca1(+)-sorted LMDEC-treated alveoli that was not typical in LMDEC(Maj)- or LMDEC-treated alveoli. These findings suggest that the protective effect of LMDECs against BLM-induced lung injury depends greatly on that of LMDEC(Maj). Furthermore, the cells expressing both alveolar epithelial and hematopoietic cell lineage markers (SP-C(+)CD45(+)) that have characteristics corresponding to LMDEC(Maj) were observed in the alveoli of lung and

  2. Gremlin Activates the Smad Pathway Linked to Epithelial Mesenchymal Transdifferentiation in Cultured Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Raquel Rodrigues-Diez

    2014-01-01

    Full Text Available Gremlin is a developmental gene upregulated in human chronic kidney disease and in renal cells in response to transforming growth factor-β (TGF-β. Epithelial mesenchymal transition (EMT is one process involved in renal fibrosis. In tubular epithelial cells we have recently described that Gremlin induces EMT and acts as a downstream TGF-β mediator. Our aim was to investigate whether Gremlin participates in EMT by the regulation of the Smad pathway. Stimulation of human tubular epithelial cells (HK2 with Gremlin caused an early activation of the Smad signaling pathway (Smad 2/3 phosphorylation, nuclear translocation, and Smad-dependent gene transcription. The blockade of TGF-β, by a neutralizing antibody against active TGF-β, did not modify Gremlin-induced early Smad activation. These data show that Gremlin directly, by a TGF-β independent process, activates the Smad pathway. In tubular epithelial cells long-term incubation with Gremlin increased TGF-β production and caused a sustained Smad activation and a phenotype conversion into myofibroblasts-like cells. Smad 7 overexpression, which blocks Smad 2/3 activation, diminished EMT changes observed in Gremlin-transfected tubuloepithelial cells. TGF-β neutralization also diminished Gremlin-induced EMT changes. In conclusion, we propose that Gremlin could participate in renal fibrosis by inducing EMT in tubular epithelial cells through activation of Smad pathway and induction of TGF-β.

  3. Epithelial cells as alternative human biomatrices for comet assay

    Directory of Open Access Journals (Sweden)

    Emilio eRojas

    2014-11-01

    Full Text Available The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes.Over a thirty year period, the comet assay in epithelial cells has been litlle employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

  4. GROWTH CHARACTERISTICS, MORPHOLOGY, AND PHOSPHOLIPID COMPOSITION OF HUMAN TYPE 2 PULMONARY ALVEOLAR CELLS GROWN IN A COLLAGEN-FREE MICROENVIRONMENT

    Science.gov (United States)

    Human lung epithelial cells have been cultured and characterized for phospholipid content. Any residual fibroblasts were removed by selective trypsinization within the first 48 hours in culture. Epithelial cells were serially subpassaged when cultures reached ca. 80% confluency. ...

  5. Liver epithelial cells inhibit proliferation and invasiveness of hepatoma cells.

    Science.gov (United States)

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Jeng, Wen-Juei; Sheen, I-Shyan; Li, Shih-Yun; Hung, Zih-Hang; Hsiau, Hsin-I; Yu, Ming-Che; Chang, Chiung-Fang

    2016-03-01

    Hepatocellular carcinoma (HCC) is a worldwide malignancy with poor prognosis. Liver progenitors or stem cells could be a potential therapy for HCC treatment since they migrate toward tumors. Rat liver epithelial (RLE) cells have both progenitor and stem cell-like properties. Therefore, our study elucidated the therapeutic effect of RLE cells in rat hepatoma cells. RLE cells were isolated from 10-day old rats and characterized for stem cell marker expression. RLE cells and rat hepatoma cells (H4-IIE-C3 cells) were co-cultured and divided into four groups with different ratios of RLE and hepatoma cells. Group A had only rat hepatoma cells as a control group. The ratios of rat hepatoma and RLE cells in group B, C and D were 5:1, 1:1 and 1:5, respectively. Effective inhibition of cell proliferation and migration was found in group D when compared to group A. There was a significant decrease in Bcl2 expression and increase in late apoptosis of rat hepatoma cells when adding more RLE cells. RLE cells reduced cell proliferation and migration of rat hepatoma cells. These results suggested that RLE cells could be used as a potential cell therapy. PMID:26647726

  6. Ion transport in epithelial spheroids derived from human airway cells

    DEFF Research Database (Denmark)

    Pedersen, P S; Frederiksen, O; Holstein-Rathlou, N H;

    1999-01-01

    In the present study, we describe a novel three-dimensional airway epithelial explant preparation and demonstrate its use for ion transport studies by electrophysiological technique. Suspension cultures of sheets of epithelial cells released by protease treatment from cystic fibrosis (CF) and non...

  7. Sodium selectivity of Reissner's membrane epithelial cells

    Directory of Open Access Journals (Sweden)

    Kim Kyunghee X

    2011-02-01

    Full Text Available Abstract Background Sodium absorption by Reissner's membrane is thought to contribute to the homeostasis of the volume of cochlear endolymph. It was previously shown that the absorptive transepithelial current was blocked by amiloride and benzamil. The most commonly-observed target of these drugs is the epithelial sodium channel (ENaC, which is composed of the three subunits α-,β- and γ-ENaC. However, other less-selective cation channels have also been observed to be sensitive to benzamil and amiloride. The aim of this study was to determine whether Reissner's membrane epithelial cells could support parasensory K+ absorption via amiloride- and benzamil-sensitive electrogenic pathways. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6196, RT-PCR, and whole-cell patch clamp. Transcript expression analysis of Reissner's membrane detected no amiloride-sensitive acid-sensing ion channels (ASIC1a, ASIC2a, ASIC2b nor amiloride-sensitive cyclic-nucleotide gated channels (CNGA1, CNGA2, CNGA4, CNGB3. By contrast, α-,β- and γ-ENaC were all previously reported as present in Reissner's membrane. The selectivity of the benzamil-sensitive cation currents was observed in whole-cell patch clamp recordings under Cl--free conditions where cations were the only permeant species. The currents were carried by Na+ but not K+, and the permeability of Li+ was greater than that of Na+ in Reissner's membrane. Complete replacement of bath Na+ with the inpermeable cation NMDG+ led to the same inward current as with benzamil in a Na+ bath. Conclusions These results are consistent with the amiloride/benzamil-sensitive absorptive flux of Reissner's membrane mediated by a highly Na+-selective channel that has several key characteristics in common with αβγ-ENaC. The amiloride-sensitive pathway therefore absorbs only Na+ in this epithelium and does not provide a parasensory K+ efflux route from scala

  8. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells

    Indian Academy of Sciences (India)

    Forum Kayastha; Kaid Johar; Devarshi Gajjar; Anshul Arora; Hardik Madhu; Darshini Ganatra; Abhay Vasavada

    2015-06-01

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers -SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO.

  9. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells.

    Science.gov (United States)

    Kayastha, Forum; Johar, Kaid; Gajjar, Devarshi; Arora, Anshul; Madhu, Hardik; Ganatra, Darshini; Vasavada, Abhay

    2015-06-01

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-beta 2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers alpha-SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO. PMID:25963259

  10. Sepsis-associated AKI: epithelial cell dysfunction.

    Science.gov (United States)

    Emlet, David R; Shaw, Andrew D; Kellum, John A

    2015-01-01

    Acute kidney injury (AKI) occurs frequently in critically ill patients with sepsis, in whom it doubles the mortality rate and half of the survivors suffer permanent kidney damage or chronic kidney disease. Failure in the development of viable therapies has prompted studies to better elucidate the cellular and molecular etiologies of AKI, which have generated novel theories and paradigms for the mechanisms of this disease. These studies have shown multifaceted origins and elements of AKI that, in addition to/in lieu of ischemia, include the generation of damage-associated molecular patterns and pathogen-associated molecular patterns, the inflammatory response, humoral and cellular immune activation, perturbation of microvascular flow and oxidative stress, bioenergetic alterations, cell-cycle alterations, and cellular de-differentiation/re-differentiation. It is becoming clear that a major etiologic effector of all these inputs is the renal tubule epithelial cell (RTEC). This review discusses these elements and their effects on RTECs, and reviews the current hypotheses of how these effects may determine the fate of RTECs during sepsis-induced AKI. PMID:25795502

  11. Human mast cells decrease SLPI levels in type II – like alveolar cell model, in vitro

    Directory of Open Access Journals (Sweden)

    Nyström Max

    2003-08-01

    Full Text Available Abstract Background Mast cells are known to accumulate at sites of inflammation and upon activation to release their granule content, e.g. histamine, cytokines and proteases. The secretory leukocyte protease inhibitor (SLPI is produced in the respiratory mucous and plays a role in regulating the activity of the proteases. Result We have used the HMC-1 cell line as a model for human mast cells to investigate their effect on SLPI expression and its levels in cell co-culture experiments, in vitro. In comparison with controls, we found a significant reduction in SLPI levels (by 2.35-fold, p Conclusion These results indicate that SLPI-producing cells may assist mast cell migration and that the regulation of SLPI release and/or consumption by mast cells requires interaction between these cell types. Therefore, a "local relationship" between mast cells and airway epithelial cells might be an important step in the inflammatory response.

  12. The role of the epithelial cell in asthma

    OpenAIRE

    Mota-Pinto, Anabela; Todo-Bom, Ana

    2009-01-01

    It is done a review of the intervention of the epithelial bronchial cell in the pathophysiology of asthma. The respiratory epithelium acts as a physical barrier that separates the external environment from the pulmonary internal environment. It controls the intercellular and trans -cellular permeability and this way the accessibility of the inhaled pathogens to the antigen presenting cells involved in the immuno -inflammatory response. Epithelial cells connected by tight junctions contribute ...

  13. Epithelial cell invasion and survival of Bordetella bronchiseptica.

    OpenAIRE

    SCHIPPER, H; Krohne, G F; R. Gross

    1994-01-01

    Wild-type Bordetella bronchiseptica and a bvg mutant strain were used for invasion and survival experiments in human Caco-2 and A549 epithelial cells. Both bacterial strains were able to enter and persist within the host cells for at least a week. A significant proportion of the bacteria from both B. bronchiseptica strains but not from Bordetella pertussis were found free in the cytoplasm, suggesting different invasion and survival strategies of the two species in epithelial cells.

  14. Alignment of cell division axes in directed epithelial cell migration

    International Nuclear Information System (INIS)

    Cell division is an essential dynamic event in tissue remodeling during wound healing, cancer and embryogenesis. In collective migration, tensile stresses affect cell shape and polarity, hence, the orientation of the cell division axis is expected to depend on cellular flow patterns. Here, we study the degree of orientation of cell division axes in migrating and resting epithelial cell sheets. We use microstructured channels to create a defined scenario of directed cell invasion and compare this situation to resting but proliferating cell monolayers. In experiments, we find a strong alignment of the axis due to directed flow while resting sheets show very weak global order, but local flow gradients still correlate strongly with the cell division axis. We compare experimental results with a previously published mesoscopic particle based simulation model. Most of the observed effects are reproduced by the simulations. (paper)

  15. Regulated Mucin Secretion from Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    BurtonFDickey

    2013-09-01

    Full Text Available Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several features of the intracellular trafficking of mucins make the airway secretory cell an interesting comparator for the cell biology of regulated exocytosis. Polymeric mucins are exceedingly large molecules (up to 3x10^6 D per monomer whose folding and initial polymerization in the ER requires the protein disulfide isomerase Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched networks comprising more than 20 monomers. The large size of mucin polymers imposes constraints on their packaging into transport vesicles along the secretory pathway. Sugar side chains account for >70% of the mass of mucins, and their attachment to the protein core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large secretory granules ~1 um in diameter. These are translocated to the apical membrane to be positioned for exocytosis by cooperative interactions among MARCKS, cysteine string protein (CSP, HSP70 and the cytoskeleton. Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-2, a sensor of the second messengers calcium and diacylglycerol (DAG. Basal secretion is induced by low levels of activation of P2Y2 purinergic and A3 adenosine receptors by extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated secretion is induced by high levels of the same ligands, and possibly by inflammatory mediators as well. Activated receptors are coupled to phospholipase C by Gq, resulting in the

  16. Dispersion medium modulates oxidative stress response of human lung epithelial cells upon exposure to carbon nanomaterial samples

    International Nuclear Information System (INIS)

    Due to their large specific surface area, the potential of nanoparticles to be highly reactive and to induce oxidative stress is particularly high. In addition, some types of nanoparticles contain transition metals as trace impurities which are known to generate reactive oxygen species (ROS) in biological systems. This study investigates the potential of two types of single-walled carbon nanotube samples, nanoparticulate carbon black and crocidolite asbestos to induce ROS in lung epithelial cells in vitro. Carbon nanotube and carbon black samples were used as produced, without further purification or processing, in order to best mimic occupational exposure by inhalation of airborne dust particles derived from carbon nanomaterial production. Intracellular ROS were measured following short-term exposure of primary bronchial epithelial cells (NHBE) and A549 alveolar epithelial carcinoma cells using the redox sensitive probe carboxydichlorofluorescin (carboxy-DCFDA). The oxidative potential of agglomerated nanomaterial samples was compared following dispersion in cell culture medium with and without foetal calf serum (FCS) supplement. In addition, samples were dispersed in dipalmitoylphosphatidylcholine (DPPC), the major component of lung surfactant. It could be illustrated that in vitro exposure of lung epithelial cells to carbon nanomaterial samples results only in moderate or low oxidative stress under the exposure conditions employed. However, cell responses are strongly dependent on the vehicle used for dispersion. Whereas the presence of DPPC increased intracellular ROS formation, FCS seemed to protect the cells from oxidative insult.

  17. Mitosis orientation in prostate epithelial cells changed by endocrine effect

    Institute of Scientific and Technical Information of China (English)

    Xiang-yun LIU; Dong-mei Li; Xiao-fang ZHANG; Jian-hui WU; Zu-yue SUN

    2008-01-01

    Aim: The aim of the present study was to investigate the effect of androgen and estrogen on mitosis orientation in the prostate epithelial cells of male rats. Methods: Castrated rats were treated with a single injection of testosterone propionate (TP) or benzogynestry (E2). There were 8 rats in the control group and TP-treated or E2-treated group. Prostate, liver, a specimen of skin, and a segment of the jejunum and colon were removed after the corresponding treatment. The results were observed through immunohistochemistry and iron hematoxylin-eosin staining.Results: All mitoses found in the prostate epithelial cells of castrated rats with TP were oriented parallel to the basement membrane; however, mitoses found in the prostate epithelial cells of castrated rats in E2 and the control group were oriented perpendicular to the basement membrane. TP treatment resulted in marked changes in mitosis orientation in the prostate epithelial cells. Bromodeoxyuridine-labeled positive cells could be seen throughout the stroma and prostate epithelial cells with an injection of TP; however, the positive cells could only be seen in the stroma of prostate with an injection of E2, and the positive cells could hardly be seen in the control group. Conclusion: We found a novel effect of TP in the prostate as a marked change of mitosis orientation in prostate epithelial cells.

  18. Repopulation of murine alveolar macrophage colony-forming cells after whole body irradiation

    International Nuclear Information System (INIS)

    A study was made of the repopulation of alveolar macrophage colony-forming cells (AL-CFC) after a supra lethal irradiation and bone marrow transplantation in mice. The repopulation of both CFU-S (hemopoietic stem cells) and the committed stem cells for both granulocytes and monocytes (GM-CFC) in the femoral bone marrow occurred within 2 weeks. In sharp contrast, the repopulation of AL-CFC in the lung was a very slow process. The number of AL-CFC, which are more resistant to irradiation than both CFU-S and GM-CFC, was reduced to 1% of control values one day after the irradiation and recovered slowly with time. It took almost nine weeks for the number of AL-CFC per mouse to reach normal levels. The number of recoverable alveolar cells in these mice never dropped below 70% of control values and reached the nadir about two weeks after the irradiation. (UK)

  19. Thrombin promotes epithelial ovarian cancer cell invasion by inducing epithelial-mesenchymal transition

    OpenAIRE

    Zhong, Yi-Cun; Zhang, Ting; Di, Wen; Li, Wei-Ping

    2013-01-01

    Objective Over-expression of thrombin in ovarian cancer cells is associated with poor prognosis. In this study, we investigated the role of thrombin in inducing epithelial-mesenchymal transition (EMT) in SKOV3 epithelial ovarian cancer cells. Methods After thrombin treatment SKOV3 cells were subjected to western blots, reverse-transcription PCR, and enzyme-linked immunosorbent assay to quantify EMT-related proteins, mRNA expression of SMAD2, DKK1, and sFRP1, and the secretion of matrix metall...

  20. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells

    International Nuclear Information System (INIS)

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies.

  1. High throughput determination of TGFβ1/SMAD3 targets in A549 lung epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yingze Zhang

    Full Text Available BACKGROUND: Transforming growth factor beta 1 (TGFβ1 plays a major role in many lung diseases including lung cancer, pulmonary hypertension, and pulmonary fibrosis. TGFβ1 activates a signal transduction cascade that results in the transcriptional regulation of genes in the nucleus, primarily through the DNA-binding transcription factor SMAD3. The objective of this study is to identify genome-wide scale map of SMAD3 binding targets and the molecular pathways and networks affected by the TGFβ1/SMAD3 signaling in lung epithelial cells. METHODOLOGY: We combined chromatin immunoprecipitation with human promoter region microarrays (ChIP-on-chip along with gene expression microarrays to study global transcriptional regulation of the TGFβ1/SMAD3 pathway in human A549 alveolar epithelial cells. The molecular pathways and networks associated with TGFβ1/SMAD3 signaling were identified using computational approaches. Validation of selected target gene expression and direct binding of SMAD3 to promoters were performed by quantitative real time RT-PCR and electrophoretic mobility shift assay on A549 and human primary lung epithelial cells. RESULTS AND CONCLUSIONS: Known TGFβ1 target genes such as SERPINE1, SMAD6, SMAD7, TGFB1 and LTBP3, were found in both ChIP-on-chip and gene expression analyses as well as some previously unrecognized targets such as FOXA2. SMAD3 binding of FOXA2 promoter and changed expression were confirmed. Computational approaches combining ChIP-on-chip and gene expression microarray revealed multiple target molecular pathways affected by the TGFβ1/SMAD3 signaling. Identification of global targets and molecular pathways and networks associated with TGFβ1/SMAD3 signaling allow for a better understanding of the mechanisms that determine epithelial cell phenotypes in fibrogenesis and carcinogenesis as does the discovery of the direct effect of TGFβ1 on FOXA2.

  2. Alveolar Surfactant Homeostasis and the Pathogenesis of Pulmonary Disease

    OpenAIRE

    Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.

    2010-01-01

    The alveolar region of the lung creates an extensive epithelial surface that mediates the transfer of oxygen and carbon dioxide required for respiration after birth. Maintenance of pulmonary function depends on the function of type II epithelial cells that synthesize and secrete pulmonary surfactant lipids and proteins, reducing the collapsing forces created at the air-liquid interface in the alveoli. Genetic and acquired disorders associated with the surfactant system cause both acute and ch...

  3. Diversity of epithelial stem cell types in adult lung.

    Science.gov (United States)

    Li, Feng; He, Jinxi; Wei, Jun; Cho, William C; Liu, Xiaoming

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer. PMID:25810726

  4. Diversity of Epithelial Stem Cell Types in Adult Lung

    Directory of Open Access Journals (Sweden)

    Feng Li

    2015-01-01

    Full Text Available Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer.

  5. Dichloroacetate Decreases Cell Health and Activates Oxidative Stress Defense Pathways in Rat Alveolar Type II Pneumocytes

    Directory of Open Access Journals (Sweden)

    Alexis Valauri-Orton

    2015-01-01

    Full Text Available Dichloroacetate (DCA is a water purification byproduct that is known to be hepatotoxic and hepatocarcinogenic and to induce peripheral neuropathy and damage macrophages. This study characterizes the effects of the haloacetate on lung cells by exposing rat alveolar type II (L2 cells to 0–24 mM DCA for 6–24 hours. Increasing DCA concentration and the combination of increasing DCA concentration plus longer exposures decrease measures of cellular health. Length of exposure has no effect on oxidative stress biomarkers, glutathione, SOD, or CAT. Increasing DCA concentration alone does not affect total glutathione or its redox ratio but does increase activity in the SOD/CAT oxidative stress defense pathway. These data suggest that alveolar type II cells rely on SOD and CAT more than glutathione to combat DCA-induced stress.

  6. Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Atsushi Yamada

    Full Text Available The aim of this study is to investigate the molecular mechanisms underlying delayed progressive pulmonary fibrosis, a characteristic of subacute paraquat (PQ poisoning. Epithelial-mesenchymal transition (EMT has been proposed as a cause of organ fibrosis, and transforming growth factor-β (TGF-β is suggested to be a powerful mediator of EMT. We thus examined the possibility that EMT is involved in pulmonary fibrosis during PQ poisoning using A549 human alveolar epithelial cells in vitro. The cells were treated with various concentrations of PQ (0-500 μM for 2-12 days. Short-term (2 days high-dose (>100 μM treatments with PQ induced cell death accompanied by the activation of caspase9 as well as a decrease in E-cadherin (an epithelial cell marker, suggesting apoptotic cell death with the features of anoikis (cell death due to the loss of cell-cell adhesion. In contrast, long-term (6-12 days low-dose (30 μM treatments with PQ resulted in a transformation into spindle-shaped mesenchymal-like cells with a decrease of E-cadherin as well as an increase of α-smooth muscle actin (α-SMA. The mesenchymal-like cells also secreted the extracellular matrix (ECM protein fibronectin into the culture medium. The administration of a TGF-β1 receptor antagonist, SB431542, almost completely attenuated the mesenchymal transformation as well as fibronectin secretion, suggesting a crucial role of TGF-β1 in EMT-like cellular response and subsequent fibrogenesis. It is noteworthy that despite the suppression of EMT-fibrogenesis, apoptotic death was observed in cells treated with PQ+SB431542. EMT-like cellular response and subsequent fibrogenesis were also observed in normal human bronchial epithelial (NHBE cells exposed to PQ in a TGF-β1-dependent manner. Taken together, our experimental model reflects well the etiology of PQ poisoning in human and shows the involvement of EMT-like cellular response in both fibrogenesis and resistance to cell death during

  7. MFGE8 regulates TGF-β-induced epithelial mesenchymal transition in endometrial epithelial cells in vitro.

    Science.gov (United States)

    Yu, Liang; Hu, Rong; Sullivan, Claretta; Swanson, R James; Oehninger, Sergio; Sun, Ying-Pu; Bocca, Silvina

    2016-09-01

    This study investigated the role of milk fat globule-epidermal growth factor-factor 8 (MFGE8) in TGF-β-induced epithelial-mesenchymal transition (EMT) of endometrial epithelial cells. These were in vitro studies using human endometrial epithelial cells and mouse blastocysts. We investigated the ability of TGF-β to induce EMT in endometrial epithelial cells (HEC-1A) by assessment of cytological phenotype (by light and atomic force microscopy), changes in expression of the markers of cell adhesion/differentiation E- and N-cadherin, and of the transcription factor Snail (by immunofluorescence and immunoblotting), and competence to support embryo attachment in a mouse blastocyst outgrowth assay. We also studied the effects of E-cadherin expression in cells transfected by retroviral shRNA vectors specifically silencing MFGE8. Results demonstrated that TGF-β induced EMT as demonstrated by phenotypic cell changes, by a switch of cadherin expression as well as by upregulation of the expression of the mesenchymal markers Snail and Vimentin. Upon MFGE8 knockdown, these processes were interfered with, suggesting that MFGE8 and TGF-β together may participate in regulation of EMT. This study demonstrated for the first time that endometrial MFGE8 modulates TGF-β-induced EMT in human endometrium cells. PMID:27340235

  8. Blood group glycolipids as epithelial cell receptors for Candida albicans.

    OpenAIRE

    Cameron, B J; Douglas, L J

    1996-01-01

    The role of glycosphingolipids as possible epithelial cell receptors for Candida albicans was examined by investigating the binding of biotinylated yeasts to lipids extracted from human buccal epithelial cells and separated on thin-layer chromatograms. Binding was visualized by the addition of 125I-streptavidin followed by autoradiography. Five C. albicans strains thought from earlier work to have a requirement for fucose-containing receptors all bound to the same three components in the lipi...

  9. Diversity of Epithelial Stem Cell Types in Adult Lung

    OpenAIRE

    Feng Li; Jinxi He; Jun Wei; Cho, William C.; Xiaoming Liu

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local e...

  10. Respiratory epithelial cell invasion by group B streptococci.

    OpenAIRE

    Rubens, C E; Smith, S; Hulse, M; Chi, E Y; van Belle, G.

    1992-01-01

    Group B streptococci (GBS) are the most common cause of pneumonia and sepsis during the neonatal period; however, the pathogenesis of this infection is poorly understood. We investigated the ability of GBS to enter epithelial cells in culture. Two strains of GBS were capable of invading immortalized respiratory epithelial cell lines in vitro at different levels, suggesting strain differences in invasiveness. Intracellular replication was not observed. Invasion required actin microfilaments bu...

  11. Conjugation of 1-naphthol in human gastric epithelial cells.

    OpenAIRE

    Déchelotte, P; Varrentrapp, M; Meyer, H.J.; Schwenk, M.

    1993-01-01

    The biotransformation of xenobiotics is essential to the maintenance of the body's integrity. Mucosal biotransformation has been well documented in the small and large intestine of animals and humans but whether the gastric mucosa plays a role in detoxifying ingested compounds remains largely unknown. The conjugation of the model phenolic compounds, 1-naphthol, by human gastric epithelial cells was assessed in vitro. Freshly isolated and cultured epithelial cells were prepared from surgical s...

  12. The TNF Family Molecules LIGHT and Lymphotoxin αβ Induce a Distinct Steroid-Resistant Inflammatory Phenotype in Human Lung Epithelial Cells.

    Science.gov (United States)

    da Silva Antunes, Ricardo; Madge, Lisa; Soroosh, Pejman; Tocker, Joel; Croft, Michael

    2015-09-01

    Lung epithelial cells are considered important sources of inflammatory molecules and extracellular matrix proteins that contribute to diseases such as asthma. Understanding the factors that stimulate epithelial cells may lead to new insights into controlling lung inflammation. This study sought to investigate the responsiveness of human lung epithelial cells to the TNF family molecules LIGHT and lymphotoxin αβ (LTαβ). Bronchial and alveolar epithelial cell lines, and primary human bronchial epithelial cells, were stimulated with LIGHT and LTαβ, and expression of inflammatory cytokines and chemokines and markers of epithelial-mesenchymal transition and fibrosis/remodeling was measured. LTβ receptor, the receptor shared by LIGHT and LTαβ, was constitutively expressed on all epithelial cells. Correspondingly, LIGHT and LTαβ strongly induced a limited but highly distinct set of inflammatory genes in all epithelial cells tested, namely the adhesion molecules ICAM-1 and VCAM-1; the chemokines CCL5, CCL20, CXCL1, CXCL3, CXCL5, and CXCL11; the cytokines IL-6, activin A and GM-CSF; and metalloproteinases matrix metalloproteinase-9 and a disintegrin and metalloproteinase domain-8. Importantly, induction of the majority of these inflammatory molecules was insensitive to the suppressive effects of the corticosteroid budesonide. LIGHT and LTαβ also moderately downregulated E-cadherin, a protein associated with maintaining epithelial integrity, but did not significantly drive production of extracellular matrix proteins or α-smooth muscle actin. Thus, LIGHT and LTαβ induce a distinct steroid-resistant inflammatory signature in airway epithelial cells via constitutively expressed LTβ receptor. These findings support our prior murine studies that suggested the receptors for LIGHT and LTαβ contribute to development of lung inflammation characteristic of asthma and idiopathic pulmonary fibrosis. PMID:26209626

  13. Epimorphin Functions as a Key Morphoregulator for Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, H.; Lochter, A.; Galosy, S.; Koshida, S.; Niwa, S.; Bissell, M.J.

    1997-10-13

    Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.

  14. Role of autophagy in the regulation of epithelial cell junctions.

    Science.gov (United States)

    Nighot, Prashant; Ma, Thomas

    2016-01-01

    Autophagy is a cell survival mechanism by which bulk cytoplasmic material, including soluble macromolecules and organelles, is targeted for lysosomal degradation. The role of autophagy in diverse cellular processes such as metabolic stress, neurodegeneration, cancer, aging, immunity, and inflammatory diseases is being increasingly recognized. Epithelial cell junctions play an integral role in the cell homeostasis via physical binding, regulating paracellular pathways, integrating extracellular cues into intracellular signaling, and cell-cell communication. Recent data indicates that cell junction composition is very dynamic. The junctional protein complexes are actively regulated in response to various intra- and extra-cellular clues by intracellular trafficking and degradation pathways. This review discusses the recent and emerging information on how autophagy regulates various epithelial cell junctions. The knowledge of autophagy regulation of epithelial junctions will provide further rationale for targeting autophagy in a wide variety of human disease conditions. PMID:27583189

  15. Effect of inhaled 239PuO2 on alveolar Type II cells

    International Nuclear Information System (INIS)

    Morphological changes of rat alveolar type II (AT-II) cells were studied at 8 and 10 months following inhalation of 239PuO2 to elucidate the biological role of AT-II cells in the induction of lung tumours. TEM micrographs of random sections of lung were analysed qualitatively and quantitatively using an automatic image analyser. Eighteen morphometric parameters were obtained according to stereological principles. The results showed that, following the inhalation of 239PuO2, AT-II cells became less differentiated and the metabolism of the pulmonary surfactant in AT-II cells was disturbed. (author)

  16. Effect of inhaled 239PuO2 on alveolar type II cells

    International Nuclear Information System (INIS)

    Morphological changes of rat alveolar type II (AT-II) cells were studied at 8 and 10 months following inhalation of 239PuO2 to elucidate the biological role of At-II cells in the induction of lung tumours. TEM micrographs of random sections of lung were analysed qualitatively and quantitatively using an automatic image analyser. Eighteen morphometric parameters were obtained according to stereo logical principles. The results showed that, following the inhalation of 239PuO2, AT-II cells became less differentiated and the metabolism of the pulmonary surfactant in AT-II cells was disturbed

  17. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  18. Probiotics promote endocytic allergen degradation in gut epithelial cells

    International Nuclear Information System (INIS)

    Highlights: ► Knockdown of A20 compromised the epithelial barrier function. ► The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. ► Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. ► Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  19. Identification and characterization of a lysophosphatidylcholine acyltransferase in alveolar type II cells

    OpenAIRE

    Chen, Xueni; Hyatt, Brian A.; Mucenski, Michael L; Mason, Robert J; Shannon, John M.

    2006-01-01

    Pulmonary surfactant is a complex of lipids and proteins produced and secreted by alveolar type II cells that provides the low surface tension at the air–liquid interface. The phospholipid most responsible for providing the low surface tension in the lung is dipalmitoylphosphatidylcholine. Dipalmitoylphosphatidylcholine is synthesized in large part by phosphatidylcholine (PC) remodeling, and a lysophosphatidylcholine (lysoPC) acyltransferase is thought to play a critical role in its synthesis...

  20. Glycogen accumulation in alveolar type II cells in 3-methylindole--induced pulmonary edema in goats.

    OpenAIRE

    Atwal, O. S.; Bray, T. M.

    1981-01-01

    The present study shows that intravenous infusion of 3-methylindole (3MI) induced acute pulmonary edema in goats. Edematous changes were seen in the alveoli and the interalveolar interstitium. At 72 hours after treatment, an accumulation of glycogen that had a pathognomonic appearance of alpha particles was observed in the alveolar Type II cells. A rich accumulation of glycogen particles and defective lamellar bodies containing triglycerides were the significant morphologic changes in the alv...

  1. SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation

    OpenAIRE

    Tales Lyra Oliveira; Návylla Candeia-Medeiros; Polliane M. Cavalcante-Araújo; Igor Santana Melo; Elaine Fávaro-Pípi; Luciana Alves Fátima; Antônio Augusto Rocha; Luiz Ricardo Goulart; Ubiratan Fabres Machado; Ruy R. Campos; Robinson Sabino-Silva

    2016-01-01

    High glucose concentration in the airway surface liquid (ASL) is an important feature of diabetes that predisposes to respiratory infections. We investigated the role of alveolar epithelial SGLT1 activity on ASL glucose concentration and bacterial proliferation. Non-diabetic and diabetic rats were intranasally treated with saline, isoproterenol (to increase SGLT1 activity) or phlorizin (to decrease SGLT1 activity); 2 hours later, glucose concentration and bacterial proliferation (methicillin-...

  2. Maintaining RNA integrity in a homogeneous population of mammary epithelial cells isolated by Laser Capture Microdissection

    Directory of Open Access Journals (Sweden)

    Helbling Jean-Christophe

    2010-12-01

    Full Text Available Abstract Background Laser-capture microdissection (LCM that enables the isolation of specific cell populations from complex tissues under morphological control is increasingly used for subsequent gene expression studies in cell biology by methods such as real-time quantitative PCR (qPCR, microarrays and most recently by RNA-sequencing. Challenges are i to select precisely and efficiently cells of interest and ii to maintain RNA integrity. The mammary gland which is a complex and heterogeneous tissue, consists of multiple cell types, changing in relative proportion during its development and thus hampering gene expression profiling comparison on whole tissue between physiological stages. During lactation, mammary epithelial cells (MEC are predominant. However several other cell types, including myoepithelial (MMC and immune cells are present, making it difficult to precisely determine the specificity of gene expression to the cell type of origin. In this work, an optimized reliable procedure for producing RNA from alveolar epithelial cells isolated from frozen histological sections of lactating goat, sheep and cow mammary glands using an infrared-laser based Arcturus Veritas LCM (Applied Biosystems® system has been developed. The following steps of the microdissection workflow: cryosectioning, staining, dehydration and harvesting of microdissected cells have been carefully considered and designed to ensure cell capture efficiency without compromising RNA integrity. Results The best results were obtained when staining 8 μm-thick sections with Cresyl violet® (Ambion, Applied Biosystems® and capturing microdissected cells during less than 2 hours before RNA extraction. In addition, particular attention was paid to animal preparation before biopsies or slaughtering (milking and freezing of tissue blocks which were embedded in a cryoprotective compound before being immersed in isopentane. The amount of RNA thus obtained from ca.150 to 250 acini

  3. Lingual Epithelial Stem Cells and Organoid Culture of Them

    Directory of Open Access Journals (Sweden)

    Hiroko Hisha

    2016-01-01

    Full Text Available As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP, were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  4. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers.

    Science.gov (United States)

    Bergstralh, Dan T; Lovegrove, Holly E; St Johnston, Daniel

    2015-11-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium. Here we test this assumption in three types of Drosophila epithelium; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells seems to be driven by lateral adhesion, which pulls cells born outside the epithelial layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404

  5. Induction of apoptosis in oral epithelial cells by Candida albicans.

    Science.gov (United States)

    Villar, C Cunha; Chukwuedum Aniemeke, J; Zhao, X-R; Huynh-Ba, G

    2012-12-01

    During infection, interactions between Candida albicans and oral epithelial cells result in oral epithelial cell death. This is clinically manifested by the development of oral mucosal ulcerations generally associated with discomfort. In vitro studies have shown that C. albicans induces early apoptotic alterations in oral epithelial cells; however, these studies have also shown that treatment of infected cells with caspase inhibitors does not prevent their death. The reasons for these contradictory results are unknown and it is still not clear if C. albicans stimulates oral epithelial signaling pathways that promote apoptotic cell death. Activation of specific death pathways in response to microbial organisms plays an essential role in modulating the pathogenesis of a variety of infectious diseases. The aim of this study was to (i) characterize C. albicans-induced apoptotic morphological alterations in oral epithelial cells, and (ii) investigate the activation of apoptotic signaling pathways and expression of apoptotic genes during infection. Candida albicans induced early apoptotic changes in over 50% of oral epithelial cells. However, only 15% of those showed mid-late apoptotic alterations. At the molecular level, C. albicans caused a loss of the mitochondrial transmembrane potential and translocation of mitochondrial cytochrome c. Caspase-3/9 activities increased only during the first hours of infection. Moreover, poly[ADP ribose] polymerase 1 was cleaved into apoptotic and necrotic-like fragments. Finally, five anti-apoptotic genes were significantly upregulated and two pro-apoptotic genes were downregulated during infection. Altogether, these findings indicate that epithelial apoptotic pathways are activated in response to C. albicans, but fail to progress and promote apoptotic cell death. PMID:23134609

  6. Mechanism of cigarette smoke condensate-induced acute inflammatory response in human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Mohapatra Shyam S

    2002-07-01

    Full Text Available Abstract Background To demonstrate the involvement of tobacco smoking in the pathophysiology of lung disease, the responses of pulmonary epithelial cells to cigarette smoke condensate (CSC — the particulate fraction of tobacco smoke — were examined. Methods The human alveolar epithelial cell line A549 and normal human bronchial epithelial cells (NHBEs were exposed to 0.4 μg/ml CSC, a concentration that resulted in >90% cell survival and Results NHBEs exposed to CSC showed increased expression of the inflammatory mediators sICAM-1, IL-1β, IL-8 and GM-CSF, as determined by RT-PCR. CSC-induced IL-1β expression was reduced by PD98059, a blocker of mitogen-actived protein kinase (MAPK kinase (MEK, and by PDTC, a NFκB inhibitor. Analysis of intracellular signaling pathways, using antibodies specific for phosphorylated MAPKs (extracellular signal-regulated kinase [ERK]-1/2, demonstrated an increased level of phosphorylated ERK1/2 with increasing CSC concentration. Nuclear localization of phosphorylated ERK1/2 was seen within 30 min of CSC exposure and was inhibited by PD98059. Increased phosphorylation and nuclear translocation of IκB was also seen after CSC exposure. A549 cells transfected with a luciferase reporter plasmid containing a NFκB-inducible promoter sequence and exposed to CSC (0.4 μg/ml or TNF-α (50 ng/ml had an increased reporter activity of approximately 2-fold for CSC and 3.5-fold for TNF-α relative to untreated controls. Conclusion The acute phase response of NHBEs to cigarette smoke involves activation of both MAPK and NFκB.

  7. Evaluation of pulmonary alveolar epithelial integrity by the detection of restriction to diffusion of hydrophilic solutes of different molecular sizes.

    Science.gov (United States)

    Mason, G R; Peters, A M; Bagdades, E; Myers, M J; Snook, D; Hughes, J M

    2001-03-01

    The rate of transfer of a hydrophilic solute from the alveoli to pulmonary blood following inhalation as an aerosol depends on the molecular size of the solute and the permeability of the alveolar epithelium. The value of this measurement for assessing damage to the epithelium in lung disease is compromised by cigarette smoking, which accelerates clearance by unknown mechanisms. The rates of clearance of (99m)Tc-labelled diethylenetriaminepenta-acetic acid (DTPA) (molecular mass 492 Da) and (113m)In-labelled biotinylated DTPA (B-DTPA) (molecular mass 1215 Da) were monitored simultaneously by dynamic gamma-radiation camera imaging following simultaneous inhalation, and compared between eight normal non-smoking subjects and nine habitual cigarette smokers. The clearance rates of DTPA were 0.95 (S.D. 0.39)%/min in non-smokers and 4.13 (1.06) %/min in smokers. These were about twice the clearance rates of B-DTPA, which in the corresponding groups were 0.41 (0.26) and 2.12 (0.72)%/min respectively. The ratio of the B-DTPA/DTPA clearance rates was, in all subjects, less than the ratio (0.74) of the cube roots of the molecular masses of the solutes, assumed to correspond to the ratio of their free diffusion coefficients in water, and was not significantly different between smokers and non-smokers. As alveolar permeability increased, the ratio of clearance rates in the entire population showed a significant trend to increase in a non-linear fashion towards the value corresponding to the ratio of the free diffusion coefficients. We conclude that the diffusion of at least the larger of these two solutes through the pulmonary alveolar epithelium is restricted (i.e. associated with a reflection coefficient greater than zero). Cigarette smoking, however, does not appear to cause a loss of this restriction, and may increase solute clearance by other mechanisms, such as reducing fluid volume within the alveolus, thereby raising the local radiotracer concentration, or increasing

  8. Glutathione synthesis and homeostasis in isolated type II alveolar cells

    International Nuclear Information System (INIS)

    After isolation of Type II cells from neonatal rat lung, the glutathione (GSH) levels in these cells were greatly depressed. The total glutathione content could be increased 5-fold within 12-24 h by incubating the cells in media containing sulfur amino acids. Similarly, the activity of γ-glutamyltranspeptidase was low immediately after isolation, but was increased 2-fold during the first 24 h culture. Addition of either GSH or GSSG to the culture media increased the GSH content of Type II cells 2-2.5-fold. Buthionine sulfoximine and NaF prevented this replenishment of GSH during 24 h culture. When the rates of de novo synthesis of GSH and GSSG from 35S-cysteine were measured, the amounts of newly formed GSH decreased to 80% in the presence of GSH or GSSG. This suggests that exogenous GSH/GSSG can be taken up by the Type II cells to replenish the intracellular pool of GSH. Methionine was not as effective as cysteine in the synthesis of GSH. These results suggest that GSH levels in the isolated Type II cell can be maintained by de novo synthesis or uptake of exogenous GSH. Most of the GSH synthesized from cysteine, however, was excreted into the media of the cultured cells indicative of a potential role for the type II cell in export of the non-protein thiol

  9. Epithelial cell detachment by Porphyromonas gingivalis biofilm and planktonic cultures.

    Science.gov (United States)

    Huang, Lijia; van Loveren, Cor; Ling, Junqi; Wei, Xi; Crielaard, Wim; Deng, Dong Mei

    2016-04-01

    Porphyromonas gingivalis is present as a biofilm at the sites of periodontal infections. The detachment of gingival epithelial cells induced by P. gingivalis biofilms was examined using planktonic cultures as a comparison. Exponentially grown planktonic cultures or 40-h biofilms were co-incubated with epithelial cells in a 24-well plate for 4 h. Epithelial cell detachment was assessed using imaging. The activity of arginine-gingipain (Rgp) and gene expression profiles of P. gingivalis cultures were examined using a gingipain assay and quantitative PCR, respectively. P. gingivalis biofilms induced significantly higher cell detachment and displayed higher Rgp activity compared to the planktonic cultures. The genes involved in gingipain post-translational modification, but not rgp genes, were significantly up-regulated in P. gingivalis biofilms. The results underline the importance of including biofilms in the study of bacterial and host cell interactions. PMID:26963862

  10. Some ABCA3 mutations elevate ER stress and initiate apoptosis of lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Holzinger Andreas

    2011-01-01

    Full Text Available Abstract Background ABCA3 transporter (ATP-binding cassette transporter of the A subfamily is localized to the limiting membrane of lamellar bodies, organelles for assembly and storage of pulmonary surfactant in alveolar epithelial type II cells (AECII. It transports surfactant phospholipids into lamellar bodies and absence of ABCA3 function disrupts lamellar body biogenesis. Mutations of the ABCA3 gene lead to fatal neonatal surfactant deficiency and chronic interstitial lung disease (ILD of children. ABCA3 mutations can result in either functional defects of the correctly localized ABCA3 or trafficking/folding defects where mutated ABCA3 remains in the endoplasmic reticulum (ER. Methods Human alveolar epithelial A549 cells were transfected with vectors expressing wild-type ABCA3 or one of the three ABCA3 mutant forms, R43L, R280C and L101P, C-terminally tagged with YFP or hemagglutinin-tag. Localization/trafficking properties were analyzed by immunofluorescence and ABCA3 deglycosylation. Uptake of fluorescent NBD-labeled lipids into lamellar bodies was used as a functional assay. ER stress and apoptotic signaling were examined through RT-PCR based analyses of XBP1 splicing, immunoblotting or FACS analyses of stress/apoptosis proteins, Annexin V surface staining and determination of the intracellular glutathion level. Results We demonstrate that two ABCA3 mutations, which affect ABCA3 protein trafficking/folding and lead to partial (R280C or complete (L101P retention of ABCA3 in the ER compartment, can elevate ER stress and susceptibility to it and induce apoptotic markers in the cultured lung epithelial A549 cells. R43L mutation, resulting in a functional defect of the properly localized ABCA3, had no effect on intracellular stress and apoptotic signaling. Conclusion Our data suggest that expression of partially or completely ER localized ABCA3 mutant proteins can increase the apoptotic cell death of the affected cells, which are factors that

  11. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  12. Porphyromonas gingivalis invades oral epithelial cells in vitro.

    Science.gov (United States)

    Sandros, J; Papapanou, P; Dahlén, G

    1993-05-01

    The aim of the present study was to analyze the adhesive and invasive potential of a number of P. gingivalis strains, in an in vitro system utilizing cultures of human oral epithelial cells (KB cell line, ATCC CCL 17). P. gingivalis strains W50 and FDC 381 (laboratory strains) and OMGS 1738, 1743 and 1439 (clinical isolates) as well as E. coli strain HB 101 (non-adhering, non-invasive control) were used. Adherence was assessed by means of scintillation counting and light microscopy, after incubation of radiolabelled bacteria with epithelial cells. In the invasion assay, monolayers were infected with the P. gingivalis and E. coli strains and further incubated with an antibiotic mixture (metronidazole 0.1 mg/ml and gentamicin 0.5 mg/ml). Invasion was evaluated by (i) assessing presence of bacteria surviving the antibiotic treatment, and (ii) electron microscopy. All P. gingivalis strains adhered to and entered into the oral epithelial cells. After 3 hours of incubation, bacteria were frequently identified intracellularly by means of electron microscopy. The cellular membranes, encapsulating the microorganisms in early stages of the invasive process, appeared later to disintegrate. The presence of coated pits on the epithelial cell surfaces suggested that internalization of P. gingivalis was associated with receptor-mediated endocytosis (RME). Formation of outer membrane vesicles (blebs) by intracellular bacteria indicated that internalized P. gingivalis was able to retain its viability. E. coli strain HB 101 neither adhered to nor invaded epithelial cells. PMID:8388449

  13. Porphyromonas gingivalis Fimbriae Bind to Cytokeratin of Epithelial Cells

    Science.gov (United States)

    Sojar, Hakimuddin T.; Sharma, Ashu; Genco, Robert J.

    2002-01-01

    The adherence of Porphyromonas gingivalis to host cells is likely a prerequisite step in the pathogenesis of P. gingivalis-induced periodontal disease. P. gingivalis binds to and invades epithelial cells, and fimbriae are shown to be involved in this process. Little is known regarding epithelial receptor(s) involved in binding of P. gingivalis fimbriae. Using an overlay assay with purified P. gingivalis fimbriae as a probe, two major epithelial cell proteins with masses of 50 and 40 kDa were identified by immunoblotting with fimbria-specific antibodies. Iodinated purified fimbriae also bound to the same two epithelial cell proteins. An affinity chromatography technique was utilized to isolate and purify the epithelial components to which P. gingivalis fimbriae bind. Purified fimbriae were coupled to CNBr-activated Sepharose-4B, and the solubilized epithelial cell extract proteins bound to the immobilized fimbriae were isolated from the column. A major 50-kDa component and a minor 40-kDa component were purified and could be digested with trypsin, suggesting that they were proteins. These affinity-eluted 50- and 40-kDa proteins were then subjected to amino-terminal sequencing, and no sequence could be determined, suggesting that these proteins have blocked amino-terminal residues. CNBr digestion of the 50-kDa component resulted in an internal sequence homologous to that of Keratin I molecules. Further evidence that P. gingivalis fimbriae bind to cytokeratin molecule(s) comes from studies showing that multicytokeratin rabbit polyclonal antibodies cross-react with the affinity-purified 50-kDa epithelial cell surface component. Also, binding of purified P. gingivalis fimbriae to epithelial components can be inhibited in an overlay assay by multicytokeratin rabbit polyclonal antibodies. Furthermore, we showed that biotinylated purified fimbriae bind to purified human epidermal keratin in an overlay assay. These studies suggest that the surface-accessible epithelial

  14. Differentiation of porcine mesenchymal stem cells into epithelial cells as a potential therapeutic application to facilitate epithelial regeneration.

    Science.gov (United States)

    Kokubun, Kelsey; Pankajakshan, Divya; Kim, Min-Jung; Agrawal, Devendra K

    2016-02-01

    Epithelial denudation is one of the characteristics of chronic asthma. To restore its functions, the airway epithelium has to rapidly repair the injuries and regenerate its structure and integrity. Mesenchymal stem cells (MSCs) have the ability to differentiate into many cell lineages. However, the differentiation of MSCs into epithelial cells has not been fully studied. Here, we examined the differentiation of MSCs into epithelial cells using three different media compositions with various growth supplementations. The MSCs were isolated from porcine bone marrow by density gradient centrifugation. The isolated MSCs were CD11(-) CD34(-) CD45(-) CD44(+) CD90(+) and CD105(+) by immunostaining and flow cytometry. MSCs were stimulated with EpiGRO (Millipore), BEpiCM (ScienCell) and AECGM (PromoCell) media for 5 and 10 days, and epithelial differentiation was assessed by qPCR (keratin 14, 18 and EpCAM), fluorometry (cytokeratin 7-8, cytokeratin 14-15-16-19 and EpCAM), western blot analysis (pancytokeratin, EpCAM) and flow cytometry (cytokeratin 7-8, cytokeratin 14-15-16-19 and EpCAM). The functional marker MUC1 was also assessed after 10 days of air-liquid interface (ALI) culture in optimized media. Cells cultured in BEpiCM containing fibroblast growth factor and prostaglandin E2 showed the highest expression of the epithelial markers: CK7-8 (85.90%); CK-14-15-16-19 (10.14%); and EpCAM (64.61%). The cells also expressed functional marker MUC1 after ALI culture. The differentiated MSCs when cultured in BEpiCM medium ex vivo in a bioreactor on a decellularized trachea for 10 days retained the epithelial-like phenotype. In conclusion, porcine bone marrow-derived MSCs demonstrate commitment to the epithelial lineage and might be a potential therapy for facilitating the repair of denuded airway epithelium. PMID:23696537

  15. Macrophage-epithelial interactions in pulmonary alveoli.

    Science.gov (United States)

    Bhattacharya, Jahar; Westphalen, Kristin

    2016-07-01

    Alveolar macrophages have been investigated for years by approaches involving macrophage extraction from the lung by bronchoalveolar lavage, or by cell removal from lung tissue. Since extracted macrophages are studied outside their natural milieu, there is little understanding of the extent to which alveolar macrophages interact with the epithelium, or with one another to generate the lung's innate immune response to pathogen challenge. Here, we review new evidence of macrophage-epithelial interactions in the lung, and we address the emerging understanding that the alveolar epithelium plays an important role in orchestrating the macrophage-driven immune response. PMID:27170185

  16. Infant formula alters surfactant protein A (SP-A) and SP-B expression in pulmonary epithelial cells.

    Science.gov (United States)

    Chen, Maurice G; Atkins, Constance L; Bruce, Shirley R; Khan, Amir M; Liu, Yuying; Alcorn, Joseph L

    2011-09-01

    Surfactant proteins A (SP-A) and SP-B are critical in the ability of pulmonary surfactant to reduce alveolar surface tension and provide innate immunity. Aspiration of infant milk formula can lead to lung dysfunction, but direct effects of aspirated formula on surfactant protein expression in pulmonary cells have not been described. The hypothesis that infant formula alters surfactant protein homeostasis was tested in vitro by assessing surfactant protein gene expression in cultured pulmonary epithelial cell lines expressing SP-A and SP-B that were transiently exposed (6 hr) to infant formula. Steady-state levels of SP-A protein and mRNA and SP-B mRNA in human bronchiolar (NCI-H441) and mouse alveolar (MLE15) epithelial cells were reduced in a dose-dependent manner 18 hr after exposure to infant formula. SP-A mRNA levels remained reduced 42 hr after exposure, but SP-B mRNA levels increased 10-fold. Neither soy formula nor non-fat dry milk affected steady-state SP-A and SP-B mRNA levels; suggesting a role of a component of infant formula derived from cow milk. These results indicate that infant formula has a direct, dose-dependent effect to reduce surfactant protein gene expression. Ultimately, milk aspiration may potentially result in a reduced capacity of the lung to defend against environmental insults. PMID:21520433

  17. Regeneration of alveolar type I and II cells from Scgb1a1-expressing cells following severe pulmonary damage induced by bleomycin and influenza.

    Directory of Open Access Journals (Sweden)

    Dahai Zheng

    Full Text Available The lung comprises an extensive surface of epithelia constantly exposed to environmental insults. Maintaining the integrity of the alveolar epithelia is critical for lung function and gaseous exchange. However, following severe pulmonary damage, what progenitor cells give rise to alveolar type I and II cells during the regeneration of alveolar epithelia has not been fully determined. In this study, we have investigated this issue by using transgenic mice in which Scgb1a1-expressing cells and their progeny can be genetically labeled with EGFP. We show that following severe alveolar damage induced either by bleomycin or by infection with influenza virus, the majority of the newly generated alveolar type II cells in the damaged parenchyma were labeled with EGFP. A large proportion of EGFP-expressing type I cells were also observed among the type II cells. These findings strongly suggest that Scgb1a1-expressing cells, most likely Clara cells, are a major cell type that gives rise to alveolar type I and II cells during the regeneration of alveolar epithelia in response to severe pulmonary damage in mice.

  18. Permanent alveolar collapse is the predominant mechanism in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Todd, Nevins W; Atamas, Sergei P; Luzina, Irina G; Galvin, Jeffrey R

    2015-08-01

    Alveolar epithelial cell loss and impaired epithelial cell regeneration are currently accepted as central initiating events in idiopathic pulmonary fibrosis (IPF), but subsequent downstream effects remain uncertain. The most accepted downstream effect is aberrant and dysregulated mesenchymal cell proliferation and excess extracellular matrix (ECM) accumulation. However, biochemical and imaging studies have perhaps somewhat surprisingly indicated little increase in total lung collagen and lung tissue, and have rather shown a substantial decrease in lung aeration and lung air volume. Loss of tissue aeration is a consequence of alveolar collapse, which occurs in IPF as a result of apposition and septal incorporation of denuded basal lamina. Permanent alveolar collapse is well-documented following epithelial injury, has the ability to mimic interstitial fibrosis radiologically and histologically, and is a better supported explanation than dysregulated fibroblast proliferation and excess ECM accumulation for the constellation of findings in patients with IPF. PMID:26165208

  19. No junctional communication between epithelial cells in hydra

    DEFF Research Database (Denmark)

    de Laat, S W; Tertoolen, L G; Grimmelikhuijzen, C J

    1980-01-01

    Diffusion gradients of morphogens have been inferred as a basis for the control of morphogenesis in hydra, and morphogenetic substances have been found which, on the basis of their molecular weight (MW), should be able to pass gap junctions. There have been several reports of the presence of gap...... junctions between epithelial cells of hydra. However, until now, there has been no report published on whether these junctions enable the epithelial cells to exchange molecules of small molecular weight, as has been described in other organisms. Therefore we decided to investigate the communicative...... properties of the junctional membranes by electrophysiological methods and by intracellular-dye iontophoresis. We report here that no electrotonic coupling is detectable between epithelial cells of Hydra attenuata in: (1) intact animals, (2) head-regenerating animals, (3) cell re-aggregates, and (4) hydra...

  20. Case Report: Multifocal biphasic squamoid alveolar renal cell carcinoma [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Jose Ignacio Lopez

    2016-04-01

    Full Text Available A multifocal biphasic squamoid alveolar renal cell carcinoma in a 68-year-old man is reported. Four different peripheral tumor nodules were identified on gross examination. A fifth central tumor corresponded to a conventional clear cell renal cell carcinoma. Biphasic squamoid alveolar renal cell carcinoma is a rare tumor that has been very recently characterized as a distinct histotype within the spectrum of papillary renal cell carcinoma. Immunostaining with cyclin D1 seems to be specific of this tumor subtype. This is the first reported case with multifocal presentation.

  1. Pulmonary alveolar proteinosis with myeloproliferative syndrome with myelodysplasia: bronchoalveolar lavage reduces white blood cell count.

    Science.gov (United States)

    Pollack, Seth M; Gutierrez, Guillermo; Ascensao, Joao

    2006-08-01

    Pulmonary alveolar proteinosis (PAP) is a rare disorder characterized by surfactant component accumulation in the alveolar space. Primary PAP is likely an autoimmune disorder caused by antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF). When an underlying disease causes PAP, this is called secondary PAP. Hematologic malignancies are an important cause of secondary PAP. As the pathogenesis of primary PAP has become more fully understood, improvements in diagnostic and therapeutic approaches have followed. However, when PAP is secondary to an underlying hematologic malignancy, much remains unclear. Here we describe for the first time a patient with hybrid myelodysplastic syndrome/myeloproliferative syndrome and PAP who had a marked decrease in her white blood cell count following a transbronchial biopsy accompanied by bronchoalveolar lavage (BAL). Similar significant decreases in WBC count accompanied clinical improvement following two unilateral BALs. Given that patients with pulmonary alveolar proteinosis frequently have elevated GM-CSF in bronchoalveolar fluid, this observation provides a unique vantage point to understand the pathophysiology of secondary PAP. PMID:16906593

  2. Respiratory epithelial cells orchestrate pulmonary innate immunity

    OpenAIRE

    Whitsett, Jeffrey A.; Alenghat, Theresa

    2014-01-01

    The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of ...

  3. Sphingolipid trafficking and protein sorting in epithelial cells

    NARCIS (Netherlands)

    Slimane, TA; Hoekstra, D

    2002-01-01

    Sphingolipids represent a minor, but highly dynamic subclass of lipids in all eukaryotic cells. They are involved in functions that range from structural protection to signal transduction and protein sorting, and participate in lipid raft assembly. In polarized epithelial cells, which display an asy

  4. Exposure of surfactant protein A to ozone in vitro and in vivo impairs its interactions with alveolar cells

    Energy Technology Data Exchange (ETDEWEB)

    Oosting, R.S.; Van Iwaarden, J.F.; Van Bree, L.; Verhoef, J.; Van Golde, L.M.; Haagsman, H.P. (Laboratory of Veterinary Biochemistry, Utrecht University (Netherlands))

    1992-01-01

    This study focused on the question of whether exposure of surfactant protein A (SP-A) to ozone affected properties of this protein that may be involved in regulating alveolar type II cell and alveolar macrophage functions. In vitro exposure of human or canine SP-A to ozone reduced the ability of this protein to inhibit phorbol-ester induced secretion of (3H)phosphatidylcholine by alveolar type II cells in culture. Ozone-exposed human SP-A showed a decreased ability to enhance phagocytosis of herpes simplex virus and to stimulate superoxide anion production by alveolar macrophages. Experiments with elastase showed that ozone-exposed canine SP-A was more susceptible to proteolysis. A conformational change of the protein could underlie this phenomenon. Surfactant isolated from ozone-exposed rats (0.4 ppm ozone for 12 h) was also less able to stimulate superoxide anion production by alveolar macrophages than surfactant from control rats, which suggested that SP-A in vivo was also susceptible to ozone. The results of this study suggest that SP-A-alveolar cell interactions can be inhibited by ozone exposure, which may contribute to the toxicity of ozone in the lungs.

  5. Loss of proliferation and antigen presentation activity following internalization of polydispersed carbon nanotubes by primary lung epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mandavi Kumari

    Full Text Available Interactions between poly-dispersed acid functionalized single walled carbon nanotubes (AF-SWCNTs and primary lung epithelial (PLE cells were studied. Peritoneal macrophages (PMs, known phagocytic cells were used as positive controls in this study. Recovery of live cells from cultures of PLE cells and PMs was significantly reduced in the presence of AF-SWCNTs, in a time and dose dependent manner. Both PLE cells as well as PMs could take up fluorescence tagged AF-SWCNTs in a time dependent manner and this uptake was significantly blocked by cytochalasin D, an agent that blocks the activity of acto-myosin fibers and therefore the phagocytic activity of cells. Confocal microscopic studies confirmed that AF-SWCNTs were internalized by both PLE cells and PMs. Intra-trachially instilled AF-SWCNTs could also be taken up by lung epithelial cells as well as alveolar macrophages. Freshly isolated PLE cells had significant cell division activity and cell cycling studies indicated that treatment with AF-SWCNTs resulted in a marked reduction in S-phase of the cell cycle. In a previously standardized system to study BCG antigen presentation by PLE cells and PMs to sensitized T helper cells, AF-SWCNTs could significantly lower the antigen presentation ability of both cell types. These results show that mouse primary lung epithelial cells can efficiently internalize AF-SWCNTs and the uptake of nanotubes interfered with biological functions of PLE cells including their ability to present BCG antigens to sensitized T helper cells.

  6. [Epithelial cell in intestinal homeostasis and inflammatory bowel diseases].

    Science.gov (United States)

    Zouiten-Mekki, Lilia; Serghini, Meriem; Fekih, Monia; Kallel, Lamia; Matri, Samira; Ben Mustapha, Nadia; Boubaker, Jalel; Filali, Azza

    2013-12-01

    Crohn's disease (CD) and ulcerative colitis (UC) are the principal inflammatory bowel diseases (IBD) which physiopathology is currently poorly elucidated. During these diseases, the participation of the epithelial cell in the installation and the perpetuation of the intestinal inflammation is now clearly implicated. In fact, the intestinal epithelium located at the interface between the internal environment and the intestinal luminal, is key to the homeostatic regulation of the intestinal barrier. This barrier can schematically be regarded as being three barriers in one: a physical, chemical and immune barrier. The barrier function of epithelial cell can be altered by various mechanisms as occurs in IBD. The goal of this article is to review the literature on the role of the epithelial cell in intestinal homeostasis and its implication in the IBD. PMID:24356146

  7. Regenerative capacity of adult cortical thymic epithelial cells

    OpenAIRE

    Rode, Immanuel; Boehm, Thomas

    2012-01-01

    Involution of the thymus is accompanied by a decline in the number of thymic epithelial cells (TECs) and a severely restricted peripheral repertoire of T-cell specificities. TECs are essential for T-cell differentiation; they originate from a bipotent progenitor that gives rise to cells of cortical (cTEC) and medullary (mTEC) phenotypes, via compartment-specific progenitors. Upon acute selective near-total ablation during embryogenesis, regeneration of TECs fails, suggesting that losses from ...

  8. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells

    OpenAIRE

    Gray, Daniel H.D.; Seach, Natalie; Ueno, Tomoo; Milton, Morag K; Liston, Adrian; Lew, Andrew M.; Christopher C Goodnow; Boyd, Richard L.

    2006-01-01

    Despite the importance of thymic stromal cells to T-cell development, relatively little is known about their biology. Here, we use single-cell analysis of stromal cells to analyze extensive changes in the number and composition of thymic stroma throughout life, revealing a surprisingly dynamic population. Phenotypic progression of thymic epithelial subsets was assessed at high resolution in young mice to provide a developmental framework. The cellular and molecular requirements of adult epith...

  9. Sds22, a PP1 phosphatase regulatory subunit, regulates epithelial cell polarity and shape [Sds22 in epithelial morphology

    OpenAIRE

    Sung Hsin-Ho; Fletcher Georgina; Hidalgo Cristina; Grusche Felix A; Sahai Erik; Thompson Barry J

    2009-01-01

    Abstract Background How epithelial cells adopt their particular polarised forms is poorly understood. In a screen for genes regulating epithelial morphology in Drosophila, we identified sds22, a conserved gene previously characterised in yeast. Results In the columnar epithelia of imaginal discs or follicle cells, mutation of sds22 causes contraction of cells along their apical-basal axis, resulting in a more cuboidal morphology. In addition, the mutant cells can also display altered cell pol...

  10. Epithelial fibroblast triggering and interactions in pulmonary fibrosis

    OpenAIRE

    Noble, P W

    2008-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterised by repeated injury to the alveolar epithelium with loss of lung epithelial cells and abnormal tissue repair, resulting in excessive accumulation of fibroblasts and myofibroblasts, deposition of extracellular matrix components and distortion of lung architecture, eventually leading to respiratory failure. There is growing circumstantial evidence to suggest that in IPF the alveolar epithelium is prone to undergoing programmed cell death follo...

  11. Epithelial cell cultures from normal and cancerous human tissues.

    Science.gov (United States)

    Owens, R B; Smith, H S; Nelson-Rees, W A; Springer, E L

    1976-04-01

    Thirty epithelial cell strains were isolated from human carcinomas and normal epithelial tissues by collagenase digestion and selective removal of fibroblasts with trypsin-Versene. Most strains were obtained from metastatic carcinomas or epithelia of the urinary and intestinal tracts. The success rate for growth of both neoplastic and normal tissues (excluding skin) was 38%. Six of these strains showed gross morphologic and chromosome changes typical of malignant cells. Nine resembled normal epithelium. The other 15 exhibited some degree of morphologic change from normal. PMID:176412

  12. New insights of P2X7 receptor signaling pathway in alveolar functions

    OpenAIRE

    Mishra, Amarjit

    2013-01-01

    Purinergic P2X7 receptor (P2X7R), an ATP-gated cation channel, is unique among all other family members because of its ability to respond to various stimuli and to modulate pro-inflammatory signaling. The activation of P2X7R in immune cells is absolutely required for mature interleukin -1beta (IL-1beta) and IL-18 production and release. Lung alveoli are lined by the structural alveolar epithelial type I (AEC I) and alveolar epithelial type II cells (AEC II). AEC I plays important roles in alv...

  13. Cell volume regulation in epithelial physiology and cancer

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Hoffmann, Else Kay; Novak, Ivana

    2013-01-01

    The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume re...... transporters and channels with key physiological functions in epithelia and known roles in the development of cancer in these tissues. Their roles in cell survival, cell cycle progression, and development of drug resistance in epithelial cancers will be discussed.......The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume...... regulation both rely on the spatially and temporally coordinated function of ion channels and transporters. In healthy epithelia, specific ion channels/transporters localize to the luminal and basolateral membranes, contributing to functional epithelial polarity. In pathophysiological processes such as...

  14. HGF Expressing Stem Cells in Usual Interstitial Pneumonia Originate from the Bone Marrow and Are Antifibrotic

    OpenAIRE

    Gazdhar, Amiq Ur Rahman; Susuri, Njomeza; Hostettler, Katrin; Gugger, Mathias; Knudsen, Lars; Roth, Michael; Ochs, Matthias; Geiser, Thomas

    2013-01-01

    BACKGROUND Pulmonary fibrosis may result from abnormal alveolar wound repair after injury. Hepatocyte growth factor (HGF) improves alveolar epithelial wound repair in the lung. Stem cells were shown to play a major role in lung injury, repair and fibrosis. We studied the presence, origin and antifibrotic properties of HGF-expressing stem cells in usual interstitial pneumonia. METHODS Immunohistochemistry was performed in lung tissue sections and primary alveolar epithelial cells o...

  15. HGF Expressing Stem Cells in Usual Interstitial Pneumonia Originate from the Bone Marrow and Are Antifibrotic

    OpenAIRE

    Gazdhar, Amiq; Susuri, Njomeza; Hostettler, Katrin; Gugger, Mathias; Knudsen, Lars; Roth, Michael; Ochs, Matthias; Geiser, Thomas

    2013-01-01

    Background Pulmonary fibrosis may result from abnormal alveolar wound repair after injury. Hepatocyte growth factor (HGF) improves alveolar epithelial wound repair in the lung. Stem cells were shown to play a major role in lung injury, repair and fibrosis. We studied the presence, origin and antifibrotic properties of HGF-expressing stem cells in usual interstitial pneumonia. Methods Immunohistochemistry was performed in lung tissue sections and primary alveolar epithelial cells obtained from...

  16. Adherence of Candida albicans to oral epithelial cells differentiated by Papanicolaou staining.

    OpenAIRE

    Williams, D. W.; Walker, R; Lewis, M.A.; Allison, R T; Potts, A J

    1999-01-01

    OBJECTIVE: To examine the relative adherence of Candida albicans to oral epithelial cells differentiated by Papanicolaou staining. METHODS: Oral epithelial cells were collected from 10 healthy adults (five male, five female) and counted. Equal volumes of oral epithelial cells and candida were mixed and incubated. The epithelial cells from this mix were collected by filtration through 10 microns polycarbonate membrane filters. Cells retained on the membrane filters were stained with crystal vi...

  17. Heterogeneity of thymic epithelial cells in promoting T-lymphocyte differentiation in vivo.

    OpenAIRE

    Gutierrez, J C; Palacios, R

    1991-01-01

    To study in vivo the contribution of different thymic epithelial cells to T-lymphocyte differentiation, we have established several nontransformed thymic epithelial cell lines and developed an in vivo assay, not involving exposure to drugs or radiation, that permitted us to study the capacity of these epithelial lines to support T-cell differentiation. We found that cell lines EA2 and ET, which express markers of cortical epithelial cells, produce interleukin 7 mRNA and after being injected i...

  18. Apicobasal Polarity Controls Lymphocyte Adhesion to Hepatic Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Natalia Reglero-Real

    2014-09-01

    Full Text Available Loss of apicobasal polarity is a hallmark of epithelial pathologies. Leukocyte infiltration and crosstalk with dysfunctional epithelial barriers are crucial for the inflammatory response. Here, we show that apicobasal architecture regulates the adhesion between hepatic epithelial cells and lymphocytes. Polarized hepatocytes and epithelium from bile ducts segregate the intercellular adhesion molecule 1 (ICAM-1 adhesion receptor onto their apical, microvilli-rich membranes, which are less accessible by circulating immune cells. Upon cell depolarization, hepatic ICAM-1 becomes exposed and increases lymphocyte binding. Polarized hepatic cells prevent ICAM-1 exposure to lymphocytes by redirecting basolateral ICAM-1 to apical domains. Loss of ICAM-1 polarity occurs in human inflammatory liver diseases and can be induced by the inflammatory cytokine tumor necrosis factor alpha (TNF-α. We propose that adhesion receptor polarization is a parenchymal immune checkpoint that allows functional epithelium to hamper leukocyte binding. This contributes to the haptotactic guidance of leukocytes toward neighboring damaged or chronically inflamed epithelial cells that expose their adhesion machinery.

  19. Polarized entry of canine parvovirus in an epithelial cell line.

    OpenAIRE

    Basak, S; Compans, R W

    1989-01-01

    The binding and uptake of canine parvovirus (CPV) in polarized epithelial cells were investigated by growing the cells on a permeable support and inoculating with the virus either from the apical or basolateral surface. Binding of radiolabeled CPV occurred preferentially on the basolateral surface. In contrast, when a similar experiment was carried out on nonpolarized A72 cells, virus binding occurred regardless of the direction of virus input. Binding appeared to be specific for CPV and coul...

  20. Requirements for invasion of epithelial cells by Actinobacillus actinomycetemcomitans.

    OpenAIRE

    Sreenivasan, P K; Meyer, D H; Fives-Taylor, P M

    1993-01-01

    Actinobacillus actinomycetemcomitans, an oral bacterium implicated in human periodontal disease, was recently demonstrated to invade cultured epithelial cells (D. H. Meyer, P. K. Sreenivasan, and P. M. Fives-Taylor, Infect. Immun. 59:2719-2726, 1991). This report characterizes the requirements for invasion of KB cells by A. actinomycetemcomitans. The roles of bacterial and host factors were investigated by using selective agents that influence specific bacterial or host cell functions. Inhibi...

  1. The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells

    Institute of Scientific and Technical Information of China (English)

    Li-Wei Zheng; Logan Linthicum; Pamela K DenBesten; Yan Zhang

    2013-01-01

    This study aimed to compare epithelial cells derived from human embryonic stem cells (hESCs) to human ameloblast-lineage cells (ALCs), as a way to determine their potential use as a cell source for ameloblast regeneration. Induced by various concentrations of bone morphogenetic protein 4 (BMP4), retinoic acid (RA) and lithium chloride (LiCI) for 7 days, hESCs adopted cobble-stone epithelial phenotype (hESC-derived epithelial cells (ES-ECs)) and expressed cytokeratin 14. Compared with ALCs and oral epithelial cells (OE), ES-ECs expressed amelogenesis-associated genes similar to ALCs. ES-ECs were compared with human fetal skin epithelium, human fetal oral buccal mucosal epithelial cells and human ALCs for their expression pattern of cytokeratins as well. ALCs had relatively high expression levels of cytokeratin 76, which ,vas also found to be upregulated in ES-ECs. Based on the present study, with the similarity of gene expression with ALCs, ES-ECs are a promising potential cell source for regeneration, which are not available in erupted human teeth for regeneration of enamel.

  2. Alveolar architecture of clear cell renal carcinomas (≤5.0 cm) show high attenuation on dynamic CT scanning

    International Nuclear Information System (INIS)

    To establish the correlation between tumor appearance on CT and tumor histology in renal cell carcinomas. The density and attenuation patterns of 96 renal cell carcinomas, each ≤5 cm in greatest diameter, were studied by non-enhanced CT and early and late after bolus injection of contrast medium using dynamic CT. The density and attenuation patterns and pathological maps of each tumor were individually correlated. High attenuated areas were present in 72 of the 96 tumors on early enhanced dynamic CT scanning. All 72 high attenuated areas were of the clear cell renal cell carcinoma and had alveolar architecture. The remaining 24 tumors that did not demonstrate high attenuated foci on early enhanced scanning included three clear cell, nine granular cell, six papillary, five chromophobe and one collecting duct type. With respect to tumor architecture, all clear cell tumors of alveolar architecture demonstrated high attenuation on early enhanced scanning. Clear cell renal cell carcinomas of alveolar architecture show high attenuation on early enhanced dynamic CT scanning. A larger number of patients are indispensable to obtaining clear results. However, these findings seem to be an important clue to the diagnosis of renal cell carcinomas as having an alveolar structure. (author)

  3. Deleted in malignant brain tumors 1 (DMBT1) elicits increased VEGF and decreased IL-6 production in type II lung epithelial cells

    DEFF Research Database (Denmark)

    Müller, Hanna; Nagel, Christian; Weiss, Christel;

    2015-01-01

    between VEGF and IL-6 levels to DMBT1 expression in the lungs of preterm and term infants and in lung epithelial cells in vitro. METHODS: We examined by ELISA VEGF levels in 120 tracheal aspirates of 57 preterm and term infants and tested for correlation with different perinatal factors as well as with...... DMBT1 levels. To examine the effect of DMBT1 on VEGF and IL-6 expression we compared type II lung epithelial A549 cells stably transfected with a DMBT1 expression plasmid (DMBT1+ cells) to A549 cells stably transfected with an empty expression plasmid (DMBT1- cells). The concentrations of VEGF and IL-6...... that DMBT1 promotes VEGF and suppresses IL-6 production in alveolar tissues, which could point to DMBT1 having a possible role in the transition from inflammation to regeneration and being a potentially useful clinical marker....

  4. Sodium selectivity of semicircular canal duct epithelial cells

    Directory of Open Access Journals (Sweden)

    Harbidge Donald G

    2011-09-01

    Full Text Available Abstract Background Sodium absorption by semicircular canal duct (SCCD epithelial cells is thought to contribute to the homeostasis of the volume of vestibular endolymph. It was previously shown that the epithelial cells could absorb Na+ under control of a glucocorticoid hormone (dexamethasone and the absorptive transepithelial current was blocked by amiloride. The most commonly-observed target of amiloride is the epithelial sodium channel (ENaC, comprised of the three subunits α-, β- and γ-ENaC. However, other cation channels have also been observed to be sensitive in a similar concentration range. The aim of this study was to determine whether SCCD epithelial cells absorb only Na+ or also K+ through an amiloride-sensitive pathway. Parasensory K+ absorption could contribute to regulation of the transduction current through hair cells, as found to occur via vestibular transitional cells [S. H. Kim and D. C. Marcus. Regulation of sodium transport in the inner ear. Hear.Res. doi:10.1016/j.heares.2011.05.003, 2011]. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6197, whole-cell patch clamp and transepithelial recordings in primary cultures of rat SCCD. α-, β- and γ-ENaC were all previously reported as present. The selectivity of the amiloride-sensitive transepithelial and cell membrane currents was observed in Ussing chamber and whole-cell patch clamp recordings. The cell membrane currents were carried by Na+ but not K+, but the Na+ selectivity disappeared when the cells were cultured on impermeable supports. Transepithelial currents across SCCD were also carried exclusively by Na+. Conclusions These results are consistent with the amiloride-sensitive absorptive flux of SCCD mediated by a highly Na+-selective channel, likely αβγ-ENaC. These epithelial cells therefore absorb only Na+ via the amiloride-sensitive pathway and do not provide a parasensory K+ efflux from the

  5. Use of Induced Pluripotent Stem Cells to Recapitulate Pulmonary Alveolar Proteinosis Pathogenesis

    OpenAIRE

    Suzuki, Takuji; Mayhew, Christopher; Sallese, Anthony; Chalk, Claudia; Carey, Brenna C.; Malik, Punam; Wood, Robert E.; Trapnell, Bruce C.

    2014-01-01

    Rationale: In patients with pulmonary alveolar proteinosis (PAP) syndrome, disruption of granulocyte/macrophage colony–stimulating factor (GM-CSF) signaling is associated with pathogenic surfactant accumulation from impaired clearance in alveolar macrophages.

  6. Computational investigation of epithelial cell dynamic phenotype in vitro

    Directory of Open Access Journals (Sweden)

    Debnath Jayanta

    2009-05-01

    Full Text Available Abstract Background When grown in three-dimensional (3D cultures, epithelial cells typically form cystic organoids that recapitulate cardinal features of in vivo epithelial structures. Characterizing essential cell actions and their roles, which constitute the system's dynamic phenotype, is critical to gaining deeper insight into the cystogenesis phenomena. Methods Starting with an earlier in silico epithelial analogue (ISEA1 that validated for several Madin-Darby canine kidney (MDCK epithelial cell culture attributes, we built a revised analogue (ISEA2 to increase overlap between analogue and cell culture traits. Both analogues used agent-based, discrete event methods. A set of axioms determined ISEA behaviors; together, they specified the analogue's operating principles. A new experimentation framework enabled tracking relative axiom use and roles during simulated cystogenesis along with establishment of the consequences of their disruption. Results ISEA2 consistently produced convex cystic structures in a simulated embedded culture. Axiom use measures provided detailed descriptions of the analogue's dynamic phenotype. Dysregulating key cell death and division axioms led to disorganized structures. Adhering to either axiom less than 80% of the time caused ISEA1 to form easily identified morphological changes. ISEA2 was more robust to identical dysregulation. Both dysregulated analogues exhibited characteristics that resembled those associated with an in vitro model of early glandular epithelial cancer. Conclusion We documented the causal chains of events, and their relative roles, responsible for simulated cystogenesis. The results stand as an early hypothesis–a theory–of how individual MDCK cell actions give rise to consistently roundish, cystic organoids.

  7. Interactions between Periodontal Bacteria and Human Oral Epithelial Cells: Fusobacterium nucleatum Adheres to and Invades Epithelial Cells

    Science.gov (United States)

    Han, Yiping W.; Shi, Wenyuan; Huang, George T.-J.; Kinder Haake, Susan; Park, No-Hee; Kuramitsu, Howard; Genco, Robert J.

    2000-01-01

    Bacteria are causative agents of periodontal diseases. Interactions between oral bacteria and gingival epithelial cells are essential aspects of periodontal infections. Using an in vitro tissue culture model, a selected group of gram-negative anaerobic bacteria frequently associated with periodontal diseases, including Bacteroides forsythus, Campylobacter curvus, Eikenella corrodens, Fusobacterium nucleatum, Porphyromonas gingivalis, and Prevotella intermedia, were examined for their ability to adhere to and invade primary cultures of human gingival epithelial cells (HGEC). The effects of these bacteria on the production of interleukin-8 (IL-8), a proinflammatory chemokine, were also measured. These studies provided an initial demonstration that F. nucleatum adhered to and invaded HGEC and that this was accompanied by high levels of IL-8 secretion from the epithelial cells. The attachment and invasion characteristics of F. nucleatum were also tested using KB cells, an oral epithelial cell line. The invasion was verified by transmission electron microscopy and with metabolic inhibitors. Invasion appeared to occur via a “zipping” mechanism and required the involvement of actins, microtubules, signal transduction, protein synthesis, and energy metabolism of the epithelial cell, as well as protein synthesis by F. nucleatum. A spontaneous mutant, lam, of F. nucleatum, isolated as defective in autoagglutination, was unable to attach to or invade HGEC or KB cells, further indicating the requirement of bacterial components in these processes. Sugar inhibition assays indicated that lectin-like interactions were involved in the attachment of F. nucleatum to KB cells. Investigation of these new virulence phenotypes should improve our understanding of the role of F. nucleatum in periodontal infections. PMID:10816455

  8. Epithelial cells with hepatobiliary phenotype: Is it another stem cell candidate for healthy adult human liver?

    Institute of Scientific and Technical Information of China (English)

    Dung Ngoc Khuu; Mustapha Najimi; Etienne M Sokal

    2007-01-01

    AIM: To investigate the presence and role of liver epithelial cells in the healthy human adult liver.METHODS: Fifteen days after human hepatocyte primary culture, epithelial like cells emerged and started proliferating. Cell colonies were isolated and sub-cultured for more than 160 d under specific culture conditions. Cells were analyzed for each passage using immunofluorescence, flow cytometry and reverse transcriptionpolymerase chain reaction (RT-PCR).RESULTS: Flow cytometry analysis demonstrated that liver epithelial cells expressed common markers for hepatic and stem cells such as CD90, CD44 and CD29 but were negative for CD34 and CD117. Using immunofluorescence we demonstrated that liver epithelial cells expressed not only immature (a-fetoprotein) but also differentiated hepatocyte (albumin and CK-18) and biliary markers (CK-7 and 19), whereas they were negative for OV-6. RT-PCR analysis confirmed immunofluorescence data and revealed that liver epithelial cells did not express mature hepatocyte markers such as CYP2B6, CYP3A4 and tyrosine amino-transferase. Purified liver epithelial cells were transplanted into SCID mice. One month after transplantation, albumin positive cell foci were detected in the recipient mouse parenchyma.CONCLUSION: According to their immature and bipotential phenotype, liver epithelial cells might represent a pool of precursors in the healthy human adult liver other than oval cells.

  9. Inefficient cationic lipid-mediated siRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo

    Directory of Open Access Journals (Sweden)

    Hu Jim

    2006-02-01

    Full Text Available Abstract Background The cationic lipid Genzyme lipid (GL 67 is the current "gold-standard" for in vivo lung gene transfer. Here, we assessed, if GL67 mediated uptake of siRNAs and asODNs into airway epithelium in vivo. Methods Anti-lacZ and ENaC (epithelial sodium channel siRNA and asODN were complexed to GL67 and administered to the mouse airway epithelium in vivo Transfection efficiency and efficacy were assessed using real-time RT-PCR as well as through protein expression and functional studies. In parallel in vitro experiments were carried out to select the most efficient oligonucleotides. Results In vitro, GL67 efficiently complexed asODNs and siRNAs, and both were stable in exhaled breath condensate. Importantly, during in vitro selection of functional siRNA and asODN we noted that asODNs accumulated rapidly in the nuclei of transfected cells, whereas siRNAs remained in the cytoplasm, a pattern consistent with their presumed site of action. Following in vivo lung transfection siRNAs were only visible in alveolar macrophages, whereas asODN also transfected alveolar epithelial cells, but no significant uptake into conducting airway epithelial cells was seen. SiRNAs and asODNs targeted to β-galactosidase reduced βgal mRNA levels in the airway epithelium of K18-lacZ mice by 30% and 60%, respectively. However, this was insufficient to reduce protein expression. In an attempt to increase transfection efficiency of the airway epithelium, we increased contact time of siRNA and asODN using the in vivo mouse nose model. Although highly variable and inefficient, transfection of airway epithelium with asODN, but not siRNA, was now seen. As asODNs more effectively transfected nasal airway epithelial cells, we assessed the effect of asODN against ENaC, a potential therapeutic target in cystic fibrosis; no decrease in ENaC mRNA levels or function was detected. Conclusion This study suggests that although siRNAs and asODNs can be developed to inhibit

  10. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    Science.gov (United States)

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. PMID:25546438

  11. Cell deformation at the air-liquid interface induces Ca2+-dependent ATP release from lung epithelial cells.

    Science.gov (United States)

    Ramsingh, Ronaldo; Grygorczyk, Alexandra; Solecki, Anna; Cherkaoui, Lalla Siham; Berthiaume, Yves; Grygorczyk, Ryszard

    2011-04-01

    Extracellular nucleotides regulate mucociliary clearance in the airways and surfactant secretion in alveoli. Their release is exquisitely mechanosensitive and may be induced by stretch as well as airflow shear stress acting on lung epithelia. We hypothesized that, in addition, tension forces at the air-liquid interface (ALI) may contribute to mechanosensitive ATP release in the lungs. Local depletion of airway surface liquid, mucins, and surfactants, which normally protect epithelial surfaces, facilitate such release and trigger compensatory mucin and fluid secretion processes. In this study, human bronchial epithelial 16HBE14o(-) and alveolar A549 cells were subjected to tension forces at the ALI by passing an air bubble over the cell monolayer in a flow-through chamber, or by air exposure while tilting the cell culture dish. Such stimulation induced significant ATP release not involving cell lysis, as verified by ethidium bromide staining. Confocal fluorescence microscopy disclosed reversible cell deformation in the monolayer part in contact with the ALI. Fura 2 fluorescence imaging revealed transient intracellular Ca(2+) elevation evoked by the ALI, which did not entail nonspecific Ca(2+) influx from the extracellular space. ATP release was reduced by ∼40 to ∼90% from cells loaded with the Ca(2+) chelator BAPTA-AM and was completely abolished by N-ethylmalemide (1 mM). These experiments demonstrate that in close proximity to the ALI, surface tension forces are transmitted directly on cells, causing their mechanical deformation and Ca(2+)-dependent exocytotic ATP release. Such a signaling mechanism may contribute to the detection of local deficiency of airway surface liquid and surfactants on the lung surface. PMID:21239538

  12. Sonic Hedgehog Opposes Epithelial Cell Cycle Arrest

    OpenAIRE

    Fan, Hongran; Khavari, Paul A

    1999-01-01

    Stratified epithelium displays an equilibrium between proliferation and cell cycle arrest, a balance that is disrupted in basal cell carcinoma (BCC). Sonic hedgehog (Shh) pathway activation appears sufficient to induce BCC, however, the way it does so is unknown. Shh-induced epidermal hyperplasia is accompanied by continued cell proliferation in normally growth arrested suprabasal cells in vivo. Shh-expressing cells fail to exit S and G2/M phases in response to calcium-induced differentiation...

  13. Alterations of alveolar type II cells and intraalveolar surfactant after bronchoalveolar lavage and perfluorocarbon ventilation. An electron microscopical and stereological study in the rat lung

    Directory of Open Access Journals (Sweden)

    Burkhardt Wolfram

    2007-06-01

    Full Text Available Abstract Background Repeated bronchoalveolar lavage (BAL has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool. Methods Male wistar rats were surfactant depleted by BAL and treated for 1 hour by conventional mechanical ventilation (Lavaged-Gas, n = 5 or partial liquid ventilation with PF 5080 (Lavaged-PF5080, n = 5. For control, 10 healthy animals with gas (Healthy-Gas, n = 5 or PF5080 filled lungs (Healthy-PF5080, n = 5 were studied. A design-based stereological approach was used for quantification of lung parenchyma and the intracellular and intraalveolar surfactant pool at the light and electron microscopic level. Results Compared to Healthy-lungs, Lavaged-animals had more type II cells with lamellar bodies in the process of secretion and freshly secreted lamellar body-like surfactant forms in the alveoli. The fraction of alveolar epithelial surface area covered with surfactant and total intraalveolar surfactant content were significantly smaller in Lavaged-animals. Compared with Gas-filled lungs, both PF5080-groups had a significantly higher total lung volume, but no other differences. Conclusion After BAL-induced alveolar surfactant depletion the amount of intracellularly stored surfactant is about half as high as in healthy animals. In lavaged animals short time liquid ventilation with PF5080 did not alter intra- or extracellular surfactant content or subtype composition.

  14. Biomechanics of epithelial cell islands analyzed by modeling and experimentation

    CERN Document Server

    Coburn, Luke; Noppe, Adrian; Caldwell, Benjamin J; Moussa, Elliott; Yap, Chloe; Priya, Rashmi; Lobaskin, Vladimir; Roberts, Anthony P; Yap, Alpha S; Neufeld, Zoltan; Gomez, Guillermo A

    2016-01-01

    We generated a new computational approach to analyze the biomechanics of epithelial cell islands that combines both vertex and contact-inhibition-of-locomotion models to include both cell-cell and cell-substrate adhesion. Examination of the distribution of cell protrusions (adhesion to the substrate) in the model predicted high order profiles of cell organization that agree with those previously seen experimentally. Cells acquired an asymmetric distribution of protrusions (and traction forces) that decreased when moving from the edge to the island center. Our in silico analysis also showed that tension on cell-cell junctions (and monolayer stress) is not homogeneous across the island. Instead it is higher at the island center and scales up with island size, which we confirmed experimentally using laser ablation assays and immunofluorescence. Moreover, our approach has the minimal elements necessary to reproduce mechanical crosstalk between both cell-cell and cell substrate adhesion systems. We found that an i...

  15. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang, E-mail: wenfang64@hotmail.com; Zhang, Yi, E-mail: syzi960@yahoo.com

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  16. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    International Nuclear Information System (INIS)

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients

  17. Uranium induces oxidative stress in lung epithelial cells

    International Nuclear Information System (INIS)

    Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system's response to the oxidative stress induced by uranium in the cells. (orig.)

  18. Inactivation of Rb in stromal fibroblasts promotes epithelial cell invasion.

    Science.gov (United States)

    Pickard, Adam; Cichon, Ann-Christin; Barry, Anna; Kieran, Declan; Patel, Daksha; Hamilton, Peter; Salto-Tellez, Manuel; James, Jacqueline; McCance, Dennis J

    2012-07-18

    Stromal-derived growth factors are required for normal epithelial growth but are also implicated in tumour progression. We have observed inactivation of the retinoblastoma protein (Rb), through phosphorylation, in cancer-associated fibroblasts in oro-pharyngeal cancer specimens. Rb is well known for its cell-autonomous effects on cancer initiation and progression; however, cell non-autonomous functions of Rb are not well described. We have identified a cell non-autonomous role of Rb, using three-dimensional cultures, where depletion of Rb in stromal fibroblasts enhances invasive potential of transformed epithelia. In part, this is mediated by upregulation of keratinocyte growth factor (KGF), which is produced by the depleted fibroblasts. KGF drives invasion of epithelial cells through induction of MMP1 expression in an AKT- and Ets2-dependent manner. Our data identify that stromal fibroblasts can alter the invasive behaviour of the epithelium, and we show that altered expression of KGF can mediate these functions. PMID:22643222

  19. Culture and immortalization of pancreatic ductal epithelial cells.

    Science.gov (United States)

    Lawson, Terence; Ouellette, Michel; Kolar, Carol; Hollingsworth, Michael

    2005-01-01

    Some populations of the epithelial cells from the duct and ductular network of the mammalian pancreas have been isolated and maintained in vitro for up to 3 mo. These cells express many of the surface factors that are unique to them in vivo. They also retain significant drug- and carcinogen-metabolizing capacity in vitro. In this chapter we review the progression of the methods for the isolation, culture and maintenance in vitro for these cells from the earliest when only duct/ductular fragments were obtainable to the current ones which provide epithelial cells. The critical steps in the isolation process are identified and strategies are provided to facilitate these steps. These include the selection of tissue digestive enzymes, the importance of extensive mincing before culture and the importance of roles of some co-factors used in the culture medium. PMID:15542901

  20. Interactions between Periodontal Bacteria and Human Oral Epithelial Cells: Fusobacterium nucleatum Adheres to and Invades Epithelial Cells

    OpenAIRE

    Han, Yiping W.; Shi, Wenyuan; HUANG, GEORGE T.-J.; Kinder Haake, Susan; Park, No-Hee; Kuramitsu, Howard; Genco, Robert J.

    2000-01-01

    Bacteria are causative agents of periodontal diseases. Interactions between oral bacteria and gingival epithelial cells are essential aspects of periodontal infections. Using an in vitro tissue culture model, a selected group of gram-negative anaerobic bacteria frequently associated with periodontal diseases, including Bacteroides forsythus, Campylobacter curvus, Eikenella corrodens, Fusobacterium nucleatum, Porphyromonas gingivalis, and Prevotella intermedia, were examined for their ability ...

  1. Inhibition of tumor necrosis factor-α reduces alveolar septal cell apoptosis in passive smoking rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cheng; CAI Shan; CHEN Ping; CHEN Jian-bo; WU Jie; WU Shang-jie; ZHOU Rui

    2008-01-01

    Background Recent studies have revealed that lung cell apoptosis plays an important role in pathogenesis of cigarette-induced chronic obstructive pulmonary disease (COPD).Tumor necrosis factor alpha(TNF-α)is one of the most important cytokines which are involved in COPD.This study aimed at investigating the jnfluence of its inhibitor,recombinant human necrosis factor-alpha receptor Ⅱ:IgG Fc fusion protein(rhTNFR:Fc)on alveolar septal cell apoptosis in passive smoking rats.Methods Forty-eight rats were randomly divided into a normal control group,a passive smoking group,an rhTNFR:Fc intervention group and a sham intervention group.The passive smoking rats were treated by exposure to cigarette smoking daily for 80 days.Afcer smoking for one month the rhTNFR:Fc Intervention group was treated with rhTNFR:Fc by subcutaneous injection,the sham intervention group injected subcutaneousIv with a neutral preparation(normal saline 0.1 ml,manicol 0.8 ml,cane sugar 0.2 mg,Tris 0.024 mg as a control.Lung function was determined and the levels of TNF-α in serum and broncho-alveolar lavage fluid(BALF)were measured with enzyme-linked immunosorbnent assay (ELISA).Lung tissue sections stained by hematoxylin and eosin(HE)were observed for study of morphological alternations.Mean linear intercept(MLI)and mean alveolar numbers(MAN)were measured and the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL)method was carried out to determine the percentage of positive cells and distribution of apoptotic cells.Results Increased MLI and decreased MAN were found in the passive smoking group compared with both the normal control group and the rhTNFR:Fc intervention group(P<0.05).Forced expiratory volume in 0.3 second(FEV0.3)/forced vital capacity(FVC)and peak expiratory flow(PEF)were lower in the passive smoking group than that in the normal control group(P<0.05).Compared with the sham intervention group,FEV0.3/FVC and PEF increased in the rhTNFR:Fc intervention

  2. Sulforaphane inhibits de novo synthesis of IL-8 and MCP-1 in human epithelial cells generated by cigarette smoke extract.

    Science.gov (United States)

    Starrett, Warren; Blake, David J

    2011-06-01

    Chronic obstructive pulmonary disease (COPD) is currently the fifth leading cause of death worldwide. Exposure to cigarette smoke (CS) is the primary factor associated with the COPD development. CS activates epithelial cells to secrete chemokines such as interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) that recruit neutrophils and macrophages to the lung. These inflammatory cells then release additional chemokines and cytokines leading to chronic inflammation that initiates apoptosis in epithelial and endothelial cells and destruction of alveolar structure. Pulmonary epithelium responds to oxidative stress mediated by CS through activating NRF2-dependent pathways, leading to an increased expression of antioxidant and cytoprotective enzymes thereby providing a protective response against CS-induced lung injury. We hypothesized that activating NRF2-dependent cytoprotective gene expression with sulforaphane (SFN) affords protection against CS-induced lung damage by inhibiting chemokine production. Results indicate that in the human BEAS-2B epithelial cell line, 5 μM SFN activated NRF2-dependent gene expression by triggering the translocation of NRF2 to the nucleus and significantly increased the expression of NRF2-dependent genes such as NADPH quinone oxidoreductase-1, heme oxygenase-1, and glutamate cysteine ligase modulatory subunit. Cigarette smoke extract (CSE) exposure of BEAS-2B cells significantly increased production of both IL-8 and MCP-1. Production of both chemokines was significantly reduced with SFN given prior to CSE; SFN inhibited IL-8 and MCP-1 gene expression at the transcription level. Our results indicate that activating NRF2 pathways with SFN inhibits CSE-induced chemokine production in human epithelial cells. However, the mechanism by which the production of chemokines is inhibited through SFN still remains to be elucidated. SFN may enhance NRF2 transcriptional activity resulting in the inhibition of proinflammatory pathways such

  3. Epithelial Cell Apoptosis Causes Acute Lung Injury Masquerading as Emphysema

    OpenAIRE

    Mouded, Majd; Egea, Eduardo E.; Brown, Matthew J.; Hanlon, Shane M.; Houghton, A. McGarry; Tsai, Larry W; Ingenito, Edward P.; Shapiro, Steven D

    2009-01-01

    Theories of emphysema traditionally revolved around proteolytic destruction of extracellular matrix. Models have recently been developed that show airspace enlargement with the induction of pulmonary cell apoptosis. The purpose of this study was to determine the mechanism by which a model of epithelial cell apoptosis caused airspace enlargement. Mice were treated with either intratracheal microcystin (MC) to induce apoptosis, intratracheal porcine pancreatic elastase (PPE), or their respectiv...

  4. Oral microbial biofilm stimulation of epithelial cell responses

    OpenAIRE

    Peyyala, Rebecca; Kirakodu, Sreenatha S.; Novak, Karen F.; Ebersole, Jeffrey L.

    2012-01-01

    Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfect...

  5. Midbody remnant licenses primary cilia formation in epithelial cells.

    Science.gov (United States)

    Ott, Carolyn M

    2016-08-01

    Tethered midbody remnants dancing across apical microvilli, encountering the centrosome, and beckoning forth a cilium-who would have guessed this is how polarized epithelial cells coordinate the end of mitosis and the beginning of ciliogenesis? New evidence from Bernabé-Rubio et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201601020) supports this emerging model. PMID:27482049

  6. The Epithelial Cell in Lung Health and Emphysema Pathogenesis

    OpenAIRE

    Mercer, Becky A; Lemaître, Vincent; Powell, Charles A.; D’Armiento, Jeanine

    2006-01-01

    Cigarette smoking is the primary cause of the irreversible lung disease emphysema. Historically, inflammatory cells such as macrophages and neutrophils have been studied for their role in emphysema pathology. However, recent studies indicate that the lung epithelium is an active participant in emphysema pathogenesis and plays a critical role in the lung’s response to cigarette smoke. Tobacco smoke increases protease production and alters cytokine expression in isolated epithelial cells, sugge...

  7. Vectorial secretion of proteoglycans by polarized rat uterine epithelial cells

    OpenAIRE

    1988-01-01

    We have studied proteoglycan secretion using a recently developed system for the preparing of polarized primary cultures of rat uterine epithelial cells. To mimic their native environment better and provide a system for discriminating apical from basolateral compartments, we cultured cells on semipermeable supports impregnated with biomatrix. Keratan sulfate proteoglycans (KSPG) as well as heparan sulfate- containing molecules (HS[PG]) were the major sulfated products synthesized and secreted...

  8. Acrolein stimulates eicosanoid release from bovine airway epithelial cells

    International Nuclear Information System (INIS)

    Injury to the airway mucosa after exposure to environmental irritants is associated with pulmonary inflammation and bronchial hyperresponsiveness. To better understand the relationships between mediator release and airway epithelial cell injury during irritant exposures, we studied the effects of acrolein, a low-molecular-weight aldehyde found in cigarette smoke, on arachidonic acid metabolism in cultured bovine tracheal epithelial cells. Confluent airway epithelial cell monolayers, prelabeled with [3H]arachidonic acid, released significant levels of 3H activity when exposed (20 min) to 100 microM acrolein. [3H]arachidonic acid products were resolved using reverse-phase high-performance liquid chromatography. Under control conditions the released 3H activity coeluted predominantly with the cyclooxygenase product, prostaglandin (PG) E2. After exposure to acrolein, significant peaks in 3H activity coeluted with the lipoxygenase products 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE, as well as with PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. Dose-response relationships for acrolein-induced release of immunoreactive PGF2 alpha and PGE2 from unlabeled epithelial monolayers demonstrated 30 microM acrolein as the threshold dose, with 100 microM acrolein inducing nearly a fivefold increase in both PGF2 alpha and PGE2. Cellular viability after exposure to 100 microM acrolein, determined by released lactate dehydrogenase activity, was not affected until exposure periods were greater than or equal to 2 h. These results implicate the airway epithelial cell as a possible source of eicosanoids after exposure to acrolein

  9. Effect of recombinant IL-10 on cultured fetal rat alveolar type II cells exposed to 65%-hyperoxia

    Directory of Open Access Journals (Sweden)

    Lee Hyeon-Soo

    2011-05-01

    Full Text Available Abstract Background Hyperoxia plays an important role in the genesis of lung injury in preterm infants. Although alveolar type II cells are the main target of hyperoxic lung injury, the exact mechanisms whereby hyperoxia on fetal alveolar type II cells contributes to the genesis of lung injury are not fully defined, and there have been no specific measures for protection of fetal alveolar type II cells. Objective The aim of this study was to investigate (a cell death response and inflammatory response in fetal alveolar type II cells in the transitional period from canalicular to saccular stages during 65%-hyperoxia and (b whether the injurious stimulus is promoted by creating an imbalance between pro- and anti-inflammatory cytokines and (c whether treatment with an anti-inflammatory cytokine may be effective for protection of fetal alveolar type II cells from injury secondary to 65%-hyperoxia. Methods Fetal alveolar type II cells were isolated on embryonic day 19 and exposed to 65%-oxygen for 24 h and 36 h. Cells in room air were used as controls. Cellular necrosis was assessed by lactate dehydrogenase-release and flow cytometry, and apoptosis was analyzed by TUNEL assay and flow cytometry, and cell proliferation was studied by BrdU incorporation. Release of cytokines including VEGF was analyzed by ELISA, and their gene expressions were investigated by qRT-PCR. Results 65%-hyperoxia increased cellular necrosis, whereas it decreased cell proliferation in a time-dependent manner compared to controls. 65%-hyperoxia stimulated IL-8-release in a time-dependent fashion, whereas the anti-inflammatory cytokine, IL-10, showed an opposite response. 65%-hyperoxia induced a significant decrease of VEGF-release compared to controls, and similar findings were observed on IL-8/IL-10/VEGF genes expression. Preincubation of recombinant IL-10 prior to 65%-hyperoxia decreased cellular necrosis and IL-8-release, and increased VEGF-release and cell proliferation

  10. Estradiol increases mucus synthesis in bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Anthony Tam

    Full Text Available Airway epithelial mucus hypersecretion and mucus plugging are prominent pathologic features of chronic inflammatory conditions of the airway (e.g. asthma and cystic fibrosis and in most of these conditions, women have worse prognosis compared with male patients. We thus investigated the effects of estradiol on mucus expression in primary normal human bronchial epithelial cells from female donors grown at an air liquid interface (ALI. Treatment with estradiol in physiological ranges for 2 weeks caused a concentration-dependent increase in the number of PAS-positive cells (confirmed to be goblet cells by MUC5AC immunostaining in ALI cultures, and this action was attenuated by estrogen receptor beta (ER-β antagonist. Protein microarray data showed that nuclear factor of activated T-cell (NFAT in the nuclear fraction of NHBE cells was increased with estradiol treatment. Estradiol increased NFATc1 mRNA and protein in ALI cultures. In a human airway epithelial (1HAE0 cell line, NFATc1 was required for the regulation of MUC5AC mRNA and protein. Estradiol also induced post-translational modification of mucins by increasing total fucose residues and fucosyltransferase (FUT-4, -5, -6 mRNA expression. Together, these data indicate a novel mechanism by which estradiol increases mucus synthesis in the human bronchial epithelium.

  11. Sef Regulates Epithelial-Mesenchymal Transition in Breast Cancer Cells.

    Science.gov (United States)

    He, Qing; Gong, Yan; Gower, Lindsey; Yang, Xuehui; Friesel, Robert E

    2016-10-01

    Sef (similar expression to fgf), also know as IL17RD, is a transmembrane protein shown to inhibit fibroblast growth factor signaling in developmental and cancer contexts; however, its role as a tumor suppressor remains to be fully elucidated. Here, we show that Sef regulates epithelial-mesenchymal transition (EMT) in breast cancer cell lines. Sef expression was highest in the normal breast epithelial cell line MCF10A, intermediate expression in MCF-7 cells and lowest in MDA-MB-231 cells. Knockdown of Sef increased the expression of genes associated with EMT, and promoted cell migration, invasion, and a fibroblastic morphology of MCF-7 cells. Overexpression of Sef inhibited the expression of EMT marker genes and inhibited cell migration and invasion in MCF-7 cells. Induction of EMT in MCF10A cells by TGF-β and TNF-α resulted in downregulation of Sef expression concomitant with upregulation of EMT gene expression and loss of epithelial morphology. Overexpression of Sef in MCF10A cells partially blocked cytokine-induced EMT. Sef was shown to block β-catenin mediated luciferase reporter activity and to cause a decrease in the nuclear localization of active β-catenin. Furthermore, Sef was shown to co-immunoprecipitate with β-catenin. In a mouse orthotopic xenograft model, Sef overexpression in MDA-MB-231 cells slowed tumor growth and reduced expression of EMT marker genes. Together, these data indicate that Sef plays a role in the negative regulation of EMT in a β-catenin dependent manner and that reduced expression of Sef in breast tumor cells may be permissive for EMT and the acquisition of a more metastatic phenotype. J. Cell. Biochem. 117: 2346-2356, 2016. © 2016 Wiley Periodicals, Inc. PMID:26950413

  12. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M;

    1998-01-01

    apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction of...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  13. Cytokeratin changes in cell culture systems of epithelial cells isolated from oral mucosa: a short review.

    Science.gov (United States)

    Gasparoni, Alberto; Squier, Christopher Alan; Fonzi, Luciano

    2005-01-01

    In the past three decades, many studies have analyzed ultrastructural and molecular markers of differentiation in squamous stratified epithelial tissues. In these tissues, epithelial cells migrating from the basal layer to the upper layers undergo drastic changes, which involve membrane-associated proteins, DNA synthesis, phenotypic aspects, lipid composition, and cytoskeletal components. Cytoskeletal components include a large and heterogeneous group, including intermediate filaments, components of the cornified envelope, and of the stratum corneum. When grown in mono- and multilayer cell cultures, epithelial cells isolated from the oral mucosa may reproduce many of the biochemical and morphological aspects of epithelial tissue in vivo. In the present paper, we examine phenotypic changes, development of suprabasal layer, and Involucrin expression occurring in differentiating oral epithelial cells, based on literature review and original data. PMID:16277157

  14. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice.

    Directory of Open Access Journals (Sweden)

    Jimena Laporta

    Full Text Available Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood into the ductal lumen (milk. Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1, which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2 and basolateral (CaSR, ORAI-1 membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2. Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2 are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation.

  15. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice.

    Science.gov (United States)

    Laporta, Jimena; Keil, Kimberly P; Vezina, Chad M; Hernandez, Laura L

    2014-01-01

    Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood) into the ductal lumen (milk). Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT) is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1), which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2) and basolateral (CaSR, ORAI-1) membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2). Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2) are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation. PMID:25299122

  16. DNA analysis of epithelial cell suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.S.; Johnson, N.F.; Holland, L.M.

    1985-01-01

    Cell suspensions of skin were obtained by animals exposed by skin painting of several crude oils. DNA analysis of these cell suspensions labeled with mithramycin provide determination of percentages of cells in the G/sub 1/, S and G/sub 2/M phases of the cell cycle. Data acquired showed differences from control animals occurring as early as 7 days after treatment and persisting through 21 days afterwards. There was histological evidence of erythema and hyperplasia in shale oil-exposed skins. Flow cytometric analysis of DNA content in shale-oil-exposed skin cells showed an increased percentage of cycling cells plus evidence of aneuploidy. Similar data from simply abraded skin showed increased percentages of cycling cells, but no aneuploidy. The shale-oil-exposed group, when compared to a standard petroleum-exposed group, had significantly increased percentages of cycling cells. This early indication of differing response to different complex mixtures was also seen in long-term skin exposures to these compounds. Similar analytical techniques were applied to tracheal cell suspensions from ozone-exposed rats. 12 refs., 4 figs., 4 tabs. (DT)

  17. Dkk-1 Inhibits Intestinal Epithelial Cell Migration by Attenuating Directional Polarization of Leading Edge Cells

    OpenAIRE

    Koch, Stefan; Capaldo, Christopher T.; Samarin, Stanislav; Nava, Porfirio; Neumaier, Irmgard; Skerra, Arne; Sacks, David B; Parkos, Charles A.; Nusrat, Asma

    2009-01-01

    Wnt signaling pathways regulate proliferation, motility, and survival in a variety of human cell types. Dickkopf-1 (Dkk-1) is a secreted Wnt antagonist that has been proposed to regulate tissue homeostasis in the intestine. In this report, we show that Dkk-1 is secreted by intestinal epithelial cells after wounding and that it inhibits cell migration by attenuating the directional orientation of migrating epithelial cells. Dkk-1 exposure induced mislocalized activation of Cdc42 in migrating c...

  18. Alveolar Type II Cells Escape Stress Failure Caused by Tonic Stretch through Transient Focal Adhesion Disassembly

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Liu, Xiao-Fei Chen, Yan-Hong Ren, Qing-Yuan Zhan, Chen Wang, Chun Yang

    2011-01-01

    Full Text Available Mechanical ventilation-induced excessive stretch of alveoli is reported to induce cellular stress failure and subsequent lung injury, and is therefore an injurious factor to the lung. Avoiding cellular stress failure is crucial to ventilator-induced lung injury (VILI treatment. In the present study, primary rat alveolar type II (ATII cells were isolated to evaluate their viability and the mechanism of their survival under tonic stretch. By the annexin V/ PI staining and flow cytometry assay, we demonstrated that tonic stretch-induced cell death is an immediate injury of mechanical stress. In addition, immunofluorescence and immunoblots assay showed that the cells experienced an expansion-contraction-reexpansion process, accompanied by partial focal adhesion (FA disassembly during contraction. Manipulation of integrin adherent affinity by altering bivalent cation levels in the culture medium and applying an integrin neutralizing antibody showed that facilitated adhesion affinity promoted cell death under tonic stretch, while lower level of adhesion protected the cells from stretch-induced stress failure. Finally, a simplified numerical model was established to reveal that adequate disassembly of FAs reduced the forces transmitting throughout the cell. Taken together, these results indicate that ATII cells escape stress failure caused by tonic stretch via active cell morphological remodeling, during which cells transiently disassemble FAs to unload mechanical forces.

  19. Expression of Connexin43 in Rat Epithelial Cells and Fibroblasts

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To explore the role of connexin43 (Cx43) in gap junctional intercellular communication (GJIC) and propagated sensation along meridians, the expression of Cx43 in the rat epithelial cells and fibroblasts was studied both in vitro and in vivo. With the in vitro study, the rat epithelial cells and fibroblasts were cultured together, and the localization of Cx43 was detected by immunohistochemistry and indirect immunofluorescent cytochemistry and under confocal microscopy . And the expression of Cx43 on the surface of the cells was examined by flow cytometry. With the in vivo examination, 20 SD rats were randomized into control group (n = 10) and electrical acupuncture group (EAgroup, n=10). EA ( 0.5-1.5 V, 4-16 Hz , 30 min) was applied to"Zusanli"acupoint for 30 min at rat's hind paw, the localization of Cx43 was immunohistochemically detected.The immunohistochemical staining and indirect immunfluorescent cytochemistry showed that Cx43was localized on the surface of the cells and in the cytoplasm. The relative expression level of Cx43on the cellular membrane surfaces of the rat epithelial cells and fibroblasts, as determined by FACS, were 13.91 % and 29.53 % respectively. Our studied suggested that Cx43 might be involved in GJIC and propagated sensation along meridians.

  20. Mesenchymal stem cells alleviate experimental asthma by inducing polarization of alveolar macrophages.

    Science.gov (United States)

    Song, Xiaolian; Xie, Shuanshuan; Lu, Kun; Wang, Changhui

    2015-04-01

    The reparative and immunoregulatory properties of mesenchymal stromal cells (MSCs) have made them attractive candidates for cellular therapy. However, the underlying mechanism of the effects of transplanted MSCs on allergic asthma remains elusive. Here, we show that administration of MSCs isolated from human bone marrow provoked a pronounced polarization in alveolar macrophages to M2 subtypes, rather than induced an increase in the total macrophage number, and efficiently inhibited hallmark features of asthma, including airway hyperresponsiveness and eosinophilic accumulation. Moreover, transforming growth factor beta (TGF-β) signaling pathway appeared to mediate the effects of MSCs on macrophage polarization and subsequently the inhibition of hallmark features of asthma. Inhibition of TGF-β signaling was sufficient to inhibit the macrophage polarization in response to MSCs and consequently reserved the inhibitory effects of macrophage polarization on hallmark features of asthma. Collectively, our data demonstrate that human MSCs have immunosuppressive activity on asthma, which is mediated by TGF-β-signaling-dependent alveolar macrophage polarization. PMID:24958014

  1. Progressive transformation of immortalized esophageal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Zhong-YingShen; Li-YanXu; Min-HuaChen; JianShen; Wei-JiaCai; YiZeng

    2002-01-01

    AIM:To investigate the progressive transformation of immortal cells of human fetal esophageal epithelium induced by human papillomavirus,and to examine biological criteria of sequential passage of cells,including cellular phenotype,proliferative rate,telomerase,chromosome and tumorigenicity.

  2. Vitamin E alters alveolar type II cell phospholipid synthesis in oxygen and air

    International Nuclear Information System (INIS)

    Newborn rats were injected with vitamin E or placebo daily until 6 days after birth. The effect of vitamin E pretreatment on in vitro surfactant phospholipid synthesis was examined in isolated type II cells exposed to oxygen or air form 24 h in vitro. Type II cells were also isolated from untreated 6-day-old rats and cultured for 24 h in oxygen or air with control medium or vitamin E supplemented medium. These cells were used to examine the effect of vitamin E exposure in vitro on type II cell phospholipid synthesis and ultrastructure. Phosphatidylcholine (PC) synthesis was reduced in cells cultured in oxygen as compared with air. This decrease was not prevented by in vivo pretreatment or in vitro supplementation with vitamin E. Vitamin E pretreatment increased the ratio of disaturated PC to total PC and increased phosphatidylglycerol synthesis. The volume density of lamellar bodies in type II cells was increased in cells maintained in oxygen. Vitamin E did not affect the volume density of lamellar bodies. We conclude that in vitro hyperoxia inhibits alveolar type II cell phosphatidylcholine synthesis without decreasing lamellar body volume density and that supplemental vitamin E does not prevent hyperoxia-induced decrease in phosphatidylcholine synthesis

  3. Vitamin E alters alveolar type II cell phospholipid synthesis in oxygen and air

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, K.A.; Snyder, J.M.; Stenzel, W.; Saito, K.; Warshaw, J.B. (Univ. of Texas Southwestern Medical School, Dallas (USA))

    1990-11-01

    Newborn rats were injected with vitamin E or placebo daily until 6 days after birth. The effect of vitamin E pretreatment on in vitro surfactant phospholipid synthesis was examined in isolated type II cells exposed to oxygen or air form 24 h in vitro. Type II cells were also isolated from untreated 6-day-old rats and cultured for 24 h in oxygen or air with control medium or vitamin E supplemented medium. These cells were used to examine the effect of vitamin E exposure in vitro on type II cell phospholipid synthesis and ultrastructure. Phosphatidylcholine (PC) synthesis was reduced in cells cultured in oxygen as compared with air. This decrease was not prevented by in vivo pretreatment or in vitro supplementation with vitamin E. Vitamin E pretreatment increased the ratio of disaturated PC to total PC and increased phosphatidylglycerol synthesis. The volume density of lamellar bodies in type II cells was increased in cells maintained in oxygen. Vitamin E did not affect the volume density of lamellar bodies. We conclude that in vitro hyperoxia inhibits alveolar type II cell phosphatidylcholine synthesis without decreasing lamellar body volume density and that supplemental vitamin E does not prevent hyperoxia-induced decrease in phosphatidylcholine synthesis.

  4. Gene expressions changes in bronchial epithelial cells

    DEFF Research Database (Denmark)

    Remy, S.; Verstraelen, S.; Van Den Heuvel, R.;

    2014-01-01

    cells were exposed during 6, 10, and 24 h to 4 respiratory sensitizers and 6 non-respiratory sensitizers (3 skin sensitizers and 3 respiratory irritants) at a concentration inducing 20% cell viability loss after 24 h. Changes in gene expression were evaluated using Agilent Whole Human Genome 4 x 44 K...... differentially expressed compared to vehicle control for each chemical. The results show that the NRF2-mediated oxidative stress response is activated in the cell line after stimulation with all of the chemicals that were selected in our study, and that - at the level of gene expression - this pathway shows no...

  5. Water fluxes through aquaporin-9 prime epithelial cells for rapid wound healing

    DEFF Research Database (Denmark)

    Karlsson, T.; Lagerholm, B. C.; Vikstrom, E.;

    2013-01-01

    about the impact on migrating epithelial sheets during wound healing and epithelial renewal. Here, we investigate and compare the effects of AQP9 on single cell and epithelial sheet migration. To achieve this, MDCK-1 cells stably expressing AQP9 were subjected to migration assessment. We found that AQP9...

  6. Interaction exists between matriptase inhibitors and intestinal epithelial cells.

    Science.gov (United States)

    Pászti-Gere, Erzsebet; Barna, Réka Fanni; Ujhelyi, Gabriella; Steinmetzer, Torsten

    2016-10-01

    The type II trypsin-like transmembrane serine protease matriptase, is mainly expressed in epithelial cells and one of the key regulators in the formation and maintenance of epithelial barrier integrity. Therefore, we have studied the inhibition of matriptase in a non-transformed porcine intestinal IPEC-J2 cell monolayer cultured on polyester membrane inserts by the non-selective 4-(2-aminoethyl)-benzosulphonylfluoride (AEBSF) and four more selective 3-amidinophenylalanine-derived matriptase inhibitors. It was found that suppression of matriptase activity by MI-432 and MI-460 led to decreased transepithelial electrical resistance (TER) of the cell monolayer and to an enhanced transport of fluorescently labelled dextran, a marker for paracellular transport between apical and basolateral compartments. To this date this is the first report in which the inhibition of matriptase activity by synthetic inhibitors has been correlated to a reduced barrier integrity of a non-cancerous IPEC-J2 epithelial cell monolayer in order to describe interaction between matriptase activity and intestinal epithelium in vitro. PMID:26118419

  7. Ethane dimethanesulfonate (EDS) perturbs epididymal epithelial cell function in vitro

    International Nuclear Information System (INIS)

    The formation of sperm granulomas in the epididymis following exposure to EDS, a Leydig cell toxicant, was reported by Cooper and Jackson in 1970. Recent work suggests that EDS may effect the epididymis directly. An in vitro system was developed to determine the nature of any direct effect. The caput epididymis from adult rats was dissected free of connective tissue and small pieces of the tissue were enzymatically digested until plaques of epididymal epithelial cells were obtained. Plaques were cultured on an extracellular matrix gelled on top of a semipermeable filter creating dual-compartment environments. The epithelial cells maintained typical morphology and protein secretion in this culture system for several days. Beginning on day 3, EDS (1 mM) was added to the basal compartment, with or without 35S-methionine. After 24 hours, 35S-labelled culture medium was taken from the apical compartment and analyzed by SDS-PAGE and fluorography. EDS caused decreased secretion of several proteins, including a 39 Kd molecule. Interestingly, a 39 Kd protein was also shown to disappear from sperm taken from the caput epididymidis following in vivo exposure to EDS. Unlabelled cultures were fixed and processed for light microscopy. No alterations in morphological integrity were observed. Thus, epididymal epithelial cell function is directly altered by EDS exposure

  8. Photodynamic treatment of lens epithelial cells for cataract surgery

    Science.gov (United States)

    Lingua, Robert W.; Parel, Jean-Marie A.; Simon, Gabriel; Li, Kam

    1991-06-01

    Photodynamic therapy (PDT) eiiploying Dihematopor*iyrin ethers (DHE) (Photofrin II) at pharmacologic lvels, has been denonstrate3 to kill rabbit lens epithelial cells, in vivo. This in vitro study, reports on the minimal necessary parameters for rabbit lens epithelial cell death. Explants of rabbit lenses were incubated in various concentrations of DHE (1O,, 100, 500, 1000 ug/ml) for 1, 2, or 5 minutes. 30 to 120 Joules/an of collimated 514.5 nm Argon laser light re delivered to the locier concentrations of 10, 50, and 100 ug,'ml DHE treated cells. One hundre1 fifteen explants were treated, in all. Higher concentrations of DHE alone (500 and 1000 ug/ml) were sufficient to induce cellular swelling. Lower concentrations required light for cellular effect. Trypan blue staining revealed cell death at these minimal pa9ieters: DHE 50 ug/ml, incubation 1 minute, 514.5 r Argon light 1.0 Watt/an for 30 sec (30 Joules) . In future studies, these rameters will be tested in vivo, for their ability to eliminate lens epithelial proliferation after cataract surgery.

  9. Epigenetics in Intestinal Epithelial Cell Renewal.

    Science.gov (United States)

    Roostaee, Alireza; Benoit, Yannick D; Boudjadi, Salah; Beaulieu, Jean-François

    2016-11-01

    A controlled balance between cell proliferation and differentiation is essential to maintain normal intestinal tissue renewal and physiology. Such regulation is powered by several intracellular pathways that are translated into the establishment of specific transcription programs, which influence intestinal cell fate along the crypt-villus axis. One important check-point in this process occurs in the transit amplifying zone of the intestinal crypts where different signaling pathways and transcription factors cooperate to manage cellular proliferation and differentiation, before secretory or absorptive cell lineage terminal differentiation. However, the importance of epigenetic modifications such as histone methylation and acetylation in the regulation of these processes is still incompletely understood. There have been recent advances in identifying the impact of histone modifications and chromatin remodelers on the proliferation and differentiation of normal intestinal crypt cells. In this review we discuss recent discoveries on the role of the cellular epigenome in intestinal cell fate, development, and tissue renewal. J. Cell. Physiol. 231: 2361-2367, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:27061836

  10. Multipotent capacity of immortalized human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Oliver Delgado

    Full Text Available While the adult murine lung utilizes multiple compartmentally restricted progenitor cells during homeostasis and repair, much less is known about the progenitor cells from the human lung. Translating the murine stem cell model to humans is hindered by anatomical differences between species. Here we show that human bronchial epithelial cells (HBECs display characteristics of multipotent stem cells of the lung. These HBECs express markers indicative of several epithelial types of the adult lung when experimentally tested in cell culture. When cultured in three different three-dimensional (3D systems, subtle changes in the microenvironment result in unique responses including the ability of HBECs to differentiate into multiple central and peripheral lung cell types. These new findings indicate that the adult human lung contains a multipotent progenitor cell whose differentiation potential is primarily dictated by the microenvironment. The HBEC system is not only important in understanding mechanisms for specific cell lineage differentiation, but also for examining changes that correlate with human lung diseases including lung cancer.

  11. Oral epithelial cell responses to multispecies microbial biofilms.

    Science.gov (United States)

    Peyyala, R; Kirakodu, S S; Novak, K F; Ebersole, J L

    2013-03-01

    This report describes the use of a novel model of multispecies biofilms to stimulate profiles of cytokines/chemokines from oral epithelial cells that contribute to local inflammation in the periodontium. Streptococcus gordonii (Sg)/S. oralis (So)/S. sanguinis (Ss) and Sg/Fusobacterium nucleatum (Fn)/Porphyromonas gingivalis (Pg) biofilms elicited significantly elevated levels of IL-1α and showed synergistic stimulatory activity compared with an additive effect of the 3 individual bacteria. Only the Sg/Actinomyces naeslundii (An)/Fn multispecies biofilms elicited IL-6 levels above those of control. IL-8 was a primary response to the Sg/An/Fn biofilms, albeit the level was not enhanced compared with a predicted composite level from the monospecies challenges. These results represent some of the first data documenting alterations in profiles of oral epithelial cell responses to multispecies biofilms. PMID:23300185

  12. Evaluating alternative stem cell hypotheses for adultcorneal epithelial maintenance

    Institute of Scientific and Technical Information of China (English)

    John D West; Natalie J Dorà; Natalie J Dorà,

    2015-01-01

    In this review we evaluate evidence for three differenthypotheses that explain how the corneal epitheliumis maintained. The limbal epithelial stem cell (LESC)hypothesis is most widely accepted. This proposes thatstem cells in the basal layer of the limbal epithelium,at the periphery of the cornea, maintain themselvesand also produce transient (or transit) amplifying cells(TACs). TACs then move centripetally to the centre ofthe cornea in the basal layer of the corneal epitheliumand also replenish cells in the overlying suprabasallayers. The LESCs maintain the corneal epitheliumduring normal homeostasis and become more active torepair significant wounds. Second, the corneal epithelialstem cell (CESC) hypothesis postulates that, duringnormal homeostasis, stem cells distributed throughoutthe basal corneal epithelium, maintain the tissue.According to this hypothesis, LESCs are present in thelimbus but are only active during wound healing. We alsoconsider a third possibility, that the corneal epithelium ismaintained during normal homeostasis by proliferationof basal corneal epithelial cells without any input fromstem cells. After reviewing the published evidence,we conclude that the LESC and CESC hypotheses areconsistent with more of the evidence than the thirdhypothesis, so we do not consider this further. The LESCand CESC hypotheses each have difficulty accountingfor one main type of evidence so we evaluate the twokey lines of evidence that discriminate between them.Finally, we discuss how lineage-tracing experimentshave begun to resolve the debate in favour of theLESC hypothesis. Nevertheless, it also seems likely thatsome basal corneal epithelial cells can act as long-termprogenitors if limbal stem cell function is compromised.Thus, this aspect of the CESC hypothesis may have alasting impact on our understanding of corneal epithelialmaintenance, even if it is eventually shown that stemcells are restricted to the limbus as proposed by the

  13. A species-specific activation of Toll-like receptor signaling in bovine and sheep bronchial epithelial cells triggered by Mycobacterial infections.

    Science.gov (United States)

    Ma, Yan; Han, Fei; Liang, Jinping; Yang, Jiali; Shi, Juan; Xue, Jing; Yang, Li; Li, Yong; Luo, Meihui; Wang, Yujiong; Wei, Jun; Liu, Xiaoming

    2016-03-01

    Pulmonary tuberculosis caused by a Mycobacterium infection remains a major public health problem in most part of the world, in part owing to the transmission of its pathogens between hosts including human, domestic and wild animals. To date, molecular mechanisms of the pathogenesis of TB are still incompletely understood. In addition to alveolar macrophages, airway epithelial cells have also been recently recognized as main targets for Mycobacteria infections. In an effort to understand the pathogen-host interaction between Mycobacteria and airway epithelial cells in domestic animals, in present study, we investigated the Toll-like receptor (TLR) signaling in bovine and sheep airway epithelial cells in response to an infection of Mycobacterium tuberculosis avirulent H37Ra stain or Mycobacterium bovis BCG vaccine strain, using primary air-liquid interface (ALI) bronchial epithelial culture models. Our results revealed a host and pathogen species-specific TLR-mediated recognition of pathogen-associated molecular patterns (PAMPs), induction and activation of TLR signaling pathways, and substantial induction of inflammatory response in bronchial epithelial cells in response to Mycobacteria infections between these two species. Interestingly, the activation TLR signaling in bovine bronchial epithelial cells induced by Mycobacteria infection was mainly through a myeloid differentiation factor 88 (MyD88)-independent TLR signaling pathway, while both MyD88-dependent and independent TLR signaling cascades could be induced in sheep epithelial cells. Equally noteworthy, a BCG infection was able to induce both MyD88-dependent and independent signaling in sheep and bovine airway epithelial cells, but more robust inflammatory responses were induced in sheep epithelial cells relative to the bovines; whereas an H37Ra infection displayed an ability to mainly trigger a MyD88-independent TLR signaling cascade in these two host species, and induce a more extent expression of

  14. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly

    OpenAIRE

    Campinho, Pedro; Behrndt, Martin; Ranft, Jonas; Risler, Thomas; Minc, Nicolas; Heisenberg, Carl-Philipp

    2015-01-01

    Epithelial spreading is a common and fundamental aspect of various developmental and disease-related processes such as epithelial closure and wound healing. A key challenge for epithelial tissues undergoing spreading is to increase their surface area without disrupting epithelial integrity. Here we show that orienting cell divisions by tension constitutes an efficient mechanism by which the enveloping cell layer (EVL) releases anisotropic tension while undergoing spreading during zebrafish ep...

  15. Polarizing intestinal epithelial cells electrically through Ror2

    OpenAIRE

    Cao, L; McCaig, CD; Scott, RH; Zhao, S.; G. Milne; Clevers, H; Zhao, M; Pu, J

    2014-01-01

    ABSTRACT The apicobasal polarity of enterocytes determines where the brush border membrane (apical membrane) will form, but how this apical membrane faces the lumen is not well understood. The electrical signal across the epithelium could serve as a coordinating cue, orienting and polarizing enterocytes. Here, we show that applying a physiological electric field to intestinal epithelial cells, to mimic the natural electric field created by the transepithelial potential difference, polarized p...

  16. Microscopic morphology of epithelial cells on functionalized diamond and glass

    Czech Academy of Sciences Publication Activity Database

    Rezek, Bohuslav; Ukraintsev, Egor; Krátká, Marie; Taylor, Andrew; Fendrych, František; Mandys, V.

    Bratislava : Comenius University, 2013 - (Brunner, R.), s. 153-154 ISBN 978-80-223-3501-0. [Solid State Surfaces and Interfaces /8./. Smolenice (SK), 25.11.2013-28.11.2013] R&D Projects: GA ČR GAP108/12/0996 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * biotechnology * epithelial cell s * morphology * adhesion Subject RIV: BM - Solid Matter Physics ; Magnetism

  17. Oral Epithelial Cell Responses to Multispecies Microbial Biofilms

    OpenAIRE

    Peyyala, R.; Kirakodu, S.S.; Novak, K.F.; Ebersole, J L

    2013-01-01

    This report describes the use of a novel model of multispecies biofilms to stimulate profiles of cytokines/chemokines from oral epithelial cells that contribute to local inflammation in the periodontium. Streptococcus gordonii (Sg)/S. oralis (So)/S. sanguinis (Ss) and Sg/Fusobacterium nucleatum (Fn)/Porphyromonas gingivalis (Pg) biofilms elicited significantly elevated levels of IL-1α and showed synergistic stimulatory activity compared with an additive effect of the 3 individual bacteria. On...

  18. Ivermectin inhibits growth of Chlamydia trachomatis in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Matthew A Pettengill

    Full Text Available Ivermectin is currently approved for treatment of both clinical and veterinary infections by nematodes, including Onchocerca cervicalis in horses and Onchocerca volvulus in humans. However, ivermectin has never been shown to be effective against bacterial pathogens. Here we show that ivermectin also inhibits infection of epithelial cells by the bacterial pathogen, Chlamydia trachomatis, at doses that could be envisioned clinically for sexually-transmitted or ocular infections by Chlamydia.

  19. Ivermectin inhibits growth of Chlamydia trachomatis in epithelial cells.

    Science.gov (United States)

    Pettengill, Matthew A; Lam, Verissa W; Ollawa, Ikechukwu; Marques-da-Silva, Camila; Ojcius, David M

    2012-01-01

    Ivermectin is currently approved for treatment of both clinical and veterinary infections by nematodes, including Onchocerca cervicalis in horses and Onchocerca volvulus in humans. However, ivermectin has never been shown to be effective against bacterial pathogens. Here we show that ivermectin also inhibits infection of epithelial cells by the bacterial pathogen, Chlamydia trachomatis, at doses that could be envisioned clinically for sexually-transmitted or ocular infections by Chlamydia. PMID:23119027

  20. Crystal violet staining to quantity Candida adhesion to epithelial cells

    OpenAIRE

    Negri, M.; Gonçalves, Vera M.; Silva, Sónia Carina; Henriques, Mariana; Azeredo, Joana; Oliveira, Rosário

    2010-01-01

    In vitro studies of adhesion capability are essential to characterise the virulence of Candida species. However, the assessment of adhesion by traditional methods is timeconsuming. The aim of the present study is the development of a simple methodology using crystal violet staining to quantify in vitro adhesion of different Candida species to epithelial cells. The experiments are performed using Candida albicans (ATCC 90028), C. glabrata (ATCC 2001), C. parapsilosis (ATCC 22019) and C. tropic...

  1. Proliferation of Cultured Mouse Choroid Plexus Epithelial Cells

    OpenAIRE

    Barkho, Basam Z.; Monuki, Edwin S.

    2015-01-01

    The choroid plexus (ChP) epithelium is a multifunctional tissue found in the ventricles of the brain. The major function of the ChP epithelium is to produce cerebrospinal fluid (CSF) that bathes and nourishes the central nervous system (CNS). In addition to the CSF, ChP epithelial cells (CPECs) produce and secrete numerous neurotrophic factors that support brain homeostasis, such as adult hippocampal neurogenesis. Accordingly, damage and dysfunction to CPECs are thought to accelerate and inte...

  2. Internalization of Proteus mirabilis by human renal epithelial cells.

    OpenAIRE

    Chippendale, G R; Warren, J W; Trifillis, A. L.; Mobley, H L

    1994-01-01

    Proteus mirabilis, a common agent of bacteriuria in humans, causes acute pyelonephritis and bacteremia. Renal epithelium provides a barrier between luminal organisms and the renal interstitium. We have hypothesized that P. mirabilis may be internalized into renal epithelium. To test this hypothesis, we added suspensions of three P. mirabilis strains (10(8) CFU) to confluent monolayers of primary cultures of human renal proximal tubular epithelial cells (HRPTEC) and, after 3 h, found the bacte...

  3. Attachment of Giardia lamblia to rat intestinal epithelial cells.

    OpenAIRE

    Inge, P M; Edson, C M; Farthing, M J

    1988-01-01

    The human enteric protozoan, Giardia lamblia, has surface membrane lectin activity which mediates parasite adherence to erythrocytes. To determine whether an intestinal binding site exists for this lectin we have studied the interaction in vitro between axenically cultured Giardia trophozoites and isolated rat intestinal epithelial cells. Scanning electron microscopy showed that Giardia attached to the apical microvillus membrane and basolateral membrane of rat enterocytes. Any location on th...

  4. Entry of genital Chlamydia trachomatis into polarized human epithelial cells.

    OpenAIRE

    Wyrick, P B; Choong, J; Davis, C H; Knight, S T; Royal, M O; Maslow, A S; Bagnell, C R

    1989-01-01

    To study the initial invasion process(es) of genital chlamydiae, a model system consisting of hormonally maintained primary cultures of human endometrial gland epithelial cells (HEGEC), grown in a polarized orientation on collagen-coated filters, was utilized. After Chlamydia trachomatis inoculation of the apical surface of polarized HEGEC, chlamydiae were readily visualized, by transmission electron microscopy, in coated pits and coated vesicles. This was true for HEGEC maintained in physiol...

  5. Maintenance of human amnion epithelial cell phenotype in pulmonary surfactant

    OpenAIRE

    McDonald, Courtney A.; Melville, Jacqueline M; Graeme R Polglase; Jenkin, Graham; Moss, Timothy JM

    2014-01-01

    Introduction Preterm newborns often require mechanical respiratory support that can result in ventilation-induced lung injury (VILI), despite exogenous surfactant treatment. Human amnion epithelial cells (hAECs) reduce lung inflammation and resultant abnormal lung development in preterm animals; co-administration with surfactant is a potential therapeutic strategy. We aimed to determine whether hAECs remain viable and maintain function after combination with surfactant. Methods hAECs were inc...

  6. Isolation, separation, and characterization of epithelial and connective cells from rat palate

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, Victor Paul

    1979-01-01

    Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means of labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.

  7. Nitric oxide gas phase release in human small airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Suresh Vinod

    2009-01-01

    Full Text Available Abstract Background Asthma is a chronic airway inflammatory disease characterized by an imbalance in both Th1 and Th2 cytokines. Exhaled nitric oxide (NO is elevated in asthma, and is a potentially useful non-invasive marker of airway inflammation. However, the origin and underlying mechanisms of intersubject variability of exhaled NO are not yet fully understood. We have previously described NO gas phase release from normal human bronchial epithelial cells (NHBEs, tracheal origin. However, smaller airways are the major site of morbidity in asthma. We hypothesized that IL-13 or cytomix (IL-1β, TNF-α, and IFN-γ stimulation of differentiated small airway epithelial cells (SAECs, generation 10–12 and A549 cells (model cell line of alveolar type II cells in culture would enhance NO gas phase release. Methods Confluent monolayers of SAECs and A549 cells were cultured in Transwell plates and SAECs were allowed to differentiate into ciliated and mucus producing cells at an air-liquid interface. The cells were then stimulated with IL-13 (10 ng/mL or cytomix (10 ng/mL for each cytokine. Gas phase NO release in the headspace air over the cells was measured for 48 hours using a chemiluminescence analyzer. Results In contrast to our previous result in NHBE, baseline NO release from SAECs and A549 is negligible. However, NO release is significantly increased by cytomix (0.51 ± 0.18 and 0.29 ± 0.20 pl.s-1.cm-2, respectively reaching a peak at approximately 10 hours. iNOS protein expression increases in a consistent pattern both temporally and in magnitude. In contrast, IL-13 only modestly increases NO release in SAECs reaching a peak (0.06 ± 0.03 pl.s-1.cm-2 more slowly (30 to 48 hours, and does not alter NO release in A549 cells. Conclusion We conclude that the airway epithelium is a probable source of NO in the exhaled breath, and intersubject variability may be due, in part, to variability in the type (Th1 vs Th2 and location (large vs small airway

  8. TCDD exposure disrupts mammary epithelial cell differentiation and function

    OpenAIRE

    Collins, Loretta L.; Lew, Betina J.; Lawrence, B. Paige

    2009-01-01

    Mammary gland growth and differentiation during pregnancy is a developmental process that is sensitive to the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD is a widespread environmental contaminant and a potent ligand for the aryl hydrocarbon receptor (AhR). We demonstrate reduced β-casein protein induction in mouse mammary glands and in cultured SCp2 mammary epithelial cells following exposure to TCDD. SCp2 cells exposed to TCDD also show reduced cell clustering and less ...

  9. Isolation of intestinal epithelial cells and evaluation of transport functions

    Energy Technology Data Exchange (ETDEWEB)

    Kimmich, G.A.

    1990-01-01

    Epithelial cells can be isolated from the small intestine of chickens by a procedure involving hyaluronidase treatment of the intact tissue. The isolated cells retain a high degree of functional activity as assessed by the formation of 70-fold gradients of alpha-MG. Stability of the sugar gradients reflects maintenance of stable electrochemical Na+ gradients across the plasma membrane. The cells can be used to evaluate the properties of Na(+)-dependent sugar transport, Na(+)-independent sugar transport, ion transport, metabolism, membrane potentials, and the integration of these events, all of which are important to achieving a stable sugar gradient.

  10. Isolation of intestinal epithelial cells and evaluation of transport functions

    International Nuclear Information System (INIS)

    Epithelial cells can be isolated from the small intestine of chickens by a procedure involving hyaluronidase treatment of the intact tissue. The isolated cells retain a high degree of functional activity as assessed by the formation of 70-fold gradients of alpha-MG. Stability of the sugar gradients reflects maintenance of stable electrochemical Na+ gradients across the plasma membrane. The cells can be used to evaluate the properties of Na(+)-dependent sugar transport, Na(+)-independent sugar transport, ion transport, metabolism, membrane potentials, and the integration of these events, all of which are important to achieving a stable sugar gradient

  11. Regulation of secretory leukocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor (ESI/elafin) in human airway epithelial cells by cytokines and neutrophilic enzymes.

    Science.gov (United States)

    Sallenave, J M; Shulmann, J; Crossley, J; Jordana, M; Gauldie, J

    1994-12-01

    The regulation of the activity of potentially harmful proteinases secreted by neutrophils during inflammation is important for the prevention of excessive tissue injury. Secretory leukocyte proteinase inhibitor (SLPI), also called antileukoprotease (ALP) or mucus proteinase inhibitor (MPI), is a serine proteinase inhibitor that has been found in a variety of mucous secretions and that is secreted by bronchial epithelial cells. We recently reported the presence of SLPI and of an elastase-specific inhibitor (ESI), also called elafin, in the supernatants of two cell lines, NCI-H322 and A549, which have features of Clara cells and type II alveolar cells, respectively. We showed in addition that epithelial cell lines produce the elastase-specific inhibitor as a 12 to 16 kD precursor of the elafin molecule (6 kD) called pre-elafin. In the present study, we show that NCI-H322 cells produced higher amounts of both inhibitors than A549 cells and that basal production of SLPI in both cell lines is higher than the production of elafin/pre-elafin. In addition, we show that interleukin-1 beta and tumor necrosis factor induce significant SLPI expression and are major inducers of elafin/pre-elafin expression. Moreover, induction is greater in A549 cells than in NCI-H322 cells. The implications of these findings for the peripheral airways are twofold: (1) alveolar epithelial cells may respond to cytokines secreted during the onset of inflammation by increasing their antiprotease shield; (2) elafin/pre-elafin seems to be a true local "acute phase reactant" whereas SLPI, in comparison, may be less responsive to local inflammatory mediators. PMID:7946401

  12. Serum-Free Cryopreservation of Human Amniotic Epithelial Cells

    Directory of Open Access Journals (Sweden)

    H. Niknejad

    2013-04-01

    Full Text Available Introduction & Objective: One of the important issues in long term storage of cells is removal of animal serum from cell culture environments. The aim of this study was to evaluate amni-otic fluid (AF, which is full of growth factors, as substitute for fetal bovine serum (FBS in the cryopreservation protocol. Materials & Methods: In this experimental study human amniotic epithelial cells were isolated from placentas which were seronegative for microbial infections. The cells were preserved in 24 different patterns for 12 months in -196 ?C (liquid nitrogen and viability of cells were determined before and after cryopreservation by trypan blue and MTT assay. Moreover, Oct-4 expression was studied to determine pluripotency before and after cryopreservation with immunocytochemistry. Results were compared between groups with ANOVA (Tukey Post-Test. P.value under 0.01 and 0.05 was considered statistically significant. Results: The presence of DMEM, FBS or AF is necessary for amniotic cell cryopreservation. Trypan-blue, MTT and immunocytochemistry showed that there isn’t significant difference between using AF and FBS in viability and pluripotency of cells. Moreover, results showed that DMSO is a better cryoprotectant compared to glycerol. Conclusion : Results showed that amniotic fluid can be a proper substitute for FBS in amniotic epithelial cells cryopreservation. (Sci J Hamadan Univ Med Sci 2013; 20 (1:15-24

  13. TCDD alters medial epithelial cell differentiation during palatogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, B.D.; Birnbaum, L.S. (National Institute of Environmental Health Sciences, Research Triangle Park, NC (USA))

    1989-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widely distributed, persistent environmental contaminant that is teratogenic in mice, where it induces hydronephrosis and cleft palate. The incidence of clefting has been shown to be dose dependent after exposure on either gestation Day (GD) 10 or 12, although the embryo is more susceptible on GD 12. TCDD-exposed palatal shelves meet but do not fuse, and programmed cell death of the medial epithelial cells is inhibited. The mechanism of action through which TCDD alters the program of medial cell development has not been examined in earlier studies, and it is not known whether the mechanism is the same regardless of the dose or developmental stage of exposure. In this study, C57BL/6N mice, a strain sensitive to TCDD, were dosed orally on GD 10 or 12 with 0, 6, 12, 24, or 30 micrograms/kg body wt, in 10 ml corn oil/kg. Embryonic palatal shelves were examined on GD 14, 15, or 16. The degree of palatal closure, epithelial surface morphology, and cellular ultrastructure, the incorporation of (3H)TdR, the expression of EGF receptors, and the binding of 125I-EGF were assessed. After exposure on GD 10 or 12, TCDD altered the differentiation pathway of the medial epithelial cells. The palatal shelves were of normal size and overall morphology, but fusion of the medial epithelia of the opposing shelves did not occur. TCDD prevented programmed cell death of the medial peridermal cells. The expression of EGF receptors by medial cells continued through Day 16 and the receptors were able to bind ligand. The medial cells differentiated into a stratified, squamous, keratinizing epithelium. The shift in phenotype to an oral-like epithelium occurred after exposure on either GD 10 or 12. At the lower dose (6 micrograms/kg), fewer cleft palates were produced, but those shelves which did respond had a fully expressed shift in differentiation.

  14. TCDD alters medial epithelial cell differentiation during palatogenesis

    International Nuclear Information System (INIS)

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widely distributed, persistent environmental contaminant that is teratogenic in mice, where it induces hydronephrosis and cleft palate. The incidence of clefting has been shown to be dose dependent after exposure on either gestation Day (GD) 10 or 12, although the embryo is more susceptible on GD 12. TCDD-exposed palatal shelves meet but do not fuse, and programmed cell death of the medial epithelial cells is inhibited. The mechanism of action through which TCDD alters the program of medial cell development has not been examined in earlier studies, and it is not known whether the mechanism is the same regardless of the dose or developmental stage of exposure. In this study, C57BL/6N mice, a strain sensitive to TCDD, were dosed orally on GD 10 or 12 with 0, 6, 12, 24, or 30 micrograms/kg body wt, in 10 ml corn oil/kg. Embryonic palatal shelves were examined on GD 14, 15, or 16. The degree of palatal closure, epithelial surface morphology, and cellular ultrastructure, the incorporation of [3H]TdR, the expression of EGF receptors, and the binding of 125I-EGF were assessed. After exposure on GD 10 or 12, TCDD altered the differentiation pathway of the medial epithelial cells. The palatal shelves were of normal size and overall morphology, but fusion of the medial epithelia of the opposing shelves did not occur. TCDD prevented programmed cell death of the medial peridermal cells. The expression of EGF receptors by medial cells continued through Day 16 and the receptors were able to bind ligand. The medial cells differentiated into a stratified, squamous, keratinizing epithelium. The shift in phenotype to an oral-like epithelium occurred after exposure on either GD 10 or 12. At the lower dose (6 micrograms/kg), fewer cleft palates were produced, but those shelves which did respond had a fully expressed shift in differentiation

  15. Early release of surfactant following lung irradiation of alveolar type II cells

    International Nuclear Information System (INIS)

    At 1 hour, 24 hours, and 1 week following irradiation, studies utilizing LAF 1/J mouse lung showed increase of disaturated alveolar phosphatidylcholine (PC) by radiolabelling and alveolar lavage, thus indicating PC as a nearly immediate post-irradiation biomarker. A corresponding decrease of PC in lung tissue following alveolar lavage correlated with an early decrease of lamellar bodies in type II pneumocytes after irrdiation

  16. TLR-2 is involved in airway epithelial cell response to air pollution particles

    International Nuclear Information System (INIS)

    Primary cultures of normal human airway epithelial cells (NHBE) respond to ambient air pollution particulate matter (PM) by increased production of the cytokine IL-8, and the induction of several oxidant stress response genes. Components of ambient air PM responsible for stimulating epithelial cells have not been conclusively identified, although metal contaminants, benzo[a]pyrene and biological matter have been implicated. Stimulation of IL-8 release from NHBE with coarse (PM2.5-10), fine (PM2.5), and UF particle fractions has shown that the coarse particle fraction has the greatest effect on the epithelial cells as well as alveolar macrophages (AM). Since this fraction concentrates fugitive dusts and particle-associated microbial matter, it was hypothesized that NHBE may recognize PM through microbial pattern recognition receptors TLR2 and TLR4, as has been previously shown with AM. NHBE were shown to release IL-8 when exposed to a Gram-positive environmental isolate of Staphylococcus lentus, and lower levels when exposed to Gram-negative Pseudomonas spp. Comparison of TLR2 and TLR4 mRNA expression in NHBE and AM showed that NHBE express similar levels of TLR2 mRNA as the AM, but expressed very low levels of TLR4. When NHBE were stimulated with PM2.5-10, PM2.5, and UF PM, in the presence or absence of inhibitors of TLR2 and TLR4 activation, a blocking antibody to TLR2 inhibited production of IL-8, while TLR4 antagonist E5531 or the LPS inhibitor Polymixin B had no effect. Furthermore, effects on expression of TLR2 and TLR4 mRNA, as well as the stress protein HSP70 was assessed in NHBE exposed to PM. TLR4 expression was increased in these cells while TLR2 mRNA levels were unchanged. Hsp70 was increased by PM2.5-10 > PM2.5 > UF PM suggesting the possibility of indirect activation of TLR pathway by this endogenous TLR2/4 agonist

  17. Epithelial stem cell islands in the regenerated epidermis

    Institute of Scientific and Technical Information of China (English)

    Fu Xiaobing; Sun Xiaoqing; Li Xiaokun; Sheng Zhiyong

    2001-01-01

    Objective: The effects of growth factors on wound healing have been studied extensively, however,their molecular and genetic mechanisms that regulate epidermal regeneration are not fully understood. In this study,we explore the cell reversion characteristics and epithelial stem cell distribution in human regenerated epidermis treated with recombinant human epidermal growth factor (rhEGF). Methods:Tissue biospies from 8 regenerated skins treated with rhEGF were used to evaluate the cell reversion and stem cell distribution in epidermis . The expression of β1 integrin, keratin 19 (K19), keratin 14 (K14) and keratin 10 (K10) in skins was detected with SP immunohistochemical methods. Another 8 biopsies from the regenerated epidermis treated without rhEGF, fetus, children and adults were used as the controls. Results:Immunohistochemical stain for β1 integrin and keratin 19 showed that there were some new stem cell islands in the epidermis treated with rhEGF. These cells were small, containing low RNA content and exhibiting positive expression with β1 integrin and K19 stain. They were isolated, bearing no anatomic relation with the epithelial stem cells in the basal layer. The serial identification experiments indicated that there treated without rhEGF. All of these results supported that these β1 integrin and K19 positive stain cells were the stem cells. Conclusions: The results indicated that these stem cell islands were the specific and individual cell structures in rhEGF treated wounds and rhEGF is the main factor in inducing the stem cell island formation. These results offer a direct evidence for epidermal cell reversion from the differentiated cells to undifferentiated stem cells in vivo and may be useful in the rational use of this growth factor to promote wound healing in clinic.

  18. Differential Glutamate Metabolism in Proliferating and Quiescent Mammary Epithelial Cells.

    Science.gov (United States)

    Coloff, Jonathan L; Murphy, J Patrick; Braun, Craig R; Harris, Isaac S; Shelton, Laura M; Kami, Kenjiro; Gygi, Steven P; Selfors, Laura M; Brugge, Joan S

    2016-05-10

    Mammary epithelial cells transition between periods of proliferation and quiescence during development, menstrual cycles, and pregnancy, and as a result of oncogenic transformation. Utilizing an organotypic 3D tissue culture model coupled with quantitative metabolomics and proteomics, we identified significant differences in glutamate utilization between proliferating and quiescent cells. Relative to quiescent cells, proliferating cells catabolized more glutamate via transaminases to couple non-essential amino acid (NEAA) synthesis to α-ketoglutarate generation and tricarboxylic acid (TCA) cycle anaplerosis. As cells transitioned to quiescence, glutamine consumption and transaminase expression were reduced, while glutamate dehydrogenase (GLUD) was induced, leading to decreased NEAA synthesis. Highly proliferative human tumors display high transaminase and low GLUD expression, suggesting that proliferating cancer cells couple glutamine consumption to NEAA synthesis to promote biosynthesis. These findings describe a competitive and partially redundant relationship between transaminases and GLUD, and they reveal how coupling of glutamate-derived carbon and nitrogen metabolism can be regulated to support cell proliferation. PMID:27133130

  19. Adherence of Acinetobacter calcoaceticus RAG-1 to human epithelial cells and to hexadecane.

    OpenAIRE

    Rosenberg, M; Perry, A; Bayer, E A; Gutnick, D. L.; Rosenberg, E.; Ofek, I.

    1981-01-01

    The ability of Acinetobacter calcoaceticus RAG-1 to adhere to human epithelial cells was investigated and compared with its ability to adhere to a test hydrocarbon (hexadecane). RAG-1, a microorganism originally isolated for growth on hydrocarbon, adhered to epithelial cells when grown under conditions which promote its adherence to hexadecane; similarly, RAG-1 cells adhered poorly to epithelial cells when grown under conditions which cause the cells to possess low affinity towards hexadecane...

  20. Rho GTPases and regulation of cell migration and polarization in human corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hou

    Full Text Available PURPOSE: Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. METHODS: Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. RESULTS: Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. CONCLUSION: Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells.

  1. Henipavirus Pathogenesis in Human Respiratory Epithelial Cells

    OpenAIRE

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J. Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz; Rockx, Barry

    2013-01-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses ca...

  2. Oral epithelial cells are susceptible to cell-free and cell-associated HIV-1 infection in vitro

    International Nuclear Information System (INIS)

    Epithelial cells lining the oral cavity are exposed to HIV-1 through breast-feeding and oral-genital contact. Genital secretions and breast milk of HIV-1-infected subjects contain both cell-free and cell-associated virus. To determine if oral epithelial cells can be infected with HIV-1 we exposed gingival keratinocytes and adenoid epithelial cells to cell-free virus and HIV-1-infected peripheral blood mononuclear cells and monocytes. Using primary isolates we determined that gingival keratinocytes are susceptible to HIV-1 infection via cell-free CD4-independent infection only. R5 but not X4 viral strains were capable of infecting the keratinocytes. Further, infected cells were able to release infectious virus. In addition, primary epithelial cells isolated from adenoids were also susceptible to infection; both cell-free and cell-associated virus infected these cells. These data have potential implications in the transmission of HIV-1 in the oral cavity

  3. Particle-induced indentation of the alveolar epithelium caused by surface tension forces.

    Science.gov (United States)

    Mijailovich, S M; Kojic, M; Tsuda, A

    2010-10-01

    Physical contact between an inhaled particle and alveolar epithelium at the moment of particle deposition must have substantial effects on subsequent cellular functions of neighboring cells, such as alveolar type-I, type-II pneumocytes, alveolar macrophage, as well as afferent sensory nerve cells, extending their dendrites toward the alveolar septal surface. The forces driving this physical insult are born at the surface of the alveolar air-liquid layer. The role of alveolar surfactant submerging a hydrophilic particle has been suggested by Gehr and Schürch's group (e.g., Respir Physiol 80: 17-32, 1990). In this paper, we extended their studies by developing a further comprehensive and mechanistic analysis. The analysis reveals that the mechanics operating in the particle-tissue interaction phenomena can be explained on the basis of a balance between surface tension force and tissue resistance force; the former tend to move a particle toward alveolar epithelial cell surface, the latter to resist the cell deformation. As a result, the submerged particle deforms the tissue and makes a noticeable indentation, which creates unphysiological stress and strain fields in tissue around the particle. This particle-induced microdeformation could likely trigger adverse mechanotransduction and mechanosensing pathways, as well as potentially enhancing particle uptake by the cells. PMID:20634359

  4. Alveolar Ridge Augmentation with Titanium Mesh. A Retrospective Clinical Study

    OpenAIRE

    Poli, Pier P; Beretta, Mario; Cicciù, Marco; Maiorana, Carlo

    2014-01-01

    An adequate amount of bone all around the implant surface is essential in order to obtain long-term success of implant restoration. Several techniques have been described to augment alveolar bone volume in critical clinical situations, including guided bone regeneration, based on the use of barrier membranes to prevent ingrowth of the epithelial and gingival connective tissue cells. To achieve this goal, the use of barriers made of titanium micromesh has been advocated. A total of 13 patients...

  5. Quantitation and renewal of alveolar and bronchiolar cell populations of rat lungs. Changes during some pathological processes

    International Nuclear Information System (INIS)

    The various cells of alveolar and bronchiolar tissues of rat lungs were studied qualitatively and quantitatively. In physiological conditions, the renewal rate of the cell populations is low and the frequency of the various cell types is constant. This stability, especially at the level of the alveolar tissue, was also found during the latency period and the development of radiation-induced lung cancers. A particular cellular population was demonstrated: marginated leukocyte pool at the level of the pulmonary circulation. This pool was different both qualitatively and quantitatively from the leukocytes of the systemic circulation and, in physiological conditions, behaved as a cellular reservoir of monocytes chiefly re-distributed according to the body needs. In pathological conditions, its fast migration contributed to the defence of the alveolar medium. A quantitative study of the renewal of alveolar macrophages showed that under 1 p. cent of the marginated leukocyte pool is used daily to keep up this population. This fraction undergoes a maturation stage by cellular division within the endoalveolar medium. In some pathological conditions, this division can be completely inhibited

  6. Changes of TIZ expression in epithelial ovarian cancer cells

    Institute of Scientific and Technical Information of China (English)

    Huan-Yu Zheng; Hong-Yu Zheng; Yun-Tao Zhou; En-Ling Liu; Jie Li; Yan-Mei Zhang

    2015-01-01

    Objective:To study the change ofTIZ expression in epithelial ovarian cancer cells.Methods:HO8910 cells were transinfected with siRNA to inhibit the expression ofTIZ. pcDNA3.1-TIZ vectors were combined to increase theTIZ expression level.The cell viability, colony forming efficiency and cycle distribution ofHO8910,HO8910/NC,HO8910/pcDNA3.1-NC,HO8910/TIZ-573 andHO8910/pcDNA3.1-TIZ were compared, and the invasion rate, migration rate and adhesion rate between5 groups of cells were compared.Results:Compared with those ofHO8910,HO8910/NC andHO8910/pcDNA3.1-NC, the cell viability, colony forming efficiency and cell cycle distribution ofHO8910/TIZ-573 were increased, while the indexes ofHO8910/pcDNA3.1-NC were decreased with statistical significant difference(P0.05). Conclusions:The expression ofTIZ can inhibit the proliferation of epithelial ovarian cancer cells.

  7. Transcriptional profiling of putative human epithelial stem cells

    Directory of Open Access Journals (Sweden)

    Koçer Salih S

    2008-07-01

    may be enriched for stem cells. This study is the first comprehensive gene expression profile of putative human epithelial stem cells and their progeny that were isolated directly from neonatal foreskin tissue. Our study is important for understanding self renewal and differentiation of epidermal stem cells, and for elucidating signaling pathways involved in those processes. The generated data base may serve those working with other human epithelial tissue progenitors.

  8. Altered lung morphogenesis, epithelial cell differentiation and mechanics in mice deficient in the Wnt/β-catenin antagonist Chibby.

    Directory of Open Access Journals (Sweden)

    Damon Love

    Full Text Available The canonical Wnt/β-catenin pathway plays crucial roles in various aspects of lung morphogenesis and regeneration/repair. Here, we examined the lung phenotype and function in mice lacking the Wnt/β-catenin antagonist Chibby (Cby. In support of its inhibitory role in canonical Wnt signaling, expression of β-catenin target genes is elevated in the Cby(-/- lung. Notably, Cby protein is prominently associated with the centrosome/basal body microtubule structures in embryonic lung epithelial progenitor cells, and later enriches as discrete foci at the base of motile cilia in airway ciliated cells. At birth, Cby(-/- lungs are grossly normal but spontaneously develop alveolar airspace enlargement with reduced proliferation and abnormal differentiation of lung epithelial cells, resulting in altered pulmonary function. Consistent with the Cby expression pattern, airway ciliated cells exhibit a marked paucity of motile cilia with apparent failure of basal body docking. Moreover, we demonstrate that Cby is a direct downstream target for the master ciliogenesis transcription factor Foxj1. Collectively, our results demonstrate that Cby facilitates proper postnatal lung development and function.

  9. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter

    International Nuclear Information System (INIS)

    The objective of this study was to compare the toxicological effects of different source-related ambient PM10 samples in regard to their chemical composition. In this context we investigated airborne PM from different sites in Aachen, Germany. For the toxicological investigation human alveolar epithelial cells (A549) and murine macrophages (RAW264.7) were exposed from 0 to 96 h to increasing PM concentrations (0–100 μg/ml) followed by analyses of cell viability, pro-inflammatory and oxidative stress responses. The chemical analysis of these particles indicated the presence of 21 elements, water-soluble ions and PAHs. The toxicological investigations of the PM10 samples demonstrated a concentration- and time-dependent decrease in cell viability and an increase in pro-inflammatory and oxidative stress markers. -- Highlights: ► The study compares the toxicological effects of different source-related particles with regard to their chemical composition. ► The chemical characterization of the coarse particles revealed clear differences in elemental, TC and PAH composition. ► Equal mass concentrations of urban traffic and rural PM caused different toxicological responses. ► The observations confirm the hypothesis that particle composition, as well as origin, influence the PM-induced toxicity. -- The toxicological responses of lung epithelial cells and macrophages differ significantly after an exposure to equal mass concentrations of urban traffic and rural PM

  10. Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with β-casein expression in mammary epithelial cells.

    Science.gov (United States)

    Kobayashi, Ken; Tsugami, Yusaku; Matsunaga, Kota; Oyama, Shoko; Kuki, Chinatsu; Kumura, Haruto

    2016-08-01

    Alveolar mammary epithelial cells (MECs) in mammary glands are highly specialized cells that produce milk for suckling infants. Alveolar MECs also form less permeable tight junctions (TJs) to prevent the leakage of milk components after parturition. In the formation process of less permeable TJs, MECs show a selective downregulation of Cldn4 and a localization change of Cldn3. To investigate what induces less permeable TJs through these compositional changes in Cldns, we focused on two lactogenesis-related hormones: prolactin (Prl) and glucocorticoids. Prl caused a downregulation of Cldn3 and Cldn4 with the formation of leaky TJs in MECs in vitro. Prl-treated MECs also showed low β-casein expression with the activation of STAT5 signaling. By contrast, dexamethasone (Dex), a glucocorticoid analogue, upregulated Cldn3 and Cldn4, concurrent with the formation of less permeable TJs and the activation of glucocorticoid signaling without the expression of β-casein. Cotreatment with Prl and Dex induced the selective downregulation of Cldn4 and the concentration of Cldn3 in the region of TJs concurrent with less permeable TJ formation and high β-casein expression. The inhibition of Prl secretion by bromocriptine in lactating mice induced the upregulation of Cldn3 and Cldn4 concurrent with the downregulation of milk production. These results indicate that the coactivation of Prl and glucocorticoid signaling induces lactation-specific less permeable TJs concurrent with lactogenesis. PMID:27130254

  11. Pulmonary surfactant and its components inhibit secretion of phosphatidylcholine from cultured rat alveolar type II cells

    International Nuclear Information System (INIS)

    Pulmonary surfactant is synthesized and secreted by alveolar type II cells. Radioactive phosphatidylcholine has been used as a marker for surfactant secretion. The authors report findings that suggest that surfactant inhibits secretion of 3H-labeled phosphatidylcholine by cultured rat type II cells. The lipid components and the surfactant protein group of M/sub r/ 26,000-36,000 (SP 26-36) inhibit secretion to different extents. Surfactant lipids do not completely inhibit release; in concentrations of 100 μg/ml, lipids inhibit stimulated secretion by 40%. SP 26-36 inhibits release with an EC50 of 0.1 μg/ml. At concentrations of 1.0 μg/ml, SP 26-36 inhibits basal secretion and reduces to basal levels secretion stimulated by terbutaline, phorbol 12-myristate 13-acetate, and the ionophore A23187. The inhibitory effect of SP 26-36 can be blocked by washing type II cells after adding SP 26-36, by heating the proteins to 1000C for 10 min, by adding antiserum specific to SP 26-36, or by incubating cells in the presence of 0.2 mM EGTA. SP 26-36 isolated from canine and human sources also inhibits phosphatidylcholine release from rat type II cells. Neither type I collagen nor serum apolipoprotein A-1 inhibits secretion. These findings are compatible with the hypothesis that surfactant secretion is under feedback regulatory control

  12. Endothelial induced EMT in breast epithelial cells with stem cell properties

    DEFF Research Database (Denmark)

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla;

    2011-01-01

    Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether...... endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression of...... keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D...

  13. Intercellular Protein Transfer from Thymocytes to Thymic Epithelial Cells

    Science.gov (United States)

    Wang, Hong-Xia; Qiu, Yu-Rong; Zhong, Xiao-Ping

    2016-01-01

    Promiscuous expression of tissue restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs) is crucial for negative selection of self-reactive T cells to establish central tolerance. Intercellular transfer of self-peptide-MHC complexes from mTECs to thymic dendritic cells (DCs) allows DCs to acquire TRAs, which in turn contributes to negative selection and regulatory T cell generation. However, mTECs are unlikely to express all TRAs, such as immunoglobulins generated only in B cells after somatic recombination, hyper-mutation, or class-switches. We report here that both mTECs and cortical TECs can efficiently acquire not only cell surface but also intracellular proteins from thymocytes. This reveals a previously unappreciated intercellular sharing of molecules from thymocytes to TECs, which may broaden the TRA inventory in mTECs for establishing a full spectrum of central tolerance. PMID:27022746

  14. Plasticity of airway epithelial cell transcriptome in response to flagellin.

    Directory of Open Access Journals (Sweden)

    Joan G Clark

    Full Text Available Airway epithelial cells (AEC are critical components of the inflammatory and immune response during exposure to pathogens. AECs in monolayer culture and differentiated epithelial cells in air-liquid interface (ALI represent two distinct and commonly used in vitro models, yet differences in their response to pathogens have not been investigated. In this study, we compared the transcriptional effects of flagellin on AECs in monolayer culture versus ALI culture using whole-genome microarrays and RNA sequencing. We exposed monolayer and ALI AEC cultures to flagellin in vitro and analyzed the transcriptional response by microarray and RNA-sequencing. ELISA and RT-PCR were used to validate changes in select candidates. We found that AECs cultured in monolayer and ALI have strikingly different transcriptional states at baseline. When challenged with flagellin, monolayer AEC cultures greatly increased transcription of numerous genes mapping to wounding response, immunity and inflammatory response. In contrast, AECs in ALI culture had an unexpectedly muted response to flagellin, both in number of genes expressed and relative enrichment of inflammatory and immune pathways. We conclude that in vitro culturing methods have a dramatic effect on the transcriptional profile of AECs at baseline and after stimulation with flagellin. These differences suggest that epithelial responses to pathogen challenges are distinctly different in culture models of intact and injured epithelium.

  15. Plasticity of airway epithelial cell transcriptome in response to flagellin.

    Science.gov (United States)

    Clark, Joan G; Kim, Kyoung-Hee; Basom, Ryan S; Gharib, Sina A

    2015-01-01

    Airway epithelial cells (AEC) are critical components of the inflammatory and immune response during exposure to pathogens. AECs in monolayer culture and differentiated epithelial cells in air-liquid interface (ALI) represent two distinct and commonly used in vitro models, yet differences in their response to pathogens have not been investigated. In this study, we compared the transcriptional effects of flagellin on AECs in monolayer culture versus ALI culture using whole-genome microarrays and RNA sequencing. We exposed monolayer and ALI AEC cultures to flagellin in vitro and analyzed the transcriptional response by microarray and RNA-sequencing. ELISA and RT-PCR were used to validate changes in select candidates. We found that AECs cultured in monolayer and ALI have strikingly different transcriptional states at baseline. When challenged with flagellin, monolayer AEC cultures greatly increased transcription of numerous genes mapping to wounding response, immunity and inflammatory response. In contrast, AECs in ALI culture had an unexpectedly muted response to flagellin, both in number of genes expressed and relative enrichment of inflammatory and immune pathways. We conclude that in vitro culturing methods have a dramatic effect on the transcriptional profile of AECs at baseline and after stimulation with flagellin. These differences suggest that epithelial responses to pathogen challenges are distinctly different in culture models of intact and injured epithelium. PMID:25668187

  16. The over-expression of cell migratory genes in alveolar rhabdomyosarcoma could contribute to metastatic spread.

    Science.gov (United States)

    Rapa, Elizabeth; Hill, Sophie K; Morten, Karl J; Potter, Michelle; Mitchell, Chris

    2012-06-01

    Alveolar (ARMS) and Embryonal (ERMS) rhabdomyosarcoma differ in their response to current treatments. The ARMS subtype has a less favourable prognosis and often presents with widespread metastases, while the less metastatic ERMS has a 5 year survival rate of more than 80 %. In this study we investigate gene expression differences that could contribute to the high frequency of metastasis in ARMS. Microarray analysis identified significant differences in DNA repair, cell cycle and cell migration between the two RMS subtypes. Two genes up regulated in ARMS and involved in cell migration; the engulfment and cell motility gene 1 (ELMO1) and NEL-like 1 gene (NELL1) were selected for further investigation. Over-expression of ELMO1 significantly increased cell invasion from 24.70 ± 7% to 93 ± 5.4% in primary myoblasts and from 29.43 ± 2.1% to 87.33 ± 4.1% in the ERMS cell line RD. siRNA knockout of ELMO1 in the ARMS cell line RH30 significantly reduced cell invasion from 88.2 ± 3.8% to 35.2 ± 2.5%. Over-expression of NELL1 significantly increased myoblast invasion from 23.6 ± 6.9% to 100 ± 0.1%, but had no effect on invasion of the ERMS cell line RD. These findings suggest that ELMO1 may play a key role in ARMS metastasis. NELL1 increased invasion in primary myoblasts, but other factors required for it to enhance motility were not present in the RD ERMS cell line. Impairing ELMO1 function by pharmacological or siRNA knockdown could be a highly effective approach to reduce the metastatic spread of RMS. PMID:22415709

  17. IL-22 contributes to TGF-β1-mediated epithelial-mesenchymal transition in asthmatic bronchial epithelial cells

    OpenAIRE

    Johnson, Jill R.; Nishioka, Michiyoshi; Chakir, Jamila; Risse, Paul-André; Almaghlouth, Ibrahim; Bazarbashi, Ahmad N; Plante, Sophie; Martin, James G.; Eidelman, David; Hamid, Qutayba

    2013-01-01

    Background Allergic asthma is characterized by airway inflammation in response to antigen exposure, leading to airway remodeling and lung dysfunction. Epithelial-mesenchymal transition (EMT) may play a role in airway remodeling through the acquisition of a mesenchymal phenotype in airway epithelial cells. TGF-β1 is known to promote EMT; however, other cytokines expressed in severe asthma with extensive remodeling, such as IL-22, may also contribute to this process. In this study, we evaluated...

  18. High glucose stimulates the expression of erythropoietin in rat glomerular epithelial cells

    OpenAIRE

    Lim, Seul Ki; Park, Soo Hyun

    2011-01-01

    It has been reported that the levels of erythropoietin are associated with diabetes mellitus. Glomerular epithelial cells, located in the renal cortex, play an important role in the regulation of kidney function and hyperglycemia-induced cell loss of glomerular epithelial cells is implicated in the onset of diabetic nephropathy. This study investigated the effect of high glucose on erythropoietin and erythropoietin receptor expression in rat glomerular epithelial cells. We found that 25 mM D-...

  19. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells.

    Science.gov (United States)

    Rimoldi, Monica; Chieppa, Marcello; Salucci, Valentina; Avogadri, Francesca; Sonzogni, Angelica; Sampietro, Gianluca M; Nespoli, Angelo; Viale, Giuseppe; Allavena, Paola; Rescigno, Maria

    2005-05-01

    The control of damaging inflammation by the mucosal immune system in response to commensal and harmful ingested bacteria is unknown. Here we show epithelial cells conditioned mucosal dendritic cells through the constitutive release of thymic stromal lymphopoietin and other mediators, resulting in the induction of 'noninflammatory' dendritic cells. Epithelial cell-conditioned dendritic cells released interleukins 10 and 6 but not interleukin 12, and they promoted the polarization of T cells toward a 'classical' noninflammatory T helper type 2 response, even after exposure to a T helper type 1-inducing pathogen. This control of immune responses seemed to be lost in patients with Crohn disease. Thus, the intimate interplay between intestinal epithelial cells and dendritic cells may help to maintain gut immune homeostasis. PMID:15821737

  20. Bacterial Wall Components such as Lipothecoid Acid, Peptidoglycan, Liposaccharide and Lipid A Stimulate Cell Proliferation in Intestinal Epithelial Cells

    OpenAIRE

    Olaya, Jaime H.; Neopikhanov, Vadim; Söderman, Charlotte; Uribe, Andrés

    2011-01-01

    Earlier studies indicate that the microflora contains mitogens to intestinal epithelial cells. Our aim is to examine whether cell wall components of both Gram-negative and positive bacteria influence cell proliferation in small intestinal and colonic epithelial cells. A human colonic epithelial cell line from adenocarcinoma (IEC-6) and a nontransformed small intestinal cell line from germ-free rats (LS-123) were incubated with (a) lipothecoid acid from Streptococcus faecalis at 1.56–50 ...

  1. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Sidjanin, D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences; Grdina, D. [Argonne National Lab., IL (United States); Woloschak, G.E. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  2. Interleukin-23 Increases Intestinal Epithelial Cell Permeability In Vitro.

    Science.gov (United States)

    Heinzerling, Nathan P; Donohoe, Deborah; Fredrich, Katherine; Gourlay, David M; Liedel, Jennifer L

    2016-06-01

    Background Breast milk has a heterogeneous composition that differs between mothers and changes throughout the first weeks after birth. The proinflammatory cytokine IL-23 has a highly variable expression in human breast milk. We hypothesize that IL-23 found in human breast milk is biologically active and promotes epithelial barrier dysfunction. Methods The immature rat small intestinal epithelial cell line, IEC-18, was grown on cell inserts or standard cell culture plates. Confluent cultures were exposed to human breast milk with high or low levels of IL-23 and barrier function was measured using a flux of fluorescein isothiocyanate-dextran (FD-70). In addition, protein and mRNA expression of occludin and ZO-1 were measured and immunofluorescence used to stain occludin and ZO-1. Results Exposure to breast milk with high levels of IL-23 caused an increase flux of FD-70 compared with both controls and breast milk with low levels of IL-23. The protein expression of ZO-1 but not occludin was decreased by exposure to high levels of IL-23. These results correlate with immunofluorescent staining of ZO-1 and occludin which show decreased staining of occludin in both the groups exposed to breast milk with high and low IL-23. Conversely, cells exposed to high IL-23 breast milk had little peripheral staining of ZO-1 compared with controls and low IL-23 breast milk. Conclusion IL-23 in human breast milk is biologically active and negatively affects the barrier function of intestinal epithelial cells through the degradation of tight junction proteins. PMID:26007691

  3. Oral microbial biofilm stimulation of epithelial cell responses.

    Science.gov (United States)

    Peyyala, Rebecca; Kirakodu, Sreenatha S; Novak, Karen F; Ebersole, Jeffrey L

    2012-04-01

    Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfection biofilms were developed with Streptococcus sanguinis, Streptococcus oralis, Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis on rigid gas-permeable contact lenses. Biofilms, as well as planktonic cultures of these same bacterial species, were incubated under anaerobic conditions with a human oral epithelial cell line, OKF4, for up to 24h. Gro-1α, IL1α, IL-6, IL-8, TGFα, Fractalkine, MIP-1α, and IP-10 were shown to be produced in response to a range of the planktonic or biofilm forms of these species. P. gingivalis biofilms significantly inhibited the production of all of these cytokines and chemokines, except MIP-1α. Generally, the biofilms of all species inhibited Gro-1α, TGFα, and Fractalkine production, while F. nucleatum biofilms stimulated significant increases in IL-1α, IL-6, IL-8, and IP-10. A. naeslundii biofilms induced elevated levels of IL-6, IL-8 and IP-10. The oral streptococcal species in biofilms or planktonic forms were poor stimulants for any of these mediators from the epithelial cells. The results of these studies demonstrate that oral bacteria in biofilms elicit a substantially different profile of responses compared to planktonic bacteria of the same species. Moreover, certain oral species are highly stimulatory when in biofilms and interact with host cell receptors to trigger pathways of responses that appear quite divergent from individual bacteria. PMID:22266273

  4. IL-4 attenuates pulmonary epithelial cell-mediated suppression of T cell priming.

    Science.gov (United States)

    Albrecht, Melanie; Arnhold, Markus; Lingner, Sandra; Mahapatra, Subhashree; Bruder, Dunja; Hansen, Gesine; Dittrich, Anna-Maria

    2012-01-01

    We have previously shown that Th2-polarized airway inflammation facilitates sensitization towards new, protein antigens. In this context, we could demonstrate that IL-4 needs to act on cells of the hematopoetic and the structural compartment in order to facilitate sensitization towards new antigens. We thus aimed to elucidate possible mechanisms of action of IL-4 on structural cells choosing to analyze pulmonary epithelial cells as an important part of the lung's structural system. We used a co-culture system of DC- or APC-dependent in vitro priming of T cells, co-cultivated on a layer of cells of a murine pulmonary epithelial cell line (LA-4) pretreated with or without IL-4. Effects on T cell priming were analyzed via CFSE-dilution and flow cytometric assessment of activation status. Pulmonary epithelial cells suppressed T cell proliferation in vitro but this effect was attenuated by pre-treatment of the epithelial cells with IL-4. Transwell experiments suggest that epithelial-mediated suppression of T cell activation is mostly cell-contact dependent and leads to attenuation in an early naive T cell phenotype. Secretion of soluble factors like TARC, TSLP, GM-CSF and CCL20 by epithelial cells did not change after IL-