WorldWideScience

Sample records for alveolar epithelial apoptosis

  1. Hydrogen sulfide donor regulates alveolar epithelial cell apoptosis in rats with acute lung injury

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-li; LIU Zhi-wei; LI Tian-shui; WANG Cong; ZHAO Bin

    2013-01-01

    Background Acute lung injury (ALl) is a common syndrome associated with high morbidity and mortality in emergency medicine.Cell apoptosis plays a key role in the pathogenesis of ALl.Hydrogen sulfide (H2S) plays a protective role during acute lung injury.We designed this study to examine the role of H2S in the lung alveolar epithelial cell apoptosis in rats with ALl.Methods Sixty-nine male Sprague Dawley rats were used.ALl was induced by intra-tail vein injection of oleic acid (OA).NaHS solution was injected intraperitonally 30 minutes before OA injection as the NaHS pretreatment group.Single sodium hydrosulfide pretreatment group and control group were designed.Index of quantitative assessment (IQA),wet/dry weight (W/D) ratio and the percentage of polymorphonuclear leukocyte (PMN) cells in the bronchoalveolar lavage fluid (BALF) were determined.H2S level in lung tissue was measured by a sensitive sulphur electrode.Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and Fas protein was measured by immunohistochemical staining.Results The level of endogenous H2S in lung tissue decreased with the development of ALl induced by OA injection.Apoptosis and Fas protein in alveolar epithelial cells increased in the ALl of rats but NaHS lessened apoptosis and Fas protein expression in alveolar epithelial cells of rats with ALl.Conclusion Endogenous H2S protects rats from oleic acid-induced ALl,probably by inhibiting cell apoptosis.

  2. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Seok-Jo Kim

    2015-09-01

    Full Text Available Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC programmed cell death (apoptosis that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF and asbestosis (pulmonary fibrosis following asbestos exposure. The mammalian mitochondrial DNA (mtDNA encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1 and mitochondrial aconitase (ACO-2 in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer.

  3. Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis

    Directory of Open Access Journals (Sweden)

    Li Changgong

    2011-10-01

    Full Text Available Abstract Background Alveolar septation marks the beginning of the transition from the saccular to alveolar stage of lung development. Inflammation can disrupt this process and permanently impair alveolar formation resulting in alveolar hypoplasia as seen in bronchopulmonary dysplasia in preterm newborns. NF-κB is a transcription factor central to multiple inflammatory and developmental pathways including dorsal-ventral patterning in fruit flies; limb, mammary and submandibular gland development in mice; and branching morphogenesis in chick lungs. We have previously shown that epithelial overexpression of NF-κB accelerates lung maturity using transgenic mice. The purpose of this study was to test our hypothesis that targeted deletion of NF-κB signaling in lung epithelium would impair alveolar formation. Methods We generated double transgenic mice with lung epithelium-specific deletion of IKKβ, a known activating kinase upstream of NF-κB, using a cre-loxP transgenic recombination strategy. Lungs of resulting progeny were analyzed at embryonic and early postnatal stages to determine specific effects on lung histology, and mRNA and protein expression of relevant lung morphoreulatory genes. Lastly, results measuring expression of the angiogenic factor, VEGF, were confirmed in vitro using a siRNA-knockdown strategy in cultured mouse lung epithelial cells. Results Our results showed that IKKβ deletion in the lung epithelium transiently decreased alveolar type I and type II cells and myofibroblasts and delayed alveolar formation. These effects were mediated through increased alveolar type II cell apoptosis and decreased epithelial VEGF expression. Conclusions These results suggest that epithelial NF-κB plays a critical role in early alveolar development possibly through regulation of VEGF.

  4. Dexmedetomidine Attenuates Oxidative Stress Induced Lung Alveolar Epithelial Cell Apoptosis In Vitro

    Directory of Open Access Journals (Sweden)

    Jian Cui

    2015-01-01

    Full Text Available Background. Oxidative stress plays a pivotal role in the lung injuries of critical ill patients. This study investigates the protection conferred by α2 adrenoceptor agonist dexmedetomidine (Dex from lung alveolar epithelial cell injury induced by hydrogen peroxide (H2O2 and the underlying mechanisms. Methods. The lung alveolar epithelial cell line, A549, was cultured and then treated with 500 μM H2O2 with or without Dex (1 nM or Dex in combination with atipamezole (10 nM, an antagonist of α2 receptors. Their effect on mitochondrial membrane potential (Δψm, reactive oxygen species (ROS, and the cell cycle was assessed by flow cytometry. Cleaved-caspases 3 and 9, BAX, Bcl-2, phospho-mTOR (p-mTOR, ERK1/2, and E-cadherin expression were also determined with immunocytochemistry. Results. Upregulation of cleaved-caspases 3 and 9 and BAX and downregulation of Bcl-2, p-mTOR, and E-cadherin were found following H2O2 treatment, and all of these were reversed by Dex. Dex also prevented the ROS generation, cytochrome C release, and cell cycle arrest induced by H2O2. The effects of Dex were partially reversed by atipamezole. Conclusion. Our study demonstrated that Dex protected lung alveolar epithelial cells from apoptotic injury, cell cycle arrest, and loss of cell adhesion induced by H2O2 through enhancing the cell survival and proliferation.

  5. RNA interference-mediated silencing of SOCS-1 via lentiviral vector promotes apoptosis of alveolar epithelial cells in vitro.

    Science.gov (United States)

    Qian, Yan-Rong; Zhang, Qiu-Rui; Cheng, Ting; Wan, Huan-Ying; Zhou, Min

    2012-02-01

    Suppressor of cytokine signaling-1 (SOCS1) is a protein that negatively regulates cytokine and growth factor signaling. However, little is known regarding the precise role it plays in idiopathic pulmonary fibrosis. The aim of the present study was to construct a recombinant lentiviral vector for RNA interference targeting the SOCS1 gene and to detect the expression in human alveolar epithelial cells. A lentiviral vector-mediated RNA interference method was used to establish a SOCS1-negative cell line of alveolar origin (A549). Three pairs of complementary small hairpin RNA (shRNA) oligonucleotides targeting the SOCS1 gene were designed, synthesized and inserted into the pPll3.7 vector. Packaged lentivirus particles were obtained after 48 h, and the supernatant was used to transfect the human alveolar epithelial cell line A549. The expression of the SOCS1 protein was detected by Western blotting. MTT assay was used to detect the cell proliferation of alveolar epithelial cells with SOCS1 knockdown. The recombinant plasmids were confirmed by sequencing. The lentivirus-containing supernatant effectively infected the A549 cell line, and the expression of SOCS1 protein was inhibited, which was confirmed by Western blotting in the target cells. MTT assay indicated the inhibition effect for cell proliferation of A549 cells in the SOCS1-RNA interference group, compared to the control group with no interference-mediated silencing of the SOCS1 gene. A lentiviral vector for RNA interference targeting the SOCS1 gene was successfully constructed, and cell survival tests showed that knockdown of the SOCS1 gene promotes the apoptosis of alveolar cells.

  6. Role of mechanical stretching and lipopolysaccharide in early apoptosis and IL-8 of alveolar epithelial typeⅡ cells A549

    Institute of Scientific and Technical Information of China (English)

    Qiao-Ming Ning; Xiao-Ning Sun; Xin-Kai Zhao

    2012-01-01

    Objective:To investigate the effects of mechanical stretching and lipopolysaccharide (LPS) on the early apoptosis and IL-8 production of alveolar epithelial typeⅡ cellsA549.Methods:The experimental matrix consisted of three integrated studies.In the first study,A549 cells were subjected to different stretching strain frequency and duration time to see the effects on the early apoptosis.In the second study,A549 cells were subjected to mechanical stretch(15%4 h, 0.5Hz) andLPS(1 or100 ng/mL) to see whether mechanical strain andLPS also have an addictive effect on the early apoptosis.In the third study to investigate whether this addictive effect could be induced byLPS and mechanical stretch onIL-8 production,A549 cells were subjected to LPS(100 ng/mL) and mechanical strain(15%,0.5Hz,4 h).Real timePCR and enzyme linked immunosorbent assay were used to measure mRNA and protein level ofIL-8.The early apoptosis was detected by flow cytometry.Results:Mechanical stretch induced the early apoptosis in a force and frequency and time-dependent manner.In the presence ofLPS, mechanical stretch enhancedLPS-induced early apoptosis, especially in100 ng/mLLPS group compared with1 ng/mLLPS and the control group.Mechanical stretch increasedIL-8 production and enhancedLPS-inducedIL-8 screation both in mRNA and protein levels.Conclusions:Mechanical stretch can induce the early apoptosis andIL-8 secretion.Mechanical stretch andLPS have an addictive effect on the early apoptosis andIL-8 production in alveolar type2 cells, which is one of the mechanisms of ventilator-induced lung injury.

  7. Induction of type Ⅱ alveolar epithelial cells apoptosis in mouse by lipopolysaccharide does not require TNF-α

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective To examine whether lipopolysaccharide (LPS)-induced apoptosis correlates with TNF-α release by type Ⅱ alveolar epithelial cells (AEC Ⅱ), whether TNF-α knockout (TNF KO) abrogates the induction of apoptosis by LPS and whether TNF-α is sufficient to induce apoptosis in this cell type.Methods AEC Ⅱ were isolated from wild type mice and TNF KO mice. Cells were stimulated with LPS or recombinant murine TNF-α for 24 h. TNF-α in culture supernatant was determined by ELISA following LPS stimulation. Apoptosis was determined by the terminal deoxynucleotidyl transferase end-labeling (TUNEL) assay after treatment with either LPS or TNF-α. Results LPS induced apoptosis in wild type AEC Ⅱ in a concentration-dependent manner. LPS-induced AEC Ⅱ apoptosis was accompanied by an 11-fold increase (from 0.073±0.065 ng/ml in control to 0.94±0.14 ng/ml in 50 μg/ml of LPS, P<0.01) in TNF-α release. However, increasing concentrations (5 or 25 ng/ml) of recombinant murine TNF-α failed to induce AEC Ⅱ apoptosis. In addition, apoptosis did occur in AEC Ⅱ isolated from TNF KO mice following LPS stimulation.Conclusions This study confirms that LPS induces TNF-α release and apoptosis in murine AEC Ⅱ in vitro. Exogenous TNF-α failed to induce AEC Ⅱ apoptosis, and apoptosis occurred following LPS stimulation in cells lacking the ability to produce TNF-α. Taken together, these results suggest that LPS-induced AEC Ⅱ apoptosis occurs by a TNF-α-independent mechanism.

  8. N-Acetylcysteine counteracts oxidative stress and protects alveolar epithelial cells from lung contusion-induced apoptosis in rats with blunt chest trauma.

    Science.gov (United States)

    Topcu-Tarladacalisir, Yeter; Tarladacalisir, Taner; Sapmaz-Metin, Melike; Karamustafaoglu, Altemur; Uz, Yesim Hulya; Akpolat, Meryem; Cerkezkayabekir, Aysegul; Turan, Fatma Nesrin

    2014-08-01

    The aim of this study was to investigate the protective effects of N-acetylcysteine (NAC) on peroxidative and apoptotic changes in the contused lungs of rats following blunt chest trauma. The rats were randomly divided into three groups: control, contusion, and contusion + NAC. All the rats, apart from those in the control group, performed moderate lung contusion. A daily intramuscular NAC injection (150 mg/kg) was given immediately following the blunt chest trauma and was continued for two additional days following cessation of the trauma. Samples of lung tissue were taken in order to evaluate the tissue malondialdehyde (MDA) level, histopathology, and epithelial cell apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and active caspase-3 immunostaining. In addition, we immunohistochemically evaluated the expression of surfactant protein D (SP-D) in the lung tissue. The blunt chest trauma-induced lung contusion resulted in severe histopathological injury, as well as an increase in the MDA level and in the number of cells identified on TUNEL assay together with active caspase-3 positive epithelial cells, but a decrease in the number of SP-D positive alveolar type 2 (AT-2) cells. NAC treatment effectively attenuated histopathologic, peroxidative, and apoptotic changes, as well as reducing alterations in SP-D expression in the lung tissue. These findings indicate that the beneficial effects of NAC administrated following blunt chest trauma is related to the regulation of oxidative stress and apoptosis.

  9. Oxidative Stress, Cell Death, and Other Damage to Alveolar Epithelial Cells Induced by Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Nagai A

    2003-09-01

    Full Text Available Abstract Cigarette smoking is a major risk factor in the development of various lung diseases, including pulmonary emphysema, pulmonary fibrosis, and lung cancer. The mechanisms of these diseases include alterations in alveolar epithelial cells, which are essential in the maintenance of normal alveolar architecture and function. Following cigarette smoking, alterations in alveolar epithelial cells induce an increase in epithelial permeability, a decrease in surfactant production, the inappropriate production of inflammatory cytokines and growth factors, and an increased risk of lung cancer. However, the most deleterious effect of cigarette smoke on alveolar epithelial cells is cell death, i.e., either apoptosis or necrosis depending on the magnitude of cigarette smoke exposure. Cell death induced by cigarette smoke exposure can largely be accounted for by an enhancement in oxidative stress. In fact, cigarette smoke contains and generates many reactive oxygen species that damage alveolar epithelial cells. Whether apoptosis and/or necrosis in alveolar epithelial cells is enhanced in healthy cigarette smokers is presently unclear. However, recent evidence indicates that the apoptosis of alveolar epithelial cells and alveolar endothelial cells is involved in the pathogenesis of pulmonary emphysema, an important cigarette smoke-induced lung disease characterized by the loss of alveolar structures. This review will discuss oxidative stress, cell death, and other damage to alveolar epithelial cells induced by cigarette smoke.

  10. Alveolar type II epithelial cell dysfunction in rat experimental hepatopulmonary syndrome (HPS.

    Directory of Open Access Journals (Sweden)

    Wenli Yang

    Full Text Available The hepatopulmonary syndrome (HPS develops when pulmonary vasodilatation leads to abnormal gas exchange. However, in human HPS, restrictive ventilatory defects are also observed supporting that the alveolar epithelial compartment may also be affected. Alveolar type II epithelial cells (AT2 play a critical role in maintaining the alveolar compartment by producing four surfactant proteins (SPs, SP-A, SP-B, SP-C and SP-D which also facilitate alveolar repair following injury. However, no studies have evaluated the alveolar epithelial compartment in experimental HPS. In this study, we evaluated the alveolar epithelial compartment and particularly AT2 cells in experimental HPS induced by common bile duct ligation (CBDL. We found a significant reduction in pulmonary SP production associated with increased apoptosis in AT2 cells after CBDL relative to controls. Lung morphology showed decreased mean alveolar chord length and lung volumes in CBDL animals that were not seen in control models supporting a selective reduction of alveolar airspace. Furthermore, we found that administration of TNF-α, the bile acid, chenodeoxycholic acid, and FXR nuclear receptor activation (GW4064 induced apoptosis and impaired SP-B and SP-C production in alveolar epithelial cells in vitro. These results imply that AT2 cell dysfunction occurs in experimental HPS and is associated with alterations in the alveolar epithelial compartment. Our findings support a novel contributing mechanism in experimental HPS that may be relevant to humans and a potential therapeutic target.

  11. Reversible transdifferentiation of alveolar epithelial cells.

    Science.gov (United States)

    Danto, S I; Shannon, J M; Borok, Z; Zabski, S M; Crandall, E D

    1995-05-01

    Alveolar epithelial type II (AT2) cells have been thought to be the progenitors of terminally differentiated type I (AT1) cells in the adult animal in vivo. In this study, we used an AT1 cell-specific monoclonal antibody (mAb VIII B2) to investigate expression of the AT1 cell phenotype accompanying reversible changes in expression of the AT2 cell phenotype. AT2 cells were isolated and cultured either on attached collagen gels or on gels detached 1 or 4 days after plating and maintained thereafter as floating gels. Monolayers on both attached and floating gels were harvested on days 4 and 8 and analyzed by electron microscopy for changes in morphology and binding of mAb VIII B2. Results indicate that: (1) alveolar epithelial cells (AEC) on attached gels develop characteristics of the AT1 cell phenotype, (2) AEC on gels detached on day 1 maintain features of the AT2 cell phenotype (and do not react with mAb VIII B2), and (3) the expression of AT1 cell phenotypic traits seen by day 4 on attached gels is reversed after detachment. We conclude that commitment to the AT1 and AT2 cell lineages requires continuous regulatory input to maintain the differentiated states, and that transdifferentiation between AT2 and AT1 cells may be reversible.

  12. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells.

    OpenAIRE

    Simon, R H; DeHart, P D; Todd, R F

    1986-01-01

    The damage to pulmonary alveolar epithelial cells that occurs in many inflammatory conditions is thought to be caused in part by phagocytic neutrophils. To investigate this process, we exposed monolayers of purified rat alveolar epithelial cells to stimulated human neutrophils and measured cytotoxicity using a 51Cr-release assay. We found that stimulated neutrophils killed epithelial cells by a process that did not require neutrophil-generated reactive oxygen metabolites. Pretreatment of neut...

  13. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells.

    Science.gov (United States)

    Simon, R H; DeHart, P D; Todd, R F

    1986-11-01

    The damage to pulmonary alveolar epithelial cells that occurs in many inflammatory conditions is thought to be caused in part by phagocytic neutrophils. To investigate this process, we exposed monolayers of purified rat alveolar epithelial cells to stimulated human neutrophils and measured cytotoxicity using a 51Cr-release assay. We found that stimulated neutrophils killed epithelial cells by a process that did not require neutrophil-generated reactive oxygen metabolites. Pretreatment of neutrophils with an antibody (anti-Mo1) that reduced neutrophil adherence to epithelial cells limited killing. Although a variety of serine protease inhibitors partially inhibited cytotoxicity, we found that neutrophil cytoplasts, neutrophil lysates, neutrophil-conditioned medium, purified azurophilic or specific granule contents, and purified human neutrophil elastase did not duplicate the injury. We conclude that stimulated neutrophils can kill alveolar epithelial cells in an oxygen metabolite-independent manner. Tight adherence of stimulated neutrophils to epithelial cell monolayers appears to promote epithelial cell killing.

  14. Bacillus anthracis lethal toxin reduces human alveolar epithelial barrier function.

    Science.gov (United States)

    Langer, Marybeth; Duggan, Elizabeth Stewart; Booth, John Leland; Patel, Vineet Indrajit; Zander, Ryan A; Silasi-Mansat, Robert; Ramani, Vijay; Veres, Tibor Zoltan; Prenzler, Frauke; Sewald, Katherina; Williams, Daniel M; Coggeshall, Kenneth Mark; Awasthi, Shanjana; Lupu, Florea; Burian, Dennis; Ballard, Jimmy Dale; Braun, Armin; Metcalf, Jordan Patrick

    2012-12-01

    The lung is the site of entry for Bacillus anthracis in inhalation anthrax, the deadliest form of the disease. Bacillus anthracis produces virulence toxins required for disease. Alveolar macrophages were considered the primary target of the Bacillus anthracis virulence factor lethal toxin because lethal toxin inhibits mouse macrophages through cleavage of MEK signaling pathway components, but we have reported that human alveolar macrophages are not a target of lethal toxin. Our current results suggest that, unlike human alveolar macrophages, the cells lining the respiratory units of the lung, alveolar epithelial cells, are a target of lethal toxin in humans. Alveolar epithelial cells expressed lethal toxin receptor protein, bound the protective antigen component of lethal toxin, and were subject to lethal-toxin-induced cleavage of multiple MEKs. These findings suggest that human alveolar epithelial cells are a target of Bacillus anthracis lethal toxin. Further, no reduction in alveolar epithelial cell viability was observed, but lethal toxin caused actin rearrangement and impaired desmosome formation, consistent with impaired barrier function as well as reduced surfactant production. Therefore, by compromising epithelial barrier function, lethal toxin may play a role in the pathogenesis of inhalation anthrax by facilitating the dissemination of Bacillus anthracis from the lung in early disease and promoting edema in late stages of the illness.

  15. Cigarette smoke exposure aggravates air space enlargement and alveolar cell apoptosis in Smad3 knockout mice.

    Science.gov (United States)

    Farkas, Laszlo; Farkas, Daniela; Warburton, David; Gauldie, Jack; Shi, Wei; Stampfli, Martin R; Voelkel, Norbert F; Kolb, Martin

    2011-10-01

    The concept of genetic susceptibility factors predisposing cigarette smokers to develop emphysema stems from the clinical observation that only a fraction of smokers develop clinically significant chronic obstructive pulmonary disease. We investigated whether Smad3 knockout mice, which develop spontaneous air space enlargement after birth because of a defect in transforming growth factor-β (TGF-β) signaling, develop enhanced alveolar cell apoptosis and air space enlargement following cigarette smoke exposure. We investigated Smad3(-/-) and Smad3(+/+) mice at different adult ages and determined air space enlargement, alveolar cell proliferation, and apoptosis. Furthermore, laser-capture microdissection and real-time PCR were used to measure compartment-specific gene expression. We then compared the effects of cigarette smoke exposure on Smad3(-/-) and littermate controls. Smad3 knockout resulted in the development of air space enlargement in the adult mouse and was associated with decreased alveolar VEGF levels and activity and increased alveolar cell apoptosis. Cigarette smoke exposure aggravated air space enlargement and alveolar cell apoptosis. We also found increased Smad2 protein expression and phosphorylation, which was enhanced following cigarette smoke exposure, in Smad3-knockout animals. Double immunofluorescence analysis revealed that endothelial apoptosis started before epithelial apoptosis. Our data indicate that balanced TGF-β signaling is not only important for regulation of extracellular matrix turnover, but also for alveolar cell homeostasis. Impaired signaling via the Smad3 pathway results in alveolar cell apoptosis and alveolar destruction, likely via increased Smad2 and reduced VEGF expression and might represent a predisposition for accelerated development of emphysema due to cigarette smoke exposure.

  16. 香烟烟雾提取物抑制肺泡上皮细胞的增殖并诱导其凋亡%Cigarette smoke extract inhibits the proliferation of alveolar epithelial cells and induces apoptosis

    Institute of Scientific and Technical Information of China (English)

    焦宗宪; 敖启林; 熊密

    2006-01-01

    香烟烟雾提取物(cigarette smoke extract,CSE)中含有丰富的氧化剂和自由基,由它所引起的氧化应激可导致肺泡壁的损伤进而发展为肺气肿.近年来,围绕CSE损伤肺泡壁作用机制的研究较为活跃,但其结果却一直存在着分歧.本实验的目的是观察CSE对肺泡Ⅱ型上皮细胞的损伤作用并探讨与其相关的分子机制.MTT比色法的结果显示,CSE以时间和剂量依赖性的方式降低细胞的增殖活力,流式细胞术的分析结果表明细胞增殖周期被阻滞在G1/S期.Hoechst 33258染色以及透射电镜观察从形态上确认CSE诱导细胞凋亡的发生,DNA梯的出现和Annexin V-FITC/碘化丙啶双染色的结果从分子水平得到进一步的证实.同时,运用流式细胞术检测到CSE诱导的凋亡伴随着Fas受体的高表达和caspase-3的显著活化.另外,使用H2DCFDA染色,经激光共聚焦显微镜术测得细胞内氧自由基在细胞受到CSE刺激以后大量快速积累.结果表明CSE能够抑制肺泡Ⅱ型上皮细胞来源的A549细胞的生长和增殖,并诱导细胞凋亡,由Fas受体所介导的死亡受体途径参与此凋亡过程,而CSE所引起的氧化应激则可能是阻止肺泡上皮细胞生长增殖并诱导其凋亡的始动因素.%Cigarette smoke extract (CSE) contains abundant oxidants and free radicals. Oxidative stress caused by cigarette smoking results in the destruction of the alveolar cell walls and emphysema. However, there exists discrepancy about how CSE works in the process. In the present study, we observed the effect of CSE on the cell growth of type Ⅱ alveolar epithelial cell-derived A549 cell line,and provided molecular understanding of this effect. The MTT assay results showed that CSE decreased the cell viability of A549 cells in a dose- and time-dependent manner, and cell cycle was arrested in G1/S phase. Furthermore, CSE-induced apoptosis of A549 cells was verified by Hoechst 33258 staining, electron microscopy

  17. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    Science.gov (United States)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement

  18. Alveolar epithelial type II cell: defender of the alveolus revisited

    Directory of Open Access Journals (Sweden)

    Fehrenbach Heinz

    2001-01-01

    Full Text Available Abstract In 1977, Mason and Williams developed the concept of the alveolar epithelial type II (AE2 cell as a defender of the alveolus. It is well known that AE2 cells synthesise, secrete, and recycle all components of the surfactant that regulates alveolar surface tension in mammalian lungs. AE2 cells influence extracellular surfactant transformation by regulating, for example, pH and [Ca2+] of the hypophase. AE2 cells play various roles in alveolar fluid balance, coagulation/fibrinolysis, and host defence. AE2 cells proliferate, differentiate into AE1 cells, and remove apoptotic AE2 cells by phagocytosis, thus contributing to epithelial repair. AE2 cells may act as immunoregulatory cells. AE2 cells interact with resident and mobile cells, either directly by membrane contact or indirectly via cytokines/growth factors and their receptors, thus representing an integrative unit within the alveolus. Although most data support the concept, the controversy about the character of hyperplastic AE2 cells, reported to synthesise profibrotic factors, proscribes drawing a definite conclusion today.

  19. Epithelial Cell Apoptosis and Lung Remodeling

    Institute of Scientific and Technical Information of China (English)

    Kazuyoshi Kuwano

    2007-01-01

    Lung epithelium is the primary site of lung damage in various lung diseases. Epithelial cell apoptosis has been considered to be initial event in various lung diseases. Apoptosis signaling is classically composed of two principle pathways. One is a direct pathway from death receptor ligation to caspase cascade activation and cell death. The other pathway triggered by stresses such as drugs, radiation, infectious agents and reactive oxygen species is mediated by mitochondria. Endoplasmic reticulum has also been shown to be the organelle to mediate apoptosis.Epithelial cell death is followed by remodeling processes, which consist of epithelial and fibroblast activation,cytokine production, activation of coagulation pathway, neoangiogenesis, re-epithelialization and fibrosis.Epithelial and mesenchymal interaction plays important roles in these processes. Further understanding of apoptosis signaling and its regulation by novel strategies may lead to effective treatments against various lung diseases. We review the recent advances in the understanding of apoptosis signaling and discuss the involvement of apoptosis in lung remodeling.

  20. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  1. Nrf2 protects human alveolar epithelial cells against injury induced by influenza A virus

    Directory of Open Access Journals (Sweden)

    Kosmider Beata

    2012-06-01

    Full Text Available Abstract Background Influenza A virus (IAV infection primarily targets respiratory epithelial cells and produces clinical outcomes ranging from mild upper respiratory infection to severe pneumonia. Recent studies have shown the importance of lung antioxidant defense systems against injury by IAV. Nuclear factor-erythroid 2 related factor 2 (Nrf2 activates the majority of antioxidant genes. Methods Alveolar type II (ATII cells and alveolar macrophages (AM were isolated from human lungs not suitable for transplantation and donated for medical research. In some studies ATII cells were transdifferentiated to alveolar type I-like (ATI-like cells. Alveolar epithelial cells were infected with A/PR/8/34 (PR8 virus. We analyzed PR8 virus production, influenza A nucleoprotein levels, ROS generation and expression of antiviral genes. Immunocytofluorescence was used to determine Nrf2 translocation and western blotting to detect Nrf2, HO-1 and caspase 1 and 3 cleavage. We also analyzed ingestion of PR8 virus infected apoptotic ATII cells by AM, cytokine levels by ELISA, glutathione levels, necrosis and apoptosis by TUNEL assay. Moreover, we determined the critical importance of Nrf2 using adenovirus Nrf2 (AdNrf2 or Nrf2 siRNA to overexpress or knockdown Nrf2, respectively. Results We found that IAV induced oxidative stress, cytotoxicity and apoptosis in ATI-like and ATII cells. We also found that AM can ingest PR8 virus-induced apoptotic ATII cells (efferocytosis but not viable cells, whereas ATII cells did not ingest these apoptotic cells. PR8 virus increased ROS production, Nrf2, HO-1, Mx1 and OAS1 expression and Nrf2 translocation to the nucleus. Nrf2 knockdown with siRNA sensitized ATI-like cells and ATII cells to injury induced by IAV and overexpression of Nrf2 with AdNrf2 protected these cells. Furthermore, Nrf2 overexpression followed by infection with PR8 virus decreased virus replication, influenza A nucleoprotein expression, antiviral response and

  2. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia.

    Directory of Open Access Journals (Sweden)

    Katrin Högner

    2013-02-01

    Full Text Available Influenza viruses (IV cause pneumonia in humans with progression to lung failure and fatal outcome. Dysregulated release of cytokines including type I interferons (IFNs has been attributed a crucial role in immune-mediated pulmonary injury during severe IV infection. Using ex vivo and in vivo IV infection models, we demonstrate that alveolar macrophage (AM-expressed IFN-β significantly contributes to IV-induced alveolar epithelial cell (AEC injury by autocrine induction of the pro-apoptotic factor TNF-related apoptosis-inducing ligand (TRAIL. Of note, TRAIL was highly upregulated in and released from AM of patients with pandemic H1N1 IV-induced acute lung injury. Elucidating the cell-specific underlying signalling pathways revealed that IV infection induced IFN-β release in AM in a protein kinase R- (PKR- and NF-κB-dependent way. Bone marrow chimeric mice lacking these signalling mediators in resident and lung-recruited AM and mice subjected to alveolar neutralization of IFN-β and TRAIL displayed reduced alveolar epithelial cell apoptosis and attenuated lung injury during severe IV pneumonia. Together, we demonstrate that macrophage-released type I IFNs, apart from their well-known anti-viral properties, contribute to IV-induced AEC damage and lung injury by autocrine induction of the pro-apoptotic factor TRAIL. Our data suggest that therapeutic targeting of the macrophage IFN-β-TRAIL axis might represent a promising strategy to attenuate IV-induced acute lung injury.

  3. 石棉暴露下内质网应激在肺泡上皮细胞凋亡中的作用机制%THE MECHANISM OF ENDOPLASMIC RETICULUM STRESS INDUCING ALVEOLAR EPI-THELIAL CELLS APOPTOSIS UNDERLYING ASBESTOS EXPOSURE

    Institute of Scientific and Technical Information of China (English)

    周煦; 刘刚

    2014-01-01

    Objective To investigate the role of endoplasmic reticulum stress ( ERS) in asbestos-induced Alveolar epithelial cell apoptosis.Methods A549 cells were treated with asbestos to observe the expression of ERS proteins and apop-tosis gene by immunofluorescence staining and western blotting.Results Under asbestos exposure, the expression of Bip, GRP94, IRE-1α, BAX and BAK are up-regulated.There is a positive correlativity of the expression of proteins to the ex-posure time of asbestos.Conclusion Endoplasmic reticulum stress takes part in asbestos-induced apoptosis.%目的:探讨石棉暴露下内质网应激在细胞凋亡中的作用机制。方法应用石棉处理A549细胞,免疫荧光染色免疫法和免疫印迹法观察内质网应激( ERS)相关蛋白与促凋亡基因的变化。结果石棉暴露下,ERS相关蛋白Bip、IRE-1α和GRP94,以及促凋亡基因BAX、BAK蛋白表达均上调,且与石棉暴露时间呈正相关。结论内质网应激参与了石棉诱导的细胞凋亡。

  4. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Jessica L Eisenberg

    2011-01-01

    Full Text Available Jessica L Eisenberg1,2, Asmahan Safi3, Xiaoding Wei3, Horacio D Espinosa3, GR Scott Budinger2, Desire Takawira1, Susan B Hopkinson1, Jonathan CR Jones1,21Department of Cell and Molecular Biology, 2Division of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; 3Department of Mechanical Engineering, Northwestern University, Evanston, IL, USAAim: The aim of the study was to address whether a stiff substrate, a model for pulmonary fibrosis, is responsible for inducing changes in the phenotype of alveolar epithelial cells (AEC in the lung, including their deposition and organization of extracellular matrix (ECM proteins.Methods: Freshly isolated lung AEC from male Sprague Dawley rats were seeded onto polyacrylamide gel substrates of varying stiffness and analyzed for expression and organization of adhesion, cytoskeletal, differentiation, and ECM components by Western immunoblotting and confocal immunofluorescence microscopy.Results: We observed that substrate stiffness influences cell morphology and the organization of focal adhesions and the actin cytoskeleton. Surprisingly, however, we found that substrate stiffness has no influence on the differentiation of type II into type I AEC, nor does increased substrate stiffness lead to an epithelial–mesenchymal transition. In contrast, our data indicate that substrate stiffness regulates the expression of the α3 laminin subunit by AEC and the organization of both fibronectin and laminin in their ECM.Conclusions: An increase in substrate stiffness leads to enhanced laminin and fibronectin assembly into fibrils, which likely contributes to the disease phenotype in the fibrotic lung.Keywords: alveolar epithelial cells, fibrosis, extracellular matrix, substrate stiffness

  5. Alveolocapillary model system to study alveolar re-epithelialization

    Energy Technology Data Exchange (ETDEWEB)

    Willems, Coen H.M.P.; Zimmermann, Luc J.I.; Sanders, Patricia J.L.T.; Wagendorp, Margot; Kloosterboer, Nico [Department of Paediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht (Netherlands); Cohen Tervaert, Jan Willem [Division of Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht (Netherlands); Duimel, Hans J.Q.; Verheyen, Fons K.C.P. [Electron Microscopy Unit, Department of Molecular Cell Biology, Maastricht University Medical Centre, Maastricht (Netherlands); Iwaarden, J. Freek van, E-mail: f.vaniwaarden@maastrichtuniversity.nl [Department of Paediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht (Netherlands)

    2013-01-01

    In the present study an in vitro bilayer model system of the pulmonary alveolocapillary barrier was established to investigate the role of the microvascular endothelium on re-epithelialization. The model system, confluent monolayer cultures on opposing sides of a porous membrane, consisted of a human microvascular endothelial cell line (HPMEC-ST1.6R) and an alveolar type II like cell line (A549), stably expressing EGFP and mCherry, respectively. These fluorescent proteins allowed the real time assessment of the integrity of the monolayers and the automated analysis of the wound healing process after a scratch injury. The HPMECs significantly attenuated the speed of re-epithelialization, which was associated with the proximity to the A549 layer. Examination of cross-sectional transmission electron micrographs of the model system revealed protrusions through the membrane pores and close contact between the A549 cells and the HPMECs. Immunohistochemical analysis showed that these close contacts consisted of heterocellular gap-, tight- and adherens-junctions. Additional analysis, using a fluorescent probe to assess gap-junctional communication, revealed that the HPMECs and A549 cells were able to exchange the fluorophore, which could be abrogated by disrupting the gap junctions using connexin mimetic peptides. These data suggest that the pulmonary microvascular endothelium may impact the re-epithelialization process. -- Highlights: ► Model system for vital imaging and high throughput screening. ► Microvascular endothelium influences re-epithelialization. ► A549 cells form protrusions through membrane to contact HPMEC. ► A549 cells and HPMECs form heterocellular tight-, gap- and adherens-junctions.

  6. An Optimised Human Cell Culture Model for Alveolar Epithelial Transport

    Science.gov (United States)

    Birch, Nigel P.; Suresh, Vinod

    2016-01-01

    Robust and reproducible in vitro models are required for investigating the pathways involved in fluid homeostasis in the human alveolar epithelium. We performed functional and phenotypic characterisation of ion transport in the human pulmonary epithelial cell lines NCI-H441 and A549 to determine their similarity to primary human alveolar type II cells. NCI-H441 cells exhibited high expression of junctional proteins ZO-1, and E-cadherin, seal-forming claudin-3, -4, -5 and Na+-K+-ATPase while A549 cells exhibited high expression of pore-forming claudin-2. Consistent with this phenotype NCI-H441, but not A549, cells formed a functional barrier with active ion transport characterised by higher electrical resistance (529 ± 178 Ω cm2 vs 28 ± 4 Ω cm2), lower paracellular permeability ((176 ± 42) ×10−8 cm/s vs (738 ± 190) ×10−8 cm/s) and higher transepithelial potential difference (11.9 ± 4 mV vs 0 mV). Phenotypic and functional properties of NCI-H441 cells were tuned by varying cell seeding density and supplement concentrations. The cells formed a polarised monolayer typical of in vivo epithelium at seeding densities of 100,000 cells per 12-well insert while higher densities resulted in multiple cell layers. Dexamethasone and insulin-transferrin-selenium supplements were required for the development of high levels of electrical resistance, potential difference and expression of claudin-3 and Na+-K+-ATPase. Treatment of NCI-H441 cells with inhibitors and agonists of sodium and chloride channels indicated sodium absorption through ENaC under baseline and forskolin-stimulated conditions. Chloride transport was not sensitive to inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) under either condition. Channels inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) contributed to chloride secretion following forskolin stimulation, but not at baseline. These data precisely define experimental conditions for the application of NCI

  7. HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Jacob Barbara A

    2009-02-01

    Full Text Available Abstract Background HIV-infected individuals are at increased risk for acute and chronic airway disease even though there is no evidence that the virus can infect the lung epithelium. Although HIV-related proteins including gp120 and Tat can directly cause oxidant stress and cellular dysfunction, their effects in the lung are unknown. The goal of this study was to determine the effects of HIV-1 transgene expression in rats on alveolar epithelial barrier function. Alveolar epithelial barrier function was assessed by determining lung liquid clearance in vivo and alveolar epithelial monolayer permeability in vitro. Oxidant stress in the alveolar space was determined by measuring the glutathione redox couple by high performance liquid chromatography, and the expression and membrane localization of key tight junction proteins were assessed. Finally, the direct effects of the HIV-related proteins gp120 and Tat on alveolar epithelial barrier formation and tight junction protein expression were determined. Results HIV-1 transgene expression caused oxidant stress within the alveolar space and impaired epithelial barrier function even though there was no evidence of overt inflammation within the airways. The expression and membrane localization of the tight junction proteins zonula occludens-1 and occludin were decreased in alveolar epithelial cells from HIV-1 transgenic rats. Further, treating alveolar epithelial monolayers from wild type rats in vitro with recombinant gp120 or Tat for 24 hours reproduced many of the effects on zonula occludens-1 and occludin expression and membrane localization. Conclusion Taken together, these data indicate that HIV-related proteins cause oxidant stress and alter the expression of critical tight junction proteins in the alveolar epithelium, resulting in barrier dysfunction.

  8. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells

    Science.gov (United States)

    Eisenberg, Jessica L; Safi, Asmahan; Wei, Xiaoding; Espinosa, Horacio D; Budinger, GR Scott; Takawira, Desire; Hopkinson, Susan B; Jones, Jonathan CR

    2012-01-01

    Aim The aim of the study was to address whether a stiff substrate, a model for pulmonary fibrosis, is responsible for inducing changes in the phenotype of alveolar epithelial cells (AEC) in the lung, including their deposition and organization of extracellular matrix (ECM) proteins. Methods Freshly isolated lung AEC from male Sprague Dawley rats were seeded onto polyacrylamide gel substrates of varying stiffness and analyzed for expression and organization of adhesion, cytoskeletal, differentiation, and ECM components by Western immunoblotting and confocal immunofluorescence microscopy. Results We observed that substrate stiffness influences cell morphology and the organization of focal adhesions and the actin cytoskeleton. Surprisingly, however, we found that substrate stiffness has no influence on the differentiation of type II into type I AEC, nor does increased substrate stiffness lead to an epithelial–mesenchymal transition. In contrast, our data indicate that substrate stiffness regulates the expression of the α3 laminin subunit by AEC and the organization of both fibronectin and laminin in their ECM. Conclusions An increase in substrate stiffness leads to enhanced laminin and fibronectin assembly into fibrils, which likely contributes to the disease phenotype in the fibrotic lung. PMID:23204878

  9. High CO2 levels impair alveolar epithelial function independently of pH.

    Directory of Open Access Journals (Sweden)

    Arturo Briva

    Full Text Available BACKGROUND: In patients with acute respiratory failure, gas exchange is impaired due to the accumulation of fluid in the lung airspaces. This life-threatening syndrome is treated with mechanical ventilation, which is adjusted to maintain gas exchange, but can be associated with the accumulation of carbon dioxide in the lung. Carbon dioxide (CO2 is a by-product of cellular energy utilization and its elimination is affected via alveolar epithelial cells. Signaling pathways sensitive to changes in CO2 levels were described in plants and neuronal mammalian cells. However, it has not been fully elucidated whether non-neuronal cells sense and respond to CO2. The Na,K-ATPase consumes approximately 40% of the cellular metabolism to maintain cell homeostasis. Our study examines the effects of increased pCO2 on the epithelial Na,K-ATPase a major contributor to alveolar fluid reabsorption which is a marker of alveolar epithelial function. PRINCIPAL FINDINGS: We found that short-term increases in pCO2 impaired alveolar fluid reabsorption in rats. Also, we provide evidence that non-excitable, alveolar epithelial cells sense and respond to high levels of CO2, independently of extracellular and intracellular pH, by inhibiting Na,K-ATPase function, via activation of PKCzeta which phosphorylates the Na,K-ATPase, causing it to endocytose from the plasma membrane into intracellular pools. CONCLUSIONS: Our data suggest that alveolar epithelial cells, through which CO2 is eliminated in mammals, are highly sensitive to hypercapnia. Elevated CO2 levels impair alveolar epithelial function, independently of pH, which is relevant in patients with lung diseases and altered alveolar gas exchange.

  10. Simvastatin Attenuates TGF-β1-Induced Epithelial-Mesenchymal Transition in Human Alveolar Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Tuo Yang

    2013-06-01

    Full Text Available Background: Transforming growth factor-β1 (TGF-β1-induced epithelial-mesenchymal transition (EMT of alveolar epithelial cells (AEC may contribute to idiopathic pulmonary fibrosis (IPF. TGF-β1-induced EMT in A549 cells (a human AEC cell line resulted in the adoption of mesenchymal responses that were predominantly mediated via the TGF-β1-Smad2/3 signaling pathway. Simvastatin (Sim, a 3-hydroxy-3-methylglutaryl CoA (HMG-CoA reductase inhibitor, has been previously reported to inhibit EMT in human proximal tubular epithelial cells and porcine lens epithelial cells and to suppress Smad2/3 phosphorylation in animal models. However, whether Sim can attenuate TGF-β1-induced EMT in A549 cells and its underlying mechanisms remains unknown. Methods: Cells were incubated with TGF-β1 in the presence or absence of Sim. The epithelial marker E-cadherin (E-Cad and the mesenchymal markers, α-smooth muscle actin (α-SMA, vimentin (Vi and fibronectin (FN, were detected using western blotting analyses and immunofluorescence. Phosphorylated Smad2 and Smad3 levels and connective tissue growth factor (CTGF were analyzed using western blotting. In addition, a cell migration assay was performed. Moreover, the levels of matrix metalloproteinase (MMP-2 and -9 in the culture medium were examined using ELISA. Results: Sim significantly attenuated the TGF-β1-induced decrease in E-Cad levels and elevated the levels of α-SMA, Vi and FN via the suppression of Smad2 and Smad3 phosphorylation. Furthermore, Sim inhibited the mesenchymal-like responses in A549 cells, including cell migration, CTGF expression and secretion of MMP-2 and -9. However, Sim failed to reverse the cell morphologial changes induced by TGF-β1 in A549 cells. Conclusion: Sim attenuated TGF-β1-induced EMT in A549 cells and might be a promising therapeutic agent for treating IPF.

  11. Pathogenesis of idiopathic pulmonary fibrosis: from initial apoptosis of epithelial cells to lung remodeling?

    Institute of Scientific and Technical Information of China (English)

    JIN Hua-liang; DONG Jing-cheng

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal form of interstitial lung disease.Despite extensive efforts in research during recent years,the mechanisms of the disease remain poorly understood.Evidence of an inflammatory mechanism,both supportive and contrary,is briefly reviewed in this paper.However,growing evidence has indicated that the apoptosis of alveolar epithelial cells (AECs) may be the early driving force of progression,with subsequent disrupted integrity of the alveolar-capillary basement membrane leading to an abnormal wound healing pathway.Thus,this paper will focus on outlining a process of pathogenesis of IPF from initial apoptosis of AECs to end lung remodeling.

  12. Trichomonas vaginalis induces cytopathic effect on human lung alveolar basal carcinoma epithelial cell line A549.

    Science.gov (United States)

    Salvador-Membreve, Daile Meek C; Jacinto, Sonia D; Rivera, Windell L

    2014-12-01

    Trichomonas vaginalis, the causative agent of trichomoniasis is generally known to inhabit the genitourinary tract. However, several case reports with supporting molecular and immunological identifications have documented its occurrence in the respiratory tract of neonates and adults. In addition, the reports have documented that its occurrence is associated with respiratory failures. The medical significance or consequence of this association is unclear. Thus, to establish the possible outcome from the interaction of T. vaginalis with lung cells, the cytopathic effects of the parasites were evaluated using monolayer cultures of the human lung alveolar basal carcinoma epithelial cell line A549. The possible effect of association of T. vaginalis with A549 epithelial cells was analyzed using phase-contrast, scanning electron microscopy and fluorescence microscopy. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), crystal-violet and TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) assays were conducted for cytotoxicity testing. The results demonstrate that T. vaginalis: (1) adheres to A549 epithelial cells, suggesting a density-dependent parasite-cell association; (2) adherence on A549 is through flagella, membrane and axostyle; (3) causes cell detachment and cytotoxicity (50-72.4%) to A549 and this effect is a function of parasite density; and (4) induces apoptosis in A549 about 20% after 6 h of incubation. These observations indicate that T. vaginalis causes cytopathic effects on A549 cell. To date, this is the first report showing a possible interaction of T. vaginalis with the lung cells using A549 monolayer cultures. Further studies are recommended to completely elucidate this association.

  13. Autophagy protects type II alveolar epithelial cells from Mycobacterium tuberculosis infection

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xu-Guang [Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Department of Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Ji, Tian-Xing [Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Xia, Yong, E-mail: gysyxy@gmail.com [Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Ma, Yue-Yun, E-mail: cmbmayy@fmmu.edu.cn [Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi' an (China)

    2013-03-08

    Highlights: ► We investigated the protective effect of autophagy pathway against MTB infection. ► MTB-infected A549 cells had higher LDH release. ► Inhibition of autophagy signaling significantly enhanced the MTB-induced necrosis. ► Autophagy prevents apoptosis and promotes cell survival in infected cells. -- Abstract: This study was designed to investigate the protective effect of the autophagy signaling pathway against Mycobacterium tuberculosis infection in type II alveolar epithelial cells. An in vitro M. tuberculosis system was established using human A549 cells. Infection-induced changes in the expression of the autophagic marker LC3 were assessed by reverse transcription-PCR and Western blotting. Morphological changes in autophagosomes were detected by transmission electron microscopy (TEM). The function of the autophagy signaling pathway during infection was assessed by measuring the level of cell death and the amount of lactate dehydrogenase (LDH) released in the presence or absence of the inhibitor 3-methyladenine (3-MA). In addition, effects on LDH release were assessed after the siRNA-mediated knockdown of the essential autophagosomal structural membrane protein Atg5. LC3 mRNA expression was significantly reduced in M.tuberculosis-infected A549 cells (16888.76 ± 1576.34 vs. uninfected: 12744.29 ± 1089.37; P < 0.05). TEM revealed M.tuberculosis bacilli-containing compartments that were surrounded by double membranes characteristic of the autophagic process. M.tuberculosis-infected A549 cells released more LDH (1.45 ± 0.12 vs. uninfected: 0.45 ± 0.04; P < 0.05). The inhibition of autophagy signaling significantly enhanced M.tuberculosis-induced necrosis (3-MA: 75 ± 5% vs. untreated: 15 ± 1%; P < 0.05) and LDH release (3-MA: 2.50 ± 0.24 vs. untreated: 0.45 ± 0.04; Atg5 knockdown: 3.19 ± 0.29 vs. untreated: 1.28 ± 0.11; P < 0.05). Our results indicate that autophagy signaling pathway prevents apoptosis in type II alveolar epithelial cells

  14. Cultured alveolar epithelial cells from septic rats mimic in vivo septic lung.

    Directory of Open Access Journals (Sweden)

    Taylor S Cohen

    Full Text Available Sepsis results in the formation of pulmonary edema by increasing in epithelial permeability. Therefore we hypothesized that alveolar epithelial cells isolated from septic animals develop tight junctions with different protein composition and reduced barrier function relative to alveolar epithelial cells from healthy animals. Male rats (200-300 g were sacrificed 24 hours after cecal ligation and double puncture (2CLP or sham surgery. Alveolar epithelial cells were isolated and plated on fibronectin-coated flexible membranes or permeable, non-flexible transwell substrates. After a 5 day culture period, cells were either lysed for western analysis of tight junction protein expressin (claudin 3, 4, 5, 7, 8, and 18, occludin, ZO-1, and JAM-A and MAPk (JNK, ERK, an p38 signaling activation, or barrier function was examined by measuring transepithelial resistance (TER or the flux of two molecular tracers (5 and 20 A. Inhibitors of JNK (SP600125, 20 microM and ERK (U0126, 10 microM were used to determine the role of these pathways in sepsis induced epithelial barrier dysfunction. Expression of claudin 4, claudin 18, and occludin was significantly lower, and activation of JNK and ERK signaling pathways was significantly increased in 2CLP monolayers, relative to sham monolayers. Transepithelial resistance of the 2CLP monolayers was reduced significantly compared to sham (769 and 1234 ohm-cm(2, respectively, however no significant difference in the flux of either tracer was observed. Inhibition of ERK, not JNK, significantly increased TER and expression of claudin 4 in 2CLP monolayers, and prevented significant differences in claudin 18 expression between 2CLP and sham monolayers. We conclude that alveolar epithelial cells isolated from septic animals form confluent monolayers with impaired barrier function compared to healthy monolayers, and inhibition of ERK signaling partially reverses differences between these monolayers. This model provides a unique

  15. Barrier-protective effects of activated protein C in human alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ferranda Puig

    Full Text Available Acute lung injury (ALI is a clinical manifestation of respiratory failure, caused by lung inflammation and the disruption of the alveolar-capillary barrier. Preservation of the physical integrity of the alveolar epithelial monolayer is of critical importance to prevent alveolar edema. Barrier integrity depends largely on the balance between physical forces on cell-cell and cell-matrix contacts, and this balance might be affected by alterations in the coagulation cascade in patients with ALI. We aimed to study the effects of activated protein C (APC on mechanical tension and barrier integrity in human alveolar epithelial cells (A549 exposed to thrombin. Cells were pretreated for 3 h with APC (50 µg/ml or vehicle (control. Subsequently, thrombin (50 nM or medium was added to the cell culture. APC significantly reduced thrombin-induced cell monolayer permeability, cell stiffening, and cell contraction, measured by electrical impedance, optical magnetic twisting cytometry, and traction microscopy, respectively, suggesting a barrier-protective response. The dynamics of the barrier integrity was also assessed by western blotting and immunofluorescence analysis of the tight junction ZO-1. Thrombin resulted in more elongated ZO-1 aggregates at cell-cell interface areas and induced an increase in ZO-1 membrane protein content. APC attenuated the length of these ZO-1 aggregates and reduced the ZO-1 membrane protein levels induced by thrombin. In conclusion, pretreatment with APC reduced the disruption of barrier integrity induced by thrombin, thus contributing to alveolar epithelial barrier protection.

  16. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor.

    Science.gov (United States)

    Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto; Horowitz, Jeffrey C; Kim, Kevin K

    2014-04-15

    Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis remains poorly defined. Profibrotic cytokines may activate epithelial cells with protein expression and functions that overlap with the functions of active fibroblasts. We found that alveolar epithelial cells undergoing TGF-β-mediated mesenchymal transition in vitro were also capable of activating lung fibroblasts through production of CTGF. Alveolar epithelial cell expression of CTGF was dramatically reduced by inhibition of Rho signaling. CTGF reporter mice demonstrated increased CTGF promoter activity by lung epithelial cells acutely after bleomycin in vivo. Furthermore, mice with lung epithelial cell-specific deletion of CTGF had an attenuated fibrotic response to bleomycin. These studies provide direct evidence that epithelial cell activation initiates a cycle of fibrogenic effector cell activation during progressive fibrosis. Therapy targeted at epithelial cell production of CTGF offers a novel pathway for abrogating this progressive cycle and limiting tissue fibrosis.

  17. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells.

    Science.gov (United States)

    Checa, Marco; Hagood, James S; Velazquez-Cruz, Rafael; Ruiz, Victor; García-De-Alba, Carolina; Rangel-Escareño, Claudia; Urrea, Francisco; Becerril, Carina; Montaño, Martha; García-Trejo, Semiramis; Cisneros Lira, José; Aquino-Gálvez, Arnoldo; Pardo, Annie; Selman, Moisés

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disease of unknown etiology. A growing body of evidence indicates that it may result from an aberrant activation of alveolar epithelium, which induces the expansion of the fibroblast population, their differentiation to myofibroblasts and the excessive accumulation of extracellular matrix. The mechanisms that activate the alveolar epithelium are unknown, but several studies indicate that smoking is the main environmental risk factor for the development of IPF. In this study we explored the effect of cigarette smoke on the gene expression profile and signaling pathways in alveolar epithelial cells. Lung epithelial cell line from human (A549), was exposed to cigarette smoke extract (CSE) for 1, 3, and 5 weeks at 1, 5 and 10% and gene expression was evaluated by complete transcriptome microarrays. Signaling networks were analyzed with the Ingenuity Pathway Analysis software. At 5 weeks of exposure, alveolar epithelial cells acquired a fibroblast-like phenotype. At this time, gene expression profile revealed a significant increase of more than 1000 genes and deregulation of canonical signaling pathways such as TGF-β and Wnt. Several profibrotic genes involved in EMT were over-expressed, and incomplete EMT was observed in these cells, and corroborated in mouse (MLE-12) and rat (RLE-6TN) epithelial cells. The secretion of activated TGF-β1 increased in cells exposed to cigarette smoke, which decreased when the integrin alpha v gene was silenced. These findings suggest that the exposure of alveolar epithelial cells to CSE induces the expression and release of a variety of profibrotic genes, and the activation of TGF-β1, which may explain at least partially, the increased risk of developing IPF in smokers.

  18. MCP-1 expression by rat type II alveolar epithelial cells in primary culture.

    Science.gov (United States)

    Paine, R; Rolfe, M W; Standiford, T J; Burdick, M D; Rollins, B J; Strieter, R M

    1993-05-15

    Recruitment and activation of mononuclear phagocytes are potentially critical regulatory events for control of pulmonary inflammation. Located at the boundary between the alveolar airspace and the interstitium, alveolar epithelial cells are ideally situated to regulate the recruitment and activation of mononuclear phagocytes through the production of cytokines in response to inflammatory stimulation from the alveolar space. To test this hypothesis, we investigated the production of monocyte chemotactic polypeptide-1 (MCP-1), a protein that is chemotactic for and that activates monocytes, by rat type II alveolar epithelial cells in primary culture. Immunocytochemical staining using anti-murine JE, an antibody recognizing rat MCP-1, demonstrated cell-associated MCP-1 Ag throughout the monolayer. The intensity of staining was increased in response to IL-1 beta. When type II epithelial cells formed a tight monolayer on a filter support, there was polar secretion of MCP-1 Ag into the apical compartment by both control and IL-1-stimulated cells as measured by specific MCP-1 ELISA. Northern blot analysis revealed that IL-1 and TNF-alpha stimulated MCP-1 mRNA expression in a dose-dependent manner, whereas dexamethasone blocked MCP-1 expression by cells stimulated with IL-1. In contrast to previous results using transformed epithelial cell lines, MCP-1 mRNA was induced in these primary cultures directly by stimulation with LPS. These data suggest that alveolar epithelial cells may have an important and previously unrecognized role in the initiation and maintenance of inflammatory processes in the lung by recruiting and activating circulating monocytes through the production of MCP-1.

  19. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Marco Checa

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a progressive and lethal disease of unknown etiology. A growing body of evidence indicates that it may result from an aberrant activation of alveolar epithelium, which induces the expansion of the fibroblast population, their differentiation to myofibroblasts and the excessive accumulation of extracellular matrix. The mechanisms that activate the alveolar epithelium are unknown, but several studies indicate that smoking is the main environmental risk factor for the development of IPF. In this study we explored the effect of cigarette smoke on the gene expression profile and signaling pathways in alveolar epithelial cells. Lung epithelial cell line from human (A549, was exposed to cigarette smoke extract (CSE for 1, 3, and 5 weeks at 1, 5 and 10% and gene expression was evaluated by complete transcriptome microarrays. Signaling networks were analyzed with the Ingenuity Pathway Analysis software. At 5 weeks of exposure, alveolar epithelial cells acquired a fibroblast-like phenotype. At this time, gene expression profile revealed a significant increase of more than 1000 genes and deregulation of canonical signaling pathways such as TGF-β and Wnt. Several profibrotic genes involved in EMT were over-expressed, and incomplete EMT was observed in these cells, and corroborated in mouse (MLE-12 and rat (RLE-6TN epithelial cells. The secretion of activated TGF-β1 increased in cells exposed to cigarette smoke, which decreased when the integrin alpha v gene was silenced. These findings suggest that the exposure of alveolar epithelial cells to CSE induces the expression and release of a variety of profibrotic genes, and the activation of TGF-β1, which may explain at least partially, the increased risk of developing IPF in smokers.

  20. Apoptosis of Alveolar Wall Cells in Chronic Obstructive Pulmonary Disease Patients with Pulmonary Emphysema Is Involved in Emphysematous Changes

    Institute of Scientific and Technical Information of China (English)

    Hongmei LIU; Lijun MA; Jizhen WU; Kai WANG; Xianliang CHEN

    2009-01-01

    s of alveolar wall cells, espe-cially apoptosis of type-Ⅱ cells, may take part in the pathogenesis of emphysema. Up-regulation of Bax expression may be responsible for the apoptosis of alveolar wall cells in the COPD patients with pulmonary emphysema.

  1. Regulation of epithelial sodium channel a-subunit expression by adenosine receptor A2a in alveolar epithelial cells

    Institute of Scientific and Technical Information of China (English)

    DENG Wang; WANG Dao-xin; ZHANG Wei; LI Chang-yi

    2011-01-01

    Background The amiloride-sensitive epithelial sodium channel a-subunit (a-ENaC) is an important factor for alveolar fluid clearance during acute lung injury. The relationship between adenosine receptor A2a (A2aAR) expressed in alveolar epithelial cells and aα-ENaC is poorly understood. We targeted the A2aAR in this study to investigate its role in the expression of αa-ENaC and in acute lung injury.Methods A549 cells were incubated with different concentrations of A2aAR agonist CGS-21680 and with 100 μmol/L CGS-21680 for various times. Rats were treated with lipopolysaccharide (LPS) after CGS-21680 was injected. Animals were sacrificed and tissue was harvested for evaluation of lung injury by analysis of the lung wet-to-dry weight ratio, lung permeability and myeloperoxidase activity. RT-PCR and Western blotting were used to determine the mRNA and protein expression levels of α-ENaC in A549 cells and alveolar type II epithelial cells.Results Both mRNA and protein levels of α-ENaC were markedly higher from 4 hours to 24 hours after exposure to 100μmol/L CGS-21680. There were significant changes from 0.1 umol/L to 100 μmol/L CGS-21680, with a positive correlation between increased concentrations of CGS-21680 and expression of α-ENaC. Treatment with CGS-21680during LPS induced lung injury protected the lung and promoted α-ENaC expression in the alveolar epithelial cells.Conclusion Activation of A2aAR has a protective effect during the lung injury, which may be beneficial to the prognosis of acute lung injury.

  2. Glucose-6-phosphate dehydrogenase in rat lung alveolar epithelial cells. An ultrastructural enzyme-cytochemical study

    Directory of Open Access Journals (Sweden)

    S Matsubara

    2010-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is the key enzyme of the pentose phosphate pathway in carbohydrate metabolism, and it plays an important role in cell proliferation and antioxidant regulation within cells in various organs. Although marked cell proliferation and oxidant/antioxidant metabolism occur in lung alveolar epithelial cells, definite data has been lacking as to whether cytochemically detectable G6PD is present in alveolar epithelial cells. The distribution pattern of G6PD within these cells, if it is present, is also unknown. The purpose of the present study was to investigate the subcellular localization of G6PD in alveolar cells in the rat lung using a newly- developed enzyme-cytochemistry (copper-ferrocyanide method. Type I cells and stromal endothelia and fibroblasts showed no activities. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of type II alveolar epithelial cells. The cytochemical controls ensured specific detection of enzyme activity. This enzyme may play a role in airway defense by delivering substances for cell proliferation and antioxidant forces, thus maintaining the airway architecture.

  3. 艾烟冷凝物对肺泡Ⅱ型上皮细胞A549活性及凋亡的影响%Influences of condensate of moxa smoke on viability and apoptosis of type Ⅱ alveolar epithelial cells (A549)

    Institute of Scientific and Technical Information of China (English)

    胡海; 赵百孝; 邬继红; 杨陟华; 韩丽; 蔡虹; 朱茂祥

    2012-01-01

    目的 观察艾烟冷凝物(PM10采取人体可吸入的艾烟部分)对肺泡Ⅱ型上皮细胞(A549)活性及凋亡的影响.方法 体外培养A549细胞,加入不同浓度的艾烟冷凝物,应用四甲基偶氮唑蓝(MTT)法、荧光显微镜来观察其对A549的细胞活性以及细胞凋亡的影响.结果 MTT法结果显示:与对照组相比,A549的细胞存活率随浓度和时间发生改变,具有明显的时间浓度依赖性;0.12g/L浓度的艾烟冷凝物作用于细胞12h后可显著提高细胞存活率(P=0.005<0.01);荧光显微镜下观察发现艾烟冷凝物可以引起细胞发生凋亡,且具有浓度依赖性.结论 A549细胞随着艾烟冷凝物浓度的增加、刺激时间的增加而引起细胞活力逐渐下降,表明一定浓度的艾烟冷凝物和一定的刺激时间对细胞具有毒性作用;一定浓度的艾烟冷凝物在较短刺激时间内具有细胞增殖作用,故认为艾烟对细胞的增殖作用可能是艾烟发挥有效作用的重要因素之一;能够引起细胞的凋亡可能是毒性作用的重要因素之一.%Objective To observe the influences of condensate of moxa smoke (PM10, taken inhalable portion of moxa smoke) on viability and apoptosis of type Ⅱ alveolar epithelial cells ( A549 ). Methods A546 cells were cultured in vitro and then condensate of moxa smoke was added in different concentration. The influences of condensate of moxa smoke on the viability and apoptosis of A546 cells were observed by applying MTT assay and fluorescence microscope. Results The results of MTT assay showed that compared with control group, the survival rate of A546 cells changed with the changes of concentration and time showing an obvious time-dependence and a concentration-dependence. The condensate in the dose of 0. 12 mg/mL significantly improved the survival rate of A546 cells after acting on the cells for 12 hours (P =0. 005 <0. 01). The observation of fluorescence microscope showed that the apoptosis of A

  4. Immortalization of human alveolar epithelial cells to investigate nanoparticle uptake.

    Science.gov (United States)

    Kemp, Sarah J; Thorley, Andrew J; Gorelik, Julia; Seckl, Michael J; O'Hare, Michael J; Arcaro, Alexandre; Korchev, Yuri; Goldstraw, Peter; Tetley, Teresa D

    2008-11-01

    Primary human alveolar type 2 (AT2) cells were immortalized by transduction with the catalytic subunit of telomerase and simian virus 40 large-tumor antigen. Characterization by immunochemical and morphologic methods demonstrated an AT1-like cell phenotype. Unlike primary AT2 cells, immortalized cells no longer expressed alkaline phosphatase, pro-surfactant protein C, and thyroid transcription factor-1, but expressed increased caveolin-1 and receptor for advanced glycation end products (RAGE). Live cell imaging using scanning ion conductance microscopy showed that the cuboidal primary AT2 cells were approximately 15 microm and enriched with surface microvilli, while the immortal AT1 cells were attenuated more than 40 microm, resembling these cells in situ. Transmission electron microscopy highlighted the attenuated morphology and showed endosomal vesicles in some immortal AT1 cells (but not primary AT2 cells) as found in situ. Particulate air pollution exacerbates cardiopulmonary disease. Interaction of ultrafine, nano-sized particles with the alveolar epithelium and/or translocation into the cardiovasculature may be a contributory factor. We hypothesized differential uptake of nanoparticles by AT1 and AT2 cells, depending on particle size and surface charge. Uptake of 50-nm and 1-microm fluorescent latex particles was investigated using confocal microscopy and scanning surface confocal microscopy of live cells. Fewer than 10% of primary AT2 cells internalized particles. In contrast, 75% immortal AT1 cells internalized negatively charged particles, while less than 55% of these cells internalized positively charged particles; charge, rather than size, mattered. The process was rapid: one-third of the total cell-associated negatively charged 50-nm particle fluorescence measured at 24 hours was internalized during the first hour. AT1 cells could be important in translocation of particles from the lung into the circulation.

  5. Transcriptomic profiling of primary alveolar epithelial cell differentiation in human and rat

    Directory of Open Access Journals (Sweden)

    Crystal N. Marconett

    2014-12-01

    Full Text Available Cell-type specific gene regulation is a key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how changes in transcriptional activation during alveolar epithelial cell (AEC differentiation determine phenotype. We performed transcriptomic profiling using in vitro differentiation of human and rat primary AEC. This model recapitulates in vitro an in vivo process in which AEC transition from alveolar type 2 (AT2 cells to alveolar type 1 (AT1 cells during normal maintenance and regeneration following lung injury. Here we describe in detail the quality control, preprocessing, and normalization of microarray data presented within the associated study (Marconett et al., 2013. We also include R code for reproducibility of the referenced data and easily accessible processed data tables.

  6. Legionella pneumophila infection induces programmed cell death, caspase activation, and release of high-mobility group box 1 protein in A549 alveolar epithelial cells: inhibition by methyl prednisolone

    Directory of Open Access Journals (Sweden)

    Koide Michio

    2008-05-01

    Full Text Available Abstract Background Legionella pneumophila pneumonia often exacerbates acute lung injury (ALI and acute respiratory distress syndrome (ARDS. Apoptosis of alveolar epithelial cells is considered to play an important role in the pathogenesis of ALI and ARDS. In this study, we investigated the precise mechanism by which A549 alveolar epithelial cells induced by L. pneumophila undergo apoptosis. We also studied the effect of methyl prednisolone on apoptosis in these cells. Methods Nuclear deoxyribonucleic acid (DNA fragmentation and caspase activation in L. pneumophila-infected A549 alveolar epithelial cells were assessed using the terminal deoxyribonucleotidyl transferase-mediated triphosphate (dUTP-biotin nick end labeling method (TUNEL method and colorimetric caspase activity assays. The virulent L. pneumophila strain AA100jm and the avirulent dotO mutant were used and compared in this study. In addition, we investigated whether methyl prednisolone has any influence on nuclear DNA fragmentation and caspase activation in A549 alveolar epithelial cells infected with L. pneumophila. Results The virulent strain of L. pneumophila grew within A549 alveolar epithelial cells and induced subsequent cell death in a dose-dependent manner. The avirulent strain dotO mutant showed no such effect. The virulent strains of L. pneumophila induced DNA fragmentation (shown by TUNEL staining and activation of caspases 3, 8, 9, and 1 in A549 cells, while the avirulent strain did not. High-mobility group box 1 (HMGB1 protein was released from A549 cells infected with virulent Legionella. Methyl prednisolone (53.4 μM did not influence the intracellular growth of L. pneumophila within alveolar epithelial cells, but affected DNA fragmentation and caspase activation of infected A549 cells. Conclusion Infection of A549 alveolar epithelial cells with L. pneumophila caused programmed cell death, activation of various caspases, and release of HMGB1. The dot/icm system, a

  7. Generation of Alveolar Epithelial Spheroids via Isolated Progenitor Cells from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Shimpei Gotoh

    2014-09-01

    Full Text Available No methods for isolating induced alveolar epithelial progenitor cells (AEPCs from human embryonic stem cells (hESCs and induced pluripotent stem cells (hiPSCs have been reported. Based on a study of the stepwise induction of alveolar epithelial cells (AECs, we identified carboxypeptidase M (CPM as a surface marker of NKX2-1+ “ventralized” anterior foregut endoderm cells (VAFECs in vitro and in fetal human and murine lungs. Using SFTPC-GFP reporter hPSCs and a 3D coculture system with fetal human lung fibroblasts, we showed that CPM+ cells isolated from VAFECs differentiate into AECs, demonstrating that CPM is a marker of AEPCs. Moreover, 3D coculture differentiation of CPM+ cells formed spheroids with lamellar-body-like structures and an increased expression of surfactant proteins compared with 2D differentiation. Methods to induce and isolate AEPCs using CPM and consequently generate alveolar epithelial spheroids would aid human pulmonary disease modeling and regenerative medicine.

  8. Establishment and evaluation of a stable cattle type II alveolar epithelial cell line.

    Directory of Open Access Journals (Sweden)

    Feng Su

    Full Text Available Macrophages and dendritic cells are recognized as key players in the defense against mycobacterial infection. Recent research has confirmed that alveolar epithelial cells (AECs also play important roles against mycobacterium infections. Thus, establishing a stable cattle AEC line for future endogenous immune research on bacterial invasion is necessary. In the present study, we first purified and immortalized type II AECs (AEC II cells by transfecting them with a plasmid containing the human telomerase reverse trancriptase gene. We then tested whether or not the immortalized cells retained the basic physiological properties of primary AECs by reverse-transcription polymerase chain reaction and Western blot. Finally, we tested the secretion capacity of immortalized AEC II cells upon stimulation by bacterial invasion. The cattle type II alveolar epithelial cell line (HTERT-AEC II that we established retained lung epithelial cell characteristics: the cells were positive for surfactants A and B, and they secreted tumor necrosis factor-α and interleukin-6 in response to bacterial invasion. Thus, the cell line we established is a potential tool for research on the relationship between AECs and Mycobacterium tuberculosis.

  9. Na(+)-K(+)-ATPase expression in alveolar epithelial cells: upregulation of active ion transport by KGF.

    Science.gov (United States)

    Borok, Z; Danto, S I; Dimen, L L; Zhang, X L; Lubman, R L

    1998-01-01

    We evaluated the effects of keratinocyte growth factor (KGF) on alveolar epithelial cell (AEC) active ion transport and on rat epithelial Na channel (rENaC) subunit and Na(+)-K(+)-adenosinetriphosphatase (ATPase) subunit isoform expression using monolayers of AEC grown in primary culture. Rat alveolar type II cells were plated on polycarbonate filters in serum-free medium, and KGF (10 ng/ml) was added to confluent AEC monolayers on day 4 in culture. Exposure of AEC monolayers to KGF on day 4 resulted in dose-dependent increases in short-circuit current (Isc) compared with controls by day 5, with further increases occurring through day 8. Relative Na(+)-K(+)-ATPase alpha 1-subunit mRNA abundance was increased by 41% on days 6 and 8 after exposure to KGF, whereas alpha 2-subunit mRNA remained only marginally detectable in both the absence and presence of KGF. Levels of mRNA for the beta 1-subunit of Na(+)-K(+)-ATPase did not increase, whereas cellular alpha 1- and beta 1-subunit protein increased 70 and 31%, respectively, on day 6. mRNA for alpha-, beta-, and gamma-rENaC all decreased in abundance after treatment with KGF. These results indicate that KGF upregulates active ion transport across AEC monolayers via a KGF-induced increase in Na pumps, primarily due to increased Na(+)-K(+)-ATPase alpha 1-subunit mRNA expression. We conclude that KGF may enhance alveolar fluid clearance after acute lung injury by upregulating Na pump expression and transepithelial Na transport across the alveolar epithelium.

  10. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells.

    Science.gov (United States)

    Bhattacharya, Sujoy; Ray, Ramesh M; Johnson, Leonard R

    2014-03-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco-2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco-2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF-α/CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner.

  11. [Apoptosis and thymocyte development (epithelial cells as inducers of thymocyte apoptosis)].

    Science.gov (United States)

    Iarilin, A A; Bulanova, E G; Sharova, N I; Budagian, V M

    1998-01-01

    Apoptosis, together with proliferation, is a main factor of selection of the clones of developing T-lymphocytes: the clones not supported by positive selection are subject to apoptosis and apoptosis accounts for discarding of potentially autoaggressive clones, i.e., for negative selection in the thymus and peripheral lymphoid tissue. Realization of apoptosis at different stages of the development of T-lymphocytes depends to a varying extent on Fas, Bcl-2, p53, and other regulators. The dendritic cells are the main cell type, the contact with determines apoptosis of T-lymphocytes. A possible role of the epithelial cells was shown in few models (on murine cells) and was not practically studied. We obtained a line of epithelial cells of the human thymus cells HTSC, cocultivation with which induces apoptosis of immature thymocytes and blood T-cells activated by mitogens. Development of apoptosis is suppressed by inhibitors of protein and RNA synthesis, chelators Ca2+, ions Zn2+, and factors destroying the cytoskeleton components. In this model, interaction of pairs of molecules CD4-HLA class II and LFA-1-ICAM-1. When in contact with the HTSC cells, the thymocytes of mice mutant for Fas-receptor (line MRL.lpr) are subject to apoptosis, but when this receptor is present, it affects the development of apoptosis.

  12. Actinobacillus pleuropneumoniae serotype 10 derived ApxI induces apoptosis in porcine alveolar macrophages.

    Science.gov (United States)

    Chien, Maw-Sheng; Chan, You-Yu; Chen, Zeng-Weng; Wu, Chi-Ming; Liao, Jiunn-Wang; Chen, Ter-Hsin; Lee, Wei-Cheng; Yeh, Kuang-Sheng; Hsuan, Shih-Ling

    2009-03-30

    Actinobacillus pleuropneumoniae (AP) is the causative agent of swine pleuropneumonia, a fibrinous, exudative, hemorrhagic, necrotizing pleuropneumonia affecting all ages of pigs. Actinobacillus pleuropneumoniae exotoxins (Apx) are one of the major virulence factors of AP. Due to the complex nature of Apx toxins produced by AP, little is known regarding the interactions of individual species of Apx toxin with target cells. The objective of this study was to examine whether AP serotype 10-derived exotoxin, ApxI, caused apoptosis in porcine alveolar macrophages (PAMs) and to delineate the underlying signaling pathways. Isolated PAMs were stimulated with different concentrations of native ApxI and monitored for apoptosis using Hoechst staining, TUNEL, and DNA laddering assays. The ApxI-stimulated PAMs exhibited typical morphological features of apoptosis, including condensation of chromatin, formation of apoptotic bodies and DNA laddering. ApxI-induced apoptosis in a concentration- and time-dependent manner. Furthermore, to delineate the signaling events involved in ApxI-induced apoptosis, it was observed that caspase 3 was activated in ApxI-stimulated PAMs. Ablation of caspase 3 activity via specific inhibitors protected PAMs from apoptosis by ApxI. This study is the first to demonstrate that native ApxI causes apoptosis in PAMs at low concentrations and that these apoptotic events are mediated via a caspase 3-dependent pathway. These findings suggest a role of ApxI in AP infection as it might impair the host defense system through the induction of apoptosis in PAMs.

  13. Reactivity of alveolar epithelial cells in primary culture with type I cell monoclonal antibodies.

    Science.gov (United States)

    Danto, S I; Zabski, S M; Crandall, E D

    1992-03-01

    An understanding of the process of alveolar epithelial cell growth and differentiation requires the ability to trace and analyze the phenotypic transitions that the cells undergo. This analysis demands specific phenotypic probes to type II and, especially, type I pneumocytes. To this end, monoclonal antibodies have been generated to type I alveolar epithelial cells using an approach designed to enhance production of lung-specific clones from a crude lung membrane preparation. The monoclonal antibodies were screened by a combination of enzyme-linked immunosorbent assay and immunohistochemical techniques, with the determination of type I cell specificity resting primarily on immunoelectron microscopic localization. Two of these new markers of the type I pneumocyte phenotype (II F1 and VIII B2) were used to analyze primary cultures of type II cells growing on standard tissue culture plastic and on a variety of substrata reported to affect the morphology of these cells in culture. On tissue culture plastic, the antibodies fail to react with early (days 1 to 3) type II cell cultures. The cells become progressively more reactive with time in culture to a plateau of approximately 6 times background by day 8, with a maximum rate of increase between days 3 and 5. This finding is consistent with the hypothesis that type II cells in primary culture undergo at least partial differentiation into type I cells. Type II cells grown on laminin, which reportedly delays the loss of type II cell appearance, and on fibronectin, which has been reported to facilitate cell spreading and loss of type II cell features, develop the type I cell markers during cultivation in vitro with kinetics similar to those on uncoated tissue culture plastic. Cells on type I collagen and on tissue culture-treated Nuclepore filters, which have been reported to support monolayers with type I cell-like morphology, also increase their expression of the II F1 and VIII B2 epitopes around days 3 to 5. Taken

  14. Nano-biointeractions of PEGylated and bare reduced graphene oxide on lung alveolar epithelial cells: A comparative in vitro study.

    Science.gov (United States)

    Reshma, S C; Syama, S; Mohanan, P V

    2016-04-01

    Graphene and its derivatives have garnered significant scientific interest and have potential use in nano-electronics as well as biomedicine. However the undesirable biological consequence, especially upon inhalation of the particle, requires further investigations. This study aimed to elucidate the nano-biointeractions of PEGylated reduced graphene oxide (PrGO) and reduced graphene oxide (rGO) with that of lung alveolar epithelial cells (A549). Both nanomaterials showed dose dependent decrease in cell viability and alteration of cell morphology after 24h. Upon intracellular uptake of PrGO, it elicited oxidative stress mediated apoptosis in the cells by inducing ROS, loss of mitochondrial membrane potential (MMP) and inflammatory response by NF-κB activation. Conversely, rGO was found to scavenge ROS efficiently except at high dose after 24h. It was found that ROS at high dose of rGO prompted loss of MMP. rGO was found to adhere to the cell membrane, where it is assumed to bind to cell surface Toll like receptors (TLRs) thereby activating NF-κB mediated inflammatory response. All these events culminated in an increase in apoptosis of A549 cells after 24h of rGO exposure. It was also noticed that both the nanomaterials did not initiate lysosomal pathway but instead activated mitochondria mediated apoptosis. This study highlights the possible adverse toxic effect of PrGO and rGO upon inhalation and persistence of these particles in the lungs. Further research is required to comprehend the biological response of PrGO and rGO so as to advance its biomedical application and safety.

  15. Prognostic value of immunohistochemical surfactant protein A expression in regenerative/hyperplastic alveolar epithelial cells in idiopathic interstitial pneumonias

    Directory of Open Access Journals (Sweden)

    Kajiki Akira

    2011-03-01

    Full Text Available Abstract Background It is difficult to predict survival in patients with idiopathic pulmonary fibrosis. Recently, several proteins, such as surfactant protein (SP and KL-6, have been reported to be useful biologic markers for prediction of prognosis for interstitial pneumonias. It is not clear whether there is any relationship between expression of these proteins in regenerative/hyperplastic alveolar epithelial cells and prognosis of idiopathic interstitial pneumonias (IIPs. Objectives This study aimed to elucidate the clinical significance of the expression of such lung secretory proteins as SP-A and KL-6 in lung tissues of patients with IIPs. Methods We retrospectively investigated the immunohistochemical expression of SP-A, KL-6, cytokeratin (CK, and epithelial membrane antigen (EMA in alveolar epithelial cells in lung tissues obtained from surgical lung biopsy in 43 patients with IIPs, and analyzed the correlation between expression of these markers and the prognosis of each IIP patient. CK and EMA were used as general markers for epithelial cells. Results In patients with usual interstitial pneumonia (UIP, the ratio of SP-A positive epithelial cells to all alveolar epithelial cells (SP-A positive ratio in the collapsed and mural fibrosis areas varied, ranging from cases where almost all alveolar epithelial cells expressed SP-A to cases where only a few did. On the other hand, in many patients with nonspecific interstitial pneumonia (NSIP, many of the alveolar epithelial cells in the diseased areas expressed SP-A. The SP-A positive ratio was significantly lower in patients who died from progression of UIP than in patients with UIP who remained stable or deteriorated but did not die. In NSIP patients, a similar tendency was noted between the SP-A positive ratio and prognosis. Conclusions The results suggest that the paucity of immunohistochemical SP-A expression in alveolar epithelial cells in diseased areas (i.e. regenerative

  16. Cigarette Smoke Extract Inhibits the Proliferation of Alveolar Epithelial Cells and Augments the Expression of P21WAF1

    Institute of Scientific and Technical Information of China (English)

    Zongxian JIAO; Qilin AO; Xiaona GE; Mi XIONG

    2008-01-01

    Cigarette smoking is intimately related with the development of chronic obstructive pulmonary diseases, and alveolar epithelium is a major target for the exposure of cigarette smoke ex- tract. In order to investigate the effect of cigarette smoke extract on the proliferation of alveolar epithelial cell type Ⅱand its relationship with P21WAF1, the alveolar epithelial type Ⅱ cell line (A549) cells were chosen as surrogate cells to represent alveolar epithelial type Ⅱ cells. MTT assay was used to detect cell viability after interfered with different concentrations of cigarette smoke ex-tract. It was observed cigarette smoke extract inhibited the growth of A549 cells in a dose- and time-dependent manner. The morphological changes, involving the condensation and margination of nuclear chromatin, even karyorrhexis, were observed by both Hoechst staining and electronic mi-croscopy. Flow cytometry analysis demonstrated the increased cell percentages in G1 and subG1phases after the cells were incubated with cigarette smoke extract. The expression of p21WAF1 protein and mRNA was also significantly increased as detected by the methods of Western blot or reverse transcription-polymerase chain reaction respectively. In conclusion, cigarette smoke extract inhibits the proliferation of alveolar epithelial cell type Ⅱ and blocks them in G1/S phase. The intracellular accumulation of P21WAF1 may be one of the mechanisms which contribute to cigarette smoke ex-tract-induced inhibition of cell proliferation.

  17. Primary Culture of Alveolar Epithelial Type Ⅱ Cells and Its Bionomic Study

    Institute of Scientific and Technical Information of China (English)

    SHI Xuemei; NI Wang; ZHANG Huilan; XIONG Shengdao; ZHEN Guohua; XIONG Weining; ZHANG Zhenxiang; XU Yongjian; HU Qiongjie; ZHAO Jianping

    2007-01-01

    To establish a better method of primary culture for alveolar epithelial type Ⅱ cells (AEC Ⅱ) and to study its bionomics, alveolar epithelial type Ⅱ cells were isolated by digestion with tryp- sin and collagenase, which were then purified by plated into culture flask coated with rat immu- noglobulin G. The purified AEC Ⅱ were identified by alkaline phosphatase staining, electron mi-croscopy, immunocytochemical staining of pulmonary surfactant protein A (SPA). The SPA expres-sion and transfection characteristics were compared with those of A549 cell line. The results showed that AEC Ⅱ could be isolated by digestion with trysin and collagenase and purified by adhesive pu- rification by using IgG, with a yield of about 2-3×107, and a purity of about 75%-84 %. Cells could be quickly identified with AKP staining. AEC Ⅱ were different from A549 cell line in terms of SPA expression and transfection characteristics. It is concluded that adhesive purification with IgG can improve the purity of AEC Ⅱ, and AKP staining is simple in cell identification. AEC Ⅱ can not be completely replaced by A549 cells in some studies because the differences between them, such as SPA expression.

  18. Ultrastructural Study of Alveolar Epithelial Type II Cells by High-Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    Xiaofei Qin

    2013-01-01

    Full Text Available Alveolar epithelial type II cells (AECIIs containing lamellar bodies (LBs are alveolar epithelial stem cells that have important functions in the repair of lung structure and function after lung injury. The ultrastructural changes in AECIIs after high-frequency oscillatory ventilation (HFOV with a high lung volume strategy or conventional ventilation were evaluated in a newborn piglet model with acute lung injury (ALI. After ALI with saline lavage, newborn piglets were randomly assigned into five study groups (three piglets in each group, namely, control (no mechanical ventilation, conventional ventilation for 24 h, conventional ventilation for 48 h, HFOV for 24 h, and HFOV for 48 h. The lower tissues of the right lung were obtained to observe the AECII ultrastructure. AECIIs with reduced numbers of microvilli, decreased LBs electron density, and vacuole-like LBs deformity were commonly observed in all five groups. Compared with conventional ventilation groups, the decrease in numbers of microvilli and LBs electron density, as well as LBs with vacuole-like appearance and polymorphic deformity, was less severe in HFOV with high lung volume strategy groups. AECIIs were injured during mechanical ventilation. HFOV with a high lung volume strategy resulted in less AECII damage than conventional ventilation.

  19. Role of cytoskeleton in cytokine production from lung alveolar epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Cytokines are involved in both host defense and inflammatory lung injury. Recent work from our laboratory and others has demonstrated that in addition to classical immune cells, lung alveolar epithelial cells (or pneumocytes) can also produce cytokines in response to various stimuli. This new knowledge has advanced our view of the host defense system in the lung. The regulatory mechanisms of cytokine production have been studied in great detail at various cellular and molecular levels, but the mechanisms of intracellular cytokine transport are largely unknown. Our recent studies suggest that the cytoskeleton could play an important role in mediating intracellular cytokine trafficking. This could be an important regulatory step for cytokine production. For example, lipopolyssacharide (LPS) induced tumor necrosis factor-α (TNF-α) from rat pneumocytes, which was further enhanced by a microfilament-disrupting agent. LPS also induced macrophage inflammatory protein-2(MIP-2), a chemokine for neutrophil recruitment and activation, from rat pneumocytes. This effect was enhanced by microtubule-disrupting agents. We speculate that both microfilaments and microtubules are involved in regulating cytokine transportation in pneumocytes through different mechanisms. Further investigation in on going in my laboratory. From a clinical perspective, if we understand the mechanisms regulating cytokine production and release from lung alveolar epithelial cells, we may be able to enhance or inhibit release of crucial cytokines depending on the clinical situation.

  20. PTEN regulates colorectal epithelial apoptosis through Cdc42 signalling

    OpenAIRE

    Deevi, R; A. Fatehullah; Jagan, I; Nagaraju, M; Bingham, V; Campbell, F C

    2011-01-01

    Background: Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) regulation of the Rho-like GTPase Cdc42 has a central role in epithelial polarised growth, but effects of this molecular network on apoptosis remain unclear. Methods: To investigate the role of Cdc42 in PTEN-dependent cell death, we used flow cytometry, in vitro pull-down assays, poly(ADP ribose) polymerase (PARP) cleavage and other immunoblots in isogenic PTEN-expressing and -deficient colorectal cells (HCT116PTEN+/...

  1. Uranium induces apoptosis in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Periyakaruppan, Adaikkappan; Sarkar, Shubhashish; Sadanandan, Bindu; Thomas, Renard; Wilson, Bobby L. [Texas Southern University, Environmental Toxicology Program, Department of Chemistry, Houston, TX (United States); Ravichandran, Prabakaran; Sharma, Chidananda S.; Ramesh, Vani; Hall, Joseph C.; Ramesh, Govindarajan T. [Norfolk State University, Molecular Toxicology Laboratory, Department of Biology, Center for Biotechnology and Biomedical Sciences, Norfolk, VA (United States)

    2009-06-15

    Uranium is a naturally occurring radioactive material present everywhere in the environment. It is toxic because of its chemical or radioactive properties. Uranium enters environment mainly from mines and industry and cause threat to human health by accumulating in lungs as a result of inhalation. In our previous study, we have shown the effectiveness of antioxidant system response to the oxidative stress induced by uranyl acetate (UA) in rat lung epithelial (LE) cells. As part of our continuing studies; here, we investigated the mechanism underlying when LE cells are exposed to different concentration of UA. Oxidative stress may lead to apoptotic signaling pathways. LE cells treated with 0.25, 0.5 and 1 mM of UA results in dose and time-dependent increase in activity of both caspases-3 and -8. Increase in the concentration of cytochrome-c oxidase in cytosol was seen in LE cells treated with 1 mM UA as a result of mitochondria membrane permeability. The cytochrome-c leakage may trigger the apoptotic pathway. TUNEL assay performed in LE cells treated with 1 mM of UA showed significant incorporation of dNTPs in the nucleus after 24 h. In the presence of the caspase inhibitors, we observed the significant decrease in the activity of caspases-8 and -3 in 0.5 and 1 mM UA-treated LE cells. (orig.)

  2. Late appearance of a type I alveolar epithelial cell marker during fetal rat lung development.

    Science.gov (United States)

    Danto, S I; Zabski, S M; Crandall, E D

    1994-10-01

    Recent studies in fetal lung using immunological and molecular probes have revealed type I and type II cell phenotypic markers in primordial lung epithelial cells prior to the morphogenesis of these cell types. We have recently developed monoclonal antibodies specific for adult type I cells. To evaluate further the temporal appearance of the type I cell phenotype during alveolar epithelial cell ontogeny, we analyzed fetal lung development using one of our monoclonal antibodies (mAb VIII B2). The epitope recognized by mAb VIII B2 first appears in the canalicular stage of fetal lung development, at approx. embryonic day 19 (E19), in occasional, faintly stained tubules. Staining with this type I cell probe becomes more intense and more widespread with increasing gestational age, during which time the pattern of staining changes. Initially, all cells of the distal epithelial tubules are uniformly labelled along their apical and basolateral surfaces. As morphological differentiation of the alveolar epithelium proceeds, type I cell immunoreactivity appears to become restricted to the apical surface of the primitive type I cells in a pattern approaching that seen in the mature lung. We concurrently analyzed developing fetal lung with an antiserum to surfactant apoprotein-A (alpha-SP-A). Consistent with the findings of others, labeling of SP-A was first detectable in scattered cuboidal cells at E18. Careful examination of the double-labeled specimens suggested that some cells were reactive with both the VIII B2 and SP-A antibodies, particularly at E20. Confocal microscopic analysis of such sections from E20 lung confirmed this impression. Three populations of cells were detected: cells labeled only with alpha-SP-A, cells labeled only with mAb VIII B2, and a smaller subset of cells labeled by both.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Modulation of t1alpha expression with alveolar epithelial cell phenotype in vitro.

    Science.gov (United States)

    Borok, Z; Danto, S I; Lubman, R L; Cao, Y; Williams, M C; Crandall, E D

    1998-07-01

    T1alpha is a recently identified gene expressed in the adult rat lung by alveolar type I (AT1) epithelial cells but not by alveolar type II (AT2) epithelial cells. We evaluated the effects of modulating alveolar epithelial cell (AEC) phenotype in vitro on T1alpha expression using either soluble factors or changes in cell shape to influence phenotype. For studies on the effects of soluble factors on T1alpha expression, rat AT2 cells were grown on polycarbonate filters in serum-free medium (MDSF) or in MDSF supplemented with either bovine serum (BS, 10%), rat serum (RS, 5%), or keratinocyte growth factor (KGF, 10 ng/ml) from either day 0 or day 4 through day 8 in culture. For studies on the effects of cell shape on T1alpha expression, AT2 cells were plated on thick collagen gels in MDSF supplemented with BS. Gels were detached on either day 1 (DG1) or day 4 (DG4) or were left attached until day 8. RNA and protein were harvested at intervals between days 1 and 8 in culture, and T1alpha expression was quantified by Northern and Western blotting, respectively. Expression of T1alpha progressively increases in AEC grown in MDSF +/- BS between day 1 and day 8 in culture, consistent with transition toward an AT1 cell phenotype. Exposure to RS or KGF from day 0 prevents the increase in T1alpha expression on day 8, whereas addition of either factor from day 4 through day 8 reverses the increase. AEC cultured on attached gels express high levels of T1alpha on days 4 and 8. T1alpha expression is markedly inhibited in both DG1 and DG4 cultures, consistent with both inhibition and reversal of the transition toward the AT1 cell phenotype. These results demonstrate that both soluble factors and alterations in cell shape modulate T1alpha expression in parallel with AEC phenotype and provide further support for the concept that transdifferentiation between AT2 and AT1 cell phenotypes is at least partially reversible.

  4. Keratinocyte growth factor modulates alveolar epithelial cell phenotype in vitro: expression of aquaporin 5.

    Science.gov (United States)

    Borok, Z; Lubman, R L; Danto, S I; Zhang, X L; Zabski, S M; King, L S; Lee, D M; Agre, P; Crandall, E D

    1998-04-01

    We investigated the role of keratinocyte growth factor (KGF) in regulation of alveolar epithelial cell (AEC) phenotype in vitro. Effects of KGF on cell morphology, expression of surfactant apoproteins A, B, and C (SP-A, -B, and -C), and expression of aquaporin 5 (AQP5), a water channel present in situ on the apical surface of alveolar type I (AT1) cells but not expressed in alveolar type II (AT2) cells, were evaluated in AECs grown in primary culture. Observations were made on AEC monolayers grown in serum-free medium without KGF (control) or grown continuously in the presence of KGF (10 ng/ml) from either Day 0 (i.e., the time of plating) or Day 4 or 6 through Day 8 in culture. AECs monolayers express AQP5 only on their apical surfaces as determined by cell surface biotinylation studies. Control AECs grown in the absence of KGF through Day 8 express increasing levels of AQP5, consistent with transition toward the AT1 cell phenotype. Exposure of AECs to KGF from Day 0 results in decreased AQP5 expression, retention of a cuboidal morphology, and greater numbers of lamellar bodies relative to control on Day 8 in culture. AECs treated with KGF from Day 4 or 6 exhibit a decrease in AQP5 expression through subsequent days in culture, as well as an increase in expression of surfactant apoproteins. These data, showing that KGF both prevents and reverses the increase in AQP5 (and decrease in surfactant apoprotein) expression that accompanies progression of the AT2 toward the AT1 cell phenotype, support the concepts that transdifferentiation between AT2 and AT1 cell phenotypes is at least partially reversible and that KGF may play a major role in modulating AEC phenotype.

  5. Proteolysis of synaptobrevin, syntaxin, and SNAP-25 in alveolar epithelial type II cells.

    Science.gov (United States)

    Zimmerman, U J; Malek, S K; Liu, L; Li, H L

    1999-10-01

    Synaptobrevin-2, syntaxin-1, and SNAP-25 were identified in rat alveolar epithelial type II cells by Western blot analysis. Synaptobrevin-2 was localized in the lamellar bodies, and syntaxin-1 and SNAP-25 were found in 0.4% Nonidet P40-soluble and -insoluble fractions, respectively, of the type II cells. When the isolated type II cells were stimulated for secretion with calcium ionophore A23187 or with phorbol 12-myristate 13-acetate, these proteins were found to have been proteolyzed. Preincubation of cells with calpain inhibitor II (N-acetylleucylleucylmethionine), however, prevented the proteolysis. Treatment of the cell lysate with exogenous calpain resulted in a time-dependent decrease of these proteins. The data suggest that synaptobrevin, syntaxin, and SNAP-25 are subject to proteolytic modification by activated calpain in intact type II cells stimulated for secretion.

  6. SPC-Cre-ERT2 transgenic mouse for temporal gene deletion in alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yao-Song Gui

    Full Text Available Although several Cre-loxP-based gene knockout mouse models have been generated for the study of gene function in alveolar epithelia in the lung, their applications are still limited. In this study, we developed a SPC-Cre-ER(T2 mouse model, in which a tamoxifen-inducible Cre recombinase (Cre-ER(T2 is under the control of the human surfactant protein C (SPC promoter. The specificity and efficiency of Cre-ER(T2 activity was first evaluated by crossing SPC-Cre-ER(T2 mouse with ROSA26R mouse, a β-galactosidase reporter strain. We found that Cre-ER(T2 was expressed in 30.7% type II alveolar epithelial cells of SPC-Cre-ER(T2/ROSA26R mouse lung tissues in the presence of tamoxifen. We then tested the tamoxifen-inducible recombinase activity of Cre-ER(T2 in a mouse strain bearing TSC1 conditional knockout alleles (TSC1(fx/fx. TSC1 deletion was detected in the lungs of tamoxifen treated SPC-Cre-ER(T2/TSC1(fx/fx mice. Therefore this SPC-Cre-ER(T2 mouse model may be a valuable tool to investigate functions of genes in lung development, physiology and disease.

  7. SPC-Cre-ERT2 transgenic mouse for temporal gene deletion in alveolar epithelial cells.

    Science.gov (United States)

    Gui, Yao-Song; Wang, Lianmei; Tian, Xinlun; Feng, Ruie; Ma, Aiping; Cai, Baiqiang; Zhang, Hongbing; Xu, Kai-Feng

    2012-01-01

    Although several Cre-loxP-based gene knockout mouse models have been generated for the study of gene function in alveolar epithelia in the lung, their applications are still limited. In this study, we developed a SPC-Cre-ER(T2) mouse model, in which a tamoxifen-inducible Cre recombinase (Cre-ER(T2)) is under the control of the human surfactant protein C (SPC) promoter. The specificity and efficiency of Cre-ER(T2) activity was first evaluated by crossing SPC-Cre-ER(T2) mouse with ROSA26R mouse, a β-galactosidase reporter strain. We found that Cre-ER(T2) was expressed in 30.7% type II alveolar epithelial cells of SPC-Cre-ER(T2)/ROSA26R mouse lung tissues in the presence of tamoxifen. We then tested the tamoxifen-inducible recombinase activity of Cre-ER(T2) in a mouse strain bearing TSC1 conditional knockout alleles (TSC1(fx/fx)). TSC1 deletion was detected in the lungs of tamoxifen treated SPC-Cre-ER(T2)/TSC1(fx/fx) mice. Therefore this SPC-Cre-ER(T2) mouse model may be a valuable tool to investigate functions of genes in lung development, physiology and disease.

  8. Sustained distribution of aerosolized PEGylated liposomes in epithelial lining fluids on alveolar surfaces.

    Science.gov (United States)

    Kaneko, Keita; Togami, Kohei; Yamamoto, Eri; Wang, Shujun; Morimoto, Kazuhiro; Itagaki, Shirou; Chono, Sumio

    2016-10-01

    The distribution characteristics of aerosolized PEGylated liposomes in alveolar epithelial lining fluid (ELF) were examined in rats, and the ensuing mechanisms were investigated in the in vitro uptake and protein adsorption experiments. Nonmodified or PEGylated liposomes (particle size 100 nm) were aerosolized into rat lungs. PEGylated liposomes were distributed more sustainably in ELFs than nonmodified liposomes. Furthermore, the uptake of PEGylated liposomes by alveolar macrophages (AMs) was less than that of nonmodified liposomes. In further in vitro uptake experiments, nonmodified and PEGylated liposomes were opsonized with rat ELF components and then added to NR8383 cells as cultured rat AMs. The uptake of opsonized PEGylated liposomes by NR8383 cells was lower than that of opsonized nonmodified liposomes. Moreover, the protein absorption levels in opsonized PEGylated liposomes were lower than those in opsonized nonmodified liposomes. These findings suggest that sustained distributions of aerosolized PEGylated liposomes in ELFs reflect evasion of liposomal opsonization with surfactant proteins and consequent reductions in uptake by AMs. These data indicate the potential of PEGylated liposomes as aerosol-based drug delivery system that target ELF for the treatment of respiratory diseases.

  9. Mechanisms of EGF-induced stimulation of sodium reabsorption by alveolar epithelial cells.

    Science.gov (United States)

    Danto, S I; Borok, Z; Zhang, X L; Lopez, M Z; Patel, P; Crandall, E D; Lubman, R L

    1998-07-01

    We investigated the effects of epidermal growth factor (EGF) on active Na+ absorption by alveolar epithelium. Rat alveolar epithelial cells (AEC) were isolated and cultivated in serum-free medium on tissue culture-treated polycarbonate filters. mRNA for rat epithelial Na+ channel (rENaC) alpha-, beta-, and gamma-subunits and Na+ pump alpha1- and beta1-subunits were detected in day 4 monolayers by Northern analysis and were unchanged in abundance in day 5 monolayers in the absence of EGF. Monolayers cultivated in the presence of EGF (20 ng/ml) for 24 h from day 4 to day 5 showed an increase in both alpha1 and beta1 Na+ pump subunit mRNA but no increase in rENaC subunit mRNA. EGF-treated monolayers showed parallel increases in Na+ pump alpha1- and beta1-subunit protein by immunoblot relative to untreated monolayers. Fixed AEC monolayers demonstrated predominantly membrane-associated immunofluorescent labeling with anti-Na+ pump alpha1- and beta1-subunit antibodies, with increased intensity of cell labeling for both subunits seen at 24 h following exposure to EGF. These changes in Na+ pump mRNA and protein preceded a delayed (>12 h) increase in short-current circuit (measure of active transepithelial Na+ transport) across monolayers treated with EGF compared with untreated monolayers. We conclude that EGF increases active Na+ resorption across AEC monolayers primarily via direct effects on Na+ pump subunit mRNA expression and protein synthesis, leading to increased numbers of functional Na+ pumps in the basolateral membranes.

  10. Hyperoxia increases the elastic modulus of alveolar epithelial cells through Rho kinase.

    Science.gov (United States)

    Wilhelm, Kristina R; Roan, Esra; Ghosh, Manik C; Parthasarathi, Kaushik; Waters, Christopher M

    2014-02-01

    Patients with acute lung injury are administered high concentrations of oxygen during mechanical ventilation, and while both hyperoxia and mechanical ventilation are necessary, each can independently cause additional injury. However, the precise mechanisms that lead to injury are not well understood. We hypothesized that alveolar epithelial cells may be more susceptible to injury caused by mechanical ventilation because hyperoxia causes cells to be stiffer due to increased filamentous actin (f-actin) formation via the GTPase RhoA and its effecter Rho kinase (ROCK). We examined cytoskeletal structures in cultured murine lung alveolar epithelial cells (MLE-12) under normoxic and hyperoxic (48 h) conditions. We also measured cell elasticity (E) using an atomic force microscope in the indenter mode. Hyperoxia caused increased f-actin stress fibers and bundle formation, an increase in g- and f-actin, an increase in nuclear area and a decrease in nuclear height, and cells became stiffer (higher E). Treatment with an inhibitor (Y-27632) of ROCK significantly decreased E and prevented the cytoskeletal changes, while it did not influence the nuclear height and area. Pre-exposure of cells to hyperoxia promoted detachment when cells were subsequently stretched cyclically, but the ROCK inhibitor prevented this effect. Hyperoxia caused thickening of vinculin focal adhesion plaques, and inhibition of ROCK reduced the formation of distinct focal adhesion plaques. Phosphorylation of focal adhesion kinase was significantly reduced by both hyperoxia and treatment with Y-27632. Hyperoxia caused increased cell stiffness and promoted cell detachment during stretch. These effects were ameliorated by inhibition of ROCK.

  11. Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayers

    Directory of Open Access Journals (Sweden)

    Fazlollahi F

    2011-11-01

    Full Text Available Farnoosh Fazlollahi1,8, Arnold Sipos1,2, Yong Ho Kim1,2, Sarah F Hamm-Alvarez6, Zea Borok1–3, Kwang-Jin Kim1,2,5–7, Edward D Crandall1,2,4,8 1Will Rogers Institute Pulmonary Research Center, 2Department of Medicine, 3Department of Biochemistry and Molecular Biology, 4Department of Pathology, 5Department of Physiology and Biophysics, 6Department of Pharmacology and Pharmaceutical Sciences, 7Department of Biomedical Engineering, 8Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA Background: In this study, primary rat alveolar epithelial cell monolayers (RAECM were used to investigate transalveolar epithelial quantum dot trafficking rates and underlying transport mechanisms. Methods: Trafficking rates of quantum dots (PEGylated CdSe/ZnS, core size 5.3 nm, hydrodynamic size 25 nm in the apical-to-basolateral direction across RAECM were determined. Changes in bioelectric properties (ie, transmonolayer resistance and equivalent active ion transport rate of RAECM in the presence or absence of quantum dots were measured. Involvement of endocytic pathways in quantum dot trafficking across RAECM was assessed using specific inhibitors (eg, methyl-ß-cyclodextrin, chlorpromazine, and dynasore for caveolin-, clathrin-, and dynamin-mediated endocytosis, respectively. The effects of lowering tight junctional resistance on quantum dot trafficking were determined by depleting Ca2+ in apical and basolateral bathing fluids of RAECM using 2 mM EGTA. Effects of temperature on quantum dot trafficking were studied by lowering temperature from 37°C to 4°C. Results: Apical exposure of RAECM to quantum dots did not elicit changes in transmonolayer resistance or ion transport rate for up to 24 hours; quantum dot trafficking rates were not surface charge-dependent; methyl-ß-cyclodextrin, chlorpromazine, and dynasore did not decrease quantum dot trafficking rates; lowering of temperature

  12. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  13. Different particle determinants induce apoptosis and cytokine release in primary alveolar macrophage cultures

    Directory of Open Access Journals (Sweden)

    Schwarze Per E

    2006-06-01

    Full Text Available Abstract Background Particles are known to induce both cytokine release (MIP-2, TNF-α, a reduction in cell viability and an increased apoptosis in alveolar macrophages. To examine whether these responses are triggered by the same particle determinants, alveolar macrophages were exposed in vitro to mineral particles of different physical-chemical properties. Results The crystalline particles of the different stone types mylonite, gabbro, basalt, feldspar, quartz, hornfels and fine grain syenite porphyr (porphyr, with a relatively equal size distribution (≤ 10 μm, but different chemical/mineral composition, all induced low and relatively similar levels of apoptosis. In contrast, mylonite and gabbro induced a marked MIP-2 response compared to the other particles. For particles of smaller size, quartz (≤ 2 μm seemed to induce a somewhat stronger apoptotic response than even smaller quartz (≤ 0.5 μm and larger quartz (≤ 10 μm in relation to surface area, and was more potent than hornfels and porphyr (≤ 2 μm. The reduction in cell viability induced by quartz of the different sizes was roughly similar when adjusted to surface area. With respect to cytokines, the release was more marked after exposure to quartz ≤ 0.5 μm than to quartz ≤ 2 μm and ≤ 10 μm. Furthermore, hornfels (≤ 2 μm was more potent than the corresponding hornfels (≤ 10 μm and quartz (≤ 2 μm to induce cytokine responses. Pre-treatment of hornfels and quartz particles ≤ 2 μm with aluminium lactate, to diminish the surface reactivity, did significantly reduce the MIP-2 response to hornfels. In contrast, the apoptotic responses to the particles were not affected. Conclusion These results indicate that different determinants of mineral/stone particles are critical for inducing cytokine responses, reduction in cell viability and apoptosis in alveolar macrophages. The data suggest that the particle surface reactivity was critical for cytokine responses

  14. PAX3-FOXO1 Induces Up-Regulation of Noxa Sensitizing Alveolar Rhabdomyosarcoma Cells to Apoptosis

    Directory of Open Access Journals (Sweden)

    Amy D. Marshall

    2013-07-01

    Full Text Available Alveolar rhabdomyosarcoma (ARMS has a much poorer prognosis than the more common embryonal subtype. Most ARMS tumors characteristically possess a specific genomic translocation between the genes of PAX3/7 and FOXO1 (FKHR, which forms fusion proteins possessing the DNA binding domains of PAX3/7 and the more transcriptionally potent transactivation domain of FOXO1. We have shown that the proapoptotic BH3-only family member Noxa is upregulated by the PAX3-FOXO1 fusion transcription factor in a p53-independent manner. The increased expression of Noxa renders PAX3-FOXO1-expressing cells more susceptible to apoptosis induced by a ă-secretase inhibitor (GSI1, Z-LLNle-CHO, the proteasome inhibitor bortezomib, and BH3 mimetic ABT-737. Apoptosis in response to bortezomib can be overcome by shRNA knockdown of Noxa. In vivo treatment with bortezomib reduced the growth of tumors derived from a PAX3-FOXO1-expressing primary myoblast tumor model and RH41 xenografts. We therefore demonstrate that PAX3-FOXO1 up-regulation of Noxa represents an unanticipated aspect of ARMS tumor biology that creates a therapeutic window to allow induction of apoptosis in ARMS cells.

  15. PAX3-FOXO1 induces up-regulation of Noxa sensitizing alveolar rhabdomyosarcoma cells to apoptosis.

    Science.gov (United States)

    Marshall, Amy D; Picchione, Fabrizio; Geltink, Ramon I Klein; Grosveld, Gerard C

    2013-07-01

    Alveolar rhabdomyosarcoma (ARMS) has a much poorer prognosis than the more common embryonal subtype. Most ARMS tumors characteristically possess a specific genomic translocation between the genes of PAX3/7 and FOXO1 (FKHR), which forms fusion proteins possessing the DNA binding domains of PAX3/7 and the more transcriptionally potent transactivation domain of FOXO1. We have shown that the proapoptotic BH3-only family member Noxa is upregulated by the PAX3-FOXO1 fusion transcription factor in a p53-independent manner. The increased expression of Noxa renders PAX3-FOXO1-expressing cells more susceptible to apoptosis induced by a γ-secretase inhibitor (GSI1, Z-LLNle-CHO), the proteasome inhibitor bortezomib, and BH3 mimetic ABT-737. Apoptosis in response to bortezomib can be overcome by shRNA knockdown of Noxa. In vivo treatment with bortezomib reduced the growth of tumors derived from a PAX3-FOXO1-expressing primary myoblast tumor model and RH41 xenografts. We therefore demonstrate that PAX3-FOXO1 up-regulation of Noxa represents an unanticipated aspect of ARMS tumor biology that creates a therapeutic window to allow induction of apoptosis in ARMS cells.

  16. Inhibition of tumor necrosis factor-α reduces alveolar septal cell apoptosis in passive smoking rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cheng; CAI Shan; CHEN Ping; CHEN Jian-bo; WU Jie; WU Shang-jie; ZHOU Rui

    2008-01-01

    Background Recent studies have revealed that lung cell apoptosis plays an important role in pathogenesis of cigarette-induced chronic obstructive pulmonary disease (COPD).Tumor necrosis factor alpha(TNF-α)is one of the most important cytokines which are involved in COPD.This study aimed at investigating the jnfluence of its inhibitor,recombinant human necrosis factor-alpha receptor Ⅱ:IgG Fc fusion protein(rhTNFR:Fc)on alveolar septal cell apoptosis in passive smoking rats.Methods Forty-eight rats were randomly divided into a normal control group,a passive smoking group,an rhTNFR:Fc intervention group and a sham intervention group.The passive smoking rats were treated by exposure to cigarette smoking daily for 80 days.Afcer smoking for one month the rhTNFR:Fc Intervention group was treated with rhTNFR:Fc by subcutaneous injection,the sham intervention group injected subcutaneousIv with a neutral preparation(normal saline 0.1 ml,manicol 0.8 ml,cane sugar 0.2 mg,Tris 0.024 mg as a control.Lung function was determined and the levels of TNF-α in serum and broncho-alveolar lavage fluid(BALF)were measured with enzyme-linked immunosorbnent assay (ELISA).Lung tissue sections stained by hematoxylin and eosin(HE)were observed for study of morphological alternations.Mean linear intercept(MLI)and mean alveolar numbers(MAN)were measured and the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL)method was carried out to determine the percentage of positive cells and distribution of apoptotic cells.Results Increased MLI and decreased MAN were found in the passive smoking group compared with both the normal control group and the rhTNFR:Fc intervention group(P<0.05).Forced expiratory volume in 0.3 second(FEV0.3)/forced vital capacity(FVC)and peak expiratory flow(PEF)were lower in the passive smoking group than that in the normal control group(P<0.05).Compared with the sham intervention group,FEV0.3/FVC and PEF increased in the rhTNFR:Fc intervention

  17. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Directory of Open Access Journals (Sweden)

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  18. Effect of P2X7 receptor knockout on AQP-5 expression of type I alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Georg Ebeling

    Full Text Available P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis.

  19. Rv3351c, a Mycobacterium tuberculosis gene that affects bacterial growth and alveolar epithelial cell viability.

    Science.gov (United States)

    Pavlicek, Rebecca L; Fine-Coulson, Kari; Gupta, Tuhina; Quinn, Frederick D; Posey, James E; Willby, Melisa; Castro-Garza, Jorge; Karls, Russell K

    2015-12-01

    Despite the interactions known to occur between various lower respiratory tract pathogens and alveolar epithelial cells (AECs), few reports examine factors influencing the interplay between Mycobacterium tuberculosis bacilli and AECs during infection. Importantly, in vitro studies have demonstrated that the M. tuberculosis hbha and esxA gene products HBHA and ESAT6 directly or indirectly influence AEC survival. In this report, we identify Rv3351c as another M. tuberculosis gene that impacts the fate of both the pathogen and AEC host. Intracellular replication of an Rv3351c mutant in the human AEC type II pneumocyte cell line A549 was markedly reduced relative to the complemented mutant and parent strain. Deletion of Rv3351c diminished the release of lactate dehydrogenase and decreased uptake of trypan blue vital stain by host cells infected with M. tuberculosis bacilli, suggesting attenuated cytotoxic effects. Interestingly, an isogenic hbha mutant displayed reductions in AEC killing similar to those observed for the Rv3351c mutant. This opens the possibility that multiple M. tuberculosis gene products interact with AECs. We also observed that Rv3351c aids intracellular replication and survival of M. tuberculosis in macrophages. This places Rv3351c in the same standing as HBHA and ESAT6, which are important factors in AECs and macrophages. Defining the mechanism(s) by which Rv3351c functions to aid pathogen survival within the host may lead to new drug or vaccine targets.

  20. Integrin alpha(3)-subunit expression modulates alveolar epithelial cell monolayer formation.

    Science.gov (United States)

    Lubman, R L; Zhang, X L; Zheng, J; Ocampo, L; Lopez, M Z; Veeraraghavan, S; Zabski, S M; Danto, S I; Borok, Z

    2000-07-01

    We investigated expression of the alpha(3)-integrin subunit by rat alveolar epithelial cells (AECs) grown in primary culture as well as the effects of monoclonal antibodies with blocking activity against the alpha(3)-integrin subunit on AEC monolayer formation. alpha(3)-Integrin subunit mRNA and protein were detectable in AECs on day 1 and increased with time in culture. alpha(3)- and beta(1)-integrin subunits coprecipitated in immunoprecipitation experiments with alpha(3)- and beta(1)-subunit-specific antibodies, consistent with their association as the alpha(3)beta(1)-integrin receptor at the cell membrane. Treatment with blocking anti-alpha(3) monoclonal antibody from day 0 delayed development of transepithelial resistance, reduced transepithelial resistance through day 5 compared with that in untreated AECs, and resulted in large subconfluent patches in monolayers viewed by scanning electron microscopy on day 3. These data indicate that alpha(3)- and beta(1)-integrin subunits are expressed in AEC monolayers where they form the heterodimeric alpha(3)beta(1)-integrin receptor at the cell membrane. Blockade of the alpha(3)-integrin subunit inhibits formation of confluent AEC monolayers. We conclude that the alpha(3)-integrin subunit modulates formation of AEC monolayers by virtue of the key role of the alpha(3)beta(1)-integrin receptor in AEC adhesion.

  1. Nanoparticle (NP) uptake by type I alveolar epithelial cells and their oxidant stress response

    Science.gov (United States)

    VanWinkle, Beth A.; de Mesy Bentley, Karen L.; Malecki, Jonathan M.; Gunter, Karlene K.; Evans, Irene M.; Elder, Alison; Finkelstein, Jacob N.; Oberdörster, Günter; Gunter, Thomas E.

    2009-01-01

    Mammalian cells take up nanoparticles (NPs) and some NPs increase ROS. We use imaging and measure ROS in parallel to evaluate NP-cell interactions with type I-like alveolar epithelial cells exposed to NPs at 1.2 µg/cm2 . Titanium dioxide (Ti02), gold (Au), silver (Ag), and manganese (Mn) were internalized by R3-1 cells; copper (Cu) NPs were observed at the cell surface only. TiO2 and Au did not increase cell death but Mn and Cu did, with surviving cells recovering after initial Cu exposure. Ag NPs caused 80% of R3-1 cells to lift off the slides within one hour. Amplex Red was used to report H2O2 production after exposure to 0.4 µg/cm2 TiO2, Au, Cu, Mn and Ag. TiO2, Au, and Ag caused no significant increase in H2O2 while Cu and Mn increased H2O2. NPs that give up electrons, increase ROS production and cause cell death in R3-1 cells. PMID:20563262

  2. Helicobacter pylori enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in human gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yi-Ying Wu; Hwei-Fang Tsai; We-Cheng Lin; Ai-Hsiang Chou; Hui-Ting Chen; Jyh-Chin Yang; Ping-I Hsu; Ping-Ning Hsu

    2004-01-01

    AIM: To investigate the relations between tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Helicobacter pylori(H pylori) infection in apoptosis of gastric epithelial cells and to assess the expression of TRAIL onthe surface of infiltrating T-cells in Hpylori-infected gastric mucosa.METHODS: Human gastric epithelial cell lines and primary gastric epithelial cells were co-cultured with H pylori in vitro, then recombinant TRAIL proteins were added to the culture. Apoptosis of gastric epithelial cells was determined by a specific ELISA for cell death. Infiltrating lymphocytes were isolated from H pylori-infected gastric mucosa, and expression of TRAIL in T cells was analyzed by flow cytometry.RESULTS: The apoptosis of gastric epithelial cell lines and primary human gastric epithelial cells was mildly increased by interaction with either TRAIL or H pylorialone. Interestingly,the apoptotic indices were markedly elevated when gastric epithelial cells were incubated with both TRAIL and H pylori (Control vsTRAIL and H pylori: 0.51±0.06 vs 2.29±0.27,P = 0.018). A soluble TRAIL receptor (DR4-Fc) could specifically block the TRAIL-mediated apoptosis. Further studies demonstrated that infiltrating T-cells in gastric mucosa expressed TRAIL on their surfaces, and the induction of TRAIL sensitivity by H pylori was dependent upon direct cell contact of viable bacteria, but not CagA and VacA of H pylori.CONCLUSION: H pylori can sensitize human gastric epithelial ceils and enhance susceptibility to TRAIL-mediated apoptosis. Modulation of host cell sensitivity to apoptosis by bacterial interaction adds a new dimension to the immunopathogenesis of H pylori infection.

  3. Differential gene expression profiling of Actinobacillus pleuropneumoniae during induction of primary alveolar macrophage apoptosis in piglets.

    Science.gov (United States)

    Wang, Lei; Qin, Wanhai; Ruidong, Zhai; Liu, Shiting; Zhang, Hu; Sun, Changjiang; Feng, Xin; Gu, Jingmin; Du, Chongtao; Han, Wenyu; Langford, P R; Lei, Liancheng

    2015-01-01

    Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is the causative agent of porcine pleuropneumonia, a disease that causes serious problems for the swine industry. Successful infection by this bacterium requires breaking the first line of defence in the lungs, the primary alveolar macrophages (PAMs). Therefore, exploring A. pleuropneumoniae-PAM interactions will provide vital groundwork for the scientific control of this infectious disease, which has been little studied up to now. In this work, PAMs were isolated from piglets and co-incubated with A. pleuropneumoniae serovar 5b strain L20 in vitro, and their interaction, PAM cell death, and differential gene expression of A. pleuropneumoniae in response to PAM cell death were observed and analysed using confocal microscopy, electron microscopy, RT-PCR, Western blot, flow cytometry and the use of a gene expression profile chip. A. pleuropneumoniae quickly adhered to and invaded PAMs, inducing apoptosis, which was confirmed using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The highest percentage of apoptosis in cells was confirmed using flow cytometry when the cells were infected at a multiplicity of infection (MOI) of 10 and incubated for 5 h, with higher expression of activated caspase-3 as measured by Western blot. Using microarray gene chips with 2868 probes containing nearly all of the genomic sequence of A. pleuropneumoniae serotype 5b strain L20, a total of 185 bacterial genes were found to be differentially expressed (including 92 up-regulated and 93 down-regulated genes) and involved in the process of apoptosis, as compared with the expression of control bacteria cultured without PAMs in BHI medium (mean expression ratios >1.5-fold, p PAMs and undergoes complex changes in gene transcription, including expression changes in known and potential virulence factors. Some potentially novel virulence targets have been identified, suggesting new strategies for the

  4. Transcriptional profile of Mycobacterium tuberculosis replicating in type II alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Michelle B Ryndak

    Full Text Available Mycobacterium tuberculosis (M. tb infection is initiated by the few bacilli inhaled into the alveolus. Studies in lungs of aerosol-infected mice provided evidence for extensive replication of M. tb in non-migrating, non-antigen-presenting cells in the alveoli during the first 2-3 weeks post-infection. Alveoli are lined by type II and type I alveolar epithelial cells (AEC which outnumber alveolar macrophages by several hundred-fold. M. tb DNA and viable M. tb have been demonstrated in AEC and other non-macrophage cells of the kidney, liver, and spleen in autopsied tissues from latently-infected subjects from TB-endemic regions indicating systemic bacterial dissemination during primary infection. M. tb have also been demonstrated to replicate rapidly in A549 cells (type II AEC line and acquire increased invasiveness for endothelial cells. Together, these results suggest that AEC could provide an important niche for bacterial expansion and development of a phenotype that promotes dissemination during primary infection. In the current studies, we have compared the transcriptional profile of M. tb replicating intracellularly in A549 cells to that of M. tb replicating in laboratory broth, by microarray analysis. Genes significantly upregulated during intracellular residence were consistent with an active, replicative, metabolic, and aerobic state, as were genes for tryptophan synthesis and for increased virulence (ESAT-6, and ESAT-6-like genes, esxH, esxJ, esxK, esxP, and esxW. In contrast, significant downregulation of the DevR (DosR regulon and several hypoxia-induced genes was observed. Stress response genes were either not differentially expressed or were downregulated with the exception of the heat shock response and those induced by low pH. The intra-type II AEC M. tb transcriptome strongly suggests that AEC could provide a safe haven in which M. tb can expand dramatically and disseminate from the lung prior to the elicitation of adaptive immune

  5. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  6. Pulmonary alveolar epithelial uptake of S-nitrosothiols is regulated by L-type amino acid transporter.

    Science.gov (United States)

    Granillo, Olivia M; Brahmajothi, Mulugu V; Li, Sheng; Whorton, A Richard; Mason, S Nicholas; McMahon, Timothy J; Auten, Richard L

    2008-07-01

    Nitric oxide (NO) effects are often mediated via S-nitrosothiol (SNO) formation; SNO uptake has recently been shown to be mediated in some cell types via system L-type amino acid transporters (LAT-1, 2). Inhaled NO therapy may exert some biological effects via SNO formation. We therefore sought to determine if pulmonary epithelial SNO uptake depended on LAT or peptide transporter 2 (PEPT2). Both LAT-1 and PEPT2 proteins were detected by immunoblot and immunocytochemistry in L2 cells and rat lung. We tested SNO uptake through the transporters by exposing rat alveolar epithelial cells (L2 and type II) to RSNOs: S-nitrosoglutathione, S-nitrosocysteinylglycine (SNO-Cys-Gly), S-nitrosocysteine (CSNO), and to NO donor diethylamine NONOate (DEA-NONOate). SNO was detected in cell lysates by ozone chemiluminescence. NO uptake was detected by fluorescence in alveolar epithelial cells loaded with 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM) diacetate cultured in submersion and exposed to RSNOs and DEA NONOate. Addition of L-Cys but not D-Cys to RSNOs or DEA NONOate increased SNO and DAF-FM signal that was inhibited by coincubation with LAT competitors. Incubation of cells with PEPT2 substrate SNO-Cys-Gly showed no increase in SNO or DAF-FM signal unless incubated with L-Cys. This was unaffected by PEPT2 inhibition. We conclude that RSNOs (thionitrites, S-nitrosothiols) and NO enter alveolar epithelial cells predominantly by S-nitrosation of L-Cys, which is then imported through LAT.

  7. Alveolar epithelial permeability in bronchial asthma in children; An evaluation by [sup 99m]Tc-DTPA inhalation scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Takuji (Nippon Medical School, Tokyo (Japan))

    1993-02-01

    To evaluate alveolar epithelial permeability (k[sub ep]) in children with bronchial asthma, [sup 99m]Tc-DTPA (diethylene triamine penta acetate) aerosol lung inhalation scintigraphies were performed. There was no correlation between the k[sub ep] value and the severity of asthma. On the other hand, out of 10 cases which had no aerosol deposition defect in the lung field, 4 showed high k[sub ep] values on the whole lung field and 7 had high k[sub ep] value areas, particularly apparent in the upper lung field. These results suggest that even when the central airway lesions are mild, severe damage exists in the alveolar region of the peripheral airway. (author).

  8. Effect of cigarette smoke extract on P-glycoprotein function in primary cultured and newly developed alveolar epithelial cells.

    Science.gov (United States)

    Takano, Mikihisa; Naka, Ryosuke; Sasaki, Yoshihiro; Nishimoto, Saori; Yumoto, Ryoko

    2016-12-01

    The effect of cigarette smoke extract (CSE) on P-glycoprotein (P-gp) function in the distal lung is unclear. In this study, we first examined the expression and function of P-gp and the effect of CSE in rat primary cultured alveolar epithelial cells. The expression of P-gp protein was observed in type I-like cells, but not in type II cells. In type I-like cells, rhodamine 123 (Rho123) accumulation was enhanced by various P-gp inhibitors such as verapamil and cyclosporine A. In addition, the expression of P-gp mRNAs, mdr1a and mdr1b, as well as P-gp activity increased along with the transdifferentiation. When type I-like cells were co-incubated with CSE, P-gp activity was suppressed. Next, we attempted to clarify the effect of CSE on P-gp function in human-derived cultured alveolar epithelial cells. For this purpose, we isolated an A549 clone (A549/P-gp) expressing P-gp, because P-gp expression in native A549 cells was negligible. In A549/P-gp cells, P-gp was functionally expressed, and the inhibitory effect of CSE on P-gp was observed. These results suggested that smoking would directly suppress P-gp activity, and that A549/P-gp cell line should be a useful model to further study the effect of xenobiotics on P-gp function in the alveolar epithelial cells.

  9. Minyak ikan Lemuru (Sardinella longicep menurunkan apoptosis osteoblas pada tulang alveolaris tikus wistar (Fish oil of Lemuru (Sardinella longicep reduced the osteoblast apoptosis in wistar rat alveolar bone

    Directory of Open Access Journals (Sweden)

    Didin Erma Indahyani

    2013-12-01

    Full Text Available Background: Periodontal disease is caused by periodontopatogen bacteria resulting the alveolar bone damage. The decrease of osteoblasts and the increased of osteoclasts can cause bone destruction. The decrease of osteoblasts, due to a disturbance of differentiation, proliferation and apoptosis. Inflammatory mediators are prostaglandin E2 (PGE2, interleukin-1 (IL-1, IL-6 also tumor necrosis alpha (TNF-α stimulates osteoblast apoptosis through gene expression, signaling molecules and receptor-forming osteoblasts. Fish oil of Lemuru, which is widely encountered in Indonesian coast, containing n-3 poly unsaturated fatty acids (n-3 PUFAs are quite high. Consumption of fish oil shown to reduce the expression of PGE2, IL-1, IL-6 and TNF-α. Purpose: The purpose of this study was to examine the effect of Lemuru (Sardinella longicep fish oil on osteoblast apoptosis of rat alveolar bone induced periodontal infection. Methods: Thirty Wistar rats, male, age 5 days, divided into 3 groups: group I rats induced with normal saline, group II rats induced by LPS, and group III rats induced with lemuru fish oil and LPS. Each group was divided into 2 sub-groups that would be sacrified at 13 days and 21 days of age. Fish oil was given at a dose 1ml/300-350 grams. Lipopolysaccharide (LPS induced with the purpose to cause periodontal infection in the maxillary buccal fold molar region with dose 5μl LPS/PBS 0.03 ml. After decapitation and decalcification, the maxilla was cut in 5μm thickness. Apoptosis was analyzed on DNA and detected by TUNEL reaction (transferase-mediated digoxigenin-deoxy-UTP nick end labeling. Results: The results showed that apoptosis of osteoblast cells was significantly smaller in rats induced by Lemuru fish oil. Conclusion: The study showed that Lemuru fish oil reduced the osteoblast apoptosis of rats alveolar bone induced periodontal infection by LPS.Latar belakang: Penyakit periodontal akibat bakteri peridontopatogen, menyebabkan

  10. Identification of Na(+)-K(+)-ATPase beta-subunit in alveolar epithelial cells.

    Science.gov (United States)

    Zhang, X L; Danto, S I; Borok, Z; Eber, J T; Martín-Vasallo, P; Lubman, R L

    1997-01-01

    The Na(+)-K(+)-ATPase is a heterodimeric plasma membrane protein that consists of a catalytic alpha-subunit and a smaller glycosylated beta-subunit that has not been fully characterized in alveolar epithelial cells (AEC) to date. In this study, we identified the Na(+)-K(+)-ATPase beta-subunit protein in rat AEC and lung membranes using immunochemical techniques. Rat AEC grown in primary culture and rat lung, brain, and kidney membranes were solubilized in either 2% sodium dodecyl sulfate (SDS) sample buffer for SDS-polyacrylamide gel electrophoresis or in 1% Nonidet P-40 lysis buffer for immunoprecipitation studies. Na(+)-K(+)-ATPase beta-subunit was not detected in either AEC or lung membranes on Western blots when probed with a panel of antibodies (Ab) against beta-subunit isoforms, whereas brain and kidney beta-subunit were recognized as broad approximately 50-kDa bands. AEC, lung, and kidney membranes were immunoprecipitated with anti-beta Ab IEC 1/48, a monoclonal Ab that recognizes beta-subunit protein only in its undenatured state. The beta-subunit was detected in the immunoprecipitate (IP) from kidney membranes by several different anti-beta-subunit Ab. The beta-subunit was faintly detectable from AEC and lung IP as a broad approximately 50-kDa band when blotted with the polyclonal anti-beta 1-subunit Ab SpET but could not be detected by blotting with other anti-beta Ab. Treatment of the IP from kidney, lung, and AEC with N-glycosidase F for 2 h at 37 degrees C resulted in immunodetection of identical approximately 35 kDa bands when probed with all anti-beta 1 Ab on Western blots. From these results, we conclude that rat lung and AEC possess immunoreactive beta-subunit protein that is only readily detectable after deglycosylation. Because anti-beta Ab fail to detect the Na(+)-K(+)-ATPase beta-subunit in rat lung or AEC by standard Western blotting techniques under the conditions of these experiments, our results suggest that lung beta-subunit may be

  11. Interactions of Francisella tularensis with Alveolar Type II Epithelial Cells and the Murine Respiratory Epithelium.

    Directory of Open Access Journals (Sweden)

    Matthew Faron

    Full Text Available Francisella tularensis is classified as a Tier 1 select agent by the CDC due to its low infectious dose and the possibility that the organism can be used as a bioweapon. The low dose of infection suggests that Francisella is unusually efficient at evading host defenses. Although ~50 cfu are necessary to cause human respiratory infection, the early interactions of virulent Francisella with the lung environment are not well understood. To provide additional insights into these interactions during early Francisella infection of mice, we performed TEM analysis on mouse lungs infected with F. tularensis strains Schu S4, LVS and the O-antigen mutant Schu S4 waaY::TrgTn. For all three strains, the majority of the bacteria that we could detect were observed within alveolar type II epithelial cells at 16 hours post infection. Although there were no detectable differences in the amount of bacteria within an infected cell between the three strains, there was a significant increase in the amount of cellular debris observed in the air spaces of the lungs in the Schu S4 waaY::TrgTn mutant compared to either the Schu S4 or LVS strain. We also studied the interactions of Francisella strains with human AT-II cells in vitro by characterizing the ability of these three strains to invade and replicate within these cells. Gentamicin assay and confocal microscopy both confirmed that F. tularensis Schu S4 replicated robustly within these cells while F. tularensis LVS displayed significantly lower levels of growth over 24 hours, although the strain was able to enter these cells at about the same level as Schu S4 (1 organism per cell, as determined by confocal imaging. The Schu S4 waaY::TrgTn mutant that we have previously described as attenuated for growth in macrophages and mouse virulence displayed interesting properties as well. This mutant induced significant airway inflammation (cell debris and had an attenuated growth phenotype in the human AT-II cells. These

  12. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M;

    1998-01-01

    PURPOSE: The immune privilege of the eye has been thought to be dependent on physical barriers and absence of lymphatic vessels. However, the immune privilege may also involve active immunologic processes, as recent studies have indicated. The purpose of the present study was to investigate whether...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  13. Green tea polyphenol blocks h(2)o(2)-induced interleukin-8 production from human alveolar epithelial cells.

    Science.gov (United States)

    Matsuoka, Katsunari; Isowa, Noritaka; Yoshimura, Takashi; Liu, Mingyao; Wada, Hiromi

    2002-06-07

    Reactive oxygen species (ROS) play crucial roles in ischemia-reperfusion (IR) injury of lung transplants. Reactive oxygen species may stimulate the production of neutrophil chemotactic factors such as interleukin-8 (IL-8), from alveolar epithelial cells, causing recruitment and activation of neutrophils in the reperfused tissue. Green tea polyphenol has potent anti-oxidative activities and anti-inflammatory effects by decreasing cytokine production. In the present study, we found that green tea polyphenol significantly inhibited IL-8 production induced by hydrogen peroxide (H(2)O(2)) in human lung alveolar epithelial cells (A549 line). It has been shown that mitogen activated protein kinases, such as Jun N-terminal kinase (JNK), p38 and p44/42, could mediate IL-8 production from a variety of cell types. We further investigated the effect of green tea polyphenol on these protein kinases, and demonstrated that H(2)O(2)-induced phosphorylation of JNK and p38 but not p44/42 was inhibited by green tea polyphenol in A549 cells. We speculate that green tea polyphenol may inhibit H(2)O(2)-induced IL-8 production from A549 cells through inactivation of JNK and p38.

  14. Differential replication of avian influenza H9N2 viruses in human alveolar epithelial A549 cells

    Directory of Open Access Journals (Sweden)

    Peiris Malik

    2010-03-01

    Full Text Available Abstract Avian influenza virus H9N2 isolates cause a mild influenza-like illness in humans. However, the pathogenesis of the H9N2 subtypes in human remains to be investigated. Using a human alveolar epithelial cell line A549 as host, we found that A/Quail/Hong Kong/G1/97 (H9N2/G1, which shares 6 viral "internal genes" with the lethal A/Hong Kong/156/97 (H5N1/97 virus, replicates efficiently whereas other H9N2 viruses, A/Duck/Hong Kong/Y280/97 (H9N2/Y280 and A/Chicken/Hong Kong/G9/97 (H9N2/G9, replicate poorly. Interestingly, we found that there is a difference in the translation of viral protein but not in the infectivity or transcription of viral genes of these H9N2 viruses in the infected cells. This difference may possibly be explained by H9N2/G1 being more efficient on viral protein production in specific cell types. These findings suggest that the H9N2/G1 virus like its counterpart H5N1/97 may be better adapted to the human host and replicates efficiently in human alveolar epithelial cells.

  15. Interferon-gamma sensitizes colonic epithelial cell lines to physiological and therapeutic inducers of colonocyte apoptosis.

    LENUS (Irish Health Repository)

    O'Connell, J

    2012-02-03

    Homeostasis in the colonic epithelium is achieved by a continuous cycle of proliferation and apoptosis, in which imbalances are associated with disease. Inflammatory bowel disease (IBD) and colon cancer are associated with either excessive or insufficient apoptosis of colonic epithelial cells, respectively. By using two colonic epithelial cell lines, HT29 and SW620, we investigated how the epithelial cell\\'s sensitivity to apoptosis was regulated by the proinflammatory cytokine interferon-gamma (IFN-gamma). We found that IFN-gamma sensitized HT29 cells, and to a lesser extent SW620, to diverse inducers of apoptosis of physiologic or therapeutic relevance to the colon. These apoptosis inducers included Fas (CD95\\/APO-1) ligand (FasL), short-chain fatty acids, and chemotherapeutic drugs. The extent of IFN-gamma-mediated apoptosis sensitization in these two cell lines correlated well with the degree of IFN-gamma-mediated upregulation of the proapoptotic protease caspase-1. Although IFN-gamma alone effectively sensitized HT29 cells to apoptosis, inclusion of the protein synthesis inhibitor cyclohexamide (CHX) during apoptotic challenge was necessary for maximal sensitization of SW620. The requirement of CHX to sensitize SW620 cells to apoptosis implies a need to inhibit translation of antiapoptotic proteins absent from HT29. In particular, the antiapoptotic protein Bcl-2 was strongly expressed in SW620 cells but absent from HT29. Our results indicate that IFN-gamma increases the sensitivity of colonic epithelial cells to diverse apoptotic stimuli in concert, via upregulation of caspase-1. Our findings implicate caspase-1 and Bcl-2 as important central points of control determining the general sensitivity of colonic epithelial cells to apoptosis.

  16. Hypotonic shock modulates Na(+ current via a Cl(- and Ca(2+/calmodulin dependent mechanism in alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    André Dagenais

    Full Text Available Alveolar epithelial cells are involved in Na(+ absorption via the epithelial Na(+ channel (ENaC, an important process for maintaining an appropriate volume of liquid lining the respiratory epithelium and for lung oedema clearance. Here, we investigated how a 20% hypotonic shock modulates the ionic current in these cells. Polarized alveolar epithelial cells isolated from rat lungs were cultured on permeant filters and their electrophysiological properties recorded. A 20% bilateral hypotonic shock induced an immediate, but transient 52% rise in total transepithelial current and a 67% increase in the amiloride-sensitive current mediated by ENaC. Amiloride pre-treatment decreased the current rise after hypotonic shock, showing that ENaC current is involved in this response. Since Cl(- transport is modulated by hypotonic shock, its contribution to the basal and hypotonic-induced transepithelial current was also assessed. Apical NPPB, a broad Cl(- channel inhibitor and basolateral DIOA a potassium chloride co-transporter (KCC inhibitor reduced the total and ENaC currents, showing that transcellular Cl(- transport plays a major role in that process. During hypotonic shock, a basolateral Cl(- influx, partly inhibited by NPPB is essential for the hypotonic-induced current rise. Hypotonic shock promoted apical ATP secretion and increased intracellular Ca(2+. While apyrase, an ATP scavenger, did not inhibit the hypotonic shock current response, W7 a calmodulin antagonist completely prevented the hypotonic current rise. These results indicate that a basolateral Cl(- influx as well as Ca(2+/calmodulin, but not ATP, are involved in the acute transepithelial current rise elicited by hypotonic shock.

  17. Effect of Pyruvate on Polyol Pathway and Lens Epithelial Cells Apoptosis in Diabetic Rats

    Institute of Scientific and Technical Information of China (English)

    Yanxiu Qi; Jisong Zhang

    2006-01-01

    Purpose: To investigate the effect of polyol pathway on lens epithelial cells apoptosis and the activity of caspase-3 and its reversal by pyruvate in diabetic rats.Methods: 220 Wister rats were divided into 3 groups: control group, model group and treatment group. After streptozotocin (STZ) induced cataract, the treatment group received 2% pyruvate in the diet and drinking. The opacification of lens was detected by microscope every 2 weeks. On 4W, 8W and 12W of the experiment, glucose and sorbitol in the lens were quantified by high-performance liquid chromatography. The percentage of lens epithelial cells undergoing apoptosis was measured by Annexin V/PI staining. The activity of caspase-3 was analyzed by Western-blot.Results: Studies show that there was significant increase of glucose, sorbitol in lens of model group, the apoptosis rate and caspase-3 activity of lens epithelial cells were also gradually increase. Pyruvate treatment decreased the levels of sotbitol, glucose, lens epithelial cells apoptosis and caspase-3 activity. The progress of cataract was also significantly delayed.Conclusions: Polyol pathway, possibly through regulation of the activity of caspase-3,can induce apoptosis of lens epithelial cell. Pyruvate ingested orally can effective inhibit diabetic cataractogenesis in rats through inhibit polyol pathway.

  18. Mechanisms of acupuncture and moxibustion in regulation of epithelial cell apoptosis in rat ulcerative colitis

    Institute of Scientific and Technical Information of China (English)

    Huan-Gan Wu; Xiao Gong; Li-Qing Yao; Wei Zhang; Yin Shi; Hui-Rong Liu; Ye-Jing Gong; Li-Bin Zhou; Yi Zhu

    2004-01-01

    AIM: To investigate the effect of acupuncture and moxibustion on epithelial cell apoptosis and expression of Bcl-2, Bax, fas and FasL proteins in rat ulcerative colitis.METHODS: A rat model of ulcerative colitis was estabelished by immunological methods and local stimulation. All rats were randomly divided into model control group (MC),electro-acupuncture group (EA), herbs-partition moxibustion group (HPM). Normal rats were used as normal control group (NC). Epithelial cell apoptosis and expression of Bcl-2, Bax, fas and FasL proteins were detected by TUNEL and immunohistochemiscal method respectively.RESULTS: The number of epithelial cell apoptosis in MC was significantly higher than that in NC, and was markedly decreased after the treatment with herbs-partition moxibustion or electro-acupuncture. The expression of Bcl2, Bax, fas and FasL in colonic epithelial cells in MC was higher than that in NC, and was markedly down- regulated by herbspartition moxibustion or electro-acupuncture treatment.CONCLUSION: The pathogenesis of ulcerative colitis in rats involves abnormality of apoptosis. Acupuncture and moxibustion can regulate the expression of Bcl-2, Bax, fas and FasL proteins and inhibit the apoptosis of epithelial cells of ulcerative colitis in rats by Bcl-2/Bax, fas/FasL pathways.

  19. Pneumocystis carinii major surface glycoprotein induces interleukin-8 and monocyte chemoattractant protein-1 release from a human alveolar epithelial cell line

    DEFF Research Database (Denmark)

    Benfield, T L; Lundgren, Bettina; Shelhamer, J H

    1999-01-01

    (IL-8) and monocyte chemoattractant protein-1 (MCP-1) from an alveolar epithelial cell line (A549). RESULTS: Incubation of A549 cells with MSG in concentrations from 0.4 to 10 microg mL-1 for 24 h caused dose-dependent increases in IL-8 release (3.4-fold above control, P

  20. Regulation of p53-mediated changes in the uPA-fibrinolytic system and in lung injury by loss of surfactant protein-C expression in alveolar epithelial cells.

    Science.gov (United States)

    Puthusseri, Bijesh; Marudamuthu, Amarnath S; Tiwari, Nivedita; Fu, Jian; Idell, Steven; Shetty, Sreerama

    2017-04-06

    Pulmonary surfactant protein-C (SP-C) expression by type II alveolar epithelial cells (AECs) is markedly reduced in diverse types of lung injuries and is often associated with AEC apoptosis. It is unclear whether loss of SP-C contributes to the increased p53 and urokinase-type plasminogen activator (uPA) system cross talk and apoptosis of AECs. We therefore inhibited SP-C expression in human and murine AECs using lentivirus vector expressing shRNA and tested p53 and downstream changes in uPA-fibrinolytic system. Inhibition of SP-C expression in AECs induced p53 and activated caspase-3, indicating AEC apoptosis. We also found that bleomycin or cigarette smoke exposure failed to inhibit SP-C expression or apoptosis in AECs in p53- and plasminogen activator inhibitor-1 (PAI-1)-deficient mice. Depletion of SP-C expression by lentiviral SP-C shRNA in PAI-1-deficient mice failed to induce p53 or apoptosis in AECs, while it increased both AEC p53 and apoptosis in wild type or uPA-deficient mice. SP-C inhibition in AECs also increased in CXCL1 and CXCL2, and their receptor CXCR2 as well as ICAM-1 expression, indicative of a pro-inflammatory response. Overexpression of p53-binding 3'UTR sequences in AECs inhibited PAI-1 induction while maintaining uPA and uPAR protein and mRNA expression. Further, caveolin-1 expression and phosphorylation were increased in AECs indicating an intricate link between caveolin-1 and Src kinase-mediated cell signalling and AEC apoptosis due to loss of SP-C expression through p53 and uPA system-mediated cross-talk. The role of uPA, PAI-1 and p53 in the regulation of AEC apoptosis after injury was also determined in knock out mice.

  1. Electron microscope study on the relationship between macrophages of the alevolar space and spheroid alveolar epithelial cells on mice after injection of squid-ink (sepia-melanin solution into the trachea

    Directory of Open Access Journals (Sweden)

    Suwa,Kiichi

    1977-02-01

    Full Text Available The relationship between alveolar macrophages and spheroid alveolar epithelial cells was studied with the electron microscope after injection of squid-ink solution into the trachea of the mouse. At 20 hours after injection of squid-ink solution slight degeneration was evident in alveolar macrophages with sepia-melanin particles being phagocytized with partial digestion by lysosmes. Furthermore, hardly any changes were seen in mitochondria and inclusion bodies of the spheroid alveolar epithelial cells. In contrast, at one week after injection of squid-ink solution, almost all alveolar macrophages were degenerated with destruction of the ectoplasm in which the ingested sepia-melanin particles were digested by lysosomes into fine particles, and the mitochondria of spheroid alveolar epithelial cells were degenerated and the inclusion bodies were hardly formed. At three weeks after injection of squid-ink solution, alveolar macrophages as well as speroid alveolar epithelial cells showed almost complete recovery of functional structure. As the phagocyte in the alveolar space, neutrophile leucocytes were also observed in addition to the so-called alveolar macrophage.

  2. Cytotoxicity, oxidative stress and genotoxicity induced by glass fibers on human alveolar epithelial cell line A549.

    Science.gov (United States)

    Rapisarda, Venerando; Loreto, Carla; Ledda, Caterina; Musumeci, Giuseppe; Bracci, Massimo; Santarelli, Lory; Renis, Marcella; Ferrante, Margherita; Cardile, Venera

    2015-04-01

    Man-made vitreous fibers have been widely used as insulation material as asbestos substitutes; however their morphology and composition raises concerns. In 1988 the International Agency for Research on Cancer classified fiberglass, rock wool, slag wool, and ceramic fibers as Group 2B, i.e. possibly carcinogenic to humans. In 2002 it reassigned fiberglass, rock and slag wool, and continuous glass filaments to Group 3, not classifiable as carcinogenic to humans. The aim of this study was to verify the cytotoxic and genotoxic effects and oxidative stress production induced by in vitro exposure of human alveolar epithelial cells A549 to glass fibers with a predominant diameter 5 μm (93%). A549 cells were incubated with 5, 50, or 100 μg/ml (2.1, 21, and 42 μg/cm(2), respectively) of glass fibers for 72 h. Cytotoxicity and DNA damage were tested by the MTT and the Comet assay, respectively. Oxidative stress was determined by measuring inducible nitric oxide synthase (iNOS) expression by Western blotting, production of nitric oxide (NO) with Griess reagent, and concentration of reactive oxygen species by fluorescent quantitative analysis with 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The results showed that glass fiber exposure significantly reduced cell viability and increased DNA damage and oxidative stress production in a concentration-dependent manner, demonstrating that glass fibers exert cytotoxic and genotoxic effects related to increased oxidative stress on the human alveolar cell line A549.

  3. Cytotoxicity and inflammation in human alveolar epithelial cells following exposure to occupational levels of gold and silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, George D., E-mail: gdbacha@sandia.gov [Sandia National Laboratories, Center for Integrated Nanotechnologies (United States); Allen, Amy [Sandia National Laboratories, Department of Analytical Science (United States); Bachand, Marlene [Sandia National Laboratories, Department of Nanobiology (United States); Achyuthan, Komandoor E. [Sandia National Laboratories, Department of Biosensors and Nanomaterials (United States); Seagrave, Jean Clare [Lovelace Respiratory Research Institute, Applied Life Science and Toxicology Division (United States); Brozik, Susan M. [Sandia National Laboratories, Department of Biosensors and Nanomaterials (United States)

    2012-10-15

    While inhalation represents one of the most likely routes of exposure, the toxicity and response of nanoparticles at concentrations expected from such an exposure are not well understood. Here we characterized the in vitro response of human A549 adenocarcinomic alveolar epithelial cells following exposure to gold (AuNP) and silver (AgNP) nanoparticles at levels approximating an occupational exposure. Changes in neither oxidative stress nor cytotoxicity were significantly affected by exposure to AgNPs and AuNPs, regardless of NP type (Ag vs. Au), concentration, surface ligand (citrate or tannic acid), or size. An inflammatory response was, however, observed in response to 20 nm AgNPs and 20 nm AuNPs, where significant differences in the release of interleukin (IL)-8 but not IL-6 were observed. Additional data demonstrated that increased IL-8 secretion was strongly dependent on both nanoparticle size and concentration. Overall these data suggest that, while not acutely toxic, occupational exposure to AuNPs and AgNPs may trigger a significant inflammatory response in alveolar epithelium. Moreover, the differential responses in IL-8 and IL-6 secretion suggest that NPs may induce a response pathway that is distinct from those commonly elicited by allergens and pathogens.

  4. Proinflammatory cytokine responses induced by influenza A (H5N1 viruses in primary human alveolar and bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Poon LLM

    2005-11-01

    Full Text Available Abstract Background Fatal human respiratory disease associated with influenza A subtype H5N1 has been documented in Hong Kong, and more recently in Vietnam, Thailand and Cambodia. We previously demonstrated that patients with H5N1 disease had unusually high serum levels of IP-10 (interferon-gamma-inducible protein-10. Furthermore, when compared with human influenza virus subtype H1N1, the H5N1 viruses in 1997 (A/Hong Kong/483/97 (H5N1/97 were more potent inducers of pro-inflammatory cytokines (e.g. tumor necrosis factor-a and chemokines (e.g. IP-10 from primary human macrophages in vitro, which suggests that cytokines dysregulation may play a role in pathogenesis of H5N1 disease. Since respiratory epithelial cells are the primary target cell for replication of influenza viruses, it is pertinent to investigate the cytokine induction profile of H5N1 viruses in these cells. Methods We used quantitative RT-PCR and ELISA to compare the profile of cytokine and chemokine gene expression induced by H5N1 viruses A/HK/483/97 (H5N1/97, A/Vietnam/1194/04 and A/Vietnam/3046/04 (both H5N1/04 with that of human H1N1 virus in human primary alveolar and bronchial epithelial cells in vitro. Results We demonstrated that in comparison to human H1N1 viruses, H5N1/97 and H5N1/04 viruses were more potent inducers of IP-10, interferon beta, RANTES (regulated on activation, normal T cell expressed and secreted and interleukin 6 (IL-6 in primary human alveolar and bronchial epithelial cells in vitro. Recent H5N1 viruses from Vietnam (H5N1/04 appeared to be even more potent at inducing IP-10 than H5N1/97 virus. Conclusion The H5N1/97 and H5N1/04 subtype influenza A viruses are more potent inducers of proinflammatory cytokines and chemokines in primary human respiratory epithelial cells than subtype H1N1 virus. We suggest that this hyper-induction of cytokines may be relevant to the pathogenesis of human H5N1 disease.

  5. Cytoskeletal re-arrangement in TGF-β1-induced alveolar epithelial-mesenchymal transition studied by atomic force microscopy and high-content analysis.

    Science.gov (United States)

    Buckley, Stephen T; Medina, Carlos; Davies, Anthony M; Ehrhardt, Carsten

    2012-04-01

    Epithelial-mesenchymal transition (EMT) is closely implicated in the pathogenesis of idiopathic pulmonary fibrosis. Associated with this phenotypic transition is the acquisition of an elongated cell morphology and establishment of stress fibers. The extent to which these EMT-associated changes influence cellular mechanics is unclear. We assessed the biomechanical properties of alveolar epithelial cells (A549) following exposure to TGF-β1. Using atomic force microscopy, changes in cell stiffness and surface membrane features were determined. Stimulation with TGF-β1 gave rise to a significant increase in stiffness, which was augmented by a collagen I matrix. Additionally, TGF-β1-treated cells exhibited a rougher surface profile with notable protrusions. Simultaneous quantitative examination of the morphological attributes of stimulated cells using an image-based high-content analysis system revealed dramatic alterations in cell shape, F-actin content and distribution. Together, these investigations point to a strong correlation between the cytoskeletal-associated cellular architecture and the mechanical dynamics of alveolar epithelial cells undergoing EMT. From the Clinical Editor: Epithelial-mesenchymal transition is implicated in the pathogenesis of pulmonary fibrosis. Using atomic force microscopy, the authors demonstrate a strong correlation between the cytoskeletal-associated cellular architecture and the mechanical dynamics of alveolar epithelial cells undergoing mesenchymal transition.

  6. Intestinal epithelial apoptosis initiates gut mucosal injury during extracorporeal membrane oxygenation in the newborn piglet.

    Science.gov (United States)

    MohanKumar, Krishnan; Killingsworth, Cheryl R; McIlwain, R Britt; Timpa, Joseph G; Jagadeeswaran, Ramasamy; Namachivayam, Kopperuncholan; Kurundkar, Ashish R; Kelly, David R; Garzon, Steven A; Maheshwari, Akhil

    2014-02-01

    Neonates and young infants exposed to extracorporeal circulation during extracorporeal membrane oxygenation (ECMO) and cardiopulmonary bypass are at risk of developing a systemic inflammatory response syndrome with multi-organ dysfunction. We used a piglet model of ECMO to investigate the hypothesis that epithelial apoptosis is an early event that precedes villous damage during ECMO-related bowel injury. Healthy 3-week-old piglets were subjected to ECMO for up to 8 h. Epithelial apoptosis was measured in histopathological analysis, nuclear imaging, and terminal deoxynucleotidyl transferase dUTP nick end labeling. Plasma intestinal fatty acid-binding protein (I-FABP) levels were measured by enzyme immunoassay. Intestinal mast cells were isolated by fluorescence-assisted cell sorting. Cleaved caspase-8, caspase-9, phospho-p38 MAPK, and fas ligand expression were investigated by immunohistochemistry, western blots, and reverse transcriptase-quantitative PCR. Piglet ECMO was associated with increased gut epithelial apoptosis. Extensive apoptotic changes were noted on villus tips and in scattered crypt cells after 2 h of ECMO. After 8 h, the villi were denuded and apoptotic changes were evident in a majority of crypt cells. Increased circulating I-FABP levels, a marker of gut epithelial injury, showed that epithelial injury occurred during ECMO. We detected increased cleaved caspase-8, but not cleaved caspase-9, in epithelial cells indicating that the extrinsic apoptotic pathway was active. ECMO was associated with increased fas ligand expression in intestinal mast cells, which was induced through activation of the p38 mitogen-activated protein kinase. We conclude that epithelial apoptosis is an early event that initiates gut mucosal injury in a piglet model of ECMO.

  7. Asbestos fibre length-dependent detachment injury to alveolar epithelial cells in vitro: role of a fibronectin-binding receptor.

    Science.gov (United States)

    Donaldson, K.; Miller, B. G.; Sara, E.; Slight, J.; Brown, R. C.

    1993-01-01

    A short and a long fibre sample of amosite asbestos were tested for their effects on cells of the human Type 2 alveolar epithelial cell-line A549 in vitro. The long amosite sample was found to cause a rapid detachment of the epithelial cells live from their substratum. At the highest dose, on average 28% of the cells present were detached in this way. Studies on the mechanism of the detachment injury showed that it did not involve oxidants since it was not ameliorated by scavengers of active oxygen species. Neither was the effect reduced by treatment of the fibres with the iron chelator Desferal. Treatments reported to increase the interaction between fibres and cells, serum and poly-L-lysine, did not influence the detachment injury, nor did lung lining fluid. Conversely, the fibronectin tripeptide RGD alone could cause detachment which suggested that a fibronectin-binding integrin was involved. This receptor could be reduced in activity by long fibre exposure, leading to detachment. The detaching effect of fibre could be mimicked by the protein kinase C activator PMA, and so the second messenger system of the cell could also be involved. This type of injury could be important in the pathology associated with exposure to long fibres. PMID:8392859

  8. Dietary antioxidants protect gut epithelial cells from oxidant-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Bobrowski Paul

    2001-12-01

    Full Text Available Abstract Background The potential of ascorbic acid and two botanical decoctions, green tea and cat's claw, to limit cell death in response to oxidants were evaluated in vitro. Methods Cultured human gastric epithelial cells (AGS or murine small intestinal epithelial cells (IEC-18 were exposed to oxidants – DPPH (3 μM, H2O2 (50 μM, peroxynitrite (300 μM – followed by incubation for 24 hours, with antioxidants (10 μg/ml administered as a 1 hour pretreatment. Cell number (MTT assay and death via apoptosis or necrosis (ELISA, LDH release was determined. The direct interactions between antioxidants and DPPH (100 μM or H2O2 (50 μM were evaluated by spectroscopy. Results The decoctions did not interact with H2O2, but quenched DPPH although less effectively than vitamin C. In contrast, vitamin C was significantly less effective in protecting human gastric epithelial cells (AGS from apoptosis induced by DPPH, peroxynitrite and H2O2 (P 2O2, but green tea was more effective than cat's claw in reducing DPPH-induced apoptosis (P 2O2, and was attenuated both by cat's claw and green tea (P Conclusions These results indicate that dietary antioxidants can limit epithelial cell death in response to oxidant stress. In the case of green tea and cat's claw, the cytoprotective response exceed their inherent ability to interact with the injurious oxidant, suggestive of actions on intracellular pathways regulating cell death.

  9. CCR2 and CXCR3 agonistic chemokines are differently expressed and regulated in human alveolar epithelial cells type II

    Directory of Open Access Journals (Sweden)

    Prasse Antje

    2005-07-01

    Full Text Available Abstract The attraction of leukocytes from circulation to inflamed lungs depends on the activation of both the leukocytes and the resident cells within the lung. In this study we determined gene expression and secretion patterns for monocyte chemoattractant protein-1 (MCP-1/CCL2 and T-cell specific CXCR3 agonistic chemokines (Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11 in TNF-α-, IFN-γ-, and IL-1β-stimulated human alveolar epithelial cells type II (AEC-II. AEC-II constitutively expressed high level of CCL2 mRNA in vitro and in situ , and released CCL2 protein in vitro . Treatment of AEC-II with proinflammatory cytokines up-regulated both CCL2 mRNA expression and release of immunoreactive CCL2, whereas IFN-γ had no effect on CCL2 release. In contrast, CXCR3 agonistic chemokines were not detected in freshly isolated AEC-II or in non-stimulated epithelial like cell line A549. IFN-γ, alone or in combination with IL-1β and TNF-α resulted in an increase in CXCL10, CXCL11, and CXCL9 mRNA expression and generation of CXCL10 protein by AEC-II or A549 cells. CXCL10 gene expression and secretion were induced in dose-dependent manner after cytokine-stimulation of AEC-II with an order of potency IFN-γ>>IL-1β ≥ TNF-α. Additionally, we localized the CCL2 and CXCL10 mRNAs in human lung tissue explants by in situ hybridization, and demonstrated the selective effects of cytokines and dexamethasone on CCL2 and CXCL10 expression. These data suggest that the regulation of the CCL2 and CXCL10 expression exhibit significant differences in their mechanisms, and also demonstrate that the alveolar epithelium contributes to the cytokine milieu of the lung, with the ability to respond to locally generated cytokines and to produce potent mediators of the local inflammatory response.

  10. Cigarette smoke causes caspase-independent apoptosis of bronchial epithelial cells from asthmatic donors.

    Directory of Open Access Journals (Sweden)

    Fabio Bucchieri

    Full Text Available Epidemiologic studies have demonstrated important links between air pollution and asthma. Amongst these pollutants, environmental cigarette smoke is a risk factor both for asthma pathogenesis and exacerbation. As the barrier to the inhaled environment, the bronchial epithelium is a key structure that is exposed to cigarette smoke.Since primary bronchial epithelial cells (PBECs from asthmatic donors are more susceptible to oxidant-induced apoptosis, we hypothesized that they would be susceptible to cigarette smoke-induced cell death.PBECs from normal and asthmatic donors were exposed to cigarette smoke extract (CSE; cell survival and apoptosis were assessed by fluorescence-activated cell sorting, and protective effects of antioxidants evaluated. The mechanism of cell death was evaluated using caspase inhibitors and immunofluorescent staining for apoptosis-inducing factor (AIF.Exposure of PBEC cultures to CSE resulted in a dose-dependent increase in cell death. At 20% CSE, PBECs from asthmatic donors exhibited significantly more apoptosis than cells from non-asthmatic controls. Reduced glutathione (GSH, but not ascorbic acid (AA, protected against CSE-induced apoptosis. To investigate mechanisms of CSE-induced apoptosis, caspase-3 or -9 inhibitors were tested, but these failed to prevent apoptosis; in contrast, CSE promoted nuclear translocation of AIF from the mitochondria. GSH reduced the number of nuclear-AIF positive cells whereas AA was ineffective.Our results show that PBECs from asthmatic donors are more susceptible to CSE-induced apoptosis. This response involves AIF, which has been implicated in DNA damage and ROS-mediated cell-death. Epithelial susceptibility to CSE may contribute to the impact of environmental tobacco smoke in asthma.

  11. Environmental particulate (PM2.5 augments stiffness-induced alveolar epithelial cell mechanoactivation of transforming growth factor beta.

    Directory of Open Access Journals (Sweden)

    Marilyn M Dysart

    Full Text Available Dysfunctional pulmonary homeostasis and repair, including diseases such as pulmonary fibrosis (PF, chronic obstructive pulmonary disease (COPD, and tumorigenesis have been increasing over the past decade, a fact that heavily implicates environmental influences. Several investigations have suggested that in response to increased transforming growth factor--beta (TGFβ signaling, the alveolar type II (ATII epithelial cell undergoes phenotypic changes that may contribute to the complex pathobiology of PF. We have previously demonstrated that increased tissue stiffness associated with PF is a potent extracellular matrix (ECM signal for epithelial cell activation of TGFβ. The work reported here explores the relationship between tissue stiffness and exposure to environmental stimuli in the activation of TGFβ. We hypothesized that exposure of ATII cells to fine particulate matter (PM2.5 will result in enhanced cell contractility, TGFβ activation, and subsequent changes to ATII cell phenotype. ATII cells were cultured on increasingly stiff substrates with or without addition of PM2.5. Exposure to PM2.5 resulted in increased activation of TGFβ, increased cell contractility, and elongation of ATII cells. Most notably, on 8 kPa substrates, a stiffness greater than normal but less than established fibrotic lung, addition of PM2.5 resulted in increased cortical cell stiffness, enhanced actin staining and cell elongation; a result not seen in the absence of PM2.5. Our work suggests that PM2.5 exposure additionally enhances the existing interaction between ECM stiffness and TGFβ that has been previously reported. Furthermore, we show that this additional enhancement is likely a consequence of intracellular reactive oxygen species (ROS leading to increased TGFβ signaling events. These results highlight the importance of both the micromechanical and biochemical environment in lung disease initiation and suggest that individuals in early stages of lung

  12. Activation of NF-κB and apoptosis of intestinal epithelial cells induced by hydrogen peroxide

    Institute of Scientific and Technical Information of China (English)

    李建明; 周红; 蔡黔; 肖光夏

    2002-01-01

    In vitro model of hydrogen peroxide induced apoptosis of SW-480 cells was used to investigate the role of NF-κB in the pathogenesis of reactive oxygen species induced apoptosis of intestinal epithelial cells. Methods: Ultra-structural changes were observed.Apoptosis of SW-480 cell line was determined by Annexin-V and PI double-stained flow cytometry. Nuclear translocation of NF-κB was determined by anti-NF-κB polyclonal antibody and EB double-staining. NF-κB activity was studied by electrophoretic mobility shift assays. RTPCR was performed to study expression of NF-κB mRNA. Results: Hydrogen peroxide led to apoptosis of SW-480 cells, condensed or semilunar chromatin even apoptotic bodies could be observed. Nuclear translocation of NF-κB,increase of NF-κB activity and expression of NF-κB mRNA were found simultaneously. Conclusions: Early activation of NF-κ B may be one of the mechanisms of apoptosis in intestinal epithelial cells by reactive oxygen species.

  13. Role of mitochondrial dysfunction in hydrogen peroxide-induced apoptosis of intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Jian-Ming Li; Hong Zhou; Qian Cai; Guang-Xia Xiao

    2003-01-01

    AIM: To study the role of mitochondrial dysfunction in hydrogen peroxide-induced apoptosis of intestinal epithelial cells.METHODS: Hydrogen peroxide-induced apoptosis of human intestinal epithelial cell line SW-480 was established. Cell apoptosis was determined by Annexin-V and PI doublestained flow cytometry and DNA gel electrophoresis.Morphological changes were examined with light and electron microscopy. For other observations, mitochondrial function,cytochrome c release, mitochondrial translocation and membrane potential were determined simultaneously.RESULTS: Percentage of apoptotic cells induced with 400μ mol/L hydrogen peroxide increased significantly at I h or 3h after stimulation and recovered rapidly. Meanwhile percentage of apoptotic cells induced with 4 mmol/L hydrogen peroxide increased with time. In accordance with these changes, we observed decreased mitochondrial function in 400 μmol/L H2O2-stimualted cells at 1 h or 3 h and in 4 mmol/L H2O2-stimualted cells at times examined.Correspondingly, swelling cristae and vacuole-like mitochondria were noted. Release of cytochrome c,decreased mitochondrial membrane potential and mitochondrial translocation were also found to be the early signs of apoptosis.CONCLUSION: Dysfunctional mitochondria play a role in the apoptosis of SW-480 cell line induced by hydrogen peroxide.

  14. Lycium barbarum polysaccharides protected human retinal pigment epithelial cells against oxidative stressinduced apoptosis

    Institute of Scientific and Technical Information of China (English)

    Lian; Liu; Wei; Lao; Qing-Shan; Ji; Zhi-Hao; Yang; Guo-Cheng; Yu; Jing-Xiang; Zhong

    2015-01-01

    AIM: To investigate the protective effect and its mechanism of lycium barbarum polysaccharides(LBP)against oxidative stress-induced apoptosis in human retinal pigment epithelial cells.METHODS: ARPE-19 cells, a human retinal pigment epithelial cell lines, were exposed to different concentrations of H2O2 for 24h, then cell viability was measured by Cell Counting Kit-8(CCK-8) assay to get the properly concentration of H2O2 which can induce half apoptosis of APRE-19. With different concentrations of LBP pretreatment, the ARPE-19 cells were then exposed to appropriate concentration of H2O2, cell apoptosis was detected by flow cytometric analysis. Expression levels of Bcl-2 and Bax were measured by real time quantitative polymerase chain reaction(RT-PCR) technique.RSULTS: LBP significantly reduced the H2O2-induced ARPE-19 cells’ apoptosis. LBP inhibited the H2O2-induced down-regulation of Bcl-2 and up-regulation of Bax.CONCLUSION: LBP could protect ARPE-19 cells from H2O2-induced apoptosis. The Bcl-2 family had relationship with the protective effects of LBP.

  15. Effect of Amygdalin on the Proliferation of Hyperoxia-exposed Type Ⅱ Alveolar Epithelial Cells Isolated from Premature Rat

    Institute of Scientific and Technical Information of China (English)

    祝华平; 常立文; 李文斌; 刘汉楚

    2004-01-01

    Summary: The pathogenesis of hyperoxia lung injury and the mechanism of amygdalin on type 2 alveolar epithelial cells (AEC2) isolated from premature rat lungs in vitro were investigated. AEC2 were obtained by primary culture from 20-days fetal rat lung and hyperoxia-exposed cell model was established. Cell proliferating viability was examined by MTT assay after treatment of amygdalin at various concentrations. DNA content and the proliferating cell nuclear antigen (PCNA) protein expression of AEC2 were measured by using flow cytometry and immunocytochemistry respectively after 24 h of hyperoxia exposure or amygdalin treatment. The results showed that hyperoxia inhibited the proliferation and decreased PCNA protein expression in AEC2 of premature rat in vitro. Amygdalin at the concentration range of 50-200 μmol/L stimulated the proliferation of AEC2 in a dose-dependent manner, however, 400 μmol/L amygdalin inhibited the proliferation of AEC2. Amygdalin at the concentration of 200 μmol/L played its best role in facilitating proliferation of AEC2s in vitro and could partially ameliorated the changes of proliferation in hyperoxia exposed AEC2 of premature rat. It has been suggested that hyperoxia inhibited the proliferation of AEC2s of premature rat, which may contribute to hyperoxia lung injury. Amygdalin may play partial protective role in hyperoxia-induced lung injury.

  16. Effect of amygdalin on the proliferation of hyperoxia-exposed type II alveolar epithelial cells isolated from premature rat.

    Science.gov (United States)

    Zhu, Huaping; Chang, Liwen; Li, Wenbin; Liu, Hanchu

    2004-01-01

    The pathogenesis of hyperoxia lung injury and the mechanism of amygdalin on type 2 alveolar epithelial cells (AEC2) isolated from premature rat lungs in vitro were investigated. AEC2 were obtained by primary culture from 20-days fetal rat lung and hyperoxia-exposed cell model was established. Cell proliferating viability was examined by MTT assay after treatment of amygdalin at various concentrations. DNA content and the proliferating cell nuclear antigen (PCNA) protein expression of AEC2 were measured by using flow cytometry and immunocytochemistry respectively after 24 h of hyperoxia exposure or amygdalin treatment. The results showed that hyperoxia inhibited the proliferation and decreased PCNA protein expression in A-EC2 of premature rat in vitro. Amygdalin at the concentration range of 50-200 micromol/L stimulated the proliferation of AEC2 in a dose-dependent manner, however, 400 micromol/L amygdalin inhibited the proliferation of AEC2. Amygdalin at the concentration of 200 micromol/L played its best role in facilitating proliferation of AEC2s in vitro and could partially ameliorated the changes of proliferation in hyperoxia exposed AEC2 of premature rat. It has been suggested that hyperoxia inhibited the proliferation of AEC2s of premature rat, which may contribute to hyperoxia lung injury. Amygdalin may play partial protective role in hyperoxia-induced lung injury.

  17. Caspase-3 and its inhibitor Ac-DEVD-CHO in rat lens epithelial cell apoptosis induced by hydrogen in vitro

    Institute of Scientific and Technical Information of China (English)

    姚克; 王凯军; 徐雯; 孙朝晖; 申屠形超; 邱培瑾

    2003-01-01

    Objective To investigate the role of caspase-3 and its inhibitor Ac-DEVD-CHO in rat lens epithelial cell apoptosis induced by hydrogen peroxide (H2O2) in vitro.Methods Rat lenses were incubated in modified Eagle' s medium containing 2 mmol/L H2O2 to induce apoptosis in vitro. Apoptosis in lens epithelial cells was assessed by transmission electron microscopy and annexin V-propidium iodide (PI) double staining flow cytometry after 12, 24 and 48 h of incubation. The activity of caspase-3 was analyzed by western blotting.Results Observations under transmission electron microscopy revealed that 2 mmol/L H2O2 could effectively induce lens epithelial cell apoptosis in vitro. Caspase-3 activity increased during cell apoptosis and the peak measurement occurred at 24 h after treatment with H2O2. Cell apoptosis was blocked by caspase-3 inhibitor Ac-DEVD-CHO.Conclusions The activation of caspase-3 plays an important role in executing apoptosis in H2O2-treated lens epithelial cells and in the formation of cataract. The caspase-3 inhibitor Ac-DEVD-CHO may effectively prevent lens epithelial cell apoptosis caused by oxidative injury.

  18. Chronic low vitamin intake potentiates cisplatin-induced intestinal epithelial cell apoptosis in WNIN rats

    Institute of Scientific and Technical Information of China (English)

    Bodiga Vijayalakshmi; Boindala Sesikeran; Putcha Udaykumar; Subramaniam Kalyanasundaram; Manchala Raghunath

    2006-01-01

    AIM: To investigate if cisplatin alters vitamin status and if VR modulates cisplatin induced intestinal apoptosis and oxidative stress in Wistar/NIN (WNIN) male rats.METHODS: Weanling, WNIN male rats (n = 12 per group) received adlibitum for 17 wk: control diet (20%protein) or the same with 50% vitamin restriction. They were then sub-divided into two groups of six rats each and administered cisplatin (2.61 mg/kg bodyweight)once a week for three wk or PBS (vehicle control).Intestinal epithelial cell (IEC) apoptosis was monitored by morphometry, Annexin-V binding, M30 cytodeath assay and DNA fragmentation. Structural and functional integrity of the villus were assessed by villus height /crypt depth ratio and activities of alkaline phosphatase,lys, ala-dipeptidyl amino-peptidase, respectively. To assess the probable mechanism(s) of altered apoptosis,oxidative stress parameters, caspase-3 activity, and expression of Bcl-2 and Bax were determined.RESULTS: Cisplatin per se decreased plasma vitamin levels and they were the lowest in VR animals treated with cisplatin. As expected VR increased only villus apoptosis, whereas cisplatin increased stem cell apoptosis in the crypt. However, cisplatin treatment of VR rats increased apoptosis both in villus and crypt regions and was associated with higher levels of TBARS,protein carbonyls and caspase-3 activity, but lower GSH concentrations. VR induced decrease in Bcl-2 expression was further lowered by cisplatin. Bax expression,unaffected by VR was increased on cisplatin treatment.Mucosal functional integrity was severely compromised in cisplatin treated VR-rats.CONCLUSION: Low intake of vitamins increases the sensitivity of rats to cisplatin and promotes intestinal epithelial cell apoptosis.

  19. Regulation of Noxa-mediated apoptosis in Helicobacter pylori–infected gastric epithelial cells

    OpenAIRE

    2014-01-01

    Helicobacter pylori induces the antiapoptotic protein myeloid cell leukemia 1 (Mcl1) in human gastric epithelial cells (GECs). Apoptosis of oncogenic protein Mcl1-expressing cells is mainly regulated by Noxa-mediated degradation of Mcl1. We wanted to elucidate the status of Noxa in H. pylori–infected GECs. For this, various GECs such as AGS, MKN45, and KATO III were either infected with H. pylori or left uninfected. The effect of infection was examined by immunoblotting, immunoprecipitation, ...

  20. Expression of P53 during Lens Epithelial Cell Apoptosis Induced by Ultraviolet

    Institute of Scientific and Technical Information of China (English)

    SUN; Xufang; ZOU; Weiyu; ZHAO; Changsong

    2001-01-01

    The apoptosis of lens epithelial cells (LECs) induced by ultraviolet and the expression of P53 were investigated. Wistar rats received 100 mW/m2 ultraviolet irradiation (UVR) (λ=280 nm-315 nm) for 15 min. One, 6, 24 h after irradiation the lens capsules were dissected. The percentages of apoptotic cells were evaluated by the TdT-dUTP terminal nick-end labeling (TUNEL) technique and the expression of P53 was detected by using immunohistochemical assay. The results showed that the percentages of TUNEL-positive nuclei at 24 h after irradiation was significantly higher than in the control group and those 1 h, 6 h after irradiation. The percentages of P53-positive cells at 6 h,24 h after irradiation were significantly higher than in the control group and those 1 h after irradiation. It was concluded that UVR could induce the apoptosis of lens epithelial cell. The expression of P53 might be responsible for the apoptosis of lens epithelial cells.

  1. Viable but not culturable forms of Legionella pneumophila generated after heat shock treatment are infectious for macrophage-like and alveolar epithelial cells after resuscitation on Acanthamoeba polyphaga.

    Science.gov (United States)

    Epalle, Thibaut; Girardot, Françoise; Allegra, Séverine; Maurice-Blanc, Cécile; Garraud, Olivier; Riffard, Serge

    2015-01-01

    Legionella pneumophila, the causative agent of legionellosis is transmitted to human through aerosols from environmental sources and invades lung's macrophages. It also can invade and replicate within various protozoan species in environmental reservoirs. Following exposures to various stresses, L. pneumophila enters a non-replicative viable but non-culturable (VBNC) state. Here, we evaluated whether VBNC forms of three L. pneumophila serogroup 1 strains (Philadelphia GFP 008, clinical 044 and environmental RNN) infect differentiated macrophage-like cell lines (U937 and HL-60), A549 alveolar cells and Acanthamoeba polyphaga. VBNC forms obtained following shocks at temperatures ranging from 50 to 70 °C for 5 to 60 min were quantified using a flow cytometric assay (FCA). Their loss of culturability was checked on BCYE agar medium. VBNC forms were systematically detected upon a 70 °C heat shock for 30 min. When testing their potential to resuscitate upon amoebal infection, VBNC forms obtained after 30 min at 70 °C were re-cultivated except for the clinical strain. No resuscitation or cell lysis was evidenced when using U937, HL-60, or A549 cells despite the use of various contact times and culture media. None of the strains tested could infect A. polyphaga, macrophage-like or alveolar epithelial cells after a 60-min treatment at 70 °C. However, heat-treated VBNC forms were able to infect macrophage-like or alveolar epithelial cells following their resuscitation on A. polyphaga. These results suggest that heat-generated VBNC forms of L. pneumophila (i) are not infectious for macrophage-like or alveolar epithelial cells in vitro although resuscitation is still possible using amoeba, and (ii) may become infectious for human cell lines following a previous interaction with A. polyphaga.

  2. Nano-titanium dioxide bioreactivity with human alveolar type-I-like epithelial cells: Investigating crystalline phase as a critical determinant.

    Science.gov (United States)

    Sweeney, Sinbad; Berhanu, Deborah; Ruenraroengsak, Pakatip; Thorley, Andrew J; Valsami-Jones, Eugenia; Tetley, Teresa D

    2015-05-01

    There can be significant variability between bioreactivity studies of nanomaterials that are apparently the same, possibly reflecting differences in the models used and differing sources of experimental material. In this study, we have generated two crystal forms of titanium dioxide nanoparticles (nano-TiO2), pure anatase and pure rutile to address the hypothesis that the bioreactivity of these nanoparticles with human alveolar epithelium will depend on their crystal phase. We used a human alveolar type-I-like epithelial cell model (TT1; generated in-house from primary human alveolar epithelial type II cells); these cells cover 95% of the alveolar epithelial surface area and are an important target cell for inhaled nanomaterials. Using literature as a guide, we hypothesised that pure anatase nano-TiO2 would display greater bioreactivity with TT1 cells in comparison to pure rutile nano-TiO2. However, we found the profile and pattern of inflammatory mediator release was similar between these two nano-TiO2 formats, although pure rutile treatment caused a small, but consistently greater, response for IL-6, IL-8 and MCP-1. Interestingly, the temporal induction of oxidative stress (increased reactive oxygen species levels and depleted glutathione) varied markedly between the different nano-TiO2 formats. We have shown that a combination of using nanomaterials synthesised specifically for toxicological study and the use of a highly relevant, reproducible human lung cell model, offers a useful approach to delineating the physicochemical properties of nanomaterials that may be important in their cellular reactivity.

  3. Toxicity of surface-modified PLGA nanoparticles toward lung alveolar epithelial cells.

    Science.gov (United States)

    Grabowski, Nadège; Hillaireau, Hervé; Vergnaud, Juliette; Santiago, Letícia Aragão; Kerdine-Romer, Saadia; Pallardy, Marc; Tsapis, Nicolas; Fattal, Elias

    2013-10-01

    In vitro cytotoxicity and inflammatory response following exposure to nanoparticles (NPs) made of poly(lactide-co-glycolide) (PLGA) have been investigated on A549 human lung epithelial cells. Three different PLGA NPs (230 nm) were obtained using different stabilizers (polyvinyl alcohol, chitosan, or Pluronic(®) F68) to form respectively neutral, positively or negatively charged NPs. Polystyrene NPs were used as polymeric but non-biodegradable NPs, and titanium dioxide (anatase and rutile) as inorganic NPs, for comparison. Cytotoxicity was evaluated through mitochondrial activity as well as membrane integrity (lactate dehydrogenase release, trypan blue exclusion, propidium iodide staining). The cytotoxicity of PLGA-based and polystyrene NPs was lower or equivalent to the one observed after exposure to titanium dioxide NPs. The inflammatory response, evaluated through the release of the IL-6, IL-8, MCP-1, TNF-α cytokines, was low for all NPs. However, some differences were observed, especially for negative PLGA NPs that led to a higher inflammatory response, which can be correlated to a higher uptake of these NPs. Taken together, these results show that both coating of PLGA NPs and the nature of the core play a key role in cell response.

  4. Overexpression of sICAM-1 in the Alveolar Epithelial Space Results in an Exaggerated Inflammatory Response and Early Death in Gram Negative Pneumonia

    Directory of Open Access Journals (Sweden)

    Curtis Jeffery L

    2011-01-01

    Full Text Available Abstract Background A sizeable body of data demonstrates that membrane ICAM-1 (mICAM-1 plays a significant role in host defense in a site-specific fashion. On the pulmonary vascular endothelium, mICAM-1 is necessary for normal leukocyte recruitment during acute inflammation. On alveolar epithelial cells (AECs, we have shown previously that the presence of normal mICAM-1 is essential for optimal alveolar macrophage (AM function. We have also shown that ICAM-1 is present in the alveolar space as a soluble protein that is likely produced through cleavage of mICAM-1. Soluble intercellular adhesion molecule-1 (sICAM-1 is abundantly present in the alveolar lining fluid of the normal lung and could be generated by proteolytic cleavage of mICAM-1, which is highly expressed on type I AECs. Although a growing body of data suggesting that intravascular sICAM-1 has functional effects, little is known about sICAM-1 in the alveolus. We hypothesized that sICAM-1 in the alveolar space modulates the innate immune response and alters the response to pulmonary infection. Methods Using the surfactant protein C (SPC promoter, we developed a transgenic mouse (SPC-sICAM-1 that constitutively overexpresses sICAM-1 in the distal lung, and compared the responses of wild-type and SPC-sICAM-1 mice following intranasal inoculation with K. pneumoniae. Results SPC-sICAM-1 mice demonstrated increased mortality and increased systemic dissemination of organisms compared with wild-type mice. We also found that inflammatory responses were significantly increased in SPC-sICAM-1 mice compared with wild-type mice but there were no difference in lung CFU between groups. Conclusions We conclude that alveolar sICAM-1 modulates pulmonary inflammation. Manipulating ICAM-1 interactions therapeutically may modulate the host response to Gram negative pulmonary infections.

  5. Formaldehyde induces apoptosis through decreased Prx 2 via p38 MAPK in lung epithelial cells.

    Science.gov (United States)

    Lim, Seul Ki; Kim, Jong Chun; Moon, Chang Jong; Kim, Gye Yeop; Han, Ho Jae; Park, Soo Hyun

    2010-05-27

    Formaldehyde (FA) is an important substance that induces sick house syndrome and diseases, such as asthma and allergies. Oxidative stress is involved in the development of respiratory disease, and diverse antioxidants may protect respiratory tract cells from apoptosis. Peroxiredoxin is a pivotal endogenous antioxidant. In the present study, FA induced death in A549 cells, a lung epithelial cell line, in a dose-dependent manner. FA also increased lipid peroxide formation (LPO) in A549 cells, suggesting a role for oxidative stress. Additionally, FA decreased peroxiredoxin 2 (Prx 2) protein levels after a 24 or 48h exposure to FA. We also examined whether the FA-induced decrease in Prx 2 was associated with apoptosis. Prx 2 overexpression protected against FA-induced cell apoptosis but not necrosis. Prx 2 overexpression blocked FA-induced increase in Bax, a pro-apoptotic molecule, and a decrease in Bcl-2, an anti-apoptotic molecule. Prx 2 overexpression also protected against FA-induced activation of some special apoptosis-associated proteins [caspase-3, caspase-9, and polypeptide poly (ADP-ribose) polymerase (PARP)]. Furthermore, we examined the signaling molecules involved in the FA-induced decrease in Prx 2 expression. The FA-induced decrease in Prx 2 and increase in cell apoptosis was restored by treatment with SB203580 [a p38 mitogen activated protein kinase (MAPK) inhibitor], but not by SP600125 [a c-jun-N-terminal kinase (JNK) inhibitor]. Also, FA-induced events were blocked by treatment with p38 siRNA, but not by scrambled siRNA. Indeed, FA increased p38 MAPK activation, suggesting a role for p38 MAPK in FA action. In conclusion, FA mediated apoptosis in lung epithelial cells by decreasing Prx 2 via p38 MAPK.

  6. Differential regulation of epidermal growth factor receptor by hydrogen peroxide and flagellin in cultured lung alveolar epithelial cells.

    Science.gov (United States)

    Nishi, Hiroyuki; Maeda, Noriko; Izumi, Shunsuke; Higa-Nakamine, Sayomi; Toku, Seikichi; Kakinohana, Manabu; Sugahara, Kazuhiro; Yamamoto, Hideyuki

    2015-02-05

    In previous studies, we found that stimulation of Toll-like receptor 5 (TLR5) by flagellin induced the activation of mitogen-activated protein kinase (MAPK)-activated protein kinase-2 (MAPKAPK-2) through activation of the p38 MAPK pathway in cultured alveolar epithelial A549 cells. Our studies strongly suggested that MAPKAPK-2 phosphorylated epidermal growth factor receptor (EGFR) at Ser1047. It has been reported that phosphorylation of Ser1047 after treatment with tumor necrosis factor α (TNFα) induced the internalization of EGFR. In the present study, we first found that treatment of A549 cells with hydrogen peroxide induced the activation of MAPKAPK-2 and phosphorylation of EGFR at Ser1047 within 30 min. This was different from flagellin treatment because hydrogen peroxide treatment induced the phosphorylation of EGFR at Tyr1173 as well as Ser1047, indicating the activation of EGFR. We also found that KN93, an inhibitor of CaM kinase II, inhibited the hydrogen peroxide-induced phosphorylation of EGFR at Ser1047 through inhibition of the activation of the p38 MAPK pathway. Furthermore, we examined the internalization of EGFR by three different methods. Flow cytometry with an antibody against the extracellular domain of EGFR and biotinylation of cell surface proteins revealed that flagellin, but not hydrogen peroxide, decreased the amount of cell-surface EGFR. In addition, activation of extracellular signal-regulated kinase by EGF treatment was reduced by flagellin pre-treatment. These results strongly suggested that hydrogen peroxide activated the p38 MAPK pathway via activation of CaM kinase II and that flagellin and hydrogen peroxide regulate the functions of EGFR by different mechanisms.

  7. Microarray identifies ADAM family members as key responders to TGF-β1 in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Walls Dermot

    2006-09-01

    Full Text Available Abstract The molecular mechanisms of Idiopathic Pulmonary Fibrosis (IPF remain elusive. Transforming Growth Factor beta 1(TGF-β1 is a key effector cytokine in the development of lung fibrosis. We used microarray and computational biology strategies to identify genes whose expression is significantly altered in alveolar epithelial cells (A549 in response to TGF-β1, IL-4 and IL-13 and Epstein Barr virus. A549 cells were exposed to 10 ng/ml TGF-β1, IL-4 and IL-13 at serial time points. Total RNA was used for hybridisation to Affymetrix Human Genome U133A microarrays. Each in vitro time-point was studied in duplicate and an average RMA value computed. Expression data for each time point was compared to control and a signal log ratio of 0.6 or greater taken to identify significant differential regulation. Using normalised RMA values and unsupervised Average Linkage Hierarchical Cluster Analysis, a list of 312 extracellular matrix (ECM proteins or modulators of matrix turnover was curated via Onto-Compare and Gene-Ontology (GO databases for baited cluster analysis of ECM associated genes. Interrogation of the dataset using ontological classification focused cluster analysis revealed coordinate differential expression of a large cohort of extracellular matrix associated genes. Of this grouping members of the ADAM (A disintegrin and Metalloproteinase domain containing family of genes were differentially expressed. ADAM gene expression was also identified in EBV infected A549 cells as well as IL-13 and IL-4 stimulated cells. We probed pathologenomic activities (activation and functional activity of ADAM19 and ADAMTS9 using siRNA and collagen assays. Knockdown of these genes resulted in diminished production of collagen in A549 cells exposed to TGF-β1, suggesting a potential role for these molecules in ECM accumulation in IPF.

  8. Development of a lung slice preparation for recording ion channel activity in alveolar epithelial type I cells

    Directory of Open Access Journals (Sweden)

    Crandall Edward D

    2005-04-01

    Full Text Available Abstract Background Lung fluid balance in the healthy lung is dependent upon finely regulated vectorial transport of ions across the alveolar epithelium. Classically, the cellular locus of the major ion transport processes has been widely accepted to be the alveolar type II cell. Although evidence is now emerging to suggest that the alveolar type I cell might significantly contribute to the overall ion and fluid homeostasis of the lung, direct assessment of functional ion channels in type I cells has remained elusive. Methods Here we describe a development of a lung slice preparation that has allowed positive identification of alveolar type I cells within an intact and viable alveolar epithelium using living cell immunohistochemistry. Results This technique has allowed, for the first time, single ion channels of identified alveolar type I cells to be recorded using the cell-attached configuration of the patch-clamp technique. Conclusion This exciting new development should facilitate the ascription of function to alveolar type I cells and allow us to integrate this cell type into the general model of alveolar ion and fluid balance in health and disease.

  9. The role of ER stress response on ionizing radiation-induced apoptosis in intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sang; Kim, Kwang Seok; Woo, Sang Keun; Lee, Yong Jin; Jeong, Jae Hoon; Lee, Yoon Jin; Kang, Seong Man; Lim, Young Bin [Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2014-04-15

    Apoptosis in the intestinal epithelium is the primary pathologic factor that initiates radiation-induced intestinal injury. However, mechanism involved in ionizing radiation (IR)-induced apoptosis in the intestinal epithelium is not clearly understood. The endoplasmic reticulum (ER) stress is triggered by perturbation of the ER functions, leading to the activation of the unfolded protein response (UPR), an adaptive signaling cascade aimed at restoring ER homeostasis by facilitating the degradation of misfolded proteins and expanding the protein folding capacity of the cell. Recently, IR has also been shown to induce ER stress, thereby activating the UPR signaling pathway in intestinal epithelial cells. In this study, we report the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhance IR-induced caspase3 activation. Knockdown of xbp1 or atf6 with siRNA leads to inhibition of IR-induced caspase3 activation. Taken together, our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Our findings could contribute to the development of new strategies based on modulating ER stress responses to prevent IR-induced intestinal injury.

  10. Pneumocystis carinii major surface glycoprotein induces interleukin-8 and monocyte chemoattractant protein-1 release from a human alveolar epithelial cell line

    DEFF Research Database (Denmark)

    Benfield, T L; Lundgren, Bettina; Shelhamer, J H;

    1999-01-01

    (IL-8) and monocyte chemoattractant protein-1 (MCP-1) from an alveolar epithelial cell line (A549). RESULTS: Incubation of A549 cells with MSG in concentrations from 0.4 to 10 microg mL-1 for 24 h caused dose-dependent increases in IL-8 release (3.4-fold above control, P ..., suggesting that MSG stimulates A549 cells in part through carbohydrate moieties. Dexamethasone significantly inhibited MSG-induced IL-8 release in concentrations of 10-6-10-8 mol L-1 compared with control experiments (P

  11. Immunostimulated Arginase II Expression in Intestinal Epithelial Cells Reduces Nitric Oxide Production and Apoptosis.

    Science.gov (United States)

    Talavera, Maria M; Nuthakki, Sushma; Cui, Hongmei; Jin, Yi; Liu, Yusen; Nelin, Leif D

    2017-01-01

    Increased production of nitric oxide (NO) and subsequent local cytotoxicity to mucosal epithelial cells has been proposed as a putative mechanism involved in the development of necrotizing enterocolitis (NEC). Intestinal epithelial cells (IECs) metabolize L-arginine to either nitric oxide (NO) by NO synthase (NOS) or to L-ornithine and urea by arginase. L-ornithine is the first step in polyamine synthesis important for cell proliferation, while NO production can lead to apoptosis. We hypothesized that in IECs immunostimulation increases both NOS and arginase expression, and that arginase activity mitigates NO production and apoptosis. Rat intestinal epithelial cells (rIEC-6) were immunostimulated by either incubation with lipopolysaccharide (LPS) alone for 24 h or by incubation with conditioned media (CM) for 24 h. CM was obtained from RAW 264.7 cells (a macrophage cell line) treated with LPS (E. coli 0127:B8; 1 μg/ml) for 4 h. The rIEC-6 stimulated with LPS or with CM had significantly higher levels of inducible NOS (iNOS) protein, NO production, and arginase II protein than did the control cells. Direct LPS stimulation of rIEC-6 produced a less robust increase in iNOS expression and NO (represented as nitrite percent of control) than did CM stimulation. Inhibition of arginase using N(ω) hydroxyl-L-arginine (NOHA) further increased stimulated NO production in rIEC-6. Viable cell numbers were significantly lower in CM stimulated cells after 24 h than in controls, and inhibition of arginase activity with NOHA resulted in a further significant decrease in viable cell numbers. We conclude that immunostimulated arginase expression of rIEC-6 cells tempers cytokine-induced iNOS-derived NO production and apoptosis.

  12. Immunostimulated Arginase II Expression in Intestinal Epithelial Cells Reduces Nitric Oxide Production and Apoptosis

    Science.gov (United States)

    Talavera, Maria M.; Nuthakki, Sushma; Cui, Hongmei; Jin, Yi; Liu, Yusen; Nelin, Leif D.

    2017-01-01

    Increased production of nitric oxide (NO) and subsequent local cytotoxicity to mucosal epithelial cells has been proposed as a putative mechanism involved in the development of necrotizing enterocolitis (NEC). Intestinal epithelial cells (IECs) metabolize L-arginine to either nitric oxide (NO) by NO synthase (NOS) or to L-ornithine and urea by arginase. L-ornithine is the first step in polyamine synthesis important for cell proliferation, while NO production can lead to apoptosis. We hypothesized that in IECs immunostimulation increases both NOS and arginase expression, and that arginase activity mitigates NO production and apoptosis. Rat intestinal epithelial cells (rIEC-6) were immunostimulated by either incubation with lipopolysaccharide (LPS) alone for 24 h or by incubation with conditioned media (CM) for 24 h. CM was obtained from RAW 264.7 cells (a macrophage cell line) treated with LPS (E. coli 0127:B8; 1 μg/ml) for 4 h. The rIEC-6 stimulated with LPS or with CM had significantly higher levels of inducible NOS (iNOS) protein, NO production, and arginase II protein than did the control cells. Direct LPS stimulation of rIEC-6 produced a less robust increase in iNOS expression and NO (represented as nitrite percent of control) than did CM stimulation. Inhibition of arginase using Nω hydroxyl-L-arginine (NOHA) further increased stimulated NO production in rIEC-6. Viable cell numbers were significantly lower in CM stimulated cells after 24 h than in controls, and inhibition of arginase activity with NOHA resulted in a further significant decrease in viable cell numbers. We conclude that immunostimulated arginase expression of rIEC-6 cells tempers cytokine-induced iNOS-derived NO production and apoptosis.

  13. Androgen-Sensitized Apoptosis of HPr-1AR Human Prostate Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Congcong Chen

    Full Text Available Androgen receptor (AR signaling is crucial to the development and homeostasis of the prostate gland, and its dysregulation mediates common prostate pathologies. The mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells have been investigated in human and rodent adult prostate. However, the cellular stress response of human prostate epithelial cells is not well understood, though it is central to prostate health and pathology. Here, we report that androgen sensitizes HPr-1AR and RWPE-AR human prostate epithelial cells to cell stress agents and apoptotic cell death. Although 5α-dihydrotestosterone (DHT treatment alone did not induce cell death, co-treatment of HPr-1AR cells with DHT and an apoptosis inducer, such as staurosporine (STS, TNFt, or hydrogen peroxide, synergistically increased cell death in comparison to treatment with each apoptosis inducer by itself. We found that the synergy between DHT and apoptosis inducer led to activation of the intrinsic/mitochondrial apoptotic pathway, which is supported by robust cleavage activation of caspase-9 and caspase-3. Further, the dramatic depolarization of the mitochondrial membrane potential that we observed upon co-treatment with DHT and STS is consistent with increased mitochondrial outer membrane permeabilization (MOMP in the pro-apoptotic mechanism. Interestingly, the synergy between DHT and apoptosis inducer was abolished by AR antagonists and inhibitors of transcription and protein synthesis, suggesting that AR mediates pro-apoptotic synergy through transcriptional regulation of MOMP genes. Expression analysis revealed that pro-apoptotic genes (BCL2L11/BIM and AIFM2 were DHT-induced, whereas pro-survival genes (BCL2L1/BCL-XL and MCL1 were DHT-repressed. Hence, we propose that the net effect of these AR-mediated expression changes shifts the balance of BCL2-family proteins

  14. Effects of uric acid on mitochondrial oxidative damage and apoptosis in human renal tubular epithelial cells

    Institute of Scientific and Technical Information of China (English)

    张涛

    2014-01-01

    Objective To observe the effects of uric acid(UA)on mitochondrial oxidative damage and apoptosis in renal tubular epithelial cells(HK-2),and investigate the possible mechanism.Methods HK-2 cells were exposed to UA(480μmol/L,720μmol/L)for different time(0 h,24 h,48 h)in vitro.The mitochondrial ROS production was detected by Mito SOX staining.The mitochondrial membrane potential was measured by JC-1 staining.The expressions of prohibitin and AIF were examined by Western blotting and immunofluorescence cytochemistry.

  15. Mesenchymal Stem Cell Conditioned Medium Promotes Proliferation and Migration of Alveolar Epithelial Cells under Septic Conditions In Vitro via the JNK-P38 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2015-11-01

    Full Text Available Background/Aims: Mesenchymal stem cell (MSC based therapies may be useful for treating acute respiratory distress syndrome (ARDS, but the underlying mechanisms are incompletely understood. We investigated the impact of human umbilical cord Wharton's jelly-derived MSC (hUC-MSC secreted factors on alveolar epithelial cells under septic conditions and determined the relevant intracellular signaling pathways. Methods: Human alveolar epithelial cells (AEC and primary human small airway epithelial cells (SAEC were subjected to lipopolysaccharide (LPS with or without the presence of hUC-MSC-conditioned medium (CM. Proliferation and migration of AEC and SAEC were determined via an MTT assay, a wound healing assay and a transwell migration assay (only for AEC. Protein phosphorylation was determined by western blot and the experiments were repeated in presence of small-molecule inhibitors. The hMSC-secretory proteins were identified by LC-MS/MS mass spectrometry. Results: MSC-CM enhanced proliferation and migration. Activation of JNK and P38, but not ERK, was required for the proliferation and migration of AEC and SAEC. Pretreatment of AEC or SAEC with SP600125, an inhibitor of JNK1 or SB200358, an inhibitor of P38, significantly reduced cell proliferation and migration. An array of proteins including TGF-beta receptor type-1, TGF-beta receptor type-2, Ras-related C3 botulinum toxin substrate 1 and Ras-related C3 botulinum toxin substrate 2 which influencing the proliferation and migration of AEC and SAEC were detected in MSC-CM. Conclusion: Our data suggest MSC promote epithelial cell repair through releasing a repertoire of paracrine factors via activation of JNK and P38 MAPK.

  16. Heat shock protein 70-dependent protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells.

    Science.gov (United States)

    Qin, Ying; Naito, Yuji; Handa, Osamu; Hayashi, Natsuko; Kuki, Aiko; Mizushima, Katsura; Omatsu, Tatsushi; Tanimura, Yuko; Morita, Mayuko; Adachi, Satoko; Fukui, Akifumi; Hirata, Ikuhiro; Kishimoto, Etsuko; Nishikawa, Taichiro; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Takagi, Tomohisa; Yagi, Nobuaki; Kokura, Satoshi; Yoshikawa, Toshikazu

    2011-11-01

    Protection of the small intestine from mucosal injury induced by nonsteroidal anti-inflammatory drugs including acetylsalicylic acid is a critical issue in the field of gastroenterology. Polaprezinc an anti-ulcer drug, consisting of zinc and L-carnosine, provides gastric mucosal protection against various irritants. In this study, we investigated the protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of the RIE1 rat intestinal epithelial cell line. Confluent rat intestinal epithelial cells were incubated with 70 µM polaprezinc for 24 h, and then stimulated with or without 15 mM acetylsalicylic acid for a further 15 h. Subsequent cellular viability was quantified by fluorometric assay based on cell lysis and staining. Acetylsalicylic acid-induced cell death was also qualified by fluorescent microscopy of Hoechst33342 and propidium iodide. Heat shock proteins 70 protein expression after adding polaprezinc or acetylsalicylic acid was assessed by western blotting. To investigate the role of Heat shock protein 70, Heat shock protein 70-specific small interfering RNA was applied. Cell viability was quantified by fluorometric assay based on cell lysis and staining and apoptosis was analyzed by fluorescence-activated cell sorting. We found that acetylsalicylic acid significantly induced apoptosis of rat intestinal epithelial cells in a dose- and time-dependent manner. Polaprezinc significantly suppressed acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells at its late phase. At the same time, polaprezinc increased Heat shock protein 70 expressions of rat intestinal epithelial cells in a time-dependent manner. However, in Heat shock protein 70-silenced rat intestinal epithelial cells, polaprezinc could not suppress acetylsalicylic acid -induced apoptosis at its late phase. We conclude that polaprezinc-increased Heat shock protein 70 expression might be an important mechanism by which polaprezinc suppresses acetylsalicylic

  17. Alteration in Intrapulmonary Pharmacokinetics of Aerosolized Model Compounds Due to Disruption of the Alveolar Epithelial Barriers Following Bleomycin-Induced Pulmonary Fibrosis in Rats.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Tada, Hitoshi

    2016-03-01

    Idiopathic pulmonary fibrosis is a lethal lung disease that is characterized by the accumulation of extracellular matrix and a change in lung structure. In this study, intrapulmonary pharmacokinetics of aerosolized model compounds were evaluated using rats with bleomycin-induced pulmonary fibrosis. Aerosol formulations of indocyanine green, 6-carboxyfluorescein (6-CF), and fluorescein isothiocyanate dextrans (FD; 4.4, 10, 70, and 250 kDa) were administered to rat lungs using a MicroSprayer. Indocyanine green fluorescence signals were significantly weaker in fibrotic lungs than in control lungs and 6-CF and FD concentrations in the plasma of pulmonary fibrotic animals were markedly higher than in the plasma of control animals. Moreover, disrupted epithelial tight junctions, including claudins-1, -3, and -5, were observed in pulmonary fibrotic lesions using immunofluorescence microscopy. In addition, destruction of tight junctions on model alveolar epithelial cells (NCI-H441) by transforming growth factor-β1 treatment enhanced the permeability of 6-CF and FDs through NCI-H441 cell monolayers. These results indicate that aerosolized drugs are easily distributed into the plasma after leakage through damaged tight junctions of alveolar epithelium. Therefore, the development of delivery systems for anti-fibrotic agents to improve intrapulmonary pharmacokinetics may be necessary for effective idiopathic pulmonary fibrosis therapy.

  18. Semaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling.

    Science.gov (United States)

    Ito, Takuji; Bai, Tao; Tanaka, Tetsuji; Yoshida, Kenji; Ueyama, Takashi; Miyajima, Masayasu; Negishi, Takayuki; Kawasaki, Takahiko; Takamatsu, Hyota; Kikutani, Hitoshi; Kumanogoh, Atsushi; Yukawa, Kazunori

    2015-02-01

    The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild‑type (WT) mice. Administration of β‑estradiol to infant Sema4D‑deficient (Sema4D‑/‑) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same β‑estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin‑B1, was examined as well as the level of apoptosis in the vaginal epithelia of five‑week‑old WT and Sema4D‑/‑ mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin‑B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase‑3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five‑week‑old Sema4D‑/‑ mice compared with WT mice. The addition of recombinant Sema4D to Sema4D‑/‑ vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis‑inducing activity of Sema4D. The

  19. Puerarin protects human bronchial epithelial cells from apoptosis induced by gunpowder smog

    Directory of Open Access Journals (Sweden)

    Yun-xia CHEN

    2016-03-01

    Full Text Available Objective  To investigate protective effects of puerarin on the human bronchial epithelial (BEAS-2B cell line against apoptosis caused by gunpowder smog and its mechanisms. Methods  BEAS-2B cells cultured in vitro were randomly divided into control group, smog group (the group treated with 4g gunpowder smog for 10min, and smog + puerarin group [puerarin group, the cells were pre-incubated with various concentrations of puerarin (12.5, 25.0, 50.0, 100.0µg/ml and then exposed to smoke]. Puerarin was added into the cells after innoculation for 12h and then the cells were sequentially cultured for 24h and followed by exposure to smoke for 10min. After being cultured again for 2h, the smoked cells were examined for cell viability using Cell Counting Kit-8(CCK-8, cell apoptosis was observed using Hoechst33258 nucleus staining, and positive rates of Annexin V-PI staining cells and caspase-3 were determined with flow cytometer. Resu lts  Compared with control, treatment of BEAS-2B cells with 4g gunpowder smog induced a characteristic apoptotic cell death (P<0.01. Pretreatment with various concentrations of puerarin antagonized the action of gunpowder smog in different degrees. The 25µg/ml was determined as the optimal effective concentration of puerarin. Compared with smog group, the apoptosis rate of BEAS-2B cells and positive rates of Annexin V-PI staining cells and caspase-3 were decreased significantly in smog + puerarin group (P<0.05, P<0.01. Conclusion  Gunpowder smog can induce apoptosis of BEAS-2B cells in vitro, while pretreatment with puerarin could protect BEAS-2B cells against apoptosis induced by gunpowder smog. DOI: 10.11855/j.issn.0577-7402.2016.01.16

  20. A Novel Peptide to Treat Oral Mucositis Blocks Endothelial and Epithelial Cell Apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xiaoyan; Chen Peili [Department of Medicine, University of Chicago, Chicago, Illinois (United States); Sonis, Stephen T. [Division of Oral Medicine, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Biomodels, Watertown, Massachusetts (United States); Lingen, Mark W. [Department of Pathology, University of Chicago, Chicago, Illinois (United States); Berger, Ann [NephRx Corporation, Kalamazoo, Michigan (United States); Toback, F. Gary, E-mail: gtoback@medicine.bsd.uchicago.edu [Department of Medicine, University of Chicago, Chicago, Illinois (United States)

    2012-07-01

    Purpose: No effective agents currently exist to treat oral mucositis (OM) in patients receiving chemoradiation for the treatment of head-and-neck cancer. We identified a novel 21-amino acid peptide derived from antrum mucosal protein-18 that is cytoprotective, mitogenic, and motogenic in tissue culture and animal models of gastrointestinal epithelial cell injury. We examined whether administration of antrum mucosal protein peptide (AMP-p) could protect against and/or speed recovery from OM. Methods and Materials: OM was induced in established hamster models by a single dose of radiation, fractionated radiation, or fractionated radiation together with cisplatin to simulate conventional treatments of head-and-neck cancer. Results: Daily subcutaneous administration of AMP-p reduced the occurrence of ulceration and accelerated mucosal recovery in all three models. A delay in the onset of erythema after irradiation was observed, suggesting that a protective effect exists even before injury to mucosal epithelial cells occurs. To test this hypothesis, the effects of AMP-p on tumor necrosis factor-{alpha}-induced apoptosis were studied in an endothelial cell line (human dermal microvascular endothelial cells) as well as an epithelial cell line (human adult low-calcium, high-temperature keratinocytes; HaCaT) used to model the oral mucosa. AMP-p treatment, either before or after cell monolayers were exposed to tumor necrosis factor-{alpha}, protected against development of apoptosis in both cell types when assessed by annexin V and propidium iodide staining followed by flow cytometry or ligase-mediated polymerase chain reaction. Conclusions: These observations suggest that the ability of AMP-p to attenuate radiation-induced OM could be attributable, at least in part, to its antiapoptotic activity.

  1. Drosophila Wnt and STAT Define Apoptosis-Resistant Epithelial Cells for Tissue Regeneration after Irradiation

    Science.gov (United States)

    Su, Tin Tin

    2016-01-01

    Drosophila melanogaster larvae irradiated with doses of ionizing radiation (IR) that kill about half of the cells in larval imaginal discs still develop into viable adults. How surviving cells compensate for IR-induced cell death to produce organs of normal size and appearance remains an active area of investigation. We have identified a subpopulation of cells within the continuous epithelium of Drosophila larval wing discs that shows intrinsic resistance to IR- and drug-induced apoptosis. These cells reside in domains of high Wingless (Wg, Drosophila Wnt-1) and STAT92E (sole Drosophila signal transducer and activator of transcription [STAT] homolog) activity and would normally form the hinge in the adult fly. Resistance to IR-induced apoptosis requires STAT and Wg and is mediated by transcriptional repression of the pro-apoptotic gene reaper. Lineage tracing experiments show that, following irradiation, apoptosis-resistant cells lose their identity and translocate to areas of the wing disc that suffered abundant cell death. Our findings provide a new paradigm for regeneration in which it is unnecessary to invoke special damage-resistant cell types such as stem cells. Instead, differences in gene expression within a population of genetically identical epithelial cells can create a subpopulation with greater resistance, which, following damage, survive, alter their fate, and help regenerate the tissue. PMID:27584613

  2. Mitogen-activated protein kinases p38 and JNK mediate Actinobacillus pleuropneumoniae exotoxin ApxI-induced apoptosis in porcine alveolar macrophages.

    Science.gov (United States)

    Wu, Chi-Ming; Chen, Zeng-Weng; Chen, Ter-Hsin; Liao, Jiunn-Wang; Lin, Cheng-Chung; Chien, Maw-Sheng; Lee, Wei-Cheng; Hsuan, Shih-Ling

    2011-08-05

    Actinobacillus pleuropneumoniae exotoxins (Apx) are major virulence factors that play important roles in the pathogenesis of pleuropneumonia in swine. A previous study has demonstrated that native ApxI at low concentrations induces apoptosis in primary porcine alveolar macrophages (PAMs) via a caspase-3-dependent pathway. However, the molecular mechanisms underlying ApxI-induced apoptosis remain largely unknown. In this study, it was shown that ApxI treatment in PAMs rapidly induced phosphorylation of both p38 and JNK, members of the mitogen-activated protein kinase family. Application of a selective p38 or JNK inhibitor significantly reduced ApxI-induced apoptosis, indicating the involvement of p38 and JNK pathways in this event. Furthermore, activation of both caspase-8 and -9 were observed in ApxI-stimulated PAMs. Inhibition of caspase-8 and caspase-9 activity significantly protected PAMs from ApxI-induced apoptosis. In addition, Bid activation was also noted in ApxI-treated PAMs, and inhibition of caspase-8 suppressed the activation of Bid and caspase-9, suggesting that ApxI was able to activate the caspases-8-Bid-caspase-9 pathway. Notably, inhibition of p38 or JNK pathway greatly attenuated the activation of caspases-3, -8, and -9. This study is the first to demonstrate that ApxI-induced apoptosis of PAMs involves the activation of p38 and JNK, and engages the extrinsic and intrinsic apoptotic pathways.

  3. Bile salts inhibit growth and induce apoptosis of culture human normal esophageal mucosal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Ru Zhang; Jun Gong; Hui Wang; Li Wang

    2005-01-01

    AIM: To investigate the effect of six bile salts:glycocholate (GC), glycochenodeoxycholate (GCDC),glycodeoxycholate (GDC), taurocholate (TC),taurochenodeoxycholate (TCDC), taurodeoxycholate (TDC), and their mixture on cultured human normal esophageal mucosal epithelial cells.METHODS: Human normal esophageal mucosal epithelial cells were cultured with serum-free keratinocyte medium. 3-[4,5-Dimethylthiaolyl]-2,5-diphenyl-tetrazolium bromide assay was applied to the detection of cell proliferation. Apoptotic morphology was observed by phase-contrast video microscopy and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. Sub-G1 DNA fragmentations and early apoptotic cells were assayed by flow cytometry (FCM) with propidium iodide (PI) staining and annexin V-FITC conjugated with PI staining.Apoptotic DNA ladders on agarose gel electrophoresis were observed.RESULTS: Except for GC, GCDC, GDC, TC, TCDC, TDC and their mixture could initiate growth inhibition of esophageal mucosal epithelial cells in a dose- and time-dependent manner. TUNEL and FCM assays demonstrated that the bile salts at 500 μmol/L and their mixture at 1 500 μmol/L induced apoptosis except for GC. The percentage of sub-G1 detected by FCM with PI staining was 83.5% in cells treated with 500μmol/L TC for 2 h, and 19.8%, 20.4%, 25.6%, 13.5%, and 75.8% in cells treated with 500 μmol/L GCDC, TCDC, GDC,TDC, and 1 500 μmol/L mixture for 24 h, respectively,which were higher than that of the control (1.5%). The percentage was 1.4% in cells with 500 μmol/L GC for 24 h.DNA ladders on agarose gel electrophoresis were seen in cells treated with 500 μmol/L TC for 2 h and 1 500 μmol/Lmixture for 24 h.CONCLUSION: All GCDC, GDC, TC, TCDC, TDC and their mixture can inhibit growth and induce apoptosis of cultured human normal esophageal mucosal epithelial cells, but GC is well tolerated by the cells.

  4. Protective effect of resveratrol on lens epithelial cell apoptosis in diabetic cataract rat

    Institute of Scientific and Technical Information of China (English)

    Hong-Min Wang; Guo-Xing Li; Han-Song Zheng; Xue-Zhi Wu

    2015-01-01

    Objective:To study the protective effect of resveratrol on lens epithelial cell apoptosis in diabetic cataract rat.Methods:A total of84Wistar rats were divided into4 groups:12 inGroupA(control group),24 inGroupB(diabetic cataract group),24 inGroupC(therapeutic-dose of resveratrol group) and24 inGroupD(low-dose of resveratrol group).Rats inGroupB-D were given with 60 mg/kg streptozotocin through intraperitoneal injection.Rats inGroupC were given with100 mg/kg resveratrol and rats inGroupD were given with20 mg/kg resveratrol.The caspase-3 expression levels and apoptosis ratios ofLEC among each group were observed; the degrees of lens opacity inGroupB-D after12 weeks were compared.Results:There were significant differences in caspase-3 expression levels, apoptosis ratios ofLEC among groups at4 w,8 w and 12 w(P<0.05).After12 weeks, inGroupB the degree of lens opacity was as follow:0(0.00%) in grade Ⅰ,3(37.50%) in gradeⅡ,2(25.00%)in grade Ⅲ,2(25.00%)grade Ⅳ, and1(12.50%) in grade Ⅴ; inGroupC:2(25.00%)in grade Ⅰ,4(50.00%) in gradeⅡ,2(25.00%)in grade Ⅲ,0(0.00%)grade Ⅳ, and0(0.00%) in grade Ⅴ; inGroupD:1(12.50%)in grade Ⅰ,4(50.00%) in gradeⅡ,2(25.00%) in grade Ⅲ,1(12.50%) grade Ⅳ, and0(0.00%) in grade Ⅴ.The difference amongGroupB-D was statistically significant(P<0.05).Conclusions:Resveratrol has protective effect on lens epithelial cell apoptosis in diabetic cataract rat, and the effect is relative to its dose.

  5. Romidepsin reduces histone deacetylase activity, induces acetylation of histones, inhibits proliferation, and activates apoptosis in immortalized epithelial endometriotic cells.

    Science.gov (United States)

    Imesch, Patrick; Fink, Daniel; Fedier, André

    2010-12-01

    Romidepsin inhibited HDAC activity, produced acetylation of the histone proteins, up-regulated p21, and down-regulated cyclins B1 and D1, resulting in proliferation inhibition and apoptosis activation in 11z immortalized epithelial endometriotic cells. Our findings provide evidence that endometriotic cells are sensitive to the epigenetic effects of romidepsin and suggest that endometriosis may be therapeutically targeted by romidepsin.

  6. Effects of folic acid on epithelial apoptosis and expression of Bcl-2 and p53 in premalignant gastric lesions

    Institute of Scientific and Technical Information of China (English)

    Da-Zhong Cao; Wei-Hao Sun; Xi-Long Ou; Qian Yu; Ting Yu; You-Zhen Zhang; Zi-Ying Wu; Qi-Ping Xue; Yun-Lin Cheng

    2005-01-01

    AIM: To evaluate the effects of folic acid on epithelial apoptosis and expression of Bcl-2 and p53 in the tissues of premalignant gastric lesions.METHODS: Thirty-eight patients, with premalignant gastric lesions including 18 colonic-type intestinal metaplasia(IM)and 20 mild or moderate dysplasia, were randomly divided into a treatment group (n = 19) receiving folic acid 10 mg thrice daily and a control group (n = 19) receiving sucralfate 1 000 mg thrice daily for 3 mo. All patients undervvent endoscopies and four biopsies were taken prior to treatment and repeated after concluding therapy.Folate concentrations in gastric mucosa were measured with chemiluminescent enzyme immunoassay. Epithelial apoptosis and the expression of Bcl-2 and p53 protein in gastric mucosa were detected with flow cytometric assay.RESULTS: The mean of folate concentration in gastric mucosa was 9.03±3.37 μg/g wet wt in the folic acid treatment group, which was significantly higher than 6.83±3.02 μg/g wet wt in the control group. Both the epithelial apoptosis rate and the tumor suppressor p53expression in gastric mucosa significantly increased after folic acid treatment. In contrast, the expression of Bcl-2oncogene protein decreased after folic acid therapy.CONCLUSION: These data indicate that folic acid may play an important role in the chemoprevention of gastric carcinogenesis by enhancing gastric epithelial apoptosis in the patients with premalignant lesions.

  7. Effect of hepatitis B virus X gene on apoptosis and immune molecules of renal tubular epithelial cells

    Institute of Scientific and Technical Information of China (English)

    王轩

    2013-01-01

    Objective To investigate the effect of hepatitis B virus X(HBX)gene on apoptosis and immune moleculesof human proximal renal tubular epithelial cell line(HK-2).Methods The eukaryotic vector pcDNA3.1-myc-HBX containing HBX gene was transiently transfected into

  8. The suppressor of cytokine signaling SOCS1 promotes apoptosis of intestinal epithelial cells via p53 signaling in Crohn's disease.

    Science.gov (United States)

    Cui, Xiaopeng; Shan, Xiaohang; Qian, Ji; Ji, Qianqian; Wang, Liang; Wang, Xiaotong; Li, Manhua; Ding, Haifang; Liu, Qingqing; Chen, Lingling; Zhang, Dongmei; Ni, Runzhou

    2016-08-01

    The suppressor of cytokine signaling SOCS1 is a member of the cytokine signaling pathway inhibitor family, which is induced by the IFN-γ induced JAK signaling pathway. The expression of SOCS1 has been found to increase in Crohn's disease (CD) patients, but the role of SOCS1 in intestinal epithelium is unclear. This study was designed to investigate whether SOCS1 has a role in the death of intestinal epithelial cells and intestinal injury. The results showed that the expression of SOCS1 increased in CD patients, and the expression of SOCS1, p-p53 and PUMA increased in the mouse TNBS induced colitis model. Using IFN-γ treated HT-29 cells as an apoptotic model of intestinal epithelial cells in vitro, we confirmed that SOCS1 promoted apoptosis of intestinal epithelial cells by activating p53. In HT-29 cells which were treated with IFN-γ, the interaction between p53 and SOCS1 and phosphorylation of p53 were significantly higher than untreated cells. When knocking SOCS1 down by using SOCS1 siRNA, phosphorylation of p53 and apoptosis of intestinal epithelial cells which was induced by IFN-γ were significantly inhibited. In summary, our findings suggest that SOCS1 may promote apoptosis of intestinal epithelial cells at least partly through mediating p53 signaling.

  9. IN VITRO LUNG ALVEOLAR EPITHELIAL CELL INJURY AND INFLAMMATORY RESPONSE TO PARTICULATE MATTER-ASSOCIATED METALS - MODULATION BY EXPOSURE TO TNF-ALPHA, IL-BETA, OR IFN-GAMMA

    Science.gov (United States)

    IN VITRO LUNG ALVEOLAR EPITHELIAL CELL INJURY AND INFLAMMATORY RESPONSE TO PARTICULATE MATTER-ASSOCIATED METALS - MODULATION BY EXPOSURE TO TNF , IL-1 , OR IFN .JA Dye, KE Peoples*, CL Hayes?. US EPA, ORD, Pulmonary Toxicology Branch, RTP, NC, *HHMI-SRI, NCSU, Raleigh, NC...

  10. Cell-permeable intrinsic cellular inhibitors of apoptosis protect and rescue intestinal epithelial cells from radiation-induced cell death.

    Science.gov (United States)

    Matsuzaki-Horibuchi, Shiori; Yasuda, Takeshi; Sakaguchi, Nagako; Yamaguchi, Yoshihiro; Akashi, Makoto

    2015-01-01

    One of the important mechanisms for gastrointestinal (GI) injury following high-dose radiation exposure is apoptosis of epithelial cells. X-linked inhibitor of apoptosis (XIAP) and cellular IAP2 (cIAP2) are intrinsic cellular inhibitors of apoptosis. In order to study the effects of exogenously added IAPs on apoptosis in intestinal epithelial cells, we constructed bacterial expression plasmids containing genes of XIAP (full-length, BIR2 domain and BIR3-RING domain with and without mutations of auto-ubiquitylation sites) and cIAP2 proteins fused to a protein-transduction domain (PTD) derived from HIV-1 Tat protein (TAT) and purified these cell-permeable recombinant proteins. When the TAT-conjugated IAPs were added to rat intestinal epithelial cells IEC6, these proteins were effectively delivered into the cells and inhibited apoptosis, even when added after irradiation. Our results suggest that PTD-mediated delivery of IAPs may have clinical potential, not only for radioprotection but also for rescuing the GI system from radiation injuries.

  11. Transactivation of EGF receptor and ErbB2 protects intestinal epithelial cells from TNF-induced apoptosis.

    Science.gov (United States)

    Yamaoka, Toshimitsu; Yan, Fang; Cao, Hanwei; Hobbs, Stuart S; Dise, Rebecca S; Tong, Wei; Polk, D Brent

    2008-08-19

    TNF is a pleiotropic cytokine that activates both anti- and proapoptotic signaling pathways, with cell fate determined by the balance between these two pathways. Activation of ErbB family members, including EGF receptor (EGFR/ErbB1), promotes cell survival and regulates several signals that overlap with those stimulated by TNF. This study was undertaken to determine the effects of TNF on EGFR and ErbB2 activation and intestinal epithelial cell survival. Mice, young adult mouse colon epithelial cells, and EGFR knockout mouse colon epithelial cells were treated with TNF. Activation of EGFR, ErbB2, Akt, Src, and apoptosis were determined in vivo and in vitro. TNF stimulated EGFR phosphorylation in young adult mouse colon epithelial cells, and loss of EGFR expression or inhibition of kinase activity increased TNF-induced apoptosis, which was prevented in WT but not by kinase-inactive EGFR expression. Similarly, TNF injection stimulated apoptosis in EGFR-kinase-defective mice (EGFR(wa2)) compared with WT mice. TNF also activated ErbB2, and loss of ErbB2 expression increased TNF-induced apoptosis. Furthermore, Src-kinase activity and the expression of both EGFR and ErbB2 were required for TNF-induced cell survival. Akt was shown to be a downstream target of TNF-activated EGFR and ErbB2. These findings demonstrate that EGFR and ErbB2 are critical mediators of TNF-regulated antiapoptotic signals in intestinal epithelial cells. Given evidence for TNF signaling in the development of colitis-associated carcinoma, this observation has significant implications for understanding the role of EGFR in maintaining intestinal epithelial cell homeostasis during cytokine-mediated inflammatory responses.

  12. Regulation of Noxa-mediated apoptosis in Helicobacter pylori-infected gastric epithelial cells.

    Science.gov (United States)

    Rath, Suvasmita; Das, Lopamudra; Kokate, Shrikant Babanrao; Pratheek, B M; Chattopadhyay, Subhasis; Goswami, Chandan; Chattopadhyay, Ranajoy; Crowe, Sheila Eileen; Bhattacharyya, Asima

    2015-03-01

    Helicobacter pylori induces the antiapoptotic protein myeloid cell leukemia 1 (Mcl1) in human gastric epithelial cells (GECs). Apoptosis of oncogenic protein Mcl1-expressing cells is mainly regulated by Noxa-mediated degradation of Mcl1. We wanted to elucidate the status of Noxa in H. pylori-infected GECs. For this, various GECs such as AGS, MKN45, and KATO III were either infected with H. pylori or left uninfected. The effect of infection was examined by immunoblotting, immunoprecipitation, chromatin immunoprecipitation assay, in vitro binding assay, flow cytometry, and confocal microscopy. Infected GECs, surgical samples collected from patients with gastric adenocarcinoma as well as biopsy samples from patients infected with H. pylori showed significant up-regulation of both Mcl1 and Noxa compared with noninfected samples. Coexistence of Mcl1 and Noxa was indicative of an impaired Mcl-Noxa interaction. We proved that Noxa was phosphorylated at Ser(13) residue by JNK in infected GECs, which caused cytoplasmic retention of Noxa. JNK inhibition enhanced Mcl1-Noxa interaction in the mitochondrial fraction of infected cells, whereas overexpression of nonphosphorylatable Noxa resulted in enhanced mitochondria-mediated apoptosis in the infected epithelium. Because phosphorylation-dephosphorylation can regulate the apoptotic function of Noxa, this could be a potential target molecule for future treatment approaches for H. pylori-induced gastric cancer.

  13. Activation of apoptosis in NAF-1-deficient human epithelial breast cancer cells

    Science.gov (United States)

    Holt, Sarah H.; Darash-Yahana, Merav; Sohn, Yang Sung; Song, Luhua; Karmi, Ola; Tamir, Sagi; Michaeli, Dorit; Luo, Yuting; Paddock, Mark L.; Jennings, Patricia A.; Onuchic, José N.; Azad, Rajeev K.; Pikarsky, Eli; Cabantchik, Ioav Z.; Nechushtai, Rachel; Mittler, Ron

    2016-01-01

    ABSTRACT Maintaining iron (Fe) ion and reactive oxygen species homeostasis is essential for cellular function, mitochondrial integrity and the regulation of cell death pathways, and is recognized as a key process underlying the molecular basis of aging and various diseases, such as diabetes, neurodegenerative diseases and cancer. Nutrient-deprivation autophagy factor 1 (NAF-1; also known as CISD2) belongs to a newly discovered class of Fe-sulfur proteins that are localized to the outer mitochondrial membrane and the endoplasmic reticulum. It has been implicated in regulating homeostasis of Fe ions, as well as the activation of autophagy through interaction with BCL-2. Here we show that small hairpin (sh)RNA-mediated suppression of NAF-1 results in the activation of apoptosis in epithelial breast cancer cells and xenograft tumors. Suppression of NAF-1 resulted in increased uptake of Fe ions into cells, a metabolic shift that rendered cells more susceptible to a glycolysis inhibitor, and the activation of cellular stress pathways that are associated with HIF1α. Our studies suggest that NAF-1 is a major player in the metabolic regulation of breast cancer cells through its effects on cellular Fe ion distribution, mitochondrial metabolism and the induction of apoptosis. PMID:26621032

  14. Staphylococcal enterotoxin H induced apoptosis of bovine mammary epithelial cells in vitro.

    Science.gov (United States)

    Liu, Yongxia; Chen, Wei; Ali, Tariq; Alkasir, Rashad; Yin, Jinhua; Liu, Gang; Han, Bo

    2014-12-19

    Staphylococcal enterotoxins (SEs) are powerful superantigenic toxins produced by Staphylococcus aureus (S. aureus). They can cause food poisoning and toxic shock. However, their impact on bovine mammary epithelial cells (bMECs) is still unknown. In this study, the distribution of SE genes was evaluated in 116 S. aureus isolates from bovine mastitis, and the most prevalent genes were seh (36.2%), followed by sei (12.1%), seg (11.2%), ser (4.3%), sec (3.4%), sea (2.6%) and sed (1.7%). To better understand the effect of staphylococcal enterotoxin H (SEH) on bMECs, the seh gene was cloned and inserted into the prokaryotic expression vector, pET28a, and transformed into Escherichia coli BL21 (DE3). The recombinant staphylococcal enterotoxin H (rSEH) was expressed and purified as soluble protein. Bioactivity analysis showed that rSEH possessed the activity of stimulating lymphocytes proliferation. The XTT assay showed that 100 μg/mL of rSEH produced the cytotoxic effect on bMECs, and fluorescence microscopy and flow cytometry analysis revealed that a certain dose of rSEH is effective at inducing bMECs apoptosis in vitro. This indicates that SEs can directly lead to cellular apoptosis of bMECs in bovine mastitis associated with S. aureus.

  15. Salvianolic acid B improves bone marrow-derived mesenchymal stem cell differentiation into alveolar epithelial cells type I via Wnt signaling.

    Science.gov (United States)

    Gao, Peng; Yang, Jingxian; Gao, Xi; Xu, Dan; Niu, Dongge; Li, Jinglin; Wen, Qingping

    2015-08-01

    Acute lung injury (ALI) is among the most common causes of mortality in intensive care units. Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMSCs) may attenuate pulmonary edema. In addition, alveolar epithelial cells type I (ATI) are involved in reducing the alveolar edema in response to ALI. However, the mechanism involved in improving the efficiency of differentiation of MSCs into ATI remains to be elucidated. In the present study, the effect of salvianolic acid B (Sal B) on the differentiation of BMSCs into ATI and the activities of the Wnt signaling pathways were investigated. The BMSCs were supplemented with conditioned medium (CM). The groups were as follows: i) CM group: BMSCs were supplemented with CM; ii) lithium chloride (LiCl) group: BMSCs were supplemented with CM and 5 mM LiCl; iii) Sal B group: BMSCs were supplemented with CM and 10 mM Sal B. The samples were collected and assessed on days 7 and 14. It was revealed that aquaporin (AQP)-5 and T1α were expressed in BMSCs, and induction with LiCl or Sal B increased the expression of AQP-5 and T1α. Furthermore, the Wnt-1 and Wnt-3a signaling pathways were activated during the differentiation of BMSCs into ATI. In conclusion, it was suggested that the promotive effects of Sal B on the differentiation of BMSCs into ATI occurred through the activation of Wnt signaling pathways.

  16. Tumor necrosis factor inhibitors block apoptosis of human epithelial cells of the salivary glands.

    Science.gov (United States)

    Sisto, Margherita; D'Amore, Massimo; Caprio, Simone; Mitolo, Vincenzo; Scagliusi, Pasquale; Lisi, Sabrina

    2009-08-01

    Inhibition of tumor necrosis factor-alpha (TNF-alpha) in organ-specific autoimmune disease is proving efficacious for a large number of patients. A wide array of biological agents has been designed to inhibit TNF-alpha, such as adalimumab (fully humanized) and etanercept (soluble TNF-alpha receptor fusion constructs p75 subunit). Recently, we suggested that anti-Ro and anti-La autoantibodies (Abs) isolated from patients with Sjögren's syndrome, an autoimmune rheumatic disease, are able to trigger cell death through extrinsic apoptotic mechanisms in human salivary gland epithelial cells (SGEC). We analyzed if primary human SGEC cultures, established from biopsy of labial minor salivary glands, are able to produce TNF-alpha, an inductor of the extrinsic apoptotic pathway, when treated with anti-Ro autoantibodies. A comparative study was performed to test the efficacy of adalimumab and etanercept to block TNF-alpha-mediated apoptosis. ELISA assay and RT-PCR were employed to visualize TNF-alpha production, and apoptosis was evaluated by DNA ladder and flow cytometry. We found that cell treatment with anti-Ro autoantibodies determines TNF-alpha production that reaches a maximum at 16 h and is decreased (P < 0.05) at 24 and 48 h. Adalimumab seems to be more efficacious than etanercept in blocking TNF-alpha-mediated apoptosis. The YOPRO-1 (+) and propidium iodide (-) method revealed 60% of apoptotic cells after 24 h of incubation with anti-Ro compared with 15% of apoptotic cells treated with anti-Ro plus adalimumab and 25% of apoptotic cells treated with anti-Ro plus etanercept. The antiapoptotic effect of adalimumab and etanercept was supported by inhibition of DNA laddering induced by anti-Ro Abs. These data validate the therapeutic efficacy of the anti-TNF reagents in the treatment of autoimmune disorders.

  17. NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Wei-Xia; He, Min-Di; Mao, Lin [Department of Occupational Health, Third Military Medical University, Chongqing 400038 (China); Qian, Feng-Hua [Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Li, Yu-Ming [Institute of Hepatobiliary Surgery, XinQiao Hospital, Third Military Medical University, Chongqing 400038 (China); Pi, Hui-Feng; Liu, Chuan; Chen, Chun-Hai; Lu, Yong-Hui; Cao, Zheng-Wang; Zhang, Lei; Yu, Zheng-Ping [Department of Occupational Health, Third Military Medical University, Chongqing 400038 (China); Zhou, Zhou, E-mail: lunazhou00@163.com [Department of Occupational Health, Third Military Medical University, Chongqing 400038 (China)

    2015-07-15

    With application of nano-sized nickel-containing particles (Nano-Ni) expanding, the health concerns about their adverse effects on the pulmonary system are increasing. However, the mechanisms for the pulmonary toxicity of these materials remain unclear. In the present study, we focused on the impacts of NiO nanoparticles (NiONPs) on sirtuin1 (SIRT1), a NAD-dependent deacetylase, and investigated whether SIRT1 was involved in NiONPs-induced apoptosis. Although the NiONPs tended to agglomerate in fluid medium, they still entered into the human bronchial epithelial cells (BEAS-2B) and released Ni{sup 2+} inside the cells. NiONPs at doses of 5, 10, and 20 μg/cm{sup 2} inhibited the cell viability. NiONPs' produced cytotoxicity was demonstrated through an apoptotic process, indicated by increased numbers of Annexin V positive cells and caspase-3 activation. The expression of SIRT1 was markedly down-regulated by the NiONPs, accompanied by the hyperacetylation of p53 (tumor protein 53) and overexpression of Bax (Bcl-2-associated X protein). However, overexpression of SIRT1 through resveratrol treatment or transfection clearly attenuated the NiONPs-induced apoptosis and activation of p53 and Bax. Our results suggest that the repression of SIRT1 may underlie the NiONPs-induced apoptosis via p53 hyperacetylation and subsequent Bax activation. Because SIRT1 participates in multiple biologic processes by deacetylation of dozens of substrates, this knowledge of the impact of NiONPs on SIRT1 may lead to an improved understanding of the toxic mechanisms of Nano-Ni and provide a molecular target to antagonize Nano-Ni toxicity. - Highlights: • NiONPs were taken up by BEAS-2B cells and released Ni{sup 2+}. • NiONPs produced cytotoxicity was demonstrated through an apoptotic process. • NiONPs repressed SIRT1 expression and activated p53 and Bax. • Overexpression of SIRT1 attenuated NiONPs-induced apoptosis via deacetylation p53.

  18. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    Science.gov (United States)

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  19. Distribution characteristics of clarithromycin and azithromycin, macrolide antimicrobial agents used for treatment of respiratory infections, in lung epithelial lining fluid and alveolar macrophages.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Morimoto, Kazuhiro

    2011-10-01

    The distribution characteristics of clarithromycin (CAM) and azithromycin (AZM), macrolide antimicrobial agents, in lung epithelial lining fluid (ELF) and alveolar macrophages (AMs) were evaluated. In the in vivo animal experiments, the time-courses of the concentrations of CAM and AZM in ELF and AMs following oral administration (50 mg/kg) to rats were markedly higher than those in plasma, and the area under the drug concentration-time curve (AUC) ratios of ELF/plasma of CAM and AZM were 12 and 2.2, and the AUC ratios of AMs/ELF were 37 and 291, respectively. In the in vitro transport experiments, the basolateral-to-apical transport of CAM and AZM through model lung epithelial cell (Calu-3) monolayers were greater than the apical-to-basolateral transport. MDR1 substrates reduced the basolateral-to-apical transport of CAM and AZM. In the in vitro uptake experiments, the intracellular concentrations of CAM and AZM in cultured AMs (NR8383) were greater than the extracellular concentrations. The uptake of CAM and AZM by NR8383 was inhibited by ATP depletors. These data suggest that the high distribution of CAM and AZM to AMs is due to the sustained distribution to ELF via MDR1 as well as the high uptake by the AMs themselves via active transport mechanisms.

  20. Distribution characteristics of telithromycin, a novel ketolide antimicrobial agent applied for treatment of respiratory infection, in lung epithelial lining fluid and alveolar macrophages.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Seki, Toshinobu; Morimoto, Kazuhiro

    2009-01-01

    The distribution characteristics of telithromycin (TEL), a novel ketolide antimicrobial agent, in lung epithelial fluid (ELF) and alveolar macrophages (AMs) were evaluated. In vivo animal experiments, the time-courses of the concentrations of TEL in ELF and AMs following oral administration of TEL solution (50 mg/4 mL/kg) to rats were markedly higher than in plasma, and areas under drug concentration-time curve (AUC) ratios of ELF/plasma and AMs/plasma were 2.4 and 65.3, respectively. In vitro transport experiments, the basolateral-to-apical transport of TEL through model lung epithelial cell (Calu-3) monolayers was greater than apical-to-basolateral transport. Rhodamine123 and verapamil, MDR1 substrates, reduced the basolateral-to-apical transport of TEL. In vitro uptake experiments, the intracellular equilibrated concentration of TEL in cultured AMs (NR8383) was approximately 40 times the extracellular concentration. The uptake of TEL by NR8383 was inhibited by rotenone and FCCP, ATP depletors and was temperature-dependent. These data suggest that the high distribution of TEL to AMs is due to the sustained distribution to ELF via MDR1 as well as the high uptake by AMs themselves via active transport mechanisms.

  1. Epithelial-specific ETS-1 (ESE1/ELF3) regulates apoptosis of intestinal epithelial cells in ulcerative colitis via accelerating NF-κB activation.

    Science.gov (United States)

    Li, Liren; Miao, Xianjing; Ni, Runzhou; Miao, Xiaobing; Wang, Liang; Gu, Xiaodan; Yan, Lijun; Tang, Qiyun; Zhang, Dongmei

    2015-06-01

    Epithelial-specific ETS-1 (ESE1), also named as ELF3, ERT and ESX, belonging to the ETS family of transcription factors, exerts multiple activities in inflammation, epithelial differentiation and cancer development. Previous data demonstrated that ESE1 synergizes with NF-κB to induce inflammation and drive tumor progress, and the nuclear translocation of ESE1 promotes colon cells apoptosis. However, the expression and biological functions of ESE1 in ulcerative colitis (UC) remain unclear. In this study, we reported for the first time that ESE1/ELF3 was over-expressed in intestinal epithelial cells (IECs) of patients with UC. In DSS-induced colitis mouse models, we observed the up-regulation of ESE1/ELF3 accompanied with the elevated levels of IEC apoptotic markers (active caspase-3 and cleaved PARP) and NF-κB activation indicators [phosphorylated NF-κB p65 subunit (p-p65) and p-IκB] in colitis IECs. Increased co-localization of ESE1/ELF3 with active caspase-3 (and p-p65) in IECs of the DSS-induced colitis group further indicated the possible involvement of ESE1/ELF3 in NF-κB-mediated IEC apoptosis in UC. Employing the TNF-α-treated HT-29 cells as an IEC apoptosis model, we confirmed the positive correlation of ESE1/ELF3 with NF-κB activation and caspase-dependent IEC apoptosis in vitro. Immunoprecipitation and immunofluorescence assay revealed the physical interaction and increased nuclear translocation of ESE1/ELF3 and the NF-κB p65 subunit in TNF-α-treated HT-29 cells. Knocking ESE1/ELF3 down by siRNA significantly alleviated TNF-α-induced NF-κB activation and cellular apoptosis in HT-29 cells. Taken together, our data suggested that ESE1/ELF3 may promote the UC progression via accelerating NF-κB activation and thus facilitating IEC apoptosis.

  2. Potential in vitro model for testing the effect of exposure to nanoparticles on the lung alveolar epithelial barrier

    Directory of Open Access Journals (Sweden)

    Raymond Derk

    2015-03-01

    Full Text Available Pulmonary barrier function plays a pivotal role in protection from inhaled particles. However, some nano-scaled particles, such as carbon nanotubes (CNT, have demonstrated the ability to penetrate this barrier in animal models, resulting in an unusual, rapid interstitial fibrosis. To delineate the underlying mechanism and specific bio-effect of inhaled nanoparticles in respiratory toxicity, models of lung epithelial barriers are required that allow accurate representation of in vivo systems; however, there is currently a lack of consistent methods to do so. Thus, this work demonstrates a well-characterized in vitro model of pulmonary barrier function using Calu-3 cells, and provides the experimental conditions required for achieving tight junction complexes in cell culture, with trans-epithelial electrical resistance measurement used as a biosensor for proper barrier formation and integrity. The effects of cell number and serum constituents have been examined and we found that changes in each of these parameters can greatly affect barrier formation. Our data demonstrate that use of 5.0 × 104 Calu-3 cells/well in the Transwell cell culture system, with 10% serum concentrations in culture media is optimal for assessing epithelial barrier function. In addition, we have utilized CNT exposure to analyze the dose-, time-, and nanoparticle property-dependent alterations of epithelial barrier permeability as a means to validate this model. Such high throughput in vitro cell models of the epithelium could be used to predict the interaction of other nanoparticles with lung epithelial barriers to mimic respiratory behavior in vivo, thus providing essential tools and bio-sensing techniques that can be uniformly employed.

  3. Multiple metabolic hits converge on CD36 as novel mediator of tubular epithelial apoptosis in diabetic nephropathy.

    Directory of Open Access Journals (Sweden)

    Katalin Susztak

    2005-02-01

    Full Text Available BACKGROUND: Diabetic nephropathy (DNP is a common complication of type 1 and type 2 diabetes mellitus and the most common cause of kidney failure. While DNP manifests with albuminuria and diabetic glomerulopathy, its progression correlates best with tubular epithelial degeneration (TED and interstitial fibrosis. However, mechanisms leading to TED in DNP remain poorly understood. METHODS AND FINDINGS: We found that expression of scavenger receptor CD36 coincided with proximal tubular epithelial cell (PTEC apoptosis and TED specifically in human DNP. High glucose stimulated cell surface expression of CD36 in PTECs. CD36 expression was necessary and sufficient to mediate PTEC apoptosis induced by glycated albumins (AGE-BSA and CML-BSA and free fatty acid palmitate through sequential activation of src kinase, and proapoptotic p38 MAPK and caspase 3. In contrast, paucity of expression of CD36 in PTECs in diabetic mice with diabetic glomerulopathy was associated with normal tubular epithelium and the absence of tubular apoptosis. Mouse PTECs lacked CD36 and were resistant to AGE-BSA-induced apoptosis. Recombinant expression of CD36 in mouse PTECs conferred susceptibility to AGE-BSA-induced apoptosis. CONCLUSION: Our findings suggest a novel role for CD36 as an essential mediator of proximal tubular apoptosis in human DNP. Because CD36 expression was induced by glucose in PTECs, and because increased CD36 mediated AGE-BSA-, CML-BSA-, and palmitate-induced PTEC apoptosis, we propose a two-step metabolic hit model for TED, a hallmark of progression in DNP.

  4. UNC5B receptor deletion exacerbates DSS-induced colitis in mice by increasing epithelial cell apoptosis.

    Science.gov (United States)

    Ranganathan, Punithavathi; Jayakumar, Calpurnia; Li, Dean Y; Ramesh, Ganesan

    2014-07-01

    The netrin-1 administration or overexpression is known to protect colon from acute colitis. However, the receptor that mediates netrin-1 protective activities in the colon during colitis remains unknown. We tested the hypothesis that UNC5B receptor is a critical mediator of protective function of netrin-1 in dextran sodium sulfate (DSS)-induced colitis using mice with partial deletion of UNC5B receptor. DSS colitis was performed in mice with partial genetic UNC5B deficiency (UNC5B(+/-) mice) or wild-type mice to examine the role of endogenous UNC5B. These studies were supported by in vitro models of DSS-induced apoptosis in human colon epithelial cells. WT mice developed colitis in response to DSS feeding as indicated by reduction in bw, reduction in colon length and increase in colon weight. These changes were exacerbated in heterozygous UNC5B knockout mice treated with DSS. Periodic Acid-Schiff stained section shows damages in colon epithelium and mononuclear cell infiltration in WT mice, which was further increased in UNC5B heterozygous knockout mice. This was associated with large increase in inflammatory mediators such as cytokine and chemokine expression and extensive apoptosis of epithelial cells in heterozygous knockout mice as compared to WT mice. Overexpression of UNC5B human colon epithelial cells suppressed DSS-induced apoptosis and caspase-3 activity. Moreover, DSS induced large amount of netrin-1 and shRNA mediated knockdown of netrin-1 induction exacerbated DSS-induced epithelial cell apoptosis. Our results suggest that UNC5B is a critical mediator of cell survival in response to stress in colon.

  5. VCP phosphorylation-dependent interaction partners prevent apoptosis in Helicobacter pylori-infected gastric epithelial cells.

    Directory of Open Access Journals (Sweden)

    Cheng-Chou Yu

    Full Text Available Previous studies have demonstrated that valosin-containing protein (VCP is associated with H. pylori-induced gastric carcinogenesis. By identifying the interactome of VCP overexpressed in AGS cells using a subtractive proteomics approach, we aimed to characterize the cellular responses mediated by VCP and its functional roles in H. pylori-associated gastric cancer. VCP immunoprecipitations followed by proteomic analysis identified 288 putative interacting proteins, 18 VCP-binding proteins belonged to the PI3K/Akt signaling pathway. H. pylori infection increased the interaction between Akt and VCP, Akt-dependent phosphorylation of VCP, levels of ubiquitinated proteins, and aggresome formation in AGS cells. Furthermore, phosphorylated VCP co-localized with the aggresome, bound ubiquitinated proteins, and increased the degradation of cellular regulators to protect H. pylori-infected AGS cells from apoptosis. Our study demonstrates that VCP phosphorylation following H. pylori infection promotes both gastric epithelial cell survival, mediated by the PI3K/Akt pathway, and the degradation of cellular regulators. These findings provide novel insights into the mechanisms of H. pylori infection induced gastric carcinogenesis.

  6. Strain-Dependent Induction of Human Enterocyte Apoptosis by Blastocystis Disrupts Epithelial Barrier and ZO-1 Organization in a Caspase 3- and 9-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Zhaona Wu

    2014-01-01

    Full Text Available Blastocystis is an emerging protistan parasite colonizing the human intestine. It is frequently reported to cause general intestinal symptoms of vomiting, diarrhea, and abdominal pain. We recently demonstrated that Blastocystis rearranged cytoskeletal proteins and induced intestinal epithelial barrier compromise. The effect of Blastocystis on enterocyte apoptosis is unknown, and a possible link between microbially induced enterocyte apoptosis and increased epithelial permeability has yet to be determined. The aim of this study is to assess if Blastocystis induces human enterocyte apoptosis and whether this effect influences human intestinal epithelial barrier function. Monolayers of polarized human colonic epithelial cell-line Caco-2 were incubated with Blastocystis subtype 7 and subtype 4. Assays for both early and late markers of apoptosis, phosphatidylserine externalization, and nuclear fragmentation, respectively, showed that Blastocystis ST-7, but not ST-4, significantly increased apoptosis in enterocytes, suggesting that Blastocystis exhibits host specificity and strain-to-strain variation in pathogenicity. ST-7 also activated Caco-2 caspases 3 and 9 but not 8. ST-7 induced changes in epithelial resistance, permeability, and tight junction (ZO-1 localization. Pretreatment of Caco-2 monolayers with a pan-caspase inhibitor z-VAD-fmk significantly inhibited these changes. This suggests a role for enterocyte apoptosis in Blastocystis-mediated epithelial barrier compromise in the human intestine.

  7. DA-Raf-Mediated Suppression of the Ras--ERK Pathway Is Essential for TGF-β1-Induced Epithelial-Mesenchymal Transition in Alveolar Epithelial Type 2 Cells.

    Science.gov (United States)

    Watanabe-Takano, Haruko; Takano, Kazunori; Hatano, Masahiko; Tokuhisa, Takeshi; Endo, Takeshi

    2015-01-01

    Myofibroblasts play critical roles in the development of idiopathic pulmonary fibrosis by depositing components of extracellular matrix. One source of lung myofibroblasts is thought to be alveolar epithelial type 2 cells that undergo epithelial-mesenchymal transition (EMT). Rat RLE-6TN alveolar epithelial type 2 cells treated with transforming growth factor-β1 (TGF-β1) are converted into myofibroblasts through EMT. TGF-β induces both canonical Smad signaling and non-canonical signaling, including the Ras-induced ERK pathway (Raf-MEK-ERK). However, the signaling mechanisms regulating TGF-β1-induced EMT are not fully understood. Here, we show that the Ras-ERK pathway negatively regulates TGF-β1-induced EMT in RLE-6TN cells and that DA-Raf1 (DA-Raf), a splicing isoform of A-Raf and a dominant-negative antagonist of the Ras-ERK pathway, plays an essential role in EMT. Stimulation of the cells with fibroblast growth factor 2 (FGF2), which activated the ERK pathway, prominently suppressed TGF-β1-induced EMT. An inhibitor of MEK, but not an inhibitor of phosphatidylinositol 3-kinase, rescued the TGF-β1-treated cells from the suppression of EMT by FGF2. Overexpression of a constitutively active mutant of a component of the Ras-ERK pathway, i.e., H-Ras, B-Raf, or MEK1, interfered with EMT. Knockdown of DA-Raf expression with siRNAs facilitated the activity of MEK and ERK, which were only weakly and transiently activated by TGF-β1. Although DA-Raf knockdown abrogated TGF-β1-induced EMT, the abrogation of EMT was reversed by the addition of the MEK inhibitor. Furthermore, DA-Raf knockdown impaired the TGF-β1-induced nuclear translocation of Smad2, which mediates the transcription required for EMT. These results imply that intrinsic DA-Raf exerts essential functions for EMT by antagonizing the TGF-β1-induced Ras-ERK pathway in RLE-6TN cells.

  8. EGFR在TGFβ1诱导Ⅱ型肺泡上皮细胞转分化中的作用%Effect of EGFR on epithelial-mesenchymal transition of type Ⅱ alveolar epithelial cells induced by TGFβ1

    Institute of Scientific and Technical Information of China (English)

    蔡琳; 阮志燕

    2012-01-01

    目的 探讨表皮生长因子受体(EGFR)在转分化因子β1(TGFβ1)体外诱导Ⅱ型肺泡上皮细胞转分化中的作用.方法 体外培养Ⅱ型肺泡上皮细胞系细胞-A549细胞,以TGFβ1刺激,倒置相差显微镜观察细胞形态学的变化;收集不同时段的细胞,应用RT-PCR检测TGFβ1干预前后E-钙黏蛋白(E-cadherin)和α平滑肌肌动蛋白(α-SMA)mRNA表达变化;Western blot观察E-cad、α-SMA和信号转导蛋白EGFR表达的变化.结果 倒置相差显微镜观察到TGFβ1刺激后A549细胞由鹅卵石状变为梭形,形态如同肌成纤维细胞;TGFβ1刺激A549细胞能导致E-cadherin mRNA和蛋白表达下调;α-SMA mRNA和蛋白表达上调;磷酸化EGFR(p-EGFR)表达上调.结论 TGFβ1能在体外诱导肺泡上皮细胞向间质细胞转分化,其机制与EGFR信号通路的活化相关.抑制EGFR的活化可能为临床防治肺纤维化提供新的途径.%Objective To investigate the effect of epidermal growth fart or receptor ( EGFR ) expression on epithelial-mesenchy-mal transition ( EMT ) of type Ⅱ alveolar epithelial cells induced by TGFβ1 . Methods The in vitro cultured type fl alveolar epithelial cell line-A549 cells were treated with TGFpl at different time points to observe its cellular morphology changes under phase-contrast micro scope. The cells at different time point were collected to assay mRNA expression of E-cadherin and ?smooth muscle actin ( a-SMA ) by RT-PCR before and after A549 cells being treated by TGFpl , and protein expression of E-cadherin, a-SMA and phosphorylated EGFR ( p-EGFR ) were detected by Western blot. Results After TGFpl treatment, A549 cells were turned from cobblestone into spindle-shaped , a myofibroblast-like morphology. Protein and mRNA expression of E-cadherin were down regulated ( P < 0. 05 ) , but protein and mRNA expression of a-tSMA and p-EGFR were up regulated ( P < 0. 05 ). Conclusion TGFpl can induce EMT of alveolar- epithelial cells in vitro, where the

  9. Apoptosis of Corneal Epithelial Cells Caused by Ultraviolet B-induced Loss of K(+) is Inhibited by Ba(2.).

    Science.gov (United States)

    Glupker, Courtney D; Boersma, Peter M; Schotanus, Mark P; Haarsma, Loren D; Ubels, John L

    2016-07-01

    UVB exposure at ambient outdoor levels triggers rapid K(+) loss and apoptosis in human corneal limbal epithelial (HCLE) cells cultured in medium containing 5.5 mM K(+), but considerably less apoptosis occurs when the medium contains the high K(+) concentration that is present in tears (25 mM). Since Ba(2+) blocks several K(+) channels, we tested whether Ba(2+)-sensitive K(+) channels are responsible for some or all of the UVB-activated K(+) loss and subsequent activation of the caspase cascade and apoptosis. Corneal epithelial cells in culture were exposed to UVB at 80 or 150 mJ/cm(2). Patch-clamp recording was used to measure UVB-induced K(+) currents. Caspase-activity and TUNEL assays were performed on HCLE cells exposed to UVB followed by incubation in the presence or absence of Ba(2+). K(+) currents were activated in HCLE cells following UVB-exposure. These currents were reversibly blocked by 5 mM Ba(2+). When HCLE cells were incubated with 5 mM Ba(2+) after exposure to UVB, activation of caspases-9, -8, and -3 and DNA fragmentation were significantly decreased. The data confirm that UVB-induced K(+) current activation and loss of intracellular K(+) leads to activation of the caspase cascade and apoptosis. Extracellular Ba(2+) inhibits UVB-induced apoptosis by preventing loss of intracellular K(+) when K(+) channels are activated. Ba(2+) therefore has effects similar to elevated extracellular K(+) in protecting HCLE cells from UVB-induced apoptosis. This supports our overall hypothesis that elevated K(+) in tears contributes to protection of the corneal epithelium from adverse effects of ambient outdoor UVB.

  10. Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Atsushi Yamada

    Full Text Available The aim of this study is to investigate the molecular mechanisms underlying delayed progressive pulmonary fibrosis, a characteristic of subacute paraquat (PQ poisoning. Epithelial-mesenchymal transition (EMT has been proposed as a cause of organ fibrosis, and transforming growth factor-β (TGF-β is suggested to be a powerful mediator of EMT. We thus examined the possibility that EMT is involved in pulmonary fibrosis during PQ poisoning using A549 human alveolar epithelial cells in vitro. The cells were treated with various concentrations of PQ (0-500 μM for 2-12 days. Short-term (2 days high-dose (>100 μM treatments with PQ induced cell death accompanied by the activation of caspase9 as well as a decrease in E-cadherin (an epithelial cell marker, suggesting apoptotic cell death with the features of anoikis (cell death due to the loss of cell-cell adhesion. In contrast, long-term (6-12 days low-dose (30 μM treatments with PQ resulted in a transformation into spindle-shaped mesenchymal-like cells with a decrease of E-cadherin as well as an increase of α-smooth muscle actin (α-SMA. The mesenchymal-like cells also secreted the extracellular matrix (ECM protein fibronectin into the culture medium. The administration of a TGF-β1 receptor antagonist, SB431542, almost completely attenuated the mesenchymal transformation as well as fibronectin secretion, suggesting a crucial role of TGF-β1 in EMT-like cellular response and subsequent fibrogenesis. It is noteworthy that despite the suppression of EMT-fibrogenesis, apoptotic death was observed in cells treated with PQ+SB431542. EMT-like cellular response and subsequent fibrogenesis were also observed in normal human bronchial epithelial (NHBE cells exposed to PQ in a TGF-β1-dependent manner. Taken together, our experimental model reflects well the etiology of PQ poisoning in human and shows the involvement of EMT-like cellular response in both fibrogenesis and resistance to cell death during

  11. Efficient drug delivery to alveolar macrophages and lung epithelial lining fluid following pulmonary administration of liposomal ciprofloxacin in rats with pneumonia and estimation of its antibacterial effects.

    Science.gov (United States)

    Chono, Sumio; Tanino, Tomoharu; Seki, Toshinobu; Morimoto, Kazuhiro

    2008-10-01

    The efficacy of pulmonary administration of liposomal ciprofloxacin (CPFX) in pneumonia was evaluated. In brief, the pharmacokinetics following pulmonary administration of liposomal CPFX (particle size, 1,000 nm; dose, 200 microg/kg) were examined in rats with lipopolysaccharide-induced pneumonia as an experimental pneumonia model. Furthermore, the antibacterial effects of liposomal CPFX against the pneumonic causative organisms were estimated by pharmacokinetic/pharmacodynamic (PK/PD) analysis. The time-courses of the concentration of CPFX in alveolar macrophages (AMs) and lung epithelial lining fluid (ELF) following pulmonary administration of liposomal CPFX to rats with pneumonia were markedly higher than that following the administration of free CPFX (200 microg/kg). The time course of the concentrations of CPFX in plasma following pulmonary administration of liposomal CPFX was markedly lower than that in AMs and ELF. These results indicate that pulmonary administration of liposomal CPFX was more effective in delivering CPFX to AMs and ELF compared with free CPFX, and it avoids distribution of CPFX to the blood. According to PK/PD analysis, the liposomal CPFX exhibited potent antibacterial effects against the causative organisms of pneumonia. This study indicates that pulmonary administration of CPFX could be an effective technique for the treatment of pneumonia.

  12. Mild stretch activates cPLA2 in alveolar type II epithelial cells independently through the MEK/ERK and PI3K pathways.

    Science.gov (United States)

    Letsiou, Eleftheria; Kitsiouli, Ei; Nakos, George; Lekka, Marilena E

    2011-06-01

    Alveolar epithelial type II cells (AT II) in which lung surfactant synthesis and secretion take place, are subjected to low magnitude stretch during normal breathing. The aim of the study was to explore the effect of mild stretch on phospholipase A(2) (PLA(2)) activation, an enzyme known to be involved in surfactant secretion. In A549 cells (a model of AT II cells), we showed, using a fluorometric assay, that stretch triggers an increase of total PLA(2) activity. Western blot experiments revealed that the cytosolic isoform cPLA(2) is rapidly phosphorylated under stretch, in addition to a modest increase in cPLA(2) mRNA levels. Treatment of A549 cells with selective inhibitors of the MEK/ERK pathway significantly attenuated the stretch-induced cPLA(2) phosphorylation. A strong interaction of cPLA(2) and pERK enzymes was demonstrated by immunoprecipitation. We also found that inhibition of PI3K pathway attenuated cPLA(2) activation after stretch, without affecting pERK levels. Our results suggest that low magnitude stretch can induce cPLA(2) phosphorylation through the MEK/ERK and PI3K-Akt pathways, independently.

  13. Alisertib, an Aurora kinase A inhibitor, induces apoptosis and autophagy but inhibits epithelial to mesenchymal transition in human epithelial ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Ding YH

    2015-01-01

    Full Text Available Yong-Hui Ding,1,2 Zhi-Wei Zhou,2,3 Chun-Fang Ha,1 Xue-Yu Zhang,1 Shu-Ting Pan,4 Zhi-Xu He,3 Jeffrey L Edelman,2 Dong Wang,5 Yin-Xue Yang,6 Xueji Zhang,7 Wei Duan,8 Tianxin Yang,9 Jia-Xuan Qiu,4 Shu-Feng Zhou2,3 1Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; 3Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, 4Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 5Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 6Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 7Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 8School of Medicine, Deakin University, Waurn Ponds, Australia; 9Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA Abstract: Ovarian cancer is a leading killer of women, and no cure for advanced ovarian cancer is available. Alisertib (ALS, a selective Aurora kinase A (AURKA inhibitor, has shown potent anticancer effects, and is under clinical investigation for the treatment of advanced solid tumor and hematologic malignancies. However, the role of ALS in the treatment of ovarian cancer remains unclear. This study investigated the effects of ALS on cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition (EMT, and the underlying mechanisms in human epithelial ovarian cancer SKOV3 and OVCAR4 cells. Our docking study showed that ALS, MLN8054, and VX-680 preferentially bound to AURKA

  14. Inhibition of aberrant proliferation and induction of apoptosis in pre-neoplastic human mammary epithelial cells by natural phytochemicals.

    Science.gov (United States)

    Katdare, M; Osborne, M P; Telang, N T

    1998-01-01

    Aberrant proliferation and modulated apoptosis leading to impaired cellular homeostasis represent crucial early events in the multi-step carcinogenic process. Regulation of these perturbed biomarkers may predict efficacious prevention of cancer development. Present experiments on non-cancerous human mammary epithelial 184-B5 cells were designed to examine whether i) exposure to suspect environmental human carcinogen Benzo (a) pyrene (BP) alters the status of cell proliferation and apoptosis and ii) BP-induced alterations are modulated in response to select natural phytochemicals that inhibit rodent mammary tumorigenesis. Flow cytometric analysis, cellular immunoreactivity to proliferation specific and apoptosis specific gene products and anchorage-dependent colony formation represented quantitative endpoints. Cruciferous glucosinolate indole-3-carbinol (I3C), tea polyphenol (-) epigallo catechin gallate (EGCC) and soy isoflavone genistein (GEN) represented the chemopreventive test compounds. A single 24 h exposure to 39 lM BP resulted in a 50% decrease (P=0.02) in the ratio of quiescent (Q=G0) to proliferative (P=S + M) population in part due to increase in aberrantly proliferative cells. The BP-initiated cells also exhibited an 87.8% inhibition (P=0. 0001) in confluency-associated apoptosis and a concomitant decrease in cellular immunoreactivity to wild-type p53. Simultaneous treatment of cultures with BP + I3C, BP + EGCG and BP + GEN resulted in a 1.8- to 3.4-fold increase (Pp53 immunoreactivity (Pp53 dependent apoptosis.

  15. Role of microRNA-181a in the apoptosis of tubular epithelial cell induced by cisplatin

    Institute of Scientific and Technical Information of China (English)

    ZHU Han-yu; Liu Mo-yan; HONG Quan; ZHANG Dong; GENG Wen-jia; XIE Yuan-sheng; CHEN Xiang-mei

    2012-01-01

    Background Cisplatin (DDP) is one of most effective and most commonly used therapeutic agent in treating tumors,it can accumulate in the kidney and lead to acute renal failure.MicroRNA-181a can induce cell apoptosis by suppressing the expression of Bcl-2 family.In the present study,we investigated the role of microRNA-181a in the apoptosis of tubular epithelial cell induced by DDP.Methods HK-2 cells were cultured,transfected with microRNA-181a inhibitor for 48 hours,and stimulated with 50 μmol/L cisplatin for 24 hours.MicroRNA-181a expression was analyzed by real time PCR,and cell apoptosis was detected by flow cytometry.Moreover,Bcl-2 and Bcl-2-associated X protein (Bax) expression were measured by Western blotting.Results MicroRNA-181a expression significantly down-regulated in cells transfected with microRNA-181a inhibitor,compared with that in untransfectd cells (21.19±2.01 vs.38.87±1.97,P <0.05).Cell apoptosis induced by DDP significantly decreased in cells transfected with MicroRNA-181a inhibitor.Compared with DDP treated cells alone,Bcl-2 expression strikingly was up-regulated and Bax expression was down-regulated in cells transfected with microRNA-181a inhibitor.Conclusion One pathway of DDP induces apoptosis of tubular epithelial cell by suppressing Bcl-2 expression is achieved by regulating the target gene of MicroRNA-181a.

  16. Growth Inhibition, Induction of Apoptosis by Green Tea Constituent (-)-Epigallocatechin-3-gallate in Cultured Rabbit Lens Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Wenyong Huang; Shaozhen Li; Junwen Zeng; Yizhi Liu; Mingxing Wu; Ming Zhang

    2000-01-01

    Purpose: To evaluate effect of green tea extract (-)-Epigallocatechin-3-gallate (EGCG)in cultured rabbit lens epithelial cells in order to pave a new way to postcapsular opacity (PCO) prevention.Methods: Cell survival rate was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) coloimetric assay. Cell apoptosis was detected by electron microscopy, Hochest 33258 stain and flow cytometer. DNA fragment was detected using agarose gel electrophoresis.Result: Proliferation of the cultured rabbit lens epithelia cells was inhibited by EGCG in a dose and time dependent manner. Morphologic study showed that the cells became shrunk, round shaped with their nuclei condensed and broken. Apoptotic bodies were also seen under electron microscope and in Hochest 33258 stain assay 24 hours after EGCG was added to the medium. DNA ladders were shown in agarose gel eletrophoresis.In flow cytometry assay, apoptosis peak was also evident.Conclusion: Green Tea Constituent(-)-Epigallocatechin-3-gallate could inhibit cultured rabbit lens epithelial cells proliferation by inducing their apoptosis in the concentration used by us, which indicates that it is possible to prevent PCO by using herb extract.

  17. Regulation of pulmonary surfactant synthesis in fetal rat type II alveolar epithelial cells by microRNA-26a.

    Science.gov (United States)

    Zhang, Xiao-Qun; Zhang, Pan; Yang, Yang; Qiu, Jie; Kan, Qin; Liang, Hong-Lu; Zhou, Xiao-Yu; Zhou, Xiao-Guang

    2014-09-01

    Pulmonary surfactant, a unique developmentally regulated, phospholipid-rich lipoprotein, is synthesized by the type II epithelial cells (AECII) of the pulmonary alveolus, where it is stored in organelles termed lamellar bodies. The synthesis of pulmonary surfactant is under multifactorial control and is regulated by a number of hormones and factors, including glucocorticoids, prolactin, insulin, growth factors, estrogens, androgens, thyroid hormones, and catecholamines acting through beta-adrenergic receptors, and cAMP. While there is increasing evidence that microRNAs (miRNAs) are involved in the regulation of almost every cellular and physiological process, the potential role of miRNAs in the regulation of pulmonary surfactant synthesis remains unknown. miRNA-26a (miR-26a) has been predicted to target SMAD1, one of the bone morphogenetic protein (BMP) receptor downstream signaling proteins that plays a key role in differentiation of lung epithelial cells during lung development. In this study, we explored the regulation role of miR-26a in the synthesis of pulmonary surfactant. An adenoviral miR-26a overexpression vector was constructed and introduced into primary cultured fetal AECII. GFP fluorescence was observed to determinate the transfection efficiency and miR-26a levels were measured by RT-PCR. MTT was performed to analyze AECII viability. qRT-PCR and Western blotting were used to determine the mRNA and protein level of SMAD1 and surfactant-associated proteins. The results showed that miR-26a in fetal AECII was overexpressed after the transfection, and that the overexpression of miR-26a inhibited pulmonary surfactant synthesis in AECII. There was no significant change in cell proliferation. Our results further showed that overexpression of miR-26a reduced the SMAD1 expression both in mRNA and protein level in fetal AECII. These findings indicate that miR-26a regulates surfactant synthesis in fetal AECII through SMAD1.

  18. Intestinal epithelial HuR modulates distinct pathways of proliferation and apoptosis and attenuates small intestinal and colonic tumor development.

    Science.gov (United States)

    Giammanco, Antonina; Blanc, Valerie; Montenegro, Grace; Klos, Coen; Xie, Yan; Kennedy, Susan; Luo, Jianyang; Chang, Sung-Hee; Hla, Timothy; Nalbantoglu, Ilke; Dharmarajan, Sekhar; Davidson, Nicholas O

    2014-09-15

    HuR is a ubiquitous nucleocytoplasmic RNA-binding protein that exerts pleiotropic effects on cell growth and tumorigenesis. In this study, we explored the impact of conditional, tissue-specific genetic deletion of HuR on intestinal growth and tumorigenesis in mice. Mice lacking intestinal expression of HuR (Hur (IKO) mice) displayed reduced levels of cell proliferation in the small intestine and increased sensitivity to doxorubicin-induced acute intestinal injury, as evidenced by decreased villus height and a compensatory shift in proliferating cells. In the context of Apc(min/+) mice, a transgenic model of intestinal tumorigenesis, intestinal deletion of the HuR gene caused a three-fold decrease in tumor burden characterized by reduced proliferation, increased apoptosis, and decreased expression of transcripts encoding antiapoptotic HuR target RNAs. Similarly, Hur(IKO) mice subjected to an inflammatory colon carcinogenesis protocol [azoxymethane and dextran sodium sulfate (AOM-DSS) administration] exhibited a two-fold decrease in tumor burden. Hur(IKO) mice showed no change in ileal Asbt expression, fecal bile acid excretion, or enterohepatic pool size that might explain the phenotype. Moreover, none of the HuR targets identified in Apc(min/+)Hur(IKO) were altered in AOM-DSS-treated Hur(IKO) mice, the latter of which exhibited increased apoptosis of colonic epithelial cells, where elevation of a unique set of HuR-targeted proapoptotic factors was documented. Taken together, our results promote the concept of epithelial HuR as a contextual modifier of proapoptotic gene expression in intestinal cancers, acting independently of bile acid metabolism to promote cancer. In the small intestine, epithelial HuR promotes expression of prosurvival transcripts that support Wnt-dependent tumorigenesis, whereas in the large intestine epithelial HuR indirectly downregulates certain proapoptotic RNAs to attenuate colitis-associated cancer. Cancer Res; 74(18); 5322-35. ©2014 AACR.

  19. Bilateral Entry and Release of Middle East Respiratory Syndrome Coronavirus Induces Profound Apoptosis of Human Bronchial Epithelial Cells

    Science.gov (United States)

    Tao, Xinrong; Hill, Terence E.; Morimoto, Chikao; Peters, Clarence J.; Ksiazek, Thomas G.

    2013-01-01

    The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) infects human bronchial epithelial Calu-3 cells. Unlike severe acute respiratory syndrome (SARS)-CoV, which exclusively infects and releases through the apical route, this virus can do so through either side of polarized Calu-3 cells. Infection results in profound apoptosis within 24 h irrespective of its production of titers that are lower than those of SARS-CoV. Together, our results provide new insights into the dissemination and pathogenesis of MERS-CoV and may indicate that the virus differs markedly from SARS-CoV. PMID:23824802

  20. Radiation Dose-effects on Cell Cycle, Apoptosis, and Marker Expression of Ataxia Telangiectasia-Heterozygous Human Breast Epithelial Cells

    Science.gov (United States)

    Cruz, A.; Bors, K.; Jansen, H.; Richmond, R.

    2003-01-01

    Ataxia-telangiectasia (A-T) is a radiation-sensitive genetic condition. AT-heterozygous human mammary epithelial cells (HMEC) were irradiated using a Cs137 source in order to compare cell cycle, apoptosis, and marker expression responses across 3 radiation doses. No differences in cell cycle and apoptosis were found with any of the radiation doses used (30, 60, and 90 rads) compared with the unirradiated control (0 rad). At the same doses, however, differences were found in marker expression, such as keratin 18 (kl8), keratin 14 (k14), insulin-like growth factor I receptor (IGF-IR), and connexin 43 (cx43). This may indicate that radiation sensitivity in the heterozygous state may be initiated through signal transduction responses.

  1. AT1R blocker losartan attenuates intestinal epithelial cell apoptosis in a mouse model of Crohn's disease.

    Science.gov (United States)

    Liu, Tian-Jing; Shi, Yong-Yan; Wang, En-Bo; Zhu, Tong; Zhao, Qun

    2016-02-01

    Angiotensin II, which is the main effector of the renin‑angiotensin system, has an important role in intestinal inflammation via the angiotensin II type 1 receptor (AT1R). The present study aimed to investigate the protective effects of the AT1R blocker losartan on 2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced colitis. Losartan was administered to male adult C57BL/6 J mice 2 weeks prior to the induction of colitis, and images of the whole colon were captured to record changes, scored according to a microscopic scoring system, and reverse transcription-quantitative polymerase chain reaction were performed in order to investigate colonic inflammation. In addition, intestinal epithelial barrier permeability was evaluated, and intestinal epithelial cell (IEC) apoptosis was measured using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and apoptosis-related protein expression levels were detected by western blotting. Losartan was able to attenuate TNBS-induced body weight loss and colonic damage. Furthermore, T helper 1-mediated proinflammatory cytokines were suppressed by losartan, and gut permeability was largely preserved. TUNEL staining revealed reduced IEC apoptosis in the losartan-treated mice. Losartan also increased the B-cell lymphoma 2 (Bcl2)/Bcl-2-associated X protein (Bax) ratio and suppressed caspase-3 induction. These results suggested that the AT1R blocker losartan may attenuate TNBS-induced colitis by inhibiting the apoptosis of IECs. The effects of losartan were partially mediated through increasing the Bcl-2/Bax ratio and subsequently suppressing the induction of the proapoptotic mediator caspase-3.

  2. Involvement of P53 and Bax/Bad triggering apoptosis in thioacetamide-induced hepatic epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Li-Hsuen Chen; Chia-Yu Hsu; Ching-Feng Weng

    2006-01-01

    AIM: Thioacetamide (TAA) has been used in studying liver fibrosis and cirrhosis, however, the mechanisms of TAA-induced apoptosis in liver are still unclear. The hepatic epithelial cell line clone 9 was cultured and treated with TAA to investigate the causes of cell death. METHODS: The cell viability of TAA-induced clone 9 cells was determined using MTT assay. Total cellular GSH in TAA-induced clone 9 cells was measured using a slight modification of the Tietze assay. The activity of caspase 3 in TAA-induced clone 9 cells was monitored by the cleavage of DEVD-p-nitroanaline. TUNEL assay and flow cytometry were applied for the determination of DNA fragmentation and the proportion of apoptosis in TAAinduced clone 9 cells, respectively. The alterations of caspase 3, Bad, Bax and Phospho-P53 contents in TAAinduced clone 9 cells were measured by Western blot. RESULTS: The experimental data indicated that TAA caused rat hepatic epithelial cell line clone 9 cell death in a dose-and time-dependent manner; 60% of the cells died (MTT assay) within 24 h after 100 mg/L TAA was applied. Apoptotic cell percentage (TUNEL assay) and caspase 3 activities were highest after 100 mg/L TAA was added for 8 h. The release of GSH and the elevation in caspase content after TAA treatment resulted in clone 9 cell apoptosis via oxidative stress and a caspasedependent mechanism. The phospho-p53, Bax and Bad protein expressions in clone 9 cells were increased after TAA treatment.CONCLUSION: These results reveal that TAA activates p53, increases caspase 3, Bax and Bad protein contents,perhaps causing the release of cytochrome c from mitochondria and the disintegration of membranes, leading to apoptosis of cells.

  3. Mitochondrial Fission Increases Apoptosis and Decreases Autophagy in Renal Proximal Tubular Epithelial Cells Treated with High Glucose.

    Science.gov (United States)

    Lee, Wen-Chin; Chiu, Chien-Hua; Chen, Jin-Bor; Chen, Chiu-Hua; Chang, Hsueh-Wei

    2016-11-01

    The aim of this study was to examine the effect of mitochondrial morphogenesis changes on apoptosis and autophagy of high-glucose-treated proximal tubular epithelial cells (HK2). Cell viability, apoptosis, and mitochondrial morphogenesis were examined using crystal violet, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), and mitotracker staining, respectively. High glucose inhibited cell viability and induced mitochondrial fission in HK2 cells. After depleting mitofusin 1 (MFN1), the MFN1(-) HK2 cells (fission type) became more susceptible to high-glucose-induced apoptosis and mitochondrial fragmentation observed by TUNEL and mitotracker assays. In siMFN2 HK2 cells (fission type), mitochondria were highly fragmented (>80% fission rate) with or without high-glucose treatment; however, siFIS1 (mitochondrial fission protein 1) HK2 cells (fusion type) exhibited little fragmentation (High-glucose treatment induced autophagy, characterized by the formation of autophagosome and microtubule-associated protein light chain 3 (LC3) B-II, as observed by transmission electron microscopy and western blotting, respectively. LC3B-II levels decreased in both MFN1(-) and siMFN2 HK2 cells, but increased in siFIS1 HK2 cells. Moreover, autophagy displays a protective role against high-glucose-induced cell death based on cotreatment with autophagy inhibitors (3-methyladenine and chloroquine). Mitochondrial fission may increase apoptosis and decrease autophagy of high-glucose-treated HK2 cells.

  4. Opposing roles of TGF-β and EGF in the regulation of TRAIL-induced apoptosis in human breast epithelial cells.

    Science.gov (United States)

    Cano-González, Ana; López-Rivas, Abelardo

    2016-08-01

    Transforming growth factor-beta (TGF-β) induces the epithelial to mesenchymal transition (EMT) in breast epithelial cells and plays an important role in mammary morphogenesis and breast cancer. In non-transformed breast epithelial cells TGF-β antagonizes epidermal growth factor (EGF) action and induces growth inhibition. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been reported to participate in lumen formation during morphogenesis of human breast epithelial cells. Our previous work indicated that sensitivity of human breast epithelial cells to TRAIL can be modulated through the activation of the epidermal growth factor receptor-1 (EGFR). Here, we show that TGF-β opposes EGF-mediated sensitization to TRAIL-induced caspase-8 activation and apoptosis in non-transformed breast epithelial cells. Death-inducing signalling complex (DISC) formation by TRAIL was significantly reduced in cells treated with TGF-β. TGF-β treatment activates cytoprotective autophagy and down-regulates TRAIL-R2 expression at the cell surface by promoting the intracellular accumulation of this receptor. Lastly, we demonstrate that EMT is not involved in the inhibitory effect of TGF-β on apoptosis by TRAIL. Together, the data reveal a fine regulation by EGF and TGF-β of sensitivity of human breast epithelial cells to TRAIL which may be relevant during morphogenesis.

  5. C22-bronchial and T7-alveolar epithelial cell lines of the immortomouse are excellent murine cell culture model systems to study pulmonary peroxisome biology and metabolism.

    Science.gov (United States)

    Karnati, Srikanth; Palaniswamy, Saranya; Alam, Mohammad Rashedul; Oruqaj, Gani; Stamme, Cordula; Baumgart-Vogt, Eveline

    2016-03-01

    In pulmonary research, temperature-sensitive immortalized cell lines derived from the lung of the "immortomouse" (H-2k(b)-tsA58 transgenic mouse), such as C22 club cells and T7 alveolar epithelial cells type II (AECII), are frequently used cell culture models to study CC10 metabolism and surfactant synthesis. Even though peroxisomes are highly abundant in club cells and AECII and might fulfill important metabolic functions therein, these organelles have never been investigated in C22 and T7 cells. Therefore, we have characterized the peroxisomal compartment and its associated gene transcription in these cell lines. Our results show that peroxisomes are highly abundant in C22 and T7 cells, harboring a common set of enzymes, however, exhibiting specific differences in protein composition and gene expression patterns, similar to the ones observed in club cells and AECII in situ in the lung. C22 cells contain a lower number of larger peroxisomes, whereas T7 cells possess more numerous tubular peroxisomes, reflected also by higher levels of PEX11 proteins. Moreover, C22 cells harbor relatively higher amounts of catalase and antioxidative enzymes in distinct subcellular compartments, whereas T7 cells exhibit higher levels of ABCD3 and plasmalogen synthesizing enzymes as well as nuclear receptors of the PPAR family. This study suggest that the C22 and T7 cell lines of the immortomouse lung are useful models to study the regulation and metabolic function of the peroxisomal compartment and its alterations by paracrine factors in club cells and AECII.

  6. A Novel Approach for Ovine Primary Alveolar Epithelial Type II Cell Isolation and Culture from Fresh and Cryopreserved Tissue Obtained from Premature and Juvenile Animals.

    Science.gov (United States)

    Marcinkiewicz, Mariola M; Baker, Sandy T; Wu, Jichuan; Hubert, Terrence L; Wolfson, Marla R

    2016-01-01

    The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII) cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established in vitro submerged and air-liquid interface cultures of primary ovine ATII cells isolated from fresh or cryopreserved lung tissues obtained from mechanically ventilated sheep (128 days gestation-6 months of age). Presence, abundance, and mRNA expression of surfactant proteins was assessed by immunocytochemistry, Western Blot, and quantitative PCR respectively on the day of isolation, and throughout the 7 day cell culture study period. All biomarkers were significantly greater from cells isolated from fresh than cryopreserved tissue, and those cultured in air-liquid interface as compared to submerged culture conditions at all time points. Surfactant protein expression remained in the air-liquid interface culture system while that of cells cultured in the submerged system dissipated over time. Despite differences in biomarker magnitude between cells isolated from fresh and cryopreserved tissue, cells isolated from cryopreserved tissue remained metabolically active and demonstrated a similar response as cells from fresh tissue through 72 hr period of hyperoxia. These data demonstrate a cell culture methodology using fresh or cryopreserved tissue to support study of ovine primary ATII cell function and responses, to support expanded use of biobanked tissues, and to further understanding of mechanisms that contribute to in vivo function of the lung.

  7. Alveolar macrophage-epithelial cell interaction following exposure to atmospheric particles induces the release of mediators involved in monocyte mobilization and recruitment

    Directory of Open Access Journals (Sweden)

    Mukae Hiroshi

    2005-08-01

    Full Text Available Abstract Background Studies from our laboratory have shown that human alveolar macrophages (AM and bronchial epithelial cells (HBEC exposed to ambient particles (PM10 in vitro increase their production of inflammatory mediators and that supernatants from PM10-exposed cells shorten the transit time of monocytes through the bone marrow and promote their release into the circulation. Methods The present study concerns co-culture of AM and HBEC exposed to PM10 (EHC-93 and the production of mediators involved in monocyte kinetics measured at both the mRNA and protein levels. The experiments were also designed to determine the role of the adhesive interaction between these cells via the intercellular adhesion molecule (ICAM-1 in the production of these mediators. Results AM/HBEC co-cultures exposed to 100 μg/ml of PM10 for 2 or 24 h increased their levels of granulocyte-macrophage colony-stimulating factor (GM-CSF, M-CSF, macrophage inflammatory protein (MIP-1β, monocyte chemotactic protein (MCP-1, interleukin (IL-6 and ICAM-1 mRNA, compared to exposed AM or HBEC mono-cultures, or control non-exposed co-cultures. The levels of GM-CSF, M-CSF, MIP-1β and IL-6 increased in co-cultured supernatants collected after 24 h exposure compared to control cells (p 10-induced increase in co-culture mRNA expression. Conclusion We conclude that an ICAM-1 independent interaction between AM and HBEC, lung cells that process inhaled particles, increases the production and release of mediators that enhance bone marrow turnover of monocytes and their recruitment into tissues. We speculate that this interaction amplifies PM10-induced lung inflammation and contributes to both the pulmonary and systemic morbidity associated with exposure to air pollution.

  8. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M;

    1998-01-01

    induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  9. Erythropoietin protects epithelial cells from excessive autophagy and apoptosis in experimental neonatal necrotizing enterocolitis.

    Directory of Open Access Journals (Sweden)

    Yueyue Yu

    Full Text Available Neonatal necrotizing enterocolitis (NEC is a devastating gastrointestinal disease of preterm infants. Increased intestinal epithelium permeability is an early event in NEC pathogenesis. Autophagy and apoptosis are induced by multiple stress pathways which may impact the intestinal barrier, and they have been associated with pathogenesis of diverse gastrointestinal diseases including inflammatory bowel disease. Using both in vitro and in vivo models, this study investigates autophagy and apoptosis under experimental NEC stresses. Furthermore this study evaluates the effect of erythropoietin (Epo, a component of breast milk previously shown to decrease the incidence of NEC and to preserve intestinal barrier function, on intestinal autophagy and apoptosis. It was found that autophagy and apoptosis are both rapidly up regulated in NEC in vivo as indicated by increased expression of the autophagy markers Beclin 1 and LC3II, and by evidence of apoptosis by TUNEL and cleaved caspase-3 staining. In the rat NEC experimental model, autophagy preceded the onset of apoptosis in intestine. In vitro studies suggested that Epo supplementation significantly decreased both autophagy and apoptosis via the Akt/mTOR signaling pathway and the MAPK/ERK pathway respectively. These results suggest that Epo protects intestinal epithelium from excessive autophagy and apoptosis in experimental NEC.

  10. Upregulation of Fas-Fas-L (CD95/CD95L)-mediated epithelial apoptosis--a putative role in pouchitis?

    LENUS (Irish Health Repository)

    Coffey, J C

    2012-02-03

    INTRODUCTION: Ileal pouch-anal anastomosis (IPAA) remains the gold standard for patients with refractory ulcerative colitis. Pouchitis causes considerable morbidity in 40% of patients with IPAA. This study examined the role of increased epithelial apoptosis in the etiology of pouchitis. METHODS: Following ethical approval pouch biopsies taken from patients with a history of pouchitis were compared with age-matched controls from patients who were pouchitis free. Apoptosis was detected immunohistochemically using a monoclonal antibody (M30) and terminal deoxyribonucleotidyl transferase (TDT)-mediated dUTP-digoxigenin end labeling (TUNEL). Villous atrophy was assessed histologically and correlated with levels of apoptosis. Epithelial Fas-ligand (L) was also assessed immunohistochemically. RESULTS: A significant increase in TUNEL staining was seen at the epithelial but not at the lamina propria level for known pouchitis patients versus controls (0.091 vs 0.035; P < 0.01). Similarly, epithelial M30 immunoreactivity (0.225 vs 0.082; P < 0.05) and villous atrophy (0.035 vs 0.10; P < 0.05) were significantly increased in pouches with previous pouchitis when compared with normal pouches. Upregulation of Fas-L expression was characteristic of this epithelium. Mononuclear cells were strongly positive for Fas-L. Increased epithelial levels of apoptosis correlated with increased levels of villous atrophy. CONCLUSIONS: Our data suggest a role for elevated Fas-Fas-L (CD95-CD95L)-mediated epithelial apoptosis in the etiology of pouchitis. Increased levels of villous atrophy may result from increased apoptosis and thereby predispose to infection by otherwise apathogenic organisms.

  11. Alveolar inflammation in cystic fibrosis

    DEFF Research Database (Denmark)

    Ulrich, Martina; Worlitzsch, Dieter; Viglio, Simona

    2010-01-01

    BACKGROUND: In infected lungs of the cystic fibrosis (CF) patients, opportunistic pathogens and mutated cystic fibrosis transmembrane conductance regulator protein (CFTR) contribute to chronic airway inflammation that is characterized by neutrophil/macrophage infiltration, cytokine release...... accumulated in type II alveolar epithelial cells, lacking CFTR. P. aeruginosa organisms were rarely present in inflamed alveoli. CONCLUSIONS: Chronic inflammation and remodeling is present in alveolar tissues of the CF lung and needs to be addressed by anti-inflammatory therapies....

  12. A mouse model of pathological small intestinal epithelial cell apoptosis and shedding induced by systemic administration of lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Jonathan M. Williams

    2013-11-01

    The gut barrier, composed of a single layer of intestinal epithelial cells (IECs held together by tight junctions, prevents the entrance of harmful microorganisms, antigens and toxins from the gut lumen into the blood. Small intestinal homeostasis is normally maintained by the rate of shedding of senescent enterocytes from the villus tip exactly matching the rate of generation of new cells in the crypt. However, in various localized and systemic inflammatory conditions, intestinal homeostasis can be disturbed as a result of increased IEC shedding. Such pathological IEC shedding can cause transient gaps to develop in the epithelial barrier and result in increased intestinal permeability. Although pathological IEC shedding has been implicated in the pathogenesis of conditions such as inflammatory bowel disease, our understanding of the underlying mechanisms remains limited. We have therefore developed a murine model to study this phenomenon, because IEC shedding in this species is morphologically analogous to humans. IEC shedding was induced by systemic lipopolysaccharide (LPS administration in wild-type C57BL/6 mice, and in mice deficient in TNF-receptor 1 (Tnfr1−/−, Tnfr2 (Tnfr2−/−, nuclear factor kappa B1 (Nfκb1−/− or Nfĸb2 (Nfĸb2−/−. Apoptosis and cell shedding was quantified using immunohistochemistry for active caspase-3, and gut-to-circulation permeability was assessed by measuring plasma fluorescence following fluorescein-isothiocyanate–dextran gavage. LPS, at doses ≥0.125 mg/kg body weight, induced rapid villus IEC apoptosis, with peak cell shedding occurring at 1.5 hours after treatment. This coincided with significant villus shortening, fluid exudation into the gut lumen and diarrhea. A significant increase in gut-to-circulation permeability was observed at 5 hours. TNFR1 was essential for LPS-induced IEC apoptosis and shedding, and the fate of the IECs was also dependent on NFκB, with signaling via NFκB1 favoring cell survival and

  13. Hyperglycemia: GDNF-EGR1 pathway target renal epithelial cell migration and apoptosis in diabetic renal embryopathy.

    Directory of Open Access Journals (Sweden)

    Ching-Yuang Lin

    Full Text Available Maternal hyperglycemia can inhibit morphogenesis of ureteric bud branching, Glial cell line-derived neurotrophilic factor (GDNF is a key regulator of the initiation of ureteric branching. Early growth response gene-1 (EGR-1 is an immediate early gene. Preliminary study found EGR-1 persistently expressed with GDNF in hyperglycemic environment. To evaluate the potential relationship of hyperglycemia-GDNF-EGR-1 pathway, in vitro human renal proximal tubular epithelial (HRPTE cells as target and in vivo streptozotocin-induced mice model were used. Our in vivo microarray, real time-PCR and confocal morphological observation confirmed apoptosis in hyperglycemia-induced fetal nephropathy via activation of the GDNF/MAPK/EGR-1 pathway at E12-E15. Detachment between ureteric branch and metanephrons, coupled with decreasing number and collapse of nephrons on Day 1 newborn mice indicate hyperglycemic environment suppress ureteric bud to invade metanephric rudiment. In vitro evidence proved that high glucose suppressed HRPTE cell migration and enhanced GDNF-EGR-1 pathway, inducing HRPTE cell apoptosis. Knockdown of EGR-1 by siRNA negated hyperglycemic suppressed GDNF-induced HRPTE cells. EGR-1 siRNA also reduced GDNF/EGR-1-induced cRaf/MEK/ERK phosphorylation by 80%. Our findings reveal a novel mechanism of GDNF/MAPK/EGR-1 activation playing a critical role in HRPTE cell migration, apoptosis and fetal hyperglycemic nephropathy.

  14. Chromosomal damage and apoptosis analysis in exfoliated oral epithelial cells from mouthwash and alcohol users

    Science.gov (United States)

    Rocha, Rodrigo dos Santos; Meireles, José Roberto Cardoso; de Moraes Marcílio Cerqueira, Eneida

    2014-01-01

    Chromosomal damage and apoptosis were analyzed in users of mouthwash and/or alcoholic beverages, using the micronucleus test on exfoliated oral mucosa cells. Samples from four groups of 20 individuals each were analyzed: three exposed groups (EG1, EG2 and EG3) and a control group (CG). EG1 comprised mouthwash users; EG2 comprised drinkers, and EG3 users of both mouthwashes and alcoholic beverages. Cell material was collected by gently scraping the insides of the cheeks. Then the cells were fixed in a methanol/acetic acid (3:1) solution and stained and counterstained, respectively, with Schiff reactive and fast green. Endpoints were computed on 2,000 cells in a blind test. Statistical analysis showed that chromosomal damage and apoptosis were significantly higher in individuals of groups EG1 and EG3 than in controls (p < 0.005 and p < 0.001, respectively). No significant difference in chromosomal damage and apoptosis was observed between the exposed groups. In EG2, only the occurrence of apoptosis was significantly higher than in the controls. These results suggest that mouthwashes alone or in association with alcoholic drinks induce genotoxic effects, manifested as chromosomal damage and apoptosis. They also suggest that alcoholic drinks are effective for stimulating the process of apoptosis. However, these data need to be confirmed in larger samples. PMID:25505845

  15. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  16. Lung alveolar epithelium and interstitial lung disease.

    Science.gov (United States)

    Corvol, Harriet; Flamein, Florence; Epaud, Ralph; Clement, Annick; Guillot, Loic

    2009-01-01

    Interstitial lung diseases (ILDs) comprise a group of lung disorders characterized by various levels of inflammation and fibrosis. The current understanding of the mechanisms underlying the development and progression of ILD strongly suggests a central role of the alveolar epithelium. Following injury, alveolar epithelial cells (AECs) may actively participate in the restoration of a normal alveolar architecture through a coordinated process of re-epithelialization, or in the development of fibrosis through a process known as epithelial-mesenchymal transition (EMT). Complex networks orchestrate EMT leading to changes in cell architecture and behaviour, loss of epithelial characteristics and gain of mesenchymal properties. In the lung, AECs themselves may serve as a source of fibroblasts and myofibroblasts by acquiring a mesenchymal phenotype. This review covers recent knowledge on the role of alveolar epithelium in the pathogenesis of ILD. The mechanisms underlying disease progression are discussed, with a main focus on the apoptotic pathway, the endoplasmic reticulum stress response and the developmental pathway.

  17. [The causes of necrobiosis and apoptosis of corneal epithelial cells during primary acquired keratoconus].

    Science.gov (United States)

    Ziangirova, G G; Antonova, O V

    2002-01-01

    We studied 56 biopsy samples of conjunctiva and 50 corneal discs excised from 28 patients with acquired keratoconus cornea. The conjunctivas in all biopsy samples showed various stages of immune inflammation. Necrobiotic changes have been revealed in epithelium of the corneal discs going by the pathways of apoptosis--programmed cell death--and oncosis--initial edematic stage of necrobiosis. At the stage of acute inflammation they are due to cytotoxic effect of the lymphocytes, monocytes, and macrophages. Antibody-dependent cytotoxicity mediated by plasma and lymphoid cells predominates at this stage. At the reparative stage of inflammation ischemia, an inductor of apoptosis and oncosis, underlies necrobiotic changes in corneal epithelium.

  18. The prevention of radiation-induced DNA damage and apoptosis in human intestinal epithelial cells by salvianic acid A

    Directory of Open Access Journals (Sweden)

    Yanjun Zhang

    2014-07-01

    Full Text Available The topic of radiation always provokes public debate, and the uses of radiation for therapeutic and other purposes have always been associated with some anxiety. Salvia miltiorrhiza Bunge has been widely used for the treatment of various diseases including cerebrovascular diseases, coronary artery diseases, and myocardial infarction. Salvianolic acid A (SAA d (+-(3,4-dihydroxyphenyl lactic acid is the principal effective, watersoluble constituent of Salvia miltiorrhiza Bunge. In our present study, radiation-induced DNA damage and apoptosis in human intestinal epithelial cells (HIEC in the presence and absence of SAA were examined. We investigated the effects of SAA on ROS formation and the activity of enzymatic antioxidants (SOD, the lipid peroxidative index and the levels of non-enzymatic antioxidant (GSH. Finally, we investigated whether the reduction of radiation-induced cell death caused by SAA might be related to mitochondria-dependent apoptosis. Present findings indicate that SAA is a promising radioprotective agent with a strong antioxidant activity. SAA exerted its protective action on the proliferative activity of HIEC cells as evidenced by decreased cytotoxicity after exposure to γ-radiation. It is possible that SAA achieved its radioprotective action, at least in part, by enhancing DNA repair and the activity of antioxidant enzymes, by scavenging ROS and by inhibiting the mitochondria-dependent apoptotic pathway.

  19. Macrophage-stimulating protein attenuates gentamicin-induced inflammation and apoptosis in human renal proximal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ko Eun [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Eun Young [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Chang Seong; Choi, Joon Seok; Bae, Eun Hui; Ma, Seong Kwon [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Kyung Keun [Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Lee, Jong Un [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Soo Wan, E-mail: skimw@chonnam.ac.kr [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of)

    2013-05-10

    Highlights: •MSP/RON system is activated in rat kidney damaged by gentamicin. •MSP inhibits GM-induced cellular apoptosis and inflammation in HK-2 cells. •MSP attenuates GM-induced activation of MAPKs and NF-κB pathways in HK-2 cells. -- Abstract: The present study aimed to investigate whether macrophage-stimulating protein (MSP) treatment attenuates renal apoptosis and inflammation in gentamicin (GM)-induced tubule injury and its underlying molecular mechanisms. To examine changes in MSP and its receptor, recepteur d’origine nantais (RON) in GM-induced nephropathy, rats were injected with GM for 7 days. Human renal proximal tubular epithelial (HK-2) cells were incubated with GM for 24 h in the presence of different concentrations of MSP and cell viability was measured by MTT assay. Apoptosis was determined by flow cytometry of cells stained with fluorescein isothiocyanate-conjugated annexin V protein and propidium iodide. Expression of Bcl-2, Bax, caspase-3, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB), IκB-α, and mitogen-activated protein kinases (MAPKs) was analyzed by semiquantitative immunoblotting. MSP and RON expression was significantly greater in GM-treated rats, than in untreated controls. GM-treatment reduced HK-2 cell viability, an effect that was counteracted by MSP. Flow cytometry and DAPI staining revealed GM-induced apoptosis was prevented by MSP. GM reduced expression of anti-apoptotic protein Bcl-2 and induced expression of Bax and cleaved caspase 3; these effects and GM-induced expression of COX-2 and iNOS were also attenuated by MSP. GM caused MSP-reversible induction of phospho-ERK, phospho-JNK, and phospho-p38. GM induced NF-κB activation and degradation of IκB-α; the increase in nuclear NF-κB was blocked by inhibitors of ERK, JNK, p-38, or MSP pretreatment. These findings suggest that MSP attenuates GM-induced inflammation and apoptosis by inhibition of the MAPKs

  20. Cellular inhibitor of apoptosis protein 2 controls human colonic epithelial restitution, migration, and Rac1 activation

    DEFF Research Database (Denmark)

    Seidelin, Jakob Benedict; Larsen, Sylvester; Linnemann, Dorte

    2015-01-01

    of the study was to investigate the role of cIAP2 for wound healing in the normal human colon. Wound tissue was generated by taking rectosigmoidal biopsies across an experimental ulcer in healthy subjects after 5, 24, and 48 h. In experimental ulcers, the expression of cIAP2 in regenerating intestinal...... epithelial cells (IECs) was increased at the wound edge after 24 h (P

  1. Apoptosis of bovine neutrophils following diapedesis through a monolayer of endothelial and mammary epithelial cells.

    OpenAIRE

    Van Oostveldt, K; Paape, Max; Burvenich, Christian

    2002-01-01

    In a two-chamber system, isolated blood polymorphonuclear neutrophil leukocytes (PMN) were allowed to migrate (5 h, 37 C) in response to bovine complement component C5a across calfskin and rat-tail type I collagen-coated micropore membranes, arterial endothelial, or mammary epithelial cell monolayer on calfskin and rat-tail collagen-coated membranes, respectively. Migration through calfskin collagen-coated membranes resulted in 14.5% +/- 3.4% apoptotic PMN, which was significantly higher than...

  2. Apoptosis induction of human endometriotic epithelial and stromal cells by noscapine

    Directory of Open Access Journals (Sweden)

    Mohammad Rasoul Khazaei

    2016-09-01

    Full Text Available Objective(s: Endometriosis is a complex gynecologic disease with unknown etiology. Noscapine has been introduced as a cancer cell suppressor. Endometriosis was considered as a cancer like disorder, The aim of present study was to investigate noscapine apoptotic effect on human endometriotic epithelial and stromal cells in vitro. Materials and Methods:In this in vitro study, endometrial biopsies from endometriosis patients (n=9 were prepared and digested by an enzymatic method (collagenase I, 2 mg/ml. Stromal and epithelial cells were separated by sequential filtration through a cell strainer and ficoll layering. The cells of each sample were divided into five groups: control (0, 10, 25, 50 and 100 micromole/liter (µM concentration of noscapine and were cultured for three different periods of times; 24, 48 and 72 hr. Cell viability was assessed by colorimetric assay. Nitric oxide (NO concentration was measured by Griess reagent. Cell death was analyzed by Acridine Orange (AO–Ethidium Bromide (EB double staining and Terminal deoxynucleotidyl transferase (TdT dUTP Nick-End Labeling (TUNEL assay. Data were analyzed by one-way ANOVA. Results: Viability of endometrial epithelial and stromal cells significantly decreased in 10, 25, 50 and 100 µM noscapine concentration in 24, 48, 72 hr (P

  3. High concentrate diet induced mucosal injuries by enhancing epithelial apoptosis and inflammatory response in the hindgut of goats.

    Directory of Open Access Journals (Sweden)

    Shiyu Tao

    Full Text Available It is widely accepted that lipopolysaccharide and volatile fatty acids (VFA accumulate in the digestive tract of ruminants fed diets containing high portions of grain. Compared to the ruminal epithelium, the hindgut epithelium is composed of a monolayer structure that is more "leaky" for lipopolysaccharide and susceptible to organic acid-induced damage. The aim of this study was to investigate changes in epithelial structure, apoptosis and inflammatory response in the hindgut of goats fed a high-concentrate diet for 6 weeks.Eight local Chinese goats with rumen cannulas were randomly assigned to two groups: one group was fed a high-concentrate diet (65% concentrate of dry matter, HC and the other group was fed a low-concentrate diet (35% concentrate of dry matter, LC for 6 wks. Ruminal fluid, plasma, and hindgut mucosa tissues were collected. Histological techniques, real-time PCR and western blotting were used to evaluate the tissues structure, cell apoptosis and local inflammation in the hindguts.Feeding HC diet for 6 wks resulted in a significant decrease of ruminal pH (p<0.01, and ruminal lipopolysaccharide concentrations were significantly increased in HC goats (p<0.05. Obvious damage was observed to mucosal epithelium of the hindgut and the intercellular tight junctions in HC, but not in LC, goats. The expression of MyD88 and caspase-8 mRNA was increased in colonic epithelium of HC goats compared to LC (p<0.05, and the expression of TLR-4 and caspase-3 showed a tendency to increase. In the cecum, interleukin-1β mRNA expression was decreased (p<0.05, and caspase-3 showed a potential increase (p = 0.07 in HC goats. The level of NF-κB protein was increased in colonic epithelium of HC goats. Caspase-3 activity was elevated in both colon and cecum, whereas caspase-8 activity was statistically increased only in colon.Feeding a high-concentrate diet to goats for 6 wks led to hindgut mucosal injuries via activating epithelial cells apoptosis

  4. Effect of nanostructured TiO2 crystal phase on photoinduced apoptosis of breast cancer epithelial cells

    Directory of Open Access Journals (Sweden)

    Lagopati N

    2014-07-01

    Full Text Available Nefeli Lagopati,1,2 Effie-Photini Tsilibary,1,* Polycarpos Falaras,2,* Panagiota Papazafiri,3 Evangelia A Pavlatou,4 Eleni Kotsopoulou,1 Paraskevi Kitsiou1,* 1Institute of Biosciences and Applications, 2Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, National Center for Scientific Research “Demokritos”, Athens, Greece; 3Department of Animal and Human Physiology, Faculty of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece; 4Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece *These authors contributed equally to this work Purpose: The use of nanoparticles has seen exponential growth in the area of health care, due to the unique physicochemical properties of nanomaterials that make them desirable for medical applications. The aim of this study was to examine the effects of crystal phase-nanostructured titanium dioxide particles on bioactivity/cytotoxicity in breast cancer epithelial cells. Materials and methods: Cultured Michigan Cancer Foundation (MCF-7 and human breast adenocarcinoma (MDA-MB-468 breast cancer epithelial cells were exposed to ultraviolet A light (wavelength 350 nm for 20 minutes in the presence of aqueous dispersions of two different nanostructured titanium dioxide (TiO2 crystal phases: anatase and an anatase–rutile mixture. Detailed characterization of each titanium dispersion was performed by dynamic light scattering. A 3-(4,5-dimethylthiazol-2-yl-2,5 diphenyltetrazolium bromide (MTT colorimetric assay was employed to estimate the percentage of viable cells after each treatment. Western blot analysis of protein expression and characterization, as well as a deoxyribonucleic acid (DNA-laddering assay, were used to detect cell apoptosis. Results: Our results documented that 100% anatase TiO2 nanoparticles (110–130 nm exhibited significantly higher cytotoxicity in

  5. Apoptosis and expression of argyrophilic nucleolus organizer regions in epithelial neoplasms of the larynx

    Directory of Open Access Journals (Sweden)

    Christiana Vargas Ribeiro

    2015-04-01

    Full Text Available INTRODUCTION: Occurrence of apoptosis and expression of proliferative markers are powerful tools to establish a prognosis in the follow-up of cancer.OBJECTIVE: To evaluate the growth fraction in papillomas and laryngeal squamous cell carcinomas with three degrees of differentiation through apoptosis and the expression of nucleolus organizer regions.METHODS: Retrospective study from which paraffin material was submitted to microtomy and hematoxylin-eosin and silver staining. Stained slides were used to quantify the apoptotic index and the number of nucleolus organizer regions by morphometry.RESULTS: Apoptosis was significantly more frequent in well differentiated carcinomas and in papillomas, and a higher growth fraction of expressed nucleolus organizer regions and cells that expressed a greater than average number of nucleolus organizer regions were more frequently noted in undifferentiated carcinomas.CONCLUSIONS: Thus, it was possible to verify that a high apoptotic index was associated with a lower chance of tumor differentiation in carcinomas, while a greater number of total nucleolus organizer regions, cells expressing nucleolus organizer regions above average and a higher growth fraction were associated with greater likelihood of abnormal cell proliferation and increased tumor differentiation.

  6. Suppression of ERK activation in urethral epithelial cells infected with Neisseria gonorrhoeae and its isogenic minD mutant contributes to anti-apoptosis.

    Science.gov (United States)

    Liu, GuanQun L; Parti, Rajinder P; Dillon, Jo-Anne R

    2015-04-01

    In gonococci-infected transduced human urethral epithelial cells (THUEC), the role of ERK, a mitogen-activated protein kinase (MAPK), in apoptosis is unknown. We observed lowering of ERK activation in THUEC following infection with anti-apoptosis-inducing Neisseria gonorrhoeae strain CH811. An isogenic cell division mutant of this strain, Ng CJSD1 (minD deficient), which is large and abnormally shaped, reduced ERK phosphorylation levels even more than its parental strain in THUEC. This led to higher anti-apoptosis in mutant-infected cells as compared to the parental strain-infected cells. Our results suggest that N. gonorrhoeae infection reduces ERK activation in THUEC contributing to anti-apoptosis.

  7. Apoptosis, proliferation and p53 gene expression of H. pylori associated gastric epithelial lesions

    Institute of Scientific and Technical Information of China (English)

    Zhong Zhang1; Yuan Yuan; Hua Gao; Ming Dong; Lan Wang; Yue-Hua Gong

    2001-01-01

    AIM: To study the relationship between Helicobacter pylori (H. Pylori) and gastric carcinoma and its possible pathogenesis by H. Pylori. METHODS: DNEL technique and immunohistochemical technique were used to study the state of apoptosis,proliferation and p53 gene expression. A total of 100 gastric mucosal biopsy specimens, including 20 normal mucosa, 30H. Pylori-negative and 30 H. Pylorf-positive gastric precancerous lesions along with 20 gastric carcinomas were studied. RESULTS: There were several apoptotic cells in the superficial epithelium and a few proliferative cells within the neck of gastric glands, and no p53 protein expression in normal mucosa. In gastric carcinoma, there were few apoptotic cells, while there were a large number of proliferative cells, and expression of p53 protein significantly was increased. In the phase of metaplasia, the apoptotic index (Al, 4.36% ± 1.95%), proliferative index (PI, 19.11% ± 6.79%) and positivity of p53 expression (46.7%) in H. Pylori-positive group were higher than those in normal mucosa (P< 0.01). Al in H. Pylori-positive group was higher than that in H. Pylori-negative group (3.81% ±1.76%), PI in H. Pylori-positive group was higher than that in H. Pylori-negative group (12.25% ±5.63%, P<0.01 ). In the phase of dysplasia, Al (2.31% ± 1.10%) in H. Pylori-positive group was lower (3.05% ± 1.29%) than that in H. Pylori-negative group, but PI (33.89% ± 11.65%)wassignificantly higher(22.09± 8018%, P< 0.01). In phases of metaplasia, dysplasia and gastric cancer in the H. Pylori-positive group, Als had an evidently graduall decreasing trend (P < 0.01 ), while Pis had an evidently gradual increasing trend (P< 0.05 or P< 0.01), and there was also a trend of gradual increase in the expression of p53 gene. CONCLUSION: In the course of the formation of gastric carcinoma, proliferation of gastric mucosa can be greatly increased by H. Pylori, and H. Pylori can induce apoptosis in the phase of metaplasia but in the phase of

  8. [Alveolar hemorrhage].

    Science.gov (United States)

    Parrot, A; Fartoukh, M; Cadranel, J

    2015-04-01

    Alveolar hemorrhage occurs relatively rarely and is a therapeutic emergency because it can quickly lead to acute respiratory failure, which can be fatal. Hemoptysis associated with anemia and pulmonary infiltrates suggest the diagnosis of alveolar hemorrhage, but may be absent in one third of cases including patients in respiratory distress. The diagnosis of alveolar hemorrhage is based on the findings of a bronchoalveolar lavage. The causes are numerous. It is important to identify alveolar hemorrhage due to sepsis, then separate an autoimmune cause (vasculitis associated with antineutrophil cytoplasmic antibody, connective tissue disease and Goodpasture's syndrome) with the search for autoantibodies and biopsies from readily accessible organs, from a non-immune cause, performing echocardiography. Lung biopsy should be necessary only in exceptional cases. If the hemorrhage has an immune cause, treatment with steroids and cyclophosphamide may be started. The indications for treatment with rituximab are beginning to be established (forms that are not severe and refractory forms). The benefit of plasma exchange is unquestionable in Goodpasture's syndrome. In patients with an immune disease that can lead to an alveolar hemorrhage, removing any source of infection is the first priority.

  9. Long-term omeprazole and esomeprazole treatment does not significantly increase gastric epithelial cell proliferation and epithelial growth factor receptor expression and has no effect on apoptosis and p53 expression

    Institute of Scientific and Technical Information of China (English)

    Istvan Hritz; Laszlo Herszenyi; Bela Molnar; Zsolt Tulassay; Laszlo Pronai

    2005-01-01

    AIM: To study the effect of proton pump inhibitor (PPI)treatment on patients with reflux esophagitis and its in vivo effect on apoptosis, p53- and epidermal growth factor receptor (EGFR) expression.METHODS: After informed consent was obtained, gastric biopsies of the antrum were taken from patients with reflux oesophagitis prior to and after 6 mo of 20 mg omeprazole (n = 14) or 40 mg esomeprazole (n = 12) therapy.Patients did not take any other medications known to affect the gastric mucosa. All patients were Helicobacter pylori negative as confirmed by rapid urease test and histology,respectively. Cell proliferation, apoptosis, EGFR, and p53expression were measured by immunohistochemical techniques. At least 600 glandular epithelial cells were encountered and results were expressed as percentage of total cells counted. Was considered statistically significant.RESULTS: Although there was a trend towards increase of cell proliferation and EGFR expression both in omeprazole and esomeprazole treated group, the difference was not statistically significant. Neither apoptosis nor p53 expression was affected.CONCLUSION: Long-term PPI treatment does not significantly increase gastric epithelial cell proliferation and EGFR expression and has no effect on apoptosis and p53 expression.

  10. Lipoteichoic acid induces surfactant protein-A biosynthesis in human alveolar type II epithelial cells through activating the MEK1/2-ERK1/2-NF-κB pathway

    Directory of Open Access Journals (Sweden)

    Liu Feng-Lin

    2012-10-01

    Full Text Available Abstract Background Lipoteichoic acid (LTA, a gram-positive bacterial outer membrane component, can cause septic shock. Our previous studies showed that the gram-negative endotoxin, lipopolysaccharide (LPS, could induce surfactant protein-A (SP-A production in human alveolar epithelial (A549 cells. Objectives In this study, we further evaluated the effect of LTA on SP-A biosynthesis and its possible signal-transducing mechanisms. Methods A549 cells were exposed to LTA. Levels of SP-A, nuclear factor (NF-κB, extracellular signal-regulated kinase 1/2 (ERK1/2, and mitogen-activated/extracellular signal-regulated kinase kinase (MEK1 were determined. Results Exposure of A549 cells to 10, 30, and 50 μg/ml LTA for 24 h did not affect cell viability. Meanwhile, when exposed to 30 μg/ml LTA for 1, 6, and 24 h, the biosynthesis of SP-A mRNA and protein in A549 cells significantly increased. As to the mechanism, LTA enhanced cytosolic and nuclear NF-κB levels in time-dependent manners. Pretreatment with BAY 11–7082, an inhibitor of NF-κB activation, significantly inhibited LTA-induced SP-A mRNA expression. Sequentially, LTA time-dependently augmented phosphorylation of ERK1/2. In addition, levels of phosphorylated MEK1 were augmented following treatment with LTA. Conclusions Therefore, this study showed that LTA can increase SP-A synthesis in human alveolar type II epithelial cells through sequentially activating the MEK1-ERK1/2-NF-κB-dependent pathway.

  11. Effects of transforming growth factor-[beta] and budesonide on mitogen-activated protein kinase activation and apoptosis in airway epithelial cells.

    Science.gov (United States)

    Pelaia, Girolamo; Cuda, Giovanni; Vatrella, Alessandro; Fratto, Donatella; Grembiale, Rosa D; Tagliaferri, Pierosandro; Maselli, Rosario; Costanzo, Francesco S; Marsico, Serafino A

    2003-07-01

    Airway epithelial cells play a central role in the inflammatory, apoptotic, and remodeling processes associated with asthma. Within this context, a key function is exerted by transforming growth factor-beta (TGF-beta), whose biological effects are mediated at least in part by mitogen-activated protein kinases (MAPKs). The aim of our study was to investigate, in primary cultures of human bronchial epithelial cells (HBEC), the effects of TGF-beta (10 ng/ml) on both MAPK activation and apoptosis, in the presence or absence of a pretreatment with budesonide (10-8 M). MAPK activation was detected by Western blotting, using anti-phospho-MAPK monoclonal antibodies, which specifically recognize the phosphorylated, active forms of these enzymes. Apoptosis was assayed by caspase-3 activation and fluorescence microscopy, using annexin-V (An-V) and propidium iodide (PI) as markers of cell death. Our results show that TGF-beta induced a marked ( reverse similar 9-fold) increase in p38 MAPK phosphorylation, and also dramatically enhanced cell death, which was completely prevented by specific MAPK inhibitors. Both MAPK activation and apoptosis were effectively inhibited by budesonide (BUD), thereby suggesting that the powerful antiapoptotic action of inhaled glucocorticoids may be very important for their protective role against epithelial injury, which represents a key pathogenic event in asthma.

  12. Alveolar development and disease.

    Science.gov (United States)

    Whitsett, Jeffrey A; Weaver, Timothy E

    2015-07-01

    Gas exchange after birth is entirely dependent on the remarkable architecture of the alveolus, its formation and function being mediated by the interactions of numerous cell types whose precise positions and activities are controlled by a diversity of signaling and transcriptional networks. In the later stages of gestation, alveolar epithelial cells lining the peripheral lung saccules produce increasing amounts of surfactant lipids and proteins that are secreted into the airspaces at birth. The lack of lung maturation and the associated lack of pulmonary surfactant in preterm infants causes respiratory distress syndrome, a common cause of morbidity and mortality associated with premature birth. At the time of birth, surfactant homeostasis begins to be established by balanced processes involved in surfactant production, storage, secretion, recycling, and catabolism. Insights from physiology and engineering made in the 20th century enabled survival of newborn infants requiring mechanical ventilation for the first time. Thereafter, advances in biochemistry, biophysics, and molecular biology led to an understanding of the pulmonary surfactant system that made possible exogenous surfactant replacement for the treatment of preterm infants. Identification of surfactant proteins, cloning of the genes encoding them, and elucidation of their roles in the regulation of surfactant synthesis, structure, and function have provided increasing understanding of alveolar homeostasis in health and disease. This Perspective seeks to consider developmental aspects of the pulmonary surfactant system and its importance in the pathogenesis of acute and chronic lung diseases related to alveolar homeostasis.

  13. Systems-level comparison of host responses induced by pandemic and seasonal influenza A H1N1 viruses in primary human type I-like alveolar epithelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Guan Yi

    2010-10-01

    Full Text Available Abstract Background Pandemic influenza H1N1 (pdmH1N1 virus causes mild disease in humans but occasionally leads to severe complications and even death, especially in those who are pregnant or have underlying disease. Cytokine responses induced by pdmH1N1 viruses in vitro are comparable to other seasonal influenza viruses suggesting the cytokine dysregulation as seen in H5N1 infection is not a feature of the pdmH1N1 virus. However a comprehensive gene expression profile of pdmH1N1 in relevant primary human cells in vitro has not been reported. Type I alveolar epithelial cells are a key target cell in pdmH1N1 pneumonia. Methods We carried out a comprehensive gene expression profiling using the Affymetrix microarray platform to compare the transcriptomes of primary human alveolar type I-like alveolar epithelial cells infected with pdmH1N1 or seasonal H1N1 virus. Results Overall, we found that most of the genes that induced by the pdmH1N1 were similarly regulated in response to seasonal H1N1 infection with respect to both trend and extent of gene expression. These commonly responsive genes were largely related to the interferon (IFN response. Expression of the type III IFN IL29 was more prominent than the type I IFN IFNβ and a similar pattern of expression of both IFN genes was seen in pdmH1N1 and seasonal H1N1 infection. Genes that were significantly down-regulated in response to seasonal H1N1 but not in response to pdmH1N1 included the zinc finger proteins and small nucleolar RNAs. Gene Ontology (GO and pathway over-representation analysis suggested that these genes were associated with DNA binding and transcription/translation related functions. Conclusions Both seasonal H1N1 and pdmH1N1 trigger similar host responses including IFN-based antiviral responses and cytokine responses. Unlike the avian H5N1 virus, pdmH1N1 virus does not have an intrinsic capacity for cytokine dysregulation. The differences between pdmH1N1 and seasonal H1N1 viruses

  14. Modeling pulmonary fibrosis by abnormal expression of telomerase/apoptosis/collagen V in experimental usual interstitial pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Parra, E.R.; Pincelli, M.S. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Teodoro, W.R.; Velosa, A.P.P. [Disciplina de Reumatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Martins, V.; Rangel, M.P.; Barbas-Filho, J.V.; Capelozzi, V.L. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-06-04

    Limitations on tissue proliferation capacity determined by telomerase/apoptosis balance have been implicated in pathogenesis of idiopathic pulmonary fibrosis. In addition, collagen V shows promise as an inductor of apoptosis. We evaluated the quantitative relationship between the telomerase/apoptosis index, collagen V synthesis, and epithelial/fibroblast replication in mice exposed to butylated hydroxytoluene (BHT) at high oxygen concentration. Two groups of mice were analyzed: 20 mice received BHT, and 10 control mice received corn oil. Telomerase expression, apoptosis, collagen I, III, and V fibers, and hydroxyproline were evaluated by immunohistochemistry, in situ detection of apoptosis, electron microscopy, immunofluorescence, and histomorphometry. Electron microscopy confirmed the presence of increased alveolar epithelial cells type 1 (AEC1) in apoptosis. Immunostaining showed increased nuclear expression of telomerase in AEC type 2 (AEC2) between normal and chronic scarring areas of usual interstitial pneumonia (UIP). Control lungs and normal areas from UIP lungs showed weak green birefringence of type I and III collagens in the alveolar wall and type V collagen in the basement membrane of alveolar capillaries. The increase in collagen V was greater than collagens I and III in scarring areas of UIP. A significant direct association was found between collagen V and AEC2 apoptosis. We concluded that telomerase, collagen V fiber density, and apoptosis evaluation in experimental UIP offers the potential to control reepithelization of alveolar septa and fibroblast proliferation. Strategies aimed at preventing high rates of collagen V synthesis, or local responses to high rates of cell apoptosis, may have a significant impact in pulmonary fibrosis.

  15. Lipoxin A4 promotes lung epithelial repair whilst inhibiting fibroblast proliferation

    Directory of Open Access Journals (Sweden)

    Shengxing Zheng

    2016-10-01

    Full Text Available Therapy that promotes epithelial repair whilst protecting against fibroproliferation is critical for restoring lung function in acute and chronic respiratory diseases. Primary human alveolar type II cells were used to model the effects of lipoxin A4 in vitro upon wound repair, proliferation, apoptosis and transdifferention. Effects of lipoxin A4 upon primary human lung fibroblast proliferation, collagen production, and myofibroblast differentiation were also assessed. Lipoxin A4 promoted type II cell wound repair and proliferation, blocked the negative effects of soluble Fas ligand/tumour necrosis factor α upon cell proliferation, viability and apoptosis, and augmented the epithelial cell proliferative response to bronchoaveolar lavage fluid (BALF from acute respiratory distress syndrome (ARDS. In contrast, Lipoxin A4 reduced fibroblast proliferation, collagen production and myofibroblast differentiation induced by transforming growth factor β and BALF from ARDS. The effects of Lipoxin A4 were phosphatidylinositol 3′-kinase dependent and mediated via the lipoxin A4 receptor. Lipoxin A4 appears to promote alveolar epithelial repair by stimulating epitheial cell wound repair, proliferation, reducing apoptosis and promoting trans-differentiation of alveolar type II cells into type I cells. Lipoxin A4 reduces fibroblast proliferation, collagen production and myofibroblast differentiation. These data suggest that targeting lipoxin actions may be a therapeutic strategy for treating the resolution phase of ARDS.

  16. microRNA-142 is upregulated by tumor necrosis factor-alpha and triggers apoptosis in human gingival epithelial cells by repressing BACH2 expression

    Science.gov (United States)

    Li, Song; Song, Zhongchen; Dong, Jiachen; Shu, Rong

    2017-01-01

    Tumor necrosis factor-alpha (TNF-α) has been shown to cause apoptosis of gingival epithelial cells (GECs) in periodontitis. However, the underlying molecular mechanism is still unclear. In this study, we showed that miR-142 expression was significantly elevated in human GECs after exposure to TNF-α. Such induction was in a time- and concentration-dependent manner. Serum miR-142 levels were positively correlated with serum TNF-α levels in patients with chronic periodontitis (r = 0.314, P = 0.0152). Depletion of miR-142 was found to attenuate TNF-α-induced apoptosis, as determined by TUNEL staining and caspase-3 activity assays. In contrast, overexpression of miR-142 significantly reduced viability and induced apoptosis in GECs. Basic leucine zipper transcription factor 2 (BACH2) was identified to be a functional target of miR-142. Overexpression of miR-142 caused a 3-fold reduction of BACH2 protein in primary GECs. Overexpression of BACH2 significantly reversed miR-142- or TNF-α-induced apoptosis of GECs. Similar to the findings with miR-142 mimic, depletion of BACH2 significantly promoted apoptosis in GECs, which was accompanied by decreased expression of Bcl-2 and Bcl-xL and increased expression of Bax and Bim. Overall, miR-142 mediates TNF-α-induced apoptosis in gingival epithelial cells by targeting BACH2 and may represent a potential therapeutic target for periodontitis. PMID:28123644

  17. Effect of Shenfu Injection (ginesenoside and aconite alkaloid) on the apoptosis of intestinal mucosal epithelial cells and its mechanism during ischemia-reperfusion in rats

    Institute of Scientific and Technical Information of China (English)

    夏中元; 孟庆涛; 张帆; 陈向东

    2004-01-01

    Objective: To investigate the effect of Shenfu Injection (SF, ginesenoside and aconite alkaloid) on the apoptosis of intestinal mucosal epithelial cells during ischemia-reperfusion in rats and its potential mechanisms. Methods: Ischemia-reperfusion model was established in rats. Twenty-four rats were divided into 3 groups with 8 rats in each, eg, ischemia-reperfusion (I/R) group, SF-treated group, and control group. In both SF and I/R groups, the superior mesenteric artery was closed with forceps for 1 hour and then reperfused for 2 hours. Either SF (3 ml/kg, SF group) or normal saline (I/R and control groups) was injected intravenously and continuously for 5 ml/kg with a micropump before the superior mesenteric artery was closed. The superior mesenteric artery was not closed for animals in control group. The expression of casapse-3 and Fas, and the level of TNF-α and pathological changes of the ileal mucosal tissue were assayed. Results: (1) The number of apoptosis cells increased obviously in I/R group and was significantly higher than that in SF and control groups (P<0.05). (2) The expression of caspase-3, Fas, and TNF-α was significantly higher in I/R group than SF and control groups (P<0.01); however, there was not significant difference in the expression of capase-3 between control group and SF group. There was a positive correlation between the expression of caspase-3, Fas, and TNF-α, and the number of apoptosis cells. (3) Under light microscope, intestinal mucosal impairment was found milder in SF group than I/R group (P<0.05). Conclusions: SF can depress the apoptosis of intestinal mucosal epithelial cells during ischemia-reperfusion by restraining the expression of TNF-α, Fas, caspase-3, and accordingly alleviate the ischemia and reperfusion injury of intestinal mucosal epithelial cells.

  18. Alpha lipoic acid protects lens from H2O2-induced cataract by inhibiting apoptosis of lens epithelial cells and inducing activation of anti-oxidative enzymes

    Institute of Scientific and Technical Information of China (English)

    Yun Li; Ya-Zhen Liu; Jing-Ming Shi; Song-Bai Jia

    2013-01-01

    Objective: To determine whether alpha lipoic acid (LA) can effectively protect lenses from hydrogen peroxide (H2O2)-induced cataract. Methods: Lens from adult Sprague-Dawley rats were cultured in 24-well plates and treated without or with 0.2 mM of H2O2, 0.2 mM of H2O2 plus 0.5 mM, 1.0 mM, or 2.0 mM of LA for 24 h. Cataract was assessed using cross line grey scale measurement. Superoxide dismutase (SOD), glutathione (GSH-Px), lactate dehydrogenase (LDH), and malondialdehyde (MDA) activity or level in lens homogenates was measured. Apoptosis of lens epithelial cells in each group were detected by Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) Assay. Results: A total of 0.2 mM of H2O2 induced obvious cataract formation and apoptosis in lens’ epithelial cells, but 0.5-2.0 mM of LA could block the effect of 0.2 mM H2O2 in inducing cataract and apoptosis. Furthermore, 0.2 mM of H2O2 significantly decreased SOD, GSH-Px, and LDH activity and significant increased MDA level in the lens, but 0.5-2.0 mM of LA blocked the effect of 0.2 mM H2O2. One mM of LA was found to be the most effective. Conclusions: LA can protect lens from H2O2-induced cataract. LA exerts protective effects through inhibition of lens’ epithelial cell apoptosis and activation of anti-oxidative enzymes.

  19. Advanced glycation end products induce human corneal epithelial cells apoptosis through generation of reactive oxygen species and activation of JNK and p38 MAPK pathways.

    Directory of Open Access Journals (Sweden)

    Long Shi

    Full Text Available Advanced Glycation End Products (AGEs has been implicated in the progression of diabetic keratopathy. However, details regarding their function are not well understood. In the present study, we investigated the effects of intracellular reactive oxygen species (ROS and JNK, p38 MAPK on AGE-modified bovine serum albumin (BSA induced Human telomerase-immortalized corneal epithelial cells (HUCLs apoptosis. We found that AGE-BSA induced HUCLs apoptosis and increased Bax protein expression, decreased Bcl-2 protein expression. AGE-BSA also induced the expression of receptor for advanced glycation end product (RAGE. AGE-BSA-RAGE interaction induced intracellular ROS generation through activated NADPH oxidase and increased the phosphorylation of p47phox. AGE-BSA induced HUCLs apoptosis was inhibited by pretreatment with NADPH oxidase inhibitors, ROS quencher N-acetylcysteine (NAC or neutralizing anti-RAGE antibodies. We also found that AGE-BSA induced JNK and p38 MAPK phosphorylation. JNK and p38 MAPK inhibitor effectively blocked AGE-BSA-induced HUCLs apoptosis. In addition, NAC completely blocked phosphorylation of JNK and p38 MAPK induced by AGE-BSA. Our results indicate that AGE-BSA induced HUCLs apoptosis through generation of intracellular ROS and activation of JNK and p38 MAPK pathways.

  20. Alveolar epithelial cells (A549) exposed at the air-liquid interface to diesel exhaust: First study in TNO's powertrain test center

    NARCIS (Netherlands)

    Kooter, I.M.; Alblas, M.J.; Jedynska, A.D.; Steenhof, M.; Houtzager, M.M.G.; Ras, M.G. van

    2013-01-01

    Air–liquid interface (ALI) exposures enable in vitro testing ofmixtures of gases and particles such as diesel exhaust (DE). The main objective of this study was to investigate the feasibility of exposing human lung epithelial cells at the ALI to complete DE generated by a heavy-duty truck in the sta

  1. Inhibition of p38-MAPK potentiates cisplatin-induced apoptosis via GSH depletion and increases intracellular drug accumulation in growth-arrested kidney tubular epithelial cells.

    Science.gov (United States)

    Rodríguez-García, Maria Elena; Quiroga, Adoración G; Castro, José; Ortiz, Alberto; Aller, Patricio; Mata, Felicísima

    2009-10-01

    We were interested in analyzing the regulation by mitogen-activated protein kinases (MAPKs) of cisplatin-provoked toxicity in epithelial renal tubule cell lines, when assayed under culture conditions (cell confluence plus serum deprivation), which mimic the characteristics of a nonproliferating epithelium. Under these restrictive growth conditions, cisplatin induced apoptosis with lower efficacy than in exponentially growing cells, and decreased p38-MAPK phosphorylation in NRK-52E and other (LLC-PK1, MDCK, HK2) cell lines. Moreover, cisplatin-provoked apoptosis was potentiated by cotreatment with p38-MAPK-specific inhibitors (SB203580, SB220025) or transfection with a kinase-negative mutant of MKK6, whereas c-Jun NH2-terminal kinase or extracellular signal-regulated kinase/MAPK and ERK Kinase inhibitors were ineffective. By contrast, when applied to exponentially growing cells, cisplatin stimulated p38-MAPK phosphorylation and apoptosis, was attenuated by kinase inhibitors. Treatment of confluent/serum-deprived cells with cisplatin caused mitochondrial transmembrane potential disruption and activated the mitochondrial apoptotic pathway, as indicated by the decrease in Bcl-X(L) expression, increase in Bax expression and cytochrome c release, and these effects were potentiated by cotreatment with SB203580. Treatment of confluent/serum-deprived cells with cisplatin plus SB203580 decreased the intracellular reduced glutathione (GSH) content, and increased intracellular cisplatin accumulation as well as cisplatin binding to DNA. Cotreatment with the GSH-depleting agent D,L-buthionine-R,S-sulfoximine also potentiated cisplatin-provoked apoptosis. In summary, p38-MAPK inhibition potentiates cisplatin-provoked apoptosis in growth-arrested epithelial renal tubule cells, a result that may be explained at least in part by GSH depletion and drug transport alteration.

  2. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity

    Science.gov (United States)

    Westphalen, Kristin; Gusarova, Galina A.; Islam, Mohammad N.; Subramanian, Manikandan; Cohen, Taylor S.; Prince, Alice S.; Bhattacharya, Jahar

    2014-02-01

    The tissue-resident macrophages of barrier organs constitute the first line of defence against pathogens at the systemic interface with the ambient environment. In the lung, resident alveolar macrophages (AMs) provide a sentinel function against inhaled pathogens. Bacterial constituents ligate Toll-like receptors (TLRs) on AMs, causing AMs to secrete proinflammatory cytokines that activate alveolar epithelial receptors, leading to recruitment of neutrophils that engulf pathogens. Because the AM-induced response could itself cause tissue injury, it is unclear how AMs modulate the response to prevent injury. Here, using real-time alveolar imaging in situ, we show that a subset of AMs attached to the alveolar wall form connexin 43 (Cx43)-containing gap junction channels with the epithelium. During lipopolysaccharide-induced inflammation, the AMs remained sessile and attached to the alveoli, and they established intercommunication through synchronized Ca2+ waves, using the epithelium as the conducting pathway. The intercommunication was immunosuppressive, involving Ca2+-dependent activation of Akt, because AM-specific knockout of Cx43 enhanced alveolar neutrophil recruitment and secretion of proinflammatory cytokines in the bronchoalveolar lavage. A picture emerges of a novel immunomodulatory process in which a subset of alveolus-attached AMs intercommunicates immunosuppressive signals to reduce endotoxin-induced lung inflammation.

  3. Sclerotium rolfsii Lectin Induces Stronger Inhibition of Proliferation in Human Breast Cancer Cells than Normal Human Mammary Epithelial Cells by Induction of Cell Apoptosis

    Science.gov (United States)

    Savanur, Mohammed Azharuddin; Eligar, Sachin M.; Pujari, Radha; Chen, Chen; Mahajan, Pravin; Borges, Anita; Shastry, Padma; Ingle, Arvind.; Kalraiya, Rajiv D.; Swamy, Bale M.; Rhodes, Jonathan M.; Yu, Lu-Gang; Inamdar, Shashikala R.

    2014-01-01

    Sclerotium rolfsii lectin (SRL) isolated from the phytopathogenic fungus Sclerotium rolfsii has exquisite binding specificity towards O-linked, Thomsen-Freidenreich (Galβ1-3GalNAcα1-Ser/Thr, TF) associated glycans. This study investigated the influence of SRL on proliferation of human breast cancer cells (MCF-7 and ZR-75), non-tumorigenic breast epithelial cells (MCF-10A) and normal mammary epithelial cells (HMECs). SRL caused marked, dose-dependent, inhibition of proliferation of MCF-7 and ZR-75 cells but only weak inhibition of proliferation of non-tumorigenic MCF-10A and HMEC cells. The inhibitory effect of SRL on cancer cell proliferation was shown to be a consequence of SRL cell surface binding and subsequent induction of cellular apoptosis, an effect that was largely prevented by the presence of inhibitors against caspases -3, -8, or -9. Lectin histochemistry using biotin-labelled SRL showed little binding of SRL to normal human breast tissue but intense binding to cancerous tissues. In conclusion, SRL inhibits the growth of human breast cancer cells via induction of cell apoptosis but has substantially less effect on normal epithelial cells. As a lectin that binds specifically to a cancer-associated glycan, has potential to be developed as an anti-cancer agent. PMID:25364905

  4. Sclerotium rolfsii lectin induces stronger inhibition of proliferation in human breast cancer cells than normal human mammary epithelial cells by induction of cell apoptosis.

    Science.gov (United States)

    Savanur, Mohammed Azharuddin; Eligar, Sachin M; Pujari, Radha; Chen, Chen; Mahajan, Pravin; Borges, Anita; Shastry, Padma; Ingle, Arvind; Kalraiya, Rajiv D; Swamy, Bale M; Rhodes, Jonathan M; Yu, Lu-Gang; Inamdar, Shashikala R

    2014-01-01

    Sclerotium rolfsii lectin (SRL) isolated from the phytopathogenic fungus Sclerotium rolfsii has exquisite binding specificity towards O-linked, Thomsen-Freidenreich (Galβ1-3GalNAcα1-Ser/Thr, TF) associated glycans. This study investigated the influence of SRL on proliferation of human breast cancer cells (MCF-7 and ZR-75), non-tumorigenic breast epithelial cells (MCF-10A) and normal mammary epithelial cells (HMECs). SRL caused marked, dose-dependent, inhibition of proliferation of MCF-7 and ZR-75 cells but only weak inhibition of proliferation of non-tumorigenic MCF-10A and HMEC cells. The inhibitory effect of SRL on cancer cell proliferation was shown to be a consequence of SRL cell surface binding and subsequent induction of cellular apoptosis, an effect that was largely prevented by the presence of inhibitors against caspases -3, -8, or -9. Lectin histochemistry using biotin-labelled SRL showed little binding of SRL to normal human breast tissue but intense binding to cancerous tissues. In conclusion, SRL inhibits the growth of human breast cancer cells via induction of cell apoptosis but has substantially less effect on normal epithelial cells. As a lectin that binds specifically to a cancer-associated glycan, has potential to be developed as an anti-cancer agent.

  5. Protective effect of Ac-SDKP on alveolar epithelial cells through inhibition of EMT via TGF-β1/ROCK1 pathway in silicosis in rat.

    Science.gov (United States)

    Deng, Haijing; Xu, Hong; Zhang, Xianghong; Sun, Yue; Wang, Ruimin; Brann, Darrell; Yang, Fang

    2016-03-01

    The epithelial-mesenchymal transition (EMT) is a critical stage during the development of silicosis fibrosis. In the current study, we hypothesized that the anti-fibrotic tetrapeptide, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) may exert its anti-fibrotic effects via activation of the TGF-β1/ROCK1 pathway, leading to inhibition of EMT. To address this hypothesis, we first examined the effect of Ac-SDKP upon EMT using an in vivo rat silicosis model, as well as in an in vitro model of TGF-β1-induced EMT. Confocal laser scanning microscopy was used to examine colocalization of surfactant protein A (SP-A), fibroblast specific protein-1 (FSP-1) and α-smooth muscle actin (α-SMA) in vivo. Western blot analysis was used to examine for changes in the protein levels of E-cadherin (E-cad) and SP-A (epithelial cell markers), vimentin (mesenchymal cell marker), α-SMA (active myofibroblast marker), and collagen I and III in both in vivo and in vitro experiments. Secondly, we utilized Western blot analysis and confocal laser scanning microscopy to examine the protein expression of TGF-β1 and ROCK1 in in vivo and in vitro studies. The results revealed that Ac-SDKP treatment prevented increases in the expression of mesenchymal markers as well as TGF-β1, ROCK1, collagen I and III. Furthermore, Ac-SDKP treatment prevented decreases in the expression of epithelial cell markers in both in vivo and in vitro experiments. Based on the results, we conclude that Ac-SDKP inhibits the transition of epithelial cell-myofibroblast in silicosis via activation of the TGF-β1/ROCK1 signaling pathway, which may serve as a novel mechanism by which it exerts its anti-fibrosis properties.

  6. Study on Relationship between the Thickness of Tongue Fur and the Expressions of Apoptosis-related Genes of the Tongue Epithelial Cells in Patients with Diseases of the Digestive System

    Institute of Scientific and Technical Information of China (English)

    Wu Zhengzhi; Li Ming; Zhang Yongfeng; Chen Manyin

    2007-01-01

    To investigate the relationship between the thickness of tongue fur, apoptosis of the tongue fur epithelial cells and expressions of apoptosis-related genes in diseases of the digestive system,apoptosis-related genes TGF-β3, fas mRNA and protein products were detected with terminal deoxynucleotidyl transferase-mediated deoxyurine triphosphate (d-UTP) nick-end labeling(TUNEL)technique, in situ hybridization, immunohistochemical methods, and image analysis technique,respectively. Results indicated that compared with the normal tongue fur, over-expression of fas gene was found in the peeling fur with an increase in cell apoptosis, while a low-expression of TGF-β3 in the thick fur with a decrease in cell apoptosis. The changes in expression levels of fas and TGF-β3 genes,apoptosis-promoting genes in the tongue fur epithelial cells, had a similar tendency of cell apoptosis level.It is concluded that the changes in expression levels of fas and TGF-β3 are possibly important reasons influencing apoptosis of epithelial cells of tongue fur and leading to changes in thickness of the tongue fur.

  7. Crocus sativus L. (Saffron Stigma Aqueous Extract Induces Apoptosis in Alveolar Human Lung Cancer Cells through Caspase-Dependent Pathways Activation

    Directory of Open Access Journals (Sweden)

    Saeed Samarghandian

    2013-01-01

    Full Text Available Worldwide, lung cancer is the most common form of cancer. Saffron has been used in folk medicine for centuries. We investigated the potential of saffron to induce cytotoxic and apoptotic effects in lung cancer cells (A549. We also examined the caspase-dependent pathways activation of saffron-induced apoptosis against the A549 cells. A549 cells were incubated with different concentrations of saffron extract; then cell morphological changes, cell viability, and apoptosis were determined by the normal invertmicroscope, MTT assay, Annexin V and propidium iodide, and flow cytometric analysis, respectively. Activated caspases were detected by treatment of saffron in lung cancer cells using fluorescein-labeled inhibitors of polycaspases. The proliferation of the A549 cells were decreased after treatment with saffron in a dose- and time-dependent manner. The percentage of apoptotic cells increased with saffron concentrations. Saffron induced morphological changes, decreased percentage of viable cells, and induced apoptosis. Saffron could induce apoptosis in the A549 cells and activate caspase pathways. The levels of caspases involved in saffron-induced apoptosis in the A549 cells indicating caspase-dependent pathway were induced by saffron. The anticancer activity of the aqueous extract of saffron could be attributed partly to its inhibition of the cell proliferation and induction of apoptosis in cancer cells through caspase-dependent pathways activation.

  8. Crocus sativus L. (saffron) stigma aqueous extract induces apoptosis in alveolar human lung cancer cells through caspase-dependent pathways activation.

    Science.gov (United States)

    Samarghandian, Saeed; Borji, Abasalt; Farahmand, Seyed Kazem; Afshari, Reza; Davoodi, Saeideh

    2013-01-01

    Worldwide, lung cancer is the most common form of cancer. Saffron has been used in folk medicine for centuries. We investigated the potential of saffron to induce cytotoxic and apoptotic effects in lung cancer cells (A549). We also examined the caspase-dependent pathways activation of saffron-induced apoptosis against the A549 cells. A549 cells were incubated with different concentrations of saffron extract; then cell morphological changes, cell viability, and apoptosis were determined by the normal invertmicroscope, MTT assay, Annexin V and propidium iodide, and flow cytometric analysis, respectively. Activated caspases were detected by treatment of saffron in lung cancer cells using fluorescein-labeled inhibitors of polycaspases. The proliferation of the A549 cells were decreased after treatment with saffron in a dose- and time-dependent manner. The percentage of apoptotic cells increased with saffron concentrations. Saffron induced morphological changes, decreased percentage of viable cells, and induced apoptosis. Saffron could induce apoptosis in the A549 cells and activate caspase pathways. The levels of caspases involved in saffron-induced apoptosis in the A549 cells indicating caspase-dependent pathway were induced by saffron. The anticancer activity of the aqueous extract of saffron could be attributed partly to its inhibition of the cell proliferation and induction of apoptosis in cancer cells through caspase-dependent pathways activation.

  9. Infection of epithelial cells with Chlamydia trachomatis inhibits TNF-induced apoptosis at the level of receptor internalization while leaving non-apoptotic TNF-signalling intact.

    Science.gov (United States)

    Waguia Kontchou, Collins; Tzivelekidis, Tina; Gentle, Ian E; Häcker, Georg

    2016-11-01

    Chlamydia trachomatis is an obligate intracellular bacterial pathogen of medical importance. C. trachomatis develops inside a membranous vacuole in the cytosol of epithelial cells but manipulates the host cell in numerous ways. One prominent effect of chlamydial infection is the inhibition of apoptosis in the host cell, but molecular aspects of this inhibition are unclear. Tumour necrosis factor (TNF) is a cytokine with important roles in immunity, which is produced by immune cells in chlamydial infection and which can have pro-apoptotic and non-apoptotic signalling activity. We here analysed the signalling through TNF in cells infected with C. trachomatis. The pro-apoptotic signal of TNF involves the activation of caspase-8 and is controlled by inhibitor of apoptosis proteins. We found that in C. trachomatis-infected cells, TNF-induced apoptosis was blocked upstream of caspase-8 activation even when inhibitor of apoptosis proteins were inhibited or the inhibitor of caspase-8 activation, cFLIP, was targeted by RNAi. However, when caspase-8 was directly activated by experimental over-expression of its upstream adapter Fas-associated protein with death domain, C. trachomatis was unable to inhibit apoptosis. Non-apoptotic TNF-signalling, particularly the activation of NF-κB, initiates at the plasma membrane, while the activation of caspase-8 and pro-apoptotic signalling occur subsequently to internalization of TNF receptor and the formation of a cytosolic signalling complex. In C. trachomatis-infected cells, NF-κB activation through TNF was unaffected, while the internalization of the TNF-TNF-receptor complex was blocked, explaining the lack of caspase-8 activation. These results identify a dichotomy of TNF signalling in C. trachomatis-infected cells: Apoptosis is blocked at the internalization of the TNF receptor, but non-apoptotic signalling through this receptor remains intact, permitting a response to this cytokine at sites of infection.

  10. Bardoxolone methyl induces apoptosis and autophagy and inhibits epithelial-to-mesenchymal transition and stemness in esophageal squamous cancer cells.

    Science.gov (United States)

    Wang, Yan-Yang; Yang, Yin-Xue; Zhao, Ren; Pan, Shu-Ting; Zhe, Hong; He, Zhi-Xu; Duan, Wei; Zhang, Xueji; Yang, Tianxin; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Natural and synthetic triterpenoids have been shown to kill cancer cells via multiple mechanisms. The therapeutic effect and underlying mechanism of the synthetic triterpenoid bardoxolone methyl (C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid; CDDO-Me) on esophageal cancer are unclear. Herein, we aimed to investigate the anticancer effects and underlying mechanisms of CDDO-Me in human esophageal squamous cell carcinoma (ESCC) cells. Our study showed that CDDO-Me suppressed the proliferation and arrested cells in G2/M phase, and induced apoptosis in human ESCC Ec109 and KYSE70 cells. The G2/M arrest was accompanied with upregulated p21Waf1/Cip1 and p53 expression. CDDO-Me significantly decreased B-cell lymphoma-extra large (Bcl-xl), B-cell lymphoma 2 (Bcl-2), cleaved caspase-9, and cleaved poly ADP ribose polymerase (PARP) levels but increased the expression level of Bcl-2-associated X (Bax). Furthermore, CDDO-Me induced autophagy in both Ec109 and KYSE70 cells via suppression of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway. There were interactions between the autophagic and apoptotic pathways in Ec109 and KYSE70 cells subject to CDDO-Me treatment. CDDO-Me also scavenged reactive oxygen species through activation of the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) pathway in Ec109 and KYSE70 cells. CDDO-Me inhibited cell invasion, epithelial-mesenchymal transition, and stemness in Ec109 and KYSE70 cells. CDDO-Me significantly downregulated E-cadherin but upregulated Snail, Slug, and zinc finger E-box-binding homeobox 1 (TCF-8/ZEB1) in Ec109 and KYSE70 cells. CDDO-Me significantly decreased the expression of octamer-4, sex determining region Y-box 2 (Sox-2), Nanog, and B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1), all markers of cancer cell stemness, in Ec109 and KYSE70 cells. Taken together, these results indicate that CDDO-Me is a promising anticancer agent

  11. Effects of broth culture filtrate protein of VacA+ Helicobacter pylori on the proliferation and apoptosis of gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yu-qing; GUO Tao; QIAN Jia-ming

    2013-01-01

    Background Infection with Helicobacterpylori (H.pylori) may lead to chronic inflammation of the stomach epithelium,mucosal atrophy,imbalance of proliferation and apoptosis of epithelial cells; resulting in chronic gastritis,peptic ulcer,gastric cancer,and many other clinical outcomes.Why and how H.pylorus leads to gastric cancer is not clear yet.Through in vitro experiments,this study evaluated the effects of broth culture filtrate protein (BCF-P) from the supernatant of liquid culture media of H.pylori on proliferation and apoptosis of immortalized human gastric epithelial cell lines (GES-1) and gastric cancer cell lines (AGS).Methods For the study,GES-1 and AGS cell lines mix with BCF-P and epidermal growth factor (EGF).MTT assay and flow cytometry (FCM) determined the levels of proliferation and apoptosis.Detected expression levels of cyclooxygenase-2 (COX-2) and Fas mRNA by reverse transcription (RT)-PCR.Also did analysis of the effects of BCF-P on epidermal growth factor receptor (EGFR) tyrosine kinase activity of GES-1 and AGS cells by non-radioactive enzyme-linked assay.The Student's t test and one-way analysis of variance (ANOVA) were used for statistical analysis.Results BCF-P inhibited proliferation of GES-1 and AGS cells in a concentration-dependent manner.The inhibition rates are respectively 68.7% in AGS and 61.4% in GES-1.With the same dose and time for inhibiting the proliferation,BCF-P failed to induce apoptosis of GES-1 and AGS cells.Effects of BCF-P reduced the expression of Fas mRNA of GES-1 and AGS cells (P <0.05).This is consistent with the effects of EGF.BCF-P reduced the expression of COX-2mRNA of AGS cells (P <0.05).This is opposite to the effects of EGF (P <0.05).Effects of BCF-P improved more than three times the EGFR tyrosine kinase activity of GES-1 and AGS cells.Conclusions BCF-P inhibited the proliferation of AGS and GES-1 cells in vitro,unrelated to apoptosis.Effects of BCF-P on gastric epithelial cells in vitro are not

  12. Ischemia Induced Caveolin-1 Moving from Cell Membrane to Lipid Droplets in Type Ⅱ Alveolar Epithelial Cell%缺血引起陷窝蛋白-1在肺泡Ⅱ型上皮细胞定位的改变

    Institute of Scientific and Technical Information of China (English)

    李凌海; 耿万明; 王子彤; 秦林; 张慧娜

    2013-01-01

    Type Ⅱ alveolar epithelial cells play an important role in ischemia of the lung.In this research,the authors studied the intracellular location of the caveolin-1 in type Ⅱ alveolar epithelial cells under normal and ischemia status.They purified the lipid droplets from type Ⅱ alveolar epithelial cell line A549.The results indicated that caveolin-1 was localized on plasma membrane as well as lipid droplets of alveolar epithelial cell,whereas ischemia stimulus induced caveolin-1 moving from cell membrane to lipid droplets in A549 cell line.In human lung tissue,They also observed the translocation of caveolin-1 from cell membrane to lipid droplets under ischemia status.These findings may promote new directions in future research concerning the mechanism of lung ischemia injury.%肺泡Ⅱ型上皮细胞在肺缺血病理过程中具有重要作用.为研究缺血对陷窝蛋白-1在肺泡Ⅱ型上皮细胞A549脂滴定位的影响,利用已经建立的脂滴纯化方法,纯化得到肺泡Ⅱ型上皮细胞A549的脂滴,并在脂滴上发现了陷窝蛋白-1.在A549细胞缺血模型中发现缺血可以导致陷窝蛋白-1从细胞膜移动到脂滴.人肺组织脂滴纯化实验也证实缺血可以刺激陷窝蛋白-1从细胞膜移动到脂滴.这一发现将为肺缺血机制的研究提供新的思路.

  13. Epidermal growth factor receptor and alveolar epithelial atypical adenomatous hyperplasia%表皮生长因子受体与肺泡上皮不典型腺瘤样增生的关系

    Institute of Scientific and Technical Information of China (English)

    黄谦

    2012-01-01

    Lung cancer is a common malignant tumor and lung adenocarcinoma is the main type of it. Bronchioloalveolar lung carcinoma (BAC) is a special type of lung adenocarcinoma. Research indicates that alveolar epithelial atypical adenomatous hyperplasia (AAH) in BAC or adenocarcinoma may be a precancerous lesion, even in the early stage of cancer. Overexpression and/or mutatioin of epidermal growth factor receptor (EGFR) is closely related to the occurrence, development, invasion and metastasis of lung cancer, especially in non-small-cell lung cancer (NSCLC). But there are few studies reported about EGFR in the precancerous lesion of non-small-cell lung cancer.%肺癌是人类常见的恶性肿瘤,肺腺癌是其主要类型之一.细支气管肺泡癌(bronchioloalveolar lung carcinoma,BAC)是肺腺癌的一个特殊类型.肺泡上皮不典型腺瘤样增生(atypical adenomatous hyperplasia,AAH)可能是BAC或腺癌的癌前病变,甚至是其早期癌.表皮生长因子受体(epidermal growth factor receptor,EGFR)的过表达和(或)突变与肺癌尤其是非小细胞肺癌(non-small-cell lung cancer,NSCLC)的发生、发展、侵袭和转移等密切相关.

  14. Anacardic acid, a histone acetyltransferase inhibitor, modulates LPS-induced IL-8 expression in a human alveolar epithelial cell line A549 [v1; ref status: indexed, http://f1000r.es/o7

    Directory of Open Access Journals (Sweden)

    Tetsuo Yasutake

    2013-03-01

    Full Text Available Objective and design: The histone acetylation processes, which are believed to play a critical role in the regulation of many inflammatory genes, are reversible and regulated by histone acetyltransferases (HATs, which promote acetylation, and histone deacetylases (HDACs, which promote deacetylation. We studied the effects of lipopolysaccharide (LPS on histone acetylation and its role in the regulation of interleukin (IL-8 expression.  Material: A human alveolar epithelial cell line A549 was used in vitro. Methods: Histone H4 acetylation at the IL-8 promoter region was assessed by a chromatin immunoprecipitation (ChIP assay. The expression and production of IL-8 were evaluated by quantitative polymerase chain reaction and specific immunoassay. Effects of a HDAC inhibitor, trichostatin A (TSA, and a HAT inhibitor, anacardic acid, were assessed.  Results: Escherichia coli-derived LPS showed a dose- and time-dependent stimulatory effect on IL-8 protein production and mRNA expression in A549 cells in vitro. LPS showed a significant stimulatory effect on histone H4 acetylation at the IL-8 promoter region by ChIP assay. Pretreatment with TSA showed a dose-dependent stimulatory effect on IL-8 release from A549 cells as compared to LPS alone. Conversely, pretreatment with anacardic acid inhibited IL-8 production and expression in A549 cells.  Conclusion: These data suggest that LPS-mediated proinflammatory responses in the lungs might be modulated via changing chromatin remodeling by HAT inhibition.

  15. Differences in Cytotoxic, Genotoxic, and Inflammatory Response of Bronchial and Alveolar Human Lung Epithelial Cells to Pristine and COOH-Functionalized Multiwalled Carbon Nanotubes

    Science.gov (United States)

    Fresegna, Anna Maria; Ciervo, Aureliano; Buresti, Giuliana

    2014-01-01

    Functionalized MWCNTs are used in many commercial and biomedical applications, but their potential health effects are not well defined. We investigated and compared cytotoxic, genotoxic/oxidative, and inflammatory effects of pristine and carboxyl MWCNTs exposing human respiratory (A549 and BEAS-2B) cells to 1–40 μg/mL of CNTs for 24 h. Both MWCNTs induced low viability reduction (by WST1 assay) in A549 cells and only MWCNTs-COOH caused high viability reduction in BEAS-2B cells reaching 28.5% viability at 40 μg/mL. Both CNTs induced membrane damage (by LDH assay) with higher effects in BEAS-2B cells at the highest concentrations reaching 20% cytotoxicity at 40 μg/mL. DNA damage (by Fpg-comet assay) was induced by pristine MWCNTs in A549 cells and by both MWCNTs in BEAS-2B cells reaching for MWCNTs-COOH a tail moment of 22.2 at 40 μg/mL versus 10.2 of unexposed cells. Increases of IL-6 and IL-8 release (by ELISA) were detected in A549 cells exposed to MWCNTs-COOH from 10 μg/mL while IL-8 increased in BEAS-2B cells exposed to pristine MWCNTs at 20 and 40 μg/mL. The results show higher cytogenotoxicity of MWCNTs-COOH in bronchial and of pristine MWCNTs in alveolar cells. Different inflammatory response was also found. The findings suggest the use of in vitro models with different end points and cells to study CNT toxicity. PMID:25147797

  16. Differences in cytotoxic, genotoxic, and inflammatory response of bronchial and alveolar human lung epithelial cells to pristine and COOH-functionalized multiwalled carbon nanotubes.

    Science.gov (United States)

    Ursini, Cinzia Lucia; Cavallo, Delia; Fresegna, Anna Maria; Ciervo, Aureliano; Maiello, Raffaele; Buresti, Giuliana; Casciardi, Stefano; Bellucci, Stefano; Iavicoli, Sergio

    2014-01-01

    Functionalized MWCNTs are used in many commercial and biomedical applications, but their potential health effects are not well defined. We investigated and compared cytotoxic, genotoxic/oxidative, and inflammatory effects of pristine and carboxyl MWCNTs exposing human respiratory (A549 and BEAS-2B) cells to 1-40 μg/mL of CNTs for 24 h. Both MWCNTs induced low viability reduction (by WST1 assay) in A549 cells and only MWCNTs-COOH caused high viability reduction in BEAS-2B cells reaching 28.5% viability at 40 μg/mL. Both CNTs induced membrane damage (by LDH assay) with higher effects in BEAS-2B cells at the highest concentrations reaching 20% cytotoxicity at 40 μg/mL. DNA damage (by Fpg-comet assay) was induced by pristine MWCNTs in A549 cells and by both MWCNTs in BEAS-2B cells reaching for MWCNTs-COOH a tail moment of 22.2 at 40 μg/mL versus 10.2 of unexposed cells. Increases of IL-6 and IL-8 release (by ELISA) were detected in A549 cells exposed to MWCNTs-COOH from 10 μg/mL while IL-8 increased in BEAS-2B cells exposed to pristine MWCNTs at 20 and 40 μg/mL. The results show higher cytogenotoxicity of MWCNTs-COOH in bronchial and of pristine MWCNTs in alveolar cells. Different inflammatory response was also found. The findings suggest the use of in vitro models with different end points and cells to study CNT toxicity.

  17. Prostaglandin E2 reduces radiation-induced epithelial apoptosis through a mechanism involving AKT activation and bax translocation.

    Science.gov (United States)

    Tessner, Teresa G; Muhale, Filipe; Riehl, Terrence E; Anant, Shrikant; Stenson, William F

    2004-12-01

    Prostaglandin E2 (PGE2) synthesis modulates the response to radiation injury in the mouse intestinal epithelium through effects on crypt survival and apoptosis; however, the downstream signaling events have not been elucidated. WT mice receiving 16,16-dimethyl PGE2 (dmPGE2) had fewer apoptotic cells per crypt than untreated mice. Apoptosis in Bax(-/-) mice receiving 12 Gy was approximately 50% less than in WT mice, and the ability of dmPGE2 to attenuate apoptosis was lost in Bax(-/-) mice. Positional analysis revealed that apoptosis in the Bax(-/-) mice was diminished only in the bax-expressing cells of the lower crypts and that in WT mice, dmPGE2 decreased apoptosis only in the bax-expressing cells. The HCT-116 intestinal cell line and Bax(-/-) HCT-116 recapitulated the apoptotic response of the mouse small intestine with regard to irradiation and dmPGE2. Irradiation of HCT-116 cells resulted in phosphorylation of AKT that was enhanced by dmPGE2 through transactivation of the EGFR. Inhibition of AKT phosphorylation prevented the reduction of apoptosis by dmPGE2 following radiation. Transfection of HCT-116 cells with a constitutively active AKT reduced apoptosis in irradiated cells to the same extent as in nontransfected cells treated with dmPGE2. Treatment with dmPGE2 did not alter bax or bcl-x expression but suppressed bax translocation to the mitochondrial membrane. Our in vivo studies indicate that there are bax-dependent and bax-independent radiation-induced apoptosis in the intestine but that only the bax-dependent apoptosis is reduced by dmPGE2. The in vitro studies indicate that dmPGE2, most likely by signaling through the E prostaglandin receptor EP2, reduces radiation-induced apoptosis through transactivation of the EGFR and enhanced activation of AKT and that this results in reduced bax translocation to the mitochondria.

  18. Synergistic Induction of Cyclooxygenase-2 by Transforming Growth Factor-β1 and Epidermal Growth Factor Inhibits Apoptosis in Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Debabrata Saha

    1999-12-01

    Full Text Available Increased expression of cyclooxygenase-2 (COX-2 expression has been observed in several human tumor types and in selected animal and cell culture models of carcinogenesis, including lung cancer. Increased expression of COX-2 and production of prostaglandins appear to provide a survival advantage to transformed cells through the inhibition of apoptosis, increased attachment to extracellular matrix, increased invasiveness, the stimulation of angiogenesis. In the present studies, we found that transforming growth factor β1 (TGF-β1 and epidermal growth factor (EGF synergistically induced the expression of COX-2 and prostaglandin E2 (PGE2 production in mink lung epithelial (Mvi Lu cells. EGF, but not PDGF or IGF-1, was able to inhibit TGF-β1-induced apoptosis in Mvi Lu cells and this effect was blocked by NS-398, a selective inhibitor of COX-2 activity, suggesting a possible role for COX-2 in the anti-apoptosic effect of EGF receptor ligands. The combination of TGF-β1 and EGF also significantly induced COX-2 expression in rat intestinal epithelial (RIE-1 cells and completely prevented sodium butyrate (NaBu-induced apoptosis. The synergistic induction of COX-2 by TGF-β1 and EGF was not observed in R1B-L17 cells, a line derived from Mvi Lu cells that lacks the TGF-β type-I receptor. AG1478, a selective inhibitor of EGF receptor tyrosine kinase activity, completely suppressed the induction of COX-2 expression by either EGF or TGF-β1+EGF. Also, PD98059, a specific inhibitor of MEK/ERK pathway, SB203580, a specific inhibitor of p38 MAPK activity, significantly inhibited the induction of COX-2 in response to combined EGF and TGF-β1. These results suggest an important collaborative interaction of TGF-β1 and EGF signaling in the induction of COX-2 and prostaglandin production in Mv1Lu cells.

  19. Compound 13, an α1-selective small molecule activator of AMPK, inhibits Helicobacter pylori-induced oxidative stresses and gastric epithelial cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hangyong; Zhu, Huanghuang; Lin, Zhou; Lin, Gang; Lv, Guoqiang, E-mail: lvguoqiangwuxivip@163.com

    2015-08-07

    Half of the world's population experiences Helicobacter pylori (H. pylori) infection, which is a main cause of gastritis, duodenal and gastric ulcer, and gastric cancers. In the current study, we investigated the potential role of compound 13 (C13), a novel α1-selective small molecule activator of AMP-activated protein kinase (AMPK), against H. pylori-induced cytotoxicity in cultured gastric epithelial cells (GECs). We found that C13 induced significant AMPK activation, evidenced by phosphorylation of AMPKα1 and ACC (acetyl-CoA carboxylase), in both primary and transformed GECs. Treatment of C13 inhibited H. pylori-induced GEC apoptosis. AMPK activation was required for C13-mediated GEC protection. Inhibition of AMPK kinase activity by the AMPK inhibitor Compound C, or silencing AMPKα1 expression by targeted-shRNAs, alleviated C13-induced GEC protective activities against H. pylori. Significantly, C13 inhibited H. pylori-induced reactive oxygen species (ROS) production in GECs. C13 induced AMPK-dependent expression of anti-oxidant gene heme oxygenase (HO-1) in GECs. Zinc protoporphyrin (ZnPP) and tin protoporphyrin (SnPP), two HO-1 inhibitors, not only suppressed C13-mediated ROS scavenging activity, but also alleviated its activity in GECs against H. pylori. Together, these results indicate that C13 inhibits H. pylori-induced ROS production and GEC apoptosis through activating AMPK–HO–1 signaling. - Highlights: • We synthesized compound 13 (C13), a α1-selective small molecule AMPK activator. • C13-induced AMPK activation requires α1 subunit in gastric epithelial cells (GECs). • C13 enhances Helicobacter pylori-induced pro-survival AMPK activation to inhibit GEC apoptosis. • C13 inhibits H. pylori-induced reactive oxygen species (ROS) production in GECs. • AMPK-heme oxygenase (HO-1) activation is required for C13-mediated anti-oxidant activity.

  20. Amelotin gene expression is temporarily being upregulated at the initiation of apoptosis induced by TGFβ1 in mouse gingival epithelial cells.

    Science.gov (United States)

    Nakayama, Yohei; Matsui, Sari; Noda, Keisuke; Yamazaki, Mizuho; Iwai, Yasunobu; Matsumura, Hiroyoshi; Izawa, Takashi; Tanaka, Eiji; Ganss, Bernhard; Ogata, Yorimasa

    2016-10-01

    Amelotin (AMTN) is expressed and secreted by ameloblasts in the maturation stage of amelogenesis and persist with low levels in the junctional epithelium (JE) of erupted teeth. The purpose of this study is to investigate the transcriptional regulation of the AMTN gene by transforming growth factor beta1 (TGFβ1) in gingival epithelial (GE1) cells in the apoptosis phase. Apoptosis was evaluated by the fragmentation of chromosomal DNA and TUNEL staining. A real-time PCR was carried out to examine the AMTN mRNA levels induced by TGFβ1 and Smad3 overexpression. Transient transfection analyses were completed using the various lengths of mouse AMTN gene promoter constructs with or without TGFβ1. Chromatin immunoprecipitation (ChIP) assays were performed to investigate the Smad3 bindings to the AMTN gene promoter by TGFβ1. TGFβ1-induced apoptosis in GE1 cells were detected at 24 and 48 h by DNA fragmentation and TUNEL staining. AMTN mRNA levels increased at 6 h and reached maximum at 24 h in GE1 cells. Luciferase activities of the mouse AMTN gene promoter constructs were induced by TGFβ1. The results of the ChIP assays showed that there was an increase in Smad3 binding to Smad-binding element (SBE)#1 and SBE#2 after stimulation by TGFβ1. Immunohistochemical localization of AMTN was detected in the JE, and the AMTN protein levels in Smad3-deficient mice were decreased compared with wild-type mice. AMTN mRNA levels were induced at the initiation of apoptosis by TGFβ1, which mediated through the Smad3 bindings to SBEs in the mouse AMTN gene promoter.

  1. Retinal pigmented epithelial cells cytotoxicity and apoptosis through activation of the mitochondrial intrinsic pathway: role of indocyanine green, brilliant blue and implications for chromovitrectomy.

    Directory of Open Access Journals (Sweden)

    Fernando M Penha

    Full Text Available PURPOSE: To investigate the in vitro effect of four vital dyes on toxicity and apoptosis in a human retinal pigment epithelial (RPE cell line. METHODS: ARPE-19 cells were exposed to brilliant blue (BriB, methyl blue (MetB, acid violet (AcV and indocyanine green (ICG. Balanced salt solution was used as control. Five different concentrations of each dye (1, 0.5, 0.25, 0.05 and 0.005 mg/mL and two exposure times (3 and 30 min were tested. Cell viability was determined by cell count and MTS assay and cell toxicity by LDH assay. Real-time PCR and Western blotting were used to access the apoptosis process. RESULTS: ICG significantly reduced cell viability after 3 minutes of exposure at all concentrations (p<0.01. BriB was safe at concentrations up to 0.25 mg/mL and MetB at concentrations up to 0.5 mg/mL, while AcV was safe up to 0.05 mg/ml, after 3 minutes of exposure. Toxicity was higher, when the cells were treated for 30 minutes. Expression of Bax, cytochrome c and caspase-9 was upregulated at the mRNA and protein level after ICG exposure, while Bcl-2 was downregulated. AcV and MetB were similar to control. However, BriB resulted in upregulation of Bcl-2, an antiapoptotic protein. CONCLUSIONS: The safest dye used on RPE cells was MetB followed by BriB and AcV. ICG was toxic at all concentrations and exposure times tested. Moreover, ICG was the only dye that induced apoptosis in ARPE-19 cells. BriB significantly increased Bcl-2 protein levels, which might protect against the apoptosis process.

  2. Critical Roles of Inflammation and Apoptosis in Improved Survival in a Model of Hyperoxia-Induced Acute Lung Injury in Pneumocystis murina-Infected Mice▿

    OpenAIRE

    Beck, James M.; Preston, Angela M.; Wilcoxen, Steven E.; Morris, Susan B.; Sturrock, Anne; Paine, Robert

    2009-01-01

    Pneumocystis infections increase host susceptibility to additional insults that would be tolerated in the absence of infection, such as hyperoxia. In an in vivo model using CD4-depleted mice, we previously demonstrated that Pneumocystis murina pneumonia causes significant mortality following an otherwise nonlethal hyperoxic insult. Infected mice demonstrated increased pulmonary inflammation and alveolar epithelial cell apoptosis compared to controls. To test the mechanisms underlying these ob...

  3. JNK对TGF-β1诱导的人肺上皮-间质转分化的调控作用%Influence of JNK Signaling Pathway in the Epithelial-mesenchymal Transition Process of Human Alveolar Epithelial Cells Induced by TGF-β1

    Institute of Scientific and Technical Information of China (English)

    邹勇; 曾玉兰

    2014-01-01

    目的:探讨c‐Jun氨基末端激酶(JNK)在转化生长因子‐β1(TGF‐β1)诱导的人肺上皮细胞A549转分化中的调控作用。方法将体外培养的人肺上皮细胞(A549)随机分成3组:正常对照组、TGF‐β1组(加入10 ng/mL TGF‐β1)及抑制剂组(加入10 ng/mL TGF‐β1和20μmol/L JNK的特异性抑制剂Sp600125),培养于3%的血清培养液中,光镜下观察3组细胞形态的变化,并通过RT‐PCT检测各组A549细胞的上皮标志物E‐钙黏蛋白(E‐cadherin ,E‐cad)及间充质标志物α‐平滑肌肌动蛋白(α‐smooth muscle actin ,α‐SMA)和胶原纤维Ⅰ(collagen fibersⅠ,ColⅠ)的表达的变化,West‐ern blot检测JNK磷酸化(p‐JNK)水平的变化。结果正常对照组体外培养的A549细胞光镜下为鹅卵石样紧密排列生长,有E‐cad表达及微量的α‐SMA、ColⅠ及p‐JNK表达。TGF‐β1组培养72 h后细胞基本长成梭形、纺锤形,E‐cad表达下调,α‐SMA、ColⅠ及p‐JNK表达上调。与 TGF‐β1组比较,抑制剂组培养72 h后细胞梭形有所逆转,E‐cad表达上调,α‐SM A、ColⅠ及p‐JNK表达明显抑制;与正常对照组比较,细胞形态较扁长,E‐cad、α‐SM A、ColⅠ及p‐JNK表达差异无统计学意义。结论 JNK信号通路参与 TGF‐β1介导的人肺上皮‐间质转分化过程,JNK的特异性抑制剂Sp600125可有效抑制该过程。%Objective To explore the role of JNK signaling pathway in epithelial mesenchymal transition (EMT)process of human alveolar epithelial cells A549 induced by TGF‐β1 in vitro.Methods Human alveolar epithelial cells (A549)cultured in vitro were divided randomly into three groups :normal group ,TGF‐β1 group ( treated by TGF‐β1 with 10 ng/mL)and inhibitor group (treated by 10 ng/mL TGF‐β1 and 20 μmol/L Sp600125).Morphological observation on the cells was performed under light microscope after

  4. The role of apoptosis in the pathophysiology of Acute Respiratory Distress Syndrome (ARDS): an up-to-date cell-specific review.

    Science.gov (United States)

    Galani, Vasiliki; Tatsaki, Eleftheria; Bai, Maria; Kitsoulis, Panagiotis; Lekka, Marillena; Nakos, Georgios; Kanavaros, Panayiotis

    2010-03-15

    ARDS pathophysiology is characterized by complex mechanisms that involve cells of inflammation, lung tissue cells, cytokines, chemokines, as well as apoptosis activators and inhibitors. There are two important theories that link apoptosis with ARDS and suggest that epithelial cell apoptosis, as well as the accumulation of neutrophils in the lung, may contribute to a cascade of events and, finally, ARDS. The activation of the Fas/FasL pathway is an important mechanism of alveolar epithelial injury in the lungs of patients with ALI. In addition, neutrophilic inflammation in the alveolar spaces is characteristic of ALI in humans and in most animal models of ALI. The enhanced phagocytosis of apoptotic neutrophils could lead to resolution of inflammation and repair during ARDS. In this review, we will focus on elucidating the role of apoptosis in the pathophysiology of ARDS and the contribution of Fas-mediated inflammation in ARDS. Furthermore, we will give evidence that TNF-alpha, IL-1beta and IL-13 attenuate the pro-cell death effects of Fas/CD95 on A549 epithelial cells, at least partially, by the NF-kB and PI3-K pathways, suggesting that induction of the expression of antiapoptotic genes protects the epithelial cells from cell death.

  5. Inhibition of p38 mitogen-activated protein kinase may decrease intestinal epithelial cell apoptosis and improve intestinal epithelial barrier function after ischemia- reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Shu-Yun Zheng; Xiao-Bing Fu; Jian-Guo Xu; Jing-Yu Zhao; Tong-Zhu Sun; Wei Chen

    2005-01-01

    AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intestine.METHODS: Ninety Wistar rats were divided randomly into three groups, namely sham-operated group (C), I/R vehicle group (R) and SB203580 pre-treated group(S).In groups R and S, the superior mesenteric artery(SMA)was separated and occluded for 45 min, then released for reperfusion for0.25, 0.5, 1, 2, 6, 12 and 24 h. In group C, SMA was separated without occlusion. Plasma D-lactate levels were examined and histological changes were observed under a light microscope. The activity of p38 MAPK was determined by Western immunoblotting and apoptotic cells were detected by the terminal deoxynucleotidyl transferase (TdT)-mediated dUDP-biotin nick end labeling (TUNEL).RESULTS: Intestinal ischemia followed by reperfusion activated p38 MAPK, and the maximal level of activation (7.3-fold vs sham-operated group) was reached 30 min after I/R. Treatment with SB 203580, a p38 MAPK inhibitor,reduced intestinal apoptosis (26.72±3.39% vs62.50±3.08%in I/R vehicle, P<0.01) and decreased plasma D-lactate level (0.78±0.15 mmol/L in I/R vehicle vs0.42±0.17 mmol/L in SB-treated group) and improved post-ischemic intestinal histological damage.CONCLUSION: p38 MAPK plays a crucial role in the signal transduction pathway mediating post-ischemic intestinal apoptosis, and inhibition of p38 MAPK may attenuate ischemia-reperfusion injury.

  6. Mucin 3 is involved in intestinal epithelial cell apoptosis via N-(3-oxododecanoyl)-L-homoserine lactone-induced suppression of Akt phosphorylation.

    Science.gov (United States)

    Taguchi, Ryoko; Tanaka, Shinya; Joe, Ga-Hyun; Maseda, Hideaki; Nomura, Nobuhiko; Ohnishi, Junji; Ishizuka, Satoshi; Shimizu, Hidehisa; Miyazaki, Hitoshi

    2014-07-15

    N-acyl-homoserine lactones (AHL) are quorum-sensing molecules in bacteria that play important roles in regulating virulence gene expression in pathogens such as Pseudomonas aeruginosa. The present study compared responses between undifferentiated and differentiated Caco-2 cells to N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL). A low concentration of 3-oxo-C12-HSL (30 μM) is sufficient to reduce viability accompanied by apoptosis via the suppression of phosphorylation by Akt in undifferentiated Caco-2 cells. The suppression of Akt phosphorylation appears specific in 3-oxo-C12-HSL, because other AHLs did not influence the phosphorylation status of Akt. The reduced viability induced by 3-oxo-C12-HSL was partially recovered by constitutively active Akt overexpression in undifferentiated Caco-2 cells. Since mucin is considered a vital component of the gut barrier, we investigated whether mucin protects cellular functions induced by 3-oxo-C12-HSL in undifferentiated Caco-2 cells. The results showed that mucin protected undifferentiated Caco-2 cells from apoptosis induced by 3-oxo-C12-HSL. 3-Oxo-C12-HSL did not induce cell death in differentiated Caco-2 cells that expressed higher levels of mucin 3 (MUC3) than undifferentiated Caco-2 cells. In addition, 3-oxo-C12-HSL promoted cell death in undifferentiated Caco-2 cells transfected with MUC3 siRNA and reduced MUC3 expression in undifferentiated Caco-2 cells. Therefore, MUC3 might be responsible for the survival of undifferentiated intestinal epithelial cells in the presence of 3-oxo-C12-HSL through regulating Akt phosphorylation. In conclusion, 3-oxo-C12-HSL might influence the survival of undifferentiated intestinal epithelial cells as well as interactions between these cells and pathogens.

  7. Effects of budesonide on P38 MAPK activation, apoptosis and IL-8 secretion, induced by TNF-alpha and Haemophilus influenzae in human bronchial epithelial cells.

    Science.gov (United States)

    Gallelli, L; Pelaia, G; Fratto, D; Muto, V; Falcone, D; Vatrella, A; Curto, L S; Renda, T; Busceti, M T; Liberto, M C; Savino, R; Cazzola, M; Marsico, S A; Maselli, R

    2010-01-01

    Non-typeable Haemophilus influenzae (NTHi) is one of the most frequently involved pathogens in bacterial exacerbations of chronic obstructive pulmonary disease (COPD). In the airways, the main tissue target of NTHi is bronchial epithelium, where this pathogen can further amplify the inflammatory and structural changes induced by proinflammatory cytokines such as tumour necrosis factor-alpha (TNF-alpha). Therefore, the aim of this study is to investigate, in primary cultures of human bronchial epithelial cells, the effects of NTHi on signal transduction pathways, apoptotic events and chemokine production activated by TNF-alpha. Moreover, we also evaluated the effects exerted on such cellular and molecular phenomena by a corticosteroid drug. p38 mitogen-activated protein kinase (MAPK) phosphorylation was analyzed by Western blotting, using an anti-phospho-p38 MAPK monoclonal antibody. Apoptosis was assayed by active caspase-3 expression. Interleukin-8 (IL-8/CXCL8) was detected in cell-free culture supernatants by ELISA. TNF-alpha induced a significant increase in p38 MAPK phosphorylation. NTHi was able to potentiate the stimulatory actions of TNF-alpha on caspase-3 expression and, to a lesser extent, on IL-8 secretion. These effects were significantly (P less than 0.01) inhibited by a pharmacological pre-treatment with budesonide. These results suggest that TNF-alpha is able to stimulate, via activation of p38 MAPK signalling pathway, IL-8 release and airway epithelial cell apoptosis; the latter effect can be markedly potentiated by NTHi. Furthermore, budesonide can be very effective in preventing, through inhibition of p38 MAPK phosphorylation, both structural and proinflammatory changes elicited in bronchial epithelium by TNF-alpha and NTHi.

  8. The soybean peptide lunasin promotes apoptosis of mammary epithelial cells via induction of tumor suppressor PTEN: similarities and distinct actions from soy isoflavone genistein.

    Science.gov (United States)

    Pabona, John Mark P; Dave, Bhuvanesh; Su, Ying; Montales, Maria Theresa E; de Lumen, Ben O; de Mejia, Elvira G; Rahal, Omar M; Simmen, Rosalia C M

    2013-01-01

    Breast cancer is the leading cause of cancer deaths in women. Diet and lifestyle are major contributing factors to increased breast cancer risk. While mechanisms underlying dietary protection of mammary tumor formation are increasingly elucidated, there remains a dearth of knowledge on the nature and precise actions of specific bioactive components present in foods with purported health effects. The 43-amino acid peptide lunasin (LUN) is found in soybeans, is bioavailable similar to the isoflavone genistein (GEN), and thus may mediate the beneficial effects of soy food consumption. Here, we evaluated whether LUN displays common and distinct actions from those of GEN in non-malignant (mouse HC11) and malignant (human MCF-7) mammary epithelial cells. In MCF-7 cells, LUN up-regulated tumor suppressor phosphatase and tensin homolog deleted in chromosome ten (PTEN) promoter activity, increased PTEN transcript and protein levels and enhanced nuclear PTEN localization, similar to that shown for GEN in mammary epithelial cells. LUN-induced cellular apoptosis, akin to GEN, was mediated by PTEN, but unlike that for GEN, was p53-independent. LUN promoted E-cadherin and β-catenin non-nuclear localization similar to GEN, but unlike GEN, did not influence the proliferative effects of oncogene Wnt1 on HC11 cells. Further, LUN did not recapitulate GEN inhibitory effects on expansion of the cancer stem-like/progenitor population in MCF-7 cells. Results suggest the concerted actions of GEN and LUN on cellular apoptosis for potential mammary tumor preventive effects and highlight whole food consumption rather than intake of specific dietary supplements with limited biological effects for greater health benefits.

  9. Oral and Fecal Campylobacter concisus Strains induce Barrier dysfunction by Apoptosis in HT-29/B6 Intestinal Epithelial Cells

    DEFF Research Database (Denmark)

    Nielsen, Hans Linde; Nielsen, Henrik Ib; Ejlertsen, Tove;

    in Ussing chambers. Tight junction (TJ) protein expression was determined by Western blotting, and subcellular TJ distribution was analyzed by confocal laser-scanning microscopy. Apoptosis induction was examined by TUNEL-staining and Western blot of caspase-3 activation. All strains invaded confluent HT-29...

  10. PI3K/Akt signaling mediated apoptosis blockage and viral gene expression in oral epithelial cells during herpes simplex virus infection.

    Science.gov (United States)

    Hsu, Mei-Ju; Wu, Ching-Yi; Chiang, Hsiao-Han; Lai, Yu-Lin; Hung, Shan-Ling

    2010-10-01

    Phosphatidylinositol 3-kinases (PI3Ks) function in the anti-apoptotic pathway, and are commonly exploited by various viruses to accomplish the viral life cycle. This study examined the role of the PI3K pathway in human oral epithelial cells following herpes simplex virus type 1 (HSV-1) infection. The results showed that HSV-1 induced the phosphorylation of Akt and glycogen synthase kinase 3 (GSK-3). Phosphorylation of Akt, but not GSK-3, induced by HSV-1 was PI3K-dependent. The expression of HSV-1 immediate-early genes may be involved in the initial phosphorylation of Akt and GSK-3. Inhibition of HSV-1-induced PI3K activity increased DNA fragmentation and cleavage of poly ADP-ribose polymerase (PARP), caspase 3 and caspase 7 compared with infected alone. Inhibition of PI3K attenuated the expression of HSV-1-infected cell protein 0 (ICP0), but not thymidine kinase (TK) and viral replication. Collectively, these data suggested that, in oral epithelial cells, the HSV-1-induced PI3K/Akt activation was involved in the regulation of apoptosis blockage and viral gene expression.

  11. 紫外光诱导晶状体上皮细胞凋亡的研究%APOPTOSIS OF LENS EPITHELIAL CELL INDUCED BY ULTRAVIOLET

    Institute of Scientific and Technical Information of China (English)

    赵长松; 邹尉玉; 孙旭芳

    2001-01-01

    Objective:To investigate the apoptosis of lens epithelial cell induced by ultraviolet.Methods:Vistar rats received 100mw/m2 ultraviolet irradition(UVR)(λ 280nm-315nm) for 15 minutes.At h1,6,24 after irradition the lens capsules were dissected and the percentage of apoptotic cells were evaluted by the TdT-dUTP terminal nick-end labeling(TUNEL) technique.The morphological changes were observed by transmission electron microscope.Results:TUNEL-positive nuclei were found at only 24 hours after UVR exposure and the percentage is 14.3%.Cell chromatin condensation was observed by transmission electron microscope.Conclusions:Our results showed that UVR can induce the rapid apoptotic death of the lens epithelial cells.%目的:研究紫外光(ultraviolet UV)诱导的晶状体上皮细胞(lens epithelial cell LEC)凋亡特征。方法:100mw/m2紫外光照射Vistar大鼠双眼15min,照射后1,6,24h剥取晶状体囊膜。DNA缺口末端原位标记法定量检测凋亡的晶状体上皮细胞并通过透射电镜观察其形态学改变。结果:DNA缺口末端原位标记法检测仅在照射后24h组发生凋亡特染细胞,其百分比为14.3%。透射电镜下可见染色质边集浓缩现象。结论:紫外光照射可快速诱导晶状体上皮细胞凋亡。

  12. Ability of Lactobacillus plantarum lipoteichoic acid to inhibit Vibrio anguillarum-induced inflammation and apoptosis in silvery pomfret (Pampus argenteus) intestinal epithelial cells.

    Science.gov (United States)

    Gao, Quanxin; Gao, Qian; Min, Minghua; Zhang, Chenjie; Peng, Shiming; Shi, Zhaohong

    2016-07-01

    Lipoteichoic acid (LTA) is a major constituent of the cell wall of Gram-positive bacteria. The structure and immunomodulation of LTA vary greatly between different species. LTA from Lactobacillus plantarum has been shown to exert anti-pathogenic effects. Vibrio anguillarum is a major causative agent of vibriosis, one of the most prevalent fish diseases. The purpose of this study was to examine the effects of L. plantarum LTA on V. anguillarum growth, adhesion, and induced inflammation and apoptosis in intestinal epithelial cells of silvery pomfret (Pampus argenteus). Our results showed that L. plantarum LTA was unable to inhibit V. anguillarum growth; however, it significantly inhibited adhesion of V. anguillarum. It also showed significant inhibitory effects on EHEC-induced inflammation and apoptosis by modulating the expression of NF-κB (nuclear factor kappa B), IκB (inhibitor of NF-κB), Bcl2 (B-cell leukemia/lymphoma-2), BAX (Bcl-2-associated X protein), IL-8 (interleukin 8) and TNF-α (tumor necrosis factor-α), and via inhibition of caspase-9 and caspase-3 activation. These data extend our understanding of the beneficial effects of L. plantarum LTA, which is related to the inhibition of V. anguillarum, and suggest that L. plantarum LTA has potential as a new therapeutic agent against V. anguillarum-caused vibriosis in fish.

  13. Doxycycline Protects Thymic Epithelial Cells from Mitomycin C-Mediated Apoptosis In Vitro via Trx2-NF-κB-Bcl-2/Bax Axis

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2016-02-01

    Full Text Available Background/Aims: Age-associated and stress-induced involution of the thymus is accompanied by reduced numbers of thymic epithelial cells (TECs and severe reduction in peripheral T cell repertoire specificities. These events seriously affect immune function, but the mechanisms involved are unclear. Our preliminary findings showed that doxycycline (Dox could drive the proliferation of a TEC line (MTEC1 cells partially via the MAPK signaling pathway. Dox can also up-regulate IL-6 and GM-CSF expression via the NF-κB and MAPK/ERK pathways. Herein, we investigate the effects and mechanisms used by Dox that protect against mitomycin C (MMC-induced MTEC1 cell apoptosis. Methods: MTEC1 cells were treated with Dox, MMC, and Dox plus MMC for different amounts of time. The expression of Trx2, NF-κB, Bcl-2, and Bax proteins were then detected by western blotting. Results: Our findings show that Dox protects MTEC1 cells from MMC-induced apoptosis. Dox up-regulated the expression of Trx2 and promoted NF-κB phosphorylation. Meanwhile, Dox also increased the expression of Bcl-2, partially reduced the expression of Bax, and normalized the ratio of Bcl-2 to Bax. Conclusion: Dox exerts an anti-apoptosis function via the NF-κB-Bcl-2/Bax and Trx2-ASK1/JNK pathways in vitro. Therefore, Dox may represent a drug that could be used to attenuate thymic senescence, rescue thymic function, and promote T cell reconstitution.

  14. Advanced research on mechanisms of apoptosis in lens epithelial cells induced by ultraviolet irradiation%紫外线辐射致晶状体上皮细胞凋亡机制的研究进展

    Institute of Scientific and Technical Information of China (English)

    吴秋欣; 毕宏生; 郭大东

    2011-01-01

    许多流行病学调查和实验研究结果已经证实:紫外线辐射与非先天性白内障的发生、发展有密切的关系;研究表明,晶状体上皮细胞凋亡是非先天性白内障形成的共同细胞学基础.近年来,越来越多的研究发现,晶状体上皮细胞凋亡与非先天性白内障的形成密切相关.本文就紫外线辐射诱导晶状体上皮细胞凋亡的分子机理与白内障发生作一综述.%Many epidemiological and experimental studies have revealed that ultraviolet radiation is associated with non-congenital cataractogenesis. Some study indicates that apoptosis of lens epithelial cells appears to be a common cellular basis for initiation of non-congenital cataract formation. In recent years,an increasing number of researches have proved that the apoptosis of lens epithelial cells is associated with non-congenital cataractogenesis. The mechanisms of non-congenital cataractogenesis in lens epithelial cells induced by ultraviolet radiation are discussed in this paper,and the relationship between the apoptosis of lens epithelial cells and non-congenital cataract is also reviewed.

  15. Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition

    Science.gov (United States)

    Subramani, Ramadevi; Gonzalez, Elizabeth; Arumugam, Arunkumar; Nandy, Sushmita; Gonzalez, Viviana; Medel, Joshua; Camacho, Fernando; Ortega, Andrew; Bonkoungou, Sandrine; Narayan, Mahesh; Dwivedi, Alok kumar; Lakshmanaswamy, Rajkumar

    2016-01-01

    The mortality and morbidity rates of pancreatic cancer are high because of its extremely invasive and metastatic nature. Its lack of symptoms, late diagnosis and chemo–resistance and the ineffective treatment modalities warrant the development of new chemo–therapeutic agents for pancreatic cancer. Agents from medicinal plants have demonstrated therapeutic benefits in various human cancers. Nimbolide, an active molecule isolated from Azadirachta indica, has been reported to exhibit several medicinal properties. This study assessed the anticancer properties of nimbolide against pancreatic cancer. Our data reveal that nimbolide induces excessive generation of reactive oxygen species (ROS), thereby regulating both apoptosis and autophagy in pancreatic cancer cells. Experiments with the autophagy inhibitors 3-methyladenine and chloroquine diphosphate salt and the apoptosis inhibitor z-VAD-fmk demonstrated that nimbolide-mediated ROS generation inhibited proliferation (through reduced PI3K/AKT/mTOR and ERK signaling) and metastasis (through decreased EMT, invasion, migration and colony forming abilities) via mitochondrial-mediated apoptotic cell death but not via autophagy. In vivo experiments also demonstrated that nimbolide was effective in inhibiting pancreatic cancer growth and metastasis. Overall, our data suggest that nimbolide can serve as a potential chemo–therapeutic agent for pancreatic cancer. PMID:26804739

  16. Blockage of epithelial to mesenchymal transition and upregulation of let 7b are critically involved in ursolic acid induced apoptosis in malignant mesothelioma cell.

    Science.gov (United States)

    Sohn, Eun Jung; Won, Gunho; Lee, Jihyun; Yoon, Sang Wook; Lee, Ilho; Kim, Hee Jeong; Kim, Sung-Hoon

    2016-01-01

    Malignant pleural mesothelioma (MPN), which is caused by asbestos exposure, is one of aggressive lung tumors. In the present study, we elucidated the anti-tumor mechanism of ursolic acid in malignant mesotheliomas. Ursolic acid significantly exerted cytotoxicity in a time and dose dependent manner in H28, H2452 and MSTO-211H mesothelioma cells and inhibited cell proliferation by colony formation assay in a dose-dependent fashion. Also, ursolic acid treatment accumulated the sub-G1 population, attenuated the expression of procapase 9, cyclin D1, pAKT, p-glycogen synthase kinase 3-alpha/beta (pGSK3α/β), β-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and also cleaved caspase 3 and poly (ADP-ribose) polymerase (PARP) in mesothelioma cells. Furthermore, ursolic acid treatment blocked epithelial and mesenchymal transition (EMT) molecules by activating E-cadherin as an epithelial marker and attenuating Vimentin, and Twist as mesenchymal molecules. Interestingly, miRNA array revealed that 23 miRNAs (>2 folds) including let-7b and miRNA3613-5p, miRNA134 and miRNA196b were significantly upregulated while 33 miRNAs were downregulated in ursolic acid treated H2452 cells. Furthermore, overexpression of let 7b using let-7b mimics enhanced the antitumor effect of ursolic acid to attenuate the expression of procaspases 3, pro-PARP, pAKT, β-catenin and Twist and increase sub-G1 accumulation in H2452 mesothelioma cells. Overall, our findings suggest that ursolic acid induces apoptosis via inhibition of EMT and activation of let7b in mesothelioma cells as a potent chemotherapeutic agent for treatment of malignant mesotheliomas.

  17. The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells.

    Science.gov (United States)

    Li, Jin-Ping; Yang, Yin-Xue; Liu, Qi-Lun; Zhou, Zhi-Wei; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Pan, Si-Yuan; Duan, Wei; He, Shu-Ming; Chen, Xiao-Wu; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Danusertib (Danu) is a pan-inhibitor of Aurora kinases and a third-generation breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (Bcr-Abl) tyrosine kinase inhibitor, but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT) and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl) and B-cell lymphoma 2 (Bcl-2), but increased the expression of Bcl-2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II) and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases 1 and 2 (Erk1/2) and inhibited the activation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor) markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition

  18. Upregulation of kazrin F by miR-186 suppresses apoptosis but promotes epithelial-mesenchymal transition to contribute to malignancy in human cervical cancer cells

    Science.gov (United States)

    Liu, Chang; Wang, Jinghua; Hu, Yang; Xie, Hong; Liu, Min; Tang, Hua

    2017-01-01

    Objective Previous studies have identified that kazrin is a constituent of desmosome and influences intercellular adhesion, growing development and morphology. We previously cloned another new isoform, kazrin F and found that it has anti-apoptotic effects on human glioma cell line. To further explore whether kazrin F is involved in tumorigenesis, we investigated its expression and role in cervical cancer (CC) cells. Methods The role of kazrin F and miR-186 in CC was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony formation, transwell, and apoptosis assays. Using enhanced green fluorescent protein (EGFP) reporter assays, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, we identified kazrin F post-transcriptional regulation by miR-186. Results We demonstrate that kazrin F is highly expressed in CC tissues compared with the adjacent noncancerous tissues and promotes cell proliferation, colony formation, migration and invasion in HeLa and C33A cells by suppressing apoptosis and facilitating epithelial-to-mesenchymal transition (EMT). Furthermore, miR-186 was confirmed as a regulator of kazrin F dysregulation. An EGFP reporter assay proved that miR-186 directly targets the 3’-untranslated region (3’UTR) of kazrin F and downregulates its expression, and miR-186 expression showed an inverse correlation with kazrin F levels in CC tissues. In addition, overexpression of miR-186 suppressed the malignant behaviors of CC cells. The ectopic expression of kazrin F rescued the inhibitory effects of miR-186. Conclusions Our findings indicate that the upregulation of kazrin F due to downregulated miR-186 levels contributes to malignancy, and highlight the significance of kazrin F in CC tumorigenesis. PMID:28373753

  19. Targeted Type 2 Alveolar Cell Depletion. A Dynamic Functional Model for Lung Injury Repair.

    Science.gov (United States)

    Garcia, Orquidea; Hiatt, Michael J; Lundin, Amber; Lee, Jooeun; Reddy, Raghava; Navarro, Sonia; Kikuchi, Alex; Driscoll, Barbara

    2016-03-01

    Type 2 alveolar epithelial cells (AEC2) are regarded as the progenitor population of the alveolus responsible for injury repair and homeostatic maintenance. Depletion of this population is hypothesized to underlie various lung pathologies. Current models of lung injury rely on either uncontrolled, nonspecific destruction of alveolar epithelia or on targeted, nontitratable levels of fixed AEC2 ablation. We hypothesized that discrete levels of AEC2 ablation would trigger stereotypical and informative patterns of repair. To this end, we created a transgenic mouse model in which the surfactant protein-C promoter drives expression of a mutant SR39TK herpes simplex virus-1 thymidine kinase specifically in AEC2. Because of the sensitivity of SR39TK, low doses of ganciclovir can be administered to these animals to induce dose-dependent AEC2 depletion ranging from mild (50%) to lethal (82%) levels. We demonstrate that specific levels of AEC2 depletion cause altered expression patterns of apoptosis and repair proteins in surviving AEC2 as well as distinct changes in distal lung morphology, pulmonary function, collagen deposition, and expression of remodeling proteins in whole lung that persist for up to 60 days. We believe SPCTK mice demonstrate the utility of cell-specific expression of the SR39TK transgene for exerting fine control of target cell depletion. Our data demonstrate, for the first time, that specific levels of type 2 alveolar epithelial cell depletion produce characteristic injury repair outcomes. Most importantly, use of these mice will contribute to a better understanding of the role of AEC2 in the initiation of, and response to, lung injury.

  20. Soy isoflavone genistein modulates cell cycle progression and induces apoptosis in HER-2/neu oncogene expressing human breast epithelial cells.

    Science.gov (United States)

    Katdare, Meena; Osborne, Michael; Telang, Nitin T

    2002-10-01

    In the multistep progressive pathogenesis of human breast cancer, comedo ductal carcinoma in situ (DCIS) represents a preinvasive precursor lesion for therapy resistant invasive cancer. Human tissue derived cell culture models exhibiting molecular similarities to clinical DCIS facilitate an important preclinical mechanistic approach for evaluation of preventive efficacy of natural and synthetic chemopreventive compounds. Natural phytochemicals present in fresh fruits, vegetables and grain products are likely to offer protection against cancer. The clinical efficacy of these natural phytochemicals, however, depends on extrapolation, and is therefore equivocal. The present study determined whether the natural soy isoflavone genistein (GEN) inhibited aberrant proliferation in 184-B5/HER cells (a model for human comedo DCIS) and identified possible mechanisms responsible for its efficacy. Human reduction mammoplasty derived HER-2/neu oncogene expressing preneoplastic 184-B5/HER cells represented the experimental system. Flow cytometry and cellular epifluorescence based assays were utilized to quantitate the alterations in cell cycle progression, cellular apoptosis, and in the status of cell cycle regulatory and apoptosis-associated gene product expression. The 184-B5/HER cells exhibited specific immunofluorescence to p185HER, p53, EGFR, but not to ERalpha, thus resembling comedo DCIS. Treatment of 184-B5/HER cells with GEN resulted in a dose-dependent decrease in the viable cell population, increase in the G0/G1:S + G2/M ratio and enhancement of sub G0/G1 (apoptotic population). Exposure to the maximum cytostatic 10 microM dose of GEN down-regulated HER-2/neu mediated signal transduction as evidenced by a 73.9% decrease (p=0.001) in p185HER specific, and a 89.8% decrease (p=0.001) in phosphotyrosine specific immunofluorescence. The increase in G0/G1:S + G2/M ratio in response to the treatment with 10 microM GEN was associated with a 85.5% decrease (p=0.001) in

  1. Phagocytic properties of lung alveolar wall cells

    Directory of Open Access Journals (Sweden)

    Tanaka,Akisuke

    1974-04-01

    Full Text Available For the purpose to define the mechanism of heavy metal intoxication by inhalation, morphologic observations were made on rat lungs after nasal instillation of iron colloid particles of positive and negative electric charges. Histochemical observation was also made on the liver and spleen of these animals. The instilled iron colloid particles reach the alveolar cavity easily, as can be seen in the tissue sections stained by Prussian blue reaction. Alveolar macrophages do take up them avidly both of positive and negative charges, though much less the positive particles than negative ones. In contrast, the alveolar epithelial cells take up solely positive particles by phagocytosis but not negative ones. Electron microscope observation revealed that the positive particles are ingested by Type I epithelial cells by pinocytosis and by Type II cells by phagocytosis as well. Then the iron colloid particles are transferred into the basement membrane by exocytosis. Travelling through the basement membrane they are again taken up by capillary endothelial cells by phagocytosis. Some particles were found in the intercellular clefts of capillary endothelial cells but not any iron colloid particles in the intercellular spaces of epithelial cells and in the capillary lumen. However, the liver and spleen tissues of the animals given iron colloid showed a strong positive iron reaction. On the basis of these observations, the mechanism of acute intoxication by inhaling heavy metal dusts like lead fume is discussed from the view point of selective uptake of alveolar epithelial and capillary endothelial cells for the particles of the positive electric cha'rge.

  2. 肌酐代谢产物对肾小管上皮细胞凋亡的影响%Effect of metabolites of creatinine on the apoptosis of renal tubular epithelial cells

    Institute of Scientific and Technical Information of China (English)

    胡白瑛

    2013-01-01

    目的 研究肌酐产物是否能促进肾小管上皮细胞凋亡.方法 原代培养人肾小管上皮细胞,将肌酐产物与肾小管上皮细胞共同培养,对肾小管上皮细胞进行形态学观察;抽提DNA进行琼脂糖电泳观察有无梯形条带.结果 肾小管上皮细胞在肌酐产物作用下逐渐变小、变圆、固缩,最后漂浮死亡,但胞膜始终完整;肌酐产物导致肾小管上皮细胞凋亡,琼脂糖凝胶中有DNA梯形条带,加入谷胱甘肽(GSH)未见DNA梯形条带.结论 肌酐产物促进肾小管上皮细胞凋亡,GSH可阻断之.%Objective To study the effect of metabolites of creatinine on the apoptosis of renal tubular epithelial cells. Methods Renal tubular epithelia were cultured in vitro. The metabolites of creatinine and renal tubular epithelial cells were incubated together. The morphological change of renal tubular epithelial cells was observed. Gel electrophoresis of DNA extracted from that to observe bands of apoptotsis. Results Affected by metabolites of creatinine, renal tubular epithelial cells showed characters of apoptosis (smaller, round, pyknosis and death), but the cell membrane was always integral. Agarose gel electrophoresis revealed the appearance of DNA ladder, which disappeared with the addition of GSH. Conclusion The metabolites of creatinine can induce the apoptosis of renal tubular epithelial cells, which could be reversed by GSH.

  3. APO-9′-Fucoxanthinone Extracted from Undariopsis peteseniana Protects Oxidative Stress-Mediated Apoptosis in Cigarette Smoke-Exposed Human Airway Epithelial Cells

    Science.gov (United States)

    Jang, Jun-Ho; Lee, Ji-Hyeok; Chand, Hitendra S.; Lee, Jong-Soo; Lin, Yong; Weathington, Nathaniel; Mallampalli, Rama; Jeon, You-Jin; Nyunoya, Toru

    2016-01-01

    Long-term cigarette smoking increases the risk for chronic obstructive pulmonary disease (COPD), characterized by irreversible expiratory airflow limitation. The pathogenesis of COPD involves oxidative stress and chronic inflammation. Various natural marine compounds possess both anti-oxidant and anti-inflammatory properties, but few have been tested for their efficacy in COPD models. In this study, we conducted an in vitro screening test to identify natural compounds isolated from various brown algae species that might provide protection against cigarette smoke extract (CSE)-induced cytotoxicity. Among nine selected natural compounds, apo-9′-fucoxanthinone (Apo9F) exhibited the highest protection against CSE-induced cytotoxicity in immortalized human bronchial epithelial cells (HBEC2). Furthermore, the protective effects of Apo9F were observed to be associated with a significant reduction in apoptotic cell death, DNA damage, and the levels of mitochondrial reactive oxygen species (ROS) released from CSE-exposed HBEC2 cells. These results suggest that Apo9F protects against CSE-induced DNA damage and apoptosis by regulating mitochondrial ROS production. PMID:27455285

  4. APO-9′-Fucoxanthinone Extracted from Undariopsis peteseniana Protects Oxidative Stress-Mediated Apoptosis in Cigarette Smoke-Exposed Human Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jun-Ho Jang

    2016-07-01

    Full Text Available Long-term cigarette smoking increases the risk for chronic obstructive pulmonary disease (COPD, characterized by irreversible expiratory airflow limitation. The pathogenesis of COPD involves oxidative stress and chronic inflammation. Various natural marine compounds possess both anti-oxidant and anti-inflammatory properties, but few have been tested for their efficacy in COPD models. In this study, we conducted an in vitro screening test to identify natural compounds isolated from various brown algae species that might provide protection against cigarette smoke extract (CSE-induced cytotoxicity. Among nine selected natural compounds, apo-9′-fucoxanthinone (Apo9F exhibited the highest protection against CSE-induced cytotoxicity in immortalized human bronchial epithelial cells (HBEC2. Furthermore, the protective effects of Apo9F were observed to be associated with a significant reduction in apoptotic cell death, DNA damage, and the levels of mitochondrial reactive oxygen species (ROS released from CSE-exposed HBEC2 cells. These results suggest that Apo9F protects against CSE-induced DNA damage and apoptosis by regulating mitochondrial ROS production.

  5. Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells

    Directory of Open Access Journals (Sweden)

    Qui JX

    2015-01-01

    critical role in the regulation of cell cycle, apoptosis, autophagy, epithelial to mesenchymal transition (EMT, and reactive oxygen species generation. The proteomic study showed substantial differences in response to PLB treatment between PC-3 and DU145 cells. PLB treatment significantly modulated the expression of critical proteins that regulate cell cycle, apoptosis, and EMT signaling pathways in PC-3 cells but not in DU145 cells. Consistently, our Western blotting analysis validated the bioinformatic and proteomic data and confirmed the modulating effects of PLB on important proteins that regulated cell cycle, apoptosis, autophagy, and EMT in PC-3 and DU145 cells. The data from the Western blot assay could not display significant differences between PC-3 and DU145 cells. These findings indicate that PLB elicits different proteomic responses in PC-3 and DU145 cells involving proteins and pathways that regulate cell cycle, apoptosis, autophagy, reactive oxygen species production, and antioxidation/oxidation homeostasis. This is the first systematic study with integrated computational, proteomic, and functional analyses revealing the networks of signaling pathways and differential proteomic responses to PLB treatment in prostate cancer cells. Quantitative proteomic analysis using SILAC represents an efficient and highly sensitive approach to identify the target networks of anticancer drugs like PLB, and the data may be used to discriminate the molecular and clinical subtypes, and to identify new therapeutic targets and biomarkers, for prostate cancer. Further studies are warranted to explore the potential of quantitative proteomic analysis in the identification of new targets and biomarkers for prostate cancer.Keywords: EMT, proteomics, SILAC

  6. Upregulation of ATG3 contributes to autophagy induced by the detachment of intestinal epithelial cells from the extracellular matrix, but promotes autophagy-independent apoptosis of the attached cells.

    Science.gov (United States)

    Yoo, Byong Hoon; Zagryazhskaya, Anna; Li, Yongling; Koomson, Ananda; Khan, Iman Aftab; Sasazuki, Takehiko; Shirasawa, Senji; Rosen, Kirill V

    2015-01-01

    Detachment of nonmalignant intestinal epithelial cells from the extracellular matrix (ECM) triggers their growth arrest and, ultimately, apoptosis. In contrast, colorectal cancer cells can grow without attachment to the ECM. This ability is critical for their malignant potential. We found previously that detachment-induced growth arrest of nonmalignant intestinal epithelial cells is driven by their detachment-triggered autophagy, and that RAS, a major oncogene, promotes growth of detached cells by blocking such autophagy. In an effort to identify the mechanisms of detachment-induced autophagy and growth arrest of nonmalignant cells we found here that detachment of these cells causes upregulation of ATG3 and that ATG3 upregulation contributes to autophagy and growth arrest of detached cells. We also observed that when ATG3 expression is artificially increased in the attached cells, ATG3 promotes neither autophagy nor growth arrest but triggers their apoptosis. ATG3 upregulation likely promotes autophagy of the detached but not that of the attached cells because detachment-dependent autophagy requires other detachment-induced events, such as the upregulation of ATG7. We further observed that those few adherent cells that do not die by apoptosis induced by ATG3 become resistant to apoptosis caused by cell detachment, a property that is critical for the ability of normal epithelial cells to become malignant. We conclude that cell-ECM adhesion can switch ATG3 functions: when upregulated in detached cells in the context of other autophagy-promoting events, ATG3 contributes to autophagy. However, when overexpressed in the adherent cells, in the circumstances not favoring autophagy, ATG3 triggers apoptosis.

  7. Bardoxolone methyl induces apoptosis and autophagy and inhibits epithelial-to-mesenchymal transition and stemness in esophageal squamous cancer cells

    Directory of Open Access Journals (Sweden)

    Wang YY

    2015-02-01

    Full Text Available Yan-Yang Wang,1,2 Yin-Xue Yang,3 Ren Zhao,1 Shu-Ting Pan,2,4 Hong Zhe,1 Zhi-Xu He,5 Wei Duan,6 Xueji Zhang,7 Tianxin Yang,8 Jia-Xuan Qiu,4 Shu-Feng Zhou2,51Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China; 4Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 5Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, People’s Republic of China; 6School of Medicine, Deakin University, Waurn Ponds, VIC, Australia; 7Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 8Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USAAbstract: Natural and synthetic triterpenoids have been shown to kill cancer cells via multiple mechanisms. The therapeutic effect and underlying mechanism of the synthetic triterpenoid bardoxolone methyl (C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid; CDDO-Me on esophageal cancer are unclear. Herein, we aimed to investigate the anticancer effects and underlying mechanisms of CDDO-Me in human esophageal squamous cell carcinoma (ESCC cells. Our study showed that CDDO-Me suppressed the proliferation and arrested cells in G2/M phase, and induced apoptosis in human ESCC Ec109 and KYSE70 cells. The G2/M arrest was accompanied with upregulated p21Waf1/Cip1 and p53 expression. CDDO-Me significantly decreased B-cell lymphoma-extra large (Bcl-xl, B-cell lymphoma 2 (Bcl-2

  8. Lipopolysaccharide disrupts the milk-blood barrier by modulating claudins in mammary alveolar tight junctions.

    Directory of Open Access Journals (Sweden)

    Ken Kobayashi

    Full Text Available Mastitis, inflammation of the mammary gland, is the most costly common disease in the dairy industry, and is caused by mammary pathogenic bacteria, including Escherichia coli. The bacteria invade the mammary alveolar lumen and disrupt the blood-milk barrier. In normal mammary gland, alveolar epithelial tight junctions (TJs contribute the blood-milk barrier of alveolar epithelium by blocking the leakage of milk components from the luminal side into the blood serum. In this study, we focused on claudin subtypes that participate in the alveolar epithelial TJs, because the composition of claudins is an important factor that affects TJ permeability. In normal mouse lactating mammary glands, alveolar TJs consist of claudin-3 without claudin-1, -4, and -7. In lipopolysaccharide (LPS-induced mastitis, alveolar TJs showed 2-staged compositional changes in claudins. First, a qualitative change in claudin-3, presumably caused by phosphorylation and participation of claudin-7 in alveolar TJs, was recognized in parallel with the leakage of fluorescein isothiocyanate-conjugated albumin (FITC-albumin via the alveolar epithelium. Second, claudin-4 participated in alveolar TJs with claudin-3 and claudin-7 12 h after LPS injection. The partial localization of claudin-1 was also observed by immunostaining. Coinciding with the second change of alveolar TJs, the severe disruption of the blood-milk barrier was recognized by ectopic localization of β-casein and much leakage of FITC-albumin. Furthermore, the localization of toll-like receptor 4 (TLR4 on the luminal side and NFκB activation by LPS was observed in the alveolar epithelial cells. We suggest that the weakening and disruption of the blood-milk barrier are caused by compositional changes of claudins in alveolar epithelial TJs through LPS/TLR4 signaling.

  9. Inhibitory effects of French pine bark extract, Pycnogenol®, on alveolar bone resorption and on the osteoclast differentiation.

    Science.gov (United States)

    Sugimoto, Hideki; Watanabe, Kiyoko; Toyama, Toshizo; Takahashi, Shun-suke; Sugiyama, Shuta; Lee, Masaichi-Chang-il; Hamada, Nobushiro

    2015-02-01

    Pycnogenol(®) (PYC) is a standardized bark extract from French maritime pine (Pinus pinaster Aiton). We examined the inhibitory effects of PYC on alveolar bone resorption, which is a characteristic feature of periodontitis, induced by Porphyromonas gingivalis (P. gingivalis) and osteoclast differentiation. In rat periodontitis model, rats were divided into four groups: group A served as the non-infected control, group B was infected orally with P. gingivalis ATCC 33277, group C was administered PYC in the diet (0.025%: w/w), and group D was infected with P. gingivalis and administered PYC. Administration of PYC along with P. gingivalis infection significantly reduced alveolar bone resorption. Treatment of P. gingivalis with 1 µg/ml PYC reduced the number of viable bacterial cells. Addition of PYC to epithelial cells inhibited adhesion and invasion by P. gingivalis. The effect of PYC on osteoclast formation was confirmed by tartrate-resistant acid phosphatase staining. PYC treatment significantly inhibited osteoclast formation. Addition of PYC (1-100 µg/ml) to purified osteoclasts culture induced cell apoptosis. These results suggest that PYC may prevent alveolar bone resorption through its antibacterial activity against P. gingivalis and by suppressing osteoclastogenesis. Therefore, PYC may be useful as a therapeutic and preventative agent for bone diseases such as periodontitis.

  10. The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Li JP

    2015-02-01

    , but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl and B-cell lymphoma 2 (Bcl-2, but increased the expression of Bcl-2-associated X protein (Bax and p53-upregulated modulator of apoptosis (PUMA, and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK and extracellular signal-regulated kinases 1 and 2 (Erk1/2 and inhibited the activation of protein kinase B (Akt/mammalian target of rapamycin (mTOR signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition and small interfering RNA-mediated knockdown of Erk1/2 also remarkably increased the level of LC3-II in MCF7 cells. Moreover, Danu inhibited EMT in both MCF7 and MDA-MB-231 cells with upregulated E

  11. Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2

    Energy Technology Data Exchange (ETDEWEB)

    Kalayarasan, Srinivasan, E-mail: kalaivasanbio@gmail.com; Sriram, Narayanan; Soumyakrishnan, Syamala; Sudhandiran, Ganapasam, E-mail: sudhandiran@yahoo.com

    2013-09-01

    Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis. Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF. - Highlights: • DAS inhibits PAR-2 activity; bleomycin stimulates PAR-2 activity. • Increase in PAR-2 activity is correlated with pulmonary fibrosis • DAS reduces pro-inflammatory activity linked to facilitating pulmonary fibrosis. • DAS inhibits apoptosis of alveolar epithelial cells.

  12. 连续性血液净化对肺泡上皮细胞Connexin43的影响%Effects of continuous blood purification on Connexin43 in human alveolar epi-thelial cells

    Institute of Scientific and Technical Information of China (English)

    杨溢; 甘华; 李正荣; 文以君; 王喜超

    2009-01-01

    AIM: To investigate the effect of continuous blood purification (CBP) on the expression of Connexin43 (Cx43) in human alveolar epithelial cells (AECs) induced by the serum of patients with severe acute pancreatitis (SAP) accompanied with acute lung injury (ALI). METHODS: Fasting serum of healthy volunteers and serum of patients with SAP and ALI at pre-CBP, 6-hour-CBP and 20-hour-CBP were collected, Immunofluores-cence staining and RT-PCR were used to detect the expression of Cx43 and Cx43 mRNA in AECs separately cultured by the serum from different groups for 48 h in vitro. ELISA was used to detect the level of serum TNF-α in each group. RESULTS: Cx43 posi-tive staining in each patient group was significantly less than that in healthy control group. With the increase of the treatment time, the positive staining gradually increased. The relative expression of Cx43 mRNA in pre-CBP group(0.08±0.01) was significantly leas than that in healthy control group (0.57±0.02) (P<0.01). With the increase of the treatment time, the expression gradually increased in 6-hoar-CBP group(0.23±0.02) and 20-hour-CBP group(0.36±0.02) (P<0.01). The level of serum TNF-α in pre-CBP group (59.43±4.50) ng/L was significantly higher than that in healthy control group(16.06±3.68) ng/L(P<0.01). With the increase of the treatment time, the level gradually decreased in 6-hour-CBP group (41.16±3.49) ng/L and 20-hour-CBP group (34.65±3.22) ng/L (P<0.01). The expression of Cx43 mRNA was negatively correlated with the level of TNF-α. CONCLUSION: The decrease of Cx43 in AECs plays a part in the process of SAP patients with secondary ALI. CBP up-regulates the expression of Cx43 by removing TNF-α and thus protects the respiratory function.%目的:研究连续性血液净化(CBP)对重症急性胰腺炎(SAP)伴急性肺损伤(ALI)患者血清诱导的人肺泡上皮细胞(AECs)间隙连接蛋白Connexin43(Cx43)表达的影响.方法:采集健康志愿者清晨空腹及SAP伴ALI患者CBP

  13. Endotoxin-induced lung alveolar cell injury causes brain cell damage

    Science.gov (United States)

    Rodríguez-González, Raquel; Ramos-Nuez, Ángela; Martín-Barrasa, José Luis; López-Aguilar, Josefina; Baluja, Aurora; Álvarez, Julián; Rocco, Patricia RM; Pelosi, Paolo

    2015-01-01

    Sepsis is the most common cause of acute respiratory distress syndrome, a severe lung inflammatory disorder with an elevated morbidity and mortality. Sepsis and acute respiratory distress syndrome involve the release of inflammatory mediators to the systemic circulation, propagating the cellular and molecular response and affecting distal organs, including the brain. Since it has been reported that sepsis and acute respiratory distress syndrome contribute to brain dysfunction, we investigated the brain-lung crosstalk using a combined experimental in vitro airway epithelial and brain cell injury model. Conditioned medium collected from an in vitro lipopolysaccharide-induced airway epithelial cell injury model using human A549 alveolar cells was subsequently added at increasing concentrations (no conditioned, 2%, 5%, 10%, 15%, 25%, and 50%) to a rat mixed brain cell culture containing both astrocytes and neurons. Samples from culture media and cells from mixed brain cultures were collected before treatment, and at 6 and 24 h for analysis. Conditioned medium at 15% significantly increased apoptosis in brain cell cultures 24 h after treatment, whereas 25% and 50% significantly increased both necrosis and apoptosis. Levels of brain damage markers S100 calcium binding protein B and neuron-specific enolase, interleukin-6, macrophage inflammatory protein-2, as well as matrix metalloproteinase-9 increased significantly after treating brain cells with ≥2% conditioned medium. Our findings demonstrated that human epithelial pulmonary cells stimulated with bacterial lipopolysaccharide release inflammatory mediators that are able to induce a translational clinically relevant and harmful response in brain cells. These results support a brain-lung crosstalk during sepsis and sepsis-induced acute respiratory distress syndrome. PMID:25135986

  14. The 78-kD Glucose-Regulated Protein Regulates Endoplasmic Reticulum Homeostasis and Distal Epithelial Cell Survival during Lung Development.

    Science.gov (United States)

    Flodby, Per; Li, Changgong; Liu, Yixin; Wang, Hongjun; Marconett, Crystal N; Laird-Offringa, Ite A; Minoo, Parviz; Lee, Amy S; Zhou, Beiyun

    2016-07-01

    Bronchopulmonary dysplasia (BPD), a chronic lung disease of prematurity, has been linked to endoplasmic reticulum (ER) stress. To investigate a causal role for ER stress in BPD pathogenesis, we generated conditional knockout (KO) mice (cGrp78(f/f)) with lung epithelial cell-specific KO of Grp78, a gene encoding the ER chaperone 78-kD glucose-regulated protein (GRP78), a master regulator of ER homeostasis and the unfolded protein response (UPR). Lung epithelial-specific Grp78 KO disrupted lung morphogenesis, causing developmental arrest, increased alveolar epithelial type II cell apoptosis, and decreased surfactant protein and type I cell marker expression in perinatal lungs. cGrp78(f/f) pups died immediately after birth, likely owing to respiratory distress. Importantly, Grp78 KO triggered UPR activation with marked induction of the proapoptotic transcription factor CCAAT/enhancer-binding proteins (C/EBP) homologous protein (CHOP). Increased expression of genes involved in oxidative stress and cell death and decreased expression of genes encoding antioxidant enzymes suggest a role for oxidative stress in alveolar epithelial cell (AEC) apoptosis. Increased Smad3 phosphorylation and expression of transforming growth factor-β/Smad3 targets Cdkn1a (encoding p21) and Gadd45a suggest that interactions among the apoptotic arm of the UPR, oxidative stress, and transforming growth factor-β/Smad signaling pathways contribute to Grp78 KO-induced AEC apoptosis and developmental arrest. Chemical chaperone Tauroursodeoxycholic acid reduced UPR activation and apoptosis in cGrp78(f/f) lungs cultured ex vivo, confirming a role for ER stress in observed AEC abnormalities. These results demonstrate a key role for GRP78 in AEC survival and gene expression during lung development through modulation of ER stress, and suggest the UPR as a potential therapeutic target in BPD.

  15. Chloride transport-driven alveolar fluid secretion is a major contributor to cardiogenic lung edema.

    Science.gov (United States)

    Solymosi, Esther A; Kaestle-Gembardt, Stefanie M; Vadász, István; Wang, Liming; Neye, Nils; Chupin, Cécile Julie Adrienne; Rozowsky, Simon; Ruehl, Ramona; Tabuchi, Arata; Schulz, Holger; Kapus, Andras; Morty, Rory E; Kuebler, Wolfgang M

    2013-06-18

    Alveolar fluid clearance driven by active epithelial Na(+) and secondary Cl(-) absorption counteracts edema formation in the intact lung. Recently, we showed that impairment of alveolar fluid clearance because of inhibition of epithelial Na(+) channels (ENaCs) promotes cardiogenic lung edema. Concomitantly, we observed a reversal of alveolar fluid clearance, suggesting that reversed transepithelial ion transport may promote lung edema by driving active alveolar fluid secretion. We, therefore, hypothesized that alveolar ion and fluid secretion may constitute a pathomechanism in lung edema and aimed to identify underlying molecular pathways. In isolated perfused lungs, alveolar fluid clearance and secretion were determined by a double-indicator dilution technique. Transepithelial Cl(-) secretion and alveolar Cl(-) influx were quantified by radionuclide tracing and alveolar Cl(-) imaging, respectively. Elevated hydrostatic pressure induced ouabain-sensitive alveolar fluid secretion that coincided with transepithelial Cl(-) secretion and alveolar Cl(-) influx. Inhibition of either cystic fibrosis transmembrane conductance regulator (CFTR) or Na(+)-K(+)-Cl(-) cotransporters (NKCC) blocked alveolar fluid secretion, and lungs of CFTR(-/-) mice were protected from hydrostatic edema. Inhibition of ENaC by amiloride reproduced alveolar fluid and Cl(-) secretion that were again CFTR-, NKCC-, and Na(+)-K(+)-ATPase-dependent. Our findings show a reversal of transepithelial Cl(-) and fluid flux from absorptive to secretory mode at hydrostatic stress. Alveolar Cl(-) and fluid secretion are triggered by ENaC inhibition and mediated by NKCC and CFTR. Our results characterize an innovative mechanism of cardiogenic edema formation and identify NKCC1 as a unique therapeutic target in cardiogenic lung edema.

  16. Apoptosis in Pneumovirus Infection

    Directory of Open Access Journals (Sweden)

    Reinout A. Bem

    2013-01-01

    Full Text Available Pneumovirus infections cause a wide spectrum of respiratory disease in humans and animals. The airway epithelium is the major site of pneumovirus replication. Apoptosis or regulated cell death, may contribute to the host anti-viral response by limiting viral replication. However, apoptosis of lung epithelial cells may also exacerbate lung injury, depending on the extent, the timing and specific location in the lungs. Differential apoptotic responses of epithelial cells versus innate immune cells (e.g., neutrophils, macrophages during pneumovirus infection can further contribute to the complex and delicate balance between host defense and disease pathogenesis. The purpose of this manuscript is to give an overview of the role of apoptosis in pneumovirus infection. We will examine clinical and experimental data concerning the various pro-apoptotic stimuli and the roles of apoptotic epithelial and innate immune cells during pneumovirus disease. Finally, we will discuss potential therapeutic interventions targeting apoptosis in the lungs.

  17. Pulmonary alveolar proteinosis

    Directory of Open Access Journals (Sweden)

    B. Crestani

    2011-06-01

    Full Text Available Pulmonary alveolar proteinosis (PAP is a rare pulmonary disease characterised by alveolar accumulation of surfactant. It may result from mutations in surfactant proteins or granulocyte macrophage-colony stimulating factor (GM-CSF receptor genes, it may be secondary to toxic inhalation or haematological disorders, or it may be auto-immune, with anti-GM-CSF antibodies blocking activation of alveolar macrophages. Auto-immune alveolar proteinosis is the most frequent form of PAP, representing 90% of cases. Although not specific, high-resolution computed tomography shows a characteristic “crazy paving” pattern. In most cases, bronchoalveolar lavage findings establish the diagnosis. Whole lung lavage is the most effective therapy, especially for auto-immune disease. Novel therapies targeting alveolar macrophages (recombinant GM-CSF therapy or anti-GM-CSF antibodies (rituximab and plasmapheresis are being investigated. Our knowledge of the pathophysiology of PAP has improved in the past 20 yrs, but therapy for PAP still needs improvement.

  18. Endoplasmic reticulum stress causes autophagy and apoptosis leading to cellular redistribution of the autoantigens Ro/Sjögren's syndrome-related antigen A (SSA) and La/SSB in salivary gland epithelial cells.

    Science.gov (United States)

    Katsiougiannis, S; Tenta, R; Skopouli, F N

    2015-08-01

    The aim of this study was to examine the levels of endoplasmic reticulum (ER) stress in minor salivary glands, to investigate the interplay between ER stress-induced autophagy and apoptosis in human salivary gland (HSG) cells and to test the effect of ER stress-induced apoptosis on the cellular redistribution of the two major Sjögren's syndrome (SS) autoantigens Ro/Sjögren's syndrome-related antigen A (SSA) and La/Sjögren's syndrome-related antigen B (SSB). Minor salivary gland biopsies from SS patients and sicca controls were examined by immunohistochemistry for the expression of 78 kDa glucose-regulated protein/binding immunoglobulin protein (GRP78/BiP) as an indicator of unfolded protein response (UPR). HSG cells were treated with thapsigargin (TG) and cell viability, autophagy and apoptosis were assessed. Immunoblot was applied to detect the conversion of LC3I to LC3II and the protein levels of GRP78/BiP and X-box binding protein-1 (XBP-1). Apoptosis was evaluated by a single-stranded DNA enzyme-linked immunosorbent assay (ELISA). Ro/SSA and La/SSB localization was visualized using immunofluorescence. GRP78/BiP was expressed by acinar and ductal epithelial cells in salivary glands of patients and sicca controls. TG treatment induced autophagy, as indicated by enhanced protein expression of LC3II. The protein levels of UPR marker XBP-1 were increased after TG treatment, while GRP78/BiP levels were decreased. TG treatment resulted in induction of HSG apoptosis. Ro/SSA and La/SSB autoantigens were localized predominantly to the cytoplasm in resting cells, while they were redistributed to cell membrane and blebs in the apoptotic cells. In conclusion, ER stress is activated in minor salivary gland epithelial cells from SS patients and controls. ER stress-induced apoptosis in HSG cells leads to cell surface and apoptotic blebs relocalization of Ro/SSA and La/SSB autoantigens.

  19. CYP3A-mediated apoptosis of dauricine in cultured human bronchial epithelial cells and in lungs of CD-1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hua; Shen, Shuijie [Center for Developmental Therapeutics, Seattle Children' s Research Institute, Division of Gastroenterology and Hepatology, Department of Pediatrics, University of Washington, Seattle, WA 98101 (United States); Chen, Xiaoyan; Zhong, Dafang [Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 (China); Zheng, Jiang, E-mail: jiang.zheng@seattlechildrens.org [Center for Developmental Therapeutics, Seattle Children' s Research Institute, Division of Gastroenterology and Hepatology, Department of Pediatrics, University of Washington, Seattle, WA 98101 (United States)

    2012-06-15

    Dauricine is the major bioactive component isolated from the root of Menispermum dauricum DC and has shown promising pharmacologic activities with a great potential for clinical use. Recently, we found that intraperitoneal exposure of dauricine produced selective pulmonary injury in mice. A quinone methide metabolite of dauricine was identified and is suggested to be associated with the pulmonary toxicity of dauricine. The present study evaluated the apoptotic effect of dauricine in cultured cells and mice, determined the change in cellular glutathione (GSH) contents after exposure to dauricine, investigated the role of GSH depletion in dauricine-induced cytotoxicity and apoptosis, and examined the role of CYP3A in dauricine-induced GSH depletion and apoptosis. Dauricine was found to induce apoptosis in NL-20 cells. Additionally, intraperitoneal administration of dauricine caused GSH depletion and apoptosis in lungs of mice. Treatment with ketoconazole, an inhibitor of CYP3A, reversed cellular GSH depletion in lungs of mice given dauricine and showed protective effect on dauricine-induced apoptosis in lungs of mice. This indicates that metabolic activation is involved in dauricine-induced GSH-depletion, cytotoxicity and apoptosis. The glutathione depletor L-buthionine sulfoximine showed potentiating effect on cytotoxicity and apoptosis induced by dauricine. We propose that dauricine is metabolized to a quinone methide intermediate which depletes cellular GSH, and the depletion of GSH may trigger and/or intensify the cytotoxicity and apoptosis induced by dauricine. -- Highlights: ► Dauricine induced apoptosis in lungs in mice and in cultured human pulmonary cells. ► Dauricine depleted cellular GSH in lungs of mice and in the human pulmonary cells. ► CYP3A subfamily mediated GSH depletion and apoptosis induced by dauricine. ► L-Buthionine sulfoximine potentiated dauricine-induced GSH depletion and apoptosis.

  20. Pulmonary alveolar microlithiasis

    Directory of Open Access Journals (Sweden)

    Surender Kashyap

    2013-01-01

    Full Text Available Pulmonary alveolar microlithiasis (PAM is a rare, chronic lung disease with bilateral intra-alveolar calcium and phosphate deposition throughout the lung parenchyma with predominance to lower and midzone. Although, etiology and pathogenesis of PAM is not fully understood, the mutation in SLC34A2 gene that encodes a sodium-phosphate co-transporter in alveolar type II cells resulting in the accumulation and forming of microliths rich in calcium phosphate (due to impaired clearance are considered to be the cause of the disease. Chest radiograph and high-resolution CT of thorax are nearly pathognomonic for diagnosing PAM. HRCT demonstrates diffuse micronodules showing slight perilobular predominance resulting in calcification of interlobular septa. Patients with PAM are asymptomatic till development of hypoxemia and cor-pulmonale. No therapy has been proven to be beneficial except lung transplantation.

  1. CYP3A-mediated apoptosis of dauricine in cultured human bronchial epithelial cells and in lungs of CD-1 mice.

    Science.gov (United States)

    Jin, Hua; Shen, Shuijie; Chen, Xiaoyan; Zhong, Dafang; Zheng, Jiang

    2012-06-15

    Dauricine is the major bioactive component isolated from the root of Menispermum dauricum DC and has shown promising pharmacologic activities with a great potential for clinical use. Recently, we found that intraperitoneal exposure of dauricine produced selective pulmonary injury in mice. A quinone methide metabolite of dauricine was identified and is suggested to be associated with the pulmonary toxicity of dauricine. The present study evaluated the apoptotic effect of dauricine in cultured cells and mice, determined the change in cellular glutathione (GSH) contents after exposure to dauricine, investigated the role of GSH depletion in dauricine-induced cytotoxicity and apoptosis, and examined the role of CYP3A in dauricine-induced GSH depletion and apoptosis. Dauricine was found to induce apoptosis in NL-20 cells. Additionally, intraperitoneal administration of dauricine caused GSH depletion and apoptosis in lungs of mice. Treatment with ketoconazole, an inhibitor of CYP3A, reversed cellular GSH depletion in lungs of mice given dauricine and showed protective effect on dauricine-induced apoptosis in lungs of mice. This indicates that metabolic activation is involved in dauricine-induced GSH-depletion, cytotoxicity and apoptosis. The glutathione depletor L-buthionine sulfoximine showed potentiating effect on cytotoxicity and apoptosis induced by dauricine. We propose that dauricine is metabolized to a quinone methide intermediate which depletes cellular GSH, and the depletion of GSH may trigger and/or intensify the cytotoxicity and apoptosis induced by dauricine.

  2. Apoptosis and Bax expression are increased by coal dust in the polycyclic aromatic hydrocarbon-exposed lung

    Energy Technology Data Exchange (ETDEWEB)

    Ghanem, M.M.; Battelli, L.A.; Mercer, R.R.; Scabilloni, J.F.; Kashon, M.L.; Ma, J.Y.C.; Nath, J.; Hubbs, A.F.

    2006-09-15

    Miners inhaling respirable coal dust (CD) frequently develop coal workers' pneumoconiosis. Many coal miners are also exposed to polycyclic aromatic hydrocarbon (PAH) components of diesel engine exhaust and cigarette smoke, which may contribute to lung disease in these workers. Recently, apoptosis was reported to play a critical role in the development of another pneumoconiosis of miners, silicosis. In addition, CID was reported to suppress cytochrome P450 1A1 (CYP1A1) induction by PAHs. We exposed rats intratracheally to 0.0, 2.5, 10.0, 20.0, or 40.0 mg/rat CD and, 11 days later, to intraperitoneal P-naphthoflavone (BNF), a PAH. In another group of rats exposed to CD and BNF, caspase activity was inhibited by injection of the pan-caspase inhibitor Q-VD-OPH (quinoline-Val-Asp (OMe)-CH{sub 2}-OPH). In rats exposed to BNF, CD exposure increased alveolar expression of the proapoptotic mediator Bax but decreased CYP1A1 induction relative to BNF exposure alone. Pan-caspase inhibition decreased CD-associated Bax expression and apoptosis but did not restore CYP1A1 activity. Further, CD-induced lung inflammation and alveolar epithelial cell hypertrophy and hyperplasia were not suppressed by caspase inhibition. It is concluded that combined BNF and CD exposure increased Bax expression and apoptosis in the lung, but Bax and apoptosis were not the major determinants of early lung injury in this model.

  3. 全氟化碳对脂多糖诱导Ⅱ型肺泡上皮损伤的保护机制研究%The protective effect of perfluorocarbon on the injury of alveolar epithelial cells induced by lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    朱月钮; 陈菲; 张明军; 魏红霞; 朱晓东

    2014-01-01

    Objective To explore the effects of perfluorocarbon (PFC) on the damaged type Ⅱ alveolar epithelial cells (AEC Ⅱ) induced by lipopolysaccharide (LPS),and the apoptosis and inflammatory reaction of AEC Ⅱ induced by LPS.Methods Primary AEC Ⅱ was divided into control group according to the random number table method,LPS group,PFC group and PFC + LPS group.LPS group:LPS (1 μg/ml) was added to cells.PFC group:PFC (20%) was added to cells.PFC + LPS group:PFC (20%) and LPS (1 μg/ml) were added to cells.The apoptotic rate of AEC Ⅱ was detected by flow cytometry.Morphologic change was observed by electron microscope.Concentrations of intedeukin (IL)-6 and IL-10 of supernatant were detected by ELISA.Results Apoptotic rate of AEC Ⅱ remarkably increased in LPS group than in control grouop [(10.89 ± 1.04) % vs (14.29 ± 1.93) %] (P < 0.05).Compared with LPS group,the apoptotic rate of AEC Ⅱ decreased remarkably in the PFC + LPS group [(12.22 ± 1.47) %],(P < 0.05).IL-6 production of AEC Ⅱ significantly increased in LPS group than in control group [(482.58 ± 26.84) vs (229.40 ± 7.61) pg/ml pg/ml] (P < 0.05),while decreased in PFC + LPS group [(265.44 ± 29.95) pg/ml].IL-10 production of AEC Ⅱ significantly increased in LPS group than in control group [(1 497.29 ±191.89) pg/ml vs (725.87 ±51.83) pg/ml] (P <0.05),while there was no difference between LPS group and PFC + LPS group (P > 0.05).Conclusion PFC can protect AEC Ⅱ against the injury induced by LPS.PFC can also release the level of inflammatory response.%目的 探讨全氟化碳(perfluorocarbon,PFC)对脂多糖(lipopolysaccharide,LPS)作用下胎鼠Ⅱ型肺泡上皮细胞的凋亡以及炎症反应的影响.方法 分离纯化原代胎鼠Ⅱ型肺泡上皮细胞,采用随机数字表法随机分为对照组、LPS组、PFC组、PFC+ LPS组.LPS组培养液加入1μg/ml的LPS,PFC组培养液加入20%容积比的PFC,PFC+ LPS组培养液加入1μg/ml LPS和20%容积比PFC,

  4. Cell cycle regulation by glucosamine in human pulmonary epithelial cells.

    Science.gov (United States)

    Chuang, Kun-Han; Lu, Chih-Shen; Kou, Yu Ru; Wu, Yuh-Lin

    2013-04-01

    Airway epithelial cells play an important role against intruding pathogens. Glucosamine, a commonly used supplemental compound, has recently begun to be regarded as a potential anti-inflammatory molecule. This study aimed to uncover how glucosamine impacts on cellular proliferation in human alveolar epithelial cells (A549) and bronchial epithelial cells (HBECs). With trypan blue-exclusion assay, we observed that glucosamine (10, 20, 50 mM) caused a decrease in cell number at 24 and 48 h; with a flow cytometric analysis, we also noted an enhanced cell accumulation within the G(0)/G(1) phase at 24 h and induction of late apoptosis at 24 and 48 h by glucosamine (10, 20, 50 mM) in A549 cells and HBECs. Examination of phosphorylation in retinoblastoma (Rb) protein, we found an inhibitory effect by glucosamine at 20 and 50 mM. Glucosamine at 50 mM was demonstrated to elevate both the mRNA and protein expression of p53 and heme oxygenase-1 (HO-1), but also caused a reduction in p21 protein expression. In addition, glucosamine attenuated p21 protein stability via the proteasomal proteolytic pathway, as well as inducing p21 nuclear accumulation. Altogether, our results suggest that a high dose of glucosamine may inhibit cell proliferation through apoptosis and disturb cell cycle progression with a halt at G(0)/G(1) phase, and that this occurs, at least in part, by a reduction in Rb phosphorylation together with modulation of p21, p53 and HO-1 expression, and nuclear p21 accumulation.

  5. Apoptosis detected by tissue microarray in cervical squamous epithelial lesions%组织芯片技术检测宫颈鳞状上皮病变中细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    林静; 乐江华; 寥芝玲

    2011-01-01

    Objective: To study the condition and significance of apoptosis in cervical squamous epithelial lesions. Methods: 53 cervical specimens were selected from the hospital from January 2008 to October 2009 to prepare tissue microarray, including 9 normal specimens, 32 specimens of CIN and 12 specimens of cervical squamous cell carcinoma; TUNEL method was used to detect apoptosis. Results; The positive rates of apoptosis were 0% (0/9) in normal cervix group, 15. 62% (5/32) in CIN group, 66. 67% (8/12) in squamous cell carcinoma group; there was significant difference among the three groups (P <0. 01) . Conclusion: The phenomenon of apoptosis becomes clear with the aggravation of cervical squamous epithelial lesions, TUNEL technique has the advantages of high quality, high efficiency and reliability for tissue microarray detection.%目的:研究宫颈鳞状上皮病变中细胞凋亡的情况及其意义.方法:选择2008年1月~2009年10月桂林医学院附属医院53例宫颈组织制成组织芯片,其中正常9例,CIN 32例,鳞状细胞癌12例;应用TUNEL法检测细胞凋亡情况.结果:凋亡阳性率依次为:正常组0% (0/9),CIN组15.62% (5/32),鳞状细胞癌66.67%(8/12);正常组、CIN组与癌症组凋亡阳性率比较差异有统计学意义(P<0.01).结论:细胞凋亡现象随着宫颈鳞状上皮病变的发展逐渐明显,应用TUNEL法检测宫颈组织芯片,具有优质、高效、结果可靠的特点.

  6. [Dento-alveolar injuries].

    Science.gov (United States)

    Voorsmit, R A; Kuijpers-Jagtman, A M

    1992-11-01

    Most dento-alveolar traumas can be managed by the dentist-general practitioner. Still, there are some specific injuries which should be treated by dental specialists. Some specific guidelines are given for the combined surgical-orthodontic treatment of fracture of the coronal part of the root, intrusive luxation, abnormal position of the permanent tooth due to traumatic displacement of the deciduous tooth, ankylosis and tooth loss.

  7. Effects of the treatment with different fluids on alveolar epithelium barrier in rats with acute lung injury%不同液体治疗对急性肺损伤大鼠肺泡上皮细胞屏障功能的影响

    Institute of Scientific and Technical Information of China (English)

    魏洪霞; 杨毅; 邱海波; 郭涛; 赵明明; 陈秋华

    2009-01-01

    目的 观察不同液体治疗对急性肺损伤(ALI)大鼠肺泡上皮细胞屏障功能的影响.方法 ①与对照组比较,LPS组、NS组肺损伤评分明显升高(P均0.05),且后3组间比较差异也无统计学意义.②与对照组比较,LPS组、NS组肺W/D比值明显升高(P均0.05).⑤各组肺泡上皮细胞凋亡指数(AI)明显高于对照组(P均0.05).结论 胶体液较NS更能改善ALI大鼠肺泡上皮通透性,保护上皮细胞屏障功能.%Objective To observe the effects of different fluids on alveolar epithelium barrier in rats with acute lung injury (ALI). Methods Thirty-six Sprague-Dawley (SD) rats were randomly assigned into six groups with 6 rats in each group. ALI was induced by intravenous injection of lipopolysaccharide(LPS). Rats in all treatment groups were given different fluids and sacrificed after 4 hours. Evans blue dye (EBD) was injected via the femoral vein 30 minutes before death. Tracheobronchial tree was washed with normal saline (NS) after death, and broncho-alveolar lavage fluid (BALF) was collected. Leakage of EBD from blood into BALF (alveolar epithelial permeability) and wet/dry (W/D) ratio were measured. The mRNA expression of surfactant protein-C (SP-C) was assessed by reverse transcription-polymerase chain reaction (RT-PCR). Alveolar epithelium apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling (TUNEL). Lung injury was evaluated by Smith lung injury score. Results ①Lung injury scores in LPS and NS groups were significantly higher than in control group (both P0.05). No significant difference was found among the latter three groups. ②W/D ratio in LPS and NS groups were significantly higher than that in control group (both P0.05). ⑤Apoptosis index (AI) of alveolar epithelial cell in all the treatment groups were significantly higher than that in control group (all P<0.05). Compared with NS group, AI were noticeably lower in ALB and HES groups (both P<0

  8. Mammary epithelial cell

    DEFF Research Database (Denmark)

    Kass, Laura; Erler, Janine Terra; Dembo, Micah

    2007-01-01

    a repertoire of transmembrane receptors, of which integrins are the best characterized. Integrins modulate cell fate by reciprocally transducing biochemical and biophysical cues between the cell and the extracellular matrix, facilitating processes such as embryonic branching morphogenesis and lactation...... in the mammary gland. During breast development and cancer progression, the extracellular matrix is dynamically altered such that its composition, turnover, processing and orientation change dramatically. These modifications influence mammary epithelial cell shape, and modulate growth factor and hormonal...... responses to regulate processes including branching morphogenesis and alveolar differentiation. Malignant transformation of the breast is also associated with significant matrix remodeling and a progressive stiffening of the stroma that can enhance mammary epithelial cell growth, perturb breast tissue...

  9. Overexpression of cyclooxygenase-2 in NCI-H292 human alveolar epithelial carcinoma cells: roles of p38 MAPK, ERK-1/2, and PI3K/PKB signaling proteins.

    Science.gov (United States)

    Sung, Suhaeng; Park, Yukyoung; Jo, Jeong-Rang; Jung, Nak-Kyun; Song, Dae-Kyu; Bae, Jaehoon; Keum, Dong-Yun; Kim, Jae-Bum; Park, Gy-Young; Jang, Byeong-Churl; Park, Jong-Wook

    2011-10-01

    Evidence suggests overexpression of COX-2 and its role in many human cancers, including lung. However, the regulatory mechanism underlying COX-2 overexpression in lung cancer is not fully understood. We herein investigated whether COX-2 is overexpressed in human airway cancer cell lines, including A549 (lung), Hep-2 (bronchial), and NCI-H292 (alveolar). When grown in cell culture medium containing 10% FBS (serum), of note, there was strong and transient induction of COX-2 protein and mRNA in NCI-H292 cells, but little or low COX-2 expression is seen in A549 or Hep-2 cells. Interestingly, strong and sustained activities of ERK-1/2, JNK-1/2, p38 MAPK, and PKB were also shown in NCI-H292 cells grown in presence of serum. Profoundly, results of pharmacological inhibition studies demonstrated that the serum-dependent COX-2 up-regulation in NCI-H292 cells is attributed to not only the p38 MAPK-, PI3K/PKB-, and ERK-1/2-mediated COX-2 transcriptional up-regulation but also the p38 MAPK- and ERK-1/2-mediated post-transcriptional COX-2 mRNA stabilization. Of further note, it was shown that the ERK-1/2 and PI3K/PKB (but not COX-2, p38 MAPK, and JNK-1/2) activities are necessary for growth of NCI-H292 cells. These findings collectively demonstrate for the first time that COX-2 expression is transiently up-regulated by serum addition in NCI-H292 cells and the serum-induced COX-2 expression is closely linked to the p38 MAPK-, ERK-1/2-, and PI3K/PKB-mediated COX-2 transcriptional and post-transcriptional up-regulation.

  10. Low fucose containing bacterial polysaccharide facilitate mitochondria-dependent ROS-induced apoptosis of human lung epithelial carcinoma via controlled regulation of MAPKs-mediated Nrf2/Keap1 homeostasis signaling.

    Science.gov (United States)

    Chowdhury, Sougata Roy; Sengupta, Suman; Biswas, Subir; Sen, Ramkrishna; Sinha, Tridib Kumar; Basak, Ratan Kumar; Adhikari, Basudam; Bhattacharyya, Arindam

    2015-12-01

    Reactive oxygen species (ROS), the key mediators of cellular oxidative stress and redox dysregulation involved in cancer initiation and progression, have recently emerged as promising targets for anticancer drug discovery. Continuous free radical assault upsets homeostasis in cellular redox system and regulates the associated signaling pathways to mediate stress-induced cell death. This study investigates the dose-specific pro-oxidative behavior of a bacterial fucose polysaccharide, which attenuated proliferation of different cancer cells. In the fermentation process, Bacillus megaterium RB-05 [GenBank Accession Number HM371417] was found to biosynthesize a polysaccharide with low-fucose content (4.9%), which conferred the maximum anti-proliferative activity (750 µg/mL) against human lung cancer epithelial cells (A549) during preliminary screening. Structural elucidation and morphological characterization of the duly purified polysaccharide was done using HPLC, GC-MS, (1)H/(13)C NMR, and microscopy. The polysaccharide exhibited concentration- and time-dependent anti-proliferative effects against A549 cells by inducing intracellular ROS level and regulating the mitochondrial membrane-permeability following the apoptotic pathway. This process encompasses activation of caspase-8/9/3/7, increase in the ratio of Bax/Bcl2 ratio, translocation of Bcl2-associated X protein (Bax) and cytochrome c, decrease in expression of anti-apoptotic members of Bcl2 family, and phosphorylation of mitogen activated protein kinases (MAPKs). Apoptosis was attenuated upon pretreatment with specific caspase-inhibitors. Simultaneously, during apoptosis, the ROS-mediated stress as well as activated MAPKs triggered nuclear translocation of transcription factors like nuclear factor (erythroid-derived)-like 2 (Nrf2) and promoted further transcription of downstream cytoprotective genes, which somehow perturbed the chemotherapeutic efficacy of the polysaccharide, although using CuPP, a chemical

  11. Parameters of proliferation and apoptosis of epithelial cells in the gastric mucosa in indigenous and non-indigenous residents of Khakassia with Helicobacter pylori positive duodenal ulcer disease.

    Science.gov (United States)

    Tsukanov, V V; Shtygasheva, O V; Vasyutin, A V; Amel'chugova, O S; Butorin, N N; Ageeva, E S

    2015-02-01

    We evaluated parameters of apoptosis in the mucosa of the gastric antrum and body of indigenous and non-indigenous residents of Khakassia with duodenal ulcer disease associated with Helicobacter pylori infection. In the gastric antrum, apoptotic index was significantly increased in patients with ulcer disease in comparison with healthy individuals in both populations. The ratio of proliferation index to apoptotic index was lower in patients with ulcer disease in comparison with healthy individuals in both populations. Similar, but less pronounced processes were recorded in the body of the stomach. Significant changes in the parameters of proliferation and apoptosis were noted in the gastric antrum and body of the stomach in both populations, but they were more pronounced in Caucasians in comparison with Khakasses.

  12. Wnt signaling promotes the differentiation of adipose mesenchymal stem cells into type II alveolar epithelial cells%Wnt信号途径促进脂肪间充质干细胞向Ⅱ型肺泡上皮细胞分化

    Institute of Scientific and Technical Information of China (English)

    石莉; 竭晶; 王芳; 赵丹; 张秀芳; 彭丽萍

    2015-01-01

    背景:脂肪间充质干细胞向Ⅱ型肺泡上皮细胞定向分化的能力以及调节机制尚未完全阐明。  目的:观察脂肪间充质干细胞在体外分化为Ⅱ型肺泡上皮的能力以及W nt途径对分化的调节作用。  方法:取大鼠脂肪组织,体外分离培养脂肪间充质干细胞并通过流式细胞术进行鉴定。实验分为对照组、小气道生长液组和Wnt3a组,对照组用普通DMEM培养基培养,小气道生长液组和Wnt3a组均使用小气道生长液培养,且Wnt3a组加入Wnt信号通路激动剂Wnt3a培养。诱导10 d后分别通过qRT-PCR和免疫荧光检测Ⅱ型肺泡上皮标志物肺表面活性蛋白B,C,D的表达,并于诱导5 d和10 d时通过Western blot检测磷酸化β-catenin和GSK-3β。  结果与结论:大鼠脂肪组织中可成功分离出纯度较高的脂肪间充质干细胞,可表达 CD44和 CD29,不表达CD11b和CD45;经小气道生长液诱导后,脂肪间充质干细胞中肺表面活性蛋白B,C,D蛋白和mRNA表达均上调(P OBJECTIVE:To study the ability of adipose mesenchymal stem cels differentiating into type II alveolar epithelial cels in vitro and the function of Wnt pathway in the regulation of differentiation. METHODS:Adipose mesenchymal stem cels were obtained from fat tissue of rats and identified by flow cytometry. The adipose mesenchymal stem cels were divided into control group, smal airway growth medium (SAGM) group and Wnt3a group. Control group was treated with normal DMEM medium; SAGM and Wnt3a groups were both treated with smal airway growth medium, and additionaly, the Wnt3a group was treated with Wnt3a, a Wnt signaling pathway agonist. After 10 days, quantitative RT-PCR and immunofluorescence detection were used to test the expression of surfactant proteins B, C, D, type II alveolar epithelial markers. Phosphorylatedβ-catenin and GSK-3β were detected using western blot after 5 and 10 days of induction. RESULTS

  13. rs78378222 polymorphism in the 3'-untranslated region of TP53 contributes to development of age-associated cataracts by modifying microRNA-125b-induced apoptosis of lens epithelial cells.

    Science.gov (United States)

    Zhao, Yang; Li, Xiao; Zhu, Siquan

    2016-09-01

    MicroRNAs (miRNAs) negatively regulate the expression of the target genes by binding to 'seed sequences' in the 3'‑untranslated region (3'‑UTR) mRNA transcripts, and the variants within or nearby 'seed sequences' may compromise or enhance miRNA/mRNA interaction leading to either 'loss‑of‑function' or 'gain‑of‑function' effects. Cataracts are the leading cause of blindness worldwide and are characterized by progressive aggregation and precipitation of lens proteins, and the development of age‑related cataracts is associated with dysregulated cellular activities of lens epithelial cells. Luciferase assays and online miRNA databases were used to validate that tumor protein p53 (TP53) is the target gene of miR‑125b. Furthermore, reverse transcription‑quantitative polymerase chain reaction and western blotting were conducted to detect expression levels of miR‑125b and TP53 in different groups of cells transfected with miR‑125b mimics or inhibitors. In addition, flow cytometry analysis and the MTT assay were conducted to detect the effects of miR‑125b on apoptosis and cell viability. The current study demonstrated that the rs78378222 polymorphism minor allele introduces a novel potential miR‑125b binding site in the TP53 3'‑UTR with a consecutive 8‑bp perfect match, creating a 'gain‑of‑function' variant and affecting the regulation of TP53 expression. A luciferase assay demonstrated that transfection of lens epithelial cells with wild type TP53 3'‑UTR significantly reduced the luciferase activity of the miR‑125b overexpressing cells compared with scramble controls. In addition, the luciferase activity of miR‑125b overexpressing cells transfected with the construct containing the rs78378222 polymorphism minor allele was also reduced compared with cells transfected with the wild type 3'‑UTR. Furthermore, it was demonstrated that the expression level of miR‑125 was comparable in epithelial cells from patients with age

  14. Megalin mediates transepithelial albumin clearance from the alveolar space of intact rabbit lungs.

    Science.gov (United States)

    Buchäckert, Yasmin; Rummel, Sebastian; Vohwinkel, Christine U; Gabrielli, Nieves M; Grzesik, Benno A; Mayer, Konstantin; Herold, Susanne; Morty, Rory E; Seeger, Werner; Vadász, István

    2012-10-15

    The alveolo-capillary barrier is effectively impermeable to large solutes such as proteins. A hallmark of acute lung injury/acute respiratory distress syndrome is the accumulation of protein-rich oedema fluid in the distal airspaces. Excess protein must be cleared from the alveolar space for recovery; however, the mechanisms of protein clearance remain incompletely understood. In intact rabbit lungs 29.8 ± 2.2% of the radio-labelled alveolar albumin was transported to the vascular compartment at 37°C within 120 min, as assessed by real-time measurement of 125I-albumin clearance from the alveolar space. At 4°C or 22°C significantly lower albumin clearance (3.7 ± 0.4 or 16.2 ± 1.1%, respectively) was observed. Deposition of a 1000-fold molar excess of unlabelled albumin into the alveolar space or inhibition of cytoskeletal rearrangement or clathrin-dependent endocytosis largely inhibited the transport of 125I-albumin to the vasculature, while administration of unlabelled albumin to the vascular space had no effect on albumin clearance. Furthermore, albumin uptake capacity was measured as about 0.37 mg ml−1 in cultured rat lung epithelial monolayers, further highlighting the (patho)physiological relevance of active alveolar epithelial protein transport. Moreover, gene silencing and pharmacological inhibition of the multi-ligand receptor megalin resulted in significantly decreased albumin binding and uptake in monolayers of primary alveolar type II and type I-like and cultured lung epithelial cells. Our data indicate that clearance of albumin from the distal air spaces is facilitated by an active, high-capacity, megalin-mediated transport process across the alveolar epithelium. Further understanding of this mechanism is of clinical importance, since an inability to clear excess protein from the alveolar space is associated with poor outcome in patients with acute lung injury/acute respiratory distress syndrome.

  15. 油烟中细颗粒物致胎鼠肺泡Ⅱ型上皮细胞DNA损伤的研究%Assessment of DNA Damage Induced by Cooking Oil Fumes Particulate in the Mice Alveolar Type Ⅱ Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    梁春梅; 操基玉; 王勇; 冯哲伟; 汪磊

    2011-01-01

    目的 探讨油烟中的细颗粒物(PM2.5)对原代培养的胎鼠肺泡Ⅱ型上皮细胞(AECⅡ)DNA的损伤效应.方法 将1只妊娠18d的SPF级ICR小鼠体内的胎鼠肺组织制成AECⅡ细胞悬液,取对数生长期细胞,调整细胞密度为1×106/ml,分别加入终浓度为0(溶剂对照,含10% FBS的DMEM)、12.5、25、50、100μg/ml的PM2.5(来源于烹调油烟)溶液,培养6、12h后进行MTT试验和彗星试验,并检测AECⅡ细胞的尾长、尾部DNA百分比、尾矩和Olive尾矩.结果与溶剂对照组比较,50、100 μg/ml PM2.5染毒6、12 h时胎鼠AECⅡ存活率下降,差异均有统计学意义(P<0.05);12.5、25、50μg/mlPM2.5染毒6、12h时胎鼠AECⅡ的尾长、尾部DNA百分比、尾矩和Olive尾矩升高,差异均有统计学意义(P<0.05).随着PM2.5染毒浓度的升高,AECⅡ细胞存活率呈下降趋势,尾长、尾部DNA百分比、尾矩和Olive尾矩均呈上升趋势.结论油烟中的PM2.5可降低AECⅡ的细胞活性,对AECⅡ的DNA具有损伤效应.%Objective To investigate DNA damage induced by cooking oil fume participate (PM2.5) in the mice alveolar type II epithelial cells in primary cultured. Methods The mice alveolar type Ⅱ epithelial cells were isolated from 18 days old fetuses of ICR mice. The cells in exponential phase were cultured at a density of 1×106 cells/ml,AEC II cells were treated with PM2.5 at the doses of 0 μg/ml (the solvent control, 10% FBS of DMEM), 12.5,25,50 and 100 μg/ml for 6 and 12 h. AEC Ⅱ cell proliferation were detected with MTT assays and the comet assay was used to detect the Olive tail moment,tail moment,tail length and tail intensity. Results The survival rate of AEC II was decreased with a dose-dependent manner; Olive tail moment, tail moment, tail length and tail intensity were increased with a dose-dependent manner. Conclusion Cooking oil fume participate may decrease the viability of AEC II cells and produce evident DNA damage.

  16. Trauma-hemorrhagic shock-induced pulmonary epithelial and endothelial cell injury utilizes different programmed cell death signaling pathways.

    Science.gov (United States)

    Barlos, Dimtrios; Deitch, Edwin A; Watkins, Anthony C; Caputo, Frank J; Lu, Qi; Abungu, Billy; Colorado, Iriana; Xu, Da-Zhong; Feinman, Rena

    2009-03-01

    Intestinal ischemia after trauma-hemorrhagic shock (T/HS) results in gut barrier dysfunction and the production/release of biologically active and tissue injurious factors in the mesenteric lymph, which, in turn, causes acute lung injury and a systemic inflammatory state. Since T/HS-induced lung injury is associated with pulmonary endothelial and epithelial cell programmed cell death (PCD) and was abrogated by mesenteric lymph duct ligation, we sought to investigate the cellular pathways involved. Compared with trauma-sham shock (T/SS) rats, a significant increase in caspase-3 and M30 expression was detected in the pulmonary epithelial cells undergoing PCD, whereas apoptosis-inducing factor (AIF), but not caspase-3, was detected in endothelial cells undergoing PCD. This AIF-mediated pulmonary endothelial PCD response was validated in an in situ femoral vein assay where endothelial cells were found to express AIF but not caspase-3. To complement these studies, human umbilical vein endothelial cell (HUVEC), human lung microvascular endothelial cell (HLMEC), and human alveolar type II epithelial cell (A549) lines were used as in vitro models. T/HS lymph induced the nuclear translocation of AIF in HUVEC and HLMEC, and caspase inhibition in these cells did not afford any cytoprotection. For proof of principle, AIF silencing in HUVEC reversed the cytotoxic effects of T/HS on cell viability and DNA fragmentation. In A549 cells, T/HS lymph activated caspase-3-mediated apoptosis, which was partially abrogated by N-benzyloxycarbonyl-Val-Ala-Asp (zVAD). Additionally, T/HS lymph did not cause the nuclear translocation of AIF in A549 cells. Collectively, T/HS-induced pulmonary endothelial PCD occurs via an AIF-dependent caspase-independent pathway, whereas epithelial cells undergo apoptosis by a caspase-dependent pathway.

  17. The collective nuclear migration of p53 and phosphorylated S473 of Akt during ellipticine-mediated apoptosis in human lung epithelial cancer cells.

    Science.gov (United States)

    Wang, Jing-Ping; Yu, Ya-Chu; Chen, Shih-Ping; Liang, Huan-Chang; Lin, Chia-Wei; Fang, Kang

    2015-09-01

    Topoisomerase II inhibitor ellipticine effectively suppressed the growth of human non-small-cell-lung-cancer (NSCLC) epithelial cells. Previously, we reported the drug activity was consummated through parallel nucleus migration of p53 and Akt in A549 cells. While inducing cell death, the drug activity was proved related to autophagy through phosphorylated Akt at S473. In addition, ellipticine induced cytotoxicity in p53-null H1299 cells with stable expression of ectopic p53. In this work, we further demonstrated that dominant-negative Akt (S473A) or p53 shRNA inhibited ellipticine-mediated translocalization of p53 and Akt and attenuated apoptotic cell death in A549 cells. The presence of p53 predates ellipticine-mediated apoptotic cell death, assists in nucleus translocation of phosphorylated Akt and activation of autophagy pathway. Growth inhibition through collaborating p53 and phosphorylated Akt(473) in lung epithelial cancer cells provided a new perspective of the topoisomerase inhibitor as an effective cancer therapy agent.

  18. Hemorragia alveolar associada a nefrite lúpica Alveolar hemorrhage associated with lupus nephritis

    Directory of Open Access Journals (Sweden)

    Ricardo Henrique de Oliveira Braga Teixeira

    2003-12-01

    Full Text Available Hemorragia alveolar, como causa de insuficiência respiratória, é pouco freqüente, com diversas etiologias possíveis. Entre elas, o lúpus eritematoso sistêmico, que se apresenta geralmente como síndrome pulmão-rim, possui alta morbimortalidade. Acredita-se que a patogênese da microangiopatia, tanto renal como pulmonar, esteja associada ao depósito de imunocomplexos, que ativariam as vias de apoptose celular. Relatam-se dois casos de pacientes com nefrite lúpica que evoluíram com hemorragia alveolar associada à insuficiência respiratória necessitando de ventilação mecânica com evoluções totalmente distintas frente às terapias farmacológicas. O achado de anticorpos antimembrana basal em um dos casos evidencia a multiplicidade de mecanismos fisiopatológicos possivelmente envolvidos, que poderiam justificar as respostas heterogêneas frente aos tratamentos disponíveis.Alveolar hemorrhage leading to respiratory failure is uncommon. Various etiologies have been reported, including systemic lupus erythematosus, which generally presents as pulmonary-renal syndrome. It is believed that the pathogenesis of microangiopathy is related to deposits of immune complexes that lead to activation of cellular apoptosis. The authors report two cases of alveolar hemorrhage and respiratory failure, both requiring mechanical ventilation. The two cases had opposite outcomes after pharmacological therapy. The presence of anti-glomerular basement membrane antibodies in one of the cases demonstrates the multiplicity of physiopathological mechanisms that may be involved. This multiplicity of mechanisms provides a possible explanation for the heterogeneous responses to the available treatments.

  19. Apoptosis of Alveolar Epithelial Cells Induced by Extraction of the Second Stage Larvae of Ascaris lumbricoides%人蛔虫Ⅱ期幼虫提取物诱导人肺上皮细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    彭国华; 袁铿; 周宪民; 彭卫东

    2004-01-01

    目的探讨人蛔虫Ⅱ期幼虫提取物诱导体外培养的人肺上皮细胞A549凋亡,以及提取物浓度和作用时间与细胞凋亡的相互关系.方法根据四氮唑盐酶还原法(MTT)结果,选用5种不同浓度的提取物诱导人肺上皮细胞凋亡.分别在诱导后的5个时间段,采用苏木素-伊红(HE)染色盲法计数和二苯胺法检测DNA断裂率,观察肺上皮细胞凋亡情况.同时对某个时间和浓度组的样本,用DNA琼脂糖凝胶电泳和流式细胞仪检测细胞凋亡.结果不同浓度人蛔虫Ⅱ期幼虫提取物诱导A549细胞凋亡,在5 h之内细胞凋亡率随提取物浓度增加而增加,两者呈正相关关系,且细胞凋亡率显著高于对照组(P<0.05),5 h细胞凋亡率达高峰(65.2%).结论人蛔虫Ⅱ期幼虫提取物可诱导人肺上皮细胞凋亡,细胞凋亡与其提取物浓度呈明显的相关关系.在时间上表现为双向变化关系,其变化程度同时受提取物浓度的影响.

  20. Helicobacter pylori CagA Suppresses Apoptosis through Activation of AKT in a Nontransformed Epithelial Cell Model of Glandular Acini Formation

    Directory of Open Access Journals (Sweden)

    Gabriela Vallejo-Flores

    2015-01-01

    Full Text Available H. pylori infection is the most important environmental risk to develop gastric cancer, mainly through its virulence factor CagA. In vitro models of CagA function have demonstrated a phosphoprotein activity targeting multiple cellular signaling pathways, while cagA transgenic mice develop carcinomas of the gastrointestinal tract, supporting oncogenic functions. However, it is still not completely clear how CagA alters cellular processes associated with carcinogenic events. In this study, we evaluated the capacity of H. pylori CagA positive and negative strains to alter nontransformed MCF-10A glandular acini formation. We found that CagA positive strains inhibited lumen formation arguing for an evasion of apoptosis activity of central acini cells. In agreement, CagA positive strains induced a cell survival activity that correlated with phosphorylation of AKT and of proapoptotic proteins BIM and BAD. Anoikis is a specific type of apoptosis characterized by AKT and BIM activation and it is the mechanism responsible for lumen formation of MCF-10A acini in vitro and mammary glands in vivo. Anoikis resistance is also a common mechanism of invading tumor cells. Our data support that CagA positive strains signaling function targets the AKT and BIM signaling pathway and this could contribute to its oncogenic activity through anoikis evasion.

  1. Helicobacter pylori CagA Suppresses Apoptosis through Activation of AKT in a Nontransformed Epithelial Cell Model of Glandular Acini Formation

    Science.gov (United States)

    Vallejo-Flores, Gabriela; Torres, Javier; Sandoval-Montes, Claudia; Arévalo-Romero, Haruki; Meza, Isaura; Camorlinga-Ponce, Margarita; Torres-Morales, Julián; Chávez-Rueda, Adriana Karina; Legorreta-Haquet, María Victoria; Fuentes-Pananá, Ezequiel M.

    2015-01-01

    H. pylori infection is the most important environmental risk to develop gastric cancer, mainly through its virulence factor CagA. In vitro models of CagA function have demonstrated a phosphoprotein activity targeting multiple cellular signaling pathways, while cagA transgenic mice develop carcinomas of the gastrointestinal tract, supporting oncogenic functions. However, it is still not completely clear how CagA alters cellular processes associated with carcinogenic events. In this study, we evaluated the capacity of H. pylori CagA positive and negative strains to alter nontransformed MCF-10A glandular acini formation. We found that CagA positive strains inhibited lumen formation arguing for an evasion of apoptosis activity of central acini cells. In agreement, CagA positive strains induced a cell survival activity that correlated with phosphorylation of AKT and of proapoptotic proteins BIM and BAD. Anoikis is a specific type of apoptosis characterized by AKT and BIM activation and it is the mechanism responsible for lumen formation of MCF-10A acini in vitro and mammary glands in vivo. Anoikis resistance is also a common mechanism of invading tumor cells. Our data support that CagA positive strains signaling function targets the AKT and BIM signaling pathway and this could contribute to its oncogenic activity through anoikis evasion. PMID:26557697

  2. Chloride transport-driven alveolar fluid secretion is a major contributor to cardiogenic lung edema

    OpenAIRE

    Solymosi, Esther A.; Kaestle-Gembardt, Stefanie M.; Vadász, István; Wang, Liming; Neye, Nils; Chupin, Cécile Julie Adrienne; Rozowsky, Simon; Ruehl, Ramona; Tabuchi, Arata; Schulz, Holger; Kapus, Andras; Morty, Rory E.; Kuebler, Wolfgang M.

    2013-01-01

    This study describes a novel mechanism for the formation of cardiogenic lung edema, a potentially fatal complication of left heart disease that was previously attributed to passive fluid filtration across an intact alveolo-capillary barrier. Instead, we demonstrate that a major part of cardiogenic edema results from active epithelial secretion of Cl− and secondary fluid flux into the alveolar space. Transepithelial Cl− secretion is triggered by inhibition of epithelial Na+ uptake and mediated...

  3. Alveolar bone grafting

    Directory of Open Access Journals (Sweden)

    Lilja Jan

    2009-10-01

    Full Text Available In patients with cleft lip and palate, bone grafting in the mixed dentition in the residual alveolar cleft has become a well-established procedure. The main advantages can be summarised as follows: stabilisation of the maxillary arch; facilitation of eruption of the canine and sometimes facilitation of the lateral incisor eruption; providing bony support to the teeth adjacent to the cleft; raising the alar base of the nose; facilitation of closure of an oro-nasal fistula; making it possible to insert a titanium fixture in the grafted site and to obtain favourable periodontal conditions of the teeth within and adjacent to the cleft. The timing of the ABG surgery take into consideration not only eruption of the canine but also that of the lateral incisor, if present. The best time for bone grafting surgery is when a thin shell of bone still covers the soon erupting lateral incisor or canine tooth close to the cleft.

  4. Changes in the Expression and Distribution of Claudins, Increased Epithelial Apoptosis, and a Mannan-Binding Lectin-Associated Immune Response Lead to Barrier Dysfunction in Dextran Sodium Sulfate-Induced Rat Colitis

    Science.gov (United States)

    Yuan, Bosi; Zhou, Shuping; Lu, Youke; Liu, Jiong; Jin, Xinxin; Wan, Haijun; Wang, Fangyu

    2015-01-01

    Background/Aims This animal study aimed to define the underlying cellular mechanisms of intestinal barrier dysfunction. Methods Rats were fed 4% with dextran sodium sulfate (DSS) to induce experimental colitis. We analyzed the sugars in 24-hour urine output by high pressure liquid chromatography. The expression of claudins, mannan-binding lectin (MBL), and MBL-associated serine proteases 2 (MASP-2) were detected in the colonic mucosa by immunohistochemistry; and apoptotic cells in the colonic epithelium were detected by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling method assay. Results The lactulose and sucralose excretion levels in the urine of rats with DSS-induced colitis were significantly higher than those in the control rats. Mannitol excretion was lower and lactulose/mannitol ratios and sucralose/mannitol ratios were significantly increased compared with those in the control group (p<0.05). Compared with the controls, the expression of sealing claudins (claudin 3, claudin 5, and claudin 8) was significantly decreased, but that of claudin 1 was increased. The expression of pore-forming claudin 2 was upregulated and claudin 7 was downregulated in DSS-induced colitis. The epithelial apoptotic ratio was 2.8%±1.2% in controls and was significantly increased to 7.2%±1.2% in DSS-induced colitis. The expression of MBL and MASP-2 in the intestinal mucosa showed intense staining in controls, whereas there was weak staining in the rats with colitis. Conclusions There was increased intestinal permeability in DSS-induced colitis. Changes in the expression and distribution of claudins, increased epithelial apoptosis, and the MASP-2-induced immune response impaired the intestinal epithelium and contributed to high intestinal permeability. PMID:25717051

  5. G4-Tetra DNA Duplex Induce Lung Cancer Cell Apoptosis in A549 Cells

    Science.gov (United States)

    Xu, Xiaobo; Zhao, YiZhuo; Lu, Hu; Fu, Cuiping; Li, Xiao; Jiang, Liyan; Li, Shanqun

    2016-10-01

    The specific DNA is typically impermeable to the plasma membrane due to its natural characters, but DNA tetra structures (DTNs) can be readily uptake by cells in the absence of transfection agents, providing a new strategy to deliver DNA drugs. In this research, the delivery efficiency of tetrahedral DNA nanostructures was measured on adenocarcinomic human alveolar basal epithelial (A549) cells via delivering AS1411 (G4). The DNA tetra-AS1411 complex was rapidly and abundantly uptake by A549 cells, and the induced apoptosis was enhanced. Furthermore, biodistribution in mouse proved the rapid clearance from non-targeted organs in vivo. This study improved the understanding of potential function in DNA-based drug delivery and proved that DTNs-AS1411 could be potentially useful for the treatment of lung cancer.

  6. Intranasal Administration of Type V Collagen Reduces Lung Carcinogenesis through Increasing Endothelial and Epithelial Apoptosis in a Urethane-Induced Lung Tumor Model.

    Science.gov (United States)

    Parra, Edwin Roger; Alveno, Renata Antunes; Faustino, Carolina Brito; Corrêa, Paula Yume Sato Serzedello; Vargas, Camilla Mutai; de Morais, Jymenez; Rangel, Maristela Peres; Velosa, Ana Paula Pereira; Fabro, Alexandre Todorovic; Teodoro, Walcy Rosolia; Capelozzi, Vera Luiza

    2016-08-01

    Type V collagen (Col V) is a "minor" component of normal lung extracellular matrix, which is subjected to decreased and abnormal synthesis in human lung infiltrating adenocarcinoma. We previously reported that a direct link between low amounts of Col V and decreased cell apoptosis may favor cancer cell growth in the mouse lung after chemical carcinogenesis. Moreover, this collagen species was able to trigger DNA fragmentation and impair survival of neoplastic cells. In this study, we have extended our investigation with the aim to obtain further evidence that the death induced by Col V-treatment is of the caspase-9 apoptotic type. We used (1) optical and electron microscopy, (2) quantitation of TUNEL-labeled cells and (3) analysis of the expression levels of Col V and selected genes coding for apoptosis-linked factors, by conventional RT-PCR. BALB/c mice were injected intraperitoneally with 1.5 g/kg body weight of urethane. After urethane injection, the animals received intranasal administration of 20 µg/20 µl of Col V every day during 2 months. We report here that Col V treatment was able to determine significant increase in Col V protein and gene expression and in the percentage of TUNEL-positive cells, to up-regulate caspase-9, resulting in low growth of tumor cells. Our data validate chemical carcinogenesis as a suitable "in vivo" model for further and more detailed studies on the molecular mechanisms of the death response induced by Col V in lung infiltrating adenocarcinoma opening new strategies for treatment.

  7. Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: Comparison with conventional monocultures

    Directory of Open Access Journals (Sweden)

    Stauber Roland

    2011-01-01

    Full Text Available Abstract Background To date silica nanoparticles (SNPs play an important role in modern technology and nanomedicine. SNPs are present in various materials (tyres, electrical and thermal insulation material, photovoltaic facilities. They are also used in products that are directly exposed to humans such as cosmetics or toothpaste. For that reason it is of great concern to evaluate the possible hazards of these engineered particles for human health. Attention should primarily be focussed on SNP effects on biological barriers. Accidentally released SNP could, for example, encounter the alveolar-capillary barrier by inhalation. In this study we examined the inflammatory and cytotoxic responses of monodisperse amorphous silica nanoparticles (aSNPs of 30 nm in size on an in vitro coculture model mimicking the alveolar-capillary barrier and compared these to conventional monocultures. Methods Thus, the epithelial cell line, H441, and the endothelial cell line, ISO-HAS-1, were used in monoculture and in coculture on opposite sides of a filter membrane. Cytotoxicity was evaluated by the MTS assay, detection of membrane integrity (LDH release, and TER (Transepithelial Electrical Resistance measurement. Additionally, parameters of inflammation (sICAM-1, IL-6 and IL-8 release and apoptosis markers were investigated. Results Regarding toxic effects (viability, membrane integrity, TER the coculture model was less sensitive to apical aSNP exposure than the conventional monocultures of the appropriate cells. On the other hand, the in vitro coculture model responded with the release of inflammatory markers in a much more sensitive fashion than the conventional monoculture. At concentrations that were 10-100fold less than the toxic concentrations the apically exposed coculture showed a release of IL-6 and IL-8 to the basolateral side. This may mimic the early inflammatory events that take place in the pulmonary alveoli after aSNP inhalation. Furthermore, a number

  8. A Case of Acquired Pulmonary Alveolar Proteinosis Successfully Treated with Whole Lung Lavage

    Science.gov (United States)

    2016-05-18

    of your presentation. It is important to update this information so that we can provide quality support for you, your department, and the Medical...within the alveoli . Surfactant phospholipids and proteins are produced by type II alveolar epithelial cells, and subsequently cleared by the

  9. Effects of Glutamine and Its Dipeptides on Apoptosis and Apoptosis Related Gene Expressions Induced by Hydrogen Peroxide in Ruminal Epithelial Cells of Goats%谷氨酰胺及其二肽对过氧化氢诱导山羊瘤胃上皮细胞凋亡及凋亡相关基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    韩奇鹏; 掲红东; 罗玲; 王凯军; 周传社; 张佩华; 孔志伟; 汤少勋

    2016-01-01

    This study was conducted to investigate the effects of glutamine ( Gln ) , glycyl-glutamine ( Gly-Gln) and alanyl-glutamine ( Ala-Gln) on apoptosis rate and gene expressions of Bcl-2 and Bax of apoptosis cells according to establish apoptosis models for ruminal epithelial cells of goats induced by hydrogen peroxide (H2O2). Subculture ruminal epithelium cells of 60 day-old Xiangdong black goats were selected and cultured with different concentrations [0(control group), 100, 400 and 800 μmol/L] of H2O2, and flow cytometry ( FCM) technique was used to detected cell apoptosis. Subculture ruminal epithelium cells were divided into 5 groups, control group and group 1 were cultured with 0 and 800 μmol/L H2O2, and groups 2, 3 and 4 were cultured with 800 μmol/L H2O2, meanwhile with 17.28 mmol/L Gly-Gln (group 2), 16.0 mmol/L Gln (group 3) and 16.0 mmol/L Ala-Gln (group 4). FCM technique was used to detected cell apoptosis, and gene expressions of Bcl-2 and Bax were detected by real-time fluorescent quantitative PCR. The results showed as follows:1) compared with control group, when the concentration of H2O2 reached 800 μmol/L, apoptosis rate of early apoptosis significantly increased ( P<0.05); apoptosis rate of late apoptosis firstly increased and then decreased with the increasing of H2O2 concentration, while compared with control group, experimental groups were all significantly increased ( P<0.05) . 2) Compared with control group, apoptosis rate of late ap-optosis in group 4 significant increased ( P<0.05) , and apoptosis rate of early apoptosis in experimental groups were all significantly higher than that in control group ( P<0.05) . 3) Compared with control group, Bcl-2/Bax in experimental groups was significantly increased (P<0.05); compared with group 1, Bcl-2/Bax in groups 2, 3 and 4 was significantly increased (P<0.05), and group 2 was significantly higher than groups 3 and 4 (P<0.05). In conclusion, Gly-Gln plays protection role in early apoptosis induced

  10. Phenformin Induces Cell Cycle Change, Apoptosis, and Mesenchymal-Epithelial Transition and Regulates the AMPK/mTOR/p70s6k and MAPK/ERK Pathways in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Zhao Liu

    Full Text Available Breast cancer remains a world-wide challenge, and additional anti-cancer therapies are still urgently needed. Emerging evidence has demonstrated the potent anti-tumor effect of biguanides, among which phenformin was reported to potentially be a more active anti-cancer agent than metformin. However, little attention has been given to the role of phenformin in breast cancer. In this study, we reveal the role of phenformin in cell death of the MCF7, ZR-75-1, MDA-MB-231 and SUM1315 breast cancer cell lines. The respective IC50 values of phenformin in MCF7, ZR-75-1, MDA-MB-231 and SUM1315 cells were 1.184±0.045 mM, 0.665±0.007 mM, 2.347±0.010 mM and 1.885±0.015 mM (mean± standard error. Phenformin induced cell cycle change and apoptosis in breast cancer cells via the AMPK/mTOR/p70s6k and MAPK/ERK pathways. Interestingly, phenformin induced MET (mesenchymal-epithelial transition and decreased the migration rate in breast cancer cell lines. Furthermore, our results suggest that phenformin inhibits breast cancer cell metastasis after intracardiac injection into nude mice. Taken together, our study further confirms the potential benefit of phenformin in breast cancer treatment and provides novel mechanistic insight into its anti-cancer activity in breast cancer.

  11. Phenformin Induces Cell Cycle Change, Apoptosis, and Mesenchymal-Epithelial Transition and Regulates the AMPK/mTOR/p70s6k and MAPK/ERK Pathways in Breast Cancer Cells.

    Science.gov (United States)

    Liu, Zhao; Ren, Lidong; Liu, Chenghao; Xia, Tiansong; Zha, Xiaoming; Wang, Shui

    2015-01-01

    Breast cancer remains a world-wide challenge, and additional anti-cancer therapies are still urgently needed. Emerging evidence has demonstrated the potent anti-tumor effect of biguanides, among which phenformin was reported to potentially be a more active anti-cancer agent than metformin. However, little attention has been given to the role of phenformin in breast cancer. In this study, we reveal the role of phenformin in cell death of the MCF7, ZR-75-1, MDA-MB-231 and SUM1315 breast cancer cell lines. The respective IC50 values of phenformin in MCF7, ZR-75-1, MDA-MB-231 and SUM1315 cells were 1.184±0.045 mM, 0.665±0.007 mM, 2.347±0.010 mM and 1.885±0.015 mM (mean± standard error). Phenformin induced cell cycle change and apoptosis in breast cancer cells via the AMPK/mTOR/p70s6k and MAPK/ERK pathways. Interestingly, phenformin induced MET (mesenchymal-epithelial transition) and decreased the migration rate in breast cancer cell lines. Furthermore, our results suggest that phenformin inhibits breast cancer cell metastasis after intracardiac injection into nude mice. Taken together, our study further confirms the potential benefit of phenformin in breast cancer treatment and provides novel mechanistic insight into its anti-cancer activity in breast cancer.

  12. The effects of erdosteine, N-acetylcysteine, and vitamin E on nicotine-induced apoptosis of pulmonary cells.

    Science.gov (United States)

    Demiralay, Rezan; Gürsan, Nesrin; Erdem, Havva

    2006-02-15

    This study was conducted to investigate the frequency of apoptosis in the pulmonary epithelial cells of rats after intratraperitoneal nicotine injection, in order to examine the role of inflammatory markers [myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-alpha)] in nicotine-induced lung damage, and to determine the protective effects of three known antioxidant agents [N-acetylcysteine (NAC), erdosteine, and vitamin E] on the lung toxicity of nicotine in the lungs. Female Wistar rats were divided into seven groups, each composed of nine rats: two negative control groups, two positive control groups, one erdosteine-treated group (500 mg/kg), one NAC-treated group (500 mg/kg), and one vitamin E-treated group (500 mg/kg). Nicotine was injected intraperitoneally at a dosage of 0.6 mg/kg for 21 days. Following nicotine injection, the antioxidants were administered orally, treatment was continued until the rats were killed. Lung tissue samples were stained with hematoxylin-eosin (H&E) for histopathological assessments. The apoptosis level in the lung bronchiolar and alveolar epithelium was determined by using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) method. Cytoplasmic TNF-alpha in the bronchiolar and alveolar epithelial cells and the lung MPO activity were evaluated immunohistochemically. The protective effect of vitamin E on lung histology was stronger than that of erdosteine or NAC. Treatment with erdosteine, NAC, and vitamin E significantly reduced the rate of nicotine-induced pulmonary epithelial cell apoptosis, and there were no significant differences in apoptosis among the three antioxidants groups. Erdosteine, NAC, and vitamin E significantly reduced the increases in TNF-alpha staining and lung MPO activity. The effects of erdosteine on the increases in the local TNF-alpha level and lung MPO activity were weaker than that of NAC or vitamin E. This findings suggest that erdosteine and NAC can be as effective as

  13. Panepoxydone targets NF-kB and FOXM1 to inhibit proliferation, induce apoptosis and reverse epithelial to mesenchymal transition in breast cancer.

    Directory of Open Access Journals (Sweden)

    Ritu Arora

    Full Text Available BACKGROUND: Triple-negative breast cancer (TNBC is a highly diverse group that is associated with an aggressive phenotype. Its treatment has been challenging due to its heterogeneity and absence of well-defined molecular targets. Thus, there is an urgent need to identify novel agents with therapeutic application. NF-κB is over-expressed in many breast cancers; thus, inactivation of the NF-κB pathway could serve as a therapeutic target. Here we report for the first time the anti-tumor activity of panepoxydone (PP, a NF-κB inhibitor isolated from an edible mushroom, in several breast cancer cell lines. METHODS: We investigated the effects of PP on cell growth, migration-invasion, apoptosis and EMT-related proteins expression in MCF-7 and TNBC cell lines MDA-MB-231, MDA-MB-468 and MDA-MB-453. RESULTS: Significant antitumor activity was seen in all cell lines, with differential responses noted in cell-line specific manner. Treatment with PP resulted in significant cytotoxicity, decreased invasion, migration and increased apoptosis in all cell lines tested. Up-regulation of Bax and cleaved PARP and down-regulation of Bcl-2, survivin, cyclin D1 and caspase 3 were noted in PP-treated breast cancer cells. The antitumor effect of PP appeared related to its ability to inhibit the phosphorylation of inhibitor of NF-κB (IκBα with cytoplasmic accumulation. PP treatment also down-regulated FOXM1 which resulted in a reversal of EMT. Similar results were obtained after silencing of NF-kB and FOXM1. CONCLUSION: Altogether, these studies show, for the first time the antitumor activity of PP against breast cancer cells, in particular TNBC cells. Furthermore, it highlights the concept that optimal treatment of TNBC warrants attention to the differential sensitivity of various TNBC subtypes to therapeutic agents. These results suggest that the PP may be a potentially effective chemopreventive or therapeutic agent against breast cancer. However, additional

  14. 甲氨喋呤对肠黏膜上皮细胞增殖和凋亡影响的研究%Effect of methotrexate on proliferation and apoptosis of intestinal epithelial cell

    Institute of Scientific and Technical Information of China (English)

    苏华芳; 俞康; 章圣辉; 江松福

    2011-01-01

    目的:探讨甲氨喋呤对肠黏膜上皮IEC-6细胞增殖和凋亡的影响.方法:采用CCK-8法检测细胞增殖效应,TUNEL的流式细胞术分析凋亡细胞,分光光度法检测细胞内Caspase-3活性程度.结果:1)实验组细胞生长抑制率明显高于对照组,且随MTX药物浓度的增加和作用时间的延长而增加.2)0.05、0.5争5μg/mL MTX作用24 h,细胞凋亡率增加.与对照组相比,差异有统计学意义,P<0.01.3)0.05、0.5和5 μg/mL MTX作用24 h,Caspase-3活性增加,3组Caspase-3的活性分别是对照组的1.97,3.07和5.01倍.与对照组相比,各浓度药物组Caspase-3活性明显增强(P<0.05),且呈浓度依赖性.结论:甲氨喋呤对IEC-6细胞增殖有抑制作用,并通过诱导Caspase-3活化导致细胞凋亡.%OBJECTIVE: To investigate the effects of methotrexate on proliferation and apoptosis of rat intestinal epithelial IEC-6 cells.METHODS:IEC-6 cells were treated with methotrexate at different concentrations and incubation time. Cell proliferation was assessed by cell counting kit-8 (CCK-8) assay. Flow eytometry (TUNEL method) was used to detect apoptotic cells. Caspases-3 activity was measured by Colorimetric assaying. RESULTS: 1) The proliferation of IEC-6 cell line was decreased while increasing of concentration or prolonging the incubation time. 2)The rates of cell apoptosis in groups treated with methotrexate in concentrations of 0.05, 0. 5 and 5 μg/mL for 24 h were higher than those of control group. There was a significant difference between methotrexate groups and control group (P <0.01). 3) The caspase-3 activity from cell lysates of IEC-6 cells treated with methotrexate in concentrations of 0.05, 0. 5 and 5μg/mL for 24 h were higher than that of control group (P <0. 05). The activity of caspase-3 in those three groups was increased to 1.97, 3.07 and 5.01 times as compared with the control group, respectively. CONCLUSIONS: Methotrexate can effectively inhibit the proliferation of IEC-6

  15. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Leif R; Romer, John; Thomasset, Nicole; Solberg, Helene; Pyke, Charles; Bissell, Mina J; Dano, Keld; Werb, Zena

    1996-01-01

    Postlactational involution of the mammary gland is characterized by two distinct physiological events: apoptosis of the secretory, epithelial cells undergoing programmed cell death, and proteolytic degradation of the mammary gland basement membrane. We examined the spatial and temporal patterns of apoptotic cells in relation to those of proteinases during involution of the BALB/c mouse mammary gland. Apoptosis was almost absent during lactation but became evident at day 2 of involution, when {beta}-casein gene expression was still high. Apoptotic cells were then seen at least up to day 8 of involution, when {beta}-casein gene expression was being extinguished. Expression of sulfated glycoprotein-2 (SGP-2), interleukin-1{beta} converting enzyme (ICE) and tissue inhibitor of metalloproteinases-1 was upregulated at day 2, when apoptotic cells were seen initially. Expression of the matrix metalloproteinases gelatinase A and stromelysin-1 and the serine proteinase urokinase-type plasminogen activator, which was low during lactation, was strongly upregulated in parallel starting at day 4 after weaning, coinciding with start of the collapse of the lobulo-alveolar structures and the intensive tissue remodeling in involution. The major sites of mRNA synthesis for these proteinases were fibroblast-like cells in the periductal stroma and stromal cells surrounding the collapsed alveoli, suggesting that the degradative phase of involution is due to a specialized mesenchymal-epithelial interaction. To elucidate the functional role of these proteinases during involution, at the onset of weaning we treated mice systemically with the glucocorticoid hydrocortisone, which is known to inhibit mammary gland involution. Although the initial wave of apoptotic cells appeared in the lumina of the gland, the dramatic regression and tissue remodeling usually evident by day 5 was substantially inhibited by systemic treatment with hydrocortisone. mRNA and protein for gelatinase A, stromelysin

  16. PTEN Loss in E-Cadherin-Deficient Mouse Mammary Epithelial Cells Rescues Apoptosis and Results in Development of Classical Invasive Lobular Carcinoma

    Directory of Open Access Journals (Sweden)

    Mirjam C. Boelens

    2016-08-01

    Full Text Available Invasive lobular carcinoma (ILC is an aggressive breast cancer subtype with poor response to chemotherapy. Besides loss of E-cadherin, a hallmark of ILC, genetic inactivation of PTEN is frequently observed in patients. Through concomitant Cre-mediated inactivation of E-cadherin and PTEN in mammary epithelium, we generated a mouse model of classical ILC (CLC, the main histological ILC subtype. While loss of E-cadherin induced cell dissemination and apoptosis, additional PTEN inactivation promoted cell survival and rapid formation of invasive mammary tumors that recapitulate the histological and molecular features, estrogen receptor (ER status, growth kinetics, metastatic behavior, and tumor microenvironment of human CLC. Combined inactivation of E-cadherin and PTEN is sufficient to cause CLC development. These CLCs showed significant tumor regression upon BEZ235-mediated inhibition of PI3K signaling. In summary, this mouse model provides important insights into CLC development and suggests inhibition of phosphatidylinositol 3-kinase (PI3K signaling as a potential therapeutic strategy for targeting CLC.

  17. Involvement of the MAPK and PI3K pathways in chitinase 3-like 1-regulated hyperoxia-induced airway epithelial cell death

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Na; Lee, Kyung Eun; Hong, Jung Yeon; Heo, Won Il; Kim, Kyung Won; Kim, Kyu Earn [Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Sohn, Myung Hyun, E-mail: mhsohn@yuhs.ac [Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Hyperoxia induces apoptosis and chitinase 3-like 1 expression in human airway epithelial cells. Black-Right-Pointing-Pointer Presence of chitinase 3-like 1 affects airway epithelial cell death after hyperoxic exposure. Black-Right-Pointing-Pointer Silencing chitinase 3-like 1 manipulate the phosphorylation of ERK, p38 and Akt. -- Abstract: Background: Exposure to 100% oxygen causes hyperoxic acute lung injury characterized by cell death and injury of alveolar epithelial cells. Recently, the role of chitinase 3-like 1 (CHI3L1), a member of the glycosyl hydrolase 18 family that lacks chitinase activity, in oxidative stress was demonstrated in murine models. High levels of serum CHI3L1 have been associated with various diseases of the lung, such as asthma, chronic obstructive pulmonary disease, and cancer. However, the role of CHI3L1 in human airway epithelial cells undergoing oxidative stress remains unknown. In addition, the signaling pathways associated with CHI3L1 in this process are poorly understood. Purpose: In this study, we demonstrate the role of CHI3L1, along with the MAPK and PI3K signaling pathways, in hyperoxia-exposed airway epithelial cells. Method: The human airway epithelial cell line, BEAS-2B, was exposed to >95% oxygen (hyperoxia) for up to 72 h. Hyperoxia-induced cell death was determined by assessing cell viability, Annexin-V FITC staining, caspase-3 and -7 expression, and electron microscopy. CHI3L1 knockdown and overexpression studies were conducted in BEAS-2B cells to examine the role of CHI3L1 in hyperoxia-induced apoptosis. Activation of the MAPK and PI3K pathways was also investigated to determine the role of these signaling cascades in this process. Results: Hyperoxia exposure increased CHI3L1 expression and apoptosis in a time-dependent manner. CHI3L1 knockdown protected cells from hyperoxia-induced apoptosis. In contrast, CHI3L1 overexpression promoted cell death after hyperoxia exposure. Finally

  18. Bulky PAH-DNA induced by exposure of a co-culture model of human alveolar macrophages and embryonic epithelial cells to atmospheric particulate pollution; Adduits encombrants a l'ADN dans des cocultures de cellules pulmonaires humaines exposees a une pollution atmospherique particulaire

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Imane; Garcon, Guillaume; Billet, Sylvain; Shirali, Pirouz [Universite Lille Nord de France - Lille (France); Unite de Chimie Environnementale et Interactions sur le Vivant, MREI, Universite du Littoral Cote d' Opale, Dunkerque (France); Andre, Veronique; Le Goff, Jeremie; Sichel, Francois [GRECAN, Universite de Caen Basse-Normandie et centre Francois Baclesse, Caen (France); Roy Saint-Georges, Francoise; Mulliez, Philippe [Service de Pneumologie, Hopital Saint-Philibert, GHICL, Lille (France)

    2012-01-15

    Because of their deep penetration in human lungs, fine airborne particulate matter were described as mainly responsible for the deleterious effects of exposure to air pollution on health. Organic constituents are adsorbed on particles surface and, after inhalation, some (polycyclic aromatic hydrocarbons, PAHs) can be activated into reactive metabolites and can bind to DNA. The formation of bulky DNA adducts has been researched after exposure of mono-and co-cultures of alveolar macrophages (AM) and human embryonic human lung epithelial (L132), to fine air pollution particulate matter Air samples have been collected with cascade impactor and characterized: size distribution (92.15% < 2.5{mu}.m), specific surface area (1 m{sup 2}/g), inorganic (Fe, AI, Ca, Na, K, Mg, Pb, etc.) and organic compounds (PAHs, etc.). {sup 32}P post-labeling method was applied to detect bulky DNA adducts in AM and L132, in mono-and co-cultures, 72 h after their exposure to atmospheric particles at their Lethals and Effects concentrations or (LC or CE) to 50% (i.e. MA: EC{sub 50} = 74.63 {mu}g/mL and L132: LC-5-0 = 75.36 {mu}g/mL). Exposure to desorbed particles (MA: C1= 61.11 {mu}g/mL and L132 : C2 = 61.71 {mu}g/mL) and B[a]P (1 {mu}M) were included. Bulky PAH-DNA adducts were detected in AM in mono-culture after exposure to total particles (Pt), to B[a]P and desorbed particles (Pd). Whatever the exposure, no DNA adduct was detected in L132 in mono-culture. These results are coherent with the enzymatic activities of cytochrome P450 l Al in AM and L132. Exposure of co-culture to Pt, or Pd induced bulky adducts to DNA in AM but not in L132. Exposure to B[a]P alone has altered the DNA of AM and L132, in co-culture. Exposure to Pt is closer to the environmental conditions, but conferred an exposure to amounts of genotoxic agents compared to studies using organic extracts. The formation of bulky DNA adducts was nevertheless observed in AM exposed to Pt, in mono- or co-culture, indicating that

  19. p53 and miR-34a Feedback Promotes Lung Epithelial Injury and Pulmonary Fibrosis.

    Science.gov (United States)

    Shetty, Shwetha K; Tiwari, Nivedita; Marudamuthu, Amarnath S; Puthusseri, Bijesh; Bhandary, Yashodhar P; Fu, Jian; Levin, Jeffrey; Idell, Steven; Shetty, Sreerama

    2017-03-05

    Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. The pathogenesis of interstitial lung diseases, including its most common form, IPF, remains poorly understood. Alveolar epithelial cell (AEC) apoptosis, proliferation, and accumulation of myofibroblasts and extracellular matrix deposition results in progressive loss of lung function in IPF. We found induction of tumor suppressor protein, p53, and apoptosis with suppression of urokinase-type plasminogen activator (uPA) and the uPA receptor in AECs from the lungs of IPF patients, and in mice with bleomycin, cigarette smoke, silica, or sepsis-induced lung injury. Treatment with the caveolin-1 scaffolding domain peptide (CSP) reversed these effects. Consistent with induction of p53, AECs from IPF lungs or mice with diverse types of lung injuries showed increased p53 acetylation and miR-34a expression with reduction in Sirt1. This was significantly reduced after treatment of wild-type mice with CSP, and uPA-deficient mice were unresponsive. Bleomycin failed to induce miR-34a in p53- or plasminogen activator inhibitor-1 (PAI-1)-deficient mice. CSP-mediated inhibition of miR-34a restored Sirt1, suppressed p53 acetylation and apoptosis in injured AECs, and prevented pulmonary fibrosis (PF). AEC-specific suppression of miR-34a inhibited bleomycin-induced p53, PAI-1, and apoptosis and prevented PF, whereas overexpression of precursor-miR-34a increased p53, PAI-1, and apoptosis in AECs of mice unexposed to bleomycin. Our study validates p53-miR-34a feedback as a potential therapeutic target in PF.

  20. Gene expression and biological processes influenced by deletion of Stat3 in pulmonary type II epithelial cells

    Directory of Open Access Journals (Sweden)

    Whitsett Jeffrey A

    2007-12-01

    Full Text Available Abstract Background The signal transducer and activator of transcription 3 (STAT3 mediates gene expression in response to numerous growth factors and cytokines, playing an important role in many cellular processes. To better understand the molecular mechanisms by which Stat3 influences gene expression in the lung, the effect of pulmonary epithelial cell specific deletion of Stat3 on genome wide mRNA expression profiling was assessed. Differentially expressed genes were identified from Affymetrix Murine GeneChips analysis and subjected to gene ontology classification, promoter analysis, pathway mapping and literature mining. Results Total of 791 mRNAs were significantly increased and 314 mRNAs were decreased in response to the deletion of Stat3Δ/Δ in the lung. STAT is the most enriched cis-elements in the promoter regions of those differentially expressed genes. Deletion of Stat3 induced genes influencing protein metabolism, transport, chemotaxis and apoptosis and decreased the expression of genes mediating lipid synthesis and metabolism. Expression of Srebf1 and 2, genes encoding key regulators of fatty acid and steroid biosynthesis, was decreased in type II cells from the Stat3Δ/Δ mice, consistent with the observation that lung surfactant phospholipids content was decreased. Stat3 influenced both pro- and anti-apoptotic pathways that determine cell death or survival. Akt, a potential transcriptional target of Stat3, was identified as an important participant in Stat3 mediated pathways including Jak-Stat signaling, apoptosis, Mapk signaling, cholesterol and fatty acid biosynthesis. Conclusion Deletion of Stat3 from type II epithelial cells altered the expression of genes regulating diverse cellular processes, including cell growth, apoptosis and lipid metabolism. Pathway analysis indicates that STAT3 regulates cellular homeostasis through a complex regulatory network that likely enhances alveolar epithelial cell survival and surfactant

  1. Apoptosis in lactating and involuting mouse mammary tissue demonstrated by nick-end DNA labelling.

    Science.gov (United States)

    Quarrie, L H; Addey, C V; Wilde, C J

    1995-09-01

    Mammary involution after cessation of milk removal is associated with extensive loss of secretory epithelial cells. Ultrastructural changes and the appearance of oligonucleosomal DNA laddering in ethidium bromide-stained gels indicates that cell loss during involution occurs by apoptosis. In this study, a technique for nick end-labelling of genomic DNA with radiolabelled deoxynucleotide has been used to monitor the induction of programmed cell death in mice after litter removal at peak lactation. This technique proved more sensitive than conventional ethidium bromide staining, and results suggested that apoptosis was induced rapidly by milk stasis, before extensive tissue re-modelling had begun. Oligonucleosomal DNA laddering on agarose gels was detected within 24 h of milk stasis, and increased progressively for at least 4 days. Nick-end labelling also detected laddering before litter removal, suggesting that programmed cell death is a normal feature of the lactating tissue. The DNA end-labelling technique was also adapted for in situ visualisation of apoptotic cells in tissue sections. By this criterion, apoptotic cells were identified in both the secretory epithelium lining the alveoli of the gland and, increasingly with prolonged milk stasis, amongst those sloughed into the alveolar lumen. The results demonstrate the utility of these techniques for study of mammary cell death and suggest that, whilst apoptosis is rapidly induced by milk stasis, it is also a normal physiological event in the lactating mammary gland.

  2. Procyanidin-rich extract of natural cocoa powder causes ROS-mediated caspase-3 dependent apoptosis and reduction of pro-MMP-2 in epithelial ovarian carcinoma cell lines.

    Science.gov (United States)

    Taparia, Shruti Sanjay; Khanna, Aparna

    2016-10-01

    Over the last four centuries, cocoa and chocolate have been described as having potential medicinal value. As of today, Theobroma cacao L. (Sterculiaceae) and its products are consumed worldwide. They are of great research interest because of the concentration dependent antioxidant as well as pro-oxidant properties of some of their polyphenolic constituents, specially procyanidins and flavan-3-ols such as catechin. This study was aimed at investigating the cellular and molecular changes associated with cytotoxicity, caused due pro-oxidant activity of cocoa catechins and procyanidins, in ovarian cancer cell lines. Extract of non-alkalized cocoa powder enriched with catechins and procyanidins was used to treat human epithelial ovarian cancer cell lines OAW42 and OVCAR3 at various concentrations ≤1000μg/mL. The effect of treatment on intracellular reactive oxygen species (ROS) levels was determined. Apoptotic cell death, post treatment, was evaluated microscopically and using flow cytometry by means of annexin-propidium iodide (PI) dual staining. Levels of active caspase-3 as a pro-apoptotic marker and matrix metalloproteinase 2 (MMP2) as an invasive potential marker were detected using Western blotting and gelatin zymography. Treatment with extract caused an increase in intracellular ROS levels in OAW42 and OVCAR3 cell lines. Bright field and fluorescence microscopy of treated cells revealed apoptotic morphology and DNA damage. Increase in annexin positive cell population and dose dependent upregulation of caspase-3 confirmed apoptotic cell death. pro-MMP2 was found to be downregulated in a dose dependent manner in cells treated with the extract. Treated cells also showed a reduction in MMP2 activity. Our data suggests that cocoa catechins and procyanidins are cytotoxic to epithelial ovarian cancer, inducing apoptotic morphological changes, DNA damage and caspase-3 mediated cell death. Downregulation of pro-MMP2 and reduction in active MMP2 levels imply a decrease

  3. 硫化氢对急性肺损伤大鼠肺泡上皮细胞内质网应激的调节%Regulatory effects of hydrogen sulfide on alveolar epithelial cell endoplasmic reticulum stress in rats with acute lung injury

    Institute of Scientific and Technical Information of China (English)

    刘志伟; 王海英; 关岚; 赵斌

    2014-01-01

    目的 探索内源性硫化氢对于油酸诱导的急性肺损伤大鼠肺泡上皮细胞内质网应激的调节作用.方法 雄性Sprague Dawley大鼠随机(随机数字法)被分入正常对照组、油酸组、油酸+硫氢化钠组及硫氢化钠对照组.每个组进一步分为2、4和6h3个时间点.对肺组织进行肺组织损伤半定量评分,检测肺组织湿、干质量比和匀浆硫化氢含量.通过免疫组化染色和蛋白印迹法检测内质网应激的标志蛋白(GRP78和elF2α)的表达.结果 肺损伤大鼠肺组织损伤半定量评分及湿、干质量比明显升高,而肺组织硫化氢含量,肺泡上皮细胞GRP78及eIF2α的表达明显降低.在硫氢化钠预处理的大鼠中,肺损伤半定量评分及肺组织湿、干质量比明显降低,而肺组织硫化氢含量,肺泡上皮细胞GRP78及eIF2α的表达明显升高.结论 内源性硫化氢可以通过促进肺泡上皮细胞内质网应激反应进而在肺损伤过程中起到保护作用.%Objective To study the regulatory effect of hydrogen sulfide (H2S) on endoplasmic reticulum stress in alveolar epithelial cells of rats with acute lung injury (ALI) induced by oleic acid (OA).Methods Seventy-two male Sprague Dawley (SD) rats were equally divided into control group (C group),oleic acid-induced ALI group (OA group),oleic acid-induced ALI with sodium hydrosulfide (NaHS) pretreatment group (OA + NaHS group) and sodium hydrosulfide treatment group (NaHS group).The model of acute lung injury was made by oleic acid intravenous injection in dose of 0.1 mL/kg.NaHS was injected intra-abdominally in dose of 1 ml/kg with concentration of 56 μmol/L 30 min before administration of oleic acid for pretreatment.In control groups,saline was used instead of oleic acid and NaHS in the equivalent volume.Six rats of each group were sacrificed at 2 h,4 h and 6 hours separately after modeling for observing the acute injury of lung tissue.Index of quantitative assessment of

  4. Pulmonary alveolar microlithiasis with calcified pleural plaques

    Directory of Open Access Journals (Sweden)

    Malhotra Balbir

    2010-01-01

    Full Text Available Pulmonary alveolar microlithiasis (PAM is a rare disease. Herein we report a case of pulmonary alveolar microlithiasis who was suspected to have the disease on chest X-ray and was confirmed on high resolution CT and transbronchial lung biopsy. These investigations showed characteristic features of pulmonary alveolar microlithiasis with diffuse interstitial pulmonary fibrosis.

  5. Chronic alcohol ingestion changes the landscape of the alveolar epithelium.

    Science.gov (United States)

    Downs, Charles A; Trac, David; Brewer, Elizabeth M; Brown, Lou Ann; Helms, My N

    2013-01-01

    Similar to effects of alcohol on the heart, liver, and brain, the effects of ethanol (EtOH) on lung injury are preventable. Unlike other vital organ systems, however, the lethal effects of alcohol on the lung are underappreciated, perhaps because there are no signs of overt pulmonary disorder until a secondary insult, such as a bacterial infection or injury, occurs in the lung. This paper provides overview of the complex changes in the alveolar environment known to occur following both chronic and acute alcohol exposures. Contemporary animal and cell culture models for alcohol-induced lung dysfunction are discussed, with emphasis on the effect of alcohol on transepithelial transport processes, namely, epithelial sodium channel activity (ENaC). The cascading effect of tissue and phagocytic Nadph oxidase (Nox) may be triggered by ethanol exposure, and as such, alcohol ingestion and exposure lead to a prooxidative environment; thus impacting alveolar macrophage (AM) function and oxidative stress. A better understanding of how alcohol changes the landscape of the alveolar epithelium can lead to improvements in treating acute respiratory distress syndrome (ARDS) for which hospitalized alcoholics are at an increased risk.

  6. True Fibroma of Alveolar Mucosa

    Directory of Open Access Journals (Sweden)

    Shankargouda Patil

    2014-01-01

    Full Text Available Benign fibrous overgrowths are often found in the oral cavity, almost always being reactive/irritational in nature. However, benign mesenchymal neoplasms of the fibroblasts are extremely uncommon. Here we report a case of “True Fibroma of Alveolar Mucosa” for its rarity.

  7. Influence of moxifloxacin on lipoteichoic acid induced apoptosis and expression of inflammatory cytokines in human alveolar macrophage%莫西沙星对脂磷壁酸诱导的人肺泡巨噬细胞凋亡及炎症因子释放的影响

    Institute of Scientific and Technical Information of China (English)

    罗进梅; 吴本权; 刘慧; 李洪涛; 黄静; 朱家馨; 张天托

    2012-01-01

    Objective To investigate the lipoteichoic acid(LTA) induced apoptosis and the expression of inflammatory cytokines in human alveolar macrophage (AM) and the anti-apoptotic and anti-inflamatory effect of moxifloxacin (MXF).Methods Obtained human AM from bronchoalveolar lavage and used MTT assay to observe the effects of LTA and MXF on cell activity,optical microscope to investigate the change of the cell morphology,flow cytometry to assess cell apoptosis,RT-PCR to detect the mRNA levels of TLR2,IL-1 β,IL-8 and TNF-α,ELISA for the production of IL-8 to exam RT-PCR.Results LTA showed cytotoxicity on AM in a dose-dependent manner ( P<0.05 ) ; MXF inhibited the effect of LTA without cytotoxicicy ( P<0.05 ).LTA promoted apoptosis ( P<0.05 ) and the mRNA expressions of TRL2,IL-1 β,IL-8 and TNF-α significantly in AM (P<0.05),the peaks and peak time ofthe above factors were (3.56±0.03) at 12 h,(46.63±7.06) at 6 h,(28.07±1.24) at 12 h and (2.34 ±0.50) at 3 h respectively and increased the release of IL-8 protein level at 24 h (P<0.05).MXF inhibited the cell apoptosis and the above mRNA expression at 12h ( P<0.05 ),and inhibited the IL-8 protein level at 24 h( P<0.05 ).Conclusion LTA showed cytotoxicity on AM,induced AM apoptosis and increased the expression of TLR2,IL-I β,IL-8 and TNF-α of AM ; MXF could protect AM through inhibiting of the above effects and may play a key role beside bactericidal effect in gram-positive bacteria pneumonia.%目的 探讨脂磷壁酸(LTA)对人肺泡巨噬细胞(AM)凋亡及炎症因子释放的影响和莫西沙星(MXF)对其反应的抑制作用.方法 收集、提纯及体外培养人AM,LTA刺激4h后,加或不加MXF与其共孵育,于各实验终点用MTT法计算细胞相对活力,光学显微镜观察细胞形态,流式细胞术检测细胞凋亡率,RT-PCR法检测TLR2、IL-1β、IL-8及TNF-α的mRNA水平,ELISA检测IL-8蛋白水平,验证RT-PCR.结果 LTA对AM有细胞毒性,并呈浓度递增关系(P<0

  8. Nuclear methods in pulmonary medicine. Evaluation of lung epithelial permeability

    Energy Technology Data Exchange (ETDEWEB)

    Newhouse, M.; Jordana, M.; Dolovich, M.

    1987-06-01

    During the last few years a number of factors affecting the measurements of the rate of absorption of /sup 99m/Tc-DTPA across the alveolar-capillary membrane have been identified. These have helped to provide insights into the significance of lung epithelial permeability (LEP) measurements and their potential limitations.

  9. The effect of phospholipid transfer protein on cigarette smoke extract induced epithelial-mesenchymal transition of rat alveolar type Ⅱ cells%磷脂转运蛋白在烟草诱导RLE-6TN细胞株发生上皮间质转化中的作用

    Institute of Scientific and Technical Information of China (English)

    巫凤苹; 陈亚娟; 余秀英; 廖科; 李丹丹; 陈虹

    2016-01-01

    Objective To investigate the effect of phospholipid transfer protein(PLTP) on cigarette smoke extract(CSE) induced epithelial-mesenchymal transition(EMT) in rat alveolar Type Ⅱ cells (RLE-6TN).Methods CSE of different concentrations (0%,0.25%,0.5% and 1%) was co-cultured for 2 or 3days with RLE-6TN,either pre-treated or not pre-treated with siRNA-PLTP for 6 h.Expression levels of E-cadherin mRNA and Vimentin mRNA were examined by RT-PCR,while expression levels of PLTP,E-cadherin,N-cadherin and Vimentin were examined by Western blot.Results Our results showed that the expression of E-cadherin mRNA decreased in CSE-treated groups:1.01 ± 0.05,0.74 ± 0.05,0.65 ± 0.03,0.30 ±0.08 respectively at different concentrations of CSE (0 %,0.25%,0.5 %,and 1.0%);while the level of Vimentin mRNA increased significantly in 1% CSE treated cells (1.88 ± O.49),compared with control cells (1.01 ±0.20).Treatment with CSE at different concentrations (0%,0.25%,0.5% and 1%) showed that the protein levels of PLTP were 0.42 ± 0.02,0.89 ± 0.25,1.08 ± 0.18,1.61 ± 0.06 respectively;those of E-cadherin were 1.61 ± 0.04,1.08 ± 0.10,0.62 ± 0.08,0.68 ± 0.17,respectively;those of N-cadherin were 0.60 ± 0.14,0.57 ± 0.26,0.88 ± 0.30,1.94 ± 0.54,respectively;and those of Vimentin were 0.61 ± 0.05,0.98 ± 0.16,1.07 ± 0.14,1.34 ± 0.19,respectively;all P < 0.05 when the 1% CSE group was compared with the control group.EMT induced by CSE was significantly inhibited by siRNA-PLTP.Conclusion PLTP may be involved in CSE induced EMT of rat alveolar cells.%目的 探讨磷脂转运蛋白(PLTP)在烟草提取物(CSE)诱导大鼠Ⅱ型肺泡上皮细胞株RLE-6TN发生上皮间质转化(EMT)中的作用.方法 体外培养RLE-6TN细胞株24 h,分为4组,每组3孔,分别加入0%、0.25%、0.5%和1% CSE培养2d,检测E-钙黏蛋白和波形蛋白mRNA表达以及细胞和CSE共培养3d检测PLTP、EMT相关蛋白(E-钙黏蛋白、N-钙黏蛋白和波形

  10. Research Progress of Signal Molecules Involved in the Regulation of Gum Apoptosis in Epithelial Cells of Porphyromonas Gingivalis%信号分子参与龈紫龈单胞菌调控牙龈上皮细胞凋亡的研究进展

    Institute of Scientific and Technical Information of China (English)

    王艳春(综述); 税艳青(审校)

    2014-01-01

    Porphyromonas gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiologic agent of periodontal disease. it has been shown that this organism has the ability to invade,survive and copy itselves within eukaryotic cells through degrading extracellular matrices and cleaving actin. The harsh inflammatory condition of the periodontal pocket implies that this organism has properties that wil facilitate its ability to respond and adapt to oxidative stress./ inflammatory condition. In vitro studies show that P. gingivalis can modulate apoptosis in the fol owing celltypes: epithelial cells, fibroblasts,endothelial cells and lymphocytes and apoptosis has been proposed as a mechanism to explain the extensive tissue destruction in chronic periodontitis lesions. Pg induces gingival epithelial cellApoptosis that is triggered through various factors and multiple pathway. I wil discuss the role of the purinergic receptor P2X7,AKT/IP3 singal in the apoptosis modification of gingival epithelial cellthat is involved in regulation of Pg in this view.%龈紫龈单胞菌(Porphyromonas gingivalis,Pg)为黑色杆状G+耐氧厌氧菌(aerotolerant anaerobes),可定殖、感染于口腔组织,并通过牙龈蛋白酶降解胞外基质及细胞骨架蛋白,实现对宿主细胞的入侵和胞内自我复制。研究发现,Pg定殖、感染后可促进宿主细胞活性氧簇(reactive oxygen species, ROS)释放、介导炎症细胞因子分泌,并在感染部位通过多通路调节宿主细胞凋亡,引发牙周疾病。实验证实,Pg可调节牙周组织的中成纤维细胞,上皮细胞,淋巴细胞的凋亡活动。 Pg诱导的细胞凋亡调节是多因素共同作用的结果,本文主要从P2X7嘌呤受体及AKT/IP3信号对Pg调控牙龈上皮细胞(human gingival epithelial cel s、HGEC)凋亡的作用研究进展做一简要综述。

  11. Molecular basis of potassium channels in pancreatic duct epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K channels...

  12. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  13. TGFβ signaling in lung epithelium regulates bleomycin-induced alveolar injury and fibroblast recruitment

    OpenAIRE

    Degryse, Amber L.; Tanjore, Harikrishna; Xu, Xiaochuan C.; Polosukhin, Vasiliy V.; Jones, Brittany R.; Chad S Boomershine; Ortiz, Camila; Sherrill, Taylor P.; McMahon, Frank B.; Gleaves, Linda A.; Blackwell, Timothy S.; Lawson, William E.

    2011-01-01

    The response of alveolar epithelial cells (AECs) to lung injury plays a central role in the pathogenesis of pulmonary fibrosis, but the mechanisms by which AECs regulate fibrotic processes are not well defined. We aimed to elucidate how transforming growth factor-β (TGFβ) signaling in lung epithelium impacts lung fibrosis in the intratracheal bleomycin model. Mice with selective deficiency of TGFβ receptor 2 (TGFβR2) in lung epithelium were generated and crossed to cell fate reporter mice tha...

  14. Alveolar Macrophage Polarisation in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Saleh A. Almatroodi

    2014-01-01

    Full Text Available The role of alveolar macrophages in lung cancer is multifaceted and conflicting. Alveolar macrophage secretion of proinflammatory cytokines has been found to enhance antitumour functions, cytostasis (inhibition of tumour growth, and cytotoxicity (macrophage-mediated killing. In contrast, protumour functions of alveolar macrophages in lung cancer have also been indicated. Inhibition of antitumour function via secretion of the anti-inflammatory cytokine IL-10 as well as reduced secretion of proinflammatory cytokines and reduction of mannose receptor expression on alveolar macrophages may contribute to lung cancer progression and metastasis. Alveolar macrophages have also been found to contribute to angiogenesis and tumour growth via the secretion of IL-8 and VEGF. This paper reviews the evidence for a dual role of alveolar macrophages in lung cancer progression.

  15. [Persistent dento-alveolar pain disorder (PDAP)].

    Science.gov (United States)

    Warnsinck, C J; Koutris, M; Shemesh, H; Lobbezoo, F

    2015-02-01

    Dento-alveolar pain is common in the orofacial area. Persistent dento-alveolar pain could be experienced without an identifiable etiology with poor response to existing treatments. Confusion about the diagnosis and classification of persistent dento-alveolar pain (PDAP) disorders could explain the difficulties in treatment and unfavorable prognosis. Recently, initial steps were made to improve the taxonomy and diagnostic criteria for PDAP in order to improve clinical research and care.

  16. Reserve autophagic capacity in alveolar epithelia provides a replicative niche for influenza A virus.

    Science.gov (United States)

    Hahn, David R; Na, Cheng-Lun; Weaver, Timothy E

    2014-09-01

    Autophagy contributes to cellular homeostasis through metabolite recycling and degradation of cytotoxic protein aggregates and damaged organelles. Although recent studies have established that the requirement for basal autophagy is largely tissue specific, the importance of autophagy for alveolar epithelial cell homeostasis remains an important knowledge gap. In the present study we generated two mouse models, with > 90% or > 50% recombination at the Atg5 locus in the distal respiratory epithelium, to assess the effect of dose-dependent decreases in autophagy on alveolar homeostasis. A 90% decrease in autophagy was well tolerated in young adult mice but resulted in alveolar septal thickening and altered lung mechanics in aged animals, consistent with accumulation of damage over time. By comparison, a 50% decrease in autophagy had no effect on alveolar structure or function throughout the murine life span, indicating that basal autophagy in this compartment exceeds that required for homeostasis. A 50% decrease in autophagy in the bronchoalveolar epithelium significantly attenuated influenza A/H3N2 viral replication, leading to improved lung structure and function and reduced morbidity and mortality after infection. The reserve of autophagic capacity in the alveolar epithelium may provide a niche for replication of influenza A virus.

  17. Smad2 is Involved in Aggregatibacter actinomycetemcomitans-induced Apoptosis

    Science.gov (United States)

    Yoshimoto, T.; Fujita, T.; Ouhara, K.; Kajiya, M.; Imai, H.; Shiba, H.; Kurihara, H.

    2014-01-01

    Apoptosis is thought to contribute to the progression of periodontitis. It has been suggested that the apoptosis of epithelial cells may contribute to the loss of epithelial barrier function. Smad2, a downstream signaling molecule of TGF-β receptors (TGF-βRs), is critically involved in apoptosis in several cell types. However, the relationship between smad2 and bacteria-induced apoptosis has not yet been elucidated. It is possible that the regulation of apoptosis induced by periodontopathic bacteria may lead to novel preventive therapies for periodontitis. Therefore, in the present study, we investigated the involvement of smad2 phosphorylation in apoptosis of human gingival epithelial cells induced by Aggregatibacter actinomycetemcomitans (Aa). Aa apparently induced the phosphorylation of smad2 in primary human gingival epithelial cells (HGECs) or the human gingival epithelial cell line, OBA9 cells. In addition, Aa induced phosphorylation of the serine residue of the TGF-β type I receptor (TGF-βRI) in OBA9 cells. SB431542 (a TGF-βRI inhibitor) and siRNA transfection for TGF-βRI, which reduced both TGF-βRI mRNA and protein levels, markedly attenuated the Aa-induced phosphorylation of smad2. Furthermore, the disruption of TGF-βRI signaling cascade by SB431542 and siRNA transfection for TGF-βRI abrogated the activation of cleaved caspase-3 expression and repressed apoptosis in OBA9 cells treated with Aa. Thus, Aa induced apoptosis in gingival epithelial cells by activating the TGF-βRI-smad2-caspase-3 signaling pathway. The results of the present study may suggest that the periodontopathic bacteria, Aa, activates the TGF-βR/smad2 signaling pathway in human gingival epithelial cells and induces apoptosis in epithelial cells, which may lead to new therapeutic strategies that modulate the initiation of periodontitis. PMID:25192897

  18. 促炎症细胞因子对新生猪肺泡Ⅱ型上皮细胞相关生长因子表达的影响%Effect of proinflammatory cytokines on growth factor expression of type n alveolar epithelial cells from neonate piglet lungs

    Institute of Scientific and Technical Information of China (English)

    吴盼盼; 刘海沛; 钱莉玲; 俞彰; 孙波

    2010-01-01

    Objective To establish a method of isolation, purification and identification of type Ⅱ alveolar epithelial cells (AEC- K ) from neonate piglet lungs of 1 ~ 3 days old and to investigate effects of proinflammatory cytokines on expression of growth factors (GFs). The yield, viability and purity of AEC- Ⅱ obtained using different enzyme digestion and purifying methods were compared. Methods After the first 24-hour culture of AEC- Ⅱ ,the media containing interleukin (IL)-1β,IL-6 and IGF-Ⅰ at different concentrations were used to culture AEC-Ⅱ for another 48 hours. And then the cells were counted and the expressions of insulin-like growth factor (IGF-Ⅰ ), platelet-derived growth factor ( PDGF), surfactant proteins (SP) -A and SP-B mRNA were determined by real time PCR. Results A significantly higher yield of AEC-Ⅱ was achieved by digesting the lung with 30 unit/ml elastase and 0.1 % trypsin at 37 t for 20 min, the yield was (5.33 ±0.54) × 106 after adjusted by the weight of lung and heart (P <0.01). The number of purified AEC-II obtained by immune adherence method was (38.0 ±28.0) × 106 perpiglet which was higher than by the method of percoll. The optimal phenotype maintenance time of AEC- Ⅱ was the first 24~96 hours in the primary culture. With increasing concentrations of IL-1 β and IL-6, there were decreased proliferation and expression of SP-A and IGF-Ⅰ mRNA in the cultured AEC- Ⅱ ,but SP-B mRNA expression was not affected. Both AEC-Ⅱ proliferation and expression of SP-A, SP-B mRNA decreased significantly after cultured with anti-IGF-Ⅰ. Conclusion In a new model of cultured AEC-Ⅱ from neonate piglets, IL-1β and IL-6 inhibited AEC- Ⅱ proliferation and SP-A mRNA expression through IGF-Ⅰ -dependent mechanisms.%目的 建立出生后1~3 d新生猪肺泡Ⅱ型上皮细胞(AEC-Ⅱ)体外分离纯化及鉴定方法,探讨促炎症细胞因子对AEC-Ⅱ长因子(GFs)的影响,比较不同消化酶溶液、纯化方法获得细

  19. Influences of methyl-β-cyclodextrin-caused caveolae destruction on TGF-y/Smad signaling pathway and on proliferation of type Ⅱ alveolar epithelial cells%甲基-β-环糊精对肺泡Ⅱ型上皮细胞增殖和TGF-β/Smad信号通路的影响

    Institute of Scientific and Technical Information of China (English)

    王勤; 王建春; 李玉英; 王关嵩

    2011-01-01

    Objective To study the influences of methyl-β-cyclodextrin ( MβCD)-caused caveolae destruction on proliferation of type Ⅱ alveolar epithelial cells ( AECs Ⅱ ) and on TGF-β/Smad signaling pathway in AECs Ⅱ. Methods Rat AECs Ⅱ were isolated through enzyme digestion, and then identified through immunofluorescence assay. The distribution of caveolin-1 (a caveolae-specific protein) and type Ⅰ TGF-β receptor (TβR- Ⅰ ) in AECs Ⅱ cell membranes was analyzed with double-labeling immunofluorescence assay and confocal laser scanning microscopy. AECs Ⅱ were divided into a treatment group and a control group. MβCD (5 mmol/L in DME0M) was added into the treatment group to destroy caveolae of AECs Ⅱ, while DMEM was added into the control group. Lipid rafts were extracted from AECs Ⅱ by nonionic detergent method, and the distribution of caveolin-1 and TβR- Ⅰ in cell membranes of treated AECs Ⅱ was analyzed through SDS-PAGE.The expression of caveolin-1 and phosphorylated Smad2 (pSmad2, a downstream molecule of TGF-β/Smad signaling pathway) in AECs Ⅱ was analyzed through Western blotting. The proliferation rate of AECs Ⅱ was analyzed through methyl thiazolyl tetrazolium method. Results The double-labeling immunofluorescence assay and lipid raft extraction showed that TβR-Ⅰ was mainly distributed in caveolae of cell membrane and, after MβCD treatment, was re-distributed in non-raft domains. The expression of caveolin-1 in AECs Ⅱ of the treatment group was significantly lower than that of the control group [( 24.53 ± 3.24 ) % vs (54.83 ± 5.67 ) %,P <0. 01]. The expression of pSmad2 in AECs Ⅱ of the treatment group was significantly higher than that of the control group [( 10.93 ± 1.11 ) % vs ( 8.36 ± 0.64) %, P < 0. 05]. The proliferation rate of AECs Ⅱ of the treatment group is significantly lower than that of the control group (31.00 ±4.18)% vs (49.20 ±4.44)%, P <0. 01 ). Corclusior MβCD-caused caveolae

  20. Pulmonary alveolar proteinosis in a cat

    NARCIS (Netherlands)

    Szatmári, Viktor; Teske, Erik; Nikkels, Peter G J; Griese, Matthias; de Jong, Pim A; Grinwis, Guy; Theegarten, Dirk; Veraa, Stefanie; van Steenbeek, Frank G; Drent, Marjolein; Bonella, Francesco

    2015-01-01

    BACKGROUND: Pulmonary alveolar proteinosis is an extremely rare lung disease in animals and humans. It is characterized by the deposition of a large amount of phospholipoproteinaceous material in the alveoli. There are several possible etiologies, both congenital and acquired. Alveolar macrophages p

  1. Pulmonary alveolar microlithiasis in children

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H. [Center of Diagnostic Radiology, Frankfurt Univ. (Germany); Loercher, U. [Center of Diagnostic Radiology, Frankfurt Univ. (Germany); Kitz, R. [Center of Pediatrics, Frankfurt Univ. (Germany); Zielen, S. [Center of Pediatrics, Frankfurt Univ. (Germany); Ahrens, P. [Center of Pediatrics, Frankfurt Univ. (Germany); Koenig, R. [Inst. of Human Genetics, Frankfurt Univ. (Germany)

    1996-01-01

    Two asymptomatic Turkish sibs are presented, a 4-year-old boy and his 7-year-old sister, with pulmonary alveolar microlithiasis (PAM) confirmed by transbronchial lung biopsy and bronchoalveolar lavage. Chest radiographs and high resolution CT demonstrated wide-spread intra-alveolar calcifications in both lungs. The lesions were sharply defined and less than 1 mm in diameter. CT documented a high concentration of microliths along the bronchovascular bundles, the intralobular fissue and the (sub)pleural lung parenchyma. The combination of bronchoalveolar lavage and roentgenographic appearance in high resolution CT are characteristic and pathognomonic, and can confirm the diagnosis. The more severe changes in the elder sib and the radiographic controls suggest that the pulmonary disease may be progressive in our patients. The described family of consanguineous, unaffected parents with two affected and one healthy child confirmed the autosomal recessive inheritance of PAM (McKusick 265100). In addition, the affected girl had autosomal recessive Waardenburg-anophthalmia syndrome (McKusick 206920), raising the question of whether this is a chance occurrence or possibly a contiguous gene syndrome. (orig.)

  2. Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chuan Junlan [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China); Li Yanzhen [Tianjin Institute of Pharmaceutical Research, State Key Laboratory of Drug Delivery Technology and Pharmacokinetics (China); Yang Likai; Sun Xun [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China); Zhang Qiang [Peking University, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences (China); Gong Tao, E-mail: gongtaoy@126.com; Zhang Zhirong, E-mail: zrzzl@vip.sina.com [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China)

    2013-05-15

    The present study aimed at developing a drug delivery system targeting the densest site of tuberculosis infection, the alveolar macrophages (AMs). Rifampicin (RFP)-loaded solid lipid nanoparticles (RFP-SLNs) with an average size of 829.6 {+-} 16.1 nm were prepared by a modified lipid film hydration method. The cytotoxicity of RFP-SLNs to AMs and alveolar epithelial type II cells (AECs) was examined using MTT assays. The viability of AMs and AECs was above 80 % after treatment with RFP-SLNs, which showed low toxicity to both AMs and AECs. Confocal Laser Scanning Microscopy was employed to observe the interaction between RFP-SLNs and both AMs and AECs. After incubating the cells with RFP-SLNs for 2 h, the fluorescent intensity in AMs was more and remained longer (from 0.5 to 12 h) when compared with that in AECs (from 0.5 to 8 h). In vitro uptake characteristics of RFP-SLNs in AMs and AECs were also investigated by detection of intracellular RFP by High performance liquid chromatography. Results showed that RFP-SLNs delivered markedly higher RFP into AMs (691.7 ng/mg in cultured AMs, 662.6 ng/mg in primary AMs) than that into AECs (319.2 ng/mg in cultured AECs, 287.2 ng/mg in primary AECs). Subsequently, in vivo delivery efficiency and the selectivity of RFP-SLNs were further verified in Sprague-Dawley rats. Under pulmonary administration of RFP-SLNs, the amount of RFP in AMs was significantly higher than that in AECs at each time point. Our results demonstrated that solid lipid nanoparticles are a promising strategy for the delivery of rifampicin to alveolar macrophages selectively.

  3. Apoptosis Resistance in Endometriosis

    Directory of Open Access Journals (Sweden)

    Liselotte Mettler

    2011-08-01

    Full Text Available Introduction: In a cytological analysis of endometriotic lesions neither granulocytes nor cytotoxic T-cells appear in an appreciable number. Based on this observation we aimed to know, whether programmed cell death plays an essential role in the destruction of dystopic endometrium. Disturbances of the physiological mechanisms of apoptosis, a persistence of endometrial tissue could explain the disease. Another aspect of this consideration is the proliferation competence of the dystopic mucous membrane. Methods: Endometriotic lesions of 15 patients were examined through a combined measurement of apoptosis activity with the TUNEL technique (terminal deoxyribosyltransferase mediated dUTP Nick End Labeling and the proliferation activity (with the help of the Ki-67-Antigens using the monoclonal antibody Ki-S5. Results: Twelve out of 15 women studied showed a positive apoptotic activity of 3-47% with a proliferation activity of 2-25% of epithelial cells. Therefore we concluded that the persistence of dystopic endometrium requires proliferative epithelial cells from middle to lower endometrial layers. Conclusion: A dystopia misalignment of the epithelia of the upper layers of the functionalism can be rapidly eliminated by apoptotic procedures.

  4. Apoptosis in the human periodontal membrane evaluated in primary and permanent teeth

    DEFF Research Database (Denmark)

    Bille, Marie-Louise Bastholm; Thomsen, Bjarke; Kjær, Inger

    2011-01-01

    for apoptosis and epithelial cells of Malassez in the periodontal membrane. All teeth examined were extracted in connection with treatment. Results. Apoptosis was seen in close proximity to the root surface and within the epithelial cells of Malassez. This pattern of apoptotis is similar in the periodontal...

  5. A computational approach to understand in vitro alveolar morphogenesis.

    Directory of Open Access Journals (Sweden)

    Sean H J Kim

    Full Text Available Primary human alveolar type II (AT II epithelial cells maintained in Matrigel cultures form alveolar-like cysts (ALCs using a cytogenesis mechanism that is different from that of other studied epithelial cell types: neither proliferation nor death is involved. During ALC formation, AT II cells engage simultaneously in fundamentally different, but not fully characterized activities. Mechanisms enabling these activities and the roles they play during different process stages are virtually unknown. Identifying, characterizing, and understanding the activities and mechanisms are essential to achieving deeper insight into this fundamental feature of morphogenesis. That deeper insight is needed to answer important questions. When and how does an AT cell choose to switch from one activity to another? Why does it choose one action rather than another? We report obtaining plausible answers using a rigorous, multi-attribute modeling and simulation approach that leveraged earlier efforts by using new, agent and object-oriented capabilities. We discovered a set of cell-level operating principles that enabled in silico cells to self-organize and generate systemic cystogenesis phenomena that are quantitatively indistinguishable from those observed in vitro. Success required that the cell components be quasi-autonomous. As simulation time advances, each in silico cell autonomously updates its environment information to reclassify its condition. It then uses the axiomatic operating principles to execute just one action for each possible condition. The quasi-autonomous actions of individual in silico cells were sufficient for developing stable cyst-like structures. The results strengthen in silico to in vitro mappings at three levels: mechanisms, behaviors, and operating principles, thereby achieving a degree of validation and enabling answering the questions posed. We suggest that the in silico operating principles presented may have a biological counterpart

  6. Iron release and ROS generation from mineral particles are not related to cytokine release or apoptosis in exposed A549 cells.

    Science.gov (United States)

    Ovrevik, J; Hetland, R B; Schins, R P; Myran, T; Schwarze, P E

    2006-08-01

    The generation of reactive oxygen species (ROS) by mineral particles is believed to be central to their toxicity and their ability to induce inflammation. Surface bound or soluble iron may contribute to the particle-effects by enhancing the ROS generation through the Fenton reaction. Nevertheless, the importance of ROS and transition metals to mineral particle-induced effects is still unclear and further investigations are needed. In the present study we have investigated different mineral particles for their total iron content, amount of soluble iron at pH 7.0 and 4.0, their ability to generate ROS in a cell-free environment, and their ability to induce cytokine release and apoptosis in a human alveolar epithelial cell line (A549). All the investigated parameters varied considerably between the different particles, with the exception of ability to induce apoptosis. Total iron content did not reflect the amount of soluble iron, and neither total nor soluble iron was correlated with ROS generation. Moreover, iron content and ROS was not correlated with the ability of particles to induce cytokine release or apoptosis. The present results suggest that there is no clear relationship between the particles iron content and ability to generate ROS. Moreover, neither iron content nor the ability to induce ROS generation appears to be a prerequisite for the inflammatory potential or cytotoxicity of mineral particles.

  7. Oral administration of aflatoxin G₁ induces chronic alveolar inflammation associated with lung tumorigenesis.

    Science.gov (United States)

    Liu, Chunping; Shen, Haitao; Yi, Li; Shao, Peilu; Soulika, Athena M; Meng, Xinxing; Xing, Lingxiao; Yan, Xia; Zhang, Xianghong

    2015-02-03

    Our previous studies showed oral gavage of aflatoxin G₁ (AFG₁) induced lung adenocarcinoma in NIH mice. We recently found that a single intratracheal administration of AFG₁ caused chronic inflammatory changes in rat alveolar septum. Here, we examine whether oral gavage of AFG₁ induces chronic lung inflammation and how it contributes to carcinogenesis. We evaluated chronic lung inflammatory responses in Balb/c mice after oral gavage of AFG₁ for 1, 3 and 6 months. Inflammatory responses were heightened in the lung alveolar septum, 3 and 6 months after AFG₁ treatment, evidenced by increased macrophages and lymphocytes infiltration, up-regulation of NF-κB and p-STAT3, and cytokines production. High expression levels of superoxide dismutase (SOD-2) and hemoxygenase-1 (HO-1), two established markers of oxidative stress, were detected in alveolar epithelium of AFG₁-treated mice. Promoted alveolar type II cell (AT-II) proliferation in alveolar epithelium and angiogenesis, as well as increased COX-2 expression were also observed in lung tissues of AFG₁-treated mice. Furthermore, we prolonged survival of the mice in the above model for another 6 months to examine the contribution of AFG₁-induced chronic inflammation to lung tumorigenesis. Twelve months later, we observed that AFG₁ induced alveolar epithelial hyperplasia and adenocarcinoma in Balb/c mice. Up-regulation of NF-κB, p-STAT3, and COX-2 was also induced in lung adenocarcinoma, thus establishing a link between AFG₁-induced chronic inflammation and lung tumorigenesis. This is the first study to show that oral administration of AFG₁ could induce chronic lung inflammation, which may provide a pro-tumor microenvironment to contribute to lung tumorigenesis.

  8. Activation of Type II Cells into Regenerative Stem Cell Antigen-1+ Cells during Alveolar Repair

    Science.gov (United States)

    Kumar, Varsha Suresh; Zhang, Wei; Rehman, Jalees; Malik, Asrar B.

    2015-01-01

    The alveolar epithelium is composed of two cell types: type I cells comprise 95% of the gas exchange surface area, whereas type II cells secrete surfactant, while retaining the ability to convert into type I cells to induce alveolar repair. Using lineage-tracing analyses in the mouse model of Pseudomonas aeruginosa–induced lung injury, we identified a population of stem cell antigen (Sca)-1–expressing type II cells with progenitor cell properties that mediate alveolar repair. These cells were shown to be distinct from previously reported Sca-1–expressing bronchioalveolar stem cells. Microarray and Wnt reporter studies showed that surfactant protein (Sp)-C+Sca-1+ cells expressed Wnt signaling pathway genes, and inhibiting Wnt/β-catenin signaling prevented the regenerative function of Sp-C+Sca-1+ cells in vitro. Thus, P. aeruginosa–mediated lung injury induces the generation of a Sca-1+ subset of type II cells. The progenitor phenotype of the Sp-C+Sca-1+ cells that mediates alveolar epithelial repair might involve Wnt signaling. PMID:25474582

  9. Identification of an Autophagy Defect in Smokers’ Alveolar Macrophages1

    OpenAIRE

    2010-01-01

    Alveolar macrophages are essential for clearing bacteria from the alveolar surface and preventing microbial-induced infections. It is well documented that smokers have an increased incidence of infections, in particular lung infections. Alveolar macrophages accumulate in smokers’ lungs but they have a functional immune deficit. In this study, we identify for the first time an autophagy defect in smokers’ alveolar macrophages. Smokers’ alveolar macrophages accumulate both autophagosomes and p6...

  10. Pulmonary administration of phosphoinositide 3-kinase inhibitor is a curative treatment for chronic obstructive pulmonary disease by alveolar regeneration.

    Science.gov (United States)

    Horiguchi, Michiko; Oiso, Yuki; Sakai, Hitomi; Motomura, Tomoki; Yamashita, Chikamasa

    2015-09-10

    Chronic obstructive pulmonary disease (COPD) is an intractable pulmonary disease, causing widespread and irreversible alveoli collapse. The discovery of a low-molecular-weight compound that induces regeneration of pulmonary alveoli is of utmost urgency to cure intractable pulmonary diseases such as COPD. However, a practically useful compound for regenerating pulmonary alveoli is yet to be reported. Previously, we have elucidated that Akt phosphorylation is involved in a differentiation-inducing molecular mechanism of human alveolar epithelial stem cells, which play a role in regenerating pulmonary alveoli. In the present study, we directed our attention to phosphoinositide 3-kinase (PI3K)-Akt signaling and examined whether PI3K inhibitors display the pulmonary alveolus regeneration. Three PI3K inhibitors with different PI3K subtype specificities (Wortmannin, AS605240, PIK-75 hydrochloride) were tested for the differentiation-inducing effect on human alveolar epithelial stem cells, and Wortmannin demonstrated the most potent differentiation-inducing activity. We evaluated Akt phosphorylation in pulmonary tissues of an elastase-induced murine COPD model and found that Akt phosphorylation in the pulmonary tissue was enhanced in the murine COPD model compared with normal mice. Then, the alveolus-repairing effect of pulmonary administration of Wortmannin to murine COPD model was evaluated using X-ray CT analysis and hematoxylin-eosin staining. As a result, alveolar damages were repaired in the Wortmannin-administered group to a similar level of normal mice. Furthermore, pulmonary administration of Wortmannin induced a significant recovery of the respiratory function, compared to the control group. These results indicate that Wortmannin is capable of inducing differentiation of human alveolar epithelial stem cells and represents a promising drug candidate for curative treatment of pulmonary alveolar destruction in COPD.

  11. JNK在血糖波动的糖尿病大鼠肾小管上皮细胞凋亡中的作用%The role of JNK in apoptosis of renal tubular epithelial cells in diabetic rats with fluctuant high blood glucose

    Institute of Scientific and Technical Information of China (English)

    郝卯林; 戴雍月; 倪世容; 汪大望; 李素娟; 金可可

    2012-01-01

    Objective: To explore the signal transduction mechanisms of apoptosis in renal tubular epithelial cells in diabetic rate with fluctuant high blood glucose. Methods: Healthy SD rats were randomly divided into 3 groups: normal control group(A), stable high Hood glucose gnwp(B) and fluctuant high Mood glucose group(C). Diabetic rats were induced by inbaperitoneal injection of streptozotocin( SIZ, 65 mg/kg), and the fluctuant high blood glucose animal model was induced by intraperitoneal injection of ordinary insulin and glucose at different time point every day. The supenndde dismutase (SOD) activity and the content of malonaldehyde (MDA) in renal tissue homogenate were detected with colorimetry.The protein expression of Nox4 and JNK were examined by immunohistochemistry and Western bint. Apoptosis was assessed by terminal deoxynucleotidyl Iransferase-mediated dUTP nick-end labelling (TUNEL). Results: After 12 experimental weeks, significantly increased cell apoptosis, up-regulation of Nox4 and P-JNK expression in renal tubular epithelial cells were observed in B and C groups compared with those in A group. The MDA content increased and SOD activity decreased in renal tissue in B and C groups. Above effects were more obviously shown in C group. Condition: Fluctuant high blood glucose induced more apoptosis of renal tubular epithelial cell than stable high blood glucose in diabetic kidney, which might be related to the activation of JNK signal transduction pathway.%目的:探讨血糖波动的糖尿病大鼠发生肾小管上皮细胞凋亡的信号转导机制.方法:健康SD大鼠随机分为正常对照组(A)、糖尿病稳定高血糖组(B)和糖尿病波动高血糖组(C),采用链脲佐菌素(STZ)65 mg/kg腹腔注射诱发糖尿病,血糖波动组每天定时腹腔注射速效胰岛素,并错时给予葡萄糖,造成一天中血糖浓度大幅度波动模型.制模12周后,采用比色法检测肾组织匀浆中超氧化物歧化酶(SOD)活性和丙二醛(MDA

  12. The Type 7 Serotonin Receptor, 5-HT7, Is Essential in the Mammary Gland for Regulation of Mammary Epithelial Structure and Function

    Science.gov (United States)

    Pai, Vaibhav P.; Hernandez, Laura L.; Stull, Malinda A.; Horseman, Nelson D.

    2015-01-01

    Autocrine-paracrine activity of serotonin (5-hydroxytryptamine, 5-HT) is a crucial homeostatic parameter in mammary gland development during lactation and involution. Published studies suggested that the 5-HT7 receptor type was important for mediating several effects of 5-HT in the mammary epithelium. Here, using 5-HT7 receptor-null (HT7KO) mice we attempt to understand the role of this receptor in mediating 5-HT actions within the mammary gland. We demonstrate for the first time that HT7KO dams are inefficient at sustaining their pups. Histologically, the HT7KO mammary epithelium shows a significant deviation from the normal secretory epithelium in morphological architecture, reduced secretory vesicles, and numerous multinucleated epithelial cells with atypically displaced nuclei, during lactation. Mammary epithelial cells in HT7KO dams also display an inability to transition from lactation to involution as normally seen by transition from a columnar to a squamous cell configuration, along with alveolar cell apoptosis and cell shedding. Our results show that 5-HT7 is required for multiple actions of 5-HT in the mammary glands including core functions that contribute to changes in cell shape and cell turnover, as well as specialized secretory functions. Understanding these actions may provide new interventions to improve lactation performance and treat diseases such as mastitis and breast cancer. PMID:25664318

  13. The Type 7 Serotonin Receptor, 5-HT7, Is Essential in the Mammary Gland for Regulation of Mammary Epithelial Structure and Function

    Directory of Open Access Journals (Sweden)

    Vaibhav P. Pai

    2015-01-01

    Full Text Available Autocrine-paracrine activity of serotonin (5-hydroxytryptamine, 5-HT is a crucial homeostatic parameter in mammary gland development during lactation and involution. Published studies suggested that the 5-HT7 receptor type was important for mediating several effects of 5-HT in the mammary epithelium. Here, using 5-HT7 receptor-null (HT7KO mice we attempt to understand the role of this receptor in mediating 5-HT actions within the mammary gland. We demonstrate for the first time that HT7KO dams are inefficient at sustaining their pups. Histologically, the HT7KO mammary epithelium shows a significant deviation from the normal secretory epithelium in morphological architecture, reduced secretory vesicles, and numerous multinucleated epithelial cells with atypically displaced nuclei, during lactation. Mammary epithelial cells in HT7KO dams also display an inability to transition from lactation to involution as normally seen by transition from a columnar to a squamous cell configuration, along with alveolar cell apoptosis and cell shedding. Our results show that 5-HT7 is required for multiple actions of 5-HT in the mammary glands including core functions that contribute to changes in cell shape and cell turnover, as well as specialized secretory functions. Understanding these actions may provide new interventions to improve lactation performance and treat diseases such as mastitis and breast cancer.

  14. Basement Membrane Mimics of Biofunctionalized Nanofibers for a Bipolar-Cultured Human Primary Alveolar-Capillary Barrier Model.

    Science.gov (United States)

    Nishiguchi, Akihiro; Singh, Smriti; Wessling, Matthias; Kirkpatrick, Charles J; Möller, Martin

    2017-03-13

    In vitro reconstruction of an alveolar barrier for modeling normal lung functions and pathological events serve as reproducible, high-throughput pharmaceutical platforms for drug discovery, diagnosis, and regenerative medicine. Despite much effort, the reconstruction of organ-level alveolar barrier functions has failed due to the lack of structural similarity to the natural basement membrane, functionalization with specific ligands for alveolar cell function, the use of primary cells and biodegradability. Here we report a bipolar cultured alveolar-capillary barrier model of human primary cells supported by a basement membrane mimics of fully synthetic bifunctional nanofibers. One-step electrospinning process using a bioresorbable polyester and multifunctional star-shaped polyethylene glycols (sPEG) enables the fabrication of an ultrathin nanofiber mesh with interconnected pores. The nanofiber mesh possessed mechanical stability against cyclic expansion as seen in the lung in vivo. The sPEGs as an additive provide biofunctionality to fibers through the conjugation of peptide to the nanofibers and hydrophilization to prevent unspecific protein adsorption. Biofunctionalized nanofiber meshes facilitated bipolar cultivation of endothelial and epithelial cells with fundamental alveolar functionality and showed higher permeability for molecules compared to microporous films. This nanofiber mesh for a bipolar cultured barrier have the potential to promote growth of an organ-level barrier model for modeling pathological conditions and evaluating drug efficacy, environmental pollutants, and nanotoxicology.

  15. MicroRNAs: Potential Biomarkers and Therapeutic Targets for Alveolar Bone Loss in Periodontal Disease

    Directory of Open Access Journals (Sweden)

    Tadayoshi Kagiya

    2016-08-01

    Full Text Available Periodontal disease is an inflammatory disease caused by bacterial infection of tooth-supporting structures, which results in the destruction of alveolar bone. Osteoclasts play a central role in bone destruction. Osteoclasts are tartrate-resistant acid phosphatase (TRAP-positive multinucleated giant cells derived from hematopoietic stem cells. Recently, we and other researchers revealed that microRNAs are involved in osteoclast differentiation. MicroRNAs are novel, single-stranded, non-coding, small (20–22 nucleotides RNAs that act in a sequence-specific manner to regulate gene expression at the post-transcriptional level through cleavage or translational repression of their target mRNAs. They regulate various biological activities such as cellular differentiation, apoptosis, cancer development, and inflammatory responses. In this review, the roles of microRNAs in osteoclast differentiation and function during alveolar bone destruction in periodontal disease are described.

  16. Perawatan Ortodontik Gigi Anterior Berjejal dengan Tulang Alveolar yang Tipis

    Directory of Open Access Journals (Sweden)

    Miesje K. Purwanegara

    2015-09-01

    Full Text Available Anterior teeth movement in orthodontic treatment is limited to labiolingual direction by very thin alveolar bone. An uncontrolled anterior tooth movement to labiolingual direction can cause alveolar bone perforation at its root segment. This case report is to remind us that alveolar bone thickness limits orthodontc tooth movement. A case of crowded anterior teeth with thin alveolar bone in malocclusion I is reported. This case is treated using adgewise orthodontic appliance. Protraction of anterior teeth is anticipated due to thin alveolar bone on the anterior surface. The conclusion is although the alveolar bone surrounding the crowded anterior teeth is thin, by controlling the movement the teeth reposition is allowed.

  17. Orthopantomographic study of the alveolar bone level on periodontal disease

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sik; You, Dong Soo [College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1972-11-15

    The author had measured the alveolar bone level of periodontal disease on 50 cases of orthopantomogram to detect the degree of alveolar bone resorption of both sexes of Korean. The results were obtained as follows; 1. Alveolar bone resorption of mesial and distal portion was similar in same patient. 2. The order of alveolar bone resorption was mandibular anterior region, posterior region, canine and premolar region of both jaws. 3. The degree of alveolar bone destruction was severe in shorter root length than longer one. 4. The degree of alveolar bone resorption was severe in fourth decades.

  18. When is an Alveolar Type 2 Cell an Alveolar Type 2 Cell? A Conundrum for Lung Stem Cell Biology and Regenerative Medicine.

    Science.gov (United States)

    Beers, Michael F; Moodley, Yuben

    2017-03-22

    Generating mature, differentiated, adult lung cells from pluripotent cells such as induced pluripotent cells (iPS) and embryonic stem cells (ES) offers the hope of both generating disease specific in vitro models and creating definitive and personalized therapies for a host of debilitating lung parenchymal and airway diseases. With the goal of advancing lung regenerative medicine, several groups have developed and reported on protocols utilizing either defined media, co-culture with mesenchymal components, or sequential treatments mimicking lung development, to obtain distal lung epithelial cells from stem cell precursors. However, there remains significant controversy about the degree of differentiation of these cells compared to their primary counterparts coupled with a lack of consistency or uniformity in assessing the resultant phenotypes. Given the inevitable, exponential expansion of these approaches and the probable but yet to emerge 2nd and higher generation techniques to create such assets, we were prompted to pose the question: "What makes a lung epithelial cell a lung epithelial cell?" and more specifically for this Perspective "What are the minimum features that constitute an alveolar type II epithelial cell (AT2)". In addressing this, we summarize a body of work spanning nearly five decades amassed by a series of "lung epithelial cell biology pioneers" which carefully describes well characterized molecular, functional, and morphological features critical for discriminate assessment of an AT2 phenotype. Armed with this we propose a series of core criteria to assist the field in confirming that cells obtained following a differentiating protocol are indeed mature and functional AT2 epithelial cells.

  19. Loss of p120 catenin aggravates alveolar edema of ventilation induced lung injury

    Institute of Scientific and Technical Information of China (English)

    DAI Chen-yang; DAI Guo-feng; SUN Yu; WANG Yue-lan

    2013-01-01

    Background p120 catenin (p120ctn) is an adheren junction protein that regulates barrier function,but its role has not been explored in alveolar edema induced by ventilation.We measured stretch-induced cell gap formation in MLE 12 cells due to the loss of p120.We hypothesized that alveolar permeability was increased by high lung inflation associated with alveolar epithelia cell tight junctions being destroyed,which resulted from the loss of p120.Methods Cultured MLE12 cells were subjected to being stretched or un-stretched (control) and some cells were pretreated with pp2 (c-src inhibitor).After the end of stretching for 0,1,2,and 4 hours,the cells were lysed,and p120 expression and c-src activation was determined by Western blotting analysis.In vivo,SD rats were taken to different tidal volumes (Vt 7 ml/kg or 40 ml/kg,PEEP=0,respiratory rate 30-40 betas/min) for 0,1,2,and 4 hour and some were pretreated with pp2,and alveolar edema was calculated.Rerults It was found that p120 expression was reduced and c-src activation increased in a time-dependent and strain-dependent manner due to cyclic-stretch of the alveolar epithelial cells.These changes could be reversed by inhibition of c-src.We obtained similar changes in rats when they were subjected to large tidal volumes and the alveolar edema increased more than in rats in the low Vt group.Pretreated the rats with inhibition of c-src had less pulmonary edema induced by the high tidal volume ventilation.Conclusions Cyclic stretch MLE 12 cells induced the loss of p120 and may be the same reason by high tidal volume ventilation in rats can aggravate alveolar edema.Maintenance of p120 expression may be a novel therapeutic strategy for the prevention and treatment of ventilation induced lung injury (VILI).

  20. Alveolar rhabdomyosarcoma in children with histomorphological review

    Directory of Open Access Journals (Sweden)

    S. K. Nema

    2014-04-01

    Full Text Available Rhabdomyosarcomas (RMS are aggressive malignant neoplasm of mesenchymal origin, related to skeletal muscle lineage. These are the most common soft tissue tumors in children. The diagnosis is made by microscopic analysis and ancillary techniques like immunohistochemistry, electron microscopy, cytogenetics and molecular biology. We encountered a case of a 03 years old child who presented with a tender, reddish, soft swelling over cheek for three weeks. The FNAC was reported as a small round cell tumor, Probably Primitive Neuroectodermal Tumor (PNET. The biopsy of tumor revealed a small round cell tumor with an alveolar pattern. Tumor giant cells were absent and mitotic figures were infrequent. Hence, differentials of alveolar rhabdomyosarcoma and PNET were rendered. Immunohistochemistry (IHC demonstrated desmin positivity. Thus, a final diagnosis of alveolar rhabdomyosarcoma was offered. [Int J Res Med Sci 2014; 2(2.000: 775-778

  1. Lateralization Technique and Inferior Alveolar Nerve Transposition

    Directory of Open Access Journals (Sweden)

    Angélica Castro Pimentel

    2016-01-01

    Full Text Available Bone resorption of the posterior mandible can result in diminished bone edge and, therefore, the installation of implants in these regions becomes a challenge, especially in the presence of the mandibular canal and its contents, the inferior alveolar nerve. Several treatment alternatives are suggested: the use of short implants, guided bone regeneration, appositional bone grafting, distraction osteogenesis, inclined implants tangential to the mandibular canal, and the lateralization of the inferior alveolar nerve. The aim was to elucidate the success rate of implants in the lateralization technique and in inferior alveolar nerve transposition and to determine the most effective sensory test. We conclude that the success rate is linked to the possibility of installing implants with long bicortical anchor which favors primary stability and biomechanics.

  2. Lateralization Technique and Inferior Alveolar Nerve Transposition

    Science.gov (United States)

    Sanches, Marco Antonio; Ramalho, Gabriel Cardoso; Manzi, Marcello Roberto

    2016-01-01

    Bone resorption of the posterior mandible can result in diminished bone edge and, therefore, the installation of implants in these regions becomes a challenge, especially in the presence of the mandibular canal and its contents, the inferior alveolar nerve. Several treatment alternatives are suggested: the use of short implants, guided bone regeneration, appositional bone grafting, distraction osteogenesis, inclined implants tangential to the mandibular canal, and the lateralization of the inferior alveolar nerve. The aim was to elucidate the success rate of implants in the lateralization technique and in inferior alveolar nerve transposition and to determine the most effective sensory test. We conclude that the success rate is linked to the possibility of installing implants with long bicortical anchor which favors primary stability and biomechanics. PMID:27433360

  3. Regulation of antiapoptotic and cytoprotective pathways in colonic epithelial cells in ulcerative colitis

    DEFF Research Database (Denmark)

    Seidelin, Jakob B

    2015-01-01

    Ulcerative colitis is an inflammatory bowel disease involving the colon resulting in bloody diarrhea and increased risk of colorectal cancer in certain patient subgroups. Increased apoptosis in the epithelial cell layer causes increased permeability, especially during flares; this leads...

  4. 紫外线对人晶状体上皮细胞凋亡的诱导及Bcl-2,Bax基因的影响%Ultraviolet radiation-induced apoptosis in human lens epithelial cells and its effect on Bcl-2 and Bax

    Institute of Scientific and Technical Information of China (English)

    贾松柏; 石晶明; 陈翾; 唐罗生

    2012-01-01

    目的:研究紫外线照射体外培养人晶状体上皮细胞(human lens epithelial cell,HLEC)对凋亡的诱导、凋亡调控基因(Bax,Bcl-2)表达的变化,探讨紫外线诱导HLEC凋亡的机制.方法:以实验室培养的HLEC细胞株为研究模型,采用同一紫外线光源对HLEC进行照射.按紫外线照射时间将HLEC分为0,5,10,15及30 min组.采用Annexin V+PI双染流式细胞计数对HLEC凋亡进行检测,用原位杂交的方法检测各组Bax,Bcl-2 mRNA的表达.结果:随紫外线照射时间的延长HLEC凋亡率增加,Bcl-2阳性细胞率逐渐降低;而Bax阳性细胞率逐渐增加.HLEC凋亡率与Bcl-2和Bax的比率呈负相关(r=-0.874,P<0.05).结论:紫外线照射可诱导HLEC凋亡,Bax和Bcl-2可能参与了紫外线诱导的HLEC凋亡的基因调控过程.%Objective: To explore the apoptosis-inducing effect of ultraviolet(UV) radiation on human lens epithelial cells (HLEC), with particular focus on changes in Bcl-2 or Bax expression as possible mechanisms.Methods: All experimental groups were exposed to the same UV light source. HLEC were divided into 6 groups according to duration of UV radiation : 0 min group (control group), 5 min group, 10 min group, 15 min group, and 30 min group. Analysis on apoptosis of HLEC was performed by flow cytometry analysis (FCA, Annexin V + PI staining). Changes of Bax and Bcl-2 expression in HLEC were detected by hybridization in situ.Results: Apoptosis in HLEC increased with UV exposure time. The expression level of Bax mRNA was increased with the increase of UV exposure time, whereas the expression level of Bcl-2 mRNA decreased with the increase of UV exposure time. The proportion of apoptotic cells was negatively correlated with ratio of Bcl-2/Bax (r=-0.874, P<0.05).Conclusion: UA radiation can induce apoptosis of HLEC in vitro. Bcl-2 and Bax genes may play an important role in regulating this apoptotic process.

  5. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers.

    Science.gov (United States)

    Selman, Moisés; Pardo, Annie

    2006-06-01

    Idiopathic pulmonary fibrosis (IPF), a progressive and relentless lung scarring of unknown etiology, has been recognized as the most lethal interstitial lung disease. Despite the growing interest in IPF, the precise molecular mechanisms underlying the development of fibrosis and leading to the irreversible destruction of the lung are still unknown. Recently, it has been proposed that IPF, instead of being a chronic inflammatory disorder, results from multiple cycles of epithelial cell injury and activation. In turn, active alveolar epithelial cells provoke the migration, proliferation, and activation of mesenchymal cells with the formation of fibroblastic/myofibroblastic foci and the exaggerated accumulation of extracellular matrix, mirroring abnormal wound repair. In this article, some characteristics of the alveolar epithelium are briefly outlined, and the fibrogenic mechanisms specifically operated by active abnormal epithelial cells are examined.

  6. Potential uses of milk epithelial cells: a review.

    Science.gov (United States)

    Boutinaud, Marion; Jammes, Hélène

    2002-01-01

    Secretions collected from the mammary gland of different species contain heterogeneous populations of cells including lymphocytes, neutrophils, macrophages and epithelial cells in different species. Several factors influence the somatic cell count in milk and the distribution of cell types, such as species, infection status, physiological status and management practices. The epithelial cells are shed into milk during the lactation process. Most of them are viable and exhibit the characteristics of fully differentiated alveolar cells. Primary cultures of epithelial cells from colostrum and milk of humans, baboons, cows and goats together with established cell lines from human and goat milk, provide a good model for the study of lactogenesis, immunity transmission, cancer research and infection by viruses. The RNA extracted from milk cells have been shown to be representative of gene expression in the mammary gland and thus provide a source of material for molecular studies of gene expression and environmental interactions.

  7. Quantitative electron microscopic analysis of the epithelium of normal human alveolar mucosa.

    Science.gov (United States)

    Bernimoulin, J P; Schroeder, H E

    1977-05-31

    The epithelium of normal human alveolar mucosa originating from the anterior vestibulum was subjected to stereologic analysis. Eight biopsies were collected half-way between the muco gingival junction and the vestibular fornix from 20 to 50 year-old females, and processed for light and electron microscopy. At two levels of magnification, electron micrographs were sampled from four artificially selected strata in regions of epithelial ridges. Stereologic point counting based on a computer-aided system for analyzing stratified epithelia served for examining a total of about 860 electron micrographs. The alveolar epithelium was 0.26 mm thick, occasionally interdigitated by short, slender connective tissue papillae, and consisted of (1) a narrow basal and suprabasal, and (2) a broad spinous and surface compartment. It displayed a differentiation pattern which, in most subjects studied, was similar to that of normal human buccal epithelium, however, on the average, produced less mature surface cells. This pattern was expressed mainly by a density increase of cytoplasmic filaments (98 A in diameter), a concomitant decrease of the cytoplasmic ground substance, the formation of dark-cored membrane coating granules, and invividually variable amounts of glycogen deposition. In some subjects, a mixed differentiation pattern was found. The structural organization of alveolar epithelium, in analogy to cheek epithelium, was compatible with the function of distensibility.

  8. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis.

    Science.gov (United States)

    Cao, Zhongwei; Lis, Raphael; Ginsberg, Michael; Chavez, Deebly; Shido, Koji; Rabbany, Sina Y; Fong, Guo-Hua; Sakmar, Thomas P; Rafii, Shahin; Ding, Bi-Sen

    2016-02-01

    Although the lung can undergo self-repair after injury, fibrosis in chronically injured or diseased lungs can occur at the expense of regeneration. Here we study how a hematopoietic-vascular niche regulates alveolar repair and lung fibrosis. Using intratracheal injection of bleomycin or hydrochloric acid in mice, we show that repetitive lung injury activates pulmonary capillary endothelial cells (PCECs) and perivascular macrophages, impeding alveolar repair and promoting fibrosis. Whereas the chemokine receptor CXCR7, expressed on PCECs, acts to prevent epithelial damage and ameliorate fibrosis after a single round of treatment with bleomycin or hydrochloric acid, repeated injury leads to suppression of CXCR7 expression and recruitment of vascular endothelial growth factor receptor 1 (VEGFR1)-expressing perivascular macrophages. This recruitment stimulates Wnt/β-catenin-dependent persistent upregulation of the Notch ligand Jagged1 (encoded by Jag1) in PCECs, which in turn stimulates exuberant Notch signaling in perivascular fibroblasts and enhances fibrosis. Administration of a CXCR7 agonist or PCEC-targeted Jag1 shRNA after lung injury promotes alveolar repair and reduces fibrosis. Thus, targeting of a maladapted hematopoietic-vascular niche, in which macrophages, PCECs and perivascular fibroblasts interact, may help to develop therapy to spur lung regeneration and alleviate fibrosis.

  9. Differential Effects of TNF (TNFSF2) and IFN-gamma on Intestinal Epithelial Cell Morphogenesis and Barrier Function in Three-Dimensional Culture

    NARCIS (Netherlands)

    Juuti-Uusitalo, Kati; Klunder, Leon J.; Sjollema, Klaas A.; Mackovicova, Katarina; Ohgaki, Ryuichi; Hoekstra, Dick; Dekker, Jan; van Ijzendoorn, Sven C. D.

    2011-01-01

    Background: The cytokines TNF (TNFSF2) and IFN gamma are important mediators of inflammatory bowel diseases and contribute to enhanced intestinal epithelial permeability by stimulating apoptosis and/or disrupting tight junctions. Apoptosis and tight junctions are also important for epithelial tissue

  10. Iatrogenic injury to the inferior alveolar nerve

    DEFF Research Database (Denmark)

    Hillerup, Søren

    2008-01-01

    The purpose of this prospective, non-randomised, descriptive study is to characterise the neurosensory deficit and associated neurogenic discomfort in 52 patients with iatrogenic injury to the inferior alveolar nerve (IAN). All patients were examined and followed up according to a protocol assess...

  11. n-3多不饱和脂肪酸对大鼠小肠移植慢性排斥肠黏膜细胞凋亡的抑制作用%n-3 PUFA can inhibit the apoptosis of intestinal epithelial cells of chronic rejection after small intestinal transplantation

    Institute of Scientific and Technical Information of China (English)

    赵坤; 张海云; 王萌; 李宁; 李幼生; 黎介寿

    2009-01-01

    Objective: The aim of our work was to investigate the effects of n-3 polyunsaturated fatty acids on apoptosis, granzyme B and perforin expression of intestinal epithelial cells of chronic rejection after small intestinal transplantation. Methods: Small bowel transplantation was performed and rats were divided into three groups: Group 1, Lewis-to-Lewis, group 2, F344-to-Lewis, dietary corn oil, Group 3, F344-to-Lewis, dietary fish oil. All recipients were killed after 16 weeks of posttransplantation. The apoptosis rate of mucosal cells were evaluated by flow cytometry. The expressions of granzyme B and perforin were analyzed by reverse transcriptase RT-PCR. Results: A high apoptotic rate was observed when the allografts demonstrated one or more histological features of chronic rejection. N-3 polyunsaturated fatty acids decreased the rate of the apoptosis and inhibitted the expressions of granzyme B and perforin. Conclusion: N-3 polyunsaturated fatty acids can suppress the chronic rejection in small intestinal transplantation.%目的: 探讨大鼠小肠移植后移植肠发生慢性排斥时,口服n-3多不饱和脂肪酸对移植肠黏膜细胞凋亡、颗粒酶B和穿孔素表达的调控作用. 方法: 将大鼠分为三组:①Lewis- Lewis组,口服玉米油;②F344-Lewis组,口服玉米油;③F344-Lewis组,口服鱼油.所有受鼠在移植术后16周取材检测.用流式细胞法检测肠黏膜细胞凋亡,RT-PCR法检测穿孔素和颗粒酶的表达. 结果: 慢性排斥发生后,移植肠黏膜细胞凋亡率、颗粒酶B和穿孔素的表达明显增加.口服鱼油可抑制移植肠黏膜细胞的凋亡、颗粒酶B和穿孔素的表达. 讨论: 口服n-3多不饱和脂肪酸能抑制慢性排斥期移植肠的排斥反应,提高受鼠和移植物的存活率,延缓移植物的慢性失功.

  12. Crossroads of Wnt and Hippo in epithelial tissues.

    Science.gov (United States)

    Bernascone, Ilenia; Martin-Belmonte, Fernando

    2013-08-01

    Epithelial tissues undergo constant growth and differentiation during embryonic development and to replace damaged tissue in adult organs. These processes are governed by different signaling pathways that ultimately control the expression of genes associated with cell proliferation, patterning, and death. One essential pathway is Wnt, which controls tubulogenesis in several epithelial organs. Recently, Wnt has been closely linked to other signaling pathways, such as Hippo, that orchestrate proliferation and apoptosis to control organ size. There is evidence that epithelial cell junctions may sequester the transcription factors that act downstream of these signaling pathways, which would represent an important aspect of their functional regulation and their influence on cell behavior. Here, we review the transcriptional control exerted by the Wnt and Hippo signaling pathways during epithelial growth, patterning, and differentiation and recent advances in understanding of the regulation and crosstalk of these pathways in epithelial tissues.

  13. Exogenous hydrogen sulfide (H2S protects alveolar growth in experimental O2-induced neonatal lung injury.

    Directory of Open Access Journals (Sweden)

    Arul Vadivel

    Full Text Available BACKGROUND: Bronchopulmonary dysplasia (BPD, the chronic lung disease of prematurity, remains a major health problem. BPD is characterized by impaired alveolar development and complicated by pulmonary hypertension (PHT. Currently there is no specific treatment for BPD. Hydrogen sulfide (H2S, carbon monoxide and nitric oxide (NO, belong to a class of endogenously synthesized gaseous molecules referred to as gasotransmitters. While inhaled NO is already used for the treatment of neonatal PHT and currently tested for the prevention of BPD, H2S has until recently been regarded exclusively as a toxic gas. Recent evidence suggests that endogenous H2S exerts beneficial biological effects, including cytoprotection and vasodilatation. We hypothesized that H2S preserves normal alveolar development and prevents PHT in experimental BPD. METHODS: We took advantage of a recently described slow-releasing H2S donor, GYY4137 (morpholin-4-ium-4-methoxyphenyl(morpholino phosphinodithioate to study its lung protective potential in vitro and in vivo. RESULTS: In vitro, GYY4137 promoted capillary-like network formation, viability and reduced reactive oxygen species in hyperoxia-exposed human pulmonary artery endothelial cells. GYY4137 also protected mitochondrial function in alveolar epithelial cells. In vivo, GYY4137 preserved and restored normal alveolar growth in rat pups exposed from birth for 2 weeks to hyperoxia. GYY4137 also attenuated PHT as determined by improved pulmonary arterial acceleration time on echo-Doppler, pulmonary artery remodeling and right ventricular hypertrophy. GYY4137 also prevented pulmonary artery smooth muscle cell proliferation. CONCLUSIONS: H2S protects from impaired alveolar growth and PHT in experimental O2-induced lung injury. H2S warrants further investigation as a new therapeutic target for alveolar damage and PHT.

  14. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells.

    Science.gov (United States)

    Majumdar, Arnab; Arold, Stephen P; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Suki, Béla

    2012-03-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes.

  15. 姜黄素诱导人永生化表皮HaCaT细胞凋亡中Nucleophosmin的表达和定位变化%Expression and Localization of Nucleophosmin During Curcumin-induced Apoptosis in the Immortalized Human Epithelial HaCaT Cells

    Institute of Scientific and Technical Information of China (English)

    杨海波; 宋巍; 陈兰英; 李祺福; 于淮滨

    2013-01-01

    该文以姜黄素诱导处理前后的人永生化表皮HaCaT细胞为研究对象,对核仁磷酸蛋白(nucleophosmin,NPM)在核基质中存在、分布及其与凋亡相关基因产物在姜黄素处理前后HaCaT细胞中的共定位关系进行观察研究.Western blot结果显示,NPM存在于人永生化表皮HaCaT细胞核基质蛋白组分中,并在姜黄素处理后的细胞核基质中表达下调,免疫荧光显微镜观察显示,NPM定位在核基质上,经姜黄素处理后出现分布位置与表达水平的变化,激光共聚焦显微镜观察可见NPM与HaCaT细胞中凋亡相关基因Bax、Bcl-2、mtP53和Rb基因产物均存在共定位关系,但在姜黄素处理后细胞中其共定位分布区域出现变化.研究结果证实NPM是一种核基质蛋白,定位于核基质上,NPM在HaCaT细胞诱导凋亡过程中的表达分布及其与凋亡相关基因产物的共定位现象值得进一步探索和研究.%To explore the existence and distribution of nucleophosmin (NPM) in the nuclear matrix and its colocalization with the other apoptosis-related gene products following curcumin treatment in the human epithelial HaCaT cells,the nuclear matrix of HaCaT cells was extracted pre/post curcumin induced apoptosis.Western blot analysis showed that NPM existed in the fractions of nuclear matrix proteins and was down-regulated after curcumin treatment.The immunofluorescence observation revealed that NPM located in the nuclear matrix,curcumin treatment altered its expression level and distribution profile.The colocalization of NPM with the products of apoptosis-related repression genes,including Bax,Bcl-2,mtP53 and Rb,using laser scanning confocal microscopy,were evaluated,and substantial differences were observed following curcumin treatment.The results implied that NPM is a nuclear matrix protein,and the level of its expression and the colocalization with apoptosis-related gene products may play an important role during the apoptosis of HaCaT cells.

  16. FGFR4 signaling couples to Bim and not Bmf to discriminate subsets of alveolar rhabdomyosarcoma cells.

    Science.gov (United States)

    Wachtel, Marco; Rakic, Jelena; Okoniewski, Michal; Bode, Peter; Niggli, Felix; Schäfer, Beat W

    2014-10-01

    Biological heterogeneity represents a major obstacle for cancer treatment. Therefore, characterization of treatment-relevant tumor heterogeneity is necessary to develop more effective therapies in the future. Here, we uncovered population heterogeneity among PAX/FOXO1-positive alveolar rhabdomyosarcoma by characterizing prosurvival networks initiated by FGFR4 signaling. We found that FGFR4 signaling rescues only subgroups of alveolar rhabdomyosarcoma cells from apoptosis induced by compounds targeting the IGF1R-PI3K-mTOR pathway. Differences in both proapoptotic machinery and FGFR4-activated signaling are involved in the different behavior of the phenotypes. Proapoptotic stress induced by the kinase inhibitors is sensed by Bim/Bad in rescue cells and by Bmf in nonrescue cells. Anti-apoptotic ERK1/2 signaling downstream of FGFR4 is long-lasting in rescue and short-termed in most non-rescue cells. Gene expression analysis detected signatures specific for these two groups also in biopsy samples. The different cell phenotypes are present in different ratios in alveolar rhabdomyosarcoma tumors and can be identified by AP2β expression levels. Hence, inhibiting FGFR signaling might represent an important strategy to enhance efficacy of current RMS treatments.

  17. Chronic Alcohol Ingestion in Rats Alters Lung Metabolism, Promotes Lipid Accumulation, and Impairs Alveolar Macrophage Functions

    Science.gov (United States)

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.

    2014-01-01

    Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and

  18. SIRT1 inhibits the mouse intestinal motility and epithelial proliferation

    Science.gov (United States)

    SIRT1 inhibits the mouse intestinal motility and epithelial proliferation. Sirtuin 1 (SIRT1), a NAD+-dependent histone deacetylase, is involved in a wide array of cellular processes, including glucose homeostasis, energy metabolism, proliferation and apoptosis, and immune response. However, it is un...

  19. Effects of heme oxygenase-1 on rat renal tubular epithelial cell apoptosis induced by albumin%血红素加氧酶1对白蛋白诱导肾小管上皮细胞凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    马瑨; 刘章锁; 王沛; 骆红

    2009-01-01

    目的 探讨血红素加氧酶1(HO-1)对白蛋白诱导肾小管上皮细胞凋亡的影响及其可能机制.方法 体外培养大鼠肾小管上皮细胞(NRK-52E)为正常对照.白蛋白对照组加去脂的小牛血清白蛋白(BSA)30 g/L共同培养.干预组先加钴卟啉(Cobalt protoporphyrinIX,CoPP,血红素加氧酶1诱导剂)5 μmol/L,0.5 h后再加入BSA 30 g/L,作用24 h.四甲基偶氮唑盐(MTT)比色法检测CoPP对BSA抑制NRK-52E细胞增殖的影响.细胞免疫荧光染色检测细胞凋亡率.RT-PCR法检测凋亡相关蛋白Bcl-2、Bax mRNA表达情况.结果 与正常对照组比较,BSA对细胞增殖具有抑制作用并诱导细胞凋亡,差异有统计学意义(P<0.05),而CoPP对BSA引起的细胞毒性作用具有保护作用(P<0.05);BSA对照组HO-1 mRNA表达增加(0.44±0.06比0.39±0.05,P<0.05),差异有统计学意义(P<0.05).CoPP预处理后,HO-1mRNA表达(0.50±0.06)较BSA对照组增加(P<0.05).BSA可上调Bax mRNA表达(0.87±0.04比0.67±0.03,P<0.05)及下调Bcl-2 mRNA的表达(0.25±0.04比0.42±0.02,P<0.05),当加入CoPP预处理后可抑制上述改变(Bax mRNA:0.75±0.07,Bcl-2 mRNA:0.36±0.03,均P<0.05).结论 BSA可显著增加细胞的凋亡率并直接调控凋亡相关蛋白mRNA的表达,CoPP可抑制上述BSA的作用.HO-1对BSA所致肾小管上皮细胞凋亡具有保护作用,可以抑制细胞凋亡.%Objective To investigate the influence of heme oxygenase-1 (HO-1) on rat renal tubular epithelial cell apoptosis induced by albumin and the possible mechanism. Methods The renal tubular epithelial cells (NRK-52E) were cultured in DMEM/F12 1:1 medium as normal control group; NRK-52E cells were cultured with 30 g/L fat-free bovine serum albumin (BSA) as the BSA control group; NRK-52E cells were cultured with CoPP (Cobalt pretoporphyrin Ⅸ) 5 μ mol/L for 24 hours as the treatment group. MTT assay was used to observe the effects of CoPP on growth inhibition induced by BSA in NRK-52E cells. The effect of CoPP was

  20. The inhititory effects of allicin on human lung epithelial cell apoptosis induced by porphyromonas gingivalis%大蒜素抑制牙龈卟啉单胞菌诱导人肺上皮细胞凋亡的作用

    Institute of Scientific and Technical Information of China (English)

    孟田甜; 李新

    2016-01-01

    Objective To investigate the influence of different concentrations of allicin in apoptosis of A549 cells induced by porphyromonas gingivalis (P.gingivalis). Methods The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of allicin in inhibiting P.gingivalis were investigated by broth dilution methods. The tetrazolium salts (MTT) assay was used to detect the viability of A549 cells infected by P.gingivalis and treated with different concentrations of allicin (64 mg/L, 96 mg/L and 128 mg/L). The flow cytometry FITC/PI staining was used to detect apoptotic rates of A549 cells treated by P.gingivalis and/or allicin for 24 h. Results The values of MIC and MBC of allicin for inhibiting P.gingivalis were 64 mg/L and 128 mg/L respectively. MTT assay showed that the cell viability was significantly increased with the increased concentration of allicin in a concentration-dependent manner (P P. gingivalis+allicin group>allicin group>control group with significant differences (PP.gingivalis+大蒜素组>大蒜素组>细胞对照组,差异有统计学意义(P<0.01),大蒜素对P.gingivalis感染后A549的凋亡有明显抑制作用。结论大蒜素可有效抑制P.gingivalis对肺上皮细胞的感染,对于治疗牙周炎合并肺部感染有良好的应用前景。

  1. Expression of osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, tumor necrosis factor-related apoptosis-inducing ligand, stromal cell-derived factor-1 and their receptors in epithelial metastatic breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Labovsky Vivian

    2012-06-01

    Full Text Available Abstract Background While breast cancer (BC is the major cause of death among women worldwide, there is no guarantee of better patient survival because many of these patients develop primarily metastases, despite efforts to detect it in its early stages. Bone metastasis is a common complication that occurs in 65-80 % of patients with disseminated disease, but the molecular basis underlying dormancy, dissemination and establishment of metastasis is not understood. Our objective has been to evaluate simultaneously osteoprotegerin (OPG, receptor activator of nuclear factor kappa B ligand (RANKL, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, stromal cell-derived factor-1 (SDF-1, and their receptors (R in 2 human BC cell lines, MDA-MB-231 and MCF-7. Methods OPG, RANKL, TRAIL and SDF-1 expression and release, in addition to the expression of their receptors has been investigated using immunofluorescence, immunocytochemistry and ELISA analyses. Results MCF-7 cells released higher levels of OPG in conditioned media (CM than MDA-MB-231 cells; 100 % of both types of cell expressed OPG, RANKL, TRAIL and SDF-1. Moreover, 100 % in both lines expressed membrane RANKL and RANK, whereas only 50 % expressed CXCR4. Furthermore, 100 % expressed TRAIL-R1 and R4, 30-50 % TRAIL-R2, and 40-55 % TRAIL-R3. Conclusions MCF-7 and MDA-MB-231 cells not only released OPG, but expressed RANKL, TRAIL and SDF-1. The majority of the cells also expressed RANK, CXCR4 and TRAIL-R. Since these ligands and their receptors are implicated in the regulation of proliferation, survival, migration and future bone metastasis during breast tumor progression, assessment of these molecules in tumor biopsies of BC patients could be useful in identifying patients with more aggressive tumors that are also at risk of bone metastasis, which may thus improve the available options for therapeutic intervention.

  2. Silver Nanoparticles in Alveolar Bone Surgery Devices

    Directory of Open Access Journals (Sweden)

    Stefano Sivolella

    2012-01-01

    Full Text Available Silver (Ag ions have well-known antimicrobial properties and have been applied as nanostrategies in many medical and surgical fields, including dentistry. The use of silver nanoparticles (Ag NPs may be an option for reducing bacterial adhesion to dental implant surfaces and preventing biofilm formation, containing the risk of peri-implant infections. Modifying the structure or surface of bone grafts and membranes with Ag NPs may also prevent the risk of contamination and infection that are common when alveolar bone augmentation techniques are used. On the other hand, Ag NPs have revealed some toxic effects on cells in vitro and in vivo in animal studies. In this setting, the aim of the present paper is to summarize the principle behind Ag NP-based devices and their clinical applications in alveolar bone and dental implant surgery.

  3. Pelvic alveolar rhabdomyosarcoma in a young adult

    Directory of Open Access Journals (Sweden)

    David Reisner, MD

    2014-01-01

    Full Text Available Rhabdomyosarcomas are soft-tissue tumors, rare in adults. Accounting for nearly 5% of childhood cancers, they represent less than 0.03% of adult malignancies (1, 2. Three different subtypes of rhabdomyosarcoma have been described (embryonal, alveolar and pleomorphic, making up approximately 50%, 30%, and 20% of the cases, respectively (3. Although the definitive diagnosis is made pathologically, some distinguishing features among these subtypes, and between rhabdomyosarcomas and other soft-tissue tumors, can be suggested on MRI and CT. We present an interesting case of a 20-year-old female with a locally aggressive pelvic alveolar rhabdomyosarcoma. While the prognosis has improved with newer treatment techniques, overall survival rates remain poor. Our case study presents typical features of a rare disease, which can often present a diagnostic dilemma for clinicians.

  4. Bmp2 and Bmp4 accelerate alveolar bone development.

    Science.gov (United States)

    Ou, Mingming; Zhao, Yibing; Zhang, Fangming; Huang, Xiaofeng

    2015-06-01

    Alveolar bone remodeling is a continuous process that takes place during development and in response to various physiological and pathological stimuli. However, detailed knowledge regarding the underlying mechanisms involved in alveolar bone development is still lacking. This study aims at improving our understanding of alveolar bone formation and the role of bone morphogenetic proteins (Bmps) in this process. Mice at embryonic (E) day 13.5 to postnatal (PN) day 15.5 were selected to observe the process of alveolar bone development. Alveolar bone development was found to be morphologically observable at E14.5. Molar teeth isolated from mice at PN7.5 were pretreated with Bmp2, Bmp4, Noggin, or BSA, and grafted subcutaneously into mice. The subcutaneously implanted tooth germs formed alveolar bone indicating the role of the dental follicle in alveolar bone development. Alveolar bone formation was increased after pretreatment with Bmp2 and Bmp4, but not with Noggin. Gene expression levels in dental follicle cells from murine molars were also determined by real-time RT-PCR. The expression levels of Runx2, Bsp, and Ocn were significantly higher in dental follicle cells cultured with Bmp2 or Bmp4, and significantly lower in those cultured with Noggin when compared with that of the BSA controls. Our results suggest that the dental follicle participates in alveolar bone formation and Bmp2/4 appears to accelerate alveolar bone development.

  5. Management of maxillary alveolar process fractures

    Directory of Open Access Journals (Sweden)

    Shukhrat Boymuradov

    2011-04-01

    Full Text Available Incidence of maxillofacial traumas is reported steadily increasing, maxillary fractures being extremely severe. Maxillary alveolar process (AP and front teeth are traumatized more frequently than any other parts of the maxilla. Deprivation of teeth and AP post-traumatic flaw as well as loss of alveolar height not only create a cosmetic defect but also complicate subsequent prosthetics of the patients. The work was initiated to assess efficacy of “CollapAn L” in comparison with a combination of “Osteon”, an osteoplastic material, and “Colla Guide” resorbable membrane in prevention of AP post-traumatic flaws and deformities. 60 patients aged from 16 to 47 with the comminuted fractures of maxillary AP emergently hospitalized were examined and treated. The findings showed that Combination of “Osteon” and “Colla Guide” resorbable membrane is the one to increase efficacy of the treatment, facilitating preservation of and alveolar crest height and shape. In addition, preservation of bone tissue mineralization helps avoid risk of the bone wound inflammatory morbidity.

  6. AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH

    Energy Technology Data Exchange (ETDEWEB)

    Liiv, Ingrid, E-mail: ingrid.liiv@ut.ee [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, Tartu (Estonia); Haljasorg, Uku; Kisand, Kai; Maslovskaja, Julia; Laan, Martti; Peterson, Paert [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, Tartu (Estonia)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer AIRE induces apoptosis in epithelial cells. Black-Right-Pointing-Pointer CARD domain of AIRE is sufficient for apoptosis induction. Black-Right-Pointing-Pointer AIRE induced apoptosis involves GAPDH translocation to the nuclei. Black-Right-Pointing-Pointer Deprenyl inhibits AIRE induced apoptosis. -- Abstract: AIRE (Autoimmune Regulator) has a central role in the transcriptional regulation of self-antigens in medullary thymic epithelial cells, which is necessary for negative selection of autoreactive T cells. Recent data have shown that AIRE can also induce apoptosis, which may be linked to cross-presentation of these self-antigens. Here we studied AIRE-induced apoptosis using AIRE over-expression in a thymic epithelial cell line as well as doxycycline-inducible HEK293 cells. We show that the HSR/CARD domain in AIRE together with a nuclear localization signal is sufficient to induce apoptosis. In the nuclei of AIRE-positive cells, we also found an increased accumulation of a glycolytic enzyme, glyceraldehyde-3-phosphate (GAPDH) reflecting cellular stress and apoptosis. Additionally, AIRE-induced apoptosis was inhibited with an anti-apoptotic agent deprenyl that blocks GAPDH nitrosylation and nuclear translocation. We propose that the AIRE-induced apoptosis pathway is associated with GAPDH nuclear translocation and induction of NO-induced cellular stress in AIRE-expressing cells.

  7. 非瑟酮对人晶状体上皮细胞增殖和凋亡的影响%Effects of fisetin on proliferation and apoptosis of human lens epithelial cells

    Institute of Scientific and Technical Information of China (English)

    徐曼华; 李开明; 康刚劲

    2014-01-01

    目的 研究非瑟酮(fisetin,Fis)在生理状态下及氧化应激状态下对人晶状体上皮细胞(human lens epithelial cell,HLEC)增殖和凋亡的影响.方法 体外培养HLEC,通过H2O2氧化损伤建立氧化应激模型,设置空白对照组、H2O2组、Fis组和Fis+ H2O2组,其中Fis组和Fis+ H2 O2组按Fis浓度(5μg·mL-1、10 μg· mL-1和20 μg·mL-1)分为3个亚组.分别于培养12h及24 h后,倒置相差显微镜下观察各组细胞的形态学改变,运用MTT法检测细胞增殖的变化,运用流式细胞技术检测细胞凋亡率的变化.结果 与空白对照组比较,H2O2组较多细胞出现典型的形态学改变,细胞增殖能力明显降低(12 h、24 h后分别为0.117 6±0.015 0和0.117 2±0.006 1),凋亡率明显增加(24 h后为12.35%±1.23%),差异均有统计学意义(均为P<O.01).不同浓度Fis组间的细胞在培养12 h及24 h后细胞形态均无明显改变,细胞增殖也无明显变化(P>0.05).培养12及24 h后,与H2O2组比较,Fis+H2O2组发生形态改变的细胞减少,细胞增殖能力明显改善,且随时间、Fis浓度增加其作用更明显(最高为0.399 4±0.025 7)(P<0.05).培养24 h后,与H2O,组凋亡率比较,不同浓度Fis+H2O2组的细胞凋亡率逐渐降低,依次为(9.99±1.53)%、(5.80±1.55)%、(3.58±0.73)%,差异有统计学意义(P<0.05).结论 一定浓度的Fis在一定时段对生理状态下的HLEC增殖无明显影响.在氧化应激状态下,Fis呈时间和浓度依赖性地改善HLEC增殖能力,呈浓度依赖性地降低HLEC凋亡率.

  8. Inferior alveolar nerve injuries associated with mandibular fractures.

    Science.gov (United States)

    Bede, Salwan Yousif Hanna; Ismael, Waleed Khaleel; Al-Assaf, Dhuha A; Omer, Saad Salem

    2012-11-01

    The study evaluates the incidence of inferior alveolar nerve injuries in mandibular fractures, the duration of their recovery, and the factors associated with them. Fifty-two patients with mandibular fractures involving the ramus, angle, and body regions were included in this study; the inferior alveolar nerve was examined for neurological deficit posttraumatically using sharp/blunt differentiation method, and during the follow-up period the progression of neural recovery was assessed. The incidence of neural injury of the inferior alveolar nerve was 42.3%, comminuted and displaced linear fractures were associated with higher incidence of inferior alveolar nerve injury and prolonged recovery time, and recovery of inferior alveolar nerve function occurred in 91%.Fractures of the mandible involving the ramus, angle, and body regions, and comminuted and displaced linear fractures are factors that increase the incidence of inferior alveolar nerve injuries. Missile injuries can be considered as another risk factor.

  9. Epithelial nuclear factor-κB signaling promotes lung carcinogenesis via recruitment of regulatory T lymphocytes.

    Science.gov (United States)

    Zaynagetdinov, R; Stathopoulos, G T; Sherrill, T P; Cheng, D-S; McLoed, A G; Ausborn, J A; Polosukhin, V V; Connelly, L; Zhou, W; Fingleton, B; Peebles, R S; Prince, L S; Yull, F E; Blackwell, T S

    2012-06-28

    The mechanisms by which chronic inflammatory lung diseases, particularly chronic obstructive pulmonary disease, confer enhanced risk for lung cancer are not well-defined. To investigate whether nuclear factor (NF)-κB, a key mediator of immune and inflammatory responses, provides an interface between persistent lung inflammation and carcinogenesis, we utilized tetracycline-inducible transgenic mice expressing constitutively active IκB kinase β in airway epithelium (IKTA (IKKβ trans-activated) mice). Intraperitoneal injection of ethyl carbamate (urethane), or 3-methylcholanthrene (MCA) and butylated hydroxytoluene (BHT) was used to induce lung tumorigenesis. Doxycycline-treated IKTA mice developed chronic airway inflammation and markedly increased numbers of lung tumors in response to urethane, even when transgene expression (and therefore epithelial NF-κB activation) was begun after exposure to carcinogen. Studies using a separate tumor initiator/promoter model (MCA+BHT) indicated that NF-κB functions as an independent tumor promoter. Enhanced tumor formation in IKTA mice was preceded by increased proliferation and reduced apoptosis of alveolar epithelium, resulting in increased formation of premalignant lesions. Investigation of inflammatory cells in lungs of IKTA mice revealed a substantial increase in macrophages and lymphocytes, including functional CD4+/CD25+/FoxP3+ regulatory T lymphocytes (Tregs). Importantly, Treg depletion using repetitive injections of anti-CD25 antibodies limited excessive tumor formation in IKTA mice. At 6 weeks following urethane injection, antibody-mediated Treg depletion in IKTA mice reduced the number of premalignant lesions in the lungs in association with an increase in CD8 lymphocytes. Thus, persistent NF-κB signaling in airway epithelium facilitates carcinogenesis by sculpting the immune/inflammatory environment in the lungs.

  10. Apoptosis in rat gastric antrum: Evidence that regulation by food intake depends on nitric oxide synthase

    DEFF Research Database (Denmark)

    Cao, Bao-Hong; Mortensen, Kirsten; Tornehave, Ditte;

    2000-01-01

    The turnover of the epithelium of the gastrointestinal tract is regulated by a balance between cell multiplication and cell loss. We examined the effects of starvation on apoptosis in endocrine and other epithelial cells of rat antropyloric mucosa. Apoptosis was determined by the TUNEL reaction...

  11. The role of synthetic biomaterials in resorptive alveolar bone regeneration

    OpenAIRE

    2007-01-01

    The alveolar bone tissue resorption defect has a significant role in dentistry. Because of the bone tissue deficit developed by alveolar resorption, the use of synthetic material CP/PLGA (calcium-phosphate/polylactide-co-gliycolide) composite was introduced. Investigations were performed on rats with artificially produced resorption of the mandibular bone. The results show that the best effect on alveolar bone were attained by using nano-composite implants. The effect of the nanocomposite was...

  12. p172: An alveolar type II and Clara cell specific protein with late developmental expression and upregulation by hyperoxic lung injury.

    Science.gov (United States)

    Girod, C E; Shin, D H; Hershenson, M B; Solway, J; Dahl, R; Miller, Y E

    1996-06-01

    The epithelium of the alveolus and distal airway meets unique requirements, functioning as a gas exchange membrane and barrier to alveolar flooding by vascular contents as well as to bloodstream contamination by airborne toxins and pathogens. Gene products specifically expressed by this epithelium, notably the surfactant apoproteins, have had important clinical application. No cell surface antigen specific for alveolar type II and Clara cells has been described. We report the biochemical characterization, tissue and developmental expression, and upregulation by injury of a 172 kD protein recognized by a monoclonal antibody, 3F9, synthesized in response to immunization with freshly isolated rat alveolar type II cells. p172 is expressed in a polarized fashion by the apical surface of rat alveolar type II and Clara cells. An immunohistochemical survey of various rat tissues and organs reveals lung specificity. p172 is first detectable in rare epithelial cells at 19 days of gestation, a time when the fully differentiated alveolar type II cell is identified by the first detection of lamellar bodies. There is a dramatic increase in p172 expression just prior to birth. Hyperoxic lung injury results in increased expression of p172. The upregulation of p172 by hyperoxia and its cell-specific expression suggests an important adaptive function.

  13. Vascularization of the gray whale palate (Cetacea, Mysticeti, Eschrichtius robustus): soft tissue evidence for an alveolar source of blood to baleen.

    Science.gov (United States)

    Ekdale, Eric G; Deméré, Thomas A; Berta, Annalisa

    2015-04-01

    The origin of baleen in mysticetes heralded a major transition during cetacean evolution. Extant mysticetes are edentulous in adulthood, but rudimentary teeth develop in utero within open maxillary and mandibular alveolar grooves. The teeth are resorbed prenatally and the alveolar grooves close as baleen germ develops. Arteries supplying blood to highly vascularized epithelial tissue from which baleen develops pass through lateral nutrient foramina in the area of the embryonic alveolar grooves and rudimentary teeth. Those vessels are hypothesized to be branches of the superior alveolar artery, but branches of the greater palatine arteries may play a role in the baleen vascularization. Through a combination of latex injection, CT, and traditional dissection of the palate of a neonatal gray whale (Eschrichtius robustus), we confirm that the baleen receives blood from vessels within the superior alveolar canal via the lateral foramina. The greater palatine artery is restricted to its own passage with no connections to the baleen. This study has implications for the presence of baleen in extinct taxa by identifying the vessels and bony canals that supply blood to the epithelium from which baleen develops. The results indicate that the lateral foramina in edentulous mysticete fossils are bony correlates for the presence of baleen, and the results can be used to help identify bony canals and foramina that have been used to reconstruct baleen in extinct mysticetes that retained teeth in adulthood. Further comparisons are made with mammals that also possess oral keratin structures, including ruminants, ornithorhynchid monotremes, and sirenians.

  14. Adhesion, invasion and intracellular growth ability of Legionella dumoffii in alveolar epithelial cells%杜莫氏军团菌对上皮细胞A549粘附侵袭和胞内生长能力的研究

    Institute of Scientific and Technical Information of China (English)

    秦天; 任红宇; 朱兵清; 邵祝军

    2011-01-01

    目的 探明杜莫氏军团菌(Legionella dumoffii, L. dumoffii) 对上皮细胞A549的粘附、侵袭和胞内生长能力.方法 实验使用菌株为L. dumoffii TEX-KL(ATCC 33343) 、 L. dumoffii NY23(ATCC 33279)和嗜肺军团菌L. pneumophila philadelphila-1(ATCC 33155).配制1×108菌悬液,将其以100MOI(Multiplicity of Infection)的比例与肺泡上皮细胞A549相互作用.通过吉曼尼兹染色和菌落计数的方法,测定菌株的粘附、侵袭和胞内生长能力.结果 杜莫氏军团菌L. dumoffii TEX-KL、L. dumoffii NY23和嗜肺军团菌L. pneumophila philadelphila-1三株细菌在体外生长能力和体内对A549细胞的粘附能力方面无明显差别.L. dumoffii TEX-KL侵袭进入细胞内的菌数是其他两株菌的1 000倍,差异有统计学意义.结论 L. dumoffii TEX-KL与L. dumoffii NY23和嗜肺军团菌L. pneumophila philadelphila-1相比,对A549细胞具有更高的侵袭力,因此也具有较高的上皮细胞内生长能力.%In this study, the L. dumoffii TEX-KL (ATCC 33343), L. dumoffii NY23 (ATCC 33279) and L. pneumophila philadelphila-1(ATCC 33155) strains were used to explore the adhesion, invasion and intracellular growth ability in the epithelial cells. Approximately 1 × 108 bacteria were pelleted, resuspended, and diluted (1: 10) in RPMI 1640 tissue culture medium. The bacteria were then added to A549 cells (1 × 105 per well) in 24-well dishes togive a multiplicity of infection (MOI) of about 100. The Gimenez staining and colony counting methods were used for the determination of the strain adhesion, invasion and intracellular growth ability. It was found that in vitro growth ability of L. pneumophila philadelphila-1, L.dumoffii TEX-KL and L. dumoffii NY23 strains had no significant difference. In vivo assay, there was also no significant dif ference in adhesion ability of these strains. However, the CFU counts of L. dumoffii TEX-KL strain invaded into A549 cells was 1000 times higher than that of the other two

  15. TGFβ signaling in lung epithelium regulates bleomycin-induced alveolar injury and fibroblast recruitment.

    Science.gov (United States)

    Degryse, Amber L; Tanjore, Harikrishna; Xu, Xiaochuan C; Polosukhin, Vasiliy V; Jones, Brittany R; Boomershine, Chad S; Ortiz, Camila; Sherrill, Taylor P; McMahon, Frank B; Gleaves, Linda A; Blackwell, Timothy S; Lawson, William E

    2011-06-01

    The response of alveolar epithelial cells (AECs) to lung injury plays a central role in the pathogenesis of pulmonary fibrosis, but the mechanisms by which AECs regulate fibrotic processes are not well defined. We aimed to elucidate how transforming growth factor-β (TGFβ) signaling in lung epithelium impacts lung fibrosis in the intratracheal bleomycin model. Mice with selective deficiency of TGFβ receptor 2 (TGFβR2) in lung epithelium were generated and crossed to cell fate reporter mice that express β-galactosidase (β-gal) in cells of lung epithelial lineage. Mice were given intratracheal bleomycin (0.08 U), and the following parameters were assessed: AEC death by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay, inflammation by total and differential cell counts from bronchoalveolar lavage, fibrosis by scoring of trichrome-stained lung sections, and total lung collagen content. Mice with lung epithelial deficiency of TGFβR2 had improved AEC survival, despite greater lung inflammation, after bleomycin administration. At 3 wk after bleomycin administration, mice with epithelial TGFβR2 deficiency showed a significantly attenuated fibrotic response in the lungs, as determined by semiquantitatve scoring and total collagen content. The reduction in lung fibrosis in these mice was associated with a marked decrease in the lung fibroblast population, both total lung fibroblasts and epithelial-to-mesenchymal transition-derived (S100A4(+)/β-gal(+)) fibroblasts. Attenuation of TGFβ signaling in lung epithelium provides protection from bleomycin-induced fibrosis, indicating a critical role for the epithelium in transducing the profibrotic effects of this cytokine.

  16. Fibrinolytic Regulation of Pulmonary Epithelial Sodium Channels: a Critical Review

    OpenAIRE

    Ji, Hong-Long

    2015-01-01

    Luminal fluid homeostasis in the respiratory system is crucial to maintain the gas-\\ud blood exchange in normal lungs and mucociliary clearance in the airways. Epithelial\\ud sodium channels (ENaC) govern ~70% of alveolar fluid clearance. Four ENaC subunits\\ud have been cloned, namely, α, β, γ, and δ ENaC subunits in mammalian cells. This\\ud critical review focuses on the expression and function of ENaC in human and murine\\ud lungs, and the post-translational regulation by fibrinolysins. Nebul...

  17. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus.

    Science.gov (United States)

    Qian, Zhaohui; Travanty, Emily A; Oko, Lauren; Edeen, Karen; Berglund, Andrew; Wang, Jieru; Ito, Yoko; Holmes, Kathryn V; Mason, Robert J

    2013-06-01

    Severe acute respiratory syndrome (SARS)-coronavirus (CoV) produces a devastating primary viral pneumonia with diffuse alveolar damage and a marked increase in circulating cytokines. One of the major cell types to be infected is the alveolar type II cell. However, the innate immune response of primary human alveolar epithelial cells infected with SARS-CoV has not been defined. Our objectives included developing a culture system permissive for SARS-CoV infection in primary human type II cells and defining their innate immune response. Culturing primary human alveolar type II cells at an air-liquid interface (A/L) improved their differentiation and greatly increased their susceptibility to infection, allowing us to define their primary interferon and chemokine responses. Viral antigens were detected in the cytoplasm of infected type II cells, electron micrographs demonstrated secretory vesicles filled with virions, virus RNA concentrations increased with time, and infectious virions were released by exocytosis from the apical surface of polarized type II cells. A marked increase was evident in the mRNA concentrations of interferon-β and interferon-λ (IL-29) and in a large number of proinflammatory cytokines and chemokines. A surprising finding involved the variability of expression of angiotensin-converting enzyme-2, the SARS-CoV receptor, in type II cells from different donors. In conclusion, the cultivation of alveolar type II cells at an air-liquid interface provides primary cultures in which to study the pulmonary innate immune responses to infection with SARS-CoV, and to explore possible therapeutic approaches to modulating these innate immune responses.

  18. Changes in liquid clearance of alveolar epithelium after oleic acid-induced acute lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    陶军; 杨天德; 陈祥瑞; 黄河

    2004-01-01

    Objective:Impaired active fluid transport of alveolar epithelium may involve in the pathogenesis and resolution of alveolar edema. Thc objective of this study was to explore the changes in alveolar epithelial liquid clearance during lung edema following acute lung injury induced by oleic acid. Methods:Forty-eight Wistar rats were randomly divided into six groups, I.e. , injured, amiloride, ouabain, amiloride plus ouabain and terbutaline groups. Twenty- four hours after the induction of acute lung injury by intravenous oleic acid (0.25 ml/kg), 5% albumin solution with 1.5 μCi 125Ⅰ-labeled albumin (5 ml/kg) was delivered into both lungs via trachea. Alveolar liquid clearance (ALC), extravascular lung water ( EVLW ) content and arterial blood gases were measured one hour thereafter.Results: At 24 h after the infusion of oleic acid, the rats developed pulmonary edema and severe hypoxemia, with EVLW increased by 47.9% and ALC decreased by 49.2%. Addition of either 2 × 10-3 M amiloride or 5 × 10-4 M ouabain to the instillation further reduced ALC and increased EVLW. ALC increased by approximately 63.7% and EVLW decreased by 46.9% with improved hypoxemia in the Terbutaline (10-4 M) group, compared those in injured rats. A significant negative correlation was found between the increment of EVLW and the reduction of ALC. Onclusions:Active fluid transport of alveolar epithelium might play a role in the pathogenesis of lung edema in acute lung injury.

  19. ING1 induces apoptosis through direct effects at the mitochondria

    DEFF Research Database (Denmark)

    Bose, P; Thakur, S; Thalappilly, S;

    2013-01-01

    The ING family of tumor suppressors acts as readers and writers of the histone epigenetic code, affecting DNA repair, chromatin remodeling, cellular senescence, cell cycle regulation and apoptosis. The best characterized member of the ING family, ING1,interacts with the proliferating cell nuclear...... translocates to the mitochondria of primary fibroblasts and established epithelial cell lines in response to apoptosis inducing stimuli, independent of the cellular p53 status. The ability of ING1 to induce apoptosis in various breast cancer cell lines correlates well with its degree of translocation...

  20. 重组HBHA蛋白对肺泡Ⅱ型上皮细胞细胞因子分泌的影响%Effect of recombinant heparin-binding hemagglutinin adhesion protein on secretion of cytokines in human alveolar type Ⅱ epithelial cells

    Institute of Scientific and Technical Information of China (English)

    张倩; 马越云; 朱琳; 刁艳君; 苏明权; 郝晓柯

    2012-01-01

    Objective To explore the influence of dihydroartemisin( DHA ) on the activity of Caspase-3 and the growth of human ovarian cancer cell line HO-8910 transplanted tumor under the skin of nude mice. Methods The transplanted human ovarian carcinoma model was established by the subcutaneous injection of HO-8910 cells under the skin of nude mice,and then the mice were randomly divided into low dose group of DHA, high dose group of DHA, saline group, DDP positive control group. The nude mice were weighed before and after taking medicine, and the curves of weight was made. The mice in DDP group were continuously intraperitoneally injected with DDP for 10 d,and were gavaged for 10 d in the other three groups. The nude mice were killed 24 h after the last medication. The transplanted tumor was weighed and the inhibitive rate was calculated. Immunohistochemistry method was used to detect the positive rate of Caspase-3. Results The inhibitive rates in low and high dose groups and DDP group were 30. 00% ,48. 03% , and 60. 06% , respectively. The tumor weight were significantly different among 4 groups( P < 0. 05 ), and significantly lower in low dose group than those in high dose group and DDP group( P <0. 008 3 ). Immunohistochemistry results showed that the positive rates of Caspase-3 in saline group,low and high dose groups and DDP group were 18%, 29%, 73% and 80%, respectively. There was statistical difference in expression of Caspase-3 between four groups except between high dose group and DDP group. Conclusion Dihydroartemisin can inhibit the growth of tumor in human ovarian cancer cell line Ho-8910 transplanted nude mice through activating the Caspase-3 activity and inducing the cell apoptosis.%目的 研究重组HBHA蛋白对肺泡Ⅱ型上皮细胞分泌细胞因子的影响.方法 原核表达并纯化重组HBHA,N端缺失HBHA(HBHA-ΔN)、C端缺失HBHA(HBHA-ΔC)三种蛋白,用以刺激A549细胞,并设置阴性对照,观察A549细胞分泌

  1. Protein kinase D is increased and activated in lung epithelial cells and macrophages in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Gan, Huachen; McKenzie, Raymond; Hao, Qin; Idell, Steven; Tang, Hua

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. Hence, there is a profound need for the identification of novel drugable targets to develop more specific and efficacious therapeutic intervention in IPF. In this study, we performed immunohistochemical analyses to assess the cell type-specific expression and activation of protein kinase D (PKD) family kinases in normal and IPF lung tissue sections. We also analyzed PKD activation and function in human lung epithelial cells. We found that PKD family kinases (PKD1, PKD2 and PKD3) were increased and activated in the hyperplastic and regenerative alveolar epithelial cells lining remodeled fibrotic alveolar septa and/or fibroblast foci in IPF lungs compared with normal controls. We also found that PKD family kinases were increased and activated in alveolar macrophages, bronchiolar epithelium, and honeycomb cysts in IPF lungs. Interestingly, PKD1 was highly expressed and activated in the cilia of IPF bronchiolar epithelial cells, while PKD2 and PKD3 were expressed in the cell cytoplasm and nuclei. In contrast, PKD family kinases were not apparently increased and activated in IPF fibroblasts or myofibroblasts. We lastly found that PKD was predominantly activated by poly-L-arginine, lysophosphatidic acid and thrombin in human lung epithelial cells and that PKD promoted epithelial barrier dysfunction. These findings suggest that PKD may participate in the pathogenesis of IPF and may be a novel target for therapeutic intervention in this disease.

  2. PERFORATION OF INFERIOR ALVEOLAR NERVE BY MAXILLARY ARTERY. LA PERFORACION DEL NERVIO ALVEOLAR INFERIOR POR LA ARTERIA MAXILAR

    OpenAIRE

    Vanishree S Nayak; Ramachandra Bhat K; Prakash Billakanti Babu

    2011-01-01

    Infratemporal fossa is clinically important anatomical area for the delivery of local anesthetic agents in dentistry and maxillofacial surgery. Variations in the anatomy of the inferior alveolar nerve and maxillary artery were studied in infratemporal dissection. During routine dissection of the head in an adult male cadaver an unusual variation in the origin of the inferior alveolar nerve and its relationship with the surrounding structures was observed. The inferior alveolar nerve originate...

  3. In vitro induction of human bone marrow mesenchymal stem cells to differentiate into type Ⅱalveolar epithelial cells%体外诱导人骨髓间充质干细胞向Ⅱ型肺泡上皮细胞分化

    Institute of Scientific and Technical Information of China (English)

    陈寅; 马南; 梅举; 肖海波; 陆善伟; 徐怀阳; 钟竑

    2012-01-01

    背景:Ⅱ型肺泡上皮细胞被证明在大鼠肺纤维化模型中直接参与肺的修复并可以减轻肺纤维化的程度.胚胎干细胞可以在体外诱导分化Ⅱ型肺泡上皮细胞,但是其应用受到多方面的限制.目的:探讨体外诱导骨髓间充质干细胞为Ⅱ型肺泡上皮细胞的方法及转化率.方法:取人胸骨骨髓细胞,体外分离培养骨髓间充质干细胞.采用无血清小气道生长液和改良无血清小气道生长液作为培养液,将骨髓间充质干细胞与人胚肺间质细胞共培养.观察骨髓间充质干细胞形态并用反转录PCR 检测表面活性蛋白C 的mRNA 以及免疫荧光检测表面活性蛋白C 表达.结果与结论:骨髓间充质干细胞与人胚肺间质细胞共培养10 d 后开始出现部分骨髓间充质干细胞由原先的长梭形变成和上皮细胞相似的形态.15d 后开始检测到表面活性蛋白C mRNA,但未随共培养时间延长而有所增加.改良无血清小气道生长液与无血清小气道生长液相比能增加表面活性蛋白C mRNA 表达(P < 0.05).说明采用无血清小气道生长液或改良无血清小气道生长液,并与胚肺间质细胞共培养可以将骨髓间充质干细胞在体外诱导分化为Ⅱ型肺泡上皮细胞,但其转化率较低,表面活性蛋白C 的阳性率仅为(3.15±0.69)%.%BACKGROUND: Al veolar epithelial type Ⅱ (AT Ⅱ) has been demonstrated to directly participate in liver recovery and can also alleviate the severity of pulmonary fibrosis in a rat model of pulmonary fibrosis. Embryonic stem cells (ESCs) can differentiate into AT Ⅱ in vitro, but the application of ESCs is confined by many factors. OBJECTIVE: To investigate the method and transformation rate of bone marrow mesenchymalstem cells (BMSCs) differentiation into AT Ⅱ. METHODS: The BMSCs were isolated from human bone marrow cells. BMSCs were co-cultured with human embryonic lung mesenchymal cells (MRC-5) in serum-free small ai rway

  4. Recent advances in alveolar biology: Evolution and function of alveolar proteins

    NARCIS (Netherlands)

    Orgeig, S.; Hiemstra, P.S.; Veldhuizen, E.J.A.; Casals, C.; Clark, H.W.; Hackzu, A.; Knudsen, L.; Possmayer, F.

    2010-01-01

    This review is focused on the evolution and function of alveolar proteins. The lung faces physical and environmental challenges, due to changing pressures/volumes and foreign pathogens, respectively. The pulmonary surfactant system is integral in protecting the lung from these challenges via two gro

  5. Segment distraction to reduce a wide alveolar cleft before alveolar bone grafting.

    NARCIS (Netherlands)

    Binger, T.; Katsaros, C.; Rucker, M.; Spitzer, W.J.

    2003-01-01

    OBJECTIVE: To demonstrate a method for reduction of wide alveolar clefts prior to bone grafting. This method aims to facilitate bone grafting and achieve adequate soft tissue coverage of the graft with attached gingiva. CASE REPORT: Treatment of a patient with bilateral cleft lip and palate with a s

  6. 3D-CT evaluation of secondary alveolar bone grafts in alveolar clefts

    Energy Technology Data Exchange (ETDEWEB)

    Naitoh, Hiroshi; Nishimura, Yoshihiko [Kyoto Univ. (Japan). Graduate School of Medicine; Yamawaki, Yoshiroh [Kyoto Katsura Hospital (Japan); Morimoto, Naoki [Kobe City General Hospital (Japan)

    2002-07-01

    From 1994 to 2000, we treated 116 patients with cleft alveolus by secondary alveolar bone grafts, and 48 of them were evaluated morphologically with 3D-CT. The frequency of successful bony bridging was significantly higher in the group whose grafts were completely enveloped (including the anterior alveolar ridge) with a mucoperiosteal flap. The frequency was also significantly higher in the group who underwent bone grafts at the age of 13 or less, and canine eruptions did not influence the ratio. Some cases showed such an improved growth pattern of grafted bone that the shape of the affected maxilla resembled that of the normal side, after long-term follow-up observations. The growth increment was remarkable in anterior maxillary height. Orthodontic management guides the canine or incisor into the reconstructed area of the previous cleft. We surmise that the new occlusal position puts pressure on the grafted bone and promotes further osteogenesis. These findings show that it is important to produce sufficient bony bridge to guide the canine or incisor, not the volume of grafted bone, in secondary alveolar bone grafts. Long-term follow-up observation, after more than 2-3 years, is also necessary to evaluate secondary alveolar bone grafts. (author)

  7. Decompression of inferior alveolar nerve: case report.

    Science.gov (United States)

    Marques, Tiago Miguel Santos; Gomes, Joana Marques

    2011-01-01

    Paresthesia as a result of mechanical trauma is one of the most frequent sensory disturbances of the inferior alveolar nerve. This case report describes surgical treatment for paresthesia caused by a compressive phenomenon within the mandibular canal. The cause of the compression, a broken instrument left in the patient's mouth during previous endodontic therapy, was identified during routine radiography and computed tomography. Once the foreign object was removed by surgery, the paresthesia resolved quickly. This case highlights the potential for an iatrogenic mechanical cause of paresthesia.

  8. Apoptosis in skeletal muscle and its relevance to atrophy

    Institute of Scientific and Technical Information of China (English)

    Esther E Dupont-Versteegden

    2006-01-01

    Apoptosis is necessary for maintaining the integrity of proliferative tissues, such as epithelial cells of the gastrointestinal system. The role of apoptosis in post mitotic tissues, such as skeletal muscle, is less well defined. Apoptosis during muscle atrophy occurs in both myonuclei and other muscle cell types. Apoptosis of myonuclei likely contributes to the loss of muscle mass, but the mechanisms underlying this process are largely unknown. Caspase-dependent as well as -independent pathways have been implicated and the mode by which atrophy is induced likely determines the apoptotic mechanisms that are utilized. It remains to be determined whether a decrease in apoptosis will alleviate atrophy and distinct research strategies may be required for different causes of skeletal muscle loss.

  9. Nostril Base Augmentation Effect of Alveolar Bone Graft

    Directory of Open Access Journals (Sweden)

    Woojin Lee

    2013-09-01

    Full Text Available Background The aims of alveolar bone grafting are closure of the fistula, stabilization ofthe maxillary arch, support for the roots of the teeth adjacent to the cleft on each side.We observed nostril base augmentation in patients with alveolar clefts after alveolar bonegrafting. The purpose of this study was to evaluate the nostril base augmentation effect ofsecondary alveolar bone grafting in patients with unilateral alveolar cleft.Methods Records of 15 children with alveolar clefts who underwent secondary alveolar bonegrafting with autogenous iliac cancellous bone between March of 2011 and May of 2012 werereviewed. Preoperative and postoperative worm’s-eye view photographs and reconstructedthree-dimensional computed tomography (CT scans were used for photogrammetry. Thedepression of the nostril base and thickness of the philtrum on the cleft side were measuredin comparison to the normal side. The depression of the cleft side pyriform aperture wasmeasured in comparison to the normal side on reconstructed three-dimensional CT.Results Significant changes were seen in the nostril base (P=0.005, the philtrum length(P=0.013, and the angle (P=0.006. The CT measurements showed significant changes in thepyriform aperture (P<0.001 and the angle (P<0.001.Conclusions An alveolar bone graft not only fills the gap in the alveolar process but alsoaugments the nostril base after surgery. In this study, only an alveolar bone graft was performedto prevent bias from other procedures. Nostril base augmentation can be achieved byperforming alveolar bone grafts in children, in whom invasive methods are not advised.

  10. Pulmonary administration of 1,25-dihydroxyvitamin D3 to the lungs induces alveolar regeneration in a mouse model of chronic obstructive pulmonary disease.

    Science.gov (United States)

    Horiguchi, Michiko; Hirokawa, Mai; Abe, Kaori; Kumagai, Harumi; Yamashita, Chikamasa

    2016-07-10

    Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disease with several causes, including smoking, and no curative therapeutic agent is available, particularly for destructive alveolar lesions. In this study, we investigated the differentiation-inducing effect on undifferentiated lung cells (Calu-6) and the alveolar regenerative effect of the active vitamin 1,25-dihydroxy vitamin D3 (VD3) with the ultimate goal of developing a novel curative drug for COPD. First, the differentiation-inducing effect of VD3 on Calu-6 cells was evaluated. Treatment with VD3 increased the proportions of type I alveolar epithelial (AT-I) and type II alveolar epithelial (AT-II) cells constituting alveoli in a concentration- and treatment time-dependent manner, demonstrating the potent differentiation-inducing activity of VD3 on Calu-6 cells. We thus administered VD3 topically to the mice lung using a previously developed intrapulmonary administration via self-inhalation method. To evaluate the alveolus-repairing effect of VD3, we administered VD3 intrapulmonarily to elastase-induced COPD model mice and computed the mean distance between the alveolar walls as an index of the extent of alveolar injury. Results showed significant decreases in the alveolar wall distance in groups of mice that received 0.01, 0.1, and 1μg/kg of intrapulmonary VD3, revealing excellent alveolus-regenerating effect of VD3. Furthermore, we evaluated the effect of VD3 on improving respiratory function using a respiratory function analyzer. Lung elasticity and respiratory competence [forced expiratory volume (FEV) 1 s %] are reduced in COPD, reflecting advanced emphysematous changes. In elastase-induced COPD model mice, although lung elasticity and respiratory competence were reduced, VD3 administered intrapulmonarily twice weekly for 2weeks recovered tissue elastance and forced expiratory volume in 0.05s to the forced vital capacity, which are indicators of lung elasticity and respiratory

  11. 降钙素基因相关肽调控细胞外信号调节激酶减轻高体积分数氧对胎鼠肺泡Ⅱ型上皮细胞的损伤作用%Damage - Reduced Effects of Calcitonin Gene - Related Peptide on Hyperoxia - Exposed Type Ⅱ Alveolar Epithelial Cell Mediated by Extracellular Signal -Regulated Kinase

    Institute of Scientific and Technical Information of China (English)

    付红敏; 李利; 汤春辉; 皇甫春荣; 米弘瑛; 李献珍; 方芳; 许峰

    2012-01-01

    Objective To explore the effects of calcitonin gene - related peptide( CGRF) on type II alveolar epithelial cell( AEC II ) exposed to hyperoxia and whether the mechanism is mediated by extracellular signal - regulated kinase ( ERK) pathway. Methods AEC II were isolated from 21 d fetal rat lung and grew for 12 h to attach. Then AEC II were randomly divided into six groups;air group,CGRP/air group,CGRP8 -37/air group,hyperoxia group,CGRP/O2 and CGRP8 - 37/O2 group. Air or hyperoxia environment was achieved by exposing AEC1I into 210 mL · L-1oxygen or 850 mL · L-1 oxygen for 18 h. CGRP group or CGRP8 - 37 group was carried out by adding 10-1 mol · L-1 CGRP or both CGRP and CGRP8 -37(10-1 mol · L-1) ,a receptor antagonist against CGRP,into medium before cultured in air or 850 mL · I-1 oxygen. Lactate dehydrogenase (LDH) ,alkaline phosphatase (AKP) and malondialdehyde (MDA) were measured by immune tur-bidimetry and reactive oxygen species( ROS) by flow cytometry. Immunofluorescence microscopy was used to analyze the expression of surfactant protein C( SP - C) and Western blot was taken to detect the content of p - ERK1/2. Results The levels of MDA,LDH,AKP,ROS and p-ERKl/2 were markedly increased in hyperoxia group than those in air group [(2. 29 ±0.10) μmol · L-1 vs (1.06±0.14) μmol · L-1, (58.79 ±5.01) U ·L-1 vs (25.92 ±3.68) U · L-1,(24.63 ±2.92) U · L-1 vs (10. 34 ±1.78) U · L-1,47.74 ±3.35 vs 25.96 ±5.04, 1.21 ±0.06 vs 0.45 ±0.05 ,P, <0.01] .whereas expression of SP -C was decreased in hyperoxia group compared with air group (22.75 ±3.31 vs 43. 50 ± 4.42 ). Levels of MDA, LDH, AKP and ROS were reduced with an elevated expression of p - ERK1 /2 and SP - C in CGRP/O2 group compared with those in hyperoxia group and CGRP8 - 37/O2 group (Pa < 0. 01). There were no significant differences about the levels of MDA,LDH,AKP,ROS and SP- C among three groups cultured in air condition. The expression of p - ERK1/2 in CGRP/air group was also higher than

  12. Stem cell factor expression after renal ischemia promotes tubular epithelial survival.

    Directory of Open Access Journals (Sweden)

    Geurt Stokman

    Full Text Available BACKGROUND: Renal ischemia leads to apoptosis of tubular epithelial cells and results in decreased renal function. Tissue repair involves re-epithelialization of the tubular basement membrane. Survival of the tubular epithelium following ischemia is therefore important in the successful regeneration of renal tissue. The cytokine stem cell factor (SCF has been shown to protect the tubular epithelium against apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: In a mouse model for renal ischemia/reperfusion injury, we studied how expression of c-KIT on tubular epithelium and its ligand SCF protect cells against apoptosis. Administration of SCF specific antisense oligonucleotides significantly decreased specific staining of SCF following ischemia. Reduced SCF expression resulted in impaired renal function, increased tubular damage and increased tubular epithelial apoptosis, independent of inflammation. In an in vitro hypoxia model, stimulation of tubular epithelial cells with SCF activated survival signaling and decreased apoptosis. CONCLUSIONS/SIGNIFICANCE: Our data indicate an important role for c-KIT and SCF in mediating tubular epithelial cell survival via an autocrine pathway.

  13. Apoptosis and the thymic microenvironment in murine lupus.

    Science.gov (United States)

    Takeoka, Y; Taguchi, N; Shultz, L; Boyd, R L; Naiki, M; Ansari, A A; Gershwin, M E

    1999-11-01

    The thymus of New Zealand black (NZB) mice undergoes premature involution. In addition, cultured thymic epithelial cells from NZB mice undergo accelerated preprogrammed degeneration. NZB mice also have distinctive and well-defined abnormalities of thymic architecture involving stromal cells, defined by staining with monoclonal antibodies specific for the thymic microenvironment. We took advantage of these findings, as well as our large panel of monoclonal antibodies which recognize thymic stroma, to study the induction of apoptosis in the thymus of murine lupus and including changes of epithelial architecture. We studied NZB, MRL/lpr, BXSB/Yaa, C3H/gld mice and BALB/c and C57BL/6 as control mice. Apoptosis was studied both at basal levels and following induction with either dexamethasone or lipopolysaccharide (LPS). The apoptotic cells were primarily found in the thymic cortex, and the frequency of apoptosis in murine lupus was less than 20% of controls. Moreover, all strains of murine lupus had severe abnormalities of the cortical network. These changes were not accentuated by dexamethasone treatment in cultured thymocytes. However, the thymus in murine lupus was less susceptible to LPS-induced apoptosis than control mice. Finally we note that the number of thymic nurse cells (TNC) was lowest in NZB mice. Our findings demonstrate significant abnormalities in the induction of apoptosis and the formation of TNC-like epithelial cells in SLE mice, and suggest that the abnormalities of the thymic microenvironment have an important role in the pathogenesis of murine lupus.

  14. Different Sensitivities to Apoptotic Induction by Camptothecin between Normal and Senescent Lens Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Haike Guo; Haiying Jin; Liya Wang; Hongyang Zhang; Xin Yang

    2002-01-01

    Purpose: To investigate whether normal and senescent lens epithelial cells have different defense abilities to apoptotic induction factor in vitro.Methods: Rabbit lens epithelial cells were cultured, passed. When reaching confluence, cells from the first and seventh passage were stained by x-gal staining to detect cell senescence. Cell apoptosis was detected by TUNEL(Roche).10μmol/L camptothecin was used to induce cell apoptosis from the lens epithelial cells of the first and seventh passage to distinguish different sensitivities to apoptotic induction factor between normal and senescent cells.Results: The senescent cells (41.17% ± 5.24% ) were detected in the lens epithelial cell culture of the seventh passage, which are higher than those of the first passage (0.98% ±0. 39% ). There was no apoptotic cell detected in the cell cultures undisturbed. Exposure of the first passage cells to camptothecin resulted in death of approximately 23.87% ± 3.45% of the cells during a 36 hour exposure period. In contrast, significantly more lens epithelial cells died through the apoptosis (38.29% ±4. 01% ) from the seventh passage.Conclusion: Senescent cells increased with cell passage. Senescence lens epithelial cells do not undergo apoptosis if they were not disturbed. But the vulnerabilities to apoptotic induction between health and senescence cells were different.

  15. Perawatan Pulpa Gigi Sulung Disertai Abses Dento Alveolar

    OpenAIRE

    2008-01-01

    Abses dento alveolar adalah kumputan pus yang berada pada tulang alveolar sekitar apeks gigi akibat kematian pulpa. Matinya pulpa dapat disebabkan bakteri, trauma, iritasi mekanis, termis maupun kimiawi. Pengaruh bakteri merupakan penyebab kerusakan jaringan pulpa yang terbesar. Perluasan infeksi ke dalam jaringan periapikal dapat melalui foramen apikalke jaringan periodontal sehingga terjadi inflarnasi. Bila virulensi bakteri meningkat disertai rendahnya pertahanan tubuh penderita dapat ...

  16. Estrogen regulates pulmonary alveolar formation, loss, and regeneration in mice.

    Science.gov (United States)

    Massaro, Donald; Massaro, Gloria Decarlo

    2004-12-01

    Lung tissue elastic recoil and the dimension and number of pulmonary gas-exchange units (alveoli) are major determinants of gas-exchange function. Loss of gas-exchange function accelerates after menopause in the healthy aged and is progressively lost in individuals with chronic obstructive pulmonary disease (COPD). The latter, a disease of midlife and later, though more common in men than in women, is a disease to which women smokers and never smokers may be more susceptible than men; it is characterized by diminished lung tissue elastic recoil and presently irremediable alveolar loss. Ovariectomy in sexually immature rats diminishes the formation of alveoli, and estrogen prevents the diminution. In the present work, we found that estrogen receptor-alpha and estrogen receptor-beta, the only recognized mammalian estrogen receptors, are required for the formation of a full complement of alveoli in female mice. However, only the absence of estrogen receptor-beta diminishes lung elastic tissue recoil. Furthermore, ovariectomy in adult mice results, within 3 wk, in loss of alveoli and of alveolar surface area without a change of lung volume. Estrogen replacement, after alveolar loss, induces alveolar regeneration, reversing the architectural effects of ovariectomy. These studies 1) reveal estrogen receptors regulate alveolar size and number in a nonredundant manner, 2) show estrogen is required for maintenance of already formed alveoli and induces alveolar regeneration after their loss in adult ovariectomized mice, and 3) offer the possibility estrogen can slow alveolar loss and induce alveolar regeneration in women with COPD.

  17. Alveolar ridge augmentation by osteoinductive materials in goats

    DEFF Research Database (Denmark)

    Pinholt, E M; Haanaes, H R; Roervik, M;

    1992-01-01

    The purpose of the present study was to determine whether alveolar ridge augmentation could be induced in goats. In 12 male goats allogenic, demineralized, and lyophilized dentin or bone was implanted subperiosteally on the buccal sides of the natural edentulous regions of the alveolar process of...

  18. Tongue-Palate Contact of Perceptually Acceptable Alveolar Stops

    Science.gov (United States)

    Lee, Alice; Gibbon, Fiona E.; O'Donovan, Cliona

    2013-01-01

    Increased tongue-palate contact for perceptually acceptable alveolar stops has been observed in children with speech sound disorders (SSD). This is a retrospective study that further investigated this issue by using quantitative measures to compare the target alveolar stops /t/, /d/ and /n/ produced in words by nine children with SSD (20 tokens of…

  19. p38丝裂原活化蛋白激酶对耐火陶瓷纤维诱导人支气管上皮细胞凋亡的作用%Effects of p38 mitogen-activated protein kinases on the apoptosis of human bronchial epithelial cells induced by refractory ceramic fibers in vitro

    Institute of Scientific and Technical Information of China (English)

    张敏; 朱丽瑾; 肖芸; 张幸

    2013-01-01

    Objective To investigate the role of p38 mitogen-activated protein kinases (MAPKs) in the apoptosis of human bronchial epithelial cells (BEAS-2B) induced by refractory ceramic fibers (RCFs).Methods BEAS-2B cells were exposed to 10,20,40,80,and 160 μg/cm2 RCF1,RCF2,and RCF3 for 24 h,and the cell viability was measured by CCK-8 assay.BEAS-2B cells were exposed to 20,40,and 100 μg/cm2 RCF1,RCF2,and RCF3 for 24 h,and the cell apoptosis rate was measured by flow cytometry.BEAS-2B cells were exposed to 40 μg/cm2 RCF1,RCF2,and RCF3,and the expression levels of phospho-p38 MAPK and caspase-3 were measured by Western blot.In each of the above treatments,the BEAS-2B cells were divided into positive control,p38 inhibitor SB203580 intervention,and normal groups.Results As the concentration of RCFs rose,the RCF exposure groups showed decreased cell viability and increased cell apoptosis rate.After SB203580 intervention,the intervention groups (all concentrations of asbestos + SB,20,40,80,and 160 μg/cm2 RCF1+SB,and 40,80,and 160 μg/cm2 RCF2 and RCF3+SB) had significantly increased cell viabilities (P<0.05),and the intervention groups (asbestos + SB and 20,40,and 100 μg/cm2 RCF1,RCF2,and RCF3 + SB) had significantly decreased cell apoptosis rates (P<0.05).Compared with the normal group,the RCF (40 μg/cm2)exposure and positive control groups had significantly increased expression of phospho-p38 MAPK (P<0.05),and the RCF (40 μg/cm2) exposure group had significantly increased expression of caspase-3 (P<0.05).The intervention groups (asbestos + SB and 40 μg/cm2 RCF1,RCF2,and RCF3 + SB) had significantly decreased expression of caspase-3 after SB203580 intervention.Conclusion p38 MAPKs play an important role in RCFinduced apoptosis of BEAS-2B cells.%目的 p38丝裂原活化蛋白激酶(p38MAPK)在RCFs诱导BEAS-2B凋亡中的作用.方法 10、20、40、80、160 μg/cm2 RCF1、RCF2和RCF3诱导BEAS-2B细胞24 h,用CCK-8法检测细胞存活率;20、40、100 μg/cm2

  20. Docosahexaenoic acid protects human retinal pigment epithelial cells against oxidative stress-induced apoptosis%二十二碳六烯酸抑制氧化应激状态下人视网膜色素上皮细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    刘越峰; 罗卫民; 张勇; 钟晓东

    2016-01-01

    AIM:To observe the effect of docosahexaenoic acid ( DHA) on H2 O2-induced apoptosis in human retinal pigment epithelium cells and its molecular mechanism .METHODS: Human retinal pigment epithelium cell line ARPE-19 was cultured in vitro, and 12.5 mmol/L H2 O2 was used to mimic the oxidative stress condition .The cells were treated with 30~100μmol/L DHA for 4~24 h.The expression of heme oxygenase-1 (HO-1) at mRNA and protein levels was detected by real-time PCR and Western blot , respectively .The enzymic activity of HO-1 was measured by colorimetry . Production of reactive oxygen species ( ROS) was determined by fluorescent probe .Activation of NF-E2-related factor 2 (Nrf2) was examined by immunofluorescence method .Apoptosis of ARPE-19 cells was analyzed by flow cytometry .RE-SULTS:The mRNA and protein expression and the enzymic activity of HO-1 were significantly increased in the ARPE-19 cells after DHA treatment .Meanwhile , nuclear translocation of Nrf 2 was also observed .Apoptosis appeared and ROS was produced upon H2O2 incubation.In contrast, DHA at 100 μmol/L significantly abrogated H2O2-induced apoptosis and ROS production.Furthermore, silencing of HO-1 by specific siRNA, or treatment with ZnPP, an inhibitor of HO-1, partly counteracted the protective effect against H 2 O2-induced apoptosis and ROS production .CONCLUSION: DHA protects retinal pigment epithelial cells against oxidative stress via induction of heme oxygenase -1 expression after Nrf2 activation .%目的:观察二十二碳六烯酸( docosahexaenoic acid ,DHA)对外源性H2 O2诱导人视网膜色素上皮细胞凋亡的影响及分子机制。方法:体外培养人视网膜色素上皮细胞系ARPE-19,加入终浓度为12.5 mol/L的H2 O2诱导氧化应激,随后用30~100μmol/L DHA作用细胞4~24 h;real-time PCR和Western blot分别检测血红素氧合酶-1(heme oxygenase-1,HO-1) mRNA和蛋白的表达;比色法分析HO-1酶活性;荧光

  1. Identification of an autophagy defect in smokers' alveolar macrophages.

    Science.gov (United States)

    Monick, Martha M; Powers, Linda S; Walters, Katherine; Lovan, Nina; Zhang, Michael; Gerke, Alicia; Hansdottir, Sif; Hunninghake, Gary W

    2010-11-01

    Alveolar macrophages are essential for clearing bacteria from the alveolar surface and preventing microbe-induced infections. It is well documented that smokers have an increased incidence of infections, in particular lung infections. Alveolar macrophages accumulate in smokers' lungs, but they have a functional immune deficit. In this study, we identify an autophagy defect in smokers' alveolar macrophages. Smokers' alveolar macrophages accumulate both autophagosomes and p62, a marker of autophagic flux. The decrease in the process of autophagy leads to impaired protein aggregate clearance, dysfunctional mitochondria, and defective delivery of bacteria to lysosomes. This study identifies the autophagy pathway as a potential target for interventions designed to decrease infection rates in smokers and possibly in individuals with high environmental particulate exposure.

  2. Arachidonate metabolism increases as rat alveolar type II cells differentiate in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lipchik, R.J.; Chauncey, J.B.; Paine, R.; Simon, R.H.; Peters-Golden, M. (Univ. of Michigan, Ann Arbor (USA))

    1990-08-01

    Rat type II alveolar epithelial cells are known to undergo morphological and functional changes when maintained in culture for several days. Having previously demonstrated that these cells can deacylate free arachidonic acid (AA) and metabolize it to products of the cyclooxygenase pathway, the present study was undertaken to determine whether in vitro differentiation was accompanied by alterations in the availability and metabolism of AA. We assessed the constitutive and ionophore A23187-induced deacylation and metabolism of endogenous AA, as well as the metabolism of exogenously supplied AA, in primary cultures of rat type II cells at days 2, 4, and 7 after isolation. Levels of free endogenous AA were increased at day 4, whereas eicosanoid synthesis, predominantly prostaglandin E2 and prostacyclin, increased markedly only at day 7. A similar time course of augmentation of prostanoid release was seen in response to exogenous AA. Type II cells cultured on fibronectin, intended to hasten cell flattening and spreading, demonstrated accelerated increases in available free AA in response to A23187; cells cultured on basement membrane derived from Engelbreth-Holm-Swarm mouse sarcoma, known to maintain the type II phenotype, exhibited diminished levels of available free AA. From these findings, we conclude that alterations in arachidonate metabolism are linked to alterations in cellular phenotype. The potentiation of eicosanoid synthesis accompanying in vitro differentiation suggests a possible role for the alveolar epithelium in the modulation of inflammation and fibrosis in the distal lung.

  3. Interleukin-33 and RANK-L Interplay in the Alveolar Bone Loss Associated to Periodontitis

    Science.gov (United States)

    Lapérine, Olivier; Cloitre, Alexandra; Caillon, Jocelyne; Huck, Olivier; Bugueno, Isaac Maximiliano; Pilet, Paul; Sourice, Sophie; Le Tilly, Elodie; Palmer, Gaby; Davideau, Jean-Luc; Geoffroy, Valérie; Guicheux, Jérôme; Beck-Cormier, Sarah; Lesclous, Philippe

    2016-01-01

    Introduction Chronic Periodontitis (CP) is an inflammatory disease of bacterial origin that results in alveolar bone destruction. Porphyromonas gingivalis (Pg), one of the main periopathogens, initiates an inflammatory cascade by host immune cells thereby increasing recruitment and activity of osteoclasts, the bone resorbing cells, through enhanced production of the crucial osteoclastogenic factor, RANK-L. Antibodies directed against some cytokines (IL-1β, IL-6 and TNF-α) failed to exhibit convincing therapeutic effect in CP. It has been suggested that IL-33, could be of interest in CP. Objective the present study aims to analyze whether and how IL-33 and RANK-L and/or their interplay are involved in the bone destruction associated to CP. Material and Methods mRNAs and protein expressions of IL-33 and RANK-L were analyzed in healthy and CP human gingival samples by immunohistochemistry (IHC) and RT-qPCR. Murine experimental periodontitis (EP) was induced using Pg infected ligature and Pg free ligature around the first maxillary molar. Alveolar bone loss was recorded by μCT. Mouse gingival explants were stimulated for 24 hours with IL-33 and RANK-L mRNA expression investigated by RT-qPCR. Human oral epithelial cells were infected by Pg for 6, 12; 24 hours and IL-33 and RANK-L mRNA expressions were analyzed by RT-qPCR. Results IL-33 is overexpressed in gingival epithelial cells in human affected by CP as in the murine EP. In human as in murine gingival cells, RANK-L was independently induced by Pg and IL-33. We also showed that the Pg-dependent RANK-L expression in gingival epithelial cells occured earlier than that of IL-33. Conclusion Our results evidence that IL-33 overexpression in gingival epithelial cells is associated with CP and may trigger RANK-L expression in addition to a direct effect of Pg. Finally, IL-33 may act as an extracellular alarmin (danger signal) showing proinflammatory properties in CP perpetuating bone resorption induced by Pg infection

  4. Rituximab therapy in pulmonary alveolar proteinosis improves alveolar macrophage lipid homeostasis

    Directory of Open Access Journals (Sweden)

    Malur Anagha

    2012-06-01

    Full Text Available Abstract Rationale Pulmonary Alveolar Proteinosis (PAP patients exhibit an acquired deficiency of biologically active granulocyte-macrophage colony stimulating factor (GM-CSF attributable to GM-CSF specific autoantibodies. PAP alveolar macrophages are foamy, lipid-filled cells with impaired surfactant clearance and markedly reduced expression of the transcription factor peroxisome proliferator-activated receptor gamma (PPARγ and the PPARγ-regulated ATP binding cassette (ABC lipid transporter, ABCG1. An open label proof of concept Phase II clinical trial was conducted in PAP patients using rituximab, a chimeric murine-human monoclonal antibody directed against B lymphocyte specific antigen CD20. Rituximab treatment decreased anti-GM-CSF antibody levels in bronchoalveolar lavage (BAL fluid, and 7/9 patients completing the trial demonstrated clinical improvement as measured by arterial blood oxygenation. Objectives This study sought to determine whether rituximab therapy would restore lipid metabolism in PAP alveolar macrophages. Methods BAL samples were collected from patients pre- and 6-months post-rituximab infusion for evaluation of mRNA and lipid changes. Results Mean PPARγ and ABCG1 mRNA expression increased 2.8 and 5.3-fold respectively (p ≤ 0.05 after treatment. Lysosomal phospholipase A2 (LPLA2 (a key enzyme in surfactant degradation mRNA expression was severely deficient in PAP patients pre-treatment but increased 2.8-fold post-treatment. In supplemental animal studies, LPLA2 deficiency was verified in GM-CSF KO mice but was not present in macrophage-specific PPARγ KO mice compared to wild-type controls. Oil Red O intensity of PAP alveolar macrophages decreased after treatment, indicating reduced intracellular lipid while extracellular free cholesterol increased in BAL fluid. Furthermore, total protein and Surfactant protein A were significantly decreased in the BAL fluid post therapy. Conclusions Reduction in GM

  5. [Focal epithelial hyperplasia].

    Science.gov (United States)

    Vera-Iglesias, E; García-Arpa, M; Sánchez-Caminero, P; Romero-Aguilera, G; Cortina de la Calle, P

    2007-11-01

    Focal epithelial hyperplasia is a rare disease of the oral mucosa caused by the human papilloma virus (HPV). It appears as a benign epithelial growth, usually in the mucosa of the lower lip. It is mainly associated with HPV serotypes 13 and 32 and there is a clear racial predilection for the disease in Native Americans and Eskimos. We describe the case of a 17-year-old girl from Ecuador with multiple papular lesions in both lips that were clinically and histologically consistent with focal epithelial hyperplasia. Analysis by polymerase chain reaction detected HPV serotype 13.

  6. The Expression of Water and Ion Channels in Diffuse Alveolar Damage Is Not Dependent on DAD Etiology

    Science.gov (United States)

    Del Carlo Bernardi, Fabiola; Alves de Araujo, Priscila; Mauad, Thais; Dolhnikoff, Marisa

    2016-01-01

    Introduction Aquaporins and ion channels are membrane proteins that facilitate the rapid movement of water and solutes across biological membranes. Experimental and in vitro studies reported that the function of these channels and pulmonary edema resolution are impaired in acute lung injury (ALI). Although current evidence indicates that alveolar fluid clearance is impaired in patients with ALI/diffuse alveolar damage (DAD), few human studies have addressed the alterations in pulmonary channels in this clinical condition. Additionally, it is not known whether the primary cause of DAD is a relevant variable for the channel dysfunction. Methods Autopsied lungs of 43 patients with acute respiratory failure (ARF) due to DAD of three different etiologies, non-pulmonary sepsis, H1N1 viral infection and leptospirosis, were compared to 18 normal lungs. We quantified the expression of aquaporin (AQP) 1, AQP3, AQP5, epithelial Na+ channel (ENaC) and sodium potassium ATPase (Na-K-ATPase) in the alveolar septum using immunohistochemistry and image analysis. Results The DAD group presented with increased expression of AQP3, AQP5 and Na-K-ATPase and decreased expression of ENaC compared to controls. However, there was no difference in protein expression within the DAD groups of different etiologies. Conclusion Water and ion channels are altered in patients with ARF due to DAD. The cause of DAD does not seem to influence the level of impairment of these channels. PMID:27835672

  7. Rapa