WorldWideScience

Sample records for aluminum-inducible malate release

  1. BoALMT1, an Al-Induced Malate Transporter in Cabbage, Enhances Aluminum Tolerance in Arabidopsis thaliana

    OpenAIRE

    Zhang, Lei; Wu, Xin-Xin; Wang, Jinfang; Qi, Chuandong; Wang, Xiaoyun; Wang, Gongle; Li, Mingyue; Li, Xingsheng; Guo, Yang-Dong

    2018-01-01

    Aluminum (Al) is present in approximately 50% of the arable land worldwide and is regarded as the main limiting factor of crop yield on acidic soil. Al-induced root malate efflux plays an important role in the Al tolerance of plants. Here, the aluminum induced malate transporter BoALMT1 (KF322104) was cloned from cabbage (Brassica oleracea). BoALMT1 showed higher expression in roots than in shoots. The expression of BoALMT1 was specifically induced by Al treatment, but not the trivalent catio...

  2. BoALMT1, an Al-Induced Malate Transporter in Cabbage, Enhances Aluminum Tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-01-01

    Full Text Available Aluminum (Al is present in approximately 50% of the arable land worldwide and is regarded as the main limiting factor of crop yield on acidic soil. Al-induced root malate efflux plays an important role in the Al tolerance of plants. Here, the aluminum induced malate transporter BoALMT1 (KF322104 was cloned from cabbage (Brassica oleracea. BoALMT1 showed higher expression in roots than in shoots. The expression of BoALMT1 was specifically induced by Al treatment, but not the trivalent cations lanthanum (La, cadmium (Cd, zinc (Zn, or copper (Cu. Subcellular localization studies were performed in onion epidermal cells and revealed that BoALMT1 was localized at the plasma membrane. Scanning Ion-selective Electrode Technique was used to analyze H+ flux. Xenopus oocytes and Arabidopsis thaliana expressing BoALMT1 excreted more H+ under Al treatment. Overexpressing BoALMT1 in transgenic Arabidopsis resulted in enhanced Al tolerance and increased malate secretion. The results suggested that BoALMT1 functions as an Al-resistant gene and encodes a malate transporter. Expressing BoALMT1 in Xenopus oocytes or A. thaliana indicated that BoALMT1 could increase malate secretion and H+ efflux to resist Al tolerance.

  3. A chimeric protein of aluminum-activated malate transporter generated from wheat and Arabidopsis shows enhanced response to trivalent cations.

    Science.gov (United States)

    Sasaki, Takayuki; Tsuchiya, Yoshiyuki; Ariyoshi, Michiyo; Ryan, Peter R; Yamamoto, Yoko

    2016-07-01

    TaALMT1 from wheat (Triticum aestivum) and AtALMT1 from Arabidopsis thaliana encode aluminum (Al)-activated malate transporters, which confer acid-soil tolerance by releasing malate from roots. Chimeric proteins from TaALMT1 and AtALMT1 (Ta::At, At::Ta) were previously analyzed in Xenopus laevis oocytes. Those studies showed that Al could activate malate efflux from the Ta::At chimera but not from At::Ta. Here, functions of TaALMT1, AtALMT1 and the chimeric protein Ta::At were compared in cultured tobacco BY-2 cells. We focused on the sensitivity and specificity of their activation by trivalent cations. The activation of malate efflux by Al was at least two-fold greater in the chimera than the native proteins. All proteins were also activated by lanthanides (erbium, ytterbium, gadolinium, and lanthanum), but the chimera again released more malate than TaALMT1 or AtALMT1. In Xenopus oocytes, Al, ytterbium, and erbium activated inward currents from the native TaALMT1 and the chimeric protein, but gadolinium only activated currents from the chimera. Lanthanum inhibited currents from both proteins. These results demonstrated that function of the chimera protein was altered compared to the native proteins and was more responsive to a range of trivalent cations when expressed in plant cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Aluminum-Activated Malate Transporters Can Facilitate GABA Transport.

    Science.gov (United States)

    Ramesh, Sunita A; Kamran, Muhammad; Sullivan, Wendy; Chirkova, Larissa; Okamoto, Mamoru; Degryse, Fien; McLaughlin, Michael; Gilliham, Matthew; Tyerman, Stephen D

    2018-05-01

    Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABA A receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA] i ) in both wheat ( Triticum aestivum ) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA] i because TaALMT1 facilitates GABA efflux but GABA does not complex Al 3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14 C-GABA uptake into TaALMT1 -expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1 F213C ) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA] i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status. © 2018 American Society of Plant Biologists. All rights reserved.

  5. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance.

    Science.gov (United States)

    Liu, Jiping; Magalhaes, Jurandir V; Shaff, Jon; Kochian, Leon V

    2009-02-01

    Aluminum-activated root malate and citrate exudation play an important role in plant Al tolerance. This paper characterizes AtMATE, a homolog of the recently discovered sorghum and barley Al-tolerance genes, shown here to encode an Al-activated citrate transporter in Arabidopsis. Together with the previously characterized Al-activated malate transporter, AtALMT1, this discovery allowed us to examine the relationship in the same species between members of the two gene families for which Al-tolerance genes have been identified. AtMATE is expressed primarily in roots and is induced by Al. An AtMATE T-DNA knockdown line exhibited very low AtMATE expression and Al-activated root citrate exudation was abolished. The AtALMT1 AtMATE double mutant lacked both Al-activated root malate and citrate exudation and showed greater Al sensitivity than the AtALMT1 mutant. Therefore, although AtALMT1 is a major contributor to Arabidopsis Al tolerance, AtMATE also makes a significant but smaller contribution. The expression patterns of AtALMT1 and AtMATE and the profiles of Al-activated root citrate and malate exudation are not affected by the presence or absence of the other gene. These results suggest that AtALMT1-mediated malate exudation and AtMATE-mediated citrate exudation evolved independently to confer Al tolerance in Arabidopsis. However, a link between regulation of expression of the two transporters in response to Al was identified through work on STOP1, a transcription factor that was previously shown to be necessary for AtALMT1 expression. Here we show that STOP1 is also required for AtMATE expression and Al-activated citrate exudation.

  6. The BnALMT1 Protein That is an Aluminum-Activated Malate Transporter is Localized in the Plasma Membrane

    OpenAIRE

    Ligaba, Ayalew; Katsuhara, Maki; Sakamoto, Wataru; Matsumoto, Hideaki

    2007-01-01

    We have previously reported that Al-induces citrate and malate efflux from P-sufficient and P-deficient plants of rape (Brassica napus L.) and that P-deficiency alone could not induce this response. Further investigation showed that the transcript of two genes designated BnALMT1 and BnALMT2 is accumulated in roots by Al-treatment. Transgenic tobacco cells (Nicotiana tabacum) and Xenopus laevis oocytes expressing the BnALMT1 and BnALMT2 proteins released more malate than control cells in the p...

  7. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils.

    Science.gov (United States)

    Liang, Cuiyue; Piñeros, Miguel A; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V; Liao, Hong

    2013-03-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function.

  8. Closing plant stomata requires a homolog of an aluminum-activated malate transporter.

    Science.gov (United States)

    Sasaki, Takayuki; Mori, Izumi C; Furuichi, Takuya; Munemasa, Shintaro; Toyooka, Kiminori; Matsuoka, Ken; Murata, Yoshiyuki; Yamamoto, Yoko

    2010-03-01

    Plant stomata limit both carbon dioxide uptake and water loss; hence, stomatal aperture is carefully set as the environment fluctuates. Aperture area is known to be regulated in part by ion transport, but few of the transporters have been characterized. Here we report that AtALMT12 (At4g17970), a homolog of the aluminum-activated malate transporter (ALMT) of wheat, is expressed in guard cells of Arabidopsis thaliana. Loss-of-function mutations in AtALMT12 impair stomatal closure induced by ABA, calcium and darkness, but do not abolish either the rapidly activated or the slowly activated anion currents previously identified as being important for stomatal closure. Expressed in Xenopus oocytes, AtALMT12 facilitates chloride and nitrate currents, but not those of organic solutes. Therefore, we conclude that AtALMT12 is a novel class of anion transporter involved in stomatal closure.

  9. Low pH, Aluminum, and Phosphorus Coordinately Regulate Malate Exudation through GmALMT1 to Improve Soybean Adaptation to Acid Soils1[W][OA

    Science.gov (United States)

    Liang, Cuiyue; Piñeros, Miguel A.; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V.; Liao, Hong

    2013-01-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function. PMID:23341359

  10. Altered Expression of a Malate-Permeable Anion Channel, OsALMT4, Disrupts Mineral Nutrition1[OPEN

    Science.gov (United States)

    Delhaize, Emmanuel

    2017-01-01

    Aluminum-activated malate transporters (ALMTs) form a family of anion channels in plants, but little is known about most of its members. This study examined the function of OsALMT4 from rice (Oryza sativa). We show that OsALMT4 is expressed in roots and shoots and that the OsALMT4 protein localizes to the plasma membrane. Transgenic rice lines overexpressing (OX) OsALMT4 released malate from the roots constitutively and had 2-fold higher malate concentrations in the xylem sap than nulls, indicating greater concentrations of malate in the apoplast. OX lines developed brown necrotic spots on the leaves that did not appear on nulls. These symptoms were not associated with altered concentrations of any mineral element in the leaves, although the OX lines had higher concentrations of Mn and B in their grain compared with nulls. While total leaf Mn concentrations were not different between the OX and null lines, Mn concentrations in the apoplast were greater in the OX plants. The OX lines also displayed increased expression of Mn transporters and were more sensitive to Mn toxicity than null plants. We showed that the growth of wild-type rice was unaffected by 100 µm Mn in hydroponics but, when combined with 1 mm malate, this concentration inhibited growth. We conclude that increasing OsALMT4 expression affected malate efflux and compartmentation within the tissues, which increased Mn concentrations in the apoplast of leaves and induced the toxicity symptoms. This study reveals new links between malate transport and mineral nutrition. PMID:29101278

  11. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis

    OpenAIRE

    Hoekenga, Owen A.; Maron, Lyza G.; Piñeros, Miguel A.; Cançado, Geraldo M. A.; Shaff, Jon; Kobayashi, Yuriko; Ryan, Peter R.; Dong, Bei; Delhaize, Emmanuel; Sasaki, Takayuki; Matsumoto, Hideaki; Yamamoto, Yoko; Koyama, Hiroyuki; Kochian, Leon V.

    2006-01-01

    Aluminum (Al) tolerance in Arabidopsis is a genetically complex trait, yet it is mediated by a single physiological mechanism based on Al-activated root malate efflux. We investigated a possible molecular determinant for Al tolerance involving a homolog of the wheat Al-activated malate transporter, ALMT1. This gene, named AtALMT1 (At1g08430), was the best candidate from the 14-memberAtALMT family to be involved with Al tolerance based on expression patterns and genomic location. Physiological...

  12. The Membrane Topology of ALMT1, an Aluminum-Activated Malate Transport Protein in Wheat (Triticum aestivum)

    OpenAIRE

    Motoda, Hirotoshi; Sasaki, Takayuki; Kano, Yoshio; Ryan, Peter R; Delhaize, Emmanuel; Matsumoto, Hideaki; Yamamoto, Yoko

    2007-01-01

    The wheat ALMT1 gene encodes an aluminum (Al)-activated malate transport protein which confers Al-resistance. We investigated the membrane topology of this plasma-membrane localized protein with immunocytochemical techniques. Several green fluorescent protein (GFP)-fused and histidine (His)-tagged chimeras of ALMT1 were prepared based on a computer-predicted secondary structure and transiently expressed in cultured mammalian cells. Antibodies raised to polypeptide epitopes of ALMT1 were used ...

  13. The Arabidopsis vacuolar malate channel is a member of the ALMT family.

    Science.gov (United States)

    Kovermann, Peter; Meyer, Stefan; Hörtensteiner, Stefan; Picco, Cristiana; Scholz-Starke, Joachim; Ravera, Silvia; Lee, Youngsook; Martinoia, Enrico

    2007-12-01

    In plants, malate is a central metabolite and fulfills a large number of functions. Vacuolar malate may reach very high concentrations and fluctuate rapidly, whereas cytosolic malate is kept at a constant level allowing optimal metabolism. Recently, a vacuolar malate transporter (Arabidopsis thaliana tonoplast dicarboxylate transporter, AttDT) was identified that did not correspond to the well-characterized vacuolar malate channel. We therefore hypothesized that a member of the aluminum-activated malate transporter (ALMT) gene family could code for a vacuolar malate channel. Using GFP fusion constructs, we could show that AtALMT9 (A. thaliana ALMT9) is targeted to the vacuole. Promoter-GUS fusion constructs demonstrated that this gene is expressed in all organs, but is cell-type specific as GUS activity in leaves was detected nearly exclusively in mesophyll cells. Patch-clamp analysis of an Atalmt9 T-DNA insertion mutant exhibited strongly reduced vacuolar malate channel activity. In order to functionally characterize AtALMT9 as a malate channel, we heterologously expressed this gene in tobacco and in oocytes. Overexpression of AtALMT9-GFP in Nicotiana benthamiana leaves strongly enhanced the malate current densities across the mesophyll tonoplasts. Functional expression of AtALMT9 in Xenopus oocytes induced anion currents, which were clearly distinguishable from endogenous oocyte currents. Our results demonstrate that AtALMT9 is a vacuolar malate channel. Deletion mutants for AtALMT9 exhibit only slightly reduced malate content in mesophyll protoplasts and no visible phenotype, indicating that AttDT and the residual malate channel activity are sufficient to sustain the transport activity necessary to regulate the cytosolic malate homeostasis.

  14. Altered Expression of the Malate-Permeable Anion Channel OsALMT4 Reduces the Growth of Rice Under Low Radiance

    OpenAIRE

    Jie Liu; Jie Liu; Muyun Xu; Gonzalo M. Estavillo; Emmanuel Delhaize; Rosemary G. White; Meixue Zhou; Peter R. Ryan

    2018-01-01

    We examined the function of OsALMT4 in rice (Oryza sativa L.) which is a member of the aluminum-activated malate transporter family. Previous studies showed that OsALMT4 localizes to the plasma membrane and that expression in transgenic rice lines results in a constitutive release of malate from the roots. Here, we show that OsALMT4 is expressed widely in roots, shoots, flowers, and grain but not guard cells. Expression was also affected by ionic and osmotic stress, light and to the hormones ...

  15. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier.

    Science.gov (United States)

    Emmerlich, Vera; Linka, Nicole; Reinhold, Thomas; Hurth, Marco A; Traub, Michaela; Martinoia, Enrico; Neuhaus, H Ekkehard

    2003-09-16

    Malate plays a central role in plant metabolism. It is an intermediate in the Krebs and glyoxylate cycles, it is the store for CO2 in C4 and crassulacean acid metabolism plants, it protects plants from aluminum toxicity, it is essential for maintaining the osmotic pressure and charge balance, and it is therefore involved in regulation of stomatal aperture. To fulfil many of these roles, malate has to be accumulated within the large central vacuole. Many unsuccessful efforts have been made in the past to identify the vacuolar malate transporter; here, we describe the identification of the vacuolar malate transporter [A. thaliana tonoplast dicarboxylate transporter (AttDT)]. This transporter exhibits highest sequence similarity to the human sodium/dicarboxylate cotransporter. Independent T-DNA [portion of the Ti (tumor-inducing) plasmid that is transferred to plant cells] Arabidopsis mutants exhibit substantially reduced levels of leaf malate, but respire exogenously applied [14C]malate faster than the WT. An AttDT-GFP fusion protein was localized to vacuole. Vacuoles isolated from Arabidopsis WT leaves exhibited carbonylcyanide m-chlorophenylhydrazone and citrate inhibitable malate transport, which was not stimulated by sodium. Vacuoles isolated from mutant plants import [14C]-malate at strongly reduced rates, confirming that this protein is the vacuolar malate transporter.

  16. A domain-based approach for analyzing the function of aluminum-activated malate transporters from wheat (Triticum aestivum) and Arabidopsis thaliana in Xenopus oocytes.

    Science.gov (United States)

    Sasaki, Takayuki; Tsuchiya, Yoshiyuki; Ariyoshi, Michiyo; Ryan, Peter R; Furuichi, Takuya; Yamamoto, Yoko

    2014-12-01

    Wheat and Arabidopsis plants respond to aluminum (Al) ions by releasing malate from their root apices via Al-activated malate transporter. Malate anions bind with the toxic Al ions and contribute to the Al tolerance of these species. The genes encoding the transporters in wheat and Arabidopsis, TaALMT1 and AtALMT1, respectively, were expressed in Xenopus laevis oocytes and characterized electrophysiologically using the two-electrode voltage clamp system. The Al-activated currents generated by malate efflux were detected for TaALMT1 but not for AtALMT1. Chimeric proteins were generated by swapping the N- and C-terminal halves of TaALMT1 and AtALMT1 (Ta::At and At::Ta). When these chimeras were characterized in oocytes, Al-activated malate efflux was detected for the Ta::At chimera but not for At::Ta, suggesting that the N-terminal half of TaALMT1 is necessary for function in oocytes. An additional chimera, Ta(48)::At, generated by swapping 17 residues from the N-terminus of AtALMT1 with the equivalent 48 residues from TaALMT1, was sufficient to support transport activity. This 48 residue region includes a helical region with a putative transmembrane domain which is absent in AtALMT1. The deletion of this domain from Ta(48)::At led to the complete loss of transport activity. Furthermore, truncations and a deletion at the C-terminal end of TaALMT1 indicated that a putative helical structure in this region was also required for transport function. This study provides insights into the structure-function relationships of Al-activated ALMT proteins by identifying specific domains on the N- and C-termini of TaALMT1 that are critical for basal transport function and Al responsiveness in oocytes. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Genes Encoding Aluminum-Activated Malate Transporter II and their Association with Fruit Acidity in Apple

    Directory of Open Access Journals (Sweden)

    Baiquan Ma

    2015-11-01

    Full Text Available A gene encoding aluminum-activated malate transporter (ALMT was previously reported as a candidate for the locus controlling acidity in apple ( × Borkh.. In this study, we found that apple genes can be divided into three families and the gene belongs to the family. Duplication of genes in apple is related to the polyploid origin of the apple genome. Divergence in expression has occurred between the gene and its homologs in the family and only the gene is significantly associated with malic acid content. The locus consists of two alleles, and . resides in the tonoplast and its ectopic expression in yeast was found to increase the influx of malic acid into yeast cells significantly, suggesting it may function as a vacuolar malate channel. In contrast, encodes a truncated protein because of a single nucleotide substitution of G with A in the last exon. As this truncated protein resides within the cell membrane, it is deemed to be nonfunctional as a vacuolar malate channel. The frequency of the genotype is very low in apple cultivars but is high in wild relatives, which suggests that apple domestication may be accompanied by selection for the gene. In addition, variations in the malic acid content of mature fruits were also observed between accessions with the same genotype in the locus. This suggests that the gene is not the only genetic determinant of fruit acidity in apple.

  18. An InDel in the Promoter of Al-ACTIVATED MALATE TRANSPORTER9 Selected during Tomato Domestication Determines Fruit Malate Contents and Aluminum Tolerance[OPEN

    Science.gov (United States)

    Wang, Xin; Hu, Tixu; Zhang, Fengxia; Wang, Bing; Li, Changxin; Yang, Tianxia; Li, Hanxia; Lu, Yongen; Ye, Zhibiao

    2017-01-01

    Deciphering the mechanism of malate accumulation in plants would contribute to a greater understanding of plant chemistry, which has implications for improving flavor quality in crop species and enhancing human health benefits. However, the regulation of malate metabolism is poorly understood in crops such as tomato (Solanum lycopersicum). Here, we integrated a metabolite-based genome-wide association study with linkage mapping and gene functional studies to characterize the genetics of malate accumulation in a global collection of tomato accessions with broad genetic diversity. We report that TFM6 (tomato fruit malate 6), which corresponds to Al-ACTIVATED MALATE TRANSPORTER9 (Sl-ALMT9 in tomato), is the major quantitative trait locus responsible for variation in fruit malate accumulation among tomato genotypes. A 3-bp indel in the promoter region of Sl-ALMT9 was linked to high fruit malate content. Further analysis indicated that this indel disrupts a W-box binding site in the Sl-ALMT9 promoter, which prevents binding of the WRKY transcription repressor Sl-WRKY42, thereby alleviating the repression of Sl-ALMT9 expression and promoting high fruit malate accumulation. Evolutionary analysis revealed that this highly expressed Sl-ALMT9 allele was selected for during tomato domestication. Furthermore, vacuole membrane-localized Sl-ALMT9 increases in abundance following Al treatment, thereby elevating malate transport and enhancing Al resistance. PMID:28814642

  19. Malate and fumarate extend lifespan in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Clare B Edwards

    Full Text Available Malate, the tricarboxylic acid (TCA cycle metabolite, increased lifespan and thermotolerance in the nematode C. elegans. Malate can be synthesized from fumarate by the enzyme fumarase and further oxidized to oxaloacetate by malate dehydrogenase with the accompanying reduction of NAD. Addition of fumarate also extended lifespan, but succinate addition did not, although all three intermediates activated nuclear translocation of the cytoprotective DAF-16/FOXO transcription factor and protected from paraquat-induced oxidative stress. The glyoxylate shunt, an anabolic pathway linked to lifespan extension in C. elegans, reversibly converts isocitrate and acetyl-CoA to succinate, malate, and CoA. The increased longevity provided by malate addition did not occur in fumarase (fum-1, glyoxylate shunt (gei-7, succinate dehydrogenase flavoprotein (sdha-2, or soluble fumarate reductase F48E8.3 RNAi knockdown worms. Therefore, to increase lifespan, malate must be first converted to fumarate, then fumarate must be reduced to succinate by soluble fumarate reductase and the mitochondrial electron transport chain complex II. Reduction of fumarate to succinate is coupled with the oxidation of FADH2 to FAD. Lifespan extension induced by malate depended upon the longevity regulators DAF-16 and SIR-2.1. Malate supplementation did not extend the lifespan of long-lived eat-2 mutant worms, a model of dietary restriction. Malate and fumarate addition increased oxygen consumption, but decreased ATP levels and mitochondrial membrane potential suggesting a mild uncoupling of oxidative phosphorylation. Malate also increased NADPH, NAD, and the NAD/NADH ratio. Fumarate reduction, glyoxylate shunt activity, and mild mitochondrial uncoupling likely contribute to the lifespan extension induced by malate and fumarate by increasing the amount of oxidized NAD and FAD cofactors.

  20. Aluminum corrosion product release kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Matt, E-mail: Matthew.Edwards@cnl.ca; Semmler, Jaleh; Guzonas, Dave; Chen, Hui Qun; Toor, Arshad; Hoendermis, Seanna

    2015-07-15

    Highlights: • Release of Al corrosion product was measured in simulated post-LOCA sump solutions. • Increased boron was found to enhance Al release kinetics at similar pH. • Models of Al release as functions of time, temperature, and pH were developed. - Abstract: The kinetics of aluminum corrosion product release was examined in solutions representative of post-LOCA sump water for both pressurized water and pressurized heavy-water reactors. Coupons of AA 6061 T6 were exposed to solutions in the pH 7–11 range at 40, 60, 90 and 130 °C. Solution samples were analyzed by inductively coupled plasma atomic emission spectroscopy, and coupon samples were analyzed by secondary ion mass spectrometry. The results show a distinct “boron effect” on the release kinetics, expected to be caused by an increase in the solubility of the aluminum corrosion products. New models were developed to describe both sets of data as functions of temperature, time, and pH (where applicable)

  1. Long Non-Coding RNA MALAT1 Mediates Transforming Growth Factor Beta1-Induced Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Shuai Yang

    Full Text Available To study the role of long non-coding RNA (lncRNA MALAT1 in transforming growth factor beta 1 (TGF-β1-induced epithelial-mesenchymal transition (EMT of retinal pigment epithelial (RPE cells.ARPE-19 cells were cultured and exposed to TGF-β1. The EMT of APRE-19 cells is confirmed by morphological change, as well as the increased expression of alpha-smooth muscle actin (αSMA and fibronectin, and the down-regulation of E-cadherin and Zona occludin-1(ZO-1 at both mRNA and protein levels. The expression of lncRNA MALAT1 in RPE cells were detected by quantitative real-time PCR. Knockdown of MALAT1 was achieved by transfecting a small interfering RNA (SiRNA. The effect of inhibition of MALAT1 on EMT, migration, proliferation, and TGFβ signalings were observed. MALAT1 expression was also detected in primary RPE cells incubated with proliferative vitreoretinopathy (PVR vitreous samples.The expression of MALAT1 is significantly increased in RPE cells incubated with TGFβ1. MALAT1 silencing attenuates TGFβ1-induced EMT, migration, and proliferation of RPE cells, at least partially through activating Smad2/3 signaling. MALAT1 is also significantly increased in primary RPE cells incubated with PVR vitreous samples.LncRNA MALAT1 is involved in TGFβ1-induced EMT of human RPE cells and provides new understandings for the pathogenesis of PVR.

  2. Reshock and release response of aluminum single crystal

    International Nuclear Information System (INIS)

    Huang, H.; Asay, J. R.

    2007-01-01

    Reshock and release experiments were performed on single crystal aluminum along three orientations and on polycrystalline 1050 aluminum with 50 μm grain size at shock stresses of 13 and 21 GPa to investigate the mechanisms for previously observed quasielastic recompression behavior. Particle velocity profiles obtained during reshocking both single crystals and polycrystalline aluminum from initial shock stresses of 13-21 GPa show similar quasielastic recompression behavior. Quasielastic release response is also observed in all single crystals, but the magnitude of the effect is crystal orientation dependent, with [111] and [110] exhibiting more ideal elastic-plastic release for unloading from the shocked state than for the [100] orientation and polycrystalline aluminum. The quasielastic response of 1050 aluminum is intermediate to that of the [100] and [111] orientations. Comparison of the wave profiles obtained for both unloading and reloading of single crystals and polycrystalline 1050 aluminum from shocked states suggests that the observed quasielastic response of polycrystalline aluminum results from the averaging response of single crystals for shock propagation along different orientations, and that the response of 1050 aluminum with large grain boundaries is not significantly different from the results obtained on single crystal aluminum. The yield strength of the single crystals and 1050 aluminum is found to increase with shock stress, which is consistent with previous results [H. Huang and I. R. Asay, J. Appl. Phys. 98, 033524 (2005)

  3. An InDel in the promoter of Al-activated malate transporter 9 selected during tomato domestication determines fruit malate content and aluminum tolerance

    Science.gov (United States)

    Deciphering the mechanism of malate accumulation in plants would contribute to a greater understanding of plant chemistry, which has implications for improving flavor quality in crop species and enhancing human health benefits. However, the regulation of malate metabolism is poorly understood in cro...

  4. Long Non-Coding RNA Malat-1 Is Dispensable during Pressure Overload-Induced Cardiac Remodeling and Failure in Mice.

    Directory of Open Access Journals (Sweden)

    Tim Peters

    Full Text Available Long non-coding RNAs (lncRNAs are a class of RNA molecules with diverse regulatory functions during embryonic development, normal life, and disease in higher organisms. However, research on the role of lncRNAs in cardiovascular diseases and in particular heart failure is still in its infancy. The exceptionally well conserved nuclear lncRNA Metastasis associated in lung adenocarcinoma transcript 1 (Malat-1 is a regulator of mRNA splicing and highly expressed in the heart. Malat-1 modulates hypoxia-induced vessel growth, activates ERK/MAPK signaling, and scavenges the anti-hypertrophic microRNA-133. We therefore hypothesized that Malat-1 may act as regulator of cardiac hypertrophy and failure during cardiac pressure overload induced by thoracic aortic constriction (TAC in mice.Absence of Malat-1 did not affect cardiac hypertrophy upon pressure overload: Heart weight to tibia length ratio significantly increased in WT mice (sham: 5.78±0.55, TAC 9.79±1.82 g/mm; p<0.001 but to a similar extend also in Malat-1 knockout (KO mice (sham: 6.21±1.12, TAC 8.91±1.74 g/mm; p<0.01 with no significant difference between genotypes. As expected, TAC significantly reduced left ventricular fractional shortening in WT (sham: 38.81±6.53%, TAC: 23.14±11.99%; p<0.01 but to a comparable degree also in KO mice (sham: 37.01±4.19%, TAC: 25.98±9.75%; p<0.05. Histological hallmarks of myocardial remodeling, such as cardiomyocyte hypertrophy, increased interstitial fibrosis, reduced capillary density, and immune cell infiltration, did not differ significantly between WT and KO mice after TAC. In line, the absence of Malat-1 did not significantly affect angiotensin II-induced cardiac hypertrophy, dysfunction, and overall remodeling. Above that, pressure overload by TAC significantly induced mRNA levels of the hypertrophy marker genes Nppa, Nppb and Acta1, to a similar extend in both genotypes. Alternative splicing of Ndrg2 after TAC was apparent in WT (isoform ratio

  5. Altered Expression of the Malate-Permeable Anion Channel OsALMT4 Reduces the Growth of Rice Under Low Radiance

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2018-05-01

    Full Text Available We examined the function of OsALMT4 in rice (Oryza sativa L. which is a member of the aluminum-activated malate transporter family. Previous studies showed that OsALMT4 localizes to the plasma membrane and that expression in transgenic rice lines results in a constitutive release of malate from the roots. Here, we show that OsALMT4 is expressed widely in roots, shoots, flowers, and grain but not guard cells. Expression was also affected by ionic and osmotic stress, light and to the hormones ABA, IAA, and salicylic acid. Malate efflux from the transgenic plants over-expressing OsALMT4 was inhibited by niflumate and salicylic acid. Growth of transgenic lines with either increased OsALMT4 expression or reduced expression was measured in different environments. Light intensity caused significant differences in growth between the transgenic lines and controls. When day-time light was reduced from 700 to 300 μmol m-2s-1 independent transgenic lines with either increased or decreased OsALMT4 expression accumulated less biomass compared to their null controls. This response was not associated with differences in photosynthetic capacity, stomatal conductance or sugar concentrations in tissues. We propose that by disrupting malate fluxes across the plasma membrane carbon partitioning and perhaps signaling are affected which compromises growth under low light. We conclude that OsALMT4 is expressed widely in rice and facilitates malate efflux from different cell types. Altering OsALMT4 expression compromises growth in low-light environments.

  6. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier

    OpenAIRE

    Emmerlich, Vera; Linka, Nicole; Reinhold, Thomas; Hurth, Marco A.; Traub, Michaela; Martinoia, Enrico; Neuhaus, H. Ekkehard

    2003-01-01

    Malate plays a central role in plant metabolism. It is an intermediate in the Krebs and glyoxylate cycles, it is the store for CO2 in C4 and crassulacean acid metabolism plants, it protects plants from aluminum toxicity, it is essential for maintaining the osmotic pressure and charge balance, and it is therefore involved in regulation of stomatal aperture. To fulfil many of these roles, malate has to be accumulated within the large central vacuole. Many unsuccessful efforts have been made in ...

  7. The long non-coding RNA MALAT1 promotes the migration and invasion of hepatocellular carcinoma by sponging miR-204 and releasing SIRT1.

    Science.gov (United States)

    Hou, Zhouhua; Xu, Xuwen; Zhou, Ledu; Fu, Xiaoyu; Tao, Shuhui; Zhou, Jiebin; Tan, Deming; Liu, Shuiping

    2017-07-01

    Increasing evidence supports the significance of long non-coding RNA in cancer development. Several recent studies suggest the oncogenic activity of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in hepatocellular carcinoma. In this study, we explored the molecular mechanisms by which MALAT1 modulates hepatocellular carcinoma biological behaviors. We found that microRNA-204 was significantly downregulated in sh-MALAT1 HepG2 cell and 15 hepatocellular carcinoma tissues by quantitative real-time polymerase chain reaction analysis. Through bioinformatic screening, luciferase reporter assay, RNA-binding protein immunoprecipitation, and RNA pull-down assay, we identified microRNA-204 as a potential interacting partner for MALAT1. Functionally, wound-healing and transwell assays revealed that microRNA-204 significantly inhibited the migration and invasion of hepatocellular carcinoma cells. Notably, sirtuin 1 was recognized as a direct downstream target of microRNA-204 in HepG2 cells. Moreover, si-SIRT1 significantly inhibited cell invasion and migration process. These data elucidated, by sponging and competitive binding to microRNA-204, MALAT1 releases the suppression on sirtuin 1, which in turn promotes hepatocellular carcinoma migration and invasion. This study reveals a novel mechanism by which MALAT1 stimulates hepatocellular carcinoma progression and justifies targeting metastasis-associated lung adenocarcinoma transcript 1 as a potential therapy for hepatocellular carcinoma.

  8. Retention and release of tritium in aluminum clad, Al-Li alloys

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1991-01-01

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the 6 Li(n,α) 3 He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs

  9. Proteomic analysis of a high aluminum tolerant yeast Rhodotorula taiwanensis RS1 in response to aluminum stress.

    Science.gov (United States)

    Wang, Chao; Wang, Chang Yi; Zhao, Xue Qiang; Chen, Rong Fu; Lan, Ping; Shen, Ren Fang

    2013-10-01

    Rhodotorula taiwanensis RS1 is a high-aluminum (Al)-tolerant yeast that can survive in Al concentrations up to 200mM. The mechanisms for the high Al tolerance of R. taiwanensis RS1 are not well understood. To investigate the molecular mechanisms underlying Al tolerance and toxicity in R. taiwanensis RS1, Al toxicity-induced changes in the total soluble protein profile were analyzed using two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry. A total of 33 differentially expressed proteins responding to Al stress were identified from approximately 850 reproducibly detected proteins. Among them, the abundance of 29 proteins decreased and 4 increased. In the presence of 100mM Al, the abundance of proteins involved in DNA transcription, protein translation, DNA defense, Golgi functions and glucose metabolism was decreased. By contrast, Al treatment led to increased abundance of malate dehydrogenase, which correlated with increased malate dehydrogenase activity and the accumulation of intracellular citrate, suggesting that Al-induced intracellular citrate could play an important role in detoxification of Al in R. taiwanensis RS1. © 2013.

  10. Physiological and Biochemical Responses to Aluminum Stress in the Root of a Biodiesel Plant Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    RADITE TISTAMA

    2012-03-01

    Full Text Available We investigated J. curcas responses to aluminum stress, histochemically and biochemically. Histochemical stainings were observed to analysis aluminum accumulation, lipid peroxidation and the loss of plasma membrane integrity on the surface and tissue of the root apex. Enzymatic analysis was conducted to measure malate content in leaf, root and malate efflux in the medium. We used M. malabathricum as a comparison for Al-tolerance plant. J. curcas root elongation was inhibited by 0.4 mM AlCl3, while M. malabathricum root elongation was inhibited by 0.8 mM AlCl3 treatment. Inhibition of root elongation has high correlation with Al accumulation in the root apex, which caused lipid degradation and cell death. Generally, malate content in J. curcas leaf and root was higher than that in M. malabathricum. In the contrary malate efflux from the root into the medium was lower. J. curcas root has a different pattern compared to M. malabathricum in malate synthesis and malate secretion when treated with a different Al concentration. We categorized J. curcas acc IP3 as more sensitive to aluminum than M. malabathricum.

  11. Functional, structural and phylogenetic analysis of domains underlying the Al-sensitivity of the aluminium-activated malate/anion transporter, TaALMT1

    Science.gov (United States)

    TaALMT1 (Triticum aestivum Aluminum Activated Malate Transporter) is the founding member of a novel gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small subgroup of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (...

  12. Posttranscriptional silencing of the lncRNA MALAT1 by miR-217 inhibits the epithelial–mesenchymal transition via enhancer of zeste homolog 2 in the malignant transformation of HBE cells induced by cigarette smoke extract

    International Nuclear Information System (INIS)

    Lu, Lu; Luo, Fei; Liu, Yi; Liu, Xinlu; Shi, Le; Lu, Xiaolin; Liu, Qizhan

    2015-01-01

    Lung cancer is regarded as the leading cause of cancer-related deaths, and cigarette smoking is one of the strongest risk factors for the development of lung cancer. However, the mechanisms for cigarette smoke-induced lung carcinogenesis remain unclear. The present study investigated the effects of an miRNA (miR-217) on levels of an lncRNA (MALAT1) and examined the role of these factors in the epithelial–mesenchymal transition (EMT) induced by cigarette smoke extract (CSE) in human bronchial epithelial (HBE) cells. In these cells, CSE caused decreases of miR-217 levels and increases in lncRNA MALAT1 levels. Over-expression of miR-217 with a mimic attenuated the CSE-induced increase of MALAT1 levels, and reduction of miR-217 levels by an inhibitor enhanced expression of MALAT1. Moreover, the CSE-induced increase of MALAT1 expression was blocked by an miR-217 mimic, indicating that miR-217 negatively regulates MALAT1 expression. Knockdown of MALAT1 reversed CSE-induced increases of EZH2 (enhancer of zeste homolog 2) and H3K27me3 levels. In addition to the alteration from epithelial to spindle-like mesenchymal morphology, chronic exposure of HBE cells to CSE increased the levels of EZH2, H3K27me3, vimentin, and N-cadherin and decreased E-cadherin levels, effects that were reversed by MALAT1 siRNA or EZH2 siRNA. The results indicate that miR-217 regulation of EZH2/H3K27me3 via MALAT1 is involved in CSE-induced EMT and malignant transformation of HBE cells. The posttranscriptional silencing of MALAT1 by miR-217 provides a link, through EZH2, between ncRNAs and the EMT and establishes a mechanism for CSE-induced lung carcinogenesis. - Highlights: • CSE exposure decreases miR-217 levels and increases MALAT1 levels. • miR-217 negatively regulates MALAT1 expression. • MALAT1, via EZH2, is involved in the EMT of CSE-transformed HBE cells.

  13. Effects of Al(III and Nano-Al13 Species on Malate Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Rong Fu Chen

    2011-05-01

    Full Text Available The effects of different aluminum species on malate dehydrogenase (MDH activity were investigated by monitoring amperometric i-t curves for the oxidation of NADH at low overpotential using a functionalized multi-wall nanotube (MWNT modified glass carbon electrode (GCE. The results showed that Al(III and Al13 can activate the enzymatic activity of MDH, and the activation reaches maximum levels as the Al(III and Al13 concentration increase. Our study also found that the effects of Al(III and Al13 on the activity of MDH depended on the pH value and aluminum speciation. Electrochemical and circular dichroism spectra methods were applied to study the effects of nano-sized aluminum compounds on biomolecules.

  14. Effects of Al(III) and nano-Al13 species on malate dehydrogenase activity.

    Science.gov (United States)

    Yang, Xiaodi; Cai, Ling; Peng, Yu; Li, Huihui; Chen, Rong Fu; Shen, Ren Fang

    2011-01-01

    The effects of different aluminum species on malate dehydrogenase (MDH) activity were investigated by monitoring amperometric i-t curves for the oxidation of NADH at low overpotential using a functionalized multi-wall nanotube (MWNT) modified glass carbon electrode (GCE). The results showed that Al(III) and Al(13) can activate the enzymatic activity of MDH, and the activation reaches maximum levels as the Al(III) and Al(13) concentration increase. Our study also found that the effects of Al(III) and Al(13) on the activity of MDH depended on the pH value and aluminum speciation. Electrochemical and circular dichroism spectra methods were applied to study the effects of nano-sized aluminum compounds on biomolecules.

  15. Processes of malate catabolism during the anaerobic metabolism of grape berries

    International Nuclear Information System (INIS)

    Flanzy, C.; Andre, P.; Buret, M.; Chambroy, Y.; Garcia, P.

    1976-01-01

    In order to precise malate fate during the anaerobic metabolism of grape, malate- 3 - 14 C was injected into Carignan berries kept in darkness at 35 0 C under carbon dioxide atmosphere. The injection of labelled malate was effected in presence or not of non-labelled oxalate which inhibits malic enzyme (EC I.I.I.40). The analyses of the samples fixed after 3 and 7 days anaerobiosis concerned the titration of various substrates, organic acids, amino-acids and glycolysis products, and the measuring of the NADP + -malic enzyme (EC I.I.I.40) and malate dehydrogenase (EC I.I.I.40). Radioactivity is mainly observed in ethanol, amino-butyrate the non-separated group glycerate-shikimate and succinate. Malic enzyme acts in the first sequence of a process leading from malate to ethanol. Alanin synthesis seems to be stimulated in presence of oxalate. The results obtained and some hypotheses presented in the literature induce to suggest a utilization scheme for malate in the anaerobic metabolism of grape [fr

  16. Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate.

    Science.gov (United States)

    Liu, Jingjing; Xie, Zhipeng; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    2017-07-10

    Aspergillus oryzae finds wide application in the food, feed, and wine industries, and is an excellent cell factory platform for production of organic acids. In this work, we achieved the overproduction of L-malate by rewiring the reductive tricarboxylic acid (rTCA) pathway and L-malate transport pathway of A. oryzae NRRL 3488. First, overexpression of native pyruvate carboxylase and malate dehydrogenase in the rTCA pathway improved the L-malate titer from 26.1gL -1 to 42.3gL -1 in shake flask culture. Then, the oxaloacetate anaplerotic reaction was constructed by heterologous expression of phosphoenolpyruvate carboxykinase and phosphoenolpyruvate carboxylase from Escherichia coli, increasing the L-malate titer to 58.5gL -1 . Next, the export of L-malate from the cytoplasm to the external medium was strengthened by overexpression of a C4-dicarboxylate transporter gene from A. oryzae and an L-malate permease gene from Schizosaccharomyces pombe, improving the L-malate titer from 58.5gL -1 to 89.5gL -1 . Lastly, guided by transcription analysis of the expression profile of key genes related to L-malate synthesis, the 6-phosphofructokinase encoded by the pfk gene was identified as a potential limiting step for L-malate synthesis. Overexpression of pfk with the strong sodM promoter increased the L-malate titer to 93.2gL -1 . The final engineered A. oryzae strain produced 165gL -1 L-malate with a productivity of 1.38gL -1 h -1 in 3-L fed-batch culture. Overall, we constructed an efficient L-malate producer by rewiring the rTCA pathway and L-malate transport pathway of A. oryzae NRRL 3488, and the engineering strategy adopted here may be useful for the construction of A. oryzae cell factories to produce other organic acids. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Two Members of the Aluminum-Activated Malate Transporter Family, SlALMT4 and SlALMT5, are Expressed during Fruit Development, and the Overexpression of SlALMT5 Alters Organic Acid Contents in Seeds in Tomato (Solanum lycopersicum).

    Science.gov (United States)

    Sasaki, Takayuki; Tsuchiya, Yoshiyuki; Ariyoshi, Michiyo; Nakano, Ryohei; Ushijima, Koichiro; Kubo, Yasutaka; Mori, Izumi C; Higashiizumi, Emi; Galis, Ivan; Yamamoto, Yoko

    2016-11-01

    The aluminum-activated malate transporter (ALMT) family of proteins transports malate and/or inorganic anions across plant membranes. To demonstrate the possible role of ALMT genes in tomato fruit development, we focused on SlALMT4 and SlALMT5, the two major genes expressed during fruit development. Predicted proteins were classified into clade 2 of the family, many members of which localize to endomembranes. Tissue-specific gene expression was determined using transgenic tomato expressing the β-glucuronidase reporter gene controlled by their own promoters. Both the genes were expressed in vascular bundles connecting to developing seeds in fruit and in the embryo of mature seeds. Further, SlALMT5 was expressed in embryo in developing seeds in fruit. Subcellular localization of both proteins to the endoplasmic reticulum (ER) was established by transiently expressing the green fluorescent protein fusions in plant protoplasts. SlALMT5 probably localized to other endomembranes as well. Localization of SlALMT5 to the ER was also confirmed by immunoblot analysis. The transport function of both SlALMT proteins was investigated electrophysiologically in Xenopus oocytes. SlALMT5 transported malate and inorganic anions such as nitrate and chloride, but not citrate. SlALMT4 also transported malate, but the results were less consistent perhaps because it did not localize strongly to the plasma membrane. To elucidate the physiological role of SlALMT5 further, we overexpressed SlALMT5 in tomato. Compared with the wild type, overexpressors exhibited higher malate and citrate contents in mature seeds, but not in fruit. We conclude that the malate transport function of SlALMT5 expressed in developing fruit influences the organic acid contents in mature seeds. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Effects of L-malate on physical stamina and activities of enzymes related to the malate-aspartate shuttle in liver of mice.

    Science.gov (United States)

    Wu, J L; Wu, Q P; Huang, J M; Chen, R; Cai, M; Tan, J B

    2007-01-01

    L-malate, a tricarboxylic acid cycle (TCA) intermediate, plays an important role in transporting NADH from cytosol to mitochondria for energy production and may be involved in the beneficial effects of improving physical stamina. In the present study, we investigated the effects of L-malate on the performance of forced swimming time and blood biochemical parameters related to fatigue - blood urea nitrogen (BUN), glucose (Glc), creatine kinase (CK),total protein (TP) and lactic acid (LA). To investigate the effects of L-malate on the malate-aspartate shuttle and energy metabolism in mice, the activities of enzymes related to the malate-aspartate shuttle were measured. L-malate was orally administered to mice continuously for 30 days using a feeding atraumatic needle. The swimming time was increased by 26.1 % and 28.5 %, respectively, in the 0.210 g/kg and 0.630 g/kg L-malate-treated group compared with the control group. There were no differences in the concentrations of Glc, BUN and TP between the L-malate-treated groups and the control groups. However, the levels of CK were significantly decreased in the L-malate-treated groups. The results predict a potential benefit of L-malate for improving physical stamina and minimizing muscle damage during swimming exercise. The activities of cytosolic and mitochondrial malate dehydrogenase were significantly elevated in the L-malate-treated group compared with the control group. These enzymatic activities may be useful indicators for evaluating changes affecting the malate-aspartate shuttle and energy metabolism in the liver of mice.

  19. The metabolism of malate by cultured rat brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, M.C.; Tildon, J.T.; Couto, R.; Stevenson, J.H.; Caprio, F.J. (Department of Pediatrics, University of Maryland School of Medicine, Baltimore (USA))

    1990-12-01

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-(U-14C)malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain.

  20. Induction of long noncoding RNA MALAT1 in hypoxic mice

    Directory of Open Access Journals (Sweden)

    Lelli A

    2015-10-01

    Full Text Available Aurelia Lelli,1,2,* Karen A Nolan,1,2,* Sara Santambrogio,1,2 Ana Filipa Gonçalves,1,2 Miriam J Schönenberger,1,2 Anna Guinot,1,2 Ian J Frew,1,2 Hugo H Marti,3 David Hoogewijs,1,2,4 Roland H Wenger1,2 1Institute of Physiology and Zurich Center for Human Physiology (ZIHP, University of Zurich, Zurich, Switzerland; 2National Center of Competence in Research "Kidney.CH", Zurich, Switzerland; 3Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany; 4Institute of Physiology, University of Duisburg-Essen, Essen, Germany *These authors contributed equally to this work Abstract: Long thought to be “junk DNA”, in recent years it has become clear that a substantial fraction of intergenic genomic DNA is actually transcribed, forming long noncoding RNA (lncRNA. Like mRNA, lncRNA can also be spliced, capped, and polyadenylated, affecting a multitude of biological processes. While the molecular mechanisms underlying the function of lncRNAs have just begun to be elucidated, the conditional regulation of lncRNAs remains largely unexplored. In genome-wide studies our group and others recently found hypoxic transcriptional induction of a subset of lncRNAs, whereof nuclear-enriched abundant/autosomal transcript 1 (NEAT1 and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1 appear to be the lncRNAs most ubiquitously and most strongly induced by hypoxia in cultured cells. Hypoxia-inducible factor (HIF-2 rather than HIF-1 seems to be the preferred transcriptional activator of these lncRNAs. For the first time, we also found strong induction primarily of MALAT1 in organs of mice exposed to inspiratory hypoxia. Most abundant hypoxic levels of MALAT1 lncRNA were found in kidney and testis. In situ hybridization revealed that the hypoxic induction in the kidney was confined to proximal rather than distal tubular epithelial cells. Direct oxygen-dependent regulation of MALAT1 lncRNA was confirmed using isolated primary

  1. Role of iron and aluminum coagulant metal residuals and lead release from drinking water pipe materials.

    Science.gov (United States)

    Knowles, Alisha D; Nguyen, Caroline K; Edwards, Marc A; Stoddart, Amina; McIlwain, Brad; Gagnon, Graham A

    2015-01-01

    Bench-scale experiments investigated the role of iron and aluminum residuals in lead release in a low alkalinity and high (> 0.5) chloride-to-sulfate mass ratio (CSMR) in water. Lead leaching was examined for two lead-bearing plumbing materials, including harvested lead pipe and new lead: tin solder, after exposure to water with simulated aluminum sulfate, polyaluminum chloride and ferric sulfate coagulation treatments with 1-25-μM levels of iron or aluminum residuals in the water. The release of lead from systems with harvested lead pipe was highly correlated with levels of residual aluminum or iron present in samples (R(2) = 0.66-0.88), consistent with sorption of lead onto the aluminum and iron hydroxides during stagnation. The results indicate that aluminum and iron coagulant residuals, at levels complying with recommended guidelines, can sometimes play a significant role in lead mobilization from premise plumbing.

  2. Radioactive Release from Aluminum-Based Spent Nuclear Fuel in Basin Storage

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.L.

    1999-10-21

    The report provides an evaluation of: (1) the release rate of radionuclides through minor cladding penetrations (breaches) on aluminum-based spent nuclear fuel (AL SNF), and (2) the consequences of direct storage of breached AL SNF relative to the authorization basis for SRS basin operation.

  3. Radioactive Release from Aluminum-Based Spent Nuclear Fuel in Basin Storage

    International Nuclear Information System (INIS)

    Sindelar, R.L.

    1999-01-01

    The report provides an evaluation of: (1) the release rate of radionuclides through minor cladding penetrations (breaches) on aluminum-based spent nuclear fuel (AL SNF), and (2) the consequences of direct storage of breached AL SNF relative to the authorization basis for SRS basin operation

  4. Functional, structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminum-activated malate/anion transporter, TaALMT1.

    Science.gov (United States)

    Ligaba, Ayalew; Dreyer, Ingo; Margaryan, Armine; Schneider, David J; Kochian, Leon; Piñeros, Miguel

    2013-12-01

    Triticum aestivum aluminum-activated malate transporter (TaALMT1) is the founding member of a unique gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small sub-group of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (Al) resistance. TaALMT1 exhibits significant enhancement of transport activity in response to extracellular Al. In this study, we integrated structure-function analyses of structurally altered TaALMT1 proteins expressed in Xenopus oocytes with phylogenic analyses of the ALMT family. Our aim is to re-examine the role of protein domains in terms of their potential involvement in the Al-dependent enhancement (i.e. Al-responsiveness) of TaALMT1 transport activity, as well as the roles of all its 43 negatively charged amino acid residues. Our results indicate that the N-domain, which is predicted to form the conductive pathway, mediates ion transport even in the absence of the C-domain. However, segments in both domains are involved in Al(3+) sensing. We identified two regions, one at the N-terminus and a hydrophobic region at the C-terminus, that jointly contribute to the Al-response phenotype. Interestingly, the characteristic motif at the N-terminus appears to be specific for Al-responsive ALMTs. Our study highlights the need to include a comprehensive phylogenetic analysis when drawing inferences from structure-function analyses, as a significant proportion of the functional changes observed for TaALMT1 are most likely the result of alterations in the overall structural integrity of ALMT family proteins rather than modifications of specific sites involved in Al(3+) sensing. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  5. Thermally induced processes in mixtures of aluminum with organic acids after plastic deformations under high pressure

    Science.gov (United States)

    Zhorin, V. A.; Kiselev, M. R.; Roldugin, V. I.

    2017-11-01

    DSC is used to measure the thermal effects of processes in mixtures of solid organic dibasic acids with powdered aluminum, subjected to plastic deformation under pressures in the range of 0.5-4.0 GPa using an anvil-type high-pressure setup. Analysis of thermograms obtained for the samples after plastic deformation suggests a correlation between the exothermal peaks observed around the temperatures of degradation of the acids and the thermally induced chemical reactions between products of acid degradation and freshly formed surfaces of aluminum particles. The release of heat in the mixtures begins at 30-40°C. The thermal effects in the mixtures of different acids change according to the order of acid reactivity in solutions. The extreme baric dependences of enthalpies of thermal effects are associated with the rearrangement of the electron subsystem of aluminum upon plastic deformation at high pressures.

  6. Study on crack propagation of adhesively bonded DCB for aluminum foam using energy release rate

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Hye Jin; Lee, Sang Kyo; Cho, Chong Du [Inha University, Incheon (Korea, Republic of); Cho, Jae Ung [Kongju National University, Choenan (Korea, Republic of)

    2015-01-15

    Aluminum foam with initial crack, which has a closed cell form adhesively bonded, is studied to compare and analyze the crack propagation behavior by using both experimental and finite element analysis techniques. The specimen is loaded in Mode I type of fracture as 15 mm/min speed of a displacement control method. The experimental results were used to accommodate the finite element analysis performed with commercial software ABAQUS 6.10. First, using a video recording, five steps of experiment were selected at random and then the energy release rate was calculated. The estimated energy release rate was then used as fracture energy into the finite element analysis. Comparing the experimental axial load-displacement graphs and the finite element analysis results, roughly equivalent peak values were observed in the cohesive strength of the aluminum foam double cantilever beam. However, force versus displacement patterns showed somewhat different: little deformation was observed in aluminum foam, whereas adhesive parts in double cantilever beam were significantly deformed.

  7. Enhancing phosphorus release from waste activated sludge containing ferric or aluminum phosphates by EDTA addition during anaerobic fermentation process.

    Science.gov (United States)

    Zou, Jinte; Zhang, Lili; Wang, Lin; Li, Yongmei

    2017-03-01

    The effect of ethylene diamine tetraacetic acid (EDTA) addition on phosphorus release from biosolids and phosphate precipitates during anaerobic fermentation was investigated. Meanwhile, the impact of EDTA addition on the anaerobic fermentation process was revealed. The results indicate that EDTA addition significantly enhanced the release of phosphorus from biosolids, ferric phosphate precipitate and aluminum phosphate precipitate during anaerobic fermentation, which is attributed to the complexation of metal ions and damage of cell membrane caused by EDTA. With the optimal EDTA addition of 19.5 mM (0.41 gEDTA/gSS), phosphorus release efficiency from biosolids was 82%, which was much higher than that (40%) without EDTA addition. Meanwhile, with 19.5 mM EDTA addition, almost all the phosphorus in ferric phosphate precipitate was released, while only 57% of phosphorus in aluminum phosphate precipitate was released. This indicates that phosphorus in ferric phosphate precipitate was much easier to be released than that in aluminum phosphate precipitate during anaerobic fermentation of sludge. In addition, proper EDTA addition facilitated the production of soluble total organic carbon and volatile fatty acids, as well as solid reduction during sludge fermentation, although methane production could be inhibited. Therefore, EDTA addition can be used as an alternative method for recovering phosphorus from waste activated sludge containing ferric or aluminum precipitates, as well as recovery of soluble carbon source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    Science.gov (United States)

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  9. Helium trapping in aluminum and sintered aluminum powders

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Rossing, T.

    1975-01-01

    The surface erosion of annealed aluminum and of sintered aluminum powder (SAP) due to blistering from implantation of 100-keV 4 He + ions at room temperature has been investigated. A substantial reduction in the blistering erosion rate in SAP was observed from that in pure annealed aluminum. In order to determine whether the observed reduction in blistering is due to enhanced helium trapping or due to helium released, the implanted helium profiles in annealed aluminum and in SAP have been studied by Rutherford backscattering. The results show that more helium is trapped in SAP than in aluminum for identical irradiation conditions. The observed reduction in erosion from helium blistering in SAP is more likely due to the dispersion of trapped helium at the large Al-Al 2 O 3 interfaces and at the large grain boundaries in SAP than to helium release

  10. Sample Size Induced Brittle-to-Ductile Transition of Single-Crystal Aluminum Nitride

    Science.gov (United States)

    2015-08-01

    ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal Aluminum...originator. ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal...Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal Aluminum Nitride 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  11. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Jeong [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Gu, Dong Ryun [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Jin, Su Hyun [Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Park, Keun Ha [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Lee, Seoung Hoon, E-mail: leesh2@wku.ac.kr [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Wonkwang Institute of Biomaterials and Implant, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of)

    2016-06-17

    Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reduced following the activation of adenosine 5′ monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.

  12. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling

    International Nuclear Information System (INIS)

    Oh, Se Jeong; Gu, Dong Ryun; Jin, Su Hyun; Park, Keun Ha; Lee, Seoung Hoon

    2016-01-01

    Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reduced following the activation of adenosine 5′ monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.

  13. Type 2 Diabetic Rats on Diet Supplemented With Chromium Malate Show Improved Glycometabolism, Glycometabolism-Related Enzyme Levels and Lipid Metabolism

    Science.gov (United States)

    Feng, Weiwei; Zhao, Ting; Mao, Guanghua; Wang, Wei; Feng, Yun; Li, Fang; Zheng, Daheng; Wu, Huiyu; Jin, Dun; Yang, Liuqing; Wu, Xiangyang

    2015-01-01

    Our previous study showed that chromium malate improved the regulation of blood glucose in mice with alloxan-induced diabetes. The present study was designed to evaluate the effect of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism in type 2 diabetic rats. Our results showed that fasting blood glucose, serum insulin level, insulin resistance index and C-peptide level in the high dose group had a significant downward trend when compared with the model group, chromium picolinate group and chromium trichloride group. The hepatic glycogen, glucose-6-phosphate dehydrogenase, glucokinase, Glut4, phosphor-AMPKβ1 and Akt levels in the high dose group were significantly higher than those of the model, chromium picolinate and chromium trichloride groups. Chromium malate in a high dose group can significantly increase high density lipoprotein cholesterol level while decreasing the total cholesterol, low density lipoprotein cholesterol and triglyceride levels when compared with chromium picolinate and chromium trichloride. The serum chromium content in chromium malate and chromium picolinate group is significantly higher than that of the chromium trichloride group. The results indicated that the curative effects of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism changes are better than those of chromium picolinate and chromium trichloride. Chromium malate contributes to glucose uptake and transport in order to improved glycometabolism and glycometabolism-related enzymes. PMID:25942313

  14. Aluminum-induced testosterone decrease results in physiological ...

    African Journals Online (AJOL)

    Recently, there has been much controversy on the role of testosterone on social and aggression behaviors. This work aimed to determine the effect of testosterone decrease, induced by aluminum exposure on the level of aggression. Male Swiss-Webster strain mice were classified into three groups. The first (control group) ...

  15. Post-irradiation inactivation, protection, and repair of the sulfhydryl enzyme malate synthase

    International Nuclear Information System (INIS)

    Durchschlag, H.; Zipper, P.

    1985-01-01

    Malate synthase from baker's yeast, a trimeric sulfhydryl enzyme with one essential sulfhydryl group per subunit, was inactivated by 2 kGy X-irradiation in air-saturated aqueous solution (enzyme concentration: 0.5 mg/ml). The radiation induced changes of enzymic activity were registered at about 0,30,60 h after irradiation. To elucidate the role of OH - , O 2 , and H 2 O 2 in the X-ray inactivation of the enzyme, experiments were performed in the absence of presence of different concentrations of specific additives (formate, superoxide dismutase, catalase). These additives were added to malate synthase solutions before or after X-irradiation. Moreover, repairs of inactivated malate synthase were initiated at about 0 or 30 h after irradiation by means of the sulfhydryl agent dithiothreitol. Experiments yielded the following results: 1. Irradiation of malate synthase in the absence of additives inactivated the enzyme immediately to a residual activity Asub(r)=3% (corresponding to a D 37 =0.6 kGy), and led to further slow inactivation in the post-irradiation phase. Repairs, initiated at different times after irradiation, restored enzymic activity considerably. The repair initiated at t=0 led to Asub(r)=21%; repairs started later on resulted in somewhat lower activities. The decay of reparability, however, was found to progress more slowly than post-irradiation inactivation itself. After completion of repair the activities of repaired samples did not decrease significantly. 2. The presence of specific additives during irradiation caused significant protective effects against primary inactivation. The protection by formate was very pronounced (e.g., Asub(r)=72% and D 37 =6 kGy for 100 mM formate). The presence of catalytic amounts of superoxide dismutase and/or catalase exhibited only minor effects, depending on the presence and concentration of formate. (orig.)

  16. Evaluation of 90-day Repeated Dose Oral Toxicity, Glycometabolism, Learning and Memory Ability, and Related Enzyme of Chromium Malate Supplementation in Sprague-Dawley Rats.

    Science.gov (United States)

    Feng, Weiwei; Wu, Huiyu; Li, Qian; Zhou, Zhaoxiang; Chen, Yao; Zhao, Ting; Feng, Yun; Mao, Guanghua; Li, Fang; Yang, Liuqing; Wu, Xiangyang

    2015-11-01

    Our previous study showed that chromium malate improved the regulation of blood glucose in mice with alloxan-induced diabetes. The present study was designed to evaluate the 90-day oral toxicity of chromium malate in Sprague-Dawley rats. The present study inspected the effect of chromium malate on glycometabolism, glycometabolism-related enzymes, lipid metabolism, and learning and memory ability in metabolically healthy Sprague-Dawley rats. The results showed that all rats survived and pathological, toxic, feces, and urine changes were not observed. Chromium malate did not cause measurable damage on liver, brain, and kidney. The fasting blood glucose, serum insulin, insulin resistance index, C-peptide, hepatic glycogen, glucose-6-phosphate dehydrogenase, glucokinase, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglyceride levels of normal rats in chromium malate groups had no significant change when compared with control group and chromium picolinate group under physiologically relevant conditions. The serum and organ content of Cr in chromium malate groups had no significant change compared with control group. No significant changes were found in morris water maze test and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and true choline esterase (TChE) activity. The results indicated that supplementation with chromium malate did not cause measurable toxicity and has no obvious effect on glycometabolism and related enzymes, learning and memory ability, and related enzymes and lipid metabolism of female and male rats. The results of this study suggest that chromium malate is safe for human consumption.

  17. Role of the plasma membrane H(+)-ATPase in the regulation of organic acid exudation under aluminum toxicity and phosphorus deficiency.

    Science.gov (United States)

    Yu, Wenqian; Kan, Qi; Zhang, Jiarong; Zeng, Bingjie; Chen, Qi

    2016-01-01

    Aluminum (Al) toxicity and phosphorus (P) deficiency are 2 major limiting factors for plant growth and crop production in acidic soils. Organic acids exuded from roots have been generally regarded as a major resistance mechanism to Al toxicity and P deficiency. The exudation of organic acids is mediated by membrane-localized OA transporters, such as ALMT (Al-activated malate transporter) and MATE (multidrug and toxic compound extrusion). Beside on up-regulation expression of organic acids transporter gene, transcriptional, translational and post-translational regulation of the plasma membrane H(+)-ATPase are also involved in organic acid release process under Al toxicity and P deficiency. This mini-review summarizes the current knowledge about this field of study on the role of the plasma membrane H(+)-ATPase in organic acid exudation under Al toxicity and P deficiency conditions.

  18. Immobilization of malate dehydrogenase on carbon nanotubes for development of malate biosensor.

    Science.gov (United States)

    Ruhal, A; Rana, J S; Kumar, S; Kumar, A

    2012-12-22

    An amperometric malic acid biosensor was developed by immobilizing malate dehydrogenase on multi-walled carbon nanotubes (MWCNT) coated on screen printed carbon electrode. The screen printed carbon electrode is made up of three electrodes viz., carbon as working, platinum as counter and silver as reference electrode. Detection of L-malic acid concentration provides important information about the ripening and shelf life of the fruits. The NADP specific malate dehydrogenase was immobilized on carboxylated multiwalled carbon nanotubes using cross linker EDC [1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide] on screen printed carbon electrode. An amperometric current was measured by differential pulse voltammetry (DPV) which increases with increasing concentrations of malic acid at fixed concentration of NADP. Enzyme electrode was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The detection limit of malic acid by the sensor was 60 - 120 μM and sensitivity of the sensor was 60 μM with a response time of 60s. The usual detection methods of malic acid are nonspecific, time consuming and less sensitive. However, an amperometric malic acid nanosensor is quick, specific and more sensitive for detection of malic acid in test samples.

  19. Prognostic value of long non-coding RNA MALAT1 in cancer patients.

    Science.gov (United States)

    Wu, Yihua; Lu, Wei; Xu, Jinming; Shi, Yu; Zhang, Honghe; Xia, Dajing

    2016-01-01

    Metastasis associated in lung adenocarcinoma transcript 1 (MALAT1) was identified to be the first long non-coding RNA as a biomarker of independent prognostic value for early stage non-small cell lung cancer patient survival. In recent years, the association between upregulated tissue MALAT1 level and incidence of various cancers including bladder cancer, colorectal cancer, and renal cancer has been widely discussed. The aim of our present study was to assess the potential prognostic value of MALAT1 in various human cancers. PubMed, Embase, Ovid, and Cochrane Library databases were systematically searched, and eligible studies evaluating the prognostic value of MALAT1 in various cancers were included. Finally, 11 studies encompassing 1216 participants reporting with sufficient data were enrolled in the current meta-analysis. The pooled hazard ratio (HR) was 2.05 (95 % confidence interval (CI) 1.64-2.55, p < 0.01) for overall survival (OS) and 2.66 (95 % CI 1.86-3.80, p < 0.01) for disease-free survival (DFS). In conclusion, high tissue MALAT1 level was associated with an inferior clinical outcome in various cancers, suggesting that MALAT1 might serve as a potential prognostic biomarker for various cancers.

  20. Role of malate transporter in lipid accumulation of oleaginous fungus Mucor circinelloides.

    Science.gov (United States)

    Zhao, Lina; Cánovas-Márquez, José T; Tang, Xin; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Garre, Victoriano; Song, Yuanda; Ratledge, Colin

    2016-02-01

    Fatty acid biosynthesis in oleaginous fungi requires the supply of reducing power, NADPH, and the precursor of fatty acids, acetyl-CoA, which is generated in the cytosol being produced by ATP: citrate lyase which requires citrate to be, transported from the mitochondrion by the citrate/malate/pyruvate transporter. This transporter, which is within the mitochondrial membrane, transports cytosolic malate into the mitochondrion in exchange for mitochondrial citrate moving into the cytosol (Fig. 1). The role of malate transporter in lipid accumulation in oleaginous fungi is not fully understood, however. Therefore, the expression level of the mt gene, coding for a malate transporter, was manipulated in the oleaginous fungus Mucor circinelloides to analyze its effect on lipid accumulation. The results showed that mt overexpression increased the lipid content for about 70 % (from 13 to 22 % dry cell weight, CDW), whereas the lipid content in mt knockout mutant decreased about 27 % (from 13 to 9.5 % CDW) compared with the control strain. Furthermore, the extracellular malate concentration was decreased in the mt overexpressing strain and increased in the mt knockout strain compared with the wild-type strain. This work suggests that the malate transporter plays an important role in regulating lipid accumulation in oleaginous fungus M. circinelloides.

  1. Modeling the vacuolar storage of malate shed lights on pre- and post-harvest fruit acidity.

    Science.gov (United States)

    Etienne, Audrey; Génard, Michel; Lobit, Philippe; Bugaud, Christophe

    2014-11-18

    Malate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. Several studies suggest that malate accumulation in fruit cells is controlled at the level of vacuolar storage. However, the regulation of vacuolar malate storage throughout fruit development, and the origins of the phenotypic variability of the malate concentration within fruit species remain to be clarified. In the present study, we adapted the mechanistic model of vacuolar storage proposed by Lobit et al. in order to study the accumulation of malate in pre and postharvest fruits. The main adaptation concerned the variation of the free energy of ATP hydrolysis during fruit development. Banana fruit was taken as a reference because it has the particularity of having separate growth and post-harvest ripening stages, during which malate concentration undergoes substantial changes. Moreover, the concentration of malate in banana pulp varies greatly among cultivars which make possible to use the model as a tool to analyze the genotypic variability. The model was calibrated and validated using data sets from three cultivars with contrasting malate accumulation, grown under different fruit loads and potassium supplies, and harvested at different stages. The model predicted the pre and post-harvest dynamics of malate concentration with fairly good accuracy for the three cultivars (mean RRMSE = 0.25-0.42). The sensitivity of the model to parameters and input variables was analyzed. According to the model, vacuolar composition, in particular potassium and organic acid concentrations, had an important effect on malate accumulation. The model suggested that rising temperatures depressed malate accumulation. The model also helped distinguish differences in malate concentration among the three cultivars and between the pre and post-harvest stages by highlighting the probable importance of proton pump activity and particularly of the free

  2. (13)C heteronuclear NMR studies of the interaction of cultured neurons and astrocytes and aluminum blockade of the preferential release of citrate from astrocytes.

    Science.gov (United States)

    Meshitsuka, Shunsuke; Aremu, David A

    2008-02-01

    Citrate has been identified as a major tricarboxylic acid (TCA) cycle constituent preferentially released by astrocytes. We undertook the present study to examine further the nature of metabolic compartmentation in central nervous system tissues using (13)C-labeled glucose and to provide new information on the influence of aluminum on the metabolic interaction between neurons and astrocytes. Metabolites released into the culture medium from astrocytes and neuron-astrocyte coculture, as well as the perchloric acid extracts of the cells were analyzed using 2D (1)H and (13)C NMR spectroscopy. Astrocytes released citrate into the culture medium and the released citrate was consumed by neurons in coculture. Citrate release by astrocytes was blocked in the presence of aluminum, with progressive accumulation of citrate within the cells. We propose citrate supply is a more efficient energy source than lactate for neurons to produce ATP, especially in the hypoglycemic state on account of it being a direct component of the TCA cycle. Astrocytes may be the cellular compartment for aluminum accumulation as a citrate complex in the brain.

  3. Applications of laser-induced breakdown spectroscopy in the aluminum electrolysis industry

    Science.gov (United States)

    Sun, Lanxiang; Yu, Haibin; Cong, Zhibo; Lu, Hui; Cao, Bin; Zeng, Peng; Dong, Wei; Li, Yang

    2018-04-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and corrosive conditions. Monitoring the molten aluminum and electrolyte components is very important for controlling the chemical reaction process. Due to the lack of fast methods to monitor the components, controlling aluminum reduction cells is difficult. In this work, laser-induced breakdown spectroscopy (LIBS) was applied to aluminum electrolysis. A new method for calculating the molecular ratio, which is an important control parameter that represents the acidity of the electrolyte, was proposed. Experiments were first performed on solid electrolyte samples to test the performance of the proposed method. Using this method, the average relative standard deviation (RSD) of the molecular ratio measurement was 0.39%, and the average root mean square error (RMSE) was 0.0236. These results prove that LIBS can accurately measure the molecular ratio. Then, in situ measurements of the molten aluminum and electrolyte were performed in industrial aluminum induction cells using the developed LIBS equipment. The spectra of the molten electrolyte were successfully obtained and were consistent with the spectra of the solid electrolyte.

  4. Role of the plasma membrane H+-ATPase in the regulation of organic acid exudation under aluminum toxicity and phosphorus deficiency

    Science.gov (United States)

    Yu, Wenqian; Kan, Qi; Zhang, Jiarong; Zeng, Bingjie; Chen, Qi

    2016-01-01

    Aluminum (Al) toxicity and phosphorus (P) deficiency are 2 major limiting factors for plant growth and crop production in acidic soils. Organic acids exuded from roots have been generally regarded as a major resistance mechanism to Al toxicity and P deficiency. The exudation of organic acids is mediated by membrane-localized OA transporters, such as ALMT (Al-activated malate transporter) and MATE (multidrug and toxic compound extrusion). Beside on up-regulation expression of organic acids transporter gene, transcriptional, translational and post-translational regulation of the plasma membrane H+-ATPase are also involved in organic acid release process under Al toxicity and P deficiency. This mini-review summarizes the current knowledge about this field of study on the role of the plasma membrane H+-ATPase in organic acid exudation under Al toxicity and P deficiency conditions. PMID:26713714

  5. Mutation in the peroxin-coding gene PEX22 contributing to high malate production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Negoro, Hiroaki; Sakamoto, Mitsuru; Kotaka, Atsushi; Matsumura, Kengo; Hata, Yoji

    2018-02-01

    Saccharomyces cerevisiae produces organic acids such as succinate, acetate, and malate during alcoholic fermentation. Since malate contributes to the pleasant taste of sake (a Japanese alcoholic beverage), various methods for breeding high-malate-producing yeast strains have been developed. Here, a high-malate-producing yeast strain F-701H was isolated. This mutant was sensitive to dimethyl succinate (DMS) and harbored a nonsense mutation in the peroxin gene PEX22, which was identified as the cause of high malate production by comparative genome analysis. This mutation, which appeared to cause Pex22p dysfunction, was sufficient to confer increased malate productivity and DMS sensitivity to yeast cells. Next, we investigated the mechanism by which this mutation led to high malate production in yeast cells. Peroxins, such as Pex22p, maintain peroxisomal biogenesis. Analysis of 29 PEX disruptants revealed an increased malate production by deletion of the genes encoding peroxins responsible for importing proteins (containing peroxisomal targeting signal 1, PTS1) into the peroxisomal matrix, and those responsible for the assembly of peroxins themselves in the peroxisomal membrane. A defect in peroxisomal malate dehydrogenase (Mdh3p), harboring endogenous PTS1, inhibited the high malate-producing phenotype in the PEX22 mutant. Moreover, Mdh3p, which was normally sorted to the peroxisomal matrix, was potentially mislocalized to the cytosol in the PEX22 mutant. This suggested that an increase in malate production resulted from the mislocalization of Mdh3p from the peroxisome to the cytoplasm due to the loss of peroxin-mediated transportation. Thus, the present study revealed a novel mechanism for organic acid productions in yeast during sake brewing. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. L-malate enhances the gene expression of carried proteins and antioxidant enzymes in liver of aged rats.

    Science.gov (United States)

    Zeng, X; Wu, J; Wu, Q; Zhang, J

    2015-01-01

    Previous studies in our laboratory reported L-malate as a free radical scavenger in aged rats. To investigate the antioxidant mechanism of L-malate in the mitochondria, we analyzed the change in gene expression of two malate-aspartate shuttle (MAS)-related carried proteins (AGC, aspartate/glutamate carrier and OMC, oxoglutarate/malate carrier) in the inner mitochondrial membrane, and three antioxidant enzymes (CAT, SOD, and GSH-Px) in the mitochondria. The changes in gene expression of these proteins and enzymes were examined by real-time RT-PCR in the heart and liver of aged rats treated with L-malate. L-malate was orally administered in rats continuously for 30 days using a feeding atraumatic needle. We found that the gene expression of OMC and GSH-Px mRNA in the liver increased by 39 % and 38 %, respectively, in the 0.630 g/kg L-malate treatment group than that in the control group. The expression levels of SOD mRNA in the liver increased by 39 %, 56 %, and 78 % in the 0.105, 0.210, and 0.630 g/kg L-malate treatment groups, respectively. No difference were observed in the expression levels of AGC, OMC, CAT, SOD, and GSH-Px mRNAs in the heart of rats between the L-malate treatment and control groups. These results predicted that L-malate may increase the antioxidant capacity of mitochondria by enhancing the expression of mRNAs involved in the MAS and the antioxidant enzymes.

  7. Protective effect of ashwagandha (Withania somnifera against neurotoxicity induced by aluminum chloride in rats

    Directory of Open Access Journals (Sweden)

    Mohamed E Elhadidy

    2018-01-01

    Full Text Available Objective: To evaluate the neuroprotective effect of ashwagandha extract against aluminum chloride-induced neurotoxicity in rats. Methods: Rats were divided into control, aluminum-intoxicated rats treated daily with aluminum trichloride (AlCl3 (100 mg/kg, orally for 30 d and aluminum-intoxicated animals protected by receiving daily ashwagandha extract (200 mg/kg, orally one hour before AlCl3 administration for 30 d. Levels of lipid peroxidation, nitric oxide, reduced glutathione and tumor necrosis factor-α were measured in the cortex, hippocampus and striatum. In addition, the activities of Na+, K+, ATPase and acetylcholinesterase were determined in the three studied brain regions. Results: Aluminum increased the levels of lipid peroxidation and nitric oxide in the cortex, hippocampus and striatum and decreased the reduced glutathione level in the hippocampus and striatum. In rats protected with ashwagandha extract, non significant changes were observed in lipid peroxidation, nitric oxide and reduced glutathione. In addition, ashwagandha extracts prevented the increased activity of acetylcholinesterase and Na+, K+, ATPase induced by AlCl3 in the cortex, hippocampus and striatum. The present findings also showed that the significant increase in tumor necrosis factor-α induced by AlCl3 in the cortex and hippocampus was prevented by ashwagandha extract. Conclusions: The present results suggest that ashwagandha extract possesses antioxidant and anti-inflammatory effects against aluminum neurotoxicity. In addition, ashwagandha extract could prevent the decline in cholinergic activity by maintaining normal acetylcholinesterase activity. The later effect could recommend the use of ashwagandha as a memory enhancer.

  8. Photosynthetic metabolism of malate and aspartate in Flaveria trinervia a C4 dicot

    International Nuclear Information System (INIS)

    Moore, B.A.

    1986-01-01

    C 4 species are known to vary in their apparent relative use of malate and aspartate to mediate carbon flux through the C 4 cycle. These studies investigate some of the adjustments in photosynthetic carbon metabolism that occur during a dark to light transition and during expansion of leaves of Flaveria trinervia, a C 4 dicot. Enzyme localization studies with isolated leaf mesophyll and bundle sheath protoplasts, indicated that both C 4 acids are formed in the mesophyll chloroplast, and that aspartate is metabolized to malate in the bundle sheath chloroplast prior to decaroxylation there. During photosynthetic induction, the partitioning of 14 CO 2 between malate and aspartate showed a single oscillation of increased aspartate labelling after 5 min of illumination. Turnover of [4-14C] (malate plus aspartate) was slow initially during illumination, prior to establishment of active pools of C 4 cycle metabolites

  9. Long noncoding RNA MALAT1 as a potential novel biomarker in digestive system cancers: a meta-analysis.

    Science.gov (United States)

    Song, Wei; Zhang, Run J; Zou, Shu B

    2016-08-01

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a newly discovered long non-coding RNA (lncRNA), has been reported to be overexpressed in various cancers. However, the clinical value of MALAT1 in digestive system cancers is unclear. This study was designed to investigate the potential value of MALAT1 as a prognostic biomarker in digestive system cancers. We searched the Medline, Embase and Cochrane Library databases. All studies that explored the correlation between lncRNA MALAT1 expression and survival in digestive system tumors were selected. A quantitative meta-analysis was performed for the correlation between lncRNA MALAT1 expression and survival in digestive system tumors. Five studies were eligible for analysis, which included 547 patients. Meta-analysis showed that high expression of MALAT1 could predict poor overall survival (OS) in digestive system cancers (pooled HR: 1.85, 95% CI: 1.41-2.43, Pdigestive system cancers.

  10. The Association between Abnormal Long Noncoding RNA MALAT-1 Expression and Cancer Lymph Node Metastasis: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2016-01-01

    Full Text Available Previous studies have investigated that the expression levels of MALAT-1 were higher in cancerous tissues than matched histologically normal tissues. And, to some extent, overexpression of MALAT-1 was inclined to lymph node metastasis. This meta-analysis collected all relevant articles and explored the association between MALAT-1 expression levels and lymph node metastasis. We searched PubMed, EmBase, Web of Science, Cochrane Library, and OVID to address the level of MALAT-1 expression in cancer cases and noncancerous controls (accessed February 2015. And 8 studies comprising 696 multiple cancer patients were included to assess this association. The odds ratio (OR and its corresponding 95% confidence interval (CI were calculated to assess the strength of the association using Stata 12.0 version software. The results revealed there was a significant difference in the incidence of lymph node metastasis between high MALAT-1 expression group and low MALAT-1 expression group (OR = 1.94, 95% CI 1.15–3.28, P=0.013 random-effects model. Subgroup analysis indicated that MALAT-1 high expression had an unfavorable impact on lymph node metastasis in Chinese patients (OR = 1.87, 95% CI 1.01–2.46. This study demonstrated that the incidence of lymph node metastasis in patients detected with high MALAT-1 expression was higher than that in patients with low MALAT-1 expression in China.

  11. Metabolic engineering of Aspergillus oryzae for efficient production of l-malate directly from corn starch.

    Science.gov (United States)

    Liu, Jingjing; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian; Liu, Long

    2017-11-20

    l-Malate, an important chemical building block, has been widely applied in the food, pharmaceutical, and bio-based materials industries. In previous work, we engineered Aspergillus oryzae by rewiring the reductive tricarboxylic acid pathway to produce l-malate from glucose. To decrease the production cost, here, we further engineered A. oryzae to efficiently produce l-malate directly from corn starch with simultaneous liquefaction-saccharification and fermentation. First, a promoter PN5 was constructed by quintuple tandem of the 97-bp fragment containing the cis-element of the glucoamylase gene promoter (PglaA), and with the promoter PN5, the transcriptional level of glaA gene increased by 25-45%. Then, by co-overexpression of glaA, a-amylase (amyB) and a-glucosidase (agdA) genes with the promoter PN5, the l-malate titer increased from 55.5g/L to 72.0g/L with 100g/L corn starch in shake flask. In addition, to reduce the concentration of byproducts succinate and fumarate, a fumarase from Saccharomyces cerevisiae, which facilitated the transformation of fumarate to l-malate, was overexpressed. As a result, the concentration of succinate and fumarate decreased from 12.6 and 1.29g/L to 7.8 and 0.59g/L, and the l-malate titer increased from 72.0g/L to 78.5g/L. Finally, we found that the addition of glucose at the initial fermentation stage facilitated the cell growth and l-malate synthesis, and the l-malate titer further increased to 82.3g/L by co-fermentation of 30g/L glucose and 70g/L corn starch, with a productivity of 1.18g/L/h and a yield of 0.82g/g total carbon sources. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Controlled Release from Core-Shell Nanoporous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Xingmao Jiang

    2011-01-01

    Full Text Available Cerium (Ce corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0×10−14 m2s for Ce3+ compared to 2.5×10−13 m2s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.

  13. Occurrence of the malate-aspartate shuttle in various tumor types.

    Science.gov (United States)

    Greenhouse, W V; Lehninger, A L

    1976-04-01

    The activity of the malate-aspartate shuttle for the reoxidation of cytoplasmic reduced nicotinamide adenine dinucleotide (NADH) by mitochondria was assessed in six lines of rodent ascites tumor cells (two strains of Ehrlich ascites carcinoma, Krebs II carcinoma, Novikoff hepatoma, AS-30D hepatoma, and L1210 mouse leukemia). All the tumor cells examined showed mitochondrial reoxidation of cytoplasmic NADH, as evidenced by the accumulation of pyruvate when the cells were incubated aerobically with L-lactate. Reoxidation of cytoplasmic NADH thus generated was completely inhibited by the transaminase inhibitor aminooxyacetate. The involvement of the respiratory chain in the reoxidation of cytoplasmic NADH was demonstrated by the action of cyanide, rotenone, and antimycin A, which strongly inhibited the formation of pyruvate from added L-lactate. Compounds that inhibit the carrier-mediated entry of malate into mitochondria, such as butylmalonate, benzenetricarboxylate, and iodobenzylmalonate, also inhibited the accumulation of pyruvate from added L-lactate by the tumor cells. The maximal rate of the malate-aspartate shuttle was established by addtion of arsenite to inhibit the mitochondrial oxidation of the pyruvate formed from added lactate. The capacity of the various tumor lines for the reoxidation of cytoplasmic NADH via the malate-aspartate shuttle approaches 20% of the total respiratory rate of the cells and thus appears to be sufficient to account for the mitochondrial reoxidation of that fraction of glycolytic NADH not reoxidized by pyruvate and lactate dehydrognenase in the cytoplasm.

  14. Micro-mechanisms of Surface Defects Induced on Aluminum Alloys during Plastic Deformation at Elevated Temperatures

    Science.gov (United States)

    Gali, Olufisayo A.

    Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were

  15. Controlled Release from Core-Shell Nano porous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    International Nuclear Information System (INIS)

    Jiang, X.; Rathod, Sh.; Shah, P.; Brinker, C.J.; Jiang, X.; Jiang, Y.; Liu, N.; Xu, H.; Brinker, C.J.

    2011-01-01

    Cerium (Ce) corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0x10-14 m 2 s for Ce 3+ compared to 2.5x10-13 m 2 s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.

  16. FUNCTIONAL-ANALYSIS OF THE N-TERMINAL PREPEPTIDES OF WATERMELON MITOCHONDRIAL AND GLYOXYSOMAL MALATE-DEHYDROGENASES

    NARCIS (Netherlands)

    LEHNERER, M; KEIZERGUNNIK, [No Value; VEENHUIS, M; GIETL, C

    1994-01-01

    Mitochondrial and glyoxysomal malate dehydrogenase (mMDH; gMDH; L-malate : NAD(+) oxidoreductase; EC 1.1.1.37) of watermelon (Citrullus vulgaris) cotyledons are synthesized with N-terminal cleavable presequences which are shown to specify sorting of the two proteins. The two presequences differ in

  17. la phosphoglucoisomerase et la malate deshydrogenase

    African Journals Online (AJOL)

    AISA

    dimérique du cycle de Krebs qui catalyse la réaction suivante: Malate + NAD MDH Oxaloacétate +. NADH. Dans les cellules du maïs, les formes cytosoliques sont codées par deux loci, les formes mitochondriales par 3 loci (Newton et. Schwartz, 1980). L'acide ascorbique inhibe préférentiellement les formes du cytosol.

  18. Aluminum exposure for one hour decreases vascular reactivity in conductance and resistance arteries in rats

    International Nuclear Information System (INIS)

    Schmidt, Patrícia Medeiros; Escobar, Alyne Goulart; Torres, João Guilherme Dini; Martinez, Caroline Silveira; Rizzetti, Danize Aparecida; Kunz, Simone Noremberg; Vassallo, Dalton Valentim; Alonso, María Jesús; Peçanha, Franck Maciel; Wiggers, Giulia Alessandra

    2016-01-01

    Aims: Aluminum (Al) is an important environmental contaminant; however, there are not enough evidences of Al-induced cardiovascular dysfunction. We investigated the effects of acute exposure to aluminum chloride (AlCl 3 ) on blood pressure, vascular reactivity and oxidative stress. Methods and results: Male Wistar rats were divided into two groups: Untreated: vehicle (ultrapure water, ip) and AlCl 3 : single dose of AlCl 3 (100 mg/kg,ip). Concentration-response curves to phenylephrine in the absence and presence of endothelium, the nitric oxide synthase inhibitor L-NAME, the potassium channel blocker tetraethylammonium, and the NADPH oxidase inhibitor apocynin were performed in segments from aortic and mesenteric resistance arteries. NO released was assessed in aorta and reactive oxygen species (ROS), malondialdehyde, non-protein thiol levels, antioxidant capacity and enzymatic antioxidant activities were investigated in plasma, aorta and/or mesenteric arteries. After one hour of AlCl 3 exposure serum Al levels attained 147.7 ± 25.0 μg/L. Al treatment: 1) did not affect blood pressure, heart rate and vasodilator responses induced by acetylcholine or sodium nitroprusside; 2) decreased phenylephrine-induced vasoconstrictor responses; 3) increased endothelial modulation of contractile responses, NO release and vascular ROS production from NADPH oxidase; 4) increased plasmatic, aortic and mesenteric malondialdehyde and ROS production, and 5) decreased antioxidant capacity and affected the antioxidant biomarkers non-protein thiol levels, glutathione peroxidase, glutathione-S-transferase, superoxide dismutase and catalase enzymatic activities. Conclusion: AlCl 3 -acute exposure reduces vascular reactivity. This effect is associated with increased NO production, probably acting on K + channels, which seems to occur as a compensatory mechanism against Al-induced oxidative stress. Our results suggest that Al exerts toxic effects to the vascular system. - Highlights:

  19. Aluminum exposure for one hour decreases vascular reactivity in conductance and resistance arteries in rats

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Patrícia Medeiros; Escobar, Alyne Goulart; Torres, João Guilherme Dini; Martinez, Caroline Silveira; Rizzetti, Danize Aparecida; Kunz, Simone Noremberg [Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul (Brazil); Vassallo, Dalton Valentim [Department of Physiological Sciences, Universidade Federal do Espírito Santo, Espirito Santo (Brazil); Alonso, María Jesús [Department of Basic Health Sciences, Universidad Rey Juan Carlos, Alcorcón (Spain); Peçanha, Franck Maciel [Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul (Brazil); Wiggers, Giulia Alessandra, E-mail: giuliawp@gmail.com [Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul (Brazil)

    2016-12-15

    Aims: Aluminum (Al) is an important environmental contaminant; however, there are not enough evidences of Al-induced cardiovascular dysfunction. We investigated the effects of acute exposure to aluminum chloride (AlCl{sub 3}) on blood pressure, vascular reactivity and oxidative stress. Methods and results: Male Wistar rats were divided into two groups: Untreated: vehicle (ultrapure water, ip) and AlCl{sub 3}: single dose of AlCl{sub 3} (100 mg/kg,ip). Concentration-response curves to phenylephrine in the absence and presence of endothelium, the nitric oxide synthase inhibitor L-NAME, the potassium channel blocker tetraethylammonium, and the NADPH oxidase inhibitor apocynin were performed in segments from aortic and mesenteric resistance arteries. NO released was assessed in aorta and reactive oxygen species (ROS), malondialdehyde, non-protein thiol levels, antioxidant capacity and enzymatic antioxidant activities were investigated in plasma, aorta and/or mesenteric arteries. After one hour of AlCl{sub 3} exposure serum Al levels attained 147.7 ± 25.0 μg/L. Al treatment: 1) did not affect blood pressure, heart rate and vasodilator responses induced by acetylcholine or sodium nitroprusside; 2) decreased phenylephrine-induced vasoconstrictor responses; 3) increased endothelial modulation of contractile responses, NO release and vascular ROS production from NADPH oxidase; 4) increased plasmatic, aortic and mesenteric malondialdehyde and ROS production, and 5) decreased antioxidant capacity and affected the antioxidant biomarkers non-protein thiol levels, glutathione peroxidase, glutathione-S-transferase, superoxide dismutase and catalase enzymatic activities. Conclusion: AlCl{sub 3}-acute exposure reduces vascular reactivity. This effect is associated with increased NO production, probably acting on K{sup +} channels, which seems to occur as a compensatory mechanism against Al-induced oxidative stress. Our results suggest that Al exerts toxic effects to the vascular

  20. Quininium Malates: Partial Chiral Discrimination via Diastereomeric ...

    African Journals Online (AJOL)

    Quinine was employed as a resolving agent for racemic malic acid. The resultant product was a quininium salt containing 75 % of the D-malate anion. Quinine was also crystallized with pure L- and D-malic acids and the structures of the resulting diastereomeric salts were elucidated. The crystal packings were analyzed in ...

  1. Radiation induced defects and thermoluminescence mechanism in aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Atobe, K.; Kobayashi, T.; Awata, T. [Naruto Univ. of Education, Tokushima (Japan); Okada, M. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Nakagawa, M. [Kagawa Univ., Faculty of Education, Takamatsu, Kagawa (Japan)

    2001-01-01

    The thermoluminescence of the irradiated aluminum oxides were measured to study the radiation induced defects and their behaviors. Neutron and {gamma}-ray irradiation were performed for a shingle crystal of the high purity aluminum oxide. The thermoluminescence glow curve and its activation energy were measured. The spectroscopy measurement on the thermoluminescence and the absorption are also carried out. The observed 430 and 340 nm peaks are discussed relating to the F{sup +} and F centers, respectively. Activation state of the F center transits to 3P state through 1P state by emitting phonons. Trapped electron on 3P state emits phonon of 2.9 eV (430 nm) during transition to the ground state. The above reaction can be written by the equation. F{sup +} + e {yields} (F){sup *} {yields} F + h{nu}(2.9 eV, 470 nm). (Katsuta, H.)

  2. Prognostic value of long noncoding RNA MALAT1 in digestive system malignancies.

    Science.gov (United States)

    Zhai, Hui; Li, Xiao-Mei; Maimaiti, Ailifeire; Chen, Qing-Jie; Liao, Wu; Lai, Hong-Mei; Liu, Fen; Yang, Yi-Ning

    2015-01-01

    MALAT1, a newly discovered long noncoding RNA (lncRNA), has been reported to be highly expressed in many types of cancers. This meta-analysis summarizes its potential prognostic value in digestive system malignancies. A quantitative meta-analysis was performed through a systematic search in PubMed, Cochrane Library, Web of Science and Chinese National Knowledge Infrastructure (CNKI) for eligible papers on the prognostic impact of MALAT1 in digestive system malignancies from inception to Apr. 25, 2015. Pooled hazard ratios (HRs) with 95% confidence interval (95% CI) were calculated to summarize the effect. Five studies were included in the study, with a total of 527 patients. A significant association was observed between MALAT1 abundance and poor overall survival (OS) of patients with digestive system malignancies, with pooled hazard ratio (HR) of 7.68 (95% confidence interval [CI]: 4.32-13.66, Pdigestive system malignancies.

  3. ABA-Induced Stomatal Closure Involves ALMT4, a Phosphorylation-Dependent Vacuolar Anion Channel of Arabidopsis[OPEN

    Science.gov (United States)

    Baetz, Ulrike; Huck, Nicola V.; Zhang, Jingbo

    2017-01-01

    Stomatal pores are formed between a pair of guard cells and allow plant uptake of CO2 and water evaporation. Their aperture depends on changes in osmolyte concentration of guard cell vacuoles, specifically of K+ and Mal2−. Efflux of Mal2− from the vacuole is required for stomatal closure; however, it is not clear how the anion is released. Here, we report the identification of ALMT4 (ALUMINUM ACTIVATED MALATE TRANSPORTER4) as an Arabidopsis thaliana ion channel that can mediate Mal2− release from the vacuole and is required for stomatal closure in response to abscisic acid (ABA). Knockout mutants showed impaired stomatal closure in response to the drought stress hormone ABA and increased whole-plant wilting in response to drought and ABA. Electrophysiological data show that ALMT4 can mediate Mal2− efflux and that the channel activity is dependent on a phosphorylatable C-terminal serine. Dephosphomimetic mutants of ALMT4 S382 showed increased channel activity and Mal2− efflux. Reconstituting the active channel in almt4 mutants impaired growth and stomatal opening. Phosphomimetic mutants were electrically inactive and phenocopied the almt4 mutants. Surprisingly, S382 can be phosphorylated by mitogen-activated protein kinases in vitro. In brief, ALMT4 likely mediates Mal2− efflux during ABA-induced stomatal closure and its activity depends on phosphorylation. PMID:28874508

  4. A molecular, genetic and physiological analysis of plant aluminum tolerance (abstract)

    International Nuclear Information System (INIS)

    Pineros, M.

    2005-01-01

    Aluminum (Al) toxicity is an important agronomic trait, limiting crop production on acid soils that comprise up to 50% of the world's potentially arable lands. A significant genetic variation in Al tolerance exists in both crop plants and Arabidopsis. The exploitation of this genetic variation to breed crops with increased Al tolerance has been a productive and active area of research, however, the underlying molecular, genetic and physiological bases are still not well understood. Only very recently was the first Al tolerance gene, ALMT1, isolated in wheat and shown to be a novel Al-activated malate transporter. Work in our laboratory has focused on using integrated genomic (gene and protein expression profiling), molecular genetic and physiological approaches to identify novel Al tolerance genes and the physiological mechanisms they control in the cereal crops maize and sorghum, and also in arabidopsis. In sorghum we had previously shown that Al tolerance is the result of a single locus, Alt/sub SB/ which maps to the top of sorghum chromosome 3 in a region totally distinct from where the major Al tolerance maps in wheat and other related members of the Triticeae. Very recently, we have used map-based cloning techniques in sorghum to clone Alt/sub SB/ and have found it is a novel Al tolerance gene. Here we will present a molecular characterization of the Alt/sub SB/ gene and also the physiological mechanism of sorghum Al tolerance it controls. In arabidopsis, we have previously shown that Al tolerance is a quantitative trait and have identified two major Al tolerance QTL on chromosomes 1 and 5. These genes function to confer tolerance via Al via activated root malate release. We found that a member of the arabidopsis gene family that is a close homolog to wheat ALMT1 maps near the largest tolerance QTL on chromosome 1 and have also found this gene encodes the Al-activated malate transport involved in arabidopsis Al tolerance. However, we have clear molecular

  5. Supersonic laser-induced jetting of aluminum micro-droplets

    International Nuclear Information System (INIS)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-01-01

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets

  6. Supersonic laser-induced jetting of aluminum micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zenou, M. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel); Sa' ar, A. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Kotler, Z. [Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel)

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  7. Enzymatic urea adaptation: lactate and malate dehydrogenase in elasmobranchs

    Czech Academy of Sciences Publication Activity Database

    Lagana, G.; Bellocco, E.; Mannucci, C.; Leuzzi, U.; Tellone, E.; Kotyk, Arnošt; Galtieri, A.

    2006-01-01

    Roč. 55, č. 6 (2006), s. 675-688 ISSN 0862-8408 Institutional research plan: CEZ:AV0Z50110509 Keywords : elasmobranchs * lactate dehydrogenase * malate dehydrogenase Subject RIV: CE - Biochemistry Impact factor: 2.093, year: 2006

  8. Influence of short-term aluminum exposure on demineralized bone matrix induced bone formation

    Energy Technology Data Exchange (ETDEWEB)

    Severson, A.R. (Minnesota Univ., Duluth, MN (United States). Dept. of Anatomy and Cell Biology); Haut, C.F.; Firling, C.E. (Minnesota Univ., Duluth, MN (United States). Dept. of Biology); Huntley, T.E. (Minnesota Univ., Duluth, MN (United States). Dept. of Biochemistry and Molecular Biology)

    1992-12-01

    The effects of aluminum exposure on bone formation employing the demineralized bone matrix (DBM) induced bone development model were studied using 4-week-old Sprague-Dawley rats injected with a saline (control) or an aluminum chloride (experimental) solution. After 2 weeks of aluminum treatment, 20-mg portions of rat DBM were implanted subcutaneously on each side in the thoracic region of the control and experimental rats. Animals were killed 7, 12, or 21 days after implantation of the DBM and the developing plaques removed. No morphological, histochemical, or biochemical differences were apparent between plaques from day 7 control and experimental rats. Plaques from day 12 control and experimental rats exhibited cartilage formation and alkaline phosphatase activity localized in osteochondrogenic cells, chondrocytes, osteoblasts, and extracellular matrix. Unlike the plaques from control rats that contained many osteoblastic mineralizing fronts, the plaques from the 12-day experimental group had a preponderance of cartilaginous tissue, no evidence of mineralization, increased levels of alkaline phosphatase activity, and a reduced calcium content. Plaques developing for 21 days in control animals demonstrated extensive new bone formation and bone marrow development, while those in the experimental rats demonstrated unmineralized osteoid-like matrix with poorly developed bone marrow. Alkaline phosphatase activity of the plaques continued to remain high on day 21 for the control and experimental groups. Calcium levels were significantly reduced in the experimental group. These biochemical changes correlated with histochemical reductions in bone calcification. Thus, aluminum administration to rats appears to alter the differentiation and calcification of developing cartilage and bone in the DBM-induced bone formation model and suggests that aluminum by some mechanism alters the matrix calcification in growing bones. (orig.).

  9. The lncRNA Malat1 Is Dispensable for Mouse Development but Its Transcription Plays a cis-Regulatory Role in the Adult

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2012-07-01

    Full Text Available Genome-wide studies have identified thousands of long noncoding RNAs (lncRNAs lacking protein-coding capacity. However, most lncRNAs are expressed at a very low level, and in most cases there is no genetic evidence to support their in vivo function. Malat1 (metastasis associated lung adenocarcinoma transcript 1 is among the most abundant and highly conserved lncRNAs, and it exhibits an uncommon 3′-end processing mechanism. In addition, its specific nuclear localization, developmental regulation, and dysregulation in cancer are suggestive of it having a critical biological function. We have characterized a Malat1 loss-of-function genetic model that indicates that Malat1 is not essential for mouse pre- and postnatal development. Furthermore, depletion of Malat1 does not affect global gene expression, splicing factor level and phosphorylation status, or alternative pre-mRNA splicing. However, among a small number of genes that were dysregulated in adult Malat1 knockout mice, many were Malat1 neighboring genes, thus indicating a potential cis-regulatory role of Malat1 gene transcription.

  10. Fumarate to Malate Conversion in Infarcted Porcine Heart – a Pilot Study

    DEFF Research Database (Denmark)

    Søvsø Szocska Hansen, Esben; Tougaard, Rasmus Stilling; Nielsen, Per Mose

    2017-01-01

    Hyperpolarized MR may be a key tool for investigation cardiac metabolism and cardiac treatment response. [1,4- 13C2]Fumarate is an emerging and interesting candidate for measuring and visualizing cardiac injury after ischemia. In this study we showed an initial step for imaging cardiac cell death...... in a large animal model with [1,4- 13C2]malate. The [1,4- 13C2]malate signal correlated well with increased 13C-lactate signal and 13C-alanine absence. Overall, this shows increased metabolism in the infarcted area and ongoing necrosis....

  11. Are phloem-derived amino acids the origin of the elevated malate concentration in the xylem sap following mineral N starvation in soybean?

    Science.gov (United States)

    Vitor, Simone C; do Amarante, Luciano; Sodek, Ladaslav

    2018-05-16

    A substantial increase in malate in the xylem sap of soybean subjected to mineral N starvation originates mainly from aspartate, a prominent amino acid of the phloem. A substantial increase in xylem malate was found when non-nodulated soybean plants were transferred to a N-free medium. Nodulated plants growing in the absence of mineral N and, therefore, dependent on symbiotic N 2 fixation also contained elevated concentrations of malate in the xylem sap. When either nitrate or ammonium was supplied, malate concentrations in the xylem sap were low, both for nodulated and non-nodulated plants. Evidence was obtained that the elevated malate concentration of the xylem was derived from amino acids supplied by the phloem. Aspartate was a prominent component of the phloem sap amino acids and, therefore, a potential source of malate. Supplying the roots of intact plants with 13 C-aspartate revealed that malate of the xylem sap was readily labelled under N starvation. A hypothetical scheme is proposed whereby aspartate supplied by the phloem is metabolised in the roots and the products of this metabolism cycled back to the shoot. Under N starvation, aspartate metabolism is diverted from asparagine synthesis to supply N for the synthesis of other amino acids via transaminase activity. The by-product of aspartate transaminase activity, oxaloacetate, is transformed to malate and its export accounts for much of the elevated concentration of malate found in the xylem sap. This mechanism represents a new additional role for malate during mineral N starvation of soybean, beyond that of charge balance.

  12. Cellular distribution, purification and electrophoretic properties of malate dehydrogenase in Trichuris ovis and inhibition by benzimidazoles and pyrimidine derivatives.

    Science.gov (United States)

    Sanchez-Moreno, M; Ortega, J E; Valero, A

    1989-12-01

    High levels of malate dehydrogenase were found in Trichuris ovis. Two molecular forms of the enzyme, of different cellular location and electrophoretic pattern, were isolated and purified. The activity of soluble malate dehydrogenase was greater than that of mitochondrial malate dehydrogenase. Both forms also displayed different electrophoretic profiles in comparison with purified extracts from goat (Capra hircus) liver. Substrate concentration directly affected enzyme activity. Host and parasite malate dehydrogenase activity were both inhibited by a series of benzimidazoles and pyrimidine-derived compounds, some of which markedly reduced parasite enzyme activity, but not host enzyme activity. Percentage inhibition by some pyrimidine derivatives was greater than that produced by benzimidazoles.

  13. Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Andrew [Center for Sensor Systems and Technologies, Aerodyne Research, Inc., 45 Manning Road Billerica, MA, 01821-3976 (United States)]. E-mail: af@aerodyne.com; Iannarilli, Frank J. [Center for Sensor Systems and Technologies, Aerodyne Research, Inc., 45 Manning Road Billerica, MA, 01821-3976 (United States); Wormhoudt, Joda C. [Center for Sensor Systems and Technologies, Aerodyne Research, Inc., 45 Manning Road Billerica, MA, 01821-3976 (United States)

    2005-08-31

    A laser induced breakdown spectroscopy-based apparatus for the analysis of aluminum alloys which employs a microchip laser and a handheld spectrometer with an ungated, non-intensified CCD array has been built and tested. The microchip laser, which emits low energy pulses (4-15 {mu}J) at high repetition rates (1-10 kHz) at 1064 nm, produces, when focused, an ablation crater with a radius on the order of only 10 {mu}m. The resulting emission is focused onto an optical fiber connected to 0.10 m focal length spectrometer with a spectral range of 275-413 nm. The apparatus was tested using 30 different aluminum alloy reference samples. Two techniques for constructing calibration curves from the data, peak integration and partial least squares regression, were quantitatively evaluated. Results for Fe, Mg, Mn, Ni, Si, and Zn indicated limits of detection (LOD) that ranged from 0.05 to 0.14 wt.% and overall measurement errors which varied from 0.06 to 0.18 wt.%. Higher limits of detection and overall error for Cu (> 0.3 wt.%) were attributed to analysis problems associated with the presence of optically thick lines and a spectral interference from Zn. Improvements in design and component sensitivity should increase overall performance by at least a factor of 2, allowing for dependable aluminum alloy classification.

  14. Alternative oxidase pathway optimizes photosynthesis during osmotic and temperature stress by regulating cellular ROS, malate valve and antioxidative systems

    Directory of Open Access Journals (Sweden)

    DINAKAR eCHALLABATHULA

    2016-02-01

    Full Text Available The present study reveals the importance of alternative oxidase (AOX pathway in optimizing photosynthesis under osmotic and temperature stress conditions in the mesophyll protoplasts of Pisum sativum. The responses of photosynthesis and respiration were monitored at saturating light intensity of 1000 µmoles m-2 s-1 at 25 oC under a range of sorbitol concentrations from 0.4 M to 1.0M to induce hyper-osmotic stress and by varying the temperature of the thermo-jacketed pre-incubation chamber from 25 oC to 10 oC to impose sub-optimal temperature stress. Compared to controls (0.4 M sorbitol and 25 OC, the mesophyll protoplasts showed remarkable decrease in NaHCO3-dependent O2 evolution (indicator of photosynthetic carbon assimilation, under both hyper-osmotic (1.0 M sorbitol and sub-optimal temperature stress conditions (10 OC, while the decrease in rates of respiratory O2 uptake were marginal. The capacity of AOX pathway increased significantly in parallel to increase in intracellular pyruvate and reactive oxygen species (ROS levels under both hyper-osmotic stress and sub-optimal temperature stress under the background of saturating light. The ratio of redox couple (Malate/OAA related to malate valve increased in contrast to the ratio of redox couple (GSH/GSSG related to antioxidative system during hyper-osmotic stress. Nevertheless, the ratio of GSH/GSSG decreased in the presence of sub-optimal temperature, while the ratio of Malate/OAA showed no visible changes. Also, the redox ratios of pyridine nucleotides increased under hyper-osmotic (NADH/NAD and sub-optimal temperature (NADPH/NADP stresses, respectively. However, upon restriction of AOX pathway by using salicylhydroxamic acid (SHAM, the observed changes in NaHCO3 dependent O2 evolution, cellular ROS, redox ratios of Malate/OAA, NAD(PH/NAD(P and GSH/GSSG were further aggravated under stress conditions with concomitant modulations in NADP-MDH and antioxidant enzymes. Taken together, the

  15. Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria

    International Nuclear Information System (INIS)

    Wang, Peng; Lu, Zhou; Zhang, Dun

    2015-01-01

    Highlights: • Slippery liquid-infused porous surfaces (SLIPS) were fabricated over aluminum. • SLIPS depress the adherence of sulfate reducing bacteria in static seawater. • SLIPS inhibit the microbiological corrosion of aluminum in static seawater. • The possible microbiological corrosion protection mechanism of SLIPS is proposed. - Abstract: Microbiological corrosion induced by sulfate reducing bacteria (SRB) is one of the main threatens to the safety of marine structure. To reduce microbiological corrosion, slippery liquid infused porous surfaces (SLIPS) were designed and fabricated on aluminum substrate by constructing rough aluminum oxide layer, followed by fluorination of the rough layer and infiltration with lubricant. The as-fabricated SLIPS were characterized with wettability measurement, SEM and XPS. Their resistances to microbiological corrosion induced by SRB were evaluated with fluorescence microscopy and electrochemical measurement. It was demonstrated that they present high resistance to bacteria adherence and the resultant microbiological corrosion in static seawater

  16. Short-lived long non-coding RNAs as surrogate indicators for chemical exposure and LINC00152 and MALAT1 modulate their neighboring genes.

    Directory of Open Access Journals (Sweden)

    Hidenori Tani

    Full Text Available Whole transcriptome analyses have revealed a large number of novel long non-coding RNAs (lncRNAs. Although accumulating evidence demonstrates that lncRNAs play important roles in regulating gene expression, the detailed mechanisms of action of most lncRNAs remain unclear. We previously reported that a novel class of lncRNAs with a short half-life (t1/2 < 4 h in HeLa cells, termed short-lived non-coding transcripts (SLiTs, are closely associated with physiological and pathological functions. In this study, we focused on 26 SLiTs and nuclear-enriched abundant lncRNA, MALAT1(t1/2 of 7.6 h in HeLa cells in neural stem cells (NSCs derived from human induced pluripotent stem cells, and identified four SLiTs (TUG1, GAS5, FAM222-AS1, and SNHG15 that were affected by the following typical chemical stresses (oxidative stress, heavy metal stress and protein synthesis stress. We also found the expression levels of LINC00152 (t1/2 of 2.1 h in NSCs, MALAT1 (t1/2 of 1.8 h in NSCs, and their neighboring genes were elevated proportionally to the chemical doses. Moreover, we confirmed that the overexpression of LINC00152 or MALAT1 upregulated the expressions of their neighboring genes even in the absence of chemical stress. These results reveal that LINC00152 and MALAT1 modulate their neighboring genes, and thus provide a deeper understanding of the functions of lncRNAs.

  17. Enhancement of malate-production and increase in sensitivity to dimethyl succinate by mutation of the VID24 gene in Saccharomyces cerevisiae.

    Science.gov (United States)

    Negoro, Hiroaki; Kotaka, Atsushi; Matsumura, Kengo; Tsutsumi, Hiroko; Hata, Yoji

    2016-06-01

    Malate in sake (a Japanese alcoholic beverage) is an important component for taste that is produced by yeasts during alcoholic fermentation. To date, many researchers have developed methods for breeding high-malate-producing yeasts; however, genes responsible for the high-acidity phenotype are not known. We determined the mutated gene involved in high malate production in yeast, isolated as a sensitive mutant to dimethyl succinate. In the comparative whole genome analysis between high-malate-producing strain and its parent strain, one of the non-synonymous substitutions was identified in the VID24 gene. The mutation of VID24 resulted in enhancement of malate-productivity and sensitivity to dimethyl succinate. The mutation appeared to lead to a deficiency in Vid24p function. Furthermore, disruption of cytoplasmic malate dehydrogenase (Mdh2p) gene in the VID24 mutant inhibited the high-malate-producing phenotype. Vid24p is known as a component of the multisubunit ubiquitin ligase and participates in the degradation of gluconeogenic enzymes such as Mdh2p. We suggest that the enhancement of malate-productivity results from an accumulation of Mdh2p due to the loss of Vid24p function. These findings propose a novel mechanism for the regulation of organic acid production in yeast cells by the component of ubiquitin ligase, Vid24p. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Lead exposure from aluminum cookware in Cameroon

    International Nuclear Information System (INIS)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A.; Kuepouo, Gilbert; Corbin, Rebecca W.; Gottesfeld, Perry

    2014-01-01

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  19. Lead exposure from aluminum cookware in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Kuepouo, Gilbert [Research and Education Centre for Development (CREPD), Yaounde (Cameroon); Corbin, Rebecca W. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Gottesfeld, Perry, E-mail: pgottesfeld@okinternational.org [Occupational Knowledge International, San Francisco, CA (United States)

    2014-10-15

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  20. microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus

    DEFF Research Database (Denmark)

    Leucci, Eleonora; Patella, Francesca; Waage, Johannes

    2013-01-01

    -coding RNAs. Here we report that microRNA-9 (miR-9) regulates the expression of the Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT-1), one of the most abundant and conserved long non-coding RNAs. Intriguingly, we find that miR-9 targets AGO2-mediated regulation of MALAT1 in the nucleus. Our...

  1. Systemic Sunitinib Malate Treatment for Advanced Juxtapapillary Retinal Hemangioblastomas Associated with von Hippel-Lindau Disease.

    Science.gov (United States)

    Knickelbein, Jared E; Jacobs-El, Naima; Wong, Wai T; Wiley, Henry E; Cukras, Catherine A; Meyerle, Catherine B; Chew, Emily Y

    2017-01-01

    To describe the clinical course of advanced juxtapapillary retinal capillary hemangioblastomas (RCH) associated with von Hippel-Lindau (VHL) disease treated with systemic sunitinib malate, an agent that inhibits both anti-vascular endothelial growth factor and anti-platelet-derived growth factor signaling. Observational case review. Three patients with advanced VHL-related juxtapapillary RCH treated with systemic sunitinib malate. Patient 1 was followed routinely every 4 months while on systemic sunitinib prescribed by her oncologist for metastatic pancreatic neuroendocrine and kidney tumors. Patients 2 and 3 were part of a prospective clinical trial evaluating the use of systemic sunitinib for ocular VHL lesions during a period of 9 months. Visual acuity, size of RCH, and degree of exudation were recorded at each visit. Optical coherence tomography (OCT) and fluorescein angiography were also obtained at some visits. Visual acuity, size of RCH, and degree of exudation. Three patients with advanced VHL-associated juxtapapillary RCH were treated with systemic sunitinib malate. While none of the patients lost vision during therapy, treatment with sunitinib malate did not improve visual acuity or reduce the size of RCH. Improvements in RCH-associated retinal edema were observed in two patients. All patients experienced multiple adverse effects, including thyroid toxicity, thrombocytopenia, nausea, fatigue, jaundice, and muscle aches. Two of the three patients had to discontinue treatment prematurely and the third required dose reduction. Systemic sunitinib malate may be useful in slowing progression of ocular disease from VHL-associated RCH. However, significant systemic adverse effects limited its use in this small series, and systemic sunitinib malate may not be safe for treatment of RCH when used at the doses described in this report. Further studies are required to determine if this medication used at lower doses with different treatment strategies, other

  2. Evidence for catabolite degradation in the glucose-dependent inactivation of yeast cytoplasmic malate dehydrogenase

    International Nuclear Information System (INIS)

    Neeff, J.; Haegele, E.; Nauhaus, J.; Heer, U.; Mecke, D.

    1978-01-01

    The cytoplasmic malate dehydrogenase of Saccharomyces cerevisiae was radioactively labeled during its synthesis on a glucose-free derepression medium. After purification a sensitive radioimmunoassay for this enzyme could be developed. The assay showed that after the physiological, glucose-dependent 'catabolite inactivation' of cytoplasmic malate dehydrogenase an inactive enzyme protein is immunologically not detectable. Together with the irreversibility of this reaction in vivo this finding strongly suggests a proteolytic mechanism of enzyme inactivation. For this process the term 'catabolite degradation' is used. (orig.) [de

  3. Wheat genotypes differing in aluminum tolerance differ in their growth response to CO2 enrichment in acid soils

    OpenAIRE

    Tian, Qiuying; Zhang, Xinxin; Gao, Yan; Bai, Wenming; Ge, Feng; Ma, Yibing; Zhang, Wen-Hao

    2013-01-01

    Aluminum (Al) toxicity is a major factor limiting plant growth in acid soils. Elevated atmospheric CO2 [CO2] enhances plant growth. However, there is no report on the effect of elevated [CO2] on growth of plant genotypes differing in Al tolerance grown in acid soils. We investigated the effect of short-term elevated [CO2] on growth of Al-tolerant (ET8) and Al-sensitive (ES8) wheat plants and malate exudation from root apices by growing them in acid soils under ambient [CO2] and elevated [CO2]...

  4. Permeabilization and lysis of Pseudomonas pseudoalcaligenes cells by triton X-100 for efficient production of D-malate

    NARCIS (Netherlands)

    Werf, M.J. van der; Hartmans, S.; Tweel, W.J.J. van den

    1995-01-01

    Pseudomonas pseudoalcaligenes can only form d-malate from maleate after incubation of the cells with a solvent or a detergent. The effect of the detergent Triton X-100 on d-malate production was studied in more detail. The longer the cells were incubated with Triton X-100, the higher was the

  5. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    Science.gov (United States)

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Effect of D-ribose-L-cysteine on aluminum induced testicular damage in male Sprague-Dawley rats.

    Science.gov (United States)

    Falana, Benedict; Adeleke, Opeyemi; Orenolu, Mulikat; Osinubi, Abraham; Oyewopo, Adeoye

    2017-06-01

    This study investigated the effects of D-ribose and L-cysteine on aluminum-induced testicular damage in male Sprague-Dawley rats. A total number of thirty-five (35) adult male Sprague-Dawley rats were divided into four groups (AD). Group A (comprised five (5) rats) was designated the Control Group that received Physiological Saline; while groups B, C, and D (comprised ten (10) rats) were given 75 mg/kg, 150 mg/kg and 300 mg/kg of body weight of aluminum chloride respectively for 39 days. At day 40, the aluminum-treated groups were subdivided into sub-groups (B1, C1, D1) comprising of five (5) rats each, and 30 mg/kg body weight of Riboceine were administered for twenty (20) days. Groups B, C and D remained on the normal dosage of aluminum chloride for three more weeks (59 days). Andrological parameters (Sperm count, motility, morphology and testosterone) in the aluminum-treated Groups B and C showed no significant difference in their mean values when compared with their control counterparts, whereas there was a significant reduction in the andrological parameters in Group D rats when compared with the Control animals. Histoarchitecture of the testes "stain with H&E" of Group A, B and C rats appeared normal while Group D rats showed testicular damages with several abnormal seminiferous tubules with incomplete maturation of germinal cell layers and absence of spermatozoa in their lumen; Leydig cells appear hyperplastic. Group B1, C1 and D1 andrological and histological parameters appeared normal. Riboceine treatment significantly attenuates aluminum-induced testicular toxicity in male Sprague-Dawley in rats.

  7. Low-temperature resistance of cyclically strained aluminum

    International Nuclear Information System (INIS)

    Segal, H.R.; Richard, T.G.

    1977-01-01

    An experimental study of the resistance changes in high-purity, reinforced aluminum due to cyclic straining is presently underway. The purpose of this work is to determine the optimum purity of aluminum to be used as a stabilizing material for superconducting magnets used for energy storage. Since pure aluminum has a low yield strength, it is not capable of supporting the stress levels in an energized magnet. Therefore, it has been bonded to a high-strength material--in this case, 6061 aluminum alloy. This bonding permits pure aluminum to be strained cyclically beyond its elastic limit with recovery of large plastic strains upon release of the load. The resistance change in this composite material is less than that of pure, unreinforced aluminum

  8. Glow discharge processing vs bakeout for aluminum storage ring vacuum chambers

    International Nuclear Information System (INIS)

    Dean, N.R.; Hoyt, E.W.; Palrang, M.T.; Walker, B.G.

    1977-11-01

    Experiments were carried out on laboratory and prototype scale systems in order to establish the feasibility of argon discharge processing the PEP storage ring aluminum vacuum chambers. Electron-induced desorption rates showed significant reductions following bakeout and/or argon glow discharge treatment (>10 19 ions cm -1 ). Data are presented and discussed in relation to advantages and problems associated with: water removal, argon trapping and subsequent release, electron energy dependence, discharge distribution, and surface plasma chemical effects

  9. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera.

    Science.gov (United States)

    De Angeli, Alexis; Baetz, Ulrike; Francisco, Rita; Zhang, Jingbo; Chaves, Maria Manuela; Regalado, Ana

    2013-08-01

    Vitis vinifera L. represents an economically important fruit species. Grape and wine flavour is made from a complex set of compounds. The acidity of berries is a major parameter in determining grape berry quality for wine making and fruit consumption. Despite the importance of malic and tartaric acid (TA) storage and transport for grape berry acidity, no vacuolar transporter for malate or tartrate has been identified so far. Some members of the aluminium-activated malate transporter (ALMT) anion channel family from Arabidopsis thaliana have been shown to be involved in mediating malate fluxes across the tonoplast. Therefore, we hypothesised that a homologue of these channels could have a similar role in V. vinifera grape berries. We identified homologues of the Arabidopsis vacuolar anion channel AtALMT9 through a TBLASTX search on the V. vinifera genome database. We cloned the closest homologue of AtALMT9 from grape berry cDNA and designated it VvALMT9. The expression profile revealed that VvALMT9 is constitutively expressed in berry mesocarp tissue and that its transcription level increases during fruit maturation. Moreover, we found that VvALMT9 is targeted to the vacuolar membrane. Using patch-clamp analysis, we could show that, besides malate, VvALMT9 mediates tartrate currents which are higher than in its Arabidopsis homologue. In summary, in the present study we provide evidence that VvALMT9 is a vacuolar malate channel expressed in grape berries. Interestingly, in V. vinifera, a tartrate-producing plant, the permeability of the channel is apparently adjusted to TA.

  10. Novel properties of the wheat aluminum tolerance organic acid transporter (TaALMT1) revealed by electrophysiological characterization in Xenopus Oocytes: functional and structural implications.

    Science.gov (United States)

    Piñeros, Miguel A; Cançado, Geraldo M A; Kochian, Leon V

    2008-08-01

    Many plant species avoid the phytotoxic effects of aluminum (Al) by exuding dicarboxylic and tricarboxylic acids that chelate and immobilize Al(3+) at the root surface, thus preventing it from entering root cells. Several novel genes that encode membrane transporters from the ALMT and MATE families recently were cloned and implicated in mediating the organic acid transport underlying this Al tolerance response. Given our limited understanding of the functional properties of ALMTs, in this study a detailed characterization of the transport properties of TaALMT1 (formerly named ALMT1) from wheat (Triticum aestivum) expressed in Xenopus laevis oocytes was conducted. The electrophysiological findings are as follows. Although the activity of TaALMT1 is highly dependent on the presence of extracellular Al(3+) (K(m1/2) of approximately 5 microm Al(3+) activity), TaALMT1 is functionally active and can mediate ion transport in the absence of extracellular Al(3+). The lack of change in the reversal potential (E(rev)) upon exposure to Al(3+) suggests that the "enhancement" of TaALMT1 malate transport by Al is not due to alteration in the transporter's selectivity properties but is solely due to increases in its anion permeability. The consistent shift in the direction of the E(rev) as the intracellular malate activity increases indicates that TaALMT1 is selective for the transport of malate over other anions. The estimated permeability ratio between malate and chloride varied between 1 and 30. However, the complex behavior of the E(rev) as the extracellular Cl(-) activity was varied indicates that this estimate can only be used as a general guide to understanding the relative affinity of TaALMT1 for malate, representing only an approximation of those expected under physiologically relevant ionic conditions. TaALMT1 can also mediate a large anion influx (i.e. outward currents). TaALMT1 is permeable not only to malate but also to other physiologically relevant anions such as Cl

  11. Two step novel hydrogen system using additives to enhance hydrogen release from the hydrolysis of alane and activated aluminum

    Science.gov (United States)

    Zidan, Ragaiy; Teprovich, Joseph A.; Motyka, Theodore

    2015-12-01

    A system for the generation of hydrogen for use in portable power systems is set forth utilizing a two-step process that involves the thermal decomposition of AlH.sub.3 (10 wt % H.sub.2) followed by the hydrolysis of the activated aluminum (Al*) byproduct to release additional H.sub.2. Additionally, a process in which water is added directly without prior history to the AlH.sub.3:PA composite is also disclosed.

  12. Oxaliplatin-Induced Peripheral Neuropathy via TRPA1 Stimulation in Mice Dorsal Root Ganglion Is Correlated with Aluminum Accumulation.

    Directory of Open Access Journals (Sweden)

    Jin-Hee Park

    Full Text Available Oxaliplatin is a platinum-based anticancer drug used to treat metastatic colorectal, breast, and lung cancers. While oxaliplatin kills cancer cells effectively, it exhibits several side effects of varying severity. Neuropathic pain is commonly experienced during treatment with oxaliplatin. Patients describe symptoms of paresthesias or dysesthesias that are triggered by cold (acute neuropathy, or as abnormal sensory or motor function (chronic neuropathy. In particular, we found that aluminum levels were relatively high in some cancer patients suffering from neuropathic pain based on clinical observations. Based on these findings, we hypothesized that aluminum accumulation in the dorsal root ganglion (DRG in the course of oxaliplatin treatment exacerbates neuropathic pain. In mice injected with oxaliplatin (three cycles of 3 mg/kg i.p. daily for 5 days, followed by 5 days of rest, we detected cold allodynia using the acetone test, but not heat hyperalgesia using a hot plate. However, co-treatment with aluminum chloride (AlCl3∙6H2O; 7 mg/kg i.p. for 14 days: equivalent 0.78 mg/kg of elemental Al and oxaliplatin (1 cycle of 3 mg/kg i.p. daily for 5 days, followed by 5 days of rest synergistically induced cold allodynia as well as increased TRPAl mRNA and protein expression. Inductively Coupled Plasma Mass Spectrometry (ICP-MS analysis showed a significant increase in aluminum concentrations in the DRG of mice treated with aluminum chloride and oxaliplatin compared to aluminum chloride alone. Similarly, in a mouse induced-tumor model, aluminum concentrations were increased in DRG tissue and tumor cells after oxaliplatin treatment. Taken together, these findings suggest that aluminum accumulation in the DRG may exacerbate neuropathic pain in oxaliplatin-treated mice.

  13. [A case of respiratory dyskinesia due to clebopride malate].

    Science.gov (United States)

    Kawasaki, H; Yamamoto, M; Okayasu, H; Wakayama, Y

    1991-08-01

    Clebopride malate is therapeutically used for the treatment of peptic ulcer. This drug has potent antidopaminergic activity that causes acute dystonic reaction, parkinsonism and tardive dyskinesia as adverse effects. Here, we have reported an 86-year-old man who developed abnormal involuntary movement of respiratory muscles and lower limb muscles after this drug had been given for four months. This involuntary movement appeared spontaneously at resting state and disappeared during sleep. Surface EMG demonstrated a synchronous grouping discharge in m. orbicularis oris, m. sternocleidomastoideus and m. interstales which synchronized with diaphragmatic movement on cinefluorography. Involuntary movement of the lower limbs was synchronous bilaterally and had little relationship with diaphragmatic movement. This involuntary movement was irregular not only in rhythm but also in duration. According to this irregular nature, we diagnosed this involuntary movement as respiratory dyskinesia with limb dyskinesia that belongs to tardive dyskinesia. After cessation of clebopride malate limb dyskinesia disappeared rapidly and respiratory dyskinesia markedly decreased. We emphasize that respiratory dyskinesia should be differentiated from psychogenic hyperventilation as easily misdiagnosed on initial examination.

  14. Gliclazide directly inhibits arginine-induced glucagon release

    DEFF Research Database (Denmark)

    Cejvan, Kenan; Coy, David H; Holst, Jens Juul

    2002-01-01

    Arginine-stimulated insulin and somatostatin release is enhanced by the sulfonylurea gliclazide. In contrast, gliclazide inhibits the glucagon response. The aim of the present study was to investigate whether this inhibition of glucagon release was mediated by a direct suppressive effect of glicl......Arginine-stimulated insulin and somatostatin release is enhanced by the sulfonylurea gliclazide. In contrast, gliclazide inhibits the glucagon response. The aim of the present study was to investigate whether this inhibition of glucagon release was mediated by a direct suppressive effect....... In islet perifusions with DC-41-33, arginine-induced glucagon release was inhibited by 66%. We therefore concluded that gliclazide inhibits glucagon release by a direct action on the pancreatic A cell....

  15. Long non-coding RNA MALAT1 acts as a competing endogenous RNA to promote malignant melanoma growth and metastasis by sponging miR-22.

    Science.gov (United States)

    Luan, Wenkang; Li, Lubo; Shi, Yan; Bu, Xuefeng; Xia, Yun; Wang, Jinlong; Djangmah, Henry Siaw; Liu, Xiaohui; You, Yongping; Xu, Bin

    2016-09-27

    Long non-coding RNAs (lncRNAs) are involved in tumorigenesis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), an lncRNAs, is associated with the growth and metastasis of many human tumors, but its biological roles in malignant melanoma remain unclear. In this study, the aberrant up-regulation of MALAT1 was detected in melanoma. We determined that MALAT1 promotes melanoma cells proliferation, invasion and migration by sponging miR-22. MiR-22 was decreased and acted as a tumor suppressor in melanoma, and MMP14 and Snail were the functional targets of miR-22. Furthermore, MALAT1 could modulate MMP14 and Snail by operating as a competing endogenous RNA (ceRNA) for miR-22. The effects of MALAT1 in malignant melanoma is verified using a xenograft model. This finding elucidates a new mechanism for MALAT1 in melanoma development and provides a potential target for melanoma therapeutic intervention.

  16. Dexamethasone-induced haptoglobin release by calf liver parenchymal cells.

    Science.gov (United States)

    Higuchi, H; Katoh, N; Miyamoto, T; Uchida, E; Yuasa, A; Takahashi, K

    1994-08-01

    Parenchymal cells were isolated from the liver of male calves, and monolayer cultures formed were treated with glucocorticoids to examine whether haptoglobin, appearance of which is associated with hepatic lipidosis (fatty liver) in cattle, is induced by steroid hormones. Without addition of dexamethasone, only trace amounts of haptoglobin were detected in culture medium. With addition of dexamethasone (10(-12) to 10(-4) M), considerable amounts of haptoglobin were released into the medium. Maximal release was observed at concentrations of 10(-8) to 10(-6) M dexamethasone. Haptoglobin release was similarly induced by cortisol, although the effect was less potent than that of dexamethasone. Actinomycin D (a known protein synthesis inhibitor) dose-dependently reduced amounts of haptoglobin released in response to 10(-8) M dexamethasone. Dexamethasone also induced annexin I, which is known to be synthesized in response to glucocorticoids. Dexamethasone treatment resulted in reduced protein kinase C activity in the cell cytosol, which has been shown to be an early event in dexamethasone-treated cells. Other than glucocorticoids, estradiol induced haptoglobin release, whereas progesterone was less effective. The association of haptoglobin with hepatic lipidosis can be reasonably explained by the fact that haptoglobin production by the liver is induced by glucocorticoids and estradiol, and these steroid hormones are triggers for development of hepatic lipidosis in cattle.

  17. Gas Release Behavior of Cu-TiH2 Composite Powder and Its Application as a Blowing Agent to Fabricate Aluminum Foams with Low Porosity and Small Pore Size

    Science.gov (United States)

    Cheng, Ying; Li, Yanxiang; Chen, Xiang; Liu, Zhiyong; Zhou, Xu; Wang, Ningzhen

    2018-03-01

    Compared to traditional pore structure with high porosity (≥ 80 pct) and large pore size (≥ 3 mm), aluminum foams with low porosity (60 to 70 pct) and small pore size (≤ 2 mm) possess higher compressive property and formability. In order to achieve the goal of reducing pore size, Cu-TiH2 composite powder prepared by ball milling preoxidized TiH2 with Cu powder was used as a blowing agent. Its gas release behavior was characterized by thermogravimetric analysis and differential scanning calorimetry. The results show that the ball milling treatment can advance the gas release process and slow the gas release rate at the same time. All these changes are favorable to the reduction of porosity and pore size. Such Cu-TiH2 composite powder provides an alternative way to fabricate aluminum foams with low porosity and small pore size.

  18. Gas Release Behavior of Cu-TiH2 Composite Powder and Its Application as a Blowing Agent to Fabricate Aluminum Foams with Low Porosity and Small Pore Size

    Science.gov (United States)

    Cheng, Ying; Li, Yanxiang; Chen, Xiang; Liu, Zhiyong; Zhou, Xu; Wang, Ningzhen

    2018-06-01

    Compared to traditional pore structure with high porosity (≥ 80 pct) and large pore size (≥ 3 mm), aluminum foams with low porosity (60 to 70 pct) and small pore size (≤ 2 mm) possess higher compressive property and formability. In order to achieve the goal of reducing pore size, Cu-TiH2 composite powder prepared by ball milling preoxidized TiH2 with Cu powder was used as a blowing agent. Its gas release behavior was characterized by thermogravimetric analysis and differential scanning calorimetry. The results show that the ball milling treatment can advance the gas release process and slow the gas release rate at the same time. All these changes are favorable to the reduction of porosity and pore size. Such Cu-TiH2 composite powder provides an alternative way to fabricate aluminum foams with low porosity and small pore size.

  19. Akkumulation von L-Malat und D-Lactat in Arabidopsis thaliana und Laccase/HBT-vermittelte Delignifizierung von Spartina alterniflora und Phragmites australis

    OpenAIRE

    Heil, Alexander

    2016-01-01

    The current work contains two projects "Accumulation of L-malate and D-lactate in Arabidopsis thaliana" (A) "Laccase/HBT mediated delignification of Spartina alterniflora and Phragmites australis" (B). In project A, L-malate and D-lactate accumulated in A. thaliana plants. The accumulation of L-malate is carried out by modification of the plant metabolism with the enzymes PEPC, MDH and the tonoplast dicarboxylate transporter (TDT). Gene pepci2 (Hydrilla verticillata), mdh5 (Zea mays) and tdt ...

  20. Mutational analysis of the N-terminal topogenic signal of watermelon glyoxysomal malate dehydrogenase using the heterologous host Hansenula polymorpha

    NARCIS (Netherlands)

    Gietl, Christine; Faber, Klaas Nico; Klei, Ida J. van der; Veenhuis, Marten

    1994-01-01

    We have studied the significance of the N-terminal presequence of watermelon (Citrullus vulgaris) glyoxysomal malate dehydrogenase [gMDH; (S)-malate:NAD+ oxidoreductase; EC 1.1.1.37] in microbody targeting. The yeast Hansenula polymorpha was used as heterologous host for the in vivo expression of

  1. Complement-induced histamine release from human basophils. III. Effect of pharmacologic agents.

    Science.gov (United States)

    Hook, W A; Siraganian, R P

    1977-02-01

    Human serum activated with zymosan generates a factor (C5a) that releases histamine from autologous basophils. Previously we have presented evidence that this mechanism for C5a-induced release differs from IgE-mediated reactions. The effect of several pharmacologic agents known to alter IgE-mediated release was studied to determine whether they have a similar action on serum-induced release. Deuterium oxide (D2O), which enhances allergic release, inhibited in a concentration-dependent fashion the serum-induced reaction at incubation temperatures of 25 and 32 degrees C. The colchicine-induced inhibition was not reversed by D2O. Cytochalasin B, which gives a variable enhancement of IgE-mediated release, had a marked enhancing effect on the serum-induced reaction in all subjects tested. The following agents known to inhibit the IgE-mediated reaction also inhibited serum-induced release at 25 degrees C: colchicine, dibutyryl cyclic AMP, aminophylline, isoproterenol, cholera toxin, chlorphenesin, diethylcarbamazine, and 2-deoxy-D-glucose. These results suggest that the serum-induced release is modulated by intracellular cyclic AMP, requires energy, and is enhanced by the disruption of microfilaments. The lack of an effect by D2O would suggest that microtubular stabilization is not required. The data can be interpreted to indicate that IgE- and C5a-mediated reactions diverge at a late stage in the histamine release pathway.

  2. Novel Properties of the Wheat Aluminum Tolerance Organic Acid Transporter (TaALMT1) Revealed by Electrophysiological Characterization in Xenopus Oocytes: Functional and Structural Implications1[OA

    Science.gov (United States)

    Piñeros, Miguel A.; Cançado, Geraldo M.A.; Kochian, Leon V.

    2008-01-01

    Many plant species avoid the phytotoxic effects of aluminum (Al) by exuding dicarboxylic and tricarboxylic acids that chelate and immobilize Al3+ at the root surface, thus preventing it from entering root cells. Several novel genes that encode membrane transporters from the ALMT and MATE families recently were cloned and implicated in mediating the organic acid transport underlying this Al tolerance response. Given our limited understanding of the functional properties of ALMTs, in this study a detailed characterization of the transport properties of TaALMT1 (formerly named ALMT1) from wheat (Triticum aestivum) expressed in Xenopus laevis oocytes was conducted. The electrophysiological findings are as follows. Although the activity of TaALMT1 is highly dependent on the presence of extracellular Al3+ (Km1/2 of approximately 5 μm Al3+ activity), TaALMT1 is functionally active and can mediate ion transport in the absence of extracellular Al3+. The lack of change in the reversal potential (Erev) upon exposure to Al3+ suggests that the “enhancement” of TaALMT1 malate transport by Al is not due to alteration in the transporter's selectivity properties but is solely due to increases in its anion permeability. The consistent shift in the direction of the Erev as the intracellular malate activity increases indicates that TaALMT1 is selective for the transport of malate over other anions. The estimated permeability ratio between malate and chloride varied between 1 and 30. However, the complex behavior of the Erev as the extracellular Cl− activity was varied indicates that this estimate can only be used as a general guide to understanding the relative affinity of TaALMT1 for malate, representing only an approximation of those expected under physiologically relevant ionic conditions. TaALMT1 can also mediate a large anion influx (i.e. outward currents). TaALMT1 is permeable not only to malate but also to other physiologically relevant anions such as Cl−, NO3−, and

  3. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    Science.gov (United States)

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. Copyright © 2015. Published by Elsevier B.V.

  4. Charge imbalance induced by a temperature gradient in superconducting aluminum

    International Nuclear Information System (INIS)

    Mamin, H.J.; Clarke, J.; Van Harlingen, D.J.

    1984-01-01

    The quasiparticle transport current induced in a superconducting aluminum film by a temperature gradient has been measured by means of the spatially decaying charge imbalance generated near the end of the sample where the current is divergent. The magnitude and decay length of the charge imbalance are in good agreement with the predictions of a simple model that takes into account the nonuniformity of the temperature gradient. The inferred value of the thermopower in the superconducting state agrees reasonably well with the value measured in the normal state. Measurements of the decay length of charge imbalance induced by current injection yield a value of the inelastic relaxation time tau/sub E/ of about 2 ns. This value is substantially smaller than that obtained from other measurements for reasons that are not known

  5. Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer.

    Science.gov (United States)

    Zhang, Rui; Xia, Yuhong; Wang, Zhixin; Zheng, Jie; Chen, Yafei; Li, Xiaoli; Wang, Yu; Ming, Huaikun

    2017-08-19

    Circulating lncRNAs have been defined as a novel biomarker for non-small cell lung cancer (NSCLC), MALAT-1 was first identified lncRNA that was related to lung cancer metastasis. However, the relationship between exosomal lncRNAs and the diagnosis and prognosis of NSCLC was poorly understood. The aim of this study is to evaluate the clinical significance of serum exosomal MALAT-1 as a biomarker in the metastasis of NSCLC. In this study, we firstly isolated the exosomes from healthy subjects and NSCLC patients. Then we measured the expression levels of MALAT-1 contained in exosomes, and found that exosomal MALAT-1 was highly expressed in NSCLC patients, more importantly, the levels of exosomal MALAT-1 were positively associated with tumor stage and lymphatic metastasis. In addition, we decreased MALAT-1 expression by short hairpin RNA and conducted a series of assays including MTT, cell cycle, colony formation, wound-healing scratch and Annexin/V PI by flow cytometry in human lung cancer cell lines. These in vitro studies demonstrated that serum exosome-derived long noncoding RNA MALAT-1 promoted the tumor growth and migration, and prevented tumor cells from apoptosis in lung cancer cell lines. Taken together, this study shed a light on utilizing MALAT-1 in exosomes as a non-invasive serum-based tumor biomarker for diagnosis and prognosis of NSCLC. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Aspirin Induces Apoptosis through Release of Cytochrome c from Mitochondria

    Directory of Open Access Journals (Sweden)

    Katja C. Zimmermann

    2000-01-01

    Full Text Available Nonsteroidal anti-inflammatory drugs (NSAID reduce the risk for cancer, due to their anti proliferative and apoptosis-inducing effects. A critical pathway for apoptosis involves the release of cytochrome c from mitochondria, which then interacts with Apaf-1 to activate caspase proteases that orchestrate cell death. In this study we found that treatment of a human cancer cell line with aspirin induced caspase activation and the apoptotic cell morphology, which was blocked by the caspase inhibitor zVAD-fmk. Further analysis of the mechanism underlying this apoptotic event showed that aspirin induces translocation of Bax to the mitochondria and triggers release of cytochrome c into the cytosol. The release of cytochrome c from mitochondria was inhibited by overexpression of the antiapoptotic protein Bcl-2 and cells that lack Apaf-1 were resistant to aspirin-induced apoptosis. These data provide evidence that the release of cytochrome c is an important part of the apoptotic mechanism of aspirin.

  7. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    Science.gov (United States)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  8. Utilization of L-aspartate, L-malate and fumarate by Pasteurella multocida

    Energy Technology Data Exchange (ETDEWEB)

    Hoefer, M.; Flossmann, K.D. (Akademie der Landwirtschaftswissenschaften der DDR, Jena. Inst. fuer Bakterielle Tierseuchenforschung)

    1981-01-01

    Strains of Pasteurella multocida use L-aspartate, L-malate and furmarate, respectively, as substrates for production of succinic acid which accumulates in the medium. As was established by studies with /sup 14/C- and /sup 3/H-labelled substrates, the degradation of these substances proceeds analogously via the citric acid cycle.

  9. Utilization of L-aspartate, L-malate and fumarate by Pasteurella multocida

    International Nuclear Information System (INIS)

    Hoefer, M.; Flossmann, K.D.

    1981-01-01

    Strains of Pasteurella multocida use L-aspartate, L-malate and furmarate, respectively, as substrates for production of succinic acid which accumulates in the medium. As was established by studies with 14 C- and 3 H-labelled substrates, the degradation of these substances proceeds analogously via the citric acid cycle. (author)

  10. Direct current-induced electrogenerated chemiluminescence of hydrated and chelated Tb(III) at aluminum cathodes

    International Nuclear Information System (INIS)

    Hakansson, M.; Jiang, Q.; Spehar, A.-M.; Suomi, J.; Kotiranta, M.; Kulmala, S.

    2005-01-01

    Cathodic DC polarization of oxide-covered aluminum produces electrogenerated chemiluminescence from hydrated and chelated Tb(III) ions in aqueous electrolyte solutions. At the moment of cathodic voltage onset, a strong cathodic flash is observed, which is attributed to a tunnel emission of hot electrons into the aqueous electrolyte solution and the successive chemical reactions with the luminophores. However, within a few milliseconds the insulating oxide film is damaged and finally dissolved due to (i) indiffusion of protons or alkali metal ions into the thin oxide film, (ii) subsequent hydrogen evolution at the aluminum/oxide interface and (iii) alkalization of the electrode surface induced by hydrogen evolution reaction. When the alkalization of the electrode surface has proceeded sufficiently, chemiluminescence is generated with increasing intensity. Aluminum metal, short-lived Al(II), Al(I) or atomic hydrogen and its conjugated base form, hydrated electron, can act as highly reducing species in addition to the less energetic heterogeneously transferred electrons from the aluminum electrode. Tb(III) added as a hydrated ion in the solution probably luminesces in the form of Tb(OH) 3 or Tb(OH) 4 - by direct redox reactions of the central ion whereas multidentate aromatic ligand chelated Tb(III) probably luminesces by ligand sensitized chemiluminescence mechanism in which ligand is first excited by one-electron redox reactions, which is followed by intramolecular energy transfer to the central ion which finally emits light

  11. Comparative effects of macro-sized aluminum oxide and aluminum oxide nanoparticles on erythrocyte hemolysis: influence of cell source, temperature, and size

    Energy Technology Data Exchange (ETDEWEB)

    Vinardell, M. P., E-mail: mpvinardellmh@ub.edu; Sordé, A. [Universitat de Barcelona, Departament de Fisiologia, Facultat de Farmàcia (Spain); Díaz, J. [Universitat de Barcelona CCiT, Scientific and Technological Centers (Spain); Baccarin, T.; Mitjans, M. [Universitat de Barcelona, Departament de Fisiologia, Facultat de Farmàcia (Spain)

    2015-02-15

    Al{sub 2}O{sub 3} is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military, and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm, and nanowire 2–6 × 200–400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats, and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50 % hemolysis (HC{sub 50}) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al{sub 2}O{sub 3}, but not on Al{sub 2}O{sub 3}. The drop in HC{sub 50} correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation. Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.

  12. Novel Alleviation Mechanisms of Aluminum Phytotoxicity via Released Biosilicon from Rice Straw-Derived Biochars

    Science.gov (United States)

    Qian, Linbo; Chen, Baoliang; Chen, Mengfang

    2016-07-01

    Replacing biosilicon and biocarbon in soil via biochar amendment is a novel approach for soil amelioration and pollution remediation. The unique roles of silicon (Si)-rich biochar in aluminum (Al) phytotoxicity alleviation have not been discovered. In this study, the alleviation of Al phytotoxicity to wheat plants (root tips cell death) by biochars fabricated from rice straw pyrolyzed at 400 and 700 °C (RS400 and RS700) and the feedstock (RS100) were studied using a slurry system containing typical acidic soils for a 15-day exposure experiment. The distributions of Al and Si in the slurry solution, soil and plant root tissue were monitored by staining methods, chemical extractions and SEM-EDS observations. We found that the biological sourced silicon in biochars served dual roles in Al phytotoxicity alleviation in acidic soil slurry. On one hand, the Si particles reduced the amount of soil exchangeable Al and prevented the migration of Al to the plant. More importantly, the Si released from biochars synchronously absorbed by the plants and coordinated with Al to form Al-Si compounds in the epidermis of wheat roots, which is a new mechanism for Al phytotoxicity alleviation in acidic soil slurry by biochar amendment. In addition, the steady release of Si from the rice straw-derived biochars was a sustainable Si source for aluminosilicate reconstruction in acidic soil.

  13. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  14. Thrombin induces rapid PAR1-mediated non-classical FGF1 release

    International Nuclear Information System (INIS)

    Duarte, Maria; Kolev, Vihren; Soldi, Raffaella; Kirov, Alexander; Graziani, Irene; Oliveira, Silvia Marta; Kacer, Doreen; Friesel, Robert; Maciag, Thomas; Prudovsky, Igor

    2006-01-01

    Thrombin induces cell proliferation and migration during vascular injury. We report that thrombin rapidly stimulated expression and release of the pro-angiogenic polypeptide fibroblast growth factor 1 (FGF1). Thrombin failed to induce FGF1 release from protease-activated receptor 1 (PAR1) null fibroblasts, indicating that this effect was dependent on PAR1. Similarly to thrombin, FGF1 expression and release were induced by TRAP, a specific oligopeptide agonist of PAR1. These results identify a novel aspect of the crosstalk between FGF and thrombin signaling pathways which both play important roles in tissue repair and angiogenesis

  15. Controlled release of biofunctional substances by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Yoshida, M.; Kumakura, M.; Kaetsu, I.

    1978-01-01

    The release behaviour of a drug from flat circular capsules obtained by radiation-induced polymerization at low temperatures and with different hydrophilic properties has been studied. The effect of various factors on release property was investigated. The release process could be divided into three parts, an initial quick release stage, stationary state release stage and a retarded release stage. Release behaviour in the stationary state was examined using Noyes-Whitney and Higuchi equations. It was shown that the hydrophilic property of polymer matrix expressed by water content was the most important effect on diffusion and release rate. Rigidity of the polymer may also affect diffusivity. The first quick release step could be attributed to rapid dissolution of drug in the matrix surface due to polymer swelling. (author)

  16. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells.

    Science.gov (United States)

    Huang, Jinghui; Ye, Zhengxu; Hu, Xueyu; Lu, Lei; Luo, Zhuojing

    2010-04-01

    Production of nerve growth factor (NGF) from Schwann cells (SCs) progressively declines in the distal stump, if axonal regeneration is staggered across the suture site after peripheral nerve injuries. This may be an important factor limiting the outcome of nerve injury repair. Thus far, extensive efforts are devoted to modulating NGF production in cultured SCs, but little has been achieved. In the present in vitro study, electrical stimulation (ES) was attempted to stimulate cultured SCs to release NGF. Our data showed that ES was capable of enhancing NGF release from cultured SCs. An electrical field (1 Hz, 5 V/cm) caused a 4.1-fold increase in NGF release from cultured SCs. The ES-induced NGF release is calcium dependent. Depletion of extracellular or/and intracellular calcium partially/ completely abolished the ES-induced NGF release. Further pharmacological interventions showed that ES induces calcium influx through T-type voltage-gated calcium channels and mobilizes calcium from 1, 4, 5-trisphosphate-sensitive stores and caffeine/ryanodine-sensitive stores, both of which contributed to the enhanced NGF release induced by ES. In addition, a calcium-triggered exocytosis mechanism was involved in the ES-induced NGF release from cultured SCs. These findings show the feasibility of using ES in stimulating SCs to release NGF, which holds great potential in promoting nerve regeneration by enhancing survival and outgrowth of damaged nerves, and is of great significance in nerve injury repair and neuronal tissue engineering.

  17. N-acetyl-L-tryptophan, a substance-P receptor antagonist attenuates aluminum-induced spatial memory deficit in rats.

    Science.gov (United States)

    Fernandes, Joylee; Mudgal, Jayesh; Rao, Chamallamudi Mallikarjuna; Arora, Devinder; Basu Mallik, Sanchari; Pai, K S R; Nampoothiri, Madhavan

    2018-06-01

    Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease. Neurokinin substance P is a key mediator which modulates neuroinflammation through neurokinin receptor. Involvement of substance P in Alzheimer's disease is still plausible and various controversies exist in this hypothesis. Preventing the deleterious effects of substance P using N-acetyl-L-tryptophan, a substance P antagonist could be a promising therapeutic strategy. This study was aimed to evaluate the effect of N-acetyl-L-tryptophan on aluminum induced spatial memory alterations in rats. Memory impairment was induced using aluminum chloride (AlCl 3 ) at a dose of 10 mg/kg for 42 d. After induction of dementia, rats were exposed to 30 and 50 mg/kg of N-acetyl-L-tryptophan for 28 d. Spatial memory alterations were measured using Morris water maze. Acetylcholinesterase activity and antioxidant enzyme glutathione level were assessed in hippocampus, frontal cortex and striatum. The higher dose of N-acetyl-L-tryptophan (50 mg/kg) significantly improved the aluminum induced memory alterations. N-acetyl-L-tryptophan exposure resulted in significant increase in acetylcholinesterase activity and glutathione level in hippocampus. The neuroprotective effect of N-acetyl-L-tryptophan could be due to its ability to block substance P mediated neuroinflammation, reduction in oxidative stress and anti-apoptotic properties. To conclude, N-acetyl-L-tryptophan may be considered as a novel neuroprotective therapy in Alzheimer's disease.

  18. The varied functions of aluminium-activated malate transporters–much more than aluminium resistance

    Science.gov (United States)

    Palmer, Antony J.; Baker, Alison; Muench, Stephen P.

    2016-01-01

    The ALMT (aluminium-activated malate transporter) family comprises a functionally diverse but structurally similar group of ion channels. They are found ubiquitously in plant species, expressed throughout different tissues, and located in either the plasma membrane or tonoplast. The first family member identified was TaALMT1, discovered in wheat root tips, which was found to be involved in aluminium resistance by means of malate exudation into the soil. However, since this discovery other family members have been shown to have many other functions such as roles in stomatal opening, general anionic homoeostasis, and in economically valuable traits such as fruit flavour. Recent evidence has also shown that ALMT proteins can act as key molecular actors in GABA (γ-aminobutyric acid) signalling, the first evidence that GABA can act as a signal transducer in plants. PMID:27284052

  19. Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems.

    Science.gov (United States)

    Abbrescia, Daniela Isabel; La Piana, Gianluigi; Lofrumento, Nicola Elio

    2012-02-15

    In mammalian cells aerobic oxidation of glucose requires reducing equivalents produced in glycolytic phase to be channelled into the phosphorylating respiratory chain for the reduction of molecular oxygen. Data never presented before show that the oxidation rate of exogenous NADH supported by the malate-aspartate shuttle system (reconstituted in vitro with isolated liver mitochondria) is comparable to the rate obtained on activation of the cytosolic NADH/cytochrome c electron transport pathway. The activities of these two reducing equivalent transport systems are independent of each other and additive. NADH oxidation induced by the malate-aspartate shuttle is inhibited by aminooxyacetate and by rotenone and/or antimycin A, two inhibitors of the respiratory chain, while the NADH/cytochrome c system remains insensitive to all of them. The two systems may simultaneously or mutually operate in the transfer of reducing equivalents from the cytosol to inside the mitochondria. In previous reports we suggested that the NADH/cytochrome c system is expected to be functioning in apoptotic cells characterized by the presence of cytochrome c in the cytosol. As additional new finding the activity of reconstituted shuttle system is linked to the amount of α-ketoglutarate generated inside the mitochondria by glutamate dehydrogenase rather than by aspartate aminotransferase. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Mechanisms of stress-induced cellular HSP72 release: implications for exercise-induced increases in extracellular HSP72.

    Science.gov (United States)

    Lancaster, Graeme I; Febbraio, Mark A

    2005-01-01

    The heat shock proteins are a family of highly conserved proteins with critical roles in maintaining cellular homeostasis and in protecting the cell from stressful conditions. While the critical intracellular roles of heat shock proteins are undisputed, evidence suggests that the cell possess the necessary machinery to actively secrete specific heat shock proteins in response to cellular stress. In this review, we firstly discuss the evidence that physical exercise induces the release of heat shock protein 72 from specific tissues in humans. Importantly, it appears as though this release is the result of an active secretory process, as opposed to non-specific processes such as cell lysis. Next we discuss recent in vitro evidence that has identified a mechanistic basis for the observation that cellular stress induces the release of a specific subset of heat shock proteins. Importantly, while the classical protein secretory pathway does not seem to be involved in the stress-induced release of HSP72, we discuss the evidence that lipid-rafts and exosomes are important mediators of the stress-induced release of HSP72.

  1. The mechanism of gastrin release in cysteamine-induced duodenal ulcer

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1982-01-01

    a rise in serum gastrin from 29 +/- 5 pg/ml to a maximum of 203 +/- 62 pg/ml after 3 h in unoperated rats, whereas no rise was seen in vagotomized or antrectomized rats. The beta-adrenergic blocking agent propranolol strongly inhibited cysteamine-induced gastrin release, whereas atropine dependent......Duodenal ulcer can be induced in rats by a single dose of cysteamine. The ulcer formation is accompanied by acid hypersecretion and elevated serum gastrin levels. This study was performed to elucidate the mechanisms of gastrin release after an ulcerogenic dose of cysteamine. Cysteamine induced...

  2. Aluminum and Phthalates in Calcium Gluconate: Contribution From Glass and Plastic Packaging.

    Science.gov (United States)

    Yokel, Robert A; Unrine, Jason M

    2017-01-01

    Aluminum contamination of parenteral nutrition solutions has been documented for 3 decades. It can result in elevated blood, bone, and whole body aluminum levels associated with neurotoxicity, reduced bone mass and mineral content, and perhaps hepatotoxicity. The primary aluminum source among parenteral nutrition components is glass-packaged calcium gluconate, in which aluminum concentration in the past 3 decades has averaged approximately 4000 μg/L, compared with nutrition solutions; 2 packaged in glass (from France and the United States) and 1 in plastic (from Germany); in a recently released plastic-packaged solution (from the United States); and in the 2 glass containers. Phthalate concentration was determined in selected samples of each product and leachate of the plastic containers. The initial aluminum concentration was approximately 5000 μg/L in the 2 glass-packaged products and approximately 20 μg/L in the plastic-packaged product, and increased approximately 30%, 50%, and 100% in 2 years, respectively. The aluminum concentration in a recently released Calcium Gluconate Injection USP was approximately 320 μg/L. Phthalates were not detected in any calcium gluconate solutions or leachates. Plastic packaging greatly reduces the contribution of aluminum to parenteral nutrition solutions from calcium gluconate compared with the glass-packaged product.

  3. Modification of mechanical properties of single crystal aluminum oxide by ion beam induced structural changes

    International Nuclear Information System (INIS)

    Ensinger, W.; Nowak, R.; Horino, Y.; Baba, K.

    1993-01-01

    The mechanical behaviour of ceramics is essentially determined by their surface qualities. As a surface modification technique, ion implantation provides the possibility to modify the mechanical properties of ceramics. Highly energetic ions are implanted into the near-surface region of a material and modify its composition and structure. Ions of aluminum, oxygen, nickel and tantalum were implanted into single-crystal α-aluminum oxide. Three-point bending tests showed that an increase in flexural strength of up to 30% could be obtained after implantation of aluminum and oxygen. Nickel and tantalum ion implantation increased the fracture toughness. Indentation tests with Knoop and Vickers diamonds and comparison of the lengths of the developed radial cracks showed that ion implantation leads to a reaction in cracking. The observed effects are assigned to radiation induced structural changes of the ceramic. Ion bombardment leads to radiation damage and formation of compressive stress. In case of tantalum implantation, the implanted near-surface zone becomes amorphous. These effects make the ceramic more resistant to fracture. (orig.)

  4. Antioxidant activity and protective effect of bee bread (honey and pollen) in aluminum-induced anemia, elevation of inflammatory makers and hepato-renal toxicity.

    Science.gov (United States)

    Bakour, Meryem; Al-Waili, Noori S; El Menyiy, Nawal; Imtara, Hamada; Figuira, Anna Cristina; Al-Waili, Thia; Lyoussi, Badiaa

    2017-12-01

    Aluminum toxicity might be related to oxidative stress, and the antioxidant activity and protective effect of bee bread, which contains pollen, honey and bees' enzymes, on aluminum induced blood and hepato-renal toxicity was investigated in rats. Chemical analysis and antioxidant capacity of bee bread were conducted. The animal experiment in rats included; group 1: received distilled water (10 ml/kg b.wt), group 2: received aluminum chloride (662.2 mg/kg b.wt), group 3: received aluminum chloride (662.2 mg/kg b.wt) and ethanolic extract of the bee bread (500 mg/kg b.wt), and group 4: received aluminum chloride (662.2 mg/kg b.wt) and ethanolic extract of the bee bread (750 mg/kg b.wt). Doses were given once daily via a gavage. C-reactive protein, transaminases, urea, creatinine, creatinine clearance, sodium and potassium and urine sodium and potassium were determined on day 28 of the experiment. Bee bread contained protein, fat, fiber, ash, carbohydrate, phenol and flavonoids and it exhibited antioxidant activity. Aluminum caused a significant elevation of blood urea, transaminase, C-reactive protein and monocyte count and significantly decreased hemoglobin. These changes were significantly ameliorated by the use of bee bread. Bee bread has an antioxidant property, and exhibited a protective effect on aluminum induced blood and hepato-renal toxicity and elevation of inflammatory markers C-reactive protein, leukocyte and monocyte counts.

  5. Tingkat Kerentanan Aedes aegypti (Linn. terhadap Malation di Provinsi Sumatera Selatan

    Directory of Open Access Journals (Sweden)

    Lasbudi P. Ambarita

    2015-07-01

    Full Text Available AbstractDengue vector control program in Indonesia and also South Sumatera Province has been using malathion quite long enough. The extensive use of chemical in dengue vector control can lead to development of resistance. This study aims to determine the susceptibility of Aedes aegypti against malathion in 11 district of South Sumatera Province. Larva or pupae were collected with entomology survey kit and colonized until first generation (F1 that were used for bioassay. This test was conducted according to WHO adult susceptibility bioassay procedure.Twenty five blood-fed mosquitoes were exposed to insecticide impregnated paper in each of 4 WHO test kits and 1 control tube. Aedes aegypti from all study sites were still susceptible to operational dose of malathion (5%after 1 hour exposure. The estimated resistance ratio (ERR of knockdown time (KT to operasional dose of malathion is about 1,02 – 1,27 for KT50 and 0,96 – 1,24 for KT95. The susceptibility test of adult mosquitoes to diagnostic dose (0,8% of malathion showed a variety of susceptibility after 24 hours. Strain of 7 districts showed resistance, 3 districts toleran and 1 district still susceptible. The detection of resistance can actually help public health personnel to formulate appropriate steps in encountering the reduction in effectiveness of vector control efforts.Keywords : Aedes aegypti, Malathion, Susceptibility, South SumateraAbstrakProgram pengendalian vektor DBD di Indonesia termasuk di Provinsi Sumatera Selatan telah cukup lama menggunakan malation dengan konsentrasi 5%. Penggunaan satu jenis insektisida kimiawi secara ekstensif dapat memicu perkembangan resistensi. Penelitian ini bertujuan untuk menentukan status kerentanan Aedes aegypti terhadap malation dari 11 kabupaten/kota di Provinsi Sumatera Selatan. Larva atau pupa dikumpulkan menggunakan alat survei entomologi dan selanjutnyadipelihara hingga mendapatkan generasi pertama (F1 yang akan digunakan pada uji

  6. [Process and mechanism of plants in overcoming acid soil aluminum stress].

    Science.gov (United States)

    Zhao, Tian-Long; Xie, Guang-Ning; Zhang, Xiao-Xia; Qiu, Lin-Quan; Wang, Na; Zhang, Su-Zhi

    2013-10-01

    Aluminum (Al) stress is one of the most important factors affecting the plant growth on acid soil. Currently, global soil acidification further intensifies the Al stress. Plants can detoxify Al via the chelation of ionic Al and organic acids to store the ionic Al in vacuoles and extrude it from roots. The Al extrusion is mainly performed by the membrane-localized anion channel proteins Al(3+)-activated malate transporter (ALMT) and multi-drug and toxin extrusion (MATE). The genes encoding ABC transporter and zinc-finger protein conferred plant Al tolerance have also been found. The identification of these Al-resistant genes makes it possible to increase the Al resistance of crop plants and enhance their production by the biological methods such as gene transformation and mark-associated breeding. The key problems needed to be solved and the possible directions in the researches of plant Al stress resistance were proposed.

  7. Citrate, malate and alkali content in commonly consumed diet sodas: implications for nephrolithiasis treatment.

    Science.gov (United States)

    Eisner, Brian H; Asplin, John R; Goldfarb, David S; Ahmad, Ardalanejaz; Stoller, Marshall L

    2010-06-01

    Citrate is a known inhibitor of calcium stone formation. Dietary citrate and alkali intake may have an effect on citraturia. Increasing alkali intake also increases urine pH, which can help prevent uric acid stones. We determined citrate, malate and total alkali concentrations in commonly consumed diet sodas to help direct dietary recommendations in patients with hypocitraturic calcium or uric acid nephrolithiasis. Citrate and malate were measured in a lemonade beverage commonly used to treat hypocitraturic calcium nephrolithiasis and in 15 diet sodas. Anions were measured by ion chromatography. The pH of each beverage was measured to allow calculation of the unprotonated anion concentration using the known pK of citric and malic acid. Total alkali equivalents were calculated for each beverage. Statistical analysis was done using Pearson's correlation coefficient. Several sodas contained an amount of citrate equal to or greater than that of alkali and total alkali as a lemonade beverage commonly used to treat hypocitraturic calcium nephrolithiasis (6.30 mEq/l citrate as alkali and 6.30 as total alkali). These sodas were Diet Sunkist Orange, Diet 7Up, Sprite Zero, Diet Canada Dry Ginger Ale, Sierra Mist Free, Diet Orange Crush, Fresca and Diet Mountain Dew. Colas, including Caffeine Free Diet Coke, Coke Zero, Caffeine Free Diet Pepsi and Diet Coke with Lime, had the lowest total alkali (less than 1.0 mEq/l). There was no significant correlation between beverage pH and total alkali content. Several commonly consumed diet sodas contain moderate amounts of citrate as alkali and total alkali. This information is helpful for dietary recommendations in patients with calcium nephrolithiasis, specifically those with hypocitraturia. It may also be useful in patients with low urine pH and uric acid stones. Beverage malate content is also important since malate ingestion increases the total alkali delivered, which in turn augments citraturia and increases urine pH. Copyright

  8. Conjugated fatty acids and methane production by rumen microbes when incubated with linseed oil alone or mixed with fish oil and/or malate.

    Science.gov (United States)

    Li, Xiang Z; Gao, Qing S; Yan, Chang G; Choi, Seong H; Shin, Jong S; Song, Man K

    2015-08-01

    We hypothesized that manipulating metabolism with fish oil and malate as a hydrogen acceptor would affect the biohydrogenation process of α-linolenic acid by rumen microbes. This study was to examine the effect of fish oil and/or malate on the production of conjugated fatty acids and methane (CH4 ) by rumen microbes when incubated with linseed oil. Linseed oil (LO), LO with fish oil (LO-FO), LO with malate (LO-MA), or LO with fish oil and malate (LO-FO-MA) was added to diluted rumen fluid, respectively. The LO-MA and LO-FO-MA increased pH and propionate concentration compared to the other treatments. LO-MA and LO-FO-MA reduced CH4 production compared to LO. LO-MA and LO-FO-MA increased the contents of c9,t11-conjugated linoleic acid (CLA) and c9,t11,c15-conjugated linolenic acid (CLnA) compared to LO. The content of malate was rapidly reduced while that of lactate was reduced in LO-MA and LO-FO-MA from 3 h incubation time. The fold change of the quantity of methanogen related to total bacteria was decreased at both 3 h and 6 h incubation times in all treatments compared to the control. Overall data indicate that supplementation of combined malate and/or fish oil when incubated with linseed oil, could depress methane generation and increase production of propionate, CLA and CLnA under the conditions of the current in vitro study. © 2015 Japanese Society of Animal Science.

  9. Stable and biocompatible genipin-inducing interlayer-crosslinked micelles for sustained drug release

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yu; Zhang, Xiaojin, E-mail: zhangxj@cug.edu.cn [China University of Geosciences, Faculty of Materials Science and Chemistry (China)

    2017-05-15

    To develop the sustained drug release system, here we describe genipin-inducing interlayer-crosslinked micelles crosslinked via Schiff bases between the amines of amphiphilic linear-hyperbranched polymer poly(ethylene glycol)-branched polyethylenimine-poly(ε-caprolactone) (PEG-PEI-PCL) and genipin. The generation of Schiff bases was confirmed by the color changes and UV-Vis absorption spectra of polymeric micelles after adding genipin. The particle size, morphology, stability, in vitro cytotoxicity, drug loading capacity, and in vitro drug release behavior of crosslinked micelles as well as non-crosslinked micelles were characterized. The results indicated that genipin-inducing interlayer-crosslinked micelles had better stability and biocompatibility than non-crosslinked micelles and glutaraldehyde-inducing interlayer-crosslinked micelles. In addition, genipin-inducing interlayer-crosslinked micelles were able to improve drug loading capacity, reduce the initial burst release, and achieve sustained drug release.

  10. The varied functions of aluminium-activated malate transporters-much more than aluminium resistance.

    Science.gov (United States)

    Palmer, Antony J; Baker, Alison; Muench, Stephen P

    2016-06-15

    The ALMT (aluminium-activated malate transporter) family comprises a functionally diverse but structurally similar group of ion channels. They are found ubiquitously in plant species, expressed throughout different tissues, and located in either the plasma membrane or tonoplast. The first family member identified was TaALMT1, discovered in wheat root tips, which was found to be involved in aluminium resistance by means of malate exudation into the soil. However, since this discovery other family members have been shown to have many other functions such as roles in stomatal opening, general anionic homoeostasis, and in economically valuable traits such as fruit flavour. Recent evidence has also shown that ALMT proteins can act as key molecular actors in GABA (γ-aminobutyric acid) signalling, the first evidence that GABA can act as a signal transducer in plants. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  11. Formulation and method for preparing gels comprising hydrous aluminum oxide

    Science.gov (United States)

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  12. Unexpected temporal evolution of atomic spectral lines of aluminum in a laser induced breakdown spectroscopy experiment

    International Nuclear Information System (INIS)

    Saad, Rawad; L'Hermite, Daniel; Bousquet, Bruno

    2014-01-01

    The temporal evolution of the laser induced breakdown (LIBS) signal of a pure aluminum sample was studied under nitrogen and air atmospheres. In addition to the usual decrease of signal due to plasma cooling, unexpected temporal evolutions were observed for a spectral lines of aluminum, which revealed the existence of collisional energy transfer effects. Furthermore, molecular bands of AlN and AlO were observed in the LIBS spectra, indicating recombination of aluminum with the ambient gas. Within the experimental conditions reported in this study, both collisional energy transfer and recombination processes occurred around 1.5 μs after the laser shot. This highlights the possible influence of collisional and chemical effects inside the plasma that can play a role on LIBS signals. - Highlights: • Persistence of two Al I lines related to the 61,844 cm −1 energy level only under nitrogen atmosphere. • Collisional energy transfer effect exists between aluminum and nitrogen. • Observation of molecular band of AlN (under nitrogen) and AlO (under air) after a delay time of 1.5 µs. • 20% of oxygen in air is sufficient to annihilate both the collisional energy transfer effect and the AlN molecular formation

  13. Melt quality induced failure of electrical conductor (EC grade aluminum wires

    Directory of Open Access Journals (Sweden)

    Khaliq A.

    2017-01-01

    Full Text Available The failure of electrical conductor grade (EC aluminum during wire drawing process was investigated. The fractured aluminum wires were subjected to Scanning Electron Microscopy (SEM and Energy Dispersive X-ray (EDX analyses for an initial examination. Thermodynamic analyses of molten aluminum interaction with refractories was also carried out using FactSage at 710°C to predict the stable phases. The SEM/EDX analyses has revealed the inclusions in aluminum matrix. The typical inclusions observed were Al2O3, Al3C4 (Al-Carbide and oxides of refractories elements (Al, Mg, Si and O that have particle size ranging up to 5 μm. The transition metal boride particles were not identified during SEM/EDX analyses these might be too fine to be detected with this microscope. The overall investigation suggested that the possible cause of this failure is second phase particles presence as inclusions in the aluminum matrix, and this was associated with the poor quality of melt. During wire drawing process, these inclusions were pulled out of the aluminum matrix by the wiredrawing forces to produce micro-voids which led to ductile tearing and final fracture of wires. It was recommended to use ceramic foam filters to segregate inclusions from molten aluminum.

  14. Tributyltin interacts with mitochondria and induces cytochrome c release.

    Science.gov (United States)

    Nishikimi, A; Kira, Y; Kasahara, E; Sato, E F; Kanno, T; Utsumi, K; Inoue, M

    2001-01-01

    Although triorganotins are potent inducers of apoptosis in various cell types, the critical targets of these compounds and the mechanisms by which they lead to cell death remain to be elucidated. There are two major pathways by which apoptotic cell death occurs: one is triggered by a cytokine mediator and the other is by a mitochondrion-dependent mechanism. To elucidate the mechanism of triorganotin-induced apoptosis, we studied the effect of tributyltin on mitochondrial function. We found that moderately low doses of tributyltin decrease mitochondrial membrane potential and induce cytochrome c release by a mechanism inhibited by cyclosporine A and bongkrekic acid. Tributyltin-induced cytochrome c release is also prevented by dithiols such as dithiothreitol and 2,3-dimercaptopropanol but not by monothiols such as GSH, N-acetyl-L-cysteine, L-cysteine and 2-mercaptoethanol. Further studies with phenylarsine oxide agarose revealed that tributyltin interacts with the adenine nucleotide translocator, a functional constituent of the mitochondrial permeability transition pore, which is selectively inhibited by dithiothreitol. These results suggest that, at low doses, tributyltin interacts selectively with critical thiol residues in the adenine nucleotide translocator and opens the permeability transition pore, thereby decreasing membrane potential and releasing cytochrome c from mitochondria, a series of events consistent with established mechanistic models of apoptosis. PMID:11368793

  15. Bacteria-induced histamine release from human bronchoalveolar cells and blood leukocytes

    DEFF Research Database (Denmark)

    Clementsen, P; Milman, N; Struve-Christensen, E

    1991-01-01

    23187 resulted in histamine release. S. aureus-induced histamine release from basophils was examined in leukocyte suspensions obtained from the same individuals, and in all experiments release was found. The dose-response curves were similar to those obtained with BAL cells. The bacteria...

  16. Concurrent synthesis and release of nod-gene-inducing flavonoids from alfalfa roots

    International Nuclear Information System (INIS)

    Maxwell, C.A.; Phillips, D.A.

    1990-01-01

    Flavonoid signals from alfalfa (Medicago sativa L.) induce transcription of nodulation (nod) genes in Rhizobium meliloti. Alfalfa roots release three major nod-gene inducers: 4',7-dihydroxyflavanone, 4',7-dihydroxyflavone, and 4,4'-dihydroxy-2'-methoxychalcone. The objective of the present study was to define temporal relationships between synthesis and exudation for those flavonoids. Requirements for concurrent flavonoid biosynthesis were assessed by treating roots of intact alfalfa seedlings with [U- 14 C]-L-phenylalanine in the presence or absence of the phenylalanine ammonia-lyase inhibitor L-2-aminoxy-3-phenylpropionic acid (AOPP). In the absence of AOPP, each of the three flavonoids in exudates contained 14 C. In the presence of AOPP, 14 C labeling and release of all the exuded nod-gene inducers were reduced significantly. AOPP inhibited labeling and release of the strongest nod-gene inducer, methoxychalcone, by more than 90%. The release process responsible for exudation of nod-gene inducers appears to be specific rather than a general phenomenon such as a sloughing off of cells during root growth

  17. Correlation between myocardial malate/aspartate shuttle activity and EAAT1 protein expression in hyper- and hypothyroidism.

    Science.gov (United States)

    Ralphe, J Carter; Bedell, Kurt; Segar, Jeffrey L; Scholz, Thomas D

    2005-05-01

    In the heart, elevated thyroid hormone leads to upregulation of metabolic pathways associated with energy production and development of hypertrophy. The malate/aspartate shuttle, which transfers cytosolic-reducing equivalents into the cardiac mitochondria, is increased 33% in hyperthyroid rats. Within the shuttle, the aspartate-glutamate carrier is rate limiting. The excitatory amino acid transporter type 1 (EAAT1) functions as a glutamate carrier in the malate/aspartate shuttle. In this study, we hypothesize that EAAT1 is regulated by thyroid hormone. Adult rats were injected with triiodothyronine (T3) or saline over a period of 8-9 days or provided with propylthiouracil (PTU) in their drinking water for 2 mo. Steady-state mRNA levels of EAAT1 and aralar1 and citrin (both cardiac mitochondrial aspartate-glutamate transporters) were determined by Northern blot analysis and normalized to 18S rRNA. A spectrophotometric assay of maximal malate/aspartate shuttle activity was performed on isolated cardiac mitochondria from PTU-treated and control animals. Protein lysates from mitochondria were separated by SDS-PAGE and probed with a human anti-EAAT1 IgG. Compared with control, EAAT1 mRNA levels (arbitrary units) were increased nearly threefold in T3-treated (3.1 +/- 0.5 vs. 1.1 +/- 0.2; P Hyperthyroidism in rats is related to an increase in cardiac expression of EAAT1 mRNA and protein. The 49% increase in EAAT1 mitochondrial protein level shows that malate/aspartate shuttle activity increased in hyperthyroid rat cardiac mitochondria. Although hypothyroidism resulted in a decrease in EAAT1 mRNA, neither the EAAT1 protein level nor shuttle activity was affected. EAAT1 regulation by thyroid hormone may facilitate increased metabolic demands of the cardiomyocyte during hyperthyroidism and impact cardiac function in hyperthyroidism.

  18. Development of antimigraine transdermal delivery systems of pizotifen malate.

    Science.gov (United States)

    Serna-Jiménez, C E; del Rio-Sancho, S; Calatayud-Pascual, M A; Balaguer-Fernández, C; Femenía-Font, A; López-Castellano, A; Merino, V

    2015-08-15

    The aim of this study was to develop and evaluate a transdermal delivery system of pizotifen malate. Pizotifen is frequently used in the preventive treatment of migraine, but is also indicated in eating disorders. In the course of the project, the effects of chemical enhancers such as ethanol, 1,8-cineole, limonene, azone and different fatty acids (decanoic, decenoic, dodecanoic, linoleic and oleic acids) were determined, first using a pizotifen solution. Steady state flux, diffusion and partition parameters were estimated by fitting the Scheuplein equation to the data obtained. Among the chemical enhancers studied, decenoic acid showed the highest enhancement activity, which seemed to be due to the length of its alkyl chain and unsaturation at the 9th carbon. The influence of iontophoresis and the involvement of electrotransport in said process was determined. The absorption profile obtained with iontophoresis was similar to that obtained with fatty acids and terpenes, though skin deposition of the drug was lower with the former. Transdermal delivery systems (TDS) of pizotifen were manufactured by including chemical enhancers, decenoic acid or oleic acid, and were subsequently characterized. When the results obtained with solutions were compared with those obtained with the TDS, a positive enhancement effect was observed with the latter with respect to the partitioning and diffusion of the drug across the skin. Our findings endorse the suitability of our TDS for delivering therapeutic amounts of pizotifen malate. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Analysis of copper and uranyl malates by potentiometry, polarimetry and spectrophotometry

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, I; Petit-Ramel, M M; Chapelet-Barbier, C [Lyon-1 Univ., 69 (France)

    1978-07-15

    The stability and optical constants of the copper malates (CuH/sub 2/Mal)/sup +/, (CuHMal), (CuH/sub 2/Mal/sub 2/)/sup 2 -/, (CuMal)/sup -/, (Cu/sub 2/Mal/sub 2/)/sup 2 -/, and (CuHsub(-1)Mal)/sup 2 -/ have been fitted by a pit-mapping method, which also gives their confidence limits, from potentiometric, visible spectroscopic and polarimetric measurements.

  20. Phosphorylation of glyoxysomal malate synthase from castor oil seed endosperm and cucumber cotyledon

    International Nuclear Information System (INIS)

    Yang, Y.P; Randall, D.D.

    1989-01-01

    Glyoxysomal malate synthase (MS) was purified to apparent homogeneity from 3-d germinating castor oil seed endosperm by a relatively simple procedure including two sucrose density gradient centrifugations. Antibodies raised to the caster oil seed MS crossreacted with MS from cucumber cotyledon. MS was phosphorylated in both tissues in an MgATP dependent reaction. The phosphorylation pattern was similar for both enzymes and both enzymes were inhibited by NaF, NaMo, (NH 4 )SO 4 , glyoxylate and high concentration of MgCl 2 (60 mM), but was not inhibited by NaCl and malate. Further characterization of the phosphorylation of MS from castor oil seed endosperms showed that the 5S form of MS is the form which is labelled by 32 P. The addition of exogenous alkaline phosphatase to MS not only decreased enzyme activity, but could also dephosphorylate phospho-MS. The relationship between dephosphorylation of MS and the decrease of MS activity is currently under investigation

  1. Mechanism of palytoxin-induced [3H]norepinephrine release from a rat pheochromocytoma cell line

    International Nuclear Information System (INIS)

    Tatsumi, M.; Takahashi, M.; Ohizumi, Y.

    1984-01-01

    Palytoxin, isolated from the zoanthid Palytoha species, is one of the most potent marine toxins. Palytoxin caused a release of [ 3 H]norepinephrine from clonal rat pheochromocytoma cells in a concentration-dependent manner. This releasing action of palytoxin was markedly inhibited or abolished by Co 2+ or Ca 2+ -free medium, but was not modified by tetrodotoxin. The release of [ 3 H]norepinephrine induced by a low concentration of palytoxin was abolished in sodium-free medium and increased as the external Na+ concentrations were increased, but the release induced by a high concentration was unaffected by varying the concentration of external Na + . The release of [ 3 H]norepinephrine induced by both concentrations of palytoxin increased with increasing Ca 2+ concentrations. Palytoxin caused a concentration-dependent increase in 22 Na and 45 Ca influxes into pheochromocytoma cells. The palytoxin-induced 45 Ca influx was markedly inhibited by Co 2+ , whereas the palytoxin-induced 22 Na influx was not affected by tetrodotoxin. These results suggest that in pheochromocytoma cells the [ 3 H]norepinephrine release induced by lower concentrations of palytoxin is primarily brought about by increasing tetrodotoxin-insensitive Na + permeability across the cell membrane, whereas that induced by higher concentrations is mainly caused by a direct increase in Ca 2+ influx into them

  2. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    Science.gov (United States)

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle.

  3. Inclusion Detection in Aluminum Alloys Via Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Hudson, Shaymus W.; Craparo, Joseph; De Saro, Robert; Apelian, Diran

    2018-04-01

    Laser-induced breakdown spectroscopy (LIBS) has shown promise as a technique to quickly determine molten metal chemistry in real time. Because of its characteristics, LIBS could also be used as a technique to sense for unwanted inclusions and impurities. Simulated Al2O3 inclusions were added to molten aluminum via a metal-matrix composite. LIBS was performed in situ to determine whether particles could be detected. Outlier analysis on oxygen signal was performed on LIBS data and compared to oxide volume fraction measured through metallography. It was determined that LIBS could differentiate between melts with different amounts of inclusions by monitoring the fluctuations in signal for elements of interest. LIBS shows promise as an enabling tool for monitoring metal cleanliness.

  4. Envenomations by Bothrops and Crotalus snakes induce the release of mitochondrial alarmins.

    Directory of Open Access Journals (Sweden)

    Irene Zornetta

    Full Text Available Skeletal muscle necrosis is a common manifestation of viperid snakebite envenomations. Venoms from snakes of the genus Bothrops, such as that of B. asper, induce muscle tissue damage at the site of venom injection, provoking severe local pathology which often results in permanent sequelae. In contrast, the venom of the South American rattlesnake Crotalus durissus terrificus, induces a clinical picture of systemic myotoxicity, i.e., rhabdomyolysis, together with neurotoxicity. It is known that molecules released from damaged muscle might act as 'danger' signals. These are known as 'alarmins', and contribute to the inflammatory reaction by activating the innate immune system. Here we show that the venoms of B. asper and C. d. terrificus release the mitochondrial markers mtDNA (from the matrix and cytochrome c (Cyt c from the intermembrane space, from ex vivo mouse tibialis anterior muscles. Cyt c was released to a similar extent by the two venoms whereas B. asper venom induced the release of higher amounts of mtDNA, thus reflecting hitherto some differences in their pathological action on muscle mitochondria. At variance, injection of these venoms in mice resulted in a different time-course of mtDNA release, with B. asper venom inducing an early onset increment in plasma levels and C. d. terrificus venom provoking a delayed release. We suggest that the release of mitochondrial 'alarmins' might contribute to the local and systemic inflammatory events characteristic of snakebite envenomations.

  5. Action of sulphite on plant malate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, I.

    1974-01-01

    SO/sub 3//sup 2 -/ acts on NAD- and NADP-dependent malate dehydrogenase in several ways. Firstly, SO/sub 3//sup 2 -/ favours the appearance of low MW species (65000 and 39000 daltons) in Sephadex gel chromatography. Secondly, the enzyme from which is obtained by gel chromatography with dithioerythritol plus nucleotide cofactor is changed in the presence of SO/sub 3//sup 2 -/. This is indicated by the appearance of a linear reaction (instead of curvilinear), and by the abolition of the biphasic sigmoidal kinetics on varying substrate and cofactor concentrations. Thus the inhibition of initial velocity at high substrate or cofactor concentrations is even more marked than at lower ones. Thirdly, SO/sub 3//sup 2 -/ strongly reduces the activity in substrate saturating conditions.

  6. Electrically induced brain-derived neurotrophic factor release from Schwann cells.

    Science.gov (United States)

    Luo, Beier; Huang, Jinghui; Lu, Lei; Hu, Xueyu; Luo, Zhuojing; Li, Ming

    2014-07-01

    Regulating the production of brain-derived neurotrophic factor (BDNF) in Schwann cells (SCs) is critical for their application in traumatic nerve injury, neurodegenerative disorders, and demyelination disease in both central and peripheral nervous systems. The present study investigated the possibility of using electrical stimulation (ES) to activate SCs to release BDNF. We found that short-term ES was capable of promoting BDNF production from SCs, and the maximal BDNF release was achieved by ES at 6 V (3 Hz, 30 min). We further examined the involvement of intracellular calcium ions ([Ca2+]i) in the ES-induced BDNF production in SCs by pharmacological studies. We found that the ES-induced BDNF release required calcium influx through T-type voltage-gated calcium channel (VGCC) and calcium mobilization from internal calcium stores, including inositol triphosphate-sensitive stores and caffeine/ryanodine-sensitive stores. In addition, calcium-calmodulin dependent protein kinase IV (CaMK IV), mitogen-activated protein kinase (MAPK), and cAMP response element-binding protein (CREB) were found to play important roles in the ES-induced BDNF release from SCs. In conclusion, ES is capable of activating SCs to secrete BDNF, which requires the involvement of calcium influx through T-type VGCC and calcium mobilization from internal calcium stores. In addition, activation of CaMK IV, MAPK, and CREB were also involved in the ES-induced BDNF release. The findings indicate that ES can improve the neurotrophic ability in SCs and raise the possibility of developing electrically stimulated SCs as a source of cell therapy for nerve injury in both peripheral and central nervous systems. Copyright © 2014 Wiley Periodicals, Inc.

  7. Use of triammonium salt of aurin tricarboxylic acid as risk mitigant for aluminum hydride

    Science.gov (United States)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2017-08-08

    A process and a resulting product by process of an aluminum hydride which is modified with by physically combining in a ball milling process an aluminum hydride with a triammonium salt of aurin tricarboxylic acid. The resulting product is an aluminum hydride which is resistant to air, ambient moisture, and liquid water while maintaining useful hydrogen storage and release kinetics.

  8. Tyrosine 402 Phosphorylation of Pyk2 Is Involved in Ionomycin-Induced Neurotransmitter Release

    Science.gov (United States)

    Zhang, Zhao; Zhang, Yun; Mou, Zheng; Chu, Shifeng; Chen, Xiaoyu; He, Wenbin; Guo, Xiaofeng; Yuan, Yuhe; Takahashi, Masami; Chen, Naihong

    2014-01-01

    Protein tyrosine kinases, which are highly expressed in the central nervous system, are implicated in many neural processes. However, the relationship between protein tyrosine kinases and neurotransmitter release remains unknown. In this study, we found that ionomycin, a Ca2+ ionophore, concurrently induced asynchronous neurotransmitter release and phosphorylation of a non-receptor protein tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2), in clonal rat pheochromocytoma PC12 cells and cerebellar granule cells, whereas introduction of Pyk2 siRNA dramatically suppressed ionomycin-induced neurotransmitter release. Further study indicated that Tyr-402 (Y402) in Pyk2, instead of other tyrosine sites, underwent rapid phosphorylation after ionomycin induction in 1 min to 2 min. We demonstrated that the mutant of Pyk2 Y402 could abolish ionomycin-induced dopamine (DA) release by transfecting cells with recombinant Pyk2 and its mutants (Y402F, Y579F, Y580F, and Y881F). In addition, Src inhibition could prolong phosphorylation of Pyk2 Y402 and increase DA release. These findings suggested that Pyk2 was involved in ionomycin-induced neurotransmitter release through phosphorylation of Y402. PMID:24718602

  9. Combination of long noncoding RNA MALAT1 and carcinoembryonic antigen for the diagnosis of malignant pleural effusion caused by lung cancer.

    Science.gov (United States)

    Wang, Wan-Wei; Zhou, Xi-Lei; Song, Ying-Jian; Yu, Chang-Hua; Zhu, Wei-Guo; Tong, Yu-Suo

    2018-01-01

    Long noncoding RNAs (lncRNAs) are present in body fluids, but their potential as tumor biomarkers has never been investigated in malignant pleural effusion (MPE) caused by lung cancer. The aim of this study was to assess the clinical significance of lncRNAs in pleural effusion, which could potentially serve as diagnostic and predictive markers for lung cancer-associated MPE (LC-MPE). RNAs from pleural effusion were extracted in 217 cases of LC-MPE and 132 cases of benign pleural effusion (BPE). Thirty-one lung cancer-associated lncRNAs were measured using quantitative real-time polymerase chain reaction (qRT-PCR). The level of carcinoembryonic antigen (CEA) was also determined. The receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were established to evaluate the sensitivity and specificity of the identified lncRNAs and other biomarkers. The correlations between baseline pleural effusion lncRNAs expression and response to chemotherapy were also analyzed. Three lncRNAs ( MALAT1 , H19 , and CUDR ) were found to have potential as diagnostic markers in LC-MPE. The AUCs for MALAT1 , H19 , CUDR , and CEA were 0.891, 0.783, 0.824, and 0.826, respectively. Using a logistic model, the combination of MALAT1 and CEA (AUC, 0.924) provided higher sensitivity and accuracy in predicting LC-MPE than CEA (AUC, 0.826) alone. Moreover, baseline MALAT1 expression in pleural fluid was inversely correlated with chemotherapy response in patients with LC-MPE. Pleural effusion lncRNAs were effective in differentiating LC-MPE from BPE. The combination of MALAT1 and CEA was more effective for LC-MPE diagnosis.

  10. Impaired Malate and Fumarate Accumulation Due to the Mutation of the Tonoplast Dicarboxylate Transporter Has Little Effects on Stomatal Behavior.

    Science.gov (United States)

    Medeiros, David B; Barros, Kallyne A; Barros, Jessica Aline S; Omena-Garcia, Rebeca P; Arrivault, Stéphanie; Sanglard, Lílian M V P; Detmann, Kelly C; Silva, Willian Batista; Daloso, Danilo M; DaMatta, Fábio M; Nunes-Nesi, Adriano; Fernie, Alisdair R; Araújo, Wagner L

    2017-11-01

    Malate is a central metabolite involved in a multiplicity of plant metabolic pathways, being associated with mitochondrial metabolism and playing significant roles in stomatal movements. Vacuolar malate transport has been characterized at the molecular level and is performed by at least one carrier protein and two channels in Arabidopsis ( Arabidopsis thaliana ) vacuoles. The absence of the Arabidopsis tonoplast Dicarboxylate Transporter (tDT) in the tdt knockout mutant was associated previously with an impaired accumulation of malate and fumarate in leaves. Here, we investigated the consequences of this lower accumulation on stomatal behavior and photosynthetic capacity as well as its putative metabolic impacts. Neither the stomatal conductance nor the kinetic responses to dark, light, or high CO 2 were highly affected in tdt plants. In addition, we did not observe any impact on stomatal aperture following incubation with abscisic acid, malate, or citrate. Furthermore, an effect on photosynthetic capacity was not observed in the mutant lines. However, leaf mitochondrial metabolism was affected in the tdt plants. Levels of the intermediates of the tricarboxylic acid cycle were altered, and increases in both light and dark respiration were observed. We conclude that manipulation of the tonoplastic organic acid transporter impacted mitochondrial metabolism, while the overall stomatal and photosynthetic capacity were unaffected. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. Studies of aluminum in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  12. Aluminum neurotoxicity in the rat brain

    International Nuclear Information System (INIS)

    Yumoto, S.; Ohashi, H.; Nagai, H.; Kakimi, S.; Ogawa, Y.; Iwata, Y.; Ishii, K.

    1992-01-01

    To investigate the etiology of Alzheimer's disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer's disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer's disease patients. Our results indicate that Alzheimer's disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author)

  13. Aluminum neurotoxicity in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, S [Tokyo Univ. (Japan). Faculty of Medicine; Ohashi, H; Nagai, H; Kakimi, S; Ogawa, Y; Iwata, Y; Ishii, K

    1993-12-31

    To investigate the etiology of Alzheimer`s disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer`s disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer`s disease patients. Our results indicate that Alzheimer`s disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author).

  14. Studies of aluminum in rat brain

    International Nuclear Information System (INIS)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using 14 C autoradiography to measure the uptake of 14 C 2-deoxy-D-glucose ( 14 C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-μm resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The 14 C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of 14 C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10 9 Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab

  15. Dynamics of shear-induced ATP release from red blood cells.

    Science.gov (United States)

    Wan, Jiandi; Ristenpart, William D; Stone, Howard A

    2008-10-28

    Adenosine triphosphate (ATP) is a regulatory molecule for many cell functions, both for intracellular and, perhaps less well known, extracellular functions. An important example of the latter involves red blood cells (RBCs), which help regulate blood pressure by releasing ATP as a vasodilatory signaling molecule in response to the increased shear stress inside arterial constrictions. Although shear-induced ATP release has been observed widely and is believed to be triggered by deformation of the cell membrane, the underlying mechanosensing mechanism inside RBCs is still controversial. Here, we use an in vitro microfluidic approach to investigate the dynamics of shear-induced ATP release from human RBCs with millisecond resolution. We demonstrate that there is a sizable delay time between the onset of increased shear stress and the release of ATP. This response time decreases with shear stress, but surprisingly does not depend significantly on membrane rigidity. Furthermore, we show that even though the RBCs deform significantly in short constrictions (duration of increased stress <3 ms), no measurable ATP is released. This critical timescale is commensurate with a characteristic membrane relaxation time determined from observations of the cell deformation by using high-speed video. Taken together our results suggest a model wherein the retraction of the spectrin-actin cytoskeleton network triggers the mechanosensitive ATP release and a shear-dependent membrane viscosity controls the rate of release.

  16. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    Science.gov (United States)

    Yan, Ning; Qin, Lijun; Hao, Haixia; Hui, Longfei; Zhao, Fengqi; Feng, Hao

    2017-06-01

    Nanocomposites consisting of iron oxide (Fe2O3) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe2O3 was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe2O3 energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe2O3 composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe2O3 nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe2O3 nanoparticles. The enhanced energy release of rGO/Al@Fe2O3 is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe2O3 composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  17. Watermelon glyoxysomal malate dehydrogenase is sorted to peroxisomes of the methylotrophic yeast, Hansenula polymorpha

    NARCIS (Netherlands)

    Klei, I.J. van der; Faber, K.N.; Keizer-Gunnink, I.; Gietl, C.; Harder, W.; Veenhuis, M.

    1993-01-01

    We have studied the fate of the watermelon (Citrullus vulgaris Schrad.) glyoxysomal enzyme, malate dehydrogenase (gMDH), after synthesis in the methylotrophic yeast, Hansenula polymorpha. The gene encoding the precursor form of gMDH (pre-gMDH) was cloned in an H. polymorpha expression vector

  18. Mechanism of aminopyridine-induced release of [3H]dopamine from rat brain synaptosomes.

    Science.gov (United States)

    Scheer, H W; Lavoie, P A

    1991-01-01

    1. Aminopyridines (APs) induced the release of [3H]dopamine (3H-DA) from rat synaptosomal preparations. 2. 4-AP and 3,4-DAP were of equal efficacy in inducing release of 3H-DA; 3-AP, 2-AP and 2,6-AP were less active; pyridine and pyridine-4-carboxylamide were inactive. 3. Cd2+ was more effective in inhibiting 4-AP-induced release of 3H-DA (IC50 approximately 4 microM) than Co2+ and Ni2+ (IC50s approximately 500 microM). 4. While 4-AP increased the 45Ca2+ content of whole synaptosomal preparations, no effect of 4-AP on 45Ca2+ content was observed in lysed synaptosomal preparations. 5. 4-AP-induced 45Ca2+ uptake was inhibited by Cd2+, Ni2+ and Co2+ in concentration ranges similar to those inhibiting 3H-DA release.

  19. Calibration curves for commercial copper and aluminum alloys using handheld laser-induced breakdown spectroscopy

    Science.gov (United States)

    Bennett, B. N.; Martin, M. Z.; Leonard, D. N.; Garlea, E.

    2018-03-01

    Handheld laser-induced breakdown spectroscopy (HH LIBS) was used to study the elemental composition of four copper alloys and four aluminum alloys to produce calibration curves. The HH LIBS instrument used is a SciAps Z-500, commercially available, that contains a class-1 solid-state laser with an output wavelength of 1532 nm, laser energy of 5 mJ/pulse, and a pulse duration of 5 ns. Test samples were solid specimens comprising copper and aluminum alloys and data were collected from the samples' surface at three different locations, employing a 12-point-grid pattern for each data set. All three data sets of the spectra were averaged, and the intensity, corrected by subtraction of background, was used to produce the elemental calibration curves. Calibration curves are presented for the matrix elements, copper and aluminum, as well as several minor elements. The surface damage produced by the laser was examined by microscopy. The alloys were tested in air and in a glovebox to evaluate the instrument's ability to identify the constituents within materials under different environmental conditions. The main objective of using this HH LIBS technology is to determine its capability to fingerprint the presence of certain elements related to subpercent level within materials in real time and in situ, as a starting point for undertaking future complex material characterization work.

  20. A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple.

    Science.gov (United States)

    Bai, Yang; Dougherty, Laura; Li, Mingjun; Fazio, Gennaro; Cheng, Lailiang; Xu, Kenong

    2012-08-01

    Acidity levels greatly affect the taste and flavor of fruit, and consequently its market value. In mature apple fruit, malic acid is the predominant organic acid. Several studies have confirmed that the major quantitative trait locus Ma largely controls the variation of fruit acidity levels. The Ma locus has recently been defined in a region of 150 kb that contains 44 predicted genes on chromosome 16 in the Golden Delicious genome. In this study, we identified two aluminum-activated malate transporter-like genes, designated Ma1 and Ma2, as strong candidates of Ma by narrowing down the Ma locus to 65-82 kb containing 12-19 predicted genes depending on the haplotypes. The Ma haplotypes were determined by sequencing two bacterial artificial chromosome clones from G.41 (an apple rootstock of genotype Mama) that cover the two distinct haplotypes at the Ma locus. Gene expression profiling in 18 apple germplasm accessions suggested that Ma1 is the major determinant at the Ma locus controlling fruit acidity as Ma1 is expressed at a much higher level than Ma2 and the Ma1 expression is significantly correlated with fruit titratable acidity (R (2) = 0.4543, P = 0.0021). In the coding sequences of low acidity alleles of Ma1 and Ma2, sequence variations at the amino acid level between Golden Delicious and G.41 were not detected. But the alleles for high acidity vary considerably between the two genotypes. The low acidity allele of Ma1, Ma1-1455A, is mainly characterized by a mutation at base 1455 in the open reading frame. The mutation leads to a premature stop codon that truncates the carboxyl terminus of Ma1-1455A by 84 amino acids compared with Ma1-1455G. A survey of 29 apple germplasm accessions using marker CAPS(1455) that targets the SNP(1455) in Ma1 showed that the CAPS(1455A) allele was associated completely with high pH and highly with low titratable acidity, suggesting that the natural mutation-led truncation is most likely responsible for the abolished function of Ma

  1. Effects of Aluminum Powder on Ignition Performance of RDX, HMX, and CL-20 Explosives

    Directory of Open Access Journals (Sweden)

    Xiaoxiang Mao

    2018-01-01

    Full Text Available As a kind of high explosives, aluminized explosive cannot release the energy maximumly, which is a key problem. Using DTA-TG equipment, the ignition performance of three kinds of aluminized explosives (RDX, HMX, and CL-20 with different mass percentages of aluminum powder (0%, 10 wt.%, 20 wt.%, and 30 wt.% was investigated. The results showed that the energy release of the HMX/Al composite explosive with 10 wt.%, 20 wt.%, and 30 wt.% aluminum powder was only equivalent to 80%, 65%, and 36% of pure HMX, respectively. It was similar to RDX/Al and CL-20/Al composite explosives, except the CL-20/Al mixture with 10% aluminum powder. Rather than participating in the ignition and combustion, the aluminum powder does effect the complete reaction of RDX, HMX, and CL-20 in the initial stage of ignition or in the lower temperature area of the boundary.

  2. A Theoretical Evaluation of Secondary Atomization Effects on Engine Performance for Aluminum Gel Propellants

    Science.gov (United States)

    Mueller, D. C.; Turns, S. R.

    1994-01-01

    A one-dimensional model of a gel-fueled rocket combustion chamber has been developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization. aluminum ignition, and aluminum combustion. Also included is a model of radiative heat transfer from the solid combustion products to the chamber walls. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size and radiation heat wall losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two-phase flow effects on overall engine performance. Radiation losses yielded a 1 percent decrease in engine I(sub sp). Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine I(sub sp) was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass loading was varied from 0-70 wt percent. Engine I(sub sp) efficiencies, accounting for radiation and two-phase flow effects, on the order of 0.946 were calculated for a 60 wt percent gel, assuming a fragmentation ratio of 5.

  3. Preliminary investigation of aluminum combustion in air and steam.

    OpenAIRE

    Hallenbeck, Amos Edward.

    1983-01-01

    Approved for public release; distribution in unlimited. The goal of the experiment is to understand the role of metal-steam combustion in the explosion of underwater shaped cnarges. An apparatus was constructed to investigate combustion of aluminum in stes.m. For background information, aluminum wires (1 mm diameter, 50 mm length) were ignited in air by high current (480 amperes) . Tests in air and steam were photographed using 35 mm color slides and 16 mm movies (4300 fr...

  4. Pengaruh Pengasapan (Thermal Fogging Insektisida Piretroid (Malation 95% Terhadap Nyamuk Aedes aegypti dan Culex quinquefasciatus di Pemukiman

    Directory of Open Access Journals (Sweden)

    Hasan Boesri

    2013-02-01

    Full Text Available Abstracts. The evaluation of piretroid insecticide (active ingredient Malation 95% was con­ducted in Sub district Tengarang, Semarang Segency, Central Java Province. The insecti­cide was applied using thermal fogging method for dosages of 125, 250, 375, 500 and 625 ml/ha (diluted in diesel to 10 litters. The evaluation of the efficacy was conducted against two mosquito species, Aedes aegypti (the main dengue haemorrhagic fever and Culex quinquefasciatus (the urban lymphatic fil­ariasis vector. Result of the evaluation was revealed that dosages of 500 and 625 ml/ha were effective against both tested mosquito species indoor and outdoor.Key Word: Aedes aegypti, Culex quinquefasciatus, insecticide Piretroid (Malation 95%, thermal fogging.

  5. Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice

    Science.gov (United States)

    Pineton de Chambrun, G; Body-Malapel, M; Frey-Wagner, I; Djouina, M; Deknuydt, F; Atrott, K; Esquerre, N; Altare, F; Neut, C; Arrieta, M C; Kanneganti, T-D; Rogler, G; Colombel, J-F; Cortot, A; Desreumaux, P; Vignal, C

    2014-01-01

    The increasing incidence of inflammatory bowel diseases (IBDs) in developing countries has highlighted the critical role of environmental pollutants as causative factors in their pathophysiology. Despite its ubiquity and immune toxicity, the impact of aluminum in the gut is not known. This study aimed to evaluate the effects of environmentally relevant intoxication with aluminum in murine models of colitis and to explore the underlying mechanisms. Oral administration of aluminum worsened intestinal inflammation in mice with 2,4,6-trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis and chronic colitis in interleukin 10-negative (IL10−/−) mice. Aluminum increased the intensity and duration of macroscopic and histologic inflammation, colonic myeloperoxidase activity, inflammatory cytokines expression, and decreased the epithelial cell renewal compared with control animals. Under basal conditions, aluminum impaired intestinal barrier function. In vitro, aluminum induced granuloma formation and synergized with lipopolysaccharide to stimulate inflammatory cytokines expression by epithelial cells. Deleterious effects of aluminum on intestinal inflammation and mucosal repair strongly suggest that aluminum might be an environmental IBD risk factor. PMID:24129165

  6. Structure of halophilic malate dehydrogenase in multimolar KCl solutions from neutron scattering and ultracentrifugation

    International Nuclear Information System (INIS)

    Calmettes, P.

    1987-01-01

    The structure and solvent interactions of malate dehydrogenase from Halobacterium marismortui in multimolar KCl solvents are found to be similar to those in multimolar NaCl solvents reported previously (G. Zaccai, E. Wachtel and H. Eisenberg, J. Mol. Biol. 190 (1986) 97). KCl rather than NaCl is predominant in physiological medium. At salt concentrations up to about 3.0 M, the protein (a dimer of M 87000 g/mol) can be considered to occupy an invariant volume in which it is associated with about 4100 molecules of water and about 520 molecules of salt. At very low resolution, the enzyme particle appears to have a compact protein core and protruding protein parts in interaction with the water and salt components, structural features that are not observed in non-halophilic mitochondrial malate dehydrogenase. The above conclusions were drawn from the analysis of neutron scattering and ultracentrifugation data, and the complementarity of these approaches is discussed extensively. 24 refs.; 7 figs.; 4 tabs

  7. Selection of a mineral binder with potentialities for the stabilization/solidification of aluminum metal

    Energy Technology Data Exchange (ETDEWEB)

    Cau Dit Coumes, C., E-mail: celine.cau-dit-coumes@cea.fr [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Lambertin, D.; Lahalle, H.; Antonucci, P. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Cannes, C.; Delpech, S. [Institut de Physique Nucléaire, CNRS, Univ. Paris-Sud 11, 91406 Orsay Cedex (France)

    2014-10-15

    Highlights: • Binders capable of reducing the pore solution pH compared with Portland cements are reviewed. • The binders are then tested against aluminum corrosion. • Corrosion of aluminum metal is minimal with magnesium phosphate cement. • The H{sub 2} release can be reduced still further by adding LiNO{sub 3} to the mixing solution. • Electrochemical characterizations show that aluminum tends to a passive state. - Abstract: In a strongly alkaline medium, such as that encountered in conventional cementitious materials based on Portland cement, aluminum metal is corroded, with continued production of hydrogen. In order to develop a mineral matrix having enhanced compatibility with aluminum, a literature review was first undertaken to identify binders capable of reducing the pore solution pH compared with Portland cement. An experimental study was then carried out to measure the hydrogen production resulting from corrosion of aluminum metal rods encapsulated in the different selected cement pastes. The best results were achieved with magnesium phosphate cement, which released very little hydrogen over the duration of the study. This production could be reduced still further by adding a corrosion inhibitor (lithium nitrate) to the mixing solution. Open circuit potential measurement and Electrochemical Impedance Spectroscopy of aluminum electrode encapsulated in two pastes based on Portland cement and magnesium phosphate cement showed different redox behaviors. In the Portland cement paste, the electrochemical data confirmed the corrosion of aluminum whereas this latter tended to a passive state in the magnesium phosphate binder.

  8. Potential protective effects of extra virgin olive oil on the hepatotoxicity induced by co-exposure of adult rats to acrylamide and aluminum.

    Science.gov (United States)

    Ghorbel, Imen; Elwej, Awatef; Jamoussi, Kamel; Boudawara, Tahia; Kamoun, Naziha Grati; Zeghal, Najiba

    2015-04-01

    Extra virgin olive oil has been shown to be effective against oxidative stress associated diseases. In addition to the high quantities of oleic acid, it is rich in phenolic compounds. We investigated the protective efficacy of extra virgin olive oil (EVOO) against the hepatotoxicity induced by both aluminum and acrylamide. Animals were divided into four groups containing six rats each: group 1, serving as controls, received distilled water; group 2 received drinking water containing aluminum chloride (50 mg kg(-1) body weight) and acrylamide (20 mg kg(-1) body weight) by gavage; group 3 received both aluminum and acrylamide in the same ways as well as EVOO (300 μl) by gavage; group 4 received only EVOO by gavage for 3 weeks. The rats exposed to both aluminum and acrylamide exhibited oxidative stress observed by an increase in MDA, AOPP and a decrease in GSH, NPSH and vitamin C levels. The activities of CAT and GPx were decreased, while SOD activity was increased. The liver metallothioneins, such as MT1 and MT2 genes expression, were also increased. EVOO supplementation improved all the parameters mentioned above. The plasma transaminases (AST and ALT), LDH activities, glucose and albumin levels, TC, LDL-C levels, TC/HDL-C and LDL-C/HDL-C ratios were increased, while high density lipoprotein-cholesterol (HDL-C) and TG decreased. The co-administration of EVOO to acrylamide and aluminum treated rats restored their hepatic markers to near-normal values. Liver histological studies confirmed the biochemical parameters and the beneficial role of EVOO. These results suggest that extra virgin olive oil, when added to the diet, may have a beneficial role in decreasing the liver damage induced by both aluminum and acrylamide.

  9. Effect of ginseng saponina on nicotine-induced dopamine release in the rat nucleus accumbens and striatum

    International Nuclear Information System (INIS)

    Kim, Sang Eun; Shim, In Sop; Chung, June Key; Lee, Myung Chul

    2002-01-01

    We investigated the effect of ginseng total saponin (GTS) on nicotine-induced dopamine (DA) release in the striatum and nucleus accumbens of freely moving rats using in vivo microdialysis technique. Systemic pretreatment with GTS decreased striatal DA release induced by local infusion of nicotine into the striatum. However, GTS had no effect on the resting levels of extracellular DA in the striatum. GTS also blocked nicotine-induced DA release in the nucleus accumbens. The results of the present study suggest that GTS acts on the DA terminals to prevent DA release induced by nicotine. This may reflect the blocking effect of GTS on behavioral hyperactivity induced by psychostimulants

  10. Effect of ginseng saponina on nicotine-induced dopamine release in the rat nucleus accumbens and striatum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Eun [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Shim, In Sop [Kyunghee University, Seoul (Korea, Republic of); Chung, June Key; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2002-10-01

    We investigated the effect of ginseng total saponin (GTS) on nicotine-induced dopamine (DA) release in the striatum and nucleus accumbens of freely moving rats using in vivo microdialysis technique. Systemic pretreatment with GTS decreased striatal DA release induced by local infusion of nicotine into the striatum. However, GTS had no effect on the resting levels of extracellular DA in the striatum. GTS also blocked nicotine-induced DA release in the nucleus accumbens. The results of the present study suggest that GTS acts on the DA terminals to prevent DA release induced by nicotine. This may reflect the blocking effect of GTS on behavioral hyperactivity induced by psychostimulants.

  11. Cuscuta reflexa invasion induces Ca release in its host.

    Science.gov (United States)

    Albert, M; van der Krol, S; Kaldenhoff, R

    2010-05-01

    Cuscuta reflexa induces a variety of reaction in its hosts. Some of these are visual reactions, and it is clear that these morphological changes are preceded by events at the molecular level, where signal transduction is one of the early processes. Calcium (Ca(2+)) release is the major second messenger during signal transduction, and we therefore studied Ca(2+) spiking in tomato during infection with C. reflexa. Bioluminescence in aequorin-expressing tomato was monitored for 48 h after the onset of Cuscuta infestation. Signals at the attachment sites were observed from 30 to 48 h. Treatment of aequorin-expressing tomato leaf disks with Cuscuta plant extracts suggested that the substance that induced Ca(2+) release from the host was closely linked to parasite haustoria.

  12. Bone aluminum measurements in patients with end-stage renal disease

    International Nuclear Information System (INIS)

    Ellis, K.J.; Kelleher, S.P.

    1986-01-01

    Long-term use of aluminum-based phosphate binders and trace aluminum contamination of dialysate solution have led to increased body burden of this metal in patients with end-stage renal disease. Aluminum accumulates in bone and has been associated with the development of a renal osteodystrophy, called aluminum-induced osteomalacia. At present, bone biopsy is the method of diagnosis of this condition. When examined by quantitative histomorphometry, the aluminum accumulation was reported to correlate with the severity of the osteomalacia. This project was therefore undertaken to investigate the possibility of developing a non-invasive technique using neutron activation analysis for the direct in vivo assessment of bone aluminum levels. A bilateral exposure of the patient's hand is performed at the patient port of the Brookhaven Medical Research Reactor. The induced activity is then counted for 5 min using four 4'' x 4'' x 16'' NaI(T1) detectors arranged in a quasi-4! geometry. In addition to Al, Ca is also detected and serves as each individual's internal standard for the volume of bone mass irradiated. The Al/Ca ratio provides an index of the amount of elevated aluminum per unit bone mass. When this ratio is multiplied by the total body calcium value, an estimate of total skeletal aluminum is obtained. These measurements will be presented for a pilot study of ten asymptomatic renal patients

  13. Fluoxetine-induced inhibition of synaptosomal [3H]5-HT release: Possible Ca2+-channel inhibition

    International Nuclear Information System (INIS)

    Stauderman, K.A.; Gandhi, V.C.; Jones, D.J.

    1992-01-01

    Fluoxetine, a selective 5-Ht uptake inhibitor, inhibited 15 mM K + -induced [ 3 H]5-HT release from rat spinal cord and cortical synaptosomes at concentrations > 0.5 uM. This effect reflected a property shared by another selective 5-HT uptake inhibitor paroxetine but not by less selective uptake inhibitors such as amitriptyline, desipramine, imipramine or nortriptyline. Inhibition of release by fluoxetine was inversely related to both the concentration of K + used to depolarize the synaptosomes and the concentration of external Ca 2+ . Experiments aimed at determining a mechanism of action revealed that fluoxetine did not inhibit voltage-independent release of [ 3 H]5-HT release induced by the Ca 2+ -ionophore A 23187 or Ca 2+ -independent release induced by fenfluramine. Moreover the 5-HT autoreceptor antagonist methiothepin did not reverse the inhibitory actions of fluoxetine on K + -induced release. Further studies examined the effects of fluoxetine on voltage-dependent Ca 2+ channels and Ca 2+ entry

  14. Hydrolysis of aluminum dross material to achieve zero hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2012-01-01

    Highlights: ► The hydrolysis of aluminum dross in tap water generates pure hydrogen. ► Aluminum particles from dross are activated by mechanically milling technique. ► The process is completely greenhouse gases free and is cleanly to environment. ► Hydrolysis process leads to recycling of waste aluminum by hydrogen production. - Abstract: A simple method with high efficiency for generating high pure hydrogen by hydrolysis in tap water of highly activated aluminum dross is established. Aluminum dross is activated by mechanically milling to particles of about 45 μm. This leads to removal of surface layer of the aluminum particles and creation of a fresh chemically active metal surface. In contact with water the hydrolysis reaction takes place and hydrogen is released. In this process a Zero Waste concept is achieved because the other product of reaction is aluminum oxide hydroxide (AlOOH), which is nature-friendly and can be used to make high quality refractory or calcium aluminate cement. For comparison we also used pure aluminum powder and alkaline tap water solution (NaOH, KOH) at a ratio similar to that of aluminum dross content. The rates of hydrogen generated in hydrolysis reaction of pure aluminum and aluminum dross have been found to be similar. As a result of the experimental setup, a hydrogen generator was designed and assembled. Hydrogen volume generated by hydrolysis reaction was measured. The experimental results obtained reveal that aluminum dross could be economically recycled by hydrolysis process with achieving zero hazardous aluminum dross waste and hydrogen generation.

  15. Piezoresistive polysilicon film obtained by low-temperature aluminum-induced crystallization

    International Nuclear Information System (INIS)

    Patil, Suraj Kumar; Celik-Butler, Zeynep; Butler, Donald P.

    2010-01-01

    A low-temperature deposition process employing aluminum-induced crystallization has been developed for fabrication of piezoresistive polycrystalline silicon (polysilicon) films on low cost and flexible polyimide substrates for force and pressure sensing applications. To test the piezoresistive properties of the polysilicon films, prototype pressure sensors were fabricated on surface-micromachined silicon nitride (Si 3 N 4 ) diaphragms, in a half-Wheatstone bridge configuration. Characterization of the pressure sensor was performed using atomic force microscope in contact mode with a specially modified probe-tip. Low pressure values ranging from 5 kPa to 45 kPa were achieved by this method. The resistance change was found to be - 0.1% to 0.5% and 0.07% to 0.3% for polysilicon films obtained at 500 o C and 400 o C, respectively, for the applied pressure range.

  16. The contribution of stored malate and citrate to the substrate requirements of metabolism of ripening peach (Prunus persica L. Batsch) flesh is negligible. Implications for the occurrence of phosphoenolpyruvate carboxykinase and gluconeogenesis.

    Science.gov (United States)

    Famiani, Franco; Farinelli, Daniela; Moscatello, Stefano; Battistelli, Alberto; Leegood, Richard C; Walker, Robert P

    2016-04-01

    The first aim of this study was to determine the contribution of stored malate and citrate to the substrate requirements of metabolism in the ripening flesh of the peach (Prunus persica L. Batsch) cultivar Adriatica. In the flesh, stored malate accumulated before ripening could contribute little or nothing to the net substrate requirements of metabolism. This was because there was synthesis and not dissimilation of malate throughout ripening. Stored citrate could potentially contribute a very small amount (about 5.8%) of the substrate required by metabolism when the whole ripening period was considered, and a maximum of about 7.5% over the latter part of ripening. The second aim of this study was to investigate why phosphoenolpyruvate carboxykinase (PEPCK) an enzyme utilised in gluconeogenesis from malate and citrate is present in peach flesh. The occurrence and localisation of enzymes utilised in the metabolism of malate, citrate and amino acids were determined in peach flesh throughout its development. Phosphoenolpyruvate carboxylase (essential for the synthesis of malate and citrate) was present in the same cells and at the same time as PEPCK and NADP-malic enzyme (both utilised in the dissimilation of malate and citrate). A hypothesis is presented to explain the presence of these enzymes and to account for the likely occurrence of gluconeogenesis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Lysozyme-magnesium aluminum silicate microparticles: Molecular interaction, bioactivity and release studies

    DEFF Research Database (Denmark)

    Kanjanakawinkul, Watchara; Medlicott, Natalie J.; Rades, Thomas

    2015-01-01

    The objectives of this study were to investigate the adsorption behavior of lysozyme (LSZ) onto magnesium aluminum silicate (MAS) at various pHs and to characterize the LSZ–MAS microparticles obtained from the molecular interaction between LSZ and MAS. The results showed that LSZ could be bound...

  18. DART model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    International Nuclear Information System (INIS)

    Rest, J.; Hofman, G.L.

    1997-01-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U 3 SiAl-Al and U 3 Si 2 -Al for various dispersion fuel element designs with the data

  19. Pre-ischemic mitochondrial substrate constraint by inhibition of malate-aspartate shuttle preserves mitochondrial function after ischemia-reperfusion

    DEFF Research Database (Denmark)

    Jespersen, Nichlas Riise; Yokota, Takashi; Støttrup, Nicolaj Brejnholt

    2017-01-01

    KEY POINTS: Pre-ischaemic administration of aminooxiacetate (AOA), an inhibitor of the malate-aspartate shuttle (MAS), provides cardioprotection against ischaemia-reperfusion injury. The underlying mechanism remains unknown. We examined whether transient inhibition of the MAS during ischaemia......, but not IPC, reduced the myocardial interstitial concentration of tricarboxylic acid cycle intermediates at the onset of reperfusion. The results obtained in the present study demonstrate that metabolic regulation by inhibition of the MAS at the onset of reperfusion may be beneficial for the preservation...... of mitochondrial function during late reperfusion in an IR-injured heart. ABSTRACT: Mitochondrial dysfunction plays a central role in ischaemia-reperfusion (IR) injury. Pre-ischaemic administration of aminooxyacetate (AOA), an inhibitor of the malate-aspartate shuttle (MAS), provides cardioprotection against IR...

  20. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  1. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ning; Qin, Lijun [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Hao, Haixia [Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Hui, Longfei [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Zhao, Fengqi [Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Feng, Hao, E-mail: fenghao98@hotmail.com [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Shaanxi (China)

    2017-06-30

    Highlights: • Energetic rGO/Al@Fe{sub 2}O{sub 3}nanocompositeswerefabricatedbyatomiclayerdepositionapproach. • A novel Al@Fe{sub 2}O{sub 3} unit featuring core-shell structure was decorated on the graphene nanosheet. • RGO/Al@Fe{sub 2}O{sub 3} nanocomposite exhibits superior energy release and reduced electrostatic ignition hazard. - Abstract: Nanocomposites consisting of iron oxide (Fe{sub 2}O{sub 3}) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe{sub 2}O{sub 3} was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe{sub 2}O{sub 3} energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe{sub 2}O{sub 3} composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe{sub 2}O{sub 3} nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe{sub 2}O{sub 3} nanoparticles. The enhanced energy release of rGO/Al@Fe{sub 2}O{sub 3} is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe{sub 2}O{sub 3} composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  2. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    International Nuclear Information System (INIS)

    Yan, Ning; Qin, Lijun; Hao, Haixia; Hui, Longfei; Zhao, Fengqi; Feng, Hao

    2017-01-01

    Highlights: • Energetic rGO/Al@Fe 2 O 3 nanocompositeswerefabricatedbyatomiclayerdepositionapproach. • A novel Al@Fe 2 O 3 unit featuring core-shell structure was decorated on the graphene nanosheet. • RGO/Al@Fe 2 O 3 nanocomposite exhibits superior energy release and reduced electrostatic ignition hazard. - Abstract: Nanocomposites consisting of iron oxide (Fe 2 O 3 ) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe 2 O 3 was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe 2 O 3 energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe 2 O 3 composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe 2 O 3 nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe 2 O 3 nanoparticles. The enhanced energy release of rGO/Al@Fe 2 O 3 is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe 2 O 3 composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  3. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod C. [Argonne National Lab. (ANL), Argonne, IL (United States); Burnham, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  4. Effect of MK-801 on methamphetamine-induced dopaminergic neurotoxicity: long-term attenuation of methamphetamine-induced dopamine release

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Eun; Kim, Yu Ri; Hwang, Se Hwan [Sungkyunkwan Univ., School of Medicine, Seoul (Korea, Republic of)

    2001-08-01

    Repeated administration of methamphetamine (METH) produces high extracellular levels of dopamine (DA) and subsequent striatal DA terminal damage. The effect of MK-801, a noncompetitive N-methyl-D-aspartate receptor antagonist, on METH-induced changes in DA transporter (DAT) and DA release evoked by an acute METH challenge was evaluated in rodent striatum using [{sup 3}H] WIN 38,428 ex vivo auto-radiography and in vivo microdialysis. Four injections of METH (10 mg/kg, i.p.), each given 2 h apart, produced 71% decrease in DAT levels in mouse striatum 3 d after administration. Pretreatment with MK-801 (2.5 g/kg, i.p.) 15 min before each of the four METH injections protected completely against striatal DAT depletions. Four injections of MK-801 alone did not significantly change striatal DAT levels. Striatal DA release evoked by an acute METH challenge (4mg/kg, i.p.) at 3 d after repeated administration of METH in rats was decreased but significant compared with controls, which was attenuated by repeated pretreatment with MK-801. Also, repeated injections of MK-801 alone attenuated acute METH-induced striatal DA release 3 d after administration. These results suggest that repeated administration of MK-801 may exert a preventive effect against METH-induced DA terminal injury through long-term attenuation of DA release induced by METH and other stimuli.

  5. Effect of MK-801 on methamphetamine-induced dopaminergic neurotoxicity: long-term attenuation of methamphetamine-induced dopamine release

    International Nuclear Information System (INIS)

    Kim, Sang Eun; Kim, Yu Ri; Hwang, Se Hwan

    2001-01-01

    Repeated administration of methamphetamine (METH) produces high extracellular levels of dopamine (DA) and subsequent striatal DA terminal damage. The effect of MK-801, a noncompetitive N-methyl-D-aspartate receptor antagonist, on METH-induced changes in DA transporter (DAT) and DA release evoked by an acute METH challenge was evaluated in rodent striatum using [ 3 H] WIN 38,428 ex vivo auto-radiography and in vivo microdialysis. Four injections of METH (10 mg/kg, i.p.), each given 2 h apart, produced 71% decrease in DAT levels in mouse striatum 3 d after administration. Pretreatment with MK-801 (2.5 g/kg, i.p.) 15 min before each of the four METH injections protected completely against striatal DAT depletions. Four injections of MK-801 alone did not significantly change striatal DAT levels. Striatal DA release evoked by an acute METH challenge (4mg/kg, i.p.) at 3 d after repeated administration of METH in rats was decreased but significant compared with controls, which was attenuated by repeated pretreatment with MK-801. Also, repeated injections of MK-801 alone attenuated acute METH-induced striatal DA release 3 d after administration. These results suggest that repeated administration of MK-801 may exert a preventive effect against METH-induced DA terminal injury through long-term attenuation of DA release induced by METH and other stimuli

  6. Colloid electrochemistry of conducting polymer: towards potential-induced in-situ drug release

    International Nuclear Information System (INIS)

    Sankoh, Supannee; Vagin, Mikhail Yu.; Sekretaryova, Alina N.; Thavarungkul, Panote; Kanatharana, Proespichaya; Mak, Wing Cheung

    2017-01-01

    Highlights: • Pulsed electrode potential induced an in-situ drug release from dispersion of conducting polymer microcapsules. • Fast detection of the released drug within the colloid microenvironment. • Improved the efficiency of localized drug release at the electrode interface. - Abstract: Over the past decades, controlled drug delivery system remains as one of the most important area in medicine for various diseases. We have developed a new electrochemically controlled drug release system by combining colloid electrochemistry and electro-responsive microcapsules. The pulsed electrode potential modulation led to the appearance of two processes available for the time-resolved registration in colloid microenvironment: change of the electronic charge of microparticles (from 0.5 ms to 0.1 s) followed by the drug release associated with ionic equilibration (1–10 s). The dynamic electrochemical measurements allow the distinction of drug release associated with ionic relaxation and the change of electronic charge of conducting polymer colloid microparticles. The amount of released drug (methylene blue) could be controlled by modulating the applied potential. Our study demonstrated a surface-potential driven controlled drug release of dispersion of conducting polymer carrier at the electrode interfaces, while the bulk colloids dispersion away from the electrode remains as a reservoir to improve the efficiency of localized drug release. The developed new methodology creates a model platform for the investigations of surface potential-induced in-situ electrochemical drug release mechanism.

  7. Association and linkage analysis of aluminum tolerance genes in maize.

    Directory of Open Access Journals (Sweden)

    Allison M Krill

    Full Text Available BACKGROUND: Aluminum (Al toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. METHODOLOGY: An association panel of 282 diverse maize inbred lines and three F2 linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis. CONCLUSIONS: Six candidate genes had significant results from association analysis, but only four were confirmed by linkage analysis as putatively contributing to Al tolerance: Zea mays AltSB like (ZmASL, Zea mays aluminum-activated malate transporter2 (ALMT2, S-adenosyl-L-homocysteinase (SAHH, and Malic Enzyme (ME. These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs.

  8. Involvement of arachidonate metabolism in neurotensin-induced prolactin release in vitro

    International Nuclear Information System (INIS)

    Canonico, P.L.; Speciale, C.; Sortino, M.A.; Scapagnini, U.

    1985-01-01

    Neurotensin increased in a concentration-dependent manner the level of hypophyseal [ 3 H]arachidonic acid in vitro as well as prolactin release from hemipituitary glands. The effect of 1 microM neurotensin on arachidonate release was already present at 2.5 min, maximal at 5, and disappeared after a 10-min incubation. Neurotensin analogues produced an enhancement of hypophyseal arachidonate similar to their relative potencies in other cellular systems, whereas other peptides (somatostatin and vasoactive intestinal peptide) were devoid of any effect on the concentration of the fatty acid in the pituitary. Seventy micromoles RHC 80267, a rather selective inhibitor of diacylglycerol lipase, completely prevented the neurotensin-stimulated prolactin release and decreased arachidonate release both in basal or in neurotensin-induced conditions. Similar results were obtained with 50 microM quinacrine, a phospholipase A2 inhibitor. To clarify whether arachidonate released by neurotensin requires a further metabolism through specific pathways to stimulate prolactin release, the authors used indomethacin and BW 755c, two blockers of cyclooxygenase and lipoxygenase pathways. Thirty micromoles indomethacin, a dose active to inhibit cyclooxygenase, did not affect unesterified arachidonate levels either in basal or in neurotensin-induced conditions; moreover, the drug did not modify basal prolactin release but slightly potentiated the stimulatory effect of neurotensin on the release of the hormone. On the other hand, 250 microM BW 755c, an inhibitor of both cyclooxygenase and lipoxygenase pathways, significantly inhibited both basal and neurotensin-stimulated prolactin release and further potentiated the increase of the fatty acid concentrations produced by 1 microM neurotensin

  9. Insulin Combined with Glucose Improves Spatial Learning and Memory in Aluminum Chloride-Induced Dementia in Rats.

    Science.gov (United States)

    Nampoothiri, Madhavan; Ramalingayya, Grandhi Venkata; Kutty, Nampurath Gopalan; Krishnadas, Nandakumar; Rao, Chamallamudi Mallikarjuna

    2017-01-01

    Therapeutic intervention using drugs against Alzheimer disease is curative clinically. At present, there are no reports on the curative role of insulin in chronic models of dementia. We evaluated the curative role of insulin and its combination with glucose in dementia. We also investigated the impact of treatments on blood glucose to correlate with cognitive deficit. Further, we analyzed the interaction of treatments with the cholinergic system and oxidative stress in memory centers (i.e., hippocampus and frontal cortex). The antidementia activity of insulin was assessed against aluminum chloride (AlCl3)-induced dementia in rats. Behavioral parameters (Morris water maze test) along with biochemical parameters (Hippocampus and frontal cortex) such as acetylcholinesterase (AChE), catalase, and glutathione (GSH) levels were assessed to correlate cognitive function with cholinergic transmission and oxidative stress. Rats administered insulin and glucose showed improved cognitive function in the Morris water maze test. The combination corrected the diminished level of antioxidant enzymes such as catalase and GSH in the hippocampus and frontal cortex.Combined administration of insulin and glucose to aluminum-treated rats did not inhibit the aluminum action on the acetylcholinesterase enzyme. No significant changes were observed in blood glucose levels between the treatment groups.

  10. Cyclosporine Induces Endothelial Cell Release of Complement-Activating Microparticles

    Science.gov (United States)

    Renner, Brandon; Klawitter, Jelena; Goldberg, Ryan; McCullough, James W.; Ferreira, Viviana P.; Cooper, James E.; Christians, Uwe

    2013-01-01

    Defective control of the alternative pathway of complement is an important risk factor for several renal diseases, including atypical hemolytic uremic syndrome. Infections, drugs, pregnancy, and hemodynamic insults can trigger episodes of atypical hemolytic uremic syndrome in susceptible patients. Although the mechanisms linking these clinical events with disease flares are unknown, recent work has revealed that each of these clinical conditions causes cells to release microparticles. We hypothesized that microparticles released from injured endothelial cells promote intrarenal complement activation. Calcineurin inhibitors cause vascular and renal injury and can trigger hemolytic uremic syndrome. Here, we show that endothelial cells exposed to cyclosporine in vitro and in vivo release microparticles that activate the alternative pathway of complement. Cyclosporine-induced microparticles caused injury to bystander endothelial cells and are associated with complement-mediated injury of the kidneys and vasculature in cyclosporine-treated mice. Cyclosporine-induced microparticles did not bind factor H, an alternative pathway regulatory protein present in plasma, explaining their complement-activating phenotype. Finally, we found that in renal transplant patients, the number of endothelial microparticles in plasma increases 2 weeks after starting tacrolimus, and treatment with tacrolimus associated with increased C3 deposition on endothelial microparticles in the plasma of some patients. These results suggest that injury-associated release of endothelial microparticles is an important mechanism by which systemic insults trigger intravascular complement activation and complement-dependent renal diseases. PMID:24092930

  11. Effects of hyperthyroidism and hypothyroidism on rat growth hormone release induced by thyrotropin-releasing hormone.

    Science.gov (United States)

    Chihara, K; Kato, Y; Ohgo, S; Iwasaki, Y; Maeda, K

    1976-06-01

    The effect of synthetic thyrotropin-releasing hormone (TRH) on the release of growth hormone (GH) and thyroid-stimulating hormone (TSH) was investigated in euthyroid, hypothyroid, and hyperthyroid rats under urethane anesthesia. In euthyroid control rats, intravenous injection of TRH (200 ng/100 g BW) resulted in a significant increase in both plasma GH and TSH. In rats made hypothyroid by treatment with propylthiouracil or by thyroidectomy, basal GH and TSH levels were significantly elevated with exaggerated responses to TRH. In contrast, plasma GH and TSH responses to TRH were both significantly inhibited in rats made hyperthyroid by L-thyroxine (T4) treatment. These results suggest that altered thyroid status influences GH release as well as TSH secretion induced by TRH in rats.

  12. Role of calcium in gonadotropin releasing hormone-induced luteinizing hormone secretion from the bovine pituitary

    International Nuclear Information System (INIS)

    Kile, J.P.

    1986-01-01

    The hypothesis was tested that GnRH acts to release LH by increasing calcium uptake by gonadotroph which in turn stimulates calcium-calmodulin activity and results in LH release from bovine pituitary cells as it does in the rat. Pituitary glands of calves (4-10 months of age) were enzymatically dispersed (0.2% collagenase) and grown for 5 days to confluency in multiwell plates (3 x 10 5 /well). Cells treated with GnRH Ca ++ ionophore A23187, and ouabain all produced significant releases of LH release in a pronounced all or none fashion, while thorough washing of the cells with 0.5 mM EGTA in Ca ++ -free media prevented the action of GnRH. GnRH caused a rapid efflux of 45 Ca ++ . Both GnRH-stimulated 45 Ca efflux and LH release could be partially blocked by verapamil GnRH-induced LH release could also be blocked by nifedipine and tetrodotoxin, although these agents did not affect 45 Ca efflux. The calmodulin antagonists calmidazolium and W7 were found to block GnRH induced LH release, as well as LH release induced by theophylline, KC PGE 2 and estradiol. These data indicated that: (1) calcium is required for GnRH action, but extracellular Ca ++ does not regulate LH release; (2) GnRH elevates intracellular Ca ++ by opening both voltage sensitive and receptor mediated Ca ++ channels; (3) activation of calmodulin is one mechanism involved in GnRH-induced LH release

  13. Interactions between drops of a molten aluminum-lithium alloy and liquid water

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1994-01-01

    In certain hypothesized nuclear reactor accident scenarios, 1- to 10-g drops of molten aluminum-lithium alloys might contact liquid water. Because vigorous steam explosions have occurred when large amounts of molten aluminum-lithium alloys were released into water or other coolants, it becomes important to know whether there will be explosions if smaller amounts of these molten alloys similarly come into contact with water. Therefore, the authors released drops of molten Al-3.1 wt pct Li alloy into deionized water at room temperature. The experiments were performed at local atmospheric pressure (0.085 MPa) without pressure transient triggers applied to the water. The absence of these triggers allowed them to (a) investigate whether spontaneous initiation of steam explosions would occur with these drops and (b) study the alloy-water chemical reactions. The drop sizes and melt temperatures were chosen to simulate melt globules that might form during the hypothesized melting of the aluminum-lithium alloy components

  14. Aluminum induces lipid peroxidation and aggregation of human blood platelets

    Directory of Open Access Journals (Sweden)

    T.J.C. Neiva

    1997-05-01

    Full Text Available Aluminum (Al3+ intoxication is thought to play a major role in the development of Alzheimer's disease and in certain pathologic manifestations arising from long-term hemodialysis. Although the metal does not present redox capacity, it can stimulate tissue lipid peroxidation in animal models. Furthermore, in vitro studies have revealed that the fluoroaluminate complex induces diacylglycerol formation, 43-kDa protein phosphorylation and aggregation. Based on these observations, we postulated that Al3+-induced blood platelet aggregation was mediated by lipid peroxidation. Using chemiluminescence (CL of luminol as an index of total lipid peroxidation capacity, we established a correlation between lipid peroxidation capacity and platelet aggregation. Al3+ (20-100 µM stimulated CL production by human blood platelets as well as their aggregation. Incubation of the platelets with the antioxidants nor-dihydroguaiaretic acid (NDGA (100 µM and n-propyl gallate (NPG (100 µM, inhibitors of the lipoxygenase pathway, completely prevented CL and platelet aggregation. Acetyl salicylic acid (ASA (100 µM, an inhibitor of the cyclooxygenase pathway, was a weaker inhibitor of both events. These findings suggest that Al3+ stimulates lipid peroxidation and the lipoxygenase pathway in human blood platelets thereby causing their aggregation

  15. Burnthrough Modeling of Marine Grade Aluminum Alloy Structural Plates Exposed to Fire

    OpenAIRE

    Rippe, Christian M

    2015-01-01

    Current fire induced burnthrough models of aluminum typically rely solely on temperature thresholds and cannot accurately capture either the occurrence or the time to burnthrough. This research experimentally explores the fire induced burnthrough phenomenon of AA6061-T651 plates under multiple sized exposures and introduces a new burnthrough model based on the near melting creep rupture properties of the material. Fire experiments to induce burnthrough on aluminum plates were conducted us...

  16. Antituberculosis nanodelivery system with controlled-release properties based on para-amino salicylate–zinc aluminum-layered double-hydroxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2013-11-01

    Full Text Available Bullo Saifullah,1 Mohd Zobir Hussein,1 Samer Hasan Hussein-Al-Ali,2 Palanisamy Arulselvan,3 Sharida Fakurazi3,41Materials Synthesis and Characterization Laboratory, 2Laboratory of Molecular Biomedicine, 3Laboratory of Vaccines and Immunotherapeutics, 4Department of Human Anatomy, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaAbstract: We report the intercalation and characterization of para-amino salicylic acid (PASA into zinc/aluminum-layered double hydroxides (ZLDHs by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D and PASA nanocomposite prepared by an indirect method (PASA-I. Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours.Keywords: drug-delivery system, slow-release nanocarrier, tuberculosis, biocompatible nanocomposites

  17. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  18. Influence of complement on neutrophil extracellular trap release induced by bacteria

    DEFF Research Database (Denmark)

    Palmer, Lisa Joanne; Damgaard, Christian; Holmstrup, Palle

    2016-01-01

    by Staphylococcus aureus and three oral bacteria: Actinomyces viscosus, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum subsp. vincettii. Material and Methods Bacteria-stimulated NET release from the neutrophils of healthy donors was measured fluorometrically. Various complement containing...... In conclusion, complement opsonization promotes NET release induced by a variety of bacteria, including A. actinomycetemcomitans, and CR1 plays a dominant role in the process. Complement consumption or deficiency may compromise NETosis induced by some bacterial species, including A. actinomycetemcomitans....... Within biofilms, the complement-inactivating abilities of some bacteria may protect other species against NETosis, while these are more vulnerable when adopting a planktonic lifestyle....

  19. Numerical and experimental investigation of laser induced plasma spectrum of aluminum in the presence of a noble gas

    International Nuclear Information System (INIS)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2012-01-01

    Laser-induced plasma emission of an aluminum target in helium gas at 1 atm pressure is numerically and experimentally investigated. A laser pulse at wavelength of 266 nm and pulse duration of 10 ns has been considered. Laser ablation is calculated by a one dimensional model based on thermal evaporation mechanism. Spatial and temporal parameters of plasma expansion are determined by using hydrodynamic equations. Three kinds of plasma emission, including Bremsstrahlung, recombination and spectral emissions are considered for modeling the spectrum. Strong lines of aluminum and helium in wavelength interval of 200 to 450 nm are selected. Aluminum spectrum in UV range is depicted and compared with other spectral ranges. Temporal and spatial evolution of plasma emission up to 200 ns after the laser irradiation is studied. The effect of laser energy on the plasma spectrum is studied. An experimental set-up is arranged to compare numerical calculations with experimental results. Experimental and numerical results illustrate that helium line widths and peak intensities become narrower and weaker with time, respectively. Spatial distribution of spectrum shows that for closer distance to the sample surface, an intense continuous emission is observed, while at the farther distance, continuous emission decreases and spectral lines become sharper. A good coincidence is observed between experimental and numerical results. - Highlights: ► Aluminum plasma emission in helium is numerically and experimentally studied. ► Spectral, Bremsstrahlung and recombination emissions in spectrum are calculated. ► All strong lines of aluminum and helium are chosen for spectrum simulation. ► Line widths and peak intensities at later times become narrower and weaker. ► At specific optimum position, the maximum of signal peaks is acquired.

  20. Local thermodynamic equilibrium and related metrological issues involving collisional-radiative model in laser-induced aluminum plasmas

    International Nuclear Information System (INIS)

    Travaille, G.; Peyrusse, O.; Bousquet, B.; Canioni, L.; Pierres, K. Michel-Le; Roy, S.

    2009-01-01

    We present a collisional-radiative approach of the theoretical analysis of laser-induced breakdown spectroscopy (LIBS) plasmas. This model, which relies on an optimized effective potential atomic structure code, was used to simulate a pure aluminum plasma. The description of aluminum involved a set of 220 atomic levels representative of three different stages of ionization (Al 0 , Al + and Al ++ ). The calculations were carried for stationary plasmas, with input parameters (n e and T e ) ranging respectively between 10 13-18 cm -3 and 0.3-2 eV. A comparison of our atomic data with some existing databases is made. The code was mainly developed to address the validity of the local thermodynamic equilibrium (LTE) assumption. For usual LIBS plasma parameters, we did not reveal a sizeable discrepancy of the radiative equilibrium of the plasma towards LTE. For cases where LTE was firmly believed to stand, the Boltzmann plot outputs of this code were used to check the physical accuracy of the Boltzmann temperature, as it is currently exploited in several calibration-free laser-induced breakdown spectroscopy (CF-LIBS) studies. In this paper, a deviation ranging between 10 and 30% of the measured Boltzmann temperature to the real excitation temperature is reported. This may be due to the huge dispersion induced on the line emissivities, on which the Boltzmann plots are based to extract this parameter. Consequences of this fact on the CF-LIBS procedure are discussed and further insights to be considered for the future are introduced.

  1. Zinc release contributes to hypoglycemia-induced neuronal death.

    Science.gov (United States)

    Suh, Sang Won; Garnier, Philippe; Aoyama, Koji; Chen, Yongmei; Swanson, Raymond A

    2004-08-01

    Neurons exposed to zinc exhibit activation of poly(ADP-ribose) polymerase-1 (PARP-1), an enzyme that normally participates in DNA repair but promotes cell death when extensively activated. Endogenous, vesicular zinc in brain is released to the extracellular space under conditions causing neuronal depolarization. Here, we used a rat model of insulin-induced hypoglycemia to assess the role of zinc release in PARP-1 activation and neuronal death after severe hypoglycemia. Zinc staining with N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) showed depletion of presynaptic vesicular zinc from hippocampal mossy fiber terminals and accumulation of weakly bound zinc in hippocampal CA1 cell bodies after severe hypoglycemia. Intracerebroventricular injection of the zinc chelator calcium ethylene-diamine tetraacetic acid (CaEDTA) blocked the zinc accumulation and significantly reduced hypoglycemia-induced neuronal death. CaEDTA also attenuated the accumulation of poly(ADP-ribose), the enzymatic product of PARP-1, in hippocampal neurons. These results suggest that zinc translocation is an intermediary step linking hypoglycemia to PARP-1 activation and neuronal death.

  2. Decarboxylation of Malate in the Crassulacean Acid Metabolism Plant Bryophyllum (Kalanchoe) fedtschenkoi (Role of NAD-Malic Enzyme).

    Science.gov (United States)

    Cook, R. M.; Lindsay, J. G.; Wilkins, M. B.; Nimmo, H. G.

    1995-01-01

    The role of NAD-malic enzyme (NAD-ME) in the Crassulacean acid metabolism plant Bryophyllum (Kalanchoe) fedtschenkoi was investigated using preparations of intact and solubilized mitochondria from fully expanded leaves. Intact, coupled mitochondria isolated during the day or night did not differ in their ability to take up [14C]malic acid from the surrounding medium or to respire using malate or succinate as substrate. However, intact mitochondria isolated from plants during the day decarboxylated added malate to pyruvate significantly faster than mitochondria isolated from plants at night. NAD-ME activity in solubilized mitochondrial extracts showed hysteretic kinetics and was stimulated by a number of activators, including acetyl-coenzyme A, fructose-1,6-bisphosphate, and sulfate ions. In the absence of these effectors, reaction progress curves were nonlinear, with a pronounced acceleration phase. The lag period before a steady-state rate was reached in assays of mitochondrial extracts decreased during the photoperiod and increased slowly during the period of darkness. However, these changes in the kinetic properties of the enzyme could not account for the changes in the rate of decarboxylation of malate by intact mitochondria. Gel-filtration experiments showed that mitochondrial extracts contained three forms of NAD-ME with different molecular weights. The relative proportions of the three forms varied somewhat throughout the light/dark cycle, but this did not account for the changes in the kinetics behavior of the enzyme during the diurnal cycle. PMID:12228671

  3. Controlled release of biofunctional substances by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Yoshida, M.; Kumakura, M.; Kaetsu, I.

    1978-01-01

    The controlled release of potassium chloride from flat circular matrices made by radiation-induced polymerization of a glass-forming monomer at low temperatures has been studied. The water-particle phase content formed in a poly(diethylene glycol dimethacrylate) matrix was controlled by the addition of polyethylene glycol 600. The dispersed water-particle phase content in the matrix was estimated directly and by scanning electron microscopic observations. The release of potassium chloride from the matrix increased linearly with the square root of time. The water content of the matrix had an important effect on the release rate which increases roughly in proportion to water content. This effect can be attributed to the apparent increase of the rate of drug diffusion. (author)

  4. Joining of parts via magnetic heating of metal aluminum powders

    Science.gov (United States)

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  5. Osteodifferentiation of Human Preadipocytes Induced by Strontium Released from Hydrogels

    Directory of Open Access Journals (Sweden)

    Valeria Nardone

    2012-01-01

    Full Text Available In recent years, there has been an increasing interest in interactive application principles of biology and engineering for the development of valid biological systems for tissue regeneration, such as for the treatment of bone fractures or skeletal defects. The application of stem cells together with biomaterials releasing bioactive factors promotes the formation of bone tissue by inducing proliferation and/or cell differentiation. In this study, we used a clonal cell line from human adipose tissue-derived mesenchymal stem cells (hADSCs or preadipocytes, named PA2-E12, to evaluate the effects of strontium (Sr2+ released in the culture medium from an amidated carboxymethylcellulose (CMCA hydrogel enriched with different Sr2+ concentrations on osteodifferentiation. The osteoinductive effect was evaluated through both the expression of alkaline phophatase (ALP activity and the hydroxyapatite (HA production during 42 days of induction. Present data have shown that Sr2+ released from CMCA promotes the osteodifferentiation induced by an osteogenic medium as shown by the increase of ALP activity at 7 and 14 days and of HA production at 14 days. In conclusion, the use of biomaterials able to release in situ osteoinductive agents, like Sr2+, could represent a new strategy for future applications in bone tissue engineering.

  6. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented

  7. The dopamine beta-hydroxylase inhibitor nepicastat increases dopamine release and potentiates psychostimulant-induced dopamine release in the prefrontal cortex.

    Science.gov (United States)

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Bini, Valentina; Gessa, Gian Luigi

    2014-07-01

    The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  8. Ca2+ Entry is Required for Mechanical Stimulation-induced ATP Release from Astrocyte

    Science.gov (United States)

    Lee, Jaekwang; Chun, Ye-Eun; Han, Kyung-Seok; Lee, Jungmoo; Woo, Dong Ho

    2015-01-01

    Astrocytes and neurons are inseparable partners in the brain. Neurotransmitters released from neurons activate corresponding G protein-coupled receptors (GPCR) expressed in astrocytes, resulting in release of gliotransmitters such as glutamate, D-serine, and ATP. These gliotransmitters in turn influence neuronal excitability and synaptic activities. Among these gliotransmitters, ATP regulates the level of network excitability and is critically involved in sleep homeostasis and astrocytic Ca2+ oscillations. ATP is known to be released from astrocytes by Ca2+-dependent manner. However, the precise source of Ca2+, whether it is Ca2+ entry from outside of cell or from the intracellular store, is still not clear yet. Here, we performed sniffer patch to detect ATP release from astrocyte by using various stimulation. We found that ATP was not released from astrocyte when Ca2+ was released from intracellular stores by activation of Gαq-coupled GPCR including PAR1, P2YR, and B2R. More importantly, mechanical stimulation (MS)-induced ATP release from astrocyte was eliminated when external Ca2+ was omitted. Our results suggest that Ca2+ entry, but not release from intracellular Ca2+ store, is critical for MS-induced ATP release from astrocyte. PMID:25792866

  9. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide.

    Science.gov (United States)

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.

  10. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kanjanakawinkul, Watchara [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Rades, Thomas [School of Pharmacy, University of Otago, Dunedin 9054 (New Zealand); Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen (Denmark); Puttipipatkhachorn, Satit [Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400 (Thailand); Pongjanyakul, Thaned, E-mail: thaned@kku.ac.th [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2013-04-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties.

  11. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    International Nuclear Information System (INIS)

    Kanjanakawinkul, Watchara; Rades, Thomas; Puttipipatkhachorn, Satit; Pongjanyakul, Thaned

    2013-01-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties

  12. Sex-Dependent Depression-Like Behavior Induced by Respiratory Administration of Aluminum Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2015-12-01

    Full Text Available Ultrafine aluminum oxide, which are abundant in ambient and involved occupational environments, are associated with neurobehavioral alterations. However, few studies have focused on the effect of sex differences following exposure to environmental Al2O3 ultrafine particles. In the present study, male and female mice were exposed to Al2O3 nanoparticles (NPs through a respiratory route. Only the female mice showed depression-like behavior. Although no obvious pathological changes were observed in mice brain tissues, the neurotransmitter and voltage-gated ion channel related gene expression, as well as the small molecule metabolites in the cerebral cortex, were differentially modulated between male and female mice. Both mental disorder-involved gene expression levels and metabolomics analysis results strongly suggested that glutamate pathways were implicated in sex differentiation induced by Al2O3 NPs. Results demonstrated the potential mechanism of environmental ultrafine particle-induced depression-like behavior and the importance of sex dimorphism in the toxic research of environmental chemicals.

  13. Ursodeoxycholic acid inhibits TNFα-induced IL-8 release from monocytes.

    Science.gov (United States)

    O'Dwyer, Aoife M; Lajczak, Natalia K; Keyes, Jennifer A; Ward, Joseph B; Greene, Catherine M; Keely, Stephen J

    2016-08-01

    Monocytes are critical to the pathogenesis of inflammatory bowel disease (IBD) as they infiltrate the mucosa and release cytokines that drive the inflammatory response. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid with anti-inflammatory actions, has been proposed as a potential new therapy for IBD. However, its effects on monocyte function are not yet known. Primary monocytes from healthy volunteers or cultured U937 monocytes were treated with either the proinflammatory cytokine, TNFα (5 ng/ml) or the bacterial endotoxin, lipopolysaccharide (LPS; 1 μg/ml) for 24 h, in the absence or presence of UDCA (25-100 μM). IL-8 release into the supernatant was measured by ELISA. mRNA levels were quantified by qPCR and changes in cell signaling proteins were determined by Western blotting. Toxicity was assessed by measuring lactate dehydrogenase (LDH) release. UDCA treatment significantly attenuated TNFα-, but not LPS-driven, release of IL-8 from both primary and cultured monocytes. UDCA inhibition of TNFα-driven responses was associated with reduced IL-8 mRNA expression. Both TNFα and LPS stimulated NFκB activation in monocytes, while IL-8 release in response to both cytokines was attenuated by an NFκB inhibitor, BMS-345541. Interestingly, UDCA inhibited TNFα-, but not LPS-stimulated, NFκB activation. Finally, TNFα, but not LPS, induced phosphorylation of TNF receptor associated factor (TRAF2), while UDCA cotreatment attenuated this response. We conclude that UDCA specifically inhibits TNFα-induced IL-8 release from monocytes by inhibiting TRAF2 activation. Since such actions would serve to dampen mucosal immune responses in vivo, our data support the therapeutic potential of UDCA for IBD. Copyright © 2016 the American Physiological Society.

  14. Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples

    International Nuclear Information System (INIS)

    Rubio-Gonzalez, C.; Gomez-Rosas, G.; Ocana, J.L.; Molpeceres, C.; Banderas, A.; Porro, J.; Morales, M.

    2006-01-01

    Laser shock processing (LSP) or laser shock peening is a new technique for strengthening metals. This process induces a compressive residual stress field, which increases fatigue crack initiation life and reduces fatigue crack growth rate. Specimens of 6061-T6 aluminum alloy are used in this investigation. A convergent lens is used to deliver 2.5 J, 8 ns laser pulses by a Q-switch Nd:YAG laser, operating at 10 Hz. The pulses are focused to a diameter of 1.5 mm onto aluminum samples. Density of 2500 pulses/cm 2 with infrared (1064 nm) radiation was used. The effect of an absorbent overlay on the residual stress field using this LSP setup and this energy level is evaluated. Residual stress distribution as a function of depth is assessed by the hole drilling method. It is observed that the overlay makes the compressive residual stress profile move to the surface. This effect is explained on the basis of the vaporization of the coat layer suppressing thermal effects on the metallic substrate. The effect of coating the specimen surface before LSP treatment may have advantages on improving wear and contact fatigue properties of this aluminum alloy

  15. Cortical cholinergic deficiency enhances amphetamine-induced dopamine release in the accumbens but not striatum.

    Science.gov (United States)

    Mattsson, Anna; Olson, Lars; Svensson, Torgny H; Schilström, Björn

    2007-11-01

    Cholinergic dysfunction has been implicated as a putative contributing factor in the pathogenesis of schizophrenia. Recently, we showed that cholinergic denervation of the neocortex in adult rats leads to a marked increase in the behavioral response to amphetamine. The main objective of this study was to investigate if the enhanced locomotor response to amphetamine seen after cortical cholinergic denervation was paralleled by an increased amphetamine-induced release of dopamine in the nucleus accumbens and/or striatum. The corticopetal cholinergic projections were lesioned by intraparenchymal infusion of 192 IgG-saporin into the nucleus basalis magnocellularis of adult rats. Amphetamine-induced dopamine release in the nucleus accumbens or striatum was monitored by in vivo microdialysis 2 to 3 weeks after lesioning. We found that cholinergic denervation of the rat neocortex leads to a significantly increased amphetamine-induced dopamine release in the nucleus accumbens. Interestingly, the cholinergic lesion did not affect amphetamine-induced release of dopamine in the striatum. The enhanced amphetamine-induced dopamine release in the nucleus accumbens in the cholinergically denervated rats could be reversed by administration of the muscarinic agonist oxotremorine, but not nicotine, prior to the amphetamine challenge, suggesting that loss of muscarinic receptor stimulation is likely to have caused the observed effect. The results suggest that abnormal responsiveness of dopamine neurons can be secondary to cortical cholinergic deficiency. This, in turn, might be of relevance for the pathophysiology of schizophrenia and provides a possible link between cholinergic disturbances and alteration of dopamine transmission.

  16. Radiation corrosion in aluminum alloy bellows

    International Nuclear Information System (INIS)

    Konno, Osamu

    1987-01-01

    Testing was carried out in which materials for vacuum devices (Al, Ti, Cu, SUS) are exposed to electron beams (50 MeV, average current 80 μA) to determine the changes in the quantity, partial pressure and composition of the gases released from the materials. The test appratus used are made of Al alloys alone. During the test, vacuum leak is found in the Al alloy bellows used in the drive device. The leak is found to result from corrosion caused by water. The surface structure is analyzed by SEM, EPMA, ESCA and IMA. It is confirmed that the Al alloy used as material for the bellows if highly resistant to corrosion. It is concluded that it is necessary to use high purity cooling water to prevent the cooling water from causing corrosion. It has been reported that high purity aluminum is very high in resistance to corrosion. Based on these measurements and considerations, it is suggested that when aluminum is to be used as material for vacuum devices in an accelerator, it is required to provide protection film on its surface to prevent corrosion or to use cooling water pipes cladded with pure aluminum and an aluminum alloy. In addition, the temperature of the cooling water should be set after adequately considering the environmental conditions in the room. (Nogami, K.)

  17. Carbon contaminant in the ion processing of aluminum oxide film

    International Nuclear Information System (INIS)

    Chaug, Y.; Roy, N.

    1989-01-01

    Ion processing can induce contamination on the bombarded surface. However, this process is essential for the microelectronics device fabrication. Auger electron spectroscopy has been used to study the simultaneous deposition of carbon impurity during ion bombardment of magnetron rf-sputtering deposited aluminum oxide film. Ion bombardment on aluminum oxide results in a preferential removal of surface oxygen and a formation of a metastable state of aluminum suboxide. Cosputtered implanted carbon contaminant appears to have formed a new state of stoichiometry on the surface of the ion bombarded aluminum oxide and existed as an aluminum carbide. This phase has formed due to the interaction of the implanted carbon and the aluminum suboxide. The Ar + ion sputter etching rate is reduced for the carbon contaminated oxide. The electrical resistance of the aluminum oxide between two gold strips has been measured. It is found that the electrical resistance is also reduced due to the formation of the new stoichiometry on the surface

  18. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented. 6 references, 4 figures

  19. RANKL release from self-assembling nanofiber hydrogels for inducing osteoclastogenesis in vitro.

    Science.gov (United States)

    Xing, James Z; Lu, Lei; Unsworth, Larry D; Major, Paul W; Doschak, Michael R; Kaipatur, Neelambar R

    2017-02-01

    To develop a nanofiber hydrogel (NF-hydrogel) for sustained and controlled release of the recombinant receptor activator of NF-kB ligand; (RANKL) and to characterize the release kinetics and bioactivity of the released RANKL. Various concentrations of fluorescently-labelled RANKL protein were added to NF-hydrogels, composed of Acetyl-(Arg-Ala-Asp-Ala) 4 -CONH 2 [(RADA) 4 ] of different concentrations, to investigate the resulting in vitro release rates. The nano-structures of NF-hydrogel, with and without RANKL, were determined using atomic force microscopy (AFM). Released RANKL was further analyzed for changes in secondary and tertiary structure using CD spectroscopy and fluorescent emission spectroscopy, respectively. Bioactivity of released RANKL protein was determined using NFATc1 gene expression and tartrate resistant acid phosphatase (TRAP) activity of osteoclast cells as biomarkers. NF-hydrogel concentration dependent sustained release of RANKL protein was measured at concentrations between 0.5 and 2%(w/v). NF-hydrogel at 2%(w/v) concentration exhibited a sustained and slow-release of RANKL protein up to 48h. Secondary and tertiary structure analyses confirmed no changes to the RANKL protein released from NF-hydrogel in comparison to native RANKL. The results of NFATc1 gene mRNA expression and TRAP activities of osteoclast, showed that the release process did not affect the bioactivity of released RANKL. This novel study is the first of its kind to attempt in vitro characterization of NF-hydrogel based delivery of RANKL protein to induce osteoclastogenesis. We have shown the self-assembling NF-hydrogel peptide system is amenable to the sustained and controlled release of RANKL locally; that could in turn increase local concentration of RANKL to induce osteoclastogenesis, for application to the controlled mobilization of tooth movement in orthodontic procedures. Orthodontic tooth movement (OTM) occurs through controlled application of light forces to teeth

  20. Reactions of aluminum with uranium fluorides and oxyfluorides

    Energy Technology Data Exchange (ETDEWEB)

    Leitnaker, J.M.; Nichols, R.W.; Lankford, B.S. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31

    Every 30 to 40 million operating hours a destructive reaction is observed in one of the {approximately}4000 large compressors that move UF{sub 6} through the gaseous diffusion plants. Despite its infrequency, such a reaction can be costly in terms of equipment and time. Laboratory experiments reveal that the presence of moderate pressures of UF{sub 6} actually cools heated aluminum, although thermodynamic calculations indicate the potential for a 3000-4000{degrees}C temperature rise. Within a narrow and rather low (<100 torr; 1 torr = 133.322 Pa) pressure range, however, the aluminum is seen to react with sufficient heat release to soften an alumina boat. Three things must occur in order for aluminum to react vigorously with either UF{sub 6} or UO{sub 2}F{sub 2}. 1. An initiating source of heat must be provided. In the compressors, this source can be friction, permitted by disruption of the balance of the large rotating part or by creep of the aluminum during a high-temperature treatment. In the absence of this heat source, compressors have operated for 40 years in UF{sub 6} without significant reaction. 2. The film protecting the aluminum must be breached. Melting (of UF{sub 5} at 620 K or aluminum at 930 K) can cause such a breach in laboratory experiments. In contrast, holding Al samples in UF{sub 6} at 870 K for several hours produces only moderate reaction. Rubbing in the cascade can undoubtedly breach the protective film. 3. Reaction products must not build up and smother the reaction. While uranium products tend to dissolve or dissipate in molten aluminum, AIF{sub 3} shows a remarkable tendency to surround and hence protect even molten aluminum. Hence the initial temperature rise must be rapid and sufficient to move reactants into a temperature region in which products are removed from the reaction site.

  1. Aberrant KDM5B expression promotes aggressive breast cancer through MALAT1 overexpression and downregulation of hsa-miR-448

    International Nuclear Information System (INIS)

    Bamodu, Oluwaseun Adebayo; Huang, Wen-Chien; Lee, Wei-Hwa; Wu, Alexander; Wang, Liang Shun; Hsiao, Michael; Yeh, Chi-Tai; Chao, Tsu-Yi

    2016-01-01

    Triple negative breast cancers (TNBC) possess cell dedifferentiation characteristics, carry out activities connate to those of cancer stem cells (CSCs) and are associated with increased metastasis, as well as, poor clinical prognosis. The regulatory mechanism of this highly malignant phenotype is still poorly characterized. Accruing evidence support the role of non-coding RNAs (ncRNAs) as potent regulators of CSC and metastatic gene expression, with their dysregulation implicated in tumorigenesis and disease progression. In this study, we investigated TNBC metastasis, metastasis-associated genes and potential inhibitory mechanisms using bioinformatics, tissue microarray analyses, immunoblotting, polymerase chain reaction, loss and gain of gene function assays and comparative analyses of data obtained. Compared with other breast cancer types, the highly metastatic MDA-MB-231 cells concurrently exhibited increased expression levels of Lysine-specific demethylase 5B protein (KDM5B) and long non-coding RNA (lncRNA), MALAT1, suggesting their functional association. KDM5B-silencing in the TNBC cells correlated with the upregulation of hsa-miR-448 and led to suppression of MALAT1 expression with decreased migration, invasion and clonogenic capacity in vitro, as well as, poor survival in vivo. This projects MALAT1 as a mediator of KDM5B oncogenic potential and highlights the critical role of this microRNA, lncRNA and histone demethylase in cancer cell motility and metastatic colonization. Increased expression of KDM5B correlating with disease progression and poor clinical outcome in breast cancer was reversed by hsa-miR-448. Our findings demonstrate the critical role of KDM5B and its negative regulator hsa-miR-448 in TNBC metastasis and progression. Hsa-miR-448 disrupting KDM5B-MALAT1 signalling axis and associated activities in TNBC cells, projects it as a putative therapeutic factor for selective eradication of TNBC cells

  2. Microseism Induced by Transient Release of In Situ Stress During Deep Rock Mass Excavation by Blasting

    Science.gov (United States)

    Yang, Jianhua; Lu, Wenbo; Chen, Ming; Yan, Peng; Zhou, Chuangbing

    2013-07-01

    During deep rock mass excavation with the method of drill and blast, accompanying the secession of rock fragments and the formation of a new free surface, in situ stress on this boundary is suddenly released within several milliseconds, which is termed the transient release of in situ stress. In this process, enormous strain energy around the excavation face is instantly released in the form of kinetic energy and it inevitably induces microseismic events in surrounding rock masses. Thus, blasting excavation-induced microseismic vibrations in high-stress rock masses are attributed to the combined action of explosion and the transient release of in situ stress. The intensity of stress release-induced microseisms, which depends mainly on the magnitude of the in situ stress and the dimension of the excavation face, is comparable to that of explosion-induced vibrations. With the methods of time-energy density analysis, amplitude spectrum analysis, and finite impulse response (FIR) digital filter, microseismic vibrations induced by the transient release of in situ stress were identified and separated from recorded microseismic signals during a blast of deep rock masses in the Pubugou Hydropower Station. The results show that the low-frequency component in the microseismic records results mainly from the transient release of in situ stress, while the high-frequency component originates primarily from explosion. In addition, a numerical simulation was conducted to demonstrate the occurrence of microseismic events by the transient release of in situ stress, and the results seem to have confirmed fairly well the separated vibrations from microseismic records.

  3. Numerical and experimental investigation of laser induced plasma spectrum of aluminum in the presence of a noble gas

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Fatemeh, E-mail: f_rezaei@sbu.ac.ir; Tavassoli, Seyed Hassan

    2012-12-01

    Laser-induced plasma emission of an aluminum target in helium gas at 1 atm pressure is numerically and experimentally investigated. A laser pulse at wavelength of 266 nm and pulse duration of 10 ns has been considered. Laser ablation is calculated by a one dimensional model based on thermal evaporation mechanism. Spatial and temporal parameters of plasma expansion are determined by using hydrodynamic equations. Three kinds of plasma emission, including Bremsstrahlung, recombination and spectral emissions are considered for modeling the spectrum. Strong lines of aluminum and helium in wavelength interval of 200 to 450 nm are selected. Aluminum spectrum in UV range is depicted and compared with other spectral ranges. Temporal and spatial evolution of plasma emission up to 200 ns after the laser irradiation is studied. The effect of laser energy on the plasma spectrum is studied. An experimental set-up is arranged to compare numerical calculations with experimental results. Experimental and numerical results illustrate that helium line widths and peak intensities become narrower and weaker with time, respectively. Spatial distribution of spectrum shows that for closer distance to the sample surface, an intense continuous emission is observed, while at the farther distance, continuous emission decreases and spectral lines become sharper. A good coincidence is observed between experimental and numerical results. - Highlights: Black-Right-Pointing-Pointer Aluminum plasma emission in helium is numerically and experimentally studied. Black-Right-Pointing-Pointer Spectral, Bremsstrahlung and recombination emissions in spectrum are calculated. Black-Right-Pointing-Pointer All strong lines of aluminum and helium are chosen for spectrum simulation. Black-Right-Pointing-Pointer Line widths and peak intensities at later times become narrower and weaker. Black-Right-Pointing-Pointer At specific optimum position, the maximum of signal peaks is acquired.

  4. CO2-Induced ATP-Dependent Release of Acetylcholine on the Ventral Surface of the Medulla Oblongata.

    Science.gov (United States)

    Huckstepp, Robert T R; Llaudet, Enrique; Gourine, Alexander V

    2016-01-01

    Complex mechanisms that detect changes in brainstem parenchymal PCO2/[H+] and trigger adaptive changes in lung ventilation are responsible for central respiratory CO2 chemosensitivity. Previous studies of chemosensory signalling pathways suggest that at the level of the ventral surface of the medulla oblongata (VMS), CO2-induced changes in ventilation are (at least in part) mediated by the release and actions of ATP and/or acetylcholine (ACh). Here we performed simultaneous real-time biosensor recordings of CO2-induced ATP and ACh release from the VMS in vivo and in vitro, to test the hypothesis that central respiratory CO2 chemosensory transduction involves simultaneous recruitment of purinergic and cholinergic signalling pathways. In anaesthetised and artificially ventilated rats, an increase in inspired CO2 triggered ACh release on the VMS with a peak amplitude of ~5 μM. Release of ACh was only detected after the onset of CO2-induced activation of the respiratory activity and was markedly reduced (by ~70%) by ATP receptor blockade. In horizontal slices of the VMS, CO2-induced release of ATP was reliably detected, whereas CO2 or bath application of ATP (100 μM) failed to trigger release of ACh. These results suggest that during hypercapnia locally produced ATP induces or potentiates the release of ACh (likely from the medullary projections of distal groups of cholinergic neurones), which may also contribute to the development and/or maintenance of the ventilatory response to CO2.

  5. Stretch-induced Ca2+ independent ATP release in hippocampal astrocytes.

    Science.gov (United States)

    Xiong, Yingfei; Teng, Sasa; Zheng, Lianghong; Sun, Suhua; Li, Jie; Guo, Ning; Li, Mingli; Wang, Li; Zhu, Feipeng; Wang, Changhe; Rao, Zhiren; Zhou, Zhuan

    2018-02-28

    Similar to neurons, astrocytes actively participate in synaptic transmission via releasing gliotransmitters. The Ca 2+ -dependent release of gliotransmitters includes glutamate and ATP. Following an 'on-cell-like' mechanical stimulus to a single astrocyte, Ca 2+ independent single, large, non-quantal, ATP release occurs. Astrocytic ATP release is inhibited by either selective antagonist treatment or genetic knockdown of P2X7 receptor channels. Our work suggests that ATP can be released from astrocytes via two independent pathways in hippocampal astrocytes; in addition to the known Ca 2+ -dependent vesicular release, larger non-quantal ATP release depends on P2X7 channels following mechanical stretch. Astrocytic ATP release is essential for brain functions such as synaptic long-term potentiation for learning and memory. However, whether and how ATP is released via exocytosis remains hotly debated. All previous studies of non-vesicular ATP release have used indirect assays. By contrast, two recent studies report vesicular ATP release using more direct assays. In the present study, using patch clamped 'ATP-sniffer cells', we re-investigated astrocytic ATP release at single-vesicle resolution in hippocampal astrocytes. Following an 'on-cell-like' mechanical stimulus of a single astrocyte, a Ca 2+ independent single large non-quantal ATP release occurred, in contrast to the Ca 2+ -dependent multiple small quantal ATP release in a chromaffin cell. The mechanical stimulation-induced ATP release from an astrocyte was inhibited by either exposure to a selective antagonist or genetic knockdown of P2X7 receptor channels. Functional P2X7 channels were expressed in astrocytes in hippocampal brain slices. Thus, in addition to small quantal ATP release, larger non-quantal ATP release depends on P2X7 channels in astrocytes. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  6. Drug Release Profile from Calcium-Induced Alginate-Phosphate Composite Gel Beads

    Directory of Open Access Journals (Sweden)

    Yoshifumi Murata

    2009-01-01

    Full Text Available Calcium-induced alginate-phosphate composite gel beads were prepared, and model drug release profiles were investigated in vitro. The formation of calcium phosphate in the alginate gel matrix was observed and did not affect the rheological properties of the hydrogel beads. X-ray diffraction patterns showed that the calcium phosphate does not exist in crystalline form in the matrix. The initial release amount and release rate of a water-soluble drug, diclofenac, from the alginate gel beads could be controlled by modifying the composition of the matrix with calcium phosphate. In contrast, the release profile was not affected by the modification for hydrocortisone, a drug only slightly soluble in water.

  7. Phagocytosis-induced 51Cr release from activated macrophages and blood mononuclears. Effect of colchicine and antioxidants

    International Nuclear Information System (INIS)

    McGee, M.P.; Hale, A.H.

    1981-01-01

    The chromium-release test was adapted to the measurement of the cellular injury induced when activated macrophages phagocytose particulates. Macrophages obtained from rabbit lungs undergoing BCG-induced chronic inflammation released more chromium when incubated in the presence of phagocytosable particles than when incubated under resting conditions. Blood mononuclear cells, 40-60% monocytes, procured from the same BCG-injected animals, were less susceptible to phagocytosis-induced injury than the macrophages obtained from the lungs. The amount of chromium released by the activated macrophages was proportional to the number of particles present during incubation. In the presence of catalase, the amounts of chromium released by phagocytosing and resting macrophages were similar; in the presence of superoxide dismutase and cytochrome c, the amount of chromium released by phagocytosing macrophages was 13-35% less than the amount of chromium released by macrophages incubated without the antioxidants. In addition, colchicine, an inhibitor of degranulation also exerted partial inhibition of the chromium release. These results suggest that oxygen radicals and lysosomal contents contribute to the cellular injury that results from phagocytosis

  8. Properties of Ca2+ release induced by clofibric acid from the sarcoplasmic reticulum of mouse skeletal muscle fibres

    Science.gov (United States)

    Ikemoto, Takaaki; Endo, Makoto

    2001-01-01

    To characterize the effect of clofibric acid (Clof) on the Ca2+ release mechanism in the sarcoplasmic reticulum (SR) of skeletal muscle, we analysed the properties of Clof-induced Ca2+ release under various conditions using chemically skinned skeletal muscle fibres of the mouse.Clof (>0.5 mM) released Ca2+ from the SR under Ca2+-free conditions buffered with 10 mM EGTA (pCa >8).Co-application of ryanodine and Clof at pCa >8 but not ryanodine alone reduced the Ca2+ uptake capacity of the SR. Thus, Ca2+ release induced by Clof at pCa >8 must be a result of the activation of the ryanodine receptor (RyR).At pCa >8, (i) Clof-induced Ca2+ release was inhibited by adenosine monophosphate (AMP), (ii) the inhibitory effect of Mg2+ on the Clof-induced Ca2+ release was saturated at about 1 mM, and (iii) Clof-induced Ca2+ release was not inhibited by procaine (10 mM). These results indicate that Clof may activate the RyR-Ca2+ release channels in a manner different from Ca2+-induced Ca2+ release (CICR).In addition to this unique mode of opening, Clof also enhanced the CICR mode of opening of RyR-Ca2+ release channels.Apart from CICR, a high concentration of Ca2+ might also enhance the unique mode of opening by Clof.These results suggest that some features of Ca2+ release activated by Clof are similar to those of physiological Ca2+ release (PCR) in living muscle cells and raise the possibility that Clof may be useful in elucidating the mechanism of PCR in skeletal muscle. PMID:11606311

  9. Effect of sealing on the morphology of anodized aluminum oxide

    International Nuclear Information System (INIS)

    Hu, Naiping; Dong, Xuecheng; He, Xueying; Browning, James F.; Schaefer, Dale W.

    2015-01-01

    Highlights: • We explored structural change of anodizing aluminum oxide induced by sealing. • All sealing methods decrease pore size as shown by X-ray/neutron scattering. • Cold sealing and hot water sealing do not alter the aluminum oxide framework. • Hot nickel acetate sealing both fills the pores and deposits on air oxide interface. • Samples with hot nickel acetate sealing outperform other sealing methods. - Abstract: Ultra-small angle X-ray scattering (USAXS), small-angle neutron scattering (SANS), X-ray reflectometry (XRR) and neutron reflectometry (NR) were used to probe structure evolution induced by sealing of anodized aluminum. While cold nickel acetate sealing and hot-water sealing decrease pore size, these methods do not alter the cylindrical porous framework of the anodic aluminum oxide layer. Hot nickel acetate both fills the pores and deposits on the air surface (air–oxide interface), leading to low porosity and small mean pore radius (39 Å). Electrochemical impedance spectroscopy and direct current polarization show that samples sealed by hot nickel acetate outperform samples sealed by other sealing methods

  10. The ALMT Family of Organic Acid Transporters in Plants and Their Involvement in Detoxification and Nutrient Security.

    Science.gov (United States)

    Sharma, Tripti; Dreyer, Ingo; Kochian, Leon; Piñeros, Miguel A

    2016-01-01

    About a decade ago, members of a new protein family of anion channels were discovered on the basis of their ability to confer on plants the tolerance toward toxic aluminum ions in the soil. The efflux of Al 3+ -chelating malate anions through these channels is stimulated by external Al 3+ ions. This feature of a few proteins determined the name of the entire protein family as Aluminum-activated Malate Transporters (ALMT). Meanwhile, after several years of research, it is known that the physiological roles of ALMTs go far beyond Al-detoxification. In this review article we summarize the current knowledge on this transporter family and assess their involvement in diverse physiological processes.

  11. The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security

    Directory of Open Access Journals (Sweden)

    Tripti Sharma

    2016-10-01

    Full Text Available About a decade ago, members of a new protein family of anion channels were discovered on the basis of their ability to confer on plants the tolerance towards toxic aluminum ions in the soil. The efflux of Al3+-chelating malate anions through these channels is stimulated by external Al3+ ions. This feature of a few proteins determined the name of the entire protein family as Aluminum-activated Malate Transporters (ALMT. Meanwhile, after several years of research, it is known that the physiological roles of ALMTs go far beyond Al-detoxification. In this review article we summarize the current knowledge on this transporter family and assess their involvement in diverse physiological processes.

  12. Acacetin inhibits glutamate release and prevents kainic acid-induced neurotoxicity in rats.

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    Full Text Available An excessive release of glutamate is considered to be a molecular mechanism associated with several neurological diseases that causes neuronal damage. Therefore, searching for compounds that reduce glutamate neurotoxicity is necessary. In this study, the possibility that the natural flavone acacetin derived from the traditional Chinese medicine Clerodendrum inerme (L. Gaertn is a neuroprotective agent was investigated. The effect of acacetin on endogenous glutamate release in rat hippocampal nerve terminals (synaptosomes was also investigated. The results indicated that acacetin inhibited depolarization-evoked glutamate release and cytosolic free Ca(2+ concentration ([Ca(2+]C in the hippocampal nerve terminals. However, acacetin did not alter synaptosomal membrane potential. Furthermore, the inhibitory effect of acacetin on evoked glutamate release was prevented by the Cav2.2 (N-type and Cav2.1 (P/Q-type channel blocker known as ω-conotoxin MVIIC. In a kainic acid (KA rat model, an animal model used for excitotoxic neurodegeneration experiments, acacetin (10 or 50 mg/kg was administrated intraperitoneally to the rats 30 min before the KA (15 mg/kg intraperitoneal injection, and subsequently induced the attenuation of KA-induced neuronal cell death and microglia activation in the CA3 region of the hippocampus. The present study demonstrates that the natural compound, acacetin, inhibits glutamate release from hippocampal synaptosomes by attenuating voltage-dependent Ca(2+ entry and effectively prevents KA-induced in vivo excitotoxicity. Collectively, these data suggest that acacetin has the therapeutic potential for treating neurological diseases associated with excitotoxicity.

  13. Estimation of aluminum and argon activation sources in the HANARO coolant

    International Nuclear Information System (INIS)

    Jun, Byung Jin; Lee, Byung Chul; Kim, Myong Seop

    2010-01-01

    The activation products of aluminum and argon are key radionuclides for operational and environmental radiological safety during the normal operation of open-tank-in-pool type research reactors using aluminum-clad fuels. Their activities measured in the primary coolant and pool surface water of HANARO have been consistent. We estimated their sources from the measured activities and then compared these values with their production rates obtained by a core calculation. For each aluminum activation product, an equivalent aluminum thickness (EAT) in which its production rate is identical to its release rate into the coolant is determined. For the argon activation calculation, the saturated argon concentration in the water at the temperature of the pool surface is assumed. The EATs are 5680, 266 and 1.2 nm, respectively, for Na-24, Mg-27 and Al-28, which are much larger than the flight lengths of the respective recoil nuclides. These values coincide with the water solubility levels and with the half-lives. The EAT for Na-24 is similar to the average oxide layer thickness (OLT) of fuel cladding as well; hence, the majority of them in the oxide layer may be released to the coolant. However, while the average OLT clearly increases with the fuel burn-up during an operation cycle, its effect on the pool-top radiation is not distinguishable. The source of Ar-41 is in good agreement with the calculated reaction rate of Ar-40 dissolved in the coolant

  14. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    Science.gov (United States)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  15. Microscopic analysis of effect of shot peening on corrosion fatigue behavior of aluminum alloy

    International Nuclear Information System (INIS)

    Kim, Jong Cheon; Cheong, Seong Kyun

    2012-01-01

    The object of this study considers corrosion fatigue improvement of 7075-T6 aluminum by using shot peening treatment on 3.5% NaCl solution at room temperature. Aluminum alloy is generally used in aerospace structural components because of the light weight and high strength characteristics. Many studies have shown that an aluminum alloy can be approximately 50% lighter than other materials. Mostly, corrosion leads to earlier fatigue crack propagation under tensile conditions and severely reduces the life of structures. Therefore, the technique to improve material resistance to corrosion fatigue is required. Shot peening technology is widely used to improve fatigue life and other mechanical properties by induced compressive residual stress. Even the roughness of treated surface causes pitting corrosion, the compressive residual stress, which is induced under the surface layer of material by shot peening, suppersses the corrosion and increases the corrosion resistance. The experimental results for shot peened specimens were compared with previous work for non treated aluminum alloy. The results show that the shot peening treatment affects the corrosion fatigue improvement of aluminum alloys and the induced compressive residual stress by shot peening treatment improves the resistance to corrosion fatigue

  16. Microscopic analysis of effect of shot peening on corrosion fatigue behavior of aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Cheon; Cheong, Seong Kyun [Seoul Nat' l Univ. of Science and Technology, Seoul (Korea, Republic of)

    2012-11-15

    The object of this study considers corrosion fatigue improvement of 7075-T6 aluminum by using shot peening treatment on 3.5% NaCl solution at room temperature. Aluminum alloy is generally used in aerospace structural components because of the light weight and high strength characteristics. Many studies have shown that an aluminum alloy can be approximately 50% lighter than other materials. Mostly, corrosion leads to earlier fatigue crack propagation under tensile conditions and severely reduces the life of structures. Therefore, the technique to improve material resistance to corrosion fatigue is required. Shot peening technology is widely used to improve fatigue life and other mechanical properties by induced compressive residual stress. Even the roughness of treated surface causes pitting corrosion, the compressive residual stress, which is induced under the surface layer of material by shot peening, suppersses the corrosion and increases the corrosion resistance. The experimental results for shot peened specimens were compared with previous work for non treated aluminum alloy. The results show that the shot peening treatment affects the corrosion fatigue improvement of aluminum alloys and the induced compressive residual stress by shot peening treatment improves the resistance to corrosion fatigue.

  17. Quantification of stress-induced damage and post-fire response of 5083 aluminum alloy

    International Nuclear Information System (INIS)

    Chen, Y.; Puplampu, S.B.; Summers, P.T.; Lattimer, B.Y.; Penumadu, D.; Case, S.W.

    2015-01-01

    One of the major concerns regarding the use of lightweight materials in ship construction is the response of those materials to fire scenarios, including the residual structural performance after a fire event. This paper presents a study on creep damage evolution in 5083 marine-grade aluminum alloy and its impact on residual mechanical behavior. Tests conducted at 400 °C and pre-selected tensile stress levels were interrupted at target amplitudes of accumulated engineering creep strains to investigate the stress-induced damage using ex-situ characterization. Two-dimensional optical and electron microscopy and three-dimensional X-ray tomography were utilized on samples extracted from these test specimens to characterize the external and internal creep damage. The stress-induced damage is primarily manifested as cavitation and dynamic microstructural evolution. Cavitation morphology, orientation and grain structure evolution were investigated on three perpendicular sample surfaces. A 3D examination of the damage state provided consistent damage information to that obtained from the 2D analysis. The post-fire mechanical properties were also evaluated and linked to the microstructural change. The competing processes of cavitation and grain structure evolution were investigated to develop an understanding of the stress-induced damage associated with high temperature creep

  18. Quantification of stress-induced damage and post-fire response of 5083 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y., E-mail: yanyun@vt.edu [Department of Engineering Science & Mechanics, Virginia Tech, Blacksburg, VA 24061 (United States); Puplampu, S.B. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Summers, P.T.; Lattimer, B.Y. [Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061 (United States); Penumadu, D. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Case, S.W. [Department of Engineering Science & Mechanics, Virginia Tech, Blacksburg, VA 24061 (United States)

    2015-08-12

    One of the major concerns regarding the use of lightweight materials in ship construction is the response of those materials to fire scenarios, including the residual structural performance after a fire event. This paper presents a study on creep damage evolution in 5083 marine-grade aluminum alloy and its impact on residual mechanical behavior. Tests conducted at 400 °C and pre-selected tensile stress levels were interrupted at target amplitudes of accumulated engineering creep strains to investigate the stress-induced damage using ex-situ characterization. Two-dimensional optical and electron microscopy and three-dimensional X-ray tomography were utilized on samples extracted from these test specimens to characterize the external and internal creep damage. The stress-induced damage is primarily manifested as cavitation and dynamic microstructural evolution. Cavitation morphology, orientation and grain structure evolution were investigated on three perpendicular sample surfaces. A 3D examination of the damage state provided consistent damage information to that obtained from the 2D analysis. The post-fire mechanical properties were also evaluated and linked to the microstructural change. The competing processes of cavitation and grain structure evolution were investigated to develop an understanding of the stress-induced damage associated with high temperature creep.

  19. Glutamine and ornithine alpha-ketoglutarate supplementation on malate dehydrogenases expression in hepatectomized rats

    OpenAIRE

    Guimarães Filho, Artur; Cunha, Rodrigo Maranguape Silva da; Vasconcelos, Paulo Roberto Leitão de; Guimarães, Sergio Botelho

    2014-01-01

    PURPOSE: To evaluate the relative gene expression (RGE) of cytosolic (MDH1) and mitochondrial (MDH2) malate dehydrogenases enzymes in partially hepatectomized rats after glutamine (GLN) or ornithine alpha-ketoglutarate (OKG) suplementation. METHODS: One-hundred and eight male Wistar rats were randomly distributed into six groups (n=18): CCaL, GLNL and OKGL and fed calcium caseinate (CCa), GLN and OKG, 0.5g/Kg by gavage, 30 minutes before laparotomy. CCaH, GLNH and OKGH groups were likewise fe...

  20. fMLP-Induced IL-8 Release Is Dependent on NADPH Oxidase in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    María A. Hidalgo

    2015-01-01

    Full Text Available N-Formyl-methionyl-leucyl-phenylalanine (fMLP and platelet-activating factor (PAF induce similar intracellular signalling profiles; but only fMLP induces interleukin-8 (IL-8 release and nicotinamide adenine dinucleotide phosphate reduced (NADPH oxidase activity in neutrophils. Because the role of ROS on IL-8 release in neutrophils is until now controversial, we assessed if NADPH oxidase is involved in the IL-8 secretions and PI3K/Akt, MAPK, and NF-κB pathways activity induced by fMLP. Neutrophils were obtained from healthy volunteers. IL-8 was measured by ELISA, IL-8 mRNA by qPCR, and ROS production by luminol-amplified chemiluminescence, reduction of ferricytochrome c, and FACS. Intracellular pH changes were detected by spectrofluorescence. ERK1/2, p38 MAPK, and Akt phosphorylation were analysed by immunoblotting and NF-κB was analysed by immunocytochemistry. Hydroxy-3-methoxyaceto-phenone (HMAP, diphenyleneiodonium (DPI, and siRNA Nox2 reduced the ROS and IL-8 release in neutrophils treated with fMLP. HMAP, DPI, and amiloride (a Na+/H+ exchanger inhibitor inhibited the Akt phosphorylation and did not affect the p38 MAPK and ERK1/2 activity. DPI and HMAP reduced NF-κB translocation induced by fMLP. We showed that IL-8 release induced by fMLP is dependent on NADPH oxidase, and ROS could play a redundant role in cell signalling, ultimately activating the PI3K/Akt and NF-κB pathways in neutrophils.

  1. Stress-induced release of GUT peptides in young women classified as restrained or unrestrained eaters.

    Science.gov (United States)

    Hilterscheid, Esther; Laessle, Reinhold

    2015-12-01

    Basal release of GUT peptides has been found to be altered in restrained eaters. Stress-induced secretion, however, has not yet been described, but could be a biological basis of overeating that exposes restrained eaters to a higher risk of becoming obese. The aim of the present study was to compare restrained and unrestrained eaters with respect to stress-induced release of the GUT peptides ghrelin and PYY. 46 young women were studied. Blood sampling for peptides was done before and after the Trier Social Stress Test. Ghrelin secretion after stress was significantly elevated in the restrained eaters, whereas no significant differences were detected for PYY. Stress-induced release of GUT peptides can be interpreted as a cause as well as a consequence of restrained eating.

  2. Endurance exercise modulates levodopa induced growth hormone release in patients with Parkinson's disease.

    Science.gov (United States)

    Müller, Thomas; Welnic, Jacub; Woitalla, Dirk; Muhlack, Siegfried

    2007-07-11

    Acute levodopa (LD) application and exercise release human growth hormone (GH). An earlier trial showed, that combined stimulus of exercise and LD administration is the best provocative test for GH response in healthy participants. Objective was to show this combined effect of LD application and exercise on GH response and to investigate the impact on LD metabolism in 20 previously treated patients with Parkinson's disease (PD). We measured GH- and LD plasma concentrations following soluble 200 mg LD/50 mg benserazide administration during endurance exercise and rest on two separate consecutive days. GH concentrations significantly increased on both days, but GH release was significantly delayed during rest. LD metabolism was not altered due to exercise in a clinical relevant manner. Exercise induced a significant faster LD stimulated GH release in comparison with the rest condition. We did not find the supposed increase of LD induced GH release by endurance exercise. We assume, that only a limited amount of GH is available for GH release in the anterior pituitary following an acute 200 mg LD administration. GH disposal also depends on growth hormone releasing hormone (GHRH), which is secreted into hypothalamic portal capillaries. During the exercise condition, the resulting higher blood pressure supports blood flow and thus GHRH transport towards the GH producing cells in the pituitary. This might additionally have caused the significant faster GH release during exercise.

  3. Saturated fatty acid palmitate induces extracellular release of histone H3: A possible mechanistic basis for high-fat diet-induced inflammation and thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Chandan [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Ito, Takashi [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Kawahara, Ko-ichi [Department of Biomedical Engineering, Osaka Institute of Technology, Osaka (Japan); Shrestha, Binita; Yamakuchi, Munekazu; Hashiguchi, Teruto [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Maruyama, Ikuro, E-mail: rinken@m3.kufm.kagoshima-u.ac.jp [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan)

    2013-08-09

    Highlights: •High-fat diet feeding and palmitate induces the release of nuclear protein histone H3. •ROS production and JNK signaling mediates the release of histone H3. •Extracellular histones induces proinflammatory and procoagulant response. -- Abstract: Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into the extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis.

  4. Saturated fatty acid palmitate induces extracellular release of histone H3: A possible mechanistic basis for high-fat diet-induced inflammation and thrombosis

    International Nuclear Information System (INIS)

    Shrestha, Chandan; Ito, Takashi; Kawahara, Ko-ichi; Shrestha, Binita; Yamakuchi, Munekazu; Hashiguchi, Teruto; Maruyama, Ikuro

    2013-01-01

    Highlights: •High-fat diet feeding and palmitate induces the release of nuclear protein histone H3. •ROS production and JNK signaling mediates the release of histone H3. •Extracellular histones induces proinflammatory and procoagulant response. -- Abstract: Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into the extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis

  5. Inhibition of several enzymes by gold compounds. II. beta-Glucuronidase, acid phosphatase and L-malate dehydrogenase by sodium thiomalatoraurate (I), sodium thiosulfatoaurate (I) and thioglucosoaurate (I).

    Science.gov (United States)

    Lee, M T; Ahmed, T; Haddad, R; Friedman, M E

    1989-01-01

    Bovine liver beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32), wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) and bovine liver L-malate dehydrogenase (L-malate: NAD oxidoreductase, EC 1.1.1.37) were inhibited by a series of gold (I) complexes that have been used as anti-inflammatory drugs. Both sodium thiosulfatoaurate (I) (Na AuTs) and sodium thiomalatoraurate (NaAuTM) effectively inhibited all three enzymes, while thioglucosoaurate (I) (AuTG) only inhibited L-malate dehydrogenase. The equilibrium constants (K1) ranged from nearly 4000 microM for the NaAuTM-beta-glucuronidase interaction to 24 microM for the NaAuTS-beta-glucuronidase interaction. The rate of covalent bond formation (kp) ranged from 0.00032 min-1 for NaAuTM-beta-glucuronidase formation to 1.7 min-1 for AuTG-L-malate dehydrogenase formation. The equilibrium data shows that the gold (I) drugs bind by several orders lower than the gold (III) compounds, suggesting a significantly stronger interaction between the more highly charged gold ion and the enzyme. Yet the rate of covalent bond formation depends as much on the structure of the active site as upon the lability of the gold-ligand bond. It was also observed that the more effective the gold inhibition the more toxic the compound.

  6. Utilization of adenosine triphosphate in rat mast cells during histamine release induced by the ionophore A23187

    DEFF Research Database (Denmark)

    Johansen, Torben

    1979-01-01

    The role of endogenous adenosine triphosphate (ATP) in histamine release from rat mast cells induced by the ionophore A23187 in vitro has been studied. 2 The amount of histamine released by calcium from rat mast cells primed with the ionophore A23187 was dependent on the ATP content of the mast...... cells. 3 In aerobic experiments a drastic reduction in mast cell ATP content was found during the time when histamine release induced by A23187 takes place. 4 Anaerobic experiments were performed with metabolic inhibitors (antimycin A, oligomycin, and carbonyl cyanide p......-trifluorometroxyphenylnydrazone), which are known to block the energy-dependent calcium uptake by isolated mitochondria. The mast cell ATP content was reduced during A23187-induced histamine release under anaerobic conditions in the presence of glucose. This indicates an increased utilization of ATP during the release process. 5...

  7. Aluminum surface corrosion and the mechanism of inhibitors using pH and metal ion selective imaging fiber bundles.

    Science.gov (United States)

    Szunerits, Sabine; Walt, David R

    2002-02-15

    The localized corrosion behavior of a galvanic aluminum copper couple was investigated by in situ fluorescence imaging with a fiber-optic imaging sensor. Three different, but complementary methods were used for visualizing remote corrosion sites, mapping the topography of the metal surface, and measuring local chemical concentrations of H+, OH-, and Al3+. The first method is based on a pH-sensitive imaging fiber, where the fluorescent dye SNAFL was covalently attached to the fiber's distal end. Fluorescence images were acquired as a function of time at different areas of the galvanic couple. In a second method, the fluorescent dye morin was immobilized on the fiber-optic imaging sensor, which allowed the in situ localization of corrosion processes on pure aluminum to be visualized over time by monitoring the release of Al3+. The development of fluorescence on the aluminum surface defined the areas associated with the anodic dissolution of aluminum. We also investigated the inhibition of corrosion of pure aluminum by CeCl3 and 8-hydroxyquinoline. The decrease in current, the decrease in the number of active sites on the aluminum surface, and the faster surface passivation are all consistent indications that cerium chloride and 8-hydroxyquinoline inhibit corrosion effectively. From the number and extent of corrosion sites and the release of aluminum ions monitored with the fiber, it was shown that 8-hydroxyquinoline is a more effective inhibitor than cerium chloride.

  8. Safety consequences of the release of radiation induced stored energy

    International Nuclear Information System (INIS)

    Prij, J.

    1994-08-01

    Due to the disposal of HLW in a salt formation gamma energy will be deposited in the rock salt. Most of this energy will be converted into heat, whilst a small part will create defects in the salt crystals. Energy is stored in the damaged crystals. Due to uncertainties in the models and differences in the disposal concepts the estimated values for the stored energy range from 10 to 1000 J/g in the most heavily damaged crystals close to the waste containers. The amount of radiation damage decays exponentially with increasing distance from the containers and at distances larger than 0.2 m the stored energy can be neglected. Given the uncertainties in the model predictions and in the possible release mechanism an instantaneous release of stored energy cannot be excluded completely. Therefore the thermo-mechanical consequences of a postulated instantaneous release of an extremely high amount of radiation induced stored energy have been estimated. These estimations are based on the quasi-static solutions for line and point sources. To account for the dynamic effects and the occurrence of fractures an amplification factor has been derived from mining experience with explosives. A validation of this amplification factor has been given using post experimental observations of two nuclear explosions in a salt formation. For some typical disposal concepts in rock salt the extent of the fractured zone has been estimated. It appeared that the radial extent of the fractured zone is limited to 5 m. Given the much larger distance between the individual boreholes and the distance between the boreholes and the boundary of the salt formation (more than 100 m), the probability of a release of radiation induced stored energy creating a pathway for the nuclides from the containers to the groundwater, is extremely low. The radiological consequences of a groundwater intrusion scenario induced by this very unprobable pathway are bounded by the 'standard' groundwater intrusion

  9. Metallography of pitted aluminum-clad, depleted uranium fuel

    International Nuclear Information System (INIS)

    Nelson, D.Z.; Howell, J.P.

    1994-01-01

    The storage of aluminum-clad fuel and target materials in the L-Disassembly Basin at the Savannah River Site for more than 5 years has resulted in extensive pitting corrosion of these materials. In many cases the pitting corrosion of the aluminum clad has penetrated in the uranium metal core, resulting in the release of plutonium, uranium, cesium-137, and other fission product activity to the basin water. In an effort to characterize the extent of corrosion of the Mark 31A target slugs, two unirradiated slug assemblies were removed from basin storage and sent to the Savannah River Technology Center for evaluation. This paper presents the results of the metallography and photographic documentation of this evaluation. The metallography confirmed that pitting depths varied, with the deepest pit found to be about 0.12 inches (3.05 nun). Less than 2% of the aluminum cladding was found to be breached resulting in less than 5% of the uranium surface area being affected by corrosion. The overall integrity of the target slug remained intact

  10. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection

    Science.gov (United States)

    Billiet, Marijn; De Schampheleire, Sven; Huisseune, Henk; De Paepe, Michel

    2015-01-01

    Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink’s base plate is used as the performance indicator. For temperature differences larger than 30 ∘C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 ∘C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink. PMID:28793601

  11. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection

    Directory of Open Access Journals (Sweden)

    Marijn Billiet

    2015-10-01

    Full Text Available Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink’s base plate is used as the performance indicator. For temperature differences larger than 30 °C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 °C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink.

  12. Cuscuta reflexa invasion induces Ca2+ release in its host

    NARCIS (Netherlands)

    Albert, M.; Krol, van der A.R.; Kaldenhoff, R.

    2010-01-01

    Cuscuta reflexa induces a variety of reaction in its hosts. Some of these are visual reactions, and it is clear that these morphological changes are preceded by events at the molecular level, where signal transduction is one of the early processes. Calcium (Ca(2+)) release is the major second

  13. The effect of sodium ions on the light-induced 86Rb release from the isolated crayfish retina

    International Nuclear Information System (INIS)

    Hartung, K.; Stieve, H.

    1980-01-01

    The effect of low external Na + concentrations on the light-induced K + release from crayfish photoreceptor cells was tested by labelling intracellular K + with the isotope 86 Rb. The amount of isotope released per light, stimulus is roughly proportional to the external Na + concentration if the osmolarity is kept constant by replacing Na + with Tris, choline or sucrose. When sucrose is used to replace the depleted Na + the light-induced K + release is a linear function of the external Na + concentration and is reduced by approx. 95% at an external Na + concentration of 5 mmol/l. For choline and Tris substitutions the relationships are less clear but at Na + concentrations + release is smaller in a Tris solution and larger in a choline solution. It is suggested that the light-induced K + release is due mainly to an activation of voltage sensitive K + channels. (orig.)

  14. Radiation-induced increase in the release of amino acids by isolated, perfused skeletal muscle

    International Nuclear Information System (INIS)

    Schwenen, M.

    1989-01-01

    Local exposure of the hindquarter of the rat to 15Gy of gamma-radiation resulted, 4-6h after irradiation, in increased release of amino acids by the isolated, perfused hindquarter preparation, 70% of which is skeletal muscle. This increase in release involves not only alanine and glutamine, but also those amino acids not metabolized by muscle and, therefore, released in proportion to their occurrence in muscle proteins. Because metabolic parameters and content of energy-rich phosphate compounds in muscle remain unchanged, it is unlikely that general cellular damage is the underlying cause of the radiation-induced increase in amino acid release. The findings strongly favour the hypothesis that increased availability of amino acids results from enhanced protein break-down in skeletal muscle which has its onset shortly after irradiation. This radiation-induced disturbance in protein metabolism might be one of the pathogenetic factors in the aetiology of radiation myopathy. (author)

  15. Packaging material and aluminum. Hoso zairyo to aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Itaya, T [Mitsubishi Aluminum Co. Ltd., Tokyo (Japan)

    1992-02-01

    The present paper introduces aluminum foil packaging materials among the relation between packing materials and aluminum. The characteristics of aluminum foil in the packaging area are in its barrier performance, non-toxicity, tastelessness and odorlessness. Its excellent functions and processibility suit best as functional materials for food, medicine and industrial material packaging. While an aluminum foil may be used as a single packing material as in foils used in homes, many of it as a packaging material are used in combination with adhesives, papers or plastic films, or coated or printed. It is used as composite materials laminated or coated with other materials according to their use for the purpose of complementing the aluminum foil as the base material. Representative method to laminate aluminum foils include the wet lamination, dry lamination, thermally dissolved lamination and extruded lamination. The most important quality requirement in lamination is the adhesion strength, which requires a close attention in selecting the kinds of adhesive, laminating conditions, and aging conditions. 8 figs., 6 tabs.

  16. Ristocetin induces phosphorylated-HSP27 (HSPB1) release from the platelets of type 2 DM patients: Anti-platelet agent-effect on the release.

    Science.gov (United States)

    Tokuda, Haruhiko; Kuroyanagi, Gen; Onuma, Takashi; Enomoto, Yukiko; Doi, Tomoaki; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2018-04-01

    It has been previously reported that HSP27 is released from platelets in type 2 diabetes mellitus (DM) patients according to phosphorylation. In the present study, we investigated the effect of ristocetin, a glycoprotein (GP)Ib/IX/V activator, on the release of HSP27 and the effect of anti-platelet agents, such as acetylsalicylic acid (ASA), on this release. Forty-six patients with type 2 DM were recruited, and classified into two groups depending on administration of anti-platelet agents, resulting in 31 patients without these agents (control group) and 15 patients with them (anti-platelet group). Ristocetin potently induced the aggregation of platelets in the two groups. Ristocetin-induced changes of the area under the curve of light transmittance and the ratio of the size of platelet aggregates in the anti-platelet group were slightly different from those in the control group. On the other hand, the levels of phosphorylated-HSP27 induced by ristocetin in the platelets from a patient of the anti-platelet group taking ASA were significantly lower than those from a patient of the control group. The levels of HSP27 release from the ristocetin-stimulated platelets were significantly correlated with the levels of phosphorylated-HSP27 in the platelets from patients in the two groups. The levels of HSP27 release and those of platelet-derived growth factor-AB (PDGF-AB) secretion stimulated by ristocetin in the anti-platelet group were lower than those in the control group. In addition, the levels of HSP27 release and those of PDGF-AB secretion stimulated by ADP in the anti-platelet group were lower than those in the control group. These results strongly suggest that anti-platelet agents inhibit the HSP27 release from platelets stimulated by ristocetin but not the aggregation in type 2 DM patients.

  17. Primary structure of the light-dependent regulatory site of corn NADP-malate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Decottignies, P.; Schmitter, J.M.; Miginiac-Maslow, M.; Le Marechal, P.; Jacquot, J.P.; Gadal, P.

    1988-08-25

    The light-activated NADP-malate dehydrogenase (NADP-MDH) catalyzes the reduction of oxaloacetate to malate in higher plant chloroplasts. This enzyme is regulated in vivo by the ferredoxin-thioredoxin system through redox reactions. NADP-MDH has been photoactivated in vitro in a chloroplast system reconstituted from the pure protein components and thylakoid membranes. Photoactivation was accompanied by the appearance of new thiol groups (followed by (14C)iodoacetate incorporation). 14C-Carboxymethylated NADP-MDH has been purified from the incubation mixture and its amino-terminal sequence analyzed. Two (14C)carboxymethylcysteines were identified at positions 10 and 15 after light activation, while they were not detected in the dark-treated protein. In addition, the analysis of the tryptic digest of light-activated (14C)carboxymethylated NADP-MDH revealed that the radioactive label was mostly incorporated in Cys10 and Cys15, indicating that these 2 residues play a major role in the light activation mechanism. Moreover, an activation model, in which photoreduced thio-redoxin was replaced by the dithiol reductant dithio-threitol, has been developed. When NADP-MDH was activated in this way, the same sulfhydryls were found to be labeled, and alternatively, they did not incorporate any radioactivity when dithiothreitol reduction was performed after carboxymethylation in denaturating conditions. These results indicate that activation (by light or by dithiothreitol) proceeds on each subunit by reduction of a disulfide bridge located at the amino terminus of the enzyme between Cys10 and Cys15.

  18. Primary structure of the light-dependent regulatory site of corn NADP-malate dehydrogenase

    International Nuclear Information System (INIS)

    Decottignies, P.; Schmitter, J.M.; Miginiac-Maslow, M.; Le Marechal, P.; Jacquot, J.P.; Gadal, P.

    1988-01-01

    The light-activated NADP-malate dehydrogenase (NADP-MDH) catalyzes the reduction of oxaloacetate to malate in higher plant chloroplasts. This enzyme is regulated in vivo by the ferredoxin-thioredoxin system through redox reactions. NADP-MDH has been photoactivated in vitro in a chloroplast system reconstituted from the pure protein components and thylakoid membranes. Photoactivation was accompanied by the appearance of new thiol groups (followed by [14C]iodoacetate incorporation). 14C-Carboxymethylated NADP-MDH has been purified from the incubation mixture and its amino-terminal sequence analyzed. Two [14C]carboxymethylcysteines were identified at positions 10 and 15 after light activation, while they were not detected in the dark-treated protein. In addition, the analysis of the tryptic digest of light-activated [14C]carboxymethylated NADP-MDH revealed that the radioactive label was mostly incorporated in Cys10 and Cys15, indicating that these 2 residues play a major role in the light activation mechanism. Moreover, an activation model, in which photoreduced thio-redoxin was replaced by the dithiol reductant dithio-threitol, has been developed. When NADP-MDH was activated in this way, the same sulfhydryls were found to be labeled, and alternatively, they did not incorporate any radioactivity when dithiothreitol reduction was performed after carboxymethylation in denaturating conditions. These results indicate that activation (by light or by dithiothreitol) proceeds on each subunit by reduction of a disulfide bridge located at the amino terminus of the enzyme between Cys10 and Cys15

  19. Oxygen-induced restructuring with release of gold atoms from Au(111)

    International Nuclear Information System (INIS)

    Min, B.K.; Deng, X.; Schalek, R.; Pinnaduwage, D.; Friend, C.M.

    2005-01-01

    Adsorption of oxygen atoms, achieved via electron-induced dissociation of nitrogen dioxide, induces restructuring of the 'herringbone' to a striped, soliton-wall structure accompanied by release of gold from the 'elbows' in the herringbone structure. The number density of 'elbows' (dislocations corresponding to a change in direction of the reconstruction) decreases as a function of increasing atomic oxygen coverage while the long range order observed in low energy electron diffraction (LEED) changes from (√(3)x22)-rec. to (1x22) in the limit of saturation coverage. Small islands and serrated step edges were formed due to the release of gold atoms from elbow sites of Au(111). The overall structural change of the Au(111) surface may result from the reduction of anisotropy related to the tensile stress relief of the Au(111) surface by oxygen atoms

  20. Reshock Response of 2A12 Aluminum Alloy at High Pressures

    International Nuclear Information System (INIS)

    Ri-Li, Hou; Jian-Xiang, Peng; Fu-Qian, Jing; Jian-Hua, Zhang; Ping, Zhou

    2009-01-01

    By means of mounting the specimen on a low-impedance buffer, reshock experiments were carried out on a 2A12 aluminum alloy up to shock stresses of 67.6 GPa. Reshock wave profiles from the initial shock stresses of 60.9–67.6 GPa were measured with a velocity interferometer, and it shows that the 2A12 aluminum alloy characterizes as quasi-elastic response during recompression process. The Lagrange longitudinal velocities along the reloading path from initial shock state were obtained from two shots of experiments, while the bulk velocities at corresponding shock stresses were determined via extrapolating from the public reported unloading plastic sound velocities. Combining the reshock and the release experimental results, the yield strength of 2A12 aluminum alloy at shock stress of 60.9 GPa was estimated to be about 1.7 GPa

  1. Fracture property of double cantilever beam of aluminum foam bonded with spray adhesive

    International Nuclear Information System (INIS)

    Han, Moon Sik; Choi, Hae Kyu; Cho, Jae Ung; Cho, Chong Du

    2015-01-01

    Aluminum foam with the property of excellent impact absorption has been widely used recently. It is necessary to study fracture energy due to energy release rate by the use of adhesive joint at aluminum foam. This study aims at strength evaluation about adhesive joint on aluminum foam. Bonded DCB specimens with this material property are experimented and the fracture behavior is analyzed by simulation. These specimens are designed by differing in height on the basis of British industrial and ISO standards. As the value of height at model is higher, bonded part is separated to the end. By comparing analysis results with experimental data, these data could agree with each other. By the confirmation with experimental results, these all simulation results in this study can be applied on real composite structure with aluminum foam material effectively. The fracture behavior and its property can also be examined by this study.

  2. Graphene-aluminum nanocomposites

    International Nuclear Information System (INIS)

    Bartolucci, Stephen F.; Paras, Joseph; Rafiee, Mohammad A.; Rafiee, Javad; Lee, Sabrina; Kapoor, Deepak; Koratkar, Nikhil

    2011-01-01

    Highlights: → We investigated the mechanical properties of aluminum and aluminum nanocomposites. → Graphene composite had lower strength and hardness compared to nanotube reinforcement. → Processing causes aluminum carbide formation at graphene defects. → The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  3. Injection-induced moment release can also be aseismic

    Science.gov (United States)

    McGarr, Arthur; Barbour, Andrew J.

    2018-01-01

    The cumulative seismic moment is a robust measure of the earthquake response to fluid injection for injection volumes ranging from 3100 to about 12 million m3. Over this range, the moment release is limited to twice the product of the shear modulus and the volume of injected fluid. This relation also applies at the much smaller injection volumes of the field experiment in France reported by Guglielmi, et al. (2015) and laboratory experiments to simulate hydraulic fracturing described by Goodfellow, et al. (2015). In both of these studies, the relevant moment release for comparison with the fluid injection was aseismic and consistent with the scaling that applies to the much larger volumes associated with injection-induced earthquakes with magnitudes extending up to 5.8. Neither the micro-earthquakes, at the site in France, nor the acoustic emission in the laboratory samples contributed significantly to the deformation due to fluid injection.

  4. In vivo neurochemical characterization of clothianidin induced striatal dopamine release.

    Science.gov (United States)

    Faro, L R F; Oliveira, I M; Durán, R; Alfonso, M

    2012-12-16

    Clothianidin (CLO) is a neonicotinoid insecticide with selective action on nicotinic acetylcholine receptors. The aim of this study was to determine the neurochemical basis for CLO-induced striatal dopamine release using the microdialysis technique in freely moving and conscious rats. Intrastriatal administration of CLO (3.5mM), produced an increase in both spontaneous (2462 ± 627% with respect to basal values) and KCl-evoked (4672 ± 706% with respect to basal values) dopamine release. This effect was attenuated in Ca(2+)-free medium, and was prevented in reserpine pre-treated animals or in presence of tetrodotoxin (TTX). To investigate the involvement of dopamine transporter (DAT), the effect of CLO was observed in presence of nomifensine. The coadministration of CLO and nomifensine produced an additive effect on striatal dopamine release. The results suggest that the effect of CLO on striatal dopamine release is predominantly mediated by an exocytotic mechanism, Ca(2+), vesicular and TTX-dependent and not by a mechanism mediated by dopamine transporter. Published by Elsevier Ireland Ltd.

  5. Lidocaine attenuates anisomycin-induced amnesia and release of norepinephrine in the amygdala

    Science.gov (United States)

    Sadowski, Renee N.; Canal, Clint E.; Gold, Paul E.

    2011-01-01

    When administered near the time of training, protein synthesis inhibitors such as anisomycin impair later memory. A common interpretation of these findings is that memory consolidation requires new protein synthesis initiated by training. However, recent findings support an alternative interpretation that abnormally large increases in neurotransmitter release after injections of anisomycin may be responsible for producing amnesia. In the present study, a local anesthetic was administered prior to anisomycin injections in an attempt to mitigate neurotransmitter actions and thereby attenuate the resulting amnesia. Rats received lidocaine and anisomycin injections into the amygdala 130 and 120 min, respectively, prior to inhibitory avoidance training. Memory tests 48 hr later revealed that lidocaine attenuated anisomycin-induced amnesia. In other rats, in vivo microdialysis was performed at the site of amygdala infusion of lidocaine and anisomycin. As seen previously, anisomycin injections produced large increases in release of norepinephrine in the amygdala. Lidocaine attenuated the anisomycin-induced increase in release of norepinephrine but did not reverse anisomycin inhibition of protein synthesis, as assessed by c-Fos immunohistochemistry. These findings are consistent with past evidence suggesting that anisomycin causes amnesia by initiating abnormal release of neurotransmitters in response to the inhibition of protein synthesis. PMID:21453778

  6. Selection of a mineral binder for the stabilization - solidification of waste containing aluminum metal

    International Nuclear Information System (INIS)

    Lahalle, H.; Cau Dit Counes, C.; Lambertin, D.; Antonucci, P.; Delpech, S.

    2015-01-01

    The dismantling of nuclear facilities produces radioactive waste materials, some of which may contain aluminum metal. In a strongly alkaline medium, such as that encountered in conventional cementitious materials based on Portland cement, aluminum metal becomes corroded, with a continued production of dihydrogen. In order to develop a mineral matrix having enhanced compatibility with aluminum, a literature review was first undertaken to identify binders capable of reducing the pore solution pH compared with Portland cement. An experimental study was then carried out to measure the hydrogen production resulting from corrosion of aluminum metal rods encapsulated in the different selected cement pastes. The best results were achieved with magnesium phosphate cement, which released very little hydrogen over the duration of the study. This production could be reduced further by adding a corrosion inhibitor (lithium nitrate) to the mixing solution

  7. Sulfite induces release of lipid mediators by alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Beck-Speier, I.; Dayal, N.; Maier, L. [GSF - National Research Center for Environment and Health, Neuherberg (Germany). Inst. for Inhalation Biology; Denzlinger, C. [Tuebingen Univ. (Germany). Dept. II, Medical Clinic; Haberl, C. [Tuebingen Univ. (Germany). Dept. III, Medical Clinic

    1998-03-01

    Air pollutants are supposed to modulate physiological responses of alveolar macrophages (AM). This study was addressed to the question whether at neutral pH sulfur(IV) species in comparison to sulfur(VI) species cause AM to release proinflammatory mediators and which pathways are involved in their generation. Supernatants obtained from canine AM treated with sulfite (0.1 mM to 2 mM) enhanced the respiratory burst of canine neutrophils, measured by lucigenin-dependent chemiluminescence, whereas supernatants derived from AM treated with sulfate (1 mM) did not. The neutrophil-stimulating activity released by sulfite-treated AM consisted of platelet-activating factor (PAF) and leukotriene B{sub 4} (LTB{sub 4}) as shown by desensitization of the platelet-activating factor (PAF) and leukotriene B{sub 4} (LTB{sub 4}) as shown by desensitization of the corresponding receptors. Inhibitors of phospholipase A{sub 2} substantially suppressed release of neutrophil-stimulating activity by sulfite-treated AM. Inhibition of 5-lipoxygenase in sulfite-treated AM also reduced neutrophil-stimulating activity, while inhibition of cyclooxygenase had no effect. In conclusion, sulfite induces AM to release lipid mediators via phospholipase A{sub 2}- and 5-lipoxygenase-dependent pathways. These mediators activate neutrophils via the receptors for PAF and LTB{sub 4}. (orig.)

  8. Jasmonic Acid Enhances Al-Induced Root Growth Inhibition.

    Science.gov (United States)

    Yang, Zhong-Bao; He, Chunmei; Ma, Yanqi; Herde, Marco; Ding, Zhaojun

    2017-02-01

    Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress. © 2017 American Society of Plant Biologists. All Rights Reserved.

  9. Dehydration-induced release of vasopressin involves activation of hypothalamic histaminergic neurons.

    Science.gov (United States)

    Kjaer, A; Knigge, U; Rouleau, A; Garbarg, M; Warberg, J

    1994-08-01

    The hypothalamic neurotransmitter histamine (HA) induces arginine vasopressin (AVP) release when administered centrally. We studied and characterized this effect of HA with respect to receptor involvement. In addition, we studied the possible role of hypothalamic histaminergic neurons in the mediation of a physiological stimulus (dehydration) for AVP secretion. Intracerebroventricular administration of HA, the H1-receptor agonists 2(3-bromophenyl)HA and 2-thiazolylethylamine, or the H2-receptor agonists amthamine or 4-methyl-HA stimulated AVP secretion. The stimulatory action of HA on AVP was inhibited by pretreatment with the H1-receptor antagonist mepyramine or the H2-receptor antagonist cimetidine. Twenty-four hours of dehydration elevated the plasma osmolality from 298 +/- 3 to 310 +/- 3 mmol/liter and increased the plasma AVP concentration 4-fold. The hypothalamic content of HA and its metabolite tele-methyl-HA was elevated in response to dehydration, indicating an increased synthesis and release of hypothalamic HA. Dehydration-induced AVP secretion was lowered when neuronal HA synthesis was inhibited by the administration of (S) alpha-fluoromethylhistidine or when the animals were pretreated with the H3-receptor agonist R(alpha)methylhistamine, which inhibits the release and synthesis of HA, the H1-receptor antagonists mepyramine and cetirizine, or the H2-receptor antagonists cimetidine and ranitidine. We conclude that HA, via activation of both H1- and H2-receptors, stimulates AVP release and that HA is a physiological regulator of AVP secretion.

  10. Corticotropin-Releasing Factor Mediates Pain-Induced Anxiety through the ERK1/2 Signaling Cascade in Locus Coeruleus Neurons

    Science.gov (United States)

    Borges, Gisela Patrícia; Micó, Juan Antonio; Neto, Fani Lourença

    2015-01-01

    Background: The corticotropin-releasing factor is a stress-related neuropeptide that modulates locus coeruleus activity. As locus coeruleus has been involved in pain and stress-related patologies, we tested whether the pain-induced anxiety is a result of the corticotropin-releasing factor released in the locus coeruleus. Methods: Complete Freund’s adjuvant-induced monoarthritis was used as inflammatory chronic pain model. α-Helical corticotropin-releasing factor receptor antagonist was microinjected into the contralateral locus coeruleus of 4-week-old monoarthritic animals. The nociceptive and anxiety-like behaviors, as well as phosphorylated extracellular signal-regulated kinases 1/2 and corticotropin-releasing factor receptors expression, were quantified in the paraventricular nucleus and locus coeruleus. Results: Monoarthritic rats manifested anxiety and increased phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus and paraventricular nucleus, although the expression of corticotropin-releasing factor receptors was unaltered. α-Helical corticotropin-releasing factor antagonist administration reversed both the anxiogenic-like behavior and the phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus. Conclusions: Pain-induced anxiety is mediated by corticotropin-releasing factor neurotransmission in the locus coeruleus through extracellular signal-regulated kinases 1/2 signaling cascade. PMID:25716783

  11. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  12. The aluminum-U3O8 exothermic reaction

    International Nuclear Information System (INIS)

    Copeland, George L.

    1983-01-01

    The phase assemblage of aluminum-urania is a nonequilibrium mixture and a cermet fuel of this mixture will ultimately tend to change phases. Early studies of this reaction recognized the potentially large energy release accompanying the phase change. This paper reviews the studies of the reaction and concludes that increasing the uranium content to the level necessary for low-enriched fuels will not add significantly to the chemical reaction hazard. (author)

  13. Aluminum and Other Coatings for the Passivation of Tritium Storage Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Korinko, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-16

    Using a highly sensitive residual gas analyzer, the off-gassing of hydrogen, water, and hydrocarbons from surface-treated storage vessels containing deuterium was measured. The experimental storage vessels were compared to a low-off-gassing, electro-polished 304L canister. Alternative vessels were made out of aluminum, or were coatings on 304L steel. Coatings included powder pack aluminide, electro-plated aluminum, powder pack chromide, dense electro-plated chromium, copper plated, and copper plated with 25 and 50 percent nano-diamond. Vessels were loaded with low pressure deuterium to observe exchange with protium or hydrogen as observed with formation of HD and HDO. Off gas of D2O or possible CD4 was observed at mass 20. The main off-gas in all of the studies was H2. The studies indicated that coatings required significant post-coating treatment to reduce off-gas and enhance the permeation barrier from gases likely added during the coating process. Dense packed aluminum coatings needed heating to drive off water. Electro-plated aluminum, chromium and copper coatings appeared to trap hydrogen from the plating process. Nano-diamond appeared to enhance the exchange rate with hydrogen off gas, and its coating process trapped significant amounts of hydrogen. Aluminum caused more protium exchange than chromium-treated surfaces. Aluminum coatings released more water, but pure aluminum vessels released small amounts of hydrogen, little water, and generally performed well. Chromium coating had residual hydrogen that was difficult to totally outgas but otherwise gave low residuals for water and hydrocarbons. Our studies indicated that simple coating of as received 304L metal will not adequately block hydrogen. The base vessel needs to be carefully out-gassed before applying a coating, and the coating process will likely add additional hydrogen that must be removed. Initial simple bake-out and leak checks up to 350° C for a few hours was

  14. Wave-induced release of methane : littoral zones as a source of methane in lakes

    OpenAIRE

    Hofmann, Hilmar; Federwisch, Luisa; Peeters, Frank

    2010-01-01

    This study investigates the role of surface waves and the associated disturbance of littoral sediments for the release and later distribution of dissolved methane in lakes. Surface wave field, wave-induced currents, acoustic backscatter strength, and the concentration and distribution of dissolved methane were measured simultaneously in Lake Constance, Germany. The data indicate that surface waves enhance the release of dissolved methane in the shallow littoral zone via burst-like releases of...

  15. 3D Numerical Modeling of Pile Group Responses to Excavation-Induced Stress Release in Silty Clay

    Directory of Open Access Journals (Sweden)

    M. A. Soomro

    2018-02-01

    Full Text Available Development of underground transportation systems consists of tunnels, basement construction excavations and cut and cover tunnels which may encounter existing pile groups during their construction. Since many previous studies mainly focus on the effects of excavations on single piles, settlement and load transfer mechanism of a pile group subjected to excavation-induced stress release are not well investigated and understood. To address these two issues, three-dimensional coupled-consolidation numerical analysis is conducted by using a hypoplastic model which takes small-strain stiffness into account. A non-linear pile group settlement was induced. This may be attributed to reduction of shaft resistance due to excavation induced stress release, the pile had to settle substantially to further mobilise end-bearing. Compared to the Sp of the pile group, induced settlement of the single pile is larger with similar settlement characteristics. Due to the additional settlement of the pile group, factor of safety for the pile group can be regarded as decreasing from 3.0 to 1.4, based on a displacement-based failure load criterion. Owing to non-uniform stress release, pile group tilted towards the excavation with value of 0.14%. Due to excavation-induced stress release and dragload, head load of rear piles was reduced and transferred to rear piles. This load transfer can increase the axial force in front piles by 94%.

  16. Imaging of dopamine release induced by pharmacologic and nonpharmacologic stimulations

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Technological advances in molecular imaging made it possible to image synaptic neurotransmitter concentration in living human brain. The dopaminergic system has been most intensively studied because of its importance in neurological as well as psychiatric disorders. This paper provides a brief overview of recent progress in imaging studies of dopamine release induced by pharmacologic and nonpharmacologic stimulations.

  17. Fracture Behavior of Adhesive-Bonded Aluminum Foam with Double Cantilever Beam

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Hye-jin; Lee, Sang-kyo; Cho, Chongdu; Choi, Hae-kyu [Inha University, Incheon (Korea, Republic of); Cho, Jae-ung [Kongju University, Gongju (Korea, Republic of)

    2014-05-15

    In this study, closed-cell aluminum foam with an initial crack was investigated to produce an axial load-time graph. Using the 10-kN Landmarks of MTS Corporation, a 15-mm/min velocity of mode I shape was applied to the aluminum foam specimen using the displacement control method. ABAQUS 6.10 simulation was used to model and analyze the identical model in three dimensions under conditions identical to those of the experiment. The energy release rate was calculated on the basis of an axial load-displacement graph obtained from the experiment and a transient image of the crack length, and then an FE model was analyzed on the basis of this fracture energy condition. The relation between load and displacement was discussed; it was found that the aluminum foam deformed somewhat less than the adhesive layer owing to the difference in elastic modulus.

  18. Fracture Behavior of Adhesive-Bonded Aluminum Foam with Double Cantilever Beam

    International Nuclear Information System (INIS)

    Bang, Hye-jin; Lee, Sang-kyo; Cho, Chongdu; Choi, Hae-kyu; Cho, Jae-ung

    2014-01-01

    In this study, closed-cell aluminum foam with an initial crack was investigated to produce an axial load-time graph. Using the 10-kN Landmarks of MTS Corporation, a 15-mm/min velocity of mode I shape was applied to the aluminum foam specimen using the displacement control method. ABAQUS 6.10 simulation was used to model and analyze the identical model in three dimensions under conditions identical to those of the experiment. The energy release rate was calculated on the basis of an axial load-displacement graph obtained from the experiment and a transient image of the crack length, and then an FE model was analyzed on the basis of this fracture energy condition. The relation between load and displacement was discussed; it was found that the aluminum foam deformed somewhat less than the adhesive layer owing to the difference in elastic modulus

  19. Fracture Analysis of MWCNT/Epoxy Nanocomposite Film Deposited on Aluminum Substrate.

    Science.gov (United States)

    Her, Shiuh-Chuan; Chien, Pao-Chu

    2017-04-13

    Multi-walled carbon nanotube (MWCNT) reinforced epoxy films were deposited on an aluminum substrate by a hot-pressing process. Three-point bending tests were performed to determine the Young's modulus of MWCNT reinforced nanocomposite films. Compared to the neat epoxy film, nanocomposite film with 1 wt % of MWCNT exhibits an increase of 21% in the Young's modulus. Four-point-bending tests were conducted to investigate the fracture toughness of the MWCNT/epoxy nanocomposite film deposited on an aluminum substrate with interfacial cracks. Based on the Euler-Bernoulli beam theory, the strain energy in a film/substrate composite beam is derived. The difference of strain energy before and after the propagation of the interfacial crack are calculated, leading to the determination of the strain energy release rate. Experimental test results show that the fracture toughness of the nanocomposite film deposited on the aluminum substrate increases with the increase in the MWCNT content.

  20. Enhanced basophil histamine release and neutrophil chemotactic activity predispose grain dust-induced airway obstruction.

    Science.gov (United States)

    Park, H; Jung, K; Kang, K; Nahm, D; Cho, S; Kim, Y

    1999-04-01

    The pathogenic mechanism of grain dust (GD)-induced occupational asthma (OA) remains unclear. To understand further the mechanism of GD-induced OA. Fifteen employees working in a same GD industry, complaining of work-related respiratory symptoms, were enrolled and were divided into two groups according to the GD-bronchoprovocation test (BPT) result: six positive responders were grouped as group III, nine negative responders as group II and five healthy controls as group I. Serum GD-specific immunoglobulin (Ig)E (sIgE), specific IgG (sIgG) and specific IgG4 (sIgG4) antibodies were detected by enzyme-linked immunosorbent assay. Basophil histamine release was measured by the autofluorometric method, and changes of serum neutrophil chemotactic activity were observed by the Boyden chamber method. For clinical parameters such as degree of airway hyperresponsiveness to methacholine, duration of respiratory symptoms, exposure duration, and prevalences of serum sIgE, sIgG and sIgG4 antibodies, there were no significant differences between group II and III (P > 0.05, respectively). Serum neutrophil chemotactic activity increased significantly at 30 min and decreased at 240 min after the GD-BPT in group III subjects (P 0.05). Basophil histamine release induced by GD was significantly higher in group III than those of group I or group II (P < 0.05, respectively), while minimal release of anti-IgG4 antibodies was noted in all three groups. These results suggest that enhanced basophil histamine release and serum neutrophil chemotactic activity might contribute to the development of GD-induced occupational asthma.

  1. Digital laser printing of aluminum micro-structure on thermally sensitive substrates

    International Nuclear Information System (INIS)

    Zenou, Michael; Sa’ar, Amir; Kotler, Zvi

    2015-01-01

    Aluminum metal is of particular interest for use in printed electronics due to its low cost, high conductivity and low migration rate in electrically driven organic-based devices. However, the high reactivity of Al particles at the nano-scale is a major obstacle in preparing stable inks from this metal. We describe digital printing of aluminum micro-structures by laser-induced forward transfer in a sub-nanosecond pulse regime. We manage to jet highly stable molten aluminum micro-droplets with very low divergence, less than 2 mrad, from 500 nm thin metal donor layers. We analyze the micro-structural properties of the print geometry and their dependence on droplet volume, print gap and spreading. High quality printing of aluminum micro-patterns on plastic and paper is demonstrated. (paper)

  2. Th2-related immune responses by the Brucella abortus cellular antigens, malate dehydrogenase, elongation factor, and arginase.

    Science.gov (United States)

    Im, Young Bin; Shim, Soojin; Park, Woo Bin; Kim, Suk; Yoo, Han Sang

    2017-09-01

    Brucellosis is an important zoonotic disease caused by Brucella species. The disease is difficult to control due to the intracellular survival of the bacterium and the lack of precise understanding of pathogenesis. Despite of continuous researches on the pathogenesis of Brucella spp. infection, there is still question on the pathogenesis, especially earlier immune response in the bacterial infection. Malate dehydrogenase (MDH), elongation factor (Tsf), and arginase (RocF), which showed serological reactivity, were purified after gene cloning, and their immune modulating activities were then analyzed in a murine model. Cytokine production profiles were investigated by stimulating RAW 264.7 cells and naïve splenocytes with the three recombinant proteins. Also, immune responses were analyzed by ELISA and an ELIspot assay after immunizing mice with the three proteins. Only TNF-α was produced in stimulated RAW 264.7 cells, whereas Th1-related cytokines, IFN-γ and IL-2, were induced in naïve splenocytes. In contrast, Th2-type immune response was more strongly induced in antigen-secreting cells in the splenocytes obtained 28 days after immunizing mice with the three proteins, as were IgM and IgG. The induction of Th2-related antibody, IgG1, was higher than the Th1-related antibody, IgG2a, in immunized mice. These results suggest that the three proteins strongly induce Th2-type immune response in vivo, even though Th1-related cytokines were produced in vitro. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Small-angle X-ray scattering studies on the X-ray induced aggregation of ribonnuclease, lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase and serum albumin. A comparison with malate synthase

    International Nuclear Information System (INIS)

    Zipper, P.; Gatterer, H.G.; Schutz, J.; Durchschlag, H.

    1980-01-01

    The X-ray induced aggregation of ribonuclease, lactate dehydrogenase (LDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and serum albumin in aqueous solution was monitored in situ by means of small-angle X-ray scattering. Measurements carried out with ribonuclease, LDH and serum albumin in the absence of dithiothreitol (DTT) and with GAPDH in the presence of 0.2mM DTT established the following series for the rates of aggregation of the proteins under these conditions: ribonuclease >LDH> >GAPDH> serum albumin. Within six hours from the beginning of irradiation (i.e. about the time required for the exposure of one complete scattering curve under the conditions of our experiments) the following increases of R tilde resulted: ribonuclease 9%, LDH 7%, GAPDH 4%, serum albumin <1%. Changes of R tilde exceeding 1% are, of course, too high to be tolerated in conventional scattering experiments. Measurements carried out with LDH and GAPDH in the presence of 2mM DTT established a strong protective effect of DTT against the X-ray induced aggregation of these enzymes. The initial increase of R tilde upon irradiation of LDH and GAPDH in the presence of 2mM DTT was found to be even lower than the increase of R tilde observed when serum albumin was irradiated in the absence of DTT. However, the observed decrease of anti x of LDH and GAPDH at the early stages of irradiation suggested the occurrence of fragmentation of the enzymes as another consequence of radiation damage. This finding is discussed in context with the results from previous scattering experiments and electrophoretic studies on malate synthase. (author)

  4. N-Acetylcysteine Amide Protects Against Oxidative Stress–Induced Microparticle Release From Human Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Carver, Kyle A.; Yang, Dongli

    2016-01-01

    Purpose Oxidative stress is a major factor involved in retinal pigment epithelium (RPE) apoptosis that underlies AMD. Drusen, extracellular lipid- and protein-containing deposits, are strongly associated with the development of AMD. Cell-derived microparticles (MPs) are small membrane-bound vesicles shed from cells. The purpose of this study was to determine if oxidative stress drives MP release from RPE cells, to assess whether these MPs carry membrane complement regulatory proteins (mCRPs: CD46, CD55, and CD59), and to evaluate the effects of a thiol antioxidant on oxidative stress–induced MP release. Methods Retinal pigment epithelium cells isolated from human donor eyes were cultured and treated with hydrogen peroxide (H2O2) to induce oxidative stress. Isolated MPs were fixed for transmission electron microscopy or processed for component analysis by flow cytometry, Western blot analysis, and confocal microscopy. Results Transmission electron microscopy showed that MPs ranged in diameter from 100 to 1000 nm. H2O2 treatment led to time- and dose-dependent elevations in MPs with externalized phosphatidylserine and phosphatidylethanolamine, known markers of MPs. These increases were strongly correlated to RPE apoptosis. Oxidative stress significantly increased the release of mCRP-positive MPs, which were prevented by a thiol antioxidant, N-acetylcysteine amide (NACA). Conclusions This is the first evidence that oxidative stress induces cultured human RPE cells to release MPs that carry mCRPs on their surface. The levels of released MPs are strongly correlated with RPE apoptosis. N-acetylcysteine amide prevents oxidative stress–induced effects. Our findings indicate that oxidative stress reduces mCRPs on the RPE surface through releasing MPs. PMID:26842754

  5. Improved wound healing in pressure-induced decubitus ulcer with controlled release of basic fibroblast growth factor

    International Nuclear Information System (INIS)

    Jiang Wei; Wang Hailun; Jin Faguang; Yu Chunyan; Chu Dongling; Wang Lin; Lu Xian

    2008-01-01

    The purpose was to evaluate the efficacy of the wound dressing containing basic fibroblast growth factor (bFGF)-loaded microspheres on promoting healing in pressure-induced decubitus ulcer. In this study, the pressure-induced ulcer in swine was used as a model to demonstrate the hypothesis that controlled release of bFGF has the potential to provide optimal healing milieu for chronic wounds in the repair process. Average size of the microspheres was 14.36 ± 3.56 μm and the network gelatin sponges were characterized with an average pore size of 80-160 μm. Both the in vitro release efficiency and the protein bioactivity revealed that bFGF was released from the microspheres in a controlled manner and it was biologically active as assessed by its ability to induce the proliferation of fibroblasts. Pressure-induced ulcer was created at 500 g/cm 2 pressure loaded on swine dorsal skin 12 h daily for 2 consecutive days. After removal of the pressure load, the gelatin sponge containing bFGF gelatin microspheres or bFGF in solution was implanted into the wound. Swine were sacrificed at 7, 14, and 21 days after implantation, and a full-thickness biopsy was taken and stained for histological analysis. It was observed that controlled release of bFGF provided an accelerated recovery in the wound areas. Histological investigations showed that the dressings were biocompatible and had capability of proliferating fibroblasts and inducing neovascularisation. The present study implied the clinical potential of gelatin sponge with bFGF microspheres to promote the healing in pressure-induced decubitus ulcer

  6. Improved wound healing in pressure-induced decubitus ulcer with controlled release of basic fibroblast growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Wei [Department of Respiratory Diseases, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Wang Hailun [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Jin Faguang [Department of Respiratory Diseases, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)], E-mail: nidewenzhang@163.com; Yu Chunyan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Chu Dongling [Department of Respiratory Diseases, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Wang Lin [Department of Internal Medicine, 316 Hospital of PLA, Beijing 100093 (China); Lu Xian [93942 Unit Hospital of PLA, Xianyang 710012 (China)

    2008-07-14

    The purpose was to evaluate the efficacy of the wound dressing containing basic fibroblast growth factor (bFGF)-loaded microspheres on promoting healing in pressure-induced decubitus ulcer. In this study, the pressure-induced ulcer in swine was used as a model to demonstrate the hypothesis that controlled release of bFGF has the potential to provide optimal healing milieu for chronic wounds in the repair process. Average size of the microspheres was 14.36 {+-} 3.56 {mu}m and the network gelatin sponges were characterized with an average pore size of 80-160 {mu}m. Both the in vitro release efficiency and the protein bioactivity revealed that bFGF was released from the microspheres in a controlled manner and it was biologically active as assessed by its ability to induce the proliferation of fibroblasts. Pressure-induced ulcer was created at 500 g/cm{sup 2} pressure loaded on swine dorsal skin 12 h daily for 2 consecutive days. After removal of the pressure load, the gelatin sponge containing bFGF gelatin microspheres or bFGF in solution was implanted into the wound. Swine were sacrificed at 7, 14, and 21 days after implantation, and a full-thickness biopsy was taken and stained for histological analysis. It was observed that controlled release of bFGF provided an accelerated recovery in the wound areas. Histological investigations showed that the dressings were biocompatible and had capability of proliferating fibroblasts and inducing neovascularisation. The present study implied the clinical potential of gelatin sponge with bFGF microspheres to promote the healing in pressure-induced decubitus ulcer.

  7. Vinpocetine inhibits glutamate release induced by the convulsive agent 4-aminopyridine more potently than several antiepileptic drugs.

    Science.gov (United States)

    Sitges, M; Sanchez-Tafolla, B M; Chiu, L M; Aldana, B I; Guarneros, A

    2011-10-01

    4-Aminopyridine (4-AP) is a convulsing agent that in vivo preferentially releases Glu, the most important excitatory amino acid neurotransmitter in the brain. Here the ionic dependence of 4-AP-induced Glu release and the effects of several of the most common antiepileptic drugs (AEDs) and of the new potential AED, vinpocetine on 4-AP-induced Glu release were characterized in hippocampus isolated nerve endings pre-loaded with labelled Glu ([3H]Glu). 4-AP-induced [3H]Glu release was composed by a tetrodotoxin (TTX) sensitive and external Ca2+ dependent fraction and a TTX insensitive fraction that was sensitive to the excitatory amino acid transporter inhibitor, TBOA. The AEDs: carbamazepine, phenytoin, lamotrigine and oxcarbazepine at the highest dose tested only reduced [3H]Glu release to 4-AP between 50-60%, and topiramate was ineffective. Vinpocetine at a much lower concentration than the above AEDs, abolished [3H]Glu release to 4-AP. We conclude that the decrease in [3H]Glu release linked to the direct blockade of presynaptic Na+ channels, may importantly contribute to the anticonvulsant actions of all the drugs tested here (except topiramate); and that the significantly greater vinpocetine effect in magnitude and potency on [3H]Glu release when excitability is exacerbated like during seizures, may involve the increase additionally exerted by vinpocetine in some K+ channels permeability. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Exhaustive Exercise-induced Oxidative Stress Alteration of Erythrocyte Oxygen Release Capacity.

    Science.gov (United States)

    Xiong, Yanlian; Xiong, Yanlei; Wang, Yueming; Zhao, Yajin; Li, Yaojin; Ren, Yang; Wang, Ruofeng; Zhao, Mingzi; Hao, Yitong; Liu, Haibei; Wang, Xiang

    2018-05-24

    The aim of the present study is to explore the effect of exhaustive running exercise (ERE) in the oxygen release capacity of rat erythrocytes. Rats were divided into sedentary control (C), moderate running exercise (MRE) and exhaustive running exercise groups. The thermodynamics and kinetics properties of the erythrocyte oxygen release process of different groups were tested. We also determined the degree of band-3 oxidative and phosphorylation, anion transport activity and carbonic anhydrase isoform II(CAII) activity. Biochemical studies suggested that exhaustive running significantly increased oxidative injury parameters in TBARS and methaemoglobin levels. Furthermore, exhaustive running significantly decreased anion transport activity and carbonic anhydrase isoform II(CAII) activity. Thermodynamic analysis indicated that erythrocytes oxygen release ability also significantly increased due to elevated 2,3-DPG level after exhaustive running. Kinetic analysis indicated that exhaustive running resulted in significantly decreased T50 value. We presented evidence that exhaustive running remarkably impacted thermodynamics and kinetics properties of RBCs oxygen release. In addition, changes in 2,3-DPG levels and band-3 oxidation and phosphorylation could be the driving force for exhaustive running induced alterations in erythrocytes oxygen release thermodynamics and kinetics properties.

  9. Aluminum recovery as a product with high added value using aluminum hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2013-01-01

    Highlights: • Granular and compact aluminum dross were physically and chemically characterized. • A relationship between density, porosity and metal content from dross was established. • Chemical reactions involving aluminum in landfill and negative consequences are shown. • A processing method for aluminum recovering from aluminum dross was developed. • Aluminum was recovered as an value product with high grade purity such as alumina. -- Abstract: The samples of hazardous aluminum solid waste such as dross were physically and chemically characterized. A relationship between density, porosity and metal content of dross was established. The paper also examines the chemical reactions involving aluminum dross in landfill and the negative consequences. To avoid environmental problems and to recovery the aluminum, a processing method was developed and aluminum was recovered as an added value product such as alumina. This method refers to a process at low temperature, in more stages: acid leaching, purification, precipitation and calcination. At the end of this process aluminum was extracted, first as Al 3+ soluble ions and final as alumina product. The composition of the aluminum dross and alumina powder obtained were measured by applying the leaching tests, using atomic absorption spectrometry (AAS) and chemical analysis. The mineralogical composition of aluminum dross samples and alumina product were determined by X-ray diffraction (XRD) and the morphological characterization was performed by scanning electron microscopy (SEM). The method presented in this work allows the use of hazardous aluminum solid waste as raw material to recover an important fraction from soluble aluminum content as an added value product, alumina, with high grade purity (99.28%)

  10. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release

    Science.gov (United States)

    Zorov, Dmitry B.; Juhaszova, Magdalena; Sollott, Steven J.

    2014-01-01

    Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca2+, etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca2+). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo. PMID:24987008

  11. Radiation effects in crystalline SiO2: the role of aluminum

    International Nuclear Information System (INIS)

    Halliburton, L.E.; Koumvakalis, N.; Markes, M.E.; Martin, J.J.

    1981-01-01

    Electron spin resonance (ESR) and infrared absorption (IR) experiments have provided information about the role of aluminum in the radiation response of commercially available high-quality synthetic quartz. Samples obtained from two separate sources were investigated, and identical radiation responses were found for the two materials. Interstitial ions such as H + , Li + , and Na + as well as radiation-induced holes trapped at oxygen ions act as charge compensators for the ever-present substitutional aluminum ions. Usually the charge compensator is located adjacent to the aluminum, and this gives rise to Al-OH - , Al-Li + , Al-Na + , and [Al/sub e/ + ] 0 centers. Absolute concentrations of these compensated aluminum centers have been determined as a function of irradiation and annealing temperature for a variety of samples, both swept and unswept. The various treatments simply exchange one type of compensator for another at the aluminum sites, and within experimental error, the sum of the aluminum centers remains constant for a given sample. This direct accountability of all the aluminum ions in hydrogen-swept samples strongly suggests that the 3306- and 3367-cm -1 infrared bands are associated with the Al-OH - center. Also, the ESR and IR results show that the aluminum content of randomly selected bars of high-quality quartz can vary by an order of magnitude

  12. Hypoxia-induced angiogenesis is increased by the controlled release of deferoxiamine from gelatin hydrogels.

    Science.gov (United States)

    Saito, Takashi; Tabata, Yasuhiko

    2014-08-01

    The objective of this study is to design biodegradable hydrogels for the controlled release of deferoxiamine (DFO) and evaluate their biological activity. When the DFO was added to human umbilical vein endothelial cells cultured in 5.0% O2, the level of hypoxia-inducible factor-1α and vascular endothelial growth factor significantly increased compared with that without DFO. The expression of angiogenesis-related genes was accordingly increased by the DFO addition. An aqueous solution of mixed gelatin and DFO was freeze-dried, and dehydrothermally treated at 140°C for 24h to prepare a gelatin hydrogel incorporating DFO. In the release test with phosphate-buffered saline solution (PBS) at 37°C, an initial DFO release of 60% was observed, followed by no release. When placed in PBS containing collagenase, the hydrogel was enzymatically degraded with time, and consequently released DFO in a degradation-dependent manner. After the hydrogel incorporating DFO was injected intramuscularly into a mouse model of hind limb ischemia, the number of new blood vessels formed was significantly higher than that with free DFO and DFO-free hydrogel. It is concluded that the DFO-containing hydrogel shows promising for inducing angiogenesis locally. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Influence of aluminum on growth, mineral nutrition and organic acid exudation of rambutan (Nephelium lappaceum)

    Science.gov (United States)

    A randomized complete block design experiment with six aluminum (Al) concentrations was carried out to evaluate the effect of aluminum on nutrient content, plant growth, dry matter production and Al-induced organic acid exudation in rambutan (Nephelium lappaceum). One rambutan cultivar was grown in...

  14. Depolarization-induced release of amino acids from the vestibular nuclear complex.

    Science.gov (United States)

    Godfrey, Donald A; Sun, Yizhe; Frisch, Christopher; Godfrey, Matthew A; Rubin, Allan M

    2012-04-01

    There is evidence from immunohistochemistry, quantitative microchemistry, and pharmacology for several amino acids as neurotransmitters in the vestibular nuclear complex (VNC), including glutamate, γ-aminobutyrate (GABA), and glycine. However, evidence from measurements of release has been limited. The purpose of this study was to measure depolarization-stimulated calcium-dependent release of amino acids from the VNC in brain slices. Coronal slices containing predominantly the VNC were prepared from rats and perfused with artificial cerebrospinal fluid (ACSF) in an interface chamber. Fluid was collected from the chamber just downstream from the VNC using a microsiphon. Depolarization was induced by 50 mM potassium in either control calcium and magnesium concentrations or reduced calcium and elevated magnesium. Amino acid concentrations in effluent fluid were measured by high performance liquid chromatography. Glutamate release increased fivefold during depolarization in control calcium concentration and twofold in low calcium/high magnesium. These same ratios were 6 and 1.5 for GABA, 2 and 1.3 for glycine, and 2 and 1.5 for aspartate. Differences between release in control and low calcium/high magnesium ACSF were statistically significant for glutamate, GABA, and glycine. Glutamine release decreased during and after depolarization, and taurine release slowly increased. No evidence for calcium-dependent release was found for serine, glutamine, alanine, threonine, arginine, taurine, or tyrosine. Our results support glutamate and GABA as major neurotransmitters in the VNC. They also support glycine as a neurotransmitter and some function for taurine.

  15. Antioxidant potential properties of mushroom extract (Agaricus bisporus) against aluminum-induced neurotoxicity in rat brain.

    Science.gov (United States)

    Waly, Mostafa I; Guizani, Nejib

    2014-09-01

    Aluminum (Al) is an environmental toxin that induces oxidative stress in neuronal cells. Mushroom cultivar extract (MCE) acted as a potent antioxidant agent and protects against cellular oxidative stress in human cultured neuronal cells. This study aimed to investigate the neuroprotective effect of MCE against Al-induced neurotoxicity in rat brain. Forty Sprague-Dawley rats were divided into 4 groups (10 rats per group), control group, MCE-fed group, Al-administered group and MCE/Al-treated group. Animals were continuously fed ad-libitum their specific diets for 4 weeks. At the end of the experiment, all rats were sacrificed and the brain tissues were homogenized and examined for biochemical measurements of neurocellular oxidative stress indices [glutathione (GSH), Total Antioxidant Capacity (TAC), antioxidant enzymes and oxidized dichlorofluorescein (DCF)]. Al-administration caused inhibition of antioxidant enzymes and a significant decrease in GSH and TAC levels, meanwhile it positively increased cellular oxidized DCF level, as well as Al concentration in brain tissues. Feeding animals with MCE had completely offset the Al-induced oxidative stress and significantly restrict the Al accumulation in brain tissues of Al-administered rats. The results obtained suggest that MCE acted as a potent dietary antioxidant and protects against Al-mediated neurotoxicity, by abrogating neuronal oxidative stress.

  16. Corrosion issues in the long term storage of aluminum-clad spent nuclear fuels

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Peacock, H.B. Jr.; Sindelar, R.L.; Iyer, N.C.

    1996-01-01

    Approximately 8% of the spent nuclear fuel owned by the US Department of Energy is clad with aluminum alloys. The spent fuel must be either reprocessed or temporarily stored in wet or dry storage systems until a decision is made on final disposition in a repository. There are corrosion issues associated with the aluminum cladding regardless of the disposition pathway selected. This paper discusses those issues and provides data and analysis to demonstrate that control of corrosion induced degradation in aluminum clad spent fuels can be achieved through relatively simple engineering practices

  17. Different serotonin receptor types participate in 5-hydroxytryptophan-induced gonadotropins and prolactin release in the female infantile rat.

    Science.gov (United States)

    Lacau-Mengido, I M; Libertun, C; Becú-Villalobos, D

    1996-05-01

    Serotonin (5-HT) receptors can be classified into at least three, possibly up to seven, classes of receptors. They comprise the 5-HT1, 5-HT2, and 5-HT3 classes, the "uncloned' 5-HT4 receptor and the recombinant receptors 5-ht5, 5-ht6 and 5-ht7. We investigated the role of different serotonin receptor types in a neuroendocrine response to the activation of the serotonergic system. Female immature rats were chosen as an experimental model as it has been shown that during the 3rd week of life, and not at later developmental stages, 5-hydroxytryptophan (5-HTP, a serotonin precursor) induces gonadotropin release in females and not in males. Besides, at this age, serotonin releases prolactin in both sexes. 5-HTP (50 mg/kg) released prolactin, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) as expected. Ketanserin (5-HT2A antagonist) and methysergide (5-HT2C antagonist) blocked 5-HTP-induced prolactin release, but did not block the LH or FSH responses. Ondansetron (5-HT3 receptor antagonist) did not modify prolactin response to 5-HTP, whereas it blocked 5-HTP-induced LH and FSH release. Propranolol (5-HT1 and beta-adrenergic antagonist) blocked prolactin, LH and FSH release induced by 5-HTP. The 5-HT2C agonist 1-(3-chlorophenyl)piperazine dihydrochloride released prolactin, without modifying LH or FSH release. Methyl-quipazine and phenylbiguanide (5-HT3 agonists) increased both LH and FSH levels, without altering prolactin secretion. The present experiments indicate that serotonin acting at the 5-HT3 receptor mediates LH and FSH release in infantile female rats, whereas 5-HT2C or 2A receptor types participate in the release of prolactin at this age. 5-HT1 receptor type may be involved in the release of the three hormones, though a beta-adrenergic component of the response cannot be discarded.

  18. Selective attenuation of norepinephrine release and stress-induced heart rate increase by partial adenosine A1 agonism.

    Directory of Open Access Journals (Sweden)

    Lorenz Bott-Flügel

    Full Text Available The release of the neurotransmitter norepinephrine (NE is modulated by presynaptic adenosine receptors. In the present study we investigated the effect of a partial activation of this feedback mechanism. We hypothesized that partial agonism would have differential effects on NE release in isolated hearts as well as on heart rate in vivo depending on the genetic background and baseline sympathetic activity. In isolated perfused hearts of Wistar and Spontaneously Hypertensive Rats (SHR, NE release was induced by electrical stimulation under control conditions (S1, and with capadenoson 6 · 10(-8 M (30 µg/l, 6 · 10(-7 M (300 µg/l or 2-chloro-N(6-cyclopentyladenosine (CCPA 10(-6 M (S2. Under control conditions (S1, NE release was significantly higher in SHR hearts compared to Wistar (766+/-87 pmol/g vs. 173+/-18 pmol/g, p<0.01. Capadenoson led to a concentration-dependent decrease of the stimulation-induced NE release in SHR (S2/S1  =  0.90 ± 0.08 with capadenoson 6 · 10(-8 M, 0.54 ± 0.02 with 6 · 10(-7 M, but not in Wistar hearts (S2/S1  =  1.05 ± 0.12 with 6 · 10(-8 M, 1.03 ± 0.09 with 6 · 10(-7 M. CCPA reduced NE release to a similar degree in hearts from both strains. In vivo capadenoson did not alter resting heart rate in Wistar rats or SHR. Restraint stress induced a significantly greater increase of heart rate in SHR than in Wistar rats. Capadenoson blunted this stress-induced tachycardia by 45% in SHR, but not in Wistar rats. Using a [(35S]GTPγS assay we demonstrated that capadenoson is a partial agonist compared to the full agonist CCPA (74+/-2% A(1-receptor stimulation. These results suggest that partial adenosine A(1-agonism dampens stress-induced tachycardia selectively in rats susceptible to strong increases in sympathetic activity, most likely due to a presynaptic attenuation of NE release.

  19. Quantitative analysis for the determination of aluminum percentage and detonation performance of aluminized plastic bonded explosives by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Rezaei, A. H.; Keshavarz, M. H.; Kavosh Tehrani, M.; Darbani, S. M. R.

    2018-06-01

    The aluminized plastic-bonded explosive (PBX) is a composite material in which solid explosive particles are dispersed in a polymer matrix, which includes three major components, i.e. polymeric binder, metal fuel (aluminum) and nitramine explosive. This work introduces a new method on the basis of the laser-induced breakdown spectroscopy (LIBS) technique in air and argon atmospheres to investigate the determination of aluminum content and detonation performance of aluminized PBXs. Plasma emissions of aluminized PBXs are recorded where atomic lines of Al, C and H as well as molecular bands of AlO and CN are identified. The experimental results demonstrate that a good discrimination and separation between the aluminized PBXs is possible using LIBS and principle component analysis, although they have similar atomic composition. Relative intensity of the AlO/Al is used to determine aluminum percentage of the aluminized PBXs. The obtained quantitative calibration curve using the relative intensity of the AlO/Al is better than the resulting calibration curve using only the intensity of Al. By using the LIBS method and the measured intensity ratio of CN/C, an Al content of 15% is found to be the optimum value in terms of velocity of detonation of the RDX/Al/HTPB standard samples.

  20. Preparation of three-dimensional shaped aluminum alloy foam by two-step foaming

    International Nuclear Information System (INIS)

    Shang, J.T.; Xuming, Chu; Deping, He

    2008-01-01

    A novel method, named two-step foaming, was investigated to prepare three-dimensional shaped aluminum alloy foam used in car industry, spaceflight, packaging and related areas. Calculations of thermal decomposition kinetics of titanium hydride showed that there is a considerable amount of hydrogen releasing when the titanium hydride is heated at a relatively high temperature after heated at a lower temperature. The hydrogen mass to sustain aluminum alloy foam, having a high porosity, was also estimated by calculations. Calculations indicated that as-received titanium hydride without any pre-treatment can be used as foaming agents in two-step foaming. The processes of two-step foaming, including preparing precursors and baking, were also studied by experiments. Results showed that, low titanium hydride dispersion temperature, long titanium hydride dispersion time and low precursors porosity are beneficial to prepare three-dimensional shaped aluminum alloy foams with uniform pores

  1. Characterization of chitosan-magnesium aluminum silicate nanocomposite films for buccal delivery of nicotine

    DEFF Research Database (Denmark)

    Pongjanyakul, Thaned; Khunawattanakul, Wanwisa; Strachan, Clare J

    2013-01-01

    The objective of this study was to prepare and characterize chitosan-magnesium aluminum silicate (CS-MAS) nanocomposite films as a buccal delivery system for nicotine (NCT). The effects of the CS-MAS ratio on the physicochemical properties, release and permeation, as well as on the mucoadhesive...

  2. D-malate production by permeabilized Pseudomonas pseudoalcaligenes; optimization of conversion and biocatalyst productivity.

    Science.gov (United States)

    Michielsen, M J; Frielink, C; Wijffels, R H; Tramper, J; Beeftink, H H

    2000-04-14

    For the development of a continuous process for the production of solid D-malate from a Ca-maleate suspension by permeabilized Pseudomonas pseudoalcaligenes, it is important to understand the effect of appropriate process parameters on the stability and activity of the biocatalyst. Previously, we quantified the effect of product (D-malate2 -) concentration on both the first-order biocatalyst inactivation rate and on the biocatalytic conversion rate. The effects of the remaining process parameters (ionic strength, and substrate and Ca2 + concentration) on biocatalyst activity are reported here. At (common) ionic strengths below 2 M, biocatalyst activity was unaffected. At high substrate concentrations, inhibition occurred. Ca2+ concentration did not affect biocatalyst activity. The kinetic parameters (both for conversion and inactivation) were determined as a function of temperature by fitting the complete kinetic model, featuring substrate inhibition, competitive product inhibition and first-order irreversible biocatalyst inactivation, at different temperatures simultaneously through three extended data sets of substrate concentration versus time. Temperature affected both the conversion and inactivation parameters. The final model was used to calculate the substrate and biocatalyst costs per mmol of product in a continuous system with biocatalyst replenishment and biocatalyst recycling. Despite the effect of temperature on each kinetic parameter separately, the overall effect of temperature on the costs was found to be negligible (between 293 and 308 K). Within pertinent ranges, the sum of the substrate and biocatalyst costs per mmol of product was calculated to decrease with the influent substrate concentration and the residence time. The sum of the costs showed a minimum as a function of the influent biocatalyst concentration.

  3. Experimental investigation of cavitation induced air release

    Science.gov (United States)

    Kowalski, Karoline; Pollak, Stefan; Hussong, Jeanette

    Variations in cross-sectional areas may lead to pressure drops below a critical value, such that cavitation and air release are provoked in hydraulic systems. Due to a relatively slow dissolution of gas bubbles, the performance of hydraulic systems will be affected on long time scales by the gas phase. Therefore predictions of air production rates are desirable to describe the system characteristics. Existing investigations on generic geometries such as micro-orifice flows show an outgassing process due to hydrodynamic cavitation which takes place on time scales far shorter than diffusion processes. The aim of the present investigation is to find a correlation between global, hydrodynamic flow characteristics and cavitation induced undissolved gas fractions generated behind generic flow constrictions such as an orifice or venturi tube. Experimental investigations are realised in a cavitation channel that enables an independent adjustment of the pressure level upstream and downstream of the orifice. Released air fractions are determined by means of shadowgraphy imaging. First results indicate that an increased cavitation activity leads to a rapid increase in undissolved gas volume only in the choking regime. The frequency distribution of generated gas bubble size seems to depend only indirectly on the cavitation intensity driven by an increase of downstream coalescence events due to a more densely populated bubbly flow.

  4. Fractalkine is a "find-me" signal released by neurons undergoing ethanol-induced apoptosis.

    Science.gov (United States)

    Sokolowski, Jennifer D; Chabanon-Hicks, Chloe N; Han, Claudia Z; Heffron, Daniel S; Mandell, James W

    2014-01-01

    Apoptotic neurons generated during normal brain development or secondary to pathologic insults are efficiently cleared from the central nervous system. Several soluble factors, including nucleotides, cytokines, and chemokines are released from injured neurons, signaling microglia to find and clear debris. One such chemokine that serves as a neuronal-microglial communication factor is fractalkine, with roles demonstrated in several models of adult neurological disorders. Lacking, however, are studies investigating roles for fractalkine in perinatal brain injury, an important clinical problem with no effective therapies. We used a well-characterized mouse model of ethanol-induced apoptosis to assess the role of fractalkine in neuronal-microglial signaling. Quantification of apoptotic debris in fractalkine-knockout (KO) and CX3CR1-KO mice following ethanol treatment revealed increased apoptotic bodies compared to wild type mice. Ethanol-induced injury led to release of soluble, extracellular fractalkine. The extracellular media harvested from apoptotic brains induces microglial migration in a fractalkine-dependent manner that is prevented by neutralization of fractalkine with a blocking antibody or by deficiency in the receptor, CX3CR1. This suggests fractalkine acts as a "find-me" signal, recruiting microglial processes toward apoptotic cells to promote their clearance. Next, we aimed to determine whether there are downstream alterations in cytokine gene expression due to fractalkine signaling. We examined mRNA expression in fractalkine-KO and CX3CR1-KO mice after alcohol-induced apoptosis and found differences in cytokine production in the brains of these KOs by 6 h after ethanol treatment. Collectively, this suggests that fractalkine acts as a "find me" signal released by apoptotic neurons, and subsequently plays a critical role in modulating both clearance and inflammatory cytokine gene expression after ethanol-induced apoptosis.

  5. Fractalkine is a "find-me" signal released by neurons undergoing ethanol-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Jennifer D Sokolowski

    2014-11-01

    Full Text Available Apoptotic neurons generated during normal brain development or secondary to pathologic insults are efficiently cleared from the central nervous system. Several soluble factors, including nucleotides, cytokines, and chemokines are released from injured neurons, signaling microglia to find and clear debris. One such chemokine that serves as a neuronal-microglial communication factor is fractalkine, with roles demonstrated in several models of adult neurological disorders. Lacking, however, are studies investigating roles for fractalkine in perinatal brain injury, an important clinical problem with no effective therapies. We used a well-characterized mouse model of ethanol-induced apoptosis to assess the role of fractalkine in neuronal-microglial signaling. Quantification of apoptotic debris in fractalkine-knockout and CX3CR1-knockout mice following ethanol treatment revealed increased apoptotic bodies compared to wild type mice. Ethanol-induced injury led to release of soluble, extracellular fractalkine. The extracellular media harvested from apoptotic brains induces microglial migration in a fractalkine-dependent manner that is prevented by neutralization of fractalkine with a blocking antibody or by deficiency in the receptor, CX3CR1. This suggests fractalkine acts as a ‘find-me’ signal, recruiting microglial processes toward apoptotic cells to promote their clearance. Next, we aimed to determine whether there are downstream alterations in cytokine gene expression due to fractalkine signaling. We examined mRNA expression in fractalkine-knockout and CX3CR1-knockout mice after alcohol-induced apoptosis and found differences in cytokine production in the brains of these knockouts by 6 hours after ethanol treatment. Collectively, this suggests that fractalkine acts as a ‘find me’ signal released by apoptotic neurons, and subsequently plays a critical role in modulating both phagocytic clearance and inflammatory cytokine gene expression after

  6. Aspects of dopamine and acetylcholine release induced by glutamate receptors

    International Nuclear Information System (INIS)

    Paes, Paulo Cesar de Arruda

    2002-01-01

    The basal ganglia play an important role in the motor control of rats and humans. This control involves different neurotransmitters and the mutual control of these key elements has been subject to several studies. In this work we determined the role of glutamate on the release of radioactively labelled dopamine and acetylcholine from chopped striatal tissue in vitro. The values of Effective Concentration 50% for glutamate, NMDA, kainic, quisqualic acids and AMPA on the release of dopamine and acetylcholine were obtained. The inhibitory effects of magnesium, tetrodotoxin, MK-801, AP5 and MCPG, as well as the effects of glycin were evaluated. The results suggested that dopamine is influenced by the NMDA type glutamate receptor while acetylcholine seems to be influenced by NMDA, kainate and AMPA receptors. Tetrodotoxin experiments suggested that kainate receptors are both present in cholinergic terminals and cell bodies while AMPA and NMDA receptors are preferentially distributed in cell bodies. Magnesium effectively blocked the NMDA stimulation and unexpectedly also AMPA- and quisqualate-induced acetylcholine release. The latter could not be blocked by MCPG ruling out the participation of methabotropic receptors. MK-801 also blocked NMDA-receptors. Results point out the importance of the glutamic acid control of dopamine and acetylcholine release in striatal tissue. (author)

  7. Bronchoconstriction Induces TGF-β Release and Airway Remodelling in Guinea Pig Lung Slices.

    Directory of Open Access Journals (Sweden)

    Tjitske A Oenema

    Full Text Available Airway remodelling, including smooth muscle remodelling, is a primary cause of airflow limitation in asthma. Recent evidence links bronchoconstriction to airway remodelling in asthma. The mechanisms involved are poorly understood. A possible player is the multifunctional cytokine TGF-β, which plays an important role in airway remodelling. Guinea pig lung slices were used as an in vitro model to investigate mechanisms involved in bronchoconstriction-induced airway remodelling. To address this aim, mechanical effects of bronchoconstricting stimuli on contractile protein expression and TGF-β release were investigated. Lung slices were viable for at least 48 h. Both methacholine and TGF-β1 augmented the expression of contractile proteins (sm-α-actin, sm-myosin, calponin after 48 h. Confocal fluorescence microscopy showed that increased sm-myosin expression was enhanced in the peripheral airways and the central airways. Mechanistic studies demonstrated that methacholine-induced bronchoconstriction mediated the release of biologically active TGF-β, which caused the increased contractile protein expression, as inhibition of actin polymerization (latrunculin A or TGF-β receptor kinase (SB431542 prevented the methacholine effects, whereas other bronchoconstricting agents (histamine and KCl mimicked the effects of methacholine. Collectively, bronchoconstriction promotes the release of TGF-β, which induces airway smooth muscle remodelling. This study shows that lung slices are a useful in vitro model to study mechanisms involved in airway remodelling.

  8. Differential response to dexamethasone on the TXB2 release in guinea-pig alveolar macrophages induced by zymosan and cytokines

    Directory of Open Access Journals (Sweden)

    M. E. Salgueiro

    1997-01-01

    Full Text Available Glucocorticosteroids reduce the production of inflammatory mediators but this effect may depend on the stimulus. We have compared the time course of the effect of dexamethasone on the thromboxane B2 (TXB2 release induced by cytokine stimulation and zymosan in guinea-pig alveolar macrophages. Interleukin-1β (IL-1β, tumour necrosis factor-α (TNF-α and opsonized zymosan (OZ, all stimulate TXB2 release. High concentrations of dexamethasone (1–10 μM inhibit the TXB2 production induced by both cytokines and OZ, but the time course of this response is different. Four hours of incubation with dexamethasone reduce the basal TXB2 release and that induced by IL-1β and TNF-α, but do not modify the TXB2 release induced by OZ. However, this stimulus was reduced after 24 h incubation. Our results suggest that the antiinflammatory activity of glucocorticosteroids shows some dependence on stimulus and, therefore, may have more than one mechanism involved.

  9. Effect of sucralfate and its components on taurocholate-induced damage to rat gastric mucosal cells in tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Romano, M.; Razandi, M.; Ivey, K.J. (Long Beach VA Medical Center, CA (USA))

    1990-04-01

    The present study evaluated the effect of sucralfate and its components, sucrose octasulfate and aluminum hydroxide, on: (1) damage to rat cultured gastric mucosal cells induced by sodium taurocholate in a neutral environment and in conditions independent of systemic factors, (2) prostaglandin E2 and on 6-keto prostaglandin F1 alpha release by cultured cells, and (3) sulfhydryl content of cultured cells. Cell damage was quantitated by chromium-51 release assay. Prostaglandin E2 and 6-keto prostaglandin F1 alpha were measured by radioimmunoassay. Total sulfhydryl content of cultured cells was determined calorimetrically. Microscopically, sucralfate was found to adhere tightly to epithelial cell surfaces despite frequent washings. Sucralfate 2 mg/ml and 5 mg/ml significantly decreased taurocholate-induced damage, reducing taurocholate-induced specific 51Cr release by 11.8 points (equal to 29% decrease in cell damage, P less than 0.01) and 22.9 points (equal to 56% decrease in cell damage, P less than 0.001), respectively. Sucrose octasulfate and aluminum hydroxide did not exert significant protection against damage induced by sodium taurocholate. The protective effect of sucralfate was not prevented by indomethacin, nor was it counteracted by the sulfhydryl blocker, iodoacetamide. Sucralfate, but not its components, significantly and dose-dependently stimulated prostaglandin E2 (r = 0.94, P less than 0.05) and 6-keto prostaglandin F1 alpha (r = 0.89, P less than 0.05) production by cultured cells. Neither sucralfate nor its components affected sulfhydryl content of cultured cells. In conclusion, sucralfate, but not its components, (1) protects rat gastric mucosal cells against taurocholate-induced damage in conditions independent of systemic factors and in a neutral environment and (2) significantly stimulates prostaglandin production by cultured cells.

  10. Effect of sucralfate and its components on taurocholate-induced damage to rat gastric mucosal cells in tissue culture

    International Nuclear Information System (INIS)

    Romano, M.; Razandi, M.; Ivey, K.J.

    1990-01-01

    The present study evaluated the effect of sucralfate and its components, sucrose octasulfate and aluminum hydroxide, on: (1) damage to rat cultured gastric mucosal cells induced by sodium taurocholate in a neutral environment and in conditions independent of systemic factors, (2) prostaglandin E2 and on 6-keto prostaglandin F1 alpha release by cultured cells, and (3) sulfhydryl content of cultured cells. Cell damage was quantitated by chromium-51 release assay. Prostaglandin E2 and 6-keto prostaglandin F1 alpha were measured by radioimmunoassay. Total sulfhydryl content of cultured cells was determined calorimetrically. Microscopically, sucralfate was found to adhere tightly to epithelial cell surfaces despite frequent washings. Sucralfate 2 mg/ml and 5 mg/ml significantly decreased taurocholate-induced damage, reducing taurocholate-induced specific 51Cr release by 11.8 points (equal to 29% decrease in cell damage, P less than 0.01) and 22.9 points (equal to 56% decrease in cell damage, P less than 0.001), respectively. Sucrose octasulfate and aluminum hydroxide did not exert significant protection against damage induced by sodium taurocholate. The protective effect of sucralfate was not prevented by indomethacin, nor was it counteracted by the sulfhydryl blocker, iodoacetamide. Sucralfate, but not its components, significantly and dose-dependently stimulated prostaglandin E2 (r = 0.94, P less than 0.05) and 6-keto prostaglandin F1 alpha (r = 0.89, P less than 0.05) production by cultured cells. Neither sucralfate nor its components affected sulfhydryl content of cultured cells. In conclusion, sucralfate, but not its components, (1) protects rat gastric mucosal cells against taurocholate-induced damage in conditions independent of systemic factors and in a neutral environment and (2) significantly stimulates prostaglandin production by cultured cells

  11. The crystal structures of the tri-functional Chloroflexus aurantiacus and bi-functional Rhodobacter sphaeroides malyl-CoA lyases and comparison with CitE-like superfamily enzymes and malate synthases.

    Science.gov (United States)

    Zarzycki, Jan; Kerfeld, Cheryl A

    2013-11-09

    Malyl-CoA lyase (MCL) is a promiscuous carbon-carbon bond lyase that catalyzes the reversible cleavage of structurally related Coenzyme A (CoA) thioesters. This enzyme plays a crucial, multifunctional role in the 3-hydroxypropionate bi-cycle for autotrophic CO2 fixation in Chloroflexus aurantiacus. A second, phylogenetically distinct MCL from Rhodobacter sphaeroides is involved in the ethylmalonyl-CoA pathway for acetate assimilation. Both MCLs belong to the large superfamily of CitE-like enzymes, which includes the name-giving β-subunit of citrate lyase (CitE), malyl-CoA thioesterases and other enzymes of unknown physiological function. The CitE-like enzyme superfamily also bears sequence and structural resemblance to the malate synthases. All of these different enzymes share highly conserved catalytic residues, although they catalyze distinctly different reactions: C-C bond formation and cleavage, thioester hydrolysis, or both (the malate synthases). Here we report the first crystal structures of MCLs from two different phylogenetic subgroups in apo- and substrate-bound forms. Both the C. aurantiacus and the R. sphaeroides MCL contain elaborations on the canonical β8/α8 TIM barrel fold and form hexameric assemblies. Upon ligand binding, changes in the C-terminal domains of the MCLs result in closing of the active site, with the C-terminal domain of one monomer forming a lid over and contributing side chains to the active site of the adjacent monomer. The distinctive features of the two MCL subgroups were compared to known structures of other CitE-like superfamily enzymes and to malate synthases, providing insight into the structural subtleties that underlie the functional versatility of these enzymes. Although the C. aurantiacus and the R. sphaeroides MCLs have divergent primary structures (~37% identical), their tertiary and quaternary structures are very similar. It can be assumed that the C-C bond formation catalyzed by the MCLs occurs as proposed for

  12. Activated platelets release sphingosine 1-phosphate and induce hypersensitivity to noxious heat stimuli in vivo

    Directory of Open Access Journals (Sweden)

    Daniela eWeth

    2015-04-01

    Full Text Available At the site of injury activated platelets release various mediators, one of which is sphingosine 1-phosphate (S1P. It was the aim of this study to explore whether activated human platelets had a pronociceptive effect in an in vivo mouse model and whether this effect was based on the release of S1P and subsequent activation of neuronal S1P receptors 1 or 3. Human platelets were prepared in different concentrations (105/µl, 106/µl, 107/µl and assessed in mice with different genetic backgrounds (WT, S1P1fl/fl, SNS-S1P1-/-, S1P3-/-. Intracutaneous injections of activated human platelets induced a significant, dose-dependent hypersensitivity to noxious thermal stimulation. The degree of heat hypersensitivity correlated with the platelet concentration as well as the platelet S1P content and the amount of S1P released upon platelet activation as measured with LC MS/MS. Despite the significant correlations between S1P and platelet count, no difference in paw withdrawal latency (PWL was observed in mice with a global null mutation of the S1P3 receptor or a conditional deletion of the S1P1 receptor in nociceptive primary afferents. Furthermore, neutralisation of S1P with a selective anti-S1P antibody did not abolish platelet induced heat hypersensitivity. Our results suggest that activated platelets release S1P and induce heat hypersensitivity in vivo. However, the platelet induced heat hypersensitivity was caused by mediators other than S1P.

  13. Influence of fluoride on aluminum toxicity to Atlantic salmon (Salmo salar)

    Science.gov (United States)

    Hamilton, Steven J.; Haines, Terry A.

    1995-01-01

    Atlantic salmon (Salmo salar) alevins were exposed to various aluminum (0–4700 μg/L) and four fluoride (0–500 μg/L) concentrations at two pH values (5.5 and 6.5) for 4- and 30-d periods. In the 4-d tests, aluminum with fluoride was less toxic at pH 6.5 than at pH 5.5, whereas without fluoride, pH had no effect. In the 30-d test, mortality in all treatments was 17–21% at pH 5.5, but only 3–7% at pH 6.5. Fish length and weight after 30 d were reduced in all fluoride–aluminum treatments at pH 5.5, but only in the 200-μg/L aluminum without fluoride treatment at pH 6.5. At pH 5.5 and 6.5 without aluminum, histomorphological examinations revealed no abnormalities in gill tissue. However, in aluminum exposure with no fluoride, gill filaments and secondary lamellae were swollen and thickened. Addition of fluoride at pH 6.5 alleviated some gill damage. At pH 5.5 and 200 μg/L aluminum, addition of 100 μg/L fluoride reduced swelling of gill lamellae, but 200 μg/L fluoride did not reduce swelling. Low fluoride concentrations (fluoride concentrations (> 100 μg/L) may not reduce aluminum-induced effects.

  14. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  15. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 30-09-2014 to 29-09-2015 4. TITLE AND SUBTITLE The Oxidation Products of Aluminum ...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT

  16. Aluminum Hydroxide

    Science.gov (United States)

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  17. Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN.

    Science.gov (United States)

    Haseneen, Nadia A; Vaday, Gayle G; Zucker, Stanley; Foda, Hussein D

    2003-03-01

    High-volume mechanical ventilation leads to ventilator-induced lung injury. This type of lung injury is accompanied by an increased release and activation of matrix metalloproteinases (MMPs). To investigate the mechanism leading to the increased MMP release, we systematically studied the effect of mechanical stretch on human microvascular endothelial cells isolated from the lung. We exposed cells grown on collagen 1 BioFlex plates to sinusoidal cyclic stretch at 0.5 Hz using the Flexercell system with 17-18% elongation of cells. After 4 days of cell stretching, conditioned media and cell lysate were collected and analyzed by gelatin, casein, and reverse zymograms as well as Western blotting. RT-PCR of mRNA extracted from stretched cells was performed. Our results show that 1) cyclic stretch led to increased release and activation of MMP-2 and MMP-1; 2) the activation of MMP-2 was accompanied by an increase in membrane type-1 MMP (MT1-MMP) and inhibited by a hydroxamic acid-derived inhibitor of MMPs (Prinomastat, AG3340); and 3) the MMP-2 release and activation were preceded by an increase in production of extracellular MMP inducer (EMMPRIN). These results suggest that cyclic mechanical stretch leads to MMP-2 activation through an MT1-MMP mechanism. EMMPRIN may play an important role in the release and activation of MMPs during lung injury.

  18. Understanding of radiation effect on sinks in aluminum materials for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang Il; Kim, Ji Hyun [UNIST, Daejeon (Korea, Republic of)

    2015-05-15

    Aluminum and its alloy are widely used in structural materials for research reactor such as guide tube and cladding because of its physical properties such as high thermal conductivity, neutron economy and corrosion resistant properties. Although aluminum and its alloy have excellent characteristic, radiation induced hardening and swelling are still important safety concern. From microstructural analysis, it was confirmed that dislocation loop, void and precipitate are major sinks which induced swelling and hardening. Among these defects, precipitation such as Mg{sub 2}Si and Si were generated by reaction between alloy elements and transmutations. Therefore, radiation induced swelling and hardening can be predicted by analyzing these defect. However, quantitative analysis of these defects has not been done by computational tools. Therefore, it is unclear that specific mechanism of alloy element effects on the irradiation swelling and hardening in aluminum alloys. Historically, radiation induced phenomena such as swelling, growth and hardening is simulated by Mean Field Radiation Damage Theory (MFRDT). From the MFRDT, reactions of irradiation defect and sink are calculated and then sink density is evolved at each type of sinks. The aim of this study is understanding of radiation effect on sink behavior. From the simplified reaction mechanism, defect concentration, sink density and irradiation hardening are calculated at each sink type. Transmutation effect was mostly dominant and dislocation loop and void effect were negligible.

  19. Effective Anti-miRNA Oligonucleotides Show High Releasing Rate of MicroRNA from RNA-Induced Silencing Complex.

    Science.gov (United States)

    Ariyoshi, Jumpei; Matsuyama, Yohei; Kobori, Akio; Murakami, Akira; Sugiyama, Hiroshi; Yamayoshi, Asako

    2017-10-01

    MicroRNAs (miRNAs) regulate gene expression by forming RNA-induced silencing complexes (RISCs) and have been considered as promising therapeutic targets. MiRNA is an essential component of RISC for the modulation of gene expression. Therefore, the release of miRNA from RISC is considered as an effective method for the inhibition of miRNA functions. In our previous study, we reported that anti-miRNA oligonucleotides (AMOs), which are composed of the 2'-O-methyl (2'-OMe) RNA, could induce the release of miRNA from RISC. However, the mechanisms underlying the miRNA-releasing effects of chemically modified AMOs, which are conventionally used as anti-cancer drugs, are still unclear. In this study, we investigated the relationship between the miRNA releasing rate from RISC and the inhibitory effect on RISC activity (IC 50 ) using conventional chemically modified AMOs. We demonstrated that the miRNA-releasing effects of AMOs are directly proportional to the IC 50 values, and AMOs, which have an ability to promote the release of miRNA from RISC, can effectively inhibit RISC activity in living cells.

  20. Pharmacokinetic-pharmacodynamic analysis of antipsychotics-induced extrapyramidal symptoms based on receptor occupancy theory incorporating endogenous dopamine release.

    Science.gov (United States)

    Matsui-Sakata, Akiko; Ohtani, Hisakazu; Sawada, Yasufumi

    2005-06-01

    We aimed to analyze the risks of extrapyramidal symptoms (EPS) induced by typical and atypical antipsychotic drugs using a common pharmacokinetic-pharmacodynamic (PK-PD) model based on the receptor occupancy. We collected the data for EPS induced by atypical antipsychotics, risperidone, olanzapine and quetiapine, and a typical antipsychotic, haloperidol from literature and analyzed the following five indices of EPS, the ratio of patients obliged to take anticholinergic medication, the occurrence rates of plural extrapyramidal symptoms (more than one of tremor, dystonia, hypokinesia, akathisia, extrapyramidal syndrome, etc.), parkinsonism, akathisia, and extrapyramidal syndrome. We tested two models, i.e., a model incorporating endogenous dopamine release owing to 5-HT2A receptor inhibition and a model not considering the endogenous dopamine release, and used them to examine the relationship between the D2 receptor occupancy of endogenous dopamine and the extent of drug-induced EPS. The model incorporating endogenous dopamine release better described the relationship between the mean D2 receptor occupancy of endogenous dopamine and the extent of EPS than the other model, as assessed by the final sum of squares of residuals (final SS) and Akaike's Information Criteria (AIC). Furthermore, the former model could appropriately predict the risks of EPS induced by two other atypical antipsychotics, clozapine and ziprasidone, which were not incorporated into the model development. The developed model incorporating endogenous dopamine release owing to 5-HT2A receptor inhibition may be useful for the prediction of antipsychotics-induced EPS.

  1. Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy

    International Nuclear Information System (INIS)

    Qian, Xin; Li, Xinghui; Ma, Fenfen; Luo, Shanshan; Ge, Ruowen; Zhu, Yizhun

    2016-01-01

    In this work, we demonstrated for the first time that S-propargyl-cysteine (SPRC, also named as ZYZ-802), a novel hydrogen sulfide (H_2S)-releasing compound, had renoprotective effects on streptozotocin (STZ)-induced diabetic kidney injury. SPRC treatment significantly reduced the level of creatinine, kidney to body weight ratio and in particular, markedly decreased 24-h urine microalbuminuria excretion. SPRC suppressed the mRNA expression of fibronectin and type IV collagen. In vitro, SPRC inhibited mesangial cells over-proliferation and hypertrophy induced by high glucose. Additionally, SPRC attenuated inflammation in diabetic kidneys. SPRC also reduced transforming growth factor β1 (TGF-β1) signaling and expression of phosphorylated Smad3 (p-Smad3) pathway. Moreover, SPRC inhibited phosphorylation of ERK, p38 protein. Taken together, SPRC was demonstrated to be a potential therapeutic candidate to suppress diabetic nephropathy. - Highlights: • We synthesized a novel hydrogen sulfide-releasing compound, S-propargyl-cysteine (SPRC). • SPRC was preliminarily demonstrated to prevent STZ-induced diabetic nephropathy (DN). • SPRC may exert potential therapeutic candidate to suppress DN.

  2. Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Xin [Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai (China); Li, Xinghui [Departments of Physiology and Pathophysiology, Shanghai College of Medicine, Fudan University, Shanghai (China); Ma, Fenfen; Luo, Shanshan [Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai (China); Ge, Ruowen [Departmentof Biological Sciences, National University of Singapore (Singapore); Zhu, Yizhun, E-mail: zhuyz@fudan.edu.cn [Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai (China); Departmentof Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore (Singapore)

    2016-05-13

    In this work, we demonstrated for the first time that S-propargyl-cysteine (SPRC, also named as ZYZ-802), a novel hydrogen sulfide (H{sub 2}S)-releasing compound, had renoprotective effects on streptozotocin (STZ)-induced diabetic kidney injury. SPRC treatment significantly reduced the level of creatinine, kidney to body weight ratio and in particular, markedly decreased 24-h urine microalbuminuria excretion. SPRC suppressed the mRNA expression of fibronectin and type IV collagen. In vitro, SPRC inhibited mesangial cells over-proliferation and hypertrophy induced by high glucose. Additionally, SPRC attenuated inflammation in diabetic kidneys. SPRC also reduced transforming growth factor β1 (TGF-β1) signaling and expression of phosphorylated Smad3 (p-Smad3) pathway. Moreover, SPRC inhibited phosphorylation of ERK, p38 protein. Taken together, SPRC was demonstrated to be a potential therapeutic candidate to suppress diabetic nephropathy. - Highlights: • We synthesized a novel hydrogen sulfide-releasing compound, S-propargyl-cysteine (SPRC). • SPRC was preliminarily demonstrated to prevent STZ-induced diabetic nephropathy (DN). • SPRC may exert potential therapeutic candidate to suppress DN.

  3. Different particle determinants induce apoptosis and cytokine release in primary alveolar macrophage cultures

    Directory of Open Access Journals (Sweden)

    Schwarze Per E

    2006-06-01

    Full Text Available Abstract Background Particles are known to induce both cytokine release (MIP-2, TNF-α, a reduction in cell viability and an increased apoptosis in alveolar macrophages. To examine whether these responses are triggered by the same particle determinants, alveolar macrophages were exposed in vitro to mineral particles of different physical-chemical properties. Results The crystalline particles of the different stone types mylonite, gabbro, basalt, feldspar, quartz, hornfels and fine grain syenite porphyr (porphyr, with a relatively equal size distribution (≤ 10 μm, but different chemical/mineral composition, all induced low and relatively similar levels of apoptosis. In contrast, mylonite and gabbro induced a marked MIP-2 response compared to the other particles. For particles of smaller size, quartz (≤ 2 μm seemed to induce a somewhat stronger apoptotic response than even smaller quartz (≤ 0.5 μm and larger quartz (≤ 10 μm in relation to surface area, and was more potent than hornfels and porphyr (≤ 2 μm. The reduction in cell viability induced by quartz of the different sizes was roughly similar when adjusted to surface area. With respect to cytokines, the release was more marked after exposure to quartz ≤ 0.5 μm than to quartz ≤ 2 μm and ≤ 10 μm. Furthermore, hornfels (≤ 2 μm was more potent than the corresponding hornfels (≤ 10 μm and quartz (≤ 2 μm to induce cytokine responses. Pre-treatment of hornfels and quartz particles ≤ 2 μm with aluminium lactate, to diminish the surface reactivity, did significantly reduce the MIP-2 response to hornfels. In contrast, the apoptotic responses to the particles were not affected. Conclusion These results indicate that different determinants of mineral/stone particles are critical for inducing cytokine responses, reduction in cell viability and apoptosis in alveolar macrophages. The data suggest that the particle surface reactivity was critical for cytokine responses

  4. Is the Aluminum Hypothesis Dead?

    Science.gov (United States)

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  5. Laterally vibrating resonator based elasto-optic modulation in aluminum nitride

    Directory of Open Access Journals (Sweden)

    Siddhartha Ghosh

    2016-06-01

    Full Text Available An integrated strain-based optical modulator driven by a piezoelectric laterally vibrating resonator is demonstrated. The composite structure consists of an acoustic Lamb wave resonator, in which a photonic racetrack resonator is internally embedded to enable overlap of the guided optical mode with the induced strain field. Both types of resonators are defined in an aluminum nitride (AlN thin film, which rests upon a layer of silicon dioxide in order to simultaneously define optical waveguides, and the structure is released from a silicon substrate. Lateral vibrations produced by the acoustic resonator are transferred through a partially etched layer of AlN, producing a change in the effective index of the guided wave through the interaction of the strain components with the AlN elasto-optic (p coefficients. Optical modulation through the elasto-optic effect is demonstrated at electromechanically actuated frequencies of 173 MHz and 843 MHz. This device geometry further enables the development of MEMS-based optical modulators in addition to studying elasto-optic interactions in suspended piezoelectric thin films.

  6. Fluoride or/and aluminum induced toxicity in guinea pig teeth with the low expression of dentine phosphoprotein.

    Science.gov (United States)

    Han, Tianlong; Wang, Min; Cao, Chunfang; Chen, Huacheng; Zhang, Guanghe; Wang, Liping; Wang, Jundong

    2017-08-01

    This study investigated the damage and expression of dentine phosphoprotein (DPP) in guinea pig teeth by the administration of fluoride (F) or/and aluminum (Al). Fifty-two guinea pigs were divided randomly into four groups (control, F, Al, and F+Al). F (150 mg NaF/L) or/and Al (300 mg AlCl 3 /L) were added in their drinking water for 90 days. The levels of F ion, dentine sialophosphoprotein (DSPP) gene, and DPP protein in incisor and molar were determined, respectively. The results showed that the concentrations of F ion in F and F+Al groups were increased significantly. F induced the mottled enamel and irregular abrasion of teeth, which might occur as a consequence of depressed DSPP mRNA and DPP protein expression. Both the gene and protein expressions showed obvious decrease induced by Al, especially by F. There were no synergistic effects between F and Al, instead, Al inhibited the toxicity of F. © 2017 Wiley Periodicals, Inc.

  7. Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates.

    Science.gov (United States)

    Yang, Clayton S-C; Jin, Feng; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Tripathi, Ashish; Samuels, Alan C

    2017-04-01

    Thin solid films made of high nitro (NO 2 )/nitrate (NO 3 ) content explosives were deposited on sand-blasted aluminum substrates and then studied using a mercury-cadmium-telluride (MCT) linear array detection system that is capable of rapidly capturing a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared region (LWIR; ∼5.6-10 µm). Despite the similarities of their chemical compositions and structures, thin films of three commonly used explosives (RDX, HMX, and PETN) studied in this work can be rapidly identified in the ambient air by their molecular LIBS emission signatures in the LWIR region. A preliminary assessment of the detection limit for a thin film of RDX on aluminum appears to be much lower than 60 µg/cm 2 . This LWIR LIBS setup is capable of rapidly probing and charactering samples without the need for elaborate sample preparation and also offers the possibility of a simultaneous ultraviolet visible and LWIR LIBS measurement.

  8. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Science.gov (United States)

    2010-11-18

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,376] Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood Forge Division; Currently Known As Contech Forgings, LLC..., applicable to workers of Kaiser Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division...

  9. The effect of zinc on the aluminum anode of the aluminum-air battery

    Science.gov (United States)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  10. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors.

    Directory of Open Access Journals (Sweden)

    Devandir Antonio de Souza Junior

    Full Text Available Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7 in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization.

  11. Dropping the hammer: Examining impact ignition and combustion using pre-stressed aluminum powder

    Science.gov (United States)

    Hill, Kevin J.; Warzywoda, Juliusz; Pantoya, Michelle L.; Levitas, Valery I.

    2017-09-01

    Pre-stressing aluminum (Al) particles by annealing and quenching Al powder alters particle mechanical properties and has also been linked to an increase in particle reactivity. Specifically, energy propagation in composites consisting of aluminum mixed with copper oxide (Al + CuO) exhibits a 24% increase in flame speed when using pre-stressed aluminum (PS Al) compared to Al of the same particle size. However, no data exist for the reactivity of PS Al powders under impact loading. In this study, a drop weight impact tester with pressure cell was designed and built to examine impact ignition sensitivity and combustion of PS Al when mixed with CuO. Both micron and nanometer scale powders (i.e., μAl and nAl, respectively) were pre-stressed, then combined with CuO and analyzed. Three types of ignition and combustion events were identified: ignition with complete combustion, ignition with incomplete combustion, and no ignition or combustion. The PS nAl + CuO demonstrated a lower impact ignition energy threshold for complete combustion, differing from nAl + CuO samples by more than 3.5 J/mg. The PS nAl + CuO also demonstrated significantly more complete combustion as evidenced by pressure history data during ignition and combustion. Additional material characterization provides insight on hot spot formation in the incomplete combustion samples. The most probable reasons for higher impact-induced reactivity of pre-stressed particles include (a) delayed but more intense fracture of the pre-stressed alumina shell due to release of energy of internal stresses during fracture and (b) detachment of the shell from the core during impact due to high tensile stresses in the Al core leading to much more pronounced fracture of unsupported shells and easy access of oxygen to the Al core. The μAl + CuO composites did not ignite, even under pre-stressed conditions.

  12. Experimental investigation of cavitation induced air release

    Directory of Open Access Journals (Sweden)

    Kowalski Karoline

    2017-01-01

    Full Text Available Variations in cross-sectional areas may lead to pressure drops below a critical value, such that cavitation and air release are provoked in hydraulic systems. Due to a relatively slow dissolution of gas bubbles, the performance of hydraulic systems will be affected on long time scales by the gas phase. Therefore predictions of air production rates are desirable to describe the system characteristics. Existing investigations on generic geometries such as micro-orifice flows show an outgassing process due to hydrodynamic cavitation which takes place on time scales far shorter than diffusion processes. The aim of the present investigation is to find a correlation between global, hydrodynamic flow characteristics and cavitation induced undissolved gas fractions generated behind generic flow constrictions such as an orifice or venturi tube. Experimental investigations are realised in a cavitation channel that enables an independent adjustment of the pressure level upstream and downstream of the orifice. Released air fractions are determined by means of shadowgraphy imaging. First results indicate that an increased cavitation activity leads to a rapid increase in undissolved gas volume only in the choking regime. The frequency distribution of generated gas bubble size seems to depend only indirectly on the cavitation intensity driven by an increase of downstream coalescence events due to a more densely populated bubbly flow.

  13. Fission Product Release from Spent Nuclear Fuel During Melting

    International Nuclear Information System (INIS)

    Howell, J.P.; Zino, J.F.

    1998-09-01

    The Melt-Dilute process consolidates aluminum-clad spent nuclear fuel by melting the fuel assemblies and diluting the 235U content with depleted uranium to lower the enrichment. During the process, radioactive fission products whose boiling points are near the proposed 850 degrees C melting temperature can be released. This paper presents a review of fission product release data from uranium-aluminum alloy fuel developed from Severe Accident studies. In addition, scoping calculations using the ORIGEN-S computer code were made to estimate the radioactive inventories in typical research reactor fuel as a function of burnup, initial enrichment, and reactor operating history and shutdown time.Ten elements were identified from the inventory with boiling points below or near the 850 degrees C reference melting temperature. The isotopes 137Cs and 85Kr were considered most important. This review serves as basic data to the design and development of a furnace off-gas system for containment of the volatile species

  14. Differential involvement of IL-6 in the early and late phase of 1-methylnicotinamide (MNA) release in Concanavalin A-induced hepatitis.

    Science.gov (United States)

    Sternak, Magdalena; Jakubowski, Andrzej; Czarnowska, Elzbieta; Slominska, Ewa M; Smolenski, Ryszard T; Szafarz, Malgorzata; Walczak, Maria; Sitek, Barbara; Wojcik, Tomasz; Jasztal, Agnieszka; Kaminski, Karol; Chlopicki, Stefan

    2015-09-01

    Exogenous 1-methylnicotinamide (MNA) displays anti-inflammatory activity. The aim of this work was to characterize the profile of release of endogenous MNA during the initiation and progression of murine hepatitis induced by Concanavalin A (ConA). In particular we aimed to clarify the role of interleukin-6 (IL-6) as well as the energy state of hepatocytes in MNA release in early and late phases of ConA-induced hepatitis in mice. Hepatitis was induced by ConA in IL-6(+/+) and IL-6(-/-) mice, and various parameters of liver inflammation and injury, as well as the energy state of hepatocytes, were analysed in relation to MNA release. The decrease in ATP/ADP and NADH/NAD ratios, cytokine release (IL-6, IFN-ɤ), acute phase response (e.g. haptoglobin) and liver injury (alanine aminotransaminase, ALT) were all blunted in ConA-induced hepatitis in IL-6(-/-) mice as compared to IL-6(+/+) mice. The release of MNA in response to Con A was also significantly blunted in IL-6(-/-) mice as compared to IL-6(+/+) mice in the early stage of ConA-induced hepatitis. In turn, nicotinamide N-methyltransferase (NNMT) and aldehyde oxidase (AO) activities were blunted in the liver and MNA plasma concentration was elevated to similar degree in the late stage after Concanavalin A in IL-6(+/+) and IL-6(-/-) mice. In conclusion, we demonstrated that in ConA-induced hepatitis, early, but not late MNA release was IL-6-dependent. Our results suggest that in the initiation and early hepatitis, MNA release is linked to the energy deficit/impaired redox status in hepatocytes, while in a later phase, MNA release is rather linked to the systemic inflammation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Immunological response and protection of mice immunized with plasmid encoding Toxoplasma gondii glycolytic enzyme malate dehydrogenase.

    Science.gov (United States)

    Hassan, I A; Wang, S; Xu, L; Yan, R; Song, X; XiangRui, L

    2014-12-01

    Toxoplasma gondii Malate dehydrogenase (TgMDH) plays an important role as part of the energy production cycle. In this investigation, immunological changes and protection efficiency of this protein delivered as a DNA vaccine have been evaluated. Mice were intramuscularly immunized with pTgMDH, followed by challenge with virulent T. gondii RH strain, 2 weeks after the booster immunization. Compared to the control groups, the results showed that pTgMDH has stimulated specific humoral response as demonstrated by significant high titers of total IgG and subclasses IgG1 and IgG2a , beside IgA and IgM, but not IgE. Analysis of cytokine profiles revealed significant increases of IFN-γ, IL-4 and IL-17, while no significant changes were detected in TGF-β1. In cell-mediated response, both T lymphocytes subpopulations CD4(+) and CD8(+) were positively recruited as significant percentages were recorded in response to immunization with TgMDH. Significant long survival rate, 17 days, has been observed in the TgMDH vaccinated group, in contrast with control groups which died within 8-9 days after challenge. These results demonstrated that TgMDH could induce significant immunological responses leading to a considerable level of protection against acute toxoplasmosis infection. © 2014 John Wiley & Sons Ltd.

  16. Aluminum fin-stock alloys

    International Nuclear Information System (INIS)

    Gul, R.M.; Mutasher, F.

    2007-01-01

    Aluminum alloys have long been used in the production of heat exchanger fins. The comparative properties of the different alloys used for this purpose has not been an issue in the past, because of the significant thickness of the finstock material. However, in order to make fins lighter in weight, there is a growing demand for thinner finstock materials, which has emphasized the need for improved mechanical properties, thermal conductivity and corrosion resistance. The objective of this project is to determine the effect of iron, silicon and manganese percentage increment on the required mechanical properties for this application by analyzing four different aluminum alloys. The four selected aluminum alloys are 1100, 8011, 8079 and 8150, which are wrought non-heat treatable alloys with different amount of the above elements. Aluminum alloy 1100 serve as a control specimen, as it is commercially pure aluminum. The study also reports the effect of different annealing cycles on the mechanical properties of the selected alloys. Metallographic examination was also preformed to study the effect of annealing on the precipitate phases and the distribution of these phases for each alloy. The microstructure analysis of the aluminum alloys studied indicates that the precipitated phase in the case of aluminum alloys 1100 and 8079 is beta-FeAI3, while in 8011 it is a-alfa AIFeSi, and the aluminum alloy 8150 contains AI6(Mn,Fe) phase. The comparison of aluminum alloys 8011 and 8079 with aluminum alloy 1100 show that the addition of iron and silicon improves the percent elongation and reduces strength. The manganese addition increases the stability of mechanical properties along the annealing range as shown by the comparison of aluminum alloy 8150 with aluminum alloy 1100. Alloy 8150 show superior properties over the other alloys due to the reaction of iron and manganese, resulting in a preferable response to thermal treatment and improved mechanical properties. (author)

  17. Antidopaminergic-induced hypothalamic LHRH release and pituitary gonadotrophin secretion in 12 day-old female and male rats.

    Science.gov (United States)

    Lacau-Mengido, I M; Becú-Villalobos, D; Thyssen, S M; Rey, E B; Lux-Lantos, V A; Libertun, C

    1993-12-01

    In previous studies we have shown that the developing rat provides an interesting physiologic model in which the dopaminergic control of both LH and FSH is well defined in contrast to the controversial results obtained in adult rats. We wished to establish the role of testosterone in antidopaminergic induced gonadotrophins release in 12 day-old male and female rats, and evaluate the effect of antidopaminergic drugs at the hypothalamic level during this developmental stage. Haloperidol, an antidopaminergic drug, increased both LH and FSH in female 12 day-old rats but not in male littermates. The effect was blocked by bromocriptine and not by phentolamine indicating that haloperidol acted on the dopaminergic receptor, and that unspecific stimulation of the noradrenergic system was not involved. Haloperidol was ineffective when female rats were previously ovariectomized and injected with testosterone propionate at 9 days of age. If females were treated on the day of birth with testosterone propionate, haloperidol-induced FSH and LH release was also abolished. In control males haloperidol had no effect on the release of LH or FSH. But if males were orchidectomized at birth or at 9 days of age, haloperidol released both LH and FSH during the infantile period. In an attempt to establish the site of action of antidopaminergic drugs on gonadotrophin release, hypothalami (mediobasal and preoptic-suprachiasmatic area) from 12 day-old infant female rats were perifused with either haloperidol or domperidone (2*10(-6) M). Both drugs increased LHRH release into the perifusate. Besides haloperidol did not modify the release of LH or FSH from adenohypophyseal cells incubated in vitro. We therefore conclude that antidopaminergic-induced gonadotrophins release is modulated by serum testosterone concentrations, and that the site of action is probably the LHRH-secreting neuron of the hypothalamus.

  18. Nerve growth factor alters microtubule targeting agent-induced neurotransmitter release but not MTA-induced neurite retraction in sensory neurons.

    Science.gov (United States)

    Pittman, Sherry K; Gracias, Neilia G; Fehrenbacher, Jill C

    2016-05-01

    Peripheral neuropathy is a dose-limiting side effect of anticancer treatment with the microtubule-targeted agents (MTAs), paclitaxel and epothilone B (EpoB); however, the mechanisms by which the MTAs alter neuronal function and morphology are unknown. We previously demonstrated that paclitaxel alters neuronal sensitivity, in vitro, in the presence of nerve growth factor (NGF). Evidence in the literature suggests that NGF may modulate the neurotoxic effects of paclitaxel. Here, we examine whether NGF modulates changes in neuronal sensitivity and morphology induced by paclitaxel and EpoB. Neuronal sensitivity was assessed using the stimulated release of calcitonin gene-related peptide (CGRP), whereas morphology of established neurites was evaluated using a high content screening system. Dorsal root ganglion cultures, maintained in the absence or presence of NGF, were treated from day 7 to day 12 in culture with paclitaxel (300nM) or EpoB (30nM). Following treatment, the release of CGRP was stimulated using capsaicin or high extracellular potassium. In the presence of NGF, EpoB mimicked the effects of paclitaxel: capsaicin-stimulated release was attenuated, potassium-stimulated release was slightly enhanced and the total peptide content was unchanged. In the absence of NGF, both paclitaxel and EpoB decreased capsaicin- and potassium-stimulated release and the total peptide content, suggesting that NGF may reverse MTA-induced hyposensitivity. Paclitaxel and EpoB both decreased neurite length and branching, and this attenuation was unaffected by NGF in the growth media. These differential effects of NGF on neuronal sensitivity and morphology suggest that neurite retraction is not a causative factor to alter neuronal sensitivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Study on the influence of Sempervivum tectorum and Melatonin on Glutathion protective effects in rats blood exposed to Aluminum sulphate

    Directory of Open Access Journals (Sweden)

    Corina Gravila

    2014-05-01

    Full Text Available The present study was carried out to investigate the influence of Sempervivum tectorum aqueous extract and melatonin on reduced glutathione (GSH protective effect in Wistar albino rat blood exposed to aluminium sulphate- Al2(SO43. The rats were divided in one control group (C and 7 experimental groups (E. The control group received tap water. The experimental rats were feed the following way: E1 group – aluminum sulphate, daily, for 3 months; : E2 group – Sempervivum tectorum, daily, for 3 months; : E3 group – melatonin, daily, for 3 months; : E4 group – aluminum sulphate with Sempervivum tectorum, daily, for 3 months; : E5 group – aluminum sulphate with melatonin, daily, for 3 months; E6 group – aluminum sulphate, daily, for 3 months, and thereafter with Sempervivum tectorum for 1 month; E7 group – aluminum sulphate, daily, for 3 month, and thereafter with melatonin for 1 month. This study showed that Aluminum toxicity induced lower GSH. The oxidative stress caused by aluminum, given individual, is more pronounced than in the case in which aluminum is administered simultaneously with Sempervivum tectorum or melatonin. Decreasing GSH value is very small if Sempervivum tectorum or melatonin is given for one month, three months after the administration of aluminum. Effect induced by melatonin is more favorable than that of Sempervivum tectorum.

  20. Role of IL-1 beta and COX2 in silica-induced IL-6 release and loss of pneumocytes in co-cultures.

    Science.gov (United States)

    Herseth, Jan I; Refsnes, Magne; Låg, Marit; Schwarze, Per E

    2009-10-01

    The pro-inflammatory cytokines IL-1 beta, TNF-alpha and IL-6 are of great importance in the development of silica-induced lung damage and repair. In this study we investigated the role of IL-1 beta, TNF-alpha and COX2 in silica-induced regulation of IL-6 release and pneumocyte loss in various mono- and co-cultures of monocytes, pneumocytes and endothelial cells. All co-cultures with monocytes, and especially cultures including endothelial cells, showed an increase of silica-induced release of IL-6 compared to the respective monocultures. Treatment with the antagonist IL-1 ra strongly decreased IL-1 beta and IL-6 release in contact co-cultures of monocytes and pneumocytes. COX2 up-regulation by silica and IL-1 beta was eliminated by IL-1 ra. Inhibition of COX2 markedly reduced both IL-1 beta and IL-6 release. IL-1 ra was more effective than COX2-inhibition in reduction of IL-6, but not of IL-1 beta. Silica-induced pneumocyte loss was reduced by IL-1 beta, but this effect was not counteracted by the IL-1 receptor antagonist. Our findings suggest that silica-induced IL-6 release from pneumocytes is mainly mediated via IL-1 beta release from the monocytes, via both COX2-dependent and -independent pathways. Notably, COX2-derived mediators seem crucial for a positive feed-back regulation of IL-1 beta release from the monocytes. In contrast to silica-induced IL-6, the reduction in pneumocyte loss by IL-1 beta does not seem to be regulated through an IL-1R1-dependent mechanism.

  1. Direct growth of large grain polycrystalline silicon films on aluminum-induced crystallization seed layer using hot-wire chemical vapor deposition

    International Nuclear Information System (INIS)

    Wu, Bing-Rui; Lo, Shih-Yung; Wuu, Dong-Sing; Ou, Sin-Liang; Mao, Hsin-Yuan; Wang, Jui-Hao; Horng, Ray-Hua

    2012-01-01

    Large grain polycrystalline silicon (poly-Si) films on glass substrates have been deposited on an aluminum-induced crystallization (AIC) seed layer using hot-wire chemical vapor deposition (HWCVD). A poly-Si seed layer was first formed by the AIC process and a thicker poly-Si film was subsequently deposited upon the seed layer using HWCVD. The effects of AIC annealing parameters on the structural and electrical properties of the poly-Si seed layers were characterized by Raman scattering spectroscopy, field-emission scanning electron microscopy, and Hall measurements. It was found that the crystallinity of seed layer was enhanced with increasing the annealing duration and temperature. The poly-Si seed layer formed at optimum annealing parameters can reach a grain size of 700 nm, hole concentration of 3.5 × 10 18 cm −3 , and Hall mobility of 22 cm 2 /Vs. After forming the seed layer, poly-Si films with good crystalline quality and high growth rate (> 1 nm/s) can be obtained using HWCVD. These results indicated that the HWCVD-deposited poly-Si film on an AIC seed layer could be a promising candidate for thin-film Si photovoltaic applications. - Highlights: ►Poly-Si seed layers are formed by aluminum-induced crystallization (AIC) process. ►Poly-Si on AIC seed layers are prepared by hot-wire chemical vapor deposition. ►AIC process parameters affect structural properties of poly-Si films. ►Increasing the annealing duration and temperature increases the film crystallinity.

  2. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    Science.gov (United States)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  3. Exercise-induced prostacyclin release positively correlates with VO(2max) in young healthy men.

    Science.gov (United States)

    Zoladz, J A; Majerczak, J; Duda, K; Chłopicki, S

    2009-01-01

    In this study we have evaluated the effect of maximal incremental cycling exercise (IE) on the systemic release of prostacyclin (PGI(2)), assessed as plasma 6-keto-PGF(1alpha) concentration in young healthy men. Eleven physically active - untrained men (mean +/- S.D.) aged 22.7 +/- 2.1 years; body mass 76.3 +/- 9.1 kg; BMI 23.30 +/- 2.18 kg . m(-2); maximal oxygen uptake (VO(2max)) 46.5 +/- 3.9 ml . kg(-1) . min(-1), performed an IE test until exhaustion. Plasma concentrations of 6-keto-PGF(1alpha), lactate, and cytokines were measured in venous blood samples taken prior to the exercise and at the exhaustion. The net exercise-induced increase in 6-keto-PGF(1alpha) concentration, expressed as the difference between the end-exercise minus pre-exercise concentration positively correlated with VO(2max) (r=0.78, p=0.004) as well as with the net VO(2) increase at exhaustion (r=0.81, p=0.003), but not with other respiratory, cardiac, metabolic or inflammatory parameters of the exercise (minute ventilation, heart rate, plasma lactate, IL-6 or TNF-alpha concentrations). The exercise-induced increase in 6-keto-PGF(1alpha) concentration?? was significantly higher (p=0.008) in a group of subjects (n=5) with the highest VO(2max) when compared to the group of subjects with the lowest VO(2max), in which no increase in 6-keto-PGF(1alpha) concentration was found. In conclusion, we demonstrated, to our knowledge for the first time, that exercise-induced release of PGI(2) in young healthy men correlates with VO(2max), suggesting that vascular capacity to release PGI(2) in response to physical exercise represents an important factor characterizing exercise tolerance. Moreover, we postulate that the impairment of exercise-induced release of PGI(2) leads to the increased cardiovascular hazard of vigorous exercise.

  4. Heat inactivation of leaf phosphoenolpyruvate carboxylase: Protection by aspartate and malate in C4 plants.

    Science.gov (United States)

    Rathnam, C K

    1978-01-01

    The activity of phosphoenolpyruvate (PEP) carboxylase EC 4.1.1.31 in leaf extracts of Eleusine indica L. Gaertn., a C4 plant, exhibited a temperature optimum of 35-37° C with a complete loss of activity at 50° C. However, the enzyme was protected effectively from heat inactivation up to 55° C by L-aspartate. Activation energies (Ea) for the enzyme in the presence of aspartate were 2.5 times lower than that of the control enzyme. Arrhenius plots of PEP carboxylase activity (±aspartate) showed a break in the slope around 17-20° C with a 3-fold increase in the Ea below the break. The discontinuity in the slopes was abolished by treating the enzyme extracts with Triton X-100, suggesting that PEP carboxylase in C4 plants is associated with lipid and may be a membrane bound enzyme. Depending upon the species, the major C4 acid formed during photosynthesis (malate or aspartate) was found to be more protective than the minor C4 acid against the heat inactivation of their PEP carboxylase. Oxaloacetate, the reaction product, was less effective compared to malate or aspartate. Several allosteric inhibitors of PEP carboxylase were found to be moderately to highly effective in protecting the C4 enzyme while its activators showed no significant effect. PEP carboxylase from C3 species was not protected from thermal inactivation by the C4 acids. The physiological significance of these results is discussed in relation to the high temperature tolerance of C4 plants.

  5. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux.

    Science.gov (United States)

    Ligaba, Ayalew; Maron, Lyza; Shaff, Jon; Kochian, Leon; Piñeros, Miguel

    2012-07-01

    Root efflux of organic acid anions underlies a major mechanism of plant aluminium (Al) tolerance on acid soils. This efflux is mediated by transporters of the Al-activated malate transporter (ALMT) or the multi-drug and toxin extrusion (MATE) families. ZmALMT2 was previously suggested to be involved in Al tolerance based on joint association-linkage mapping for maize Al tolerance. In the current study, we functionally characterized ZmALMT2 by heterologously expressing it in Xenopus laevis oocytes and transgenic Arabidopsis. In oocytes, ZmALMT2 mediated an Al-independent electrogenic transport product of organic and inorganic anion efflux. Ectopic overexpression of ZmALMT2 in an Al-hypersensitive Arabidopsis KO/KD line lacking the Al tolerance genes, AtALMT1 and AtMATE, resulted in Al-independent constitutive root malate efflux which partially restored the Al tolerance phenotype. The lack of correlation between ZmALMT2 expression and Al tolerance (e.g., expression not localized to the root tip, not up-regulated by Al, and higher in sensitive versus tolerance maize lines) also led us to question ZmALMT2's role in Al tolerance. The functional properties of the ZmALMT2 transporter presented here, along with the gene expression data, suggest that ZmALMT2 is not involved in maize Al tolerance but, rather, may play a role in mineral nutrient acquisition and transport. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  6. Release of fission products from irradiated SRP fuels at elevated temperature. Data report on the first stage of the SRP source term study

    International Nuclear Information System (INIS)

    Woodley, R.E.

    1986-06-01

    For a sound evaluation of the consequences of a hypothetical nuclear reactor accident, a knowledge of the extent of fission product release from the fuel at anticipated temperatures and atmosphere conditions is required. Measurements of fission product release have been performed with a variety of nuclear fuels under various conditions of temperature and atmosphere. While the use of data obtained on fuels similar to the fuel of interest may provide a reasonable estimate of release fractions, precise information of this nature can only be obtained from measurements employing specimens of the actual fuels used in the nuclear reactor under consideration. The two fuels of interest in the present study are an alloy, a dispersion of UAl 4 in an aluminum matrix, and a cermet, a dispersion of U 3 O 8 in an aluminum matrix. Both fuels are clad in aluminum

  7. Release isentrope measurements with the LLNL electric gun

    Energy Technology Data Exchange (ETDEWEB)

    Gathers, G.R.; Osher, J.E.; Chau, H.H.; Weingart, R.C.; Lee, C.G.; Diaz, E.

    1987-06-01

    The liquid-vapor coexistence boundary is not well known for most metals because the extreme conditions near the critical point create severe experimental difficulties. The isentropes passing through the liquid-vapor region typically begin from rather large pressures on the Hugoniot. We are attempting to use the high velocities achievable with the Lawrence Livermore National Laboratory (LLNL) electric gun to obtain these extreme states in aluminum and measure the release isentropes by releasing into a series of calibrated standards with known Hugoniots. To achieve large pressure drops needed to explore the liquid-vapor region, we use argon gas for which Hugoniots have been calculated using the ACTEX code, as one of the release materials.

  8. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No. 555...

  9. A simple aluminum gasket for use with both stainless steel and aluminum flanges

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R.A.

    1991-01-01

    A technique has been developed for making aluminum wire seal gaskets of various sizes and shapes for use with both stainless steel and aluminum alloy flanges. The gasket material used is 0.9999 pure aluminum, drawn to a diameter of 3 mm. This material can be easily welded and formed into various shapes. A single gasket has been successfully used up to five times without baking. The largest gasket tested to date is 3.5 m long and was used in the shape of a parallelogram. Previous use of aluminum wire gaskets, including results for bakeout at temperatures from 20 to 660{degree}C, is reviewed. A search of the literature indicates that this is the first reported use of aluminum wire gaskets for aluminum alloy flanges. The technique is described in detail, and the results are summarized. 11 refs., 4 figs.

  10. Higher dopamine release induced by less rather than more preferred reward during a working memory task in the primate prefrontal cortex.

    Science.gov (United States)

    Kodama, Tohru; Hikosaka, Kazuo; Honda, Yoshiko; Kojima, Takashi; Watanabe, Masataka

    2014-06-01

    An optimal level of dopamine (DA) in the mammalian prefrontal cortex (PFC) is critical for higher cognitive control of behavior. Too much or too little DA in the PFC induces impairment in working memory (WM) task performance. PFC DA is also concerned with motivation. When reward is anticipated and/or delivered, an increase in PFC DA release is observed. In the primate, more preferred reward induces enhanced WM-related neuronal activity in the dorsolateral PFC (DLPFC). We hypothesized that there would be more DA release in the primate DLPFC when more preferred, as compared with less preferred, reward is delivered during a WM task. Contrary to our hypothesis, we found higher DA release in the DLPFC when less rather than more preferred reward was used during a WM task, while unpredictable free reward delivery induced an increase in DLPFC DA release irrespective of the difference in the incentive value of the reward. Behaviorally, the monkey was more motivated with preferred than with less preferred reward, although it performed the task almost without error irrespective of the difference in the reward. Considering that mild stress induces an increase in DA release in the mammalian PFC, performing a WM task for less preferred reward could have been mildly stressful, and this mild stress may have induced more DLPFC DA release in the present study. The higher DA release in the DLPFC with less preferred reward may be beneficial for monkeys to cope with mildly stressful and unfavorable situations to achieve proficient WM task performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Forced swimming-induced oxytocin release into blood and brain: Effects of adrenalectomy and corticosterone treatment.

    Science.gov (United States)

    Torner, Luz; Plotsky, Paul M; Neumann, Inga D; de Jong, Trynke R

    2017-03-01

    The oxytocin (OXT) system is functionally linked to the HPA axis in a reciprocal and complex manner. Certain stressors are known to cause the simultaneous release of OXT and adrenocorticotrophic hormone (ACTH) followed by corticosterone (CORT). Furthermore, brain OXT attenuates ACTH and CORT responses. Although there are some indications of CORT influencing OXT neurotransmission, specific effects of CORT on neurohypophyseal or intra-hypothalamic release of OXT have not been studied in detail. In the present set of experiments, adult male rats were adrenalectomized (ADX) or sham-operated and fitted with a jugular vein catheter and/or microdialysis probe targeting the hypothalamic paraventricular nucleus (PVN). Blood samples and dialysates were collected before and after forced swimming (FS) and analyzed for CORT, ACTH and AVP concentrations (in plasma) and OXT concentrations (in plasma and dialysates). Experimental treatments included acute infusion of CORT (70 or 175μg/kg i.v.) 5min prior to FS, or subcutaneous placement of 40% CORT pellets resulting in stable CORT levels in the normal basal range. Although ADX did not alter basal OXT concentrations either in plasma or in microdialysates from the PVN, it did cause an exaggerated peripheral secretion of OXT and a blunted intra-PVN release of OXT in response to FS. CORT pellets did not influence either of these ADX-induced effects, while acute infusion of 175μg/kg CORT rescued the stress-induced rise in OXT release within the PVN and modestly increased peripheral OXT secretion. In conclusion, these results indicate that CORT regulates both peripheral and intracerebral OXT release, but in an independent manner. Whereas the peripheral secretion of OXT occurs simultaneously to HPA axis activation in response to FS and is modestly influenced by CORT, HPA axis activation and circulating CORT strongly contribute to the stress-induced stimulation of OXT release within the PVN. Copyright © 2016 Elsevier Ltd. All rights

  12. Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Donaldson Ken

    2005-12-01

    Full Text Available Abstract Background Alveolar macrophages are a key cell in dealing with particles deposited in the lungs and in determining the subsequent response to that particle exposure. Nanoparticles are considered a potential threat to the lungs and the mechanism of pulmonary response to nanoparticles is currently under intense scrutiny. The type II alveolar epithelial cell has previously been shown to release chemoattractants which can recruit alveolar macrophages to sites of particle deposition. The aim of this study was to assess the responses of a type II epithelial cell line (L-2 to both fine and nanoparticle exposure in terms of secretion of chemotactic substances capable of inducing macrophage migration. Results Exposure of type II cells to carbon black nanoparticles resulted in significant release of macrophage chemoattractant compared to the negative control and to other dusts tested (fine carbon black and TiO2 and nanoparticle TiO2 as measured by macrophage migration towards type II cell conditioned medium. SDS-PAGE analysis of the conditioned medium from particle treated type II cells revealed that a higher number of protein bands were present in the conditioned medium obtained from type II cells treated with nanoparticle carbon black compared to other dusts tested. Size-fractionation of the chemotaxin-rich supernatant determined that the chemoattractants released from the epithelial cells were between 5 and 30 kDa in size. Conclusion The highly toxic nature and reactive surface chemistry of the carbon black nanoparticles has very likely induced the type II cell line to release pro-inflammatory mediators that can potentially induce migration of macrophages. This could aid in the rapid recruitment of inflammatory cells to sites of particle deposition and the subsequent removal of the particles by phagocytic cells such as macrophages and neutrophils. Future studies in this area could focus on the exact identity of the substance(s released by the

  13. Further study on heredity of liquid aluminum modified by electric pulse

    Directory of Open Access Journals (Sweden)

    Qi Jingang

    2011-08-01

    Full Text Available The remarkable heredity of liquid aluminum modified by electric pulse (EP, EPM has been uncovered. For better understanding from all aspects on the hereditary properties, the present research deals with the heredity destruction and the secondary EPM procedure. It is shown that the secondary EPM is capable of preventing the heredity reduction of EP-modified liquid aluminum, and that the final refining effect has a close relationship with technique parameters of the secondary EPM. Furthermore, at a certain superheated temperature depending on the initial EPM technique parameters, the heredity relationship of EP-modified liquid aluminum can be cut off during remelting. High temperature X-ray diffraction combining with the DSC tests also indicates that the EP-induced structure changes have almost disappeared at an elevated remelting temperature.

  14. Corrosion of dental nickel-aluminum bronze with a minor gold content-mechanism and biological impact.

    Science.gov (United States)

    Ardlin, Berit I; Lindholm-Sethson, Britta; Dahl, Jon E

    2009-02-01

    To study corrosion and to evaluate biological effects in vitro of corrosion products of a copper-aluminum-nickel alloy with 2% gold. The alloy NPGtrade mark+2 with the nominal composition Cu:77.3; Al:7.8; Ni:4.3; Fe:3.0; Zn:2.7; Au:2.0; and Mn:1.7 was characterized. Static immersion in acidic saline, pH 2.2-2.4, was used to determine release of metallic elements in a milieu simulating the condition of plaque build-up in interproximal areas of the tooth. Corrosion and surface reactions in saline and artificial saliva were studied by electrochemical techniques including registration of open-circuit-potentials, polarization curves and impedance spectra. Extracts were made in cell culture media and acidic saline and used for MTT test for cytotoxicity and HET-CAM method for irritation. The mean amount of elements released in the acidic saline were in microg cm(-2) : Cu:632; Al:210; Ni:144; Fe:122; Zn:48; Mn:52. No protective film was formed on the surface of the alloy, as extensive corrosion was observed in both saline and artificial saliva. The corrosion rate was higher in saline than in artificial saliva. Acidic extracts of the alloy diluted up to 64 times reduced cell viability with 80% or more. The extract induced coagulation of the blood vessels of the CAM and was rated as moderate irritant solution. The nickel-aluminum bronze showed high corrosion rate caused by an inability to create a protective surface layer. High levels of toxic elements were found after static immersion testing, and the corrosion products had a distinct adverse effect on the biological activity. Copyright 2008 Wiley Periodicals, Inc.

  15. Hydrogen effects in aluminum alloys

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Caskey, G.R. Jr.; Dexter, A.H.

    1976-01-01

    The permeability of six commercial aluminum alloys to deuterium and tritium was determined by several techniques. Surface films inhibited permeation under most conditions; however, contact with lithium deuteride during the tests minimized the surface effects. Under these conditions phi/sub D 2 / = 1.9 x 10 -2 exp (--22,400/RT) cc (NTP)atm/sup -- 1 / 2 / s -1 cm -1 . The six alloys were also tested before, during, and after exposure to high pressure hydrogen, and no hydrogen-induced effects on the tensile properties were observed

  16. Driving Ability of HMX based Aluminized Explosive Affected by the Reaction Degree of Aluminum Powder

    Science.gov (United States)

    Duan, Yingliang

    2017-06-01

    Due to the time scale of aluminum reaction, the detonation process of the aluminized explosive becomes very complex, and there is less agreement on the reaction mechanism of aluminum powder. If the reaction of aluminum occurs in the reaction zone, the energy released will further strengthen the work ability of detonation wave. So it is very important for characterizing the detonation parameters and detonation driving ability to accurately understand the role of aluminum powder in the reaction zone. In this paper, detonation driving process of HMX based aluminized explosive was studied by cylinder test, obtaining the expansion track of cylinder wall. In order to further research the reaction degree (λ) of aluminum in the reaction zone, the thermodynamic program VHL was used to calculate the detonation process at different reaction degrees, obtaining the parameters of detonation products thermodynamic state. Using the dynamic software LS-DYNA and the JWL equation of state by fitting the pressure and relative volume relationship, the cylinder test was simulated. Compared with the experimental results, when the reaction degree is 20%, the driving ability is found to be in agreement with measured ones. It is concluded that the driving ability of HMX based aluminized explosive can be more accurately characterized by considering the reaction degree of aluminum powder in the reaction zone.

  17. Lytic cell death induced by melittin bypasses pyroptosis but induces NLRP3 inflammasome activation and IL-1β release.

    Science.gov (United States)

    Martín-Sánchez, Fátima; Martínez-García, Juan José; Muñoz-García, María; Martínez-Villanueva, Miriam; Noguera-Velasco, José A; Andreu, David; Rivas, Luís; Pelegrín, Pablo

    2017-08-10

    The nucleotide-binding domain and leucine-rich repeat-containing receptor with a pyrin domain 3 (NLRP3) inflammasome is a sensor for different types of infections and alterations of homeostatic parameters, including abnormally high levels of the extracellular nucleotide ATP or crystallization of different metabolites. All NLRP3 activators trigger a similar intracellular pathway, where a decrease in intracellular K + concentration and permeabilization of plasma membrane are key steps. Cationic amphipathic antimicrobial peptides and peptide toxins permeabilize the plasma membrane. In fact, some of them have been described to activate the NLRP3 inflammasome. Among them, the bee venom antimicrobial toxin peptide melittin is known to elicit an inflammatory reaction via the NLRP3 inflammasome in response to bee venom. Our study found that melittin induces canonical NLRP3 inflammasome activation by plasma membrane permeabilization and a reduction in the intracellular K + concentration. Following melittin treatment, the apoptosis-associated speck-like protein, an adaptor protein with a caspase recruitment domain (ASC), was necessary to activate caspase-1 and induce IL-1β release. However, cell death induced by melittin prevented the formation of large ASC aggregates, amplification of caspase-1 activation, IL-18 release and execution of pyroptosis. Therefore, melittin-induced activation of the NLRP3 inflammasome results in an attenuated inflammasome response that does not result in caspase-1 dependent cell death.

  18. Oxidation dynamics of aluminum nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Chemical Engineering and Materials Science, Department of Computer Science, University of Southern California, Los Angeles, California 90089-0242 (United States)

    2015-02-23

    Aluminum nanorods (Al-NRs) are promising fuels for pyrotechnics due to the high contact areas with oxidizers, but their oxidation mechanisms are largely unknown. Here, reactive molecular dynamics simulations are performed to study thermally initiated burning of oxide-coated Al-NRs with different diameters (D = 26, 36, and 46 nm) in oxygen environment. We found that thinner Al-NRs burn faster due to the larger surface-to-volume ratio. The reaction initiates with the dissolution of the alumina shell into the molten Al core to generate heat. This is followed by the incorporation of environmental oxygen atoms into the resulting Al-rich shell, thereby accelerating the heat release. These results reveal an unexpectedly active role of the alumina shell as a “nanoreactor” for oxidation.

  19. Emersion induces nitrogen release and alteration of nitrogen metabolism in the intertidal genus Porphyra.

    Directory of Open Access Journals (Sweden)

    Jang K Kim

    Full Text Available We investigated emersion-induced nitrogen (N release from Porphyra umbilicalis Kütz. Thallus N concentration decreased during 4 h of emersion. Tissue N and soluble protein contents of P. umbilicalis were positively correlated and decreased during emersion. Growth of P. umbilicalis did not simply dilute the pre-emersion tissue N concentration. Rather, N was lost from tissues during emersion. We hypothesize that emersion-induced N release occurs when proteins are catabolized. While the δ(15N value of tissues exposed to emersion was higher than that of continuously submerged tissues, further discrimination of stable N isotopes did not occur during the 4 h emersion. We conclude that N release from Porphyra during emersion did not result from bacterial denitrification, but possibly as a consequence of photorespiration. The release of N by P. umbilicalis into the environment during emersion suggests a novel role of intertidal seaweeds in the global N cycle. Emersion also altered the physiological function (nitrate uptake, nitrate reductase and glutamine synthetase activity, growth rate of P. umbilicalis and the co-occurring upper intertidal species P. linearis Grev., though in a seasonally influenced manner. Individuals of the year round perennial species P. umbilicalis were more tolerant of emersion than ephemeral, cold temperate P. linearis in early winter. However, the mid-winter populations of both P. linearis and P. umbilicalis, had similar temporal physiological patterns during emersion.

  20. Assessment of chronic spontaneous urticaria by serum-induced tumor necrosis factor alpha and matrix metalloproteinase-9 release

    DEFF Research Database (Denmark)

    Falkencrone, Sidsel; Bindslev-Jensen, Carsten; Skov, Per Stahl

    BACKGROUND Previous studies from our group have demonstrated that IgE-mediated basophil activation leads to release of TNFα that in turn can induce matrix metallo-proteinase-9 (MMP-9) release from monocytes. We wished to investigate if serum from chronic spontaneous urticaria-patients with auto-a...

  1. Silymarin Ameliorates Diabetes-Induced Proangiogenic Response in Brain Endothelial Cells through a GSK-3β Inhibition-Induced Reduction of VEGF Release

    Directory of Open Access Journals (Sweden)

    Ahmed Alhusban

    2017-01-01

    Full Text Available Diabetes mellitus (DM is a major risk factor for cardiovascular disease. Additionally, it was found to induce a dysfunctional angiogenic response in the brain that was attributed to oxidative stress. Milk thistle seed extract (silymarin has potent antioxidant properties, though its potential use in ameliorating diabetes-induced aberrant brain angiogenesis is unknown. Glycogen synthase kinase-3β is a regulator of angiogenesis that is upregulated by diabetes. Its involvement in diabetes-induced angiogenesis is unknown. To evaluate the potential of silymarin to ameliorate diabetes-induced aberrant angiogenesis, human brain endothelial cells (HBEC-5i were treated with 50 μg/mL advanced glycation end (AGE products in the presence or absence of silymarin (50, 100 μM. The angiogenic potential of HBEC-5i was evaluated in terms of migration and in vitro tube formation capacities. The involvement of GSK-3β was also evaluated. AGE significantly increased the migration and tube formation rates of HBEC-5i by about onefold (p=0.0001. Silymarin reduced AGE-induced migration in a dose-dependent manner where 50 μM reduced migration by about 50%, whereas the 100 μM completely inhibited AGE-induced migration. Similarly, silymarin 50 μg/mL blunted AGE-induced tube formation (p=0.001. This effect was mediated through a GSK-3β-dependent inhibition of VEGF release. In conclusion, silymarin inhibits AGE-induced aberrant angiogenesis in a GSK-3β-mediated inhibition of VEGF release.

  2. Evaluation of Optical Depths and Self-Absorption of Strontium and Aluminum Emission Lines in Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Alfarraj, Bader A; Bhatt, Chet R; Yueh, Fang Yu; Singh, Jagdish P

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) is a widely used laser spectroscopic technique in various fields, such as material science, forensic science, biological science, and the chemical and pharmaceutical industries. In most LIBS work, the analysis is performed using radiative transitions from atomic emissions. In this study, the plasma temperature and the product [Formula: see text] (the number density N and the absorption path length [Formula: see text]) were determined to evaluate the optical depths and the self-absorption of Sr and Al lines. A binary mixture of strontium nitrate and aluminum oxide was used as a sample, consisting of variety of different concentrations in powder form. Laser-induced breakdown spectroscopy spectra were collected by varying various parameters, such as laser energy, gate delay time, and gate width time to optimize the LIBS signals. Atomic emission from Sr and Al lines, as observed in the LIBS spectra of different sample compositions, was used to characterize the laser induced plasma and evaluate the optical depths and self-absorption of LIBS.

  3. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  4. Isoform expression in the multiple soluble malate dehydrogenase of Hoplias malabaricus (Erythrinidae, Characiformes

    Directory of Open Access Journals (Sweden)

    M. R. Aquino-Silva

    Full Text Available Kinetic properties and thermal stabilities of Hoplias malabaricus liver and skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37 and its isolated isoforms were analyzed to further study the possible sMDH-A* locus duplication evolved from a recent tandem duplication. Both A (A1 and A2 and B isoforms had similar optima pH (7.5-8.0. While Hoplias A isoform could not be characterized as thermostable, B could as thermolabile. A isoforms differed from B isoform in having higher Km values for oxaloacetate. The possibly duplicated A2 isoform showed higher substrate affinity than the A1. Hoplias duplicated A isoforms may influence the direction of carbon flow between glycolisis and gluconeogenesis.

  5. Isoform expression in the multiple soluble malate dehydrogenase of Hoplias malabaricus (Erythrinidae, Characiformes

    Directory of Open Access Journals (Sweden)

    Aquino-Silva M. R.

    2003-01-01

    Full Text Available Kinetic properties and thermal stabilities of Hoplias malabaricus liver and skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37 and its isolated isoforms were analyzed to further study the possible sMDH-A* locus duplication evolved from a recent tandem duplication. Both A (A1 and A2 and B isoforms had similar optima pH (7.5-8.0. While Hoplias A isoform could not be characterized as thermostable, B could as thermolabile. A isoforms differed from B isoform in having higher Km values for oxaloacetate. The possibly duplicated A2 isoform showed higher substrate affinity than the A1. Hoplias duplicated A isoforms may influence the direction of carbon flow between glycolisis and gluconeogenesis.

  6. Betulin induces cytochrome c release and apoptosis in colon cancer cells via NOXA.

    Science.gov (United States)

    Zhou, Zhiyuan; Zhu, Chenfang; Cai, Zhongfang; Zhao, Feng; He, Liu; Lou, Xiaolou; Qi, Xiaoliang

    2018-05-01

    Betulin is a common triterpene that can be readily obtained from various plants, particularly birch trees, in their natural environment. Specific tumor cells are sensitive to betulin, whereas healthy cells are not. Betulin was observed to stimulate programmed cell death of various cancer cell lines; however, the precise molecular mechanism of action of betulin remains unknown. The present study used colon cancer cells, in which mass apoptosis triggered by betulin was identified, and the apoptotic process was demonstrated to occur via the activation of caspase-3 and -9 pathways. In addition, release of cytochrome c was detected. Furthermore, the pro-apoptotic member of the Bcl-2 protein family, NOXA, was induced following treatment with betulin, and the downregulation of NOXA markedly suppressed the release of cytochrome c and apoptosis in colon cancer cells. Conversely, the overexpression of NOXA further enhanced betulin-induced apoptosis. The present study therefore offers novel insights into the mechanism of action of the natural compound betulin against tumors.

  7. Production of aluminum metal by electrolysis of aluminum sulfide

    Science.gov (United States)

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  8. Aryl Hydrocarbon Receptor (AhR Modulates Cockroach Allergen-Induced Immune Responses through Active TGFβ1 Release

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2014-01-01

    Full Text Available Background. Aryl hydrocarbon receptor (AhR, a multifunctional regulator that senses and responds to environmental stimuli, plays a role in normal cell development and immune regulation. Recent evidence supports a significant link between environmental exposure and AhR in the development of allergic diseases. We sought to investigate whether AhR plays a role in mediating cockroach allergen-induced allergic immune responses. Methods. AhR expression in human lung fibroblasts from asthmatic and healthy individuals and in cockroach extract (CRE treated human lung fibroblasts (WI-38 was examined. The role of AhR in modulating CRE induced TGFβ1 production was investigated by using AhR agonist, TCDD, antagonist CH122319, and knockdown of AhR. The role of latent TGFβ1 binding protein-1 (LTBP1 in mediating TCDD induced active TGFβ1 release was also examined. Results. AhR expression was higher in airway fibroblasts from asthmatic subjects as compared to healthy controls. AhR in fibroblasts was activated by TCDD with an increased expression of cyp1a1 and cyp1b1. Increased AhR expression was observed in CRE-treated fibroblasts. Importantly, CRE induced TGFβ1 production in fibroblasts was significantly enhanced by TCDD but inhibited by CH122319. Reduced TGFβ1 production was further confirmed in fibroblasts with AhR knockdown. Moreover, AhR knockdown inhibited CRE induced fibroblast differentiation. Furthermore, TCDD induced active TGFβ1 release was significantly inhibited by LTBP1 knockdown. Conclusion. These results provide evidence for the role of AhR in modulating cockroach allergen-induced immune responses through controlling the active TGFβ1 release, suggesting a possible synergistic effect between exposure to allergens and environmental chemicals on the development of allergic diseases.

  9. Bid-Induced Release of AIF/EndoG from Mitochondria Causes Apoptosis of Macrophages during Infection with Leptospira interrogans

    Directory of Open Access Journals (Sweden)

    Wei-Lin Hu

    2017-11-01

    Full Text Available Leptospirosis is a global zoonotic infectious disease caused by pathogenic Leptospira species. Leptospire-induced macrophage apoptosis through the Fas/FasL-caspase-8/3 pathway plays an important role in the survival and proliferation of the pathogen in hosts. Although, the release of mitochondrial apoptosis-inducing factor (AIF and endonuclease G (EndoG in leptospire-infected macrophages has been described, the mechanisms linking caspase and mitochondrion-related host-cell apoptosis has not been determined. Here, we demonstrated that leptospire-infection induced apoptosis through mitochondrial damages in macrophages. Apoptosis was caused by the mitochondrial release and nuclear translocation of AIF and/or EndoG, leading to nuclear DNA fragmentation. However, the mitochondrion-related CytC-caspase-9/3 pathway was not activated. Next, we found that the release and translocation of AIF and/or EndoG was preceded by the activation of the BH3-interacting domain death agonist (Bid. Furthermore, our data demonstrated that caspase-8 was activated during the infection and caused the activation of Bid. Meanwhile, high reactive oxygen species (ROS trigged by the infection caused the dephosphorylation of Akt, which also activated Bid. In conclusion, Bid-mediated mitochondrial release of AIF and/or EndoG followed by nuclear translocation is a major mechanism of leptospire- induced apoptosis in macrophages, and this process is modulated by both caspase-8 and ROS-Akt signal pathways.

  10. BONDING ALUMINUM METALS

    Science.gov (United States)

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  11. Convenient method of simultaneously analyzing aluminum and magnesium in pharmaceutical dosage forms using californium-252 thermal neutron activation

    International Nuclear Information System (INIS)

    Landolt, R.R.; Hem, S.L.

    1983-01-01

    A commercial antacid suspension containing aluminum hydroxide and magnesium hydroxide products was used as a model sample to study the use of a californium-252 thermal neutron activation as a method for quantifying aluminum content as well as for the simultaneous assay of aluminum and magnesium. A 3.5-micrograms californium-252 source was used for the activation, and the induced aluminum-28 and magnesium-27 activity was simultaneously measured by sodium iodide crystal gamma-ray spectrometry using dual single-channel analyzers and scalers. The antacid suspension was contained in a chamber designed with the unique capability of serving as the container for counting the induced radioactivity in addition to being the irradiation chamber itself. This pilot study demonstrated that use of more intense californium-252 sources, which are commonly available, would provide a method that is competitive with the ethylenediaminetetraacetic acid titration method in precision and in other aspects as well

  12. Improving the Microstructure and Electrical Properties of Aluminum Induced Polysilicon Thin Films Using Silicon Nitride Capping Layer

    Directory of Open Access Journals (Sweden)

    Min-Hang Weng

    2014-01-01

    Full Text Available We investigated the capping layer effect of SiNx (silicon nitride on the microstructure, electrical, and optical properties of poly-Si (polycrystalline silicon prepared by aluminum induced crystallization (AIC. The primary multilayer structure comprised Al (30 nm/SiNx (20 nm/a-Si (amorphous silicon layer (100 nm/ITO coated glass and was then annealed in a low annealing temperature of 350°C with different annealing times, 15, 30, 45, and 60 min. The crystallization properties were analyzed and verified by X-ray diffraction (XRD and Raman spectra. The grain growth was analyzed via optical microscope (OM and scanning electron microscopy (SEM. The improved electrical properties such as Hall mobility, resistivity, and dark conductivity were investigated by using Hall and current-voltage (I-V measurements. The results show that the amorphous silicon film has been effectively induced even at a low temperature of 350°C and a short annealing time of 15 min and indicate that the SiNx capping layer can improve the grain growth and reduce the metal content in the induced poly-Si film. It is found that the large grain size is over 20 μm and the carrier mobility values are over 80 cm2/V-s.

  13. Morphological changes in Scenedesmus induced by infochemicals released in situ from zooplankton grazers

    NARCIS (Netherlands)

    Lürling, M.; Van Donk, E.

    1997-01-01

    Biochemical substances released from Daphnia galeata induced colony formation in the green alga Scenedesmus acutus. Normally this strain consisted mainly of single cells in cultures. However, if exposed for 48 h to either water with live Daphnia or to O.1-mu m filtered water from a culture with

  14. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells

    OpenAIRE

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M.; Eguchi, Satoru; Brown, Michael D.; Park, Joon-Young

    2015-01-01

    This study assesses effects of aerobic exercise training on the release of microparticles from endothelial cells and corroborates these findings using an in vitro experimental exercise stimulant, laminar shear stress. Furthermore, this study demonstrated that shear stress-induced mitochondrial biogenesis mediates these effects against endothelial cell activation and injury.

  15. Crystal structures of a halophilic archaeal malate synthase from Haloferax volcanii and comparisons with isoforms A and G

    Science.gov (United States)

    2011-01-01

    Background Malate synthase, one of the two enzymes unique to the glyoxylate cycle, is found in all three domains of life, and is crucial to the utilization of two-carbon compounds for net biosynthetic pathways such as gluconeogenesis. In addition to the main isoforms A and G, so named because of their differential expression in E. coli grown on either acetate or glycolate respectively, a third distinct isoform has been identified. These three isoforms differ considerably in size and sequence conservation. The A isoform (MSA) comprises ~530 residues, the G isoform (MSG) is ~730 residues, and this third isoform (MSH-halophilic) is ~430 residues in length. Both isoforms A and G have been structurally characterized in detail, but no structures have been reported for the H isoform which has been found thus far only in members of the halophilic Archaea. Results We have solved the structure of a malate synthase H (MSH) isoform member from Haloferax volcanii in complex with glyoxylate at 2.51 Å resolution, and also as a ternary complex with acetyl-coenzyme A and pyruvate at 1.95 Å. Like the A and G isoforms, MSH is based on a β8/α8 (TIM) barrel. Unlike previously solved malate synthase structures which are all monomeric, this enzyme is found in the native state as a trimer/hexamer equilibrium. Compared to isoforms A and G, MSH displays deletion of an N-terminal domain and a smaller deletion at the C-terminus. The MSH active site is closely superimposable with those of MSA and MSG, with the ternary complex indicating a nucleophilic attack on pyruvate by the enolate intermediate of acetyl-coenzyme A. Conclusions The reported structures of MSH from Haloferax volcanii allow a detailed analysis and comparison with previously solved structures of isoforms A and G. These structural comparisons provide insight into evolutionary relationships among these isoforms, and also indicate that despite the size and sequence variation, and the truncated C-terminal domain of the H

  16. Determination of malation, methidathion, and chlorpyrifos ethyl pesticides using acetylcholinesterase biosensor based on Nafion/Ag@rGO-NH_2 nanocomposites

    International Nuclear Information System (INIS)

    Guler, Muhammet; Turkoglu, Vedat; Basi, Zehra

    2017-01-01

    Herein, a facile electrochemical acetylcholinesterase (EC 3.1.1.7; AChE) biosensor based on nafion (NA) and Ag nanoparticles supported on amine functionalized reduced graphene oxide (rGO-NH_2) was developed. The Ag@rGO-NH_2 nanocomposite was characterized using Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and X-ray diffraction (XRD). After being optimized, the biosensor exhibited excellent electrochemical response to the oxidation of thiocholine, the hydrolysis product of acetylthiocholine chloride (ATCl) catalyzed by AChE. An apparent Michealis-Menten value of 20.5 μM was obtained. Under optimized conductions, the biosensor detected malation, methidathion, and chlorpyrifos ethyl in the linear range from 0.0063 to 0.077 μg/mL, from 0.012 to 0.105 μg/mL, and from 0.021 to 0.122 μg/mL, respectively. The detection limit (LoD) was 4.5 ng/mL for malation, 9.5 ng/mL for methidathion, and 14 ng/mL for chlorpyrifos ethyl. Also, the NA/Ag@rGO-NH_2/AChE/GCE biosensor showed god sensitivity, stability and repeatability, which provides a promising tool for the detection of organophosphate pesticides.

  17. Ultraviolet radiation-induced interleukin 6 release in HeLa cells is mediated via membrane events in a DNA damage-independent way.

    Science.gov (United States)

    Kulms, D; Pöppelmann, B; Schwarz, T

    2000-05-19

    Evidence exists that ultraviolet radiation (UV) affects molecular targets in the nucleus or at the cell membrane. UV-induced apoptosis was found to be mediated via DNA damage and activation of death receptors, suggesting that nuclear and membrane effects are not mutually exclusive. To determine whether participation of nuclear and membrane components is also essential for other UV responses, we studied the induction of interleukin-6 (IL-6) by UV. Exposing HeLa cells to UV at 4 degrees C, which inhibits activation of surface receptors, almost completely prevented IL-6 release. Enhanced repair of UV-mediated DNA damage by addition of the DNA repair enzyme photolyase did not affect UV-induced IL-6 production, suggesting that in this case membrane events predominant over nuclear effects. UV-induced IL-6 release is mediated via NFkappaB since the NFkappaB inhibitor MG132 or transfection of cells with a super-repressor form of the NFkappaB inhibitor IkappaB reduced IL-6 release. Transfection with a dominant negative mutant of the signaling protein TRAF-2 reduced IL-6 release upon exposure to UV, indicating that UV-induced IL-6 release is mediated by activation of the tumor necrosis factor receptor-1. These data demonstrate that UV can exert biological effects mainly by affecting cell surface receptors and that this is independent of its ability to induce nuclear DNA damage.

  18. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  19. 21 CFR 73.1645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum. It...

  20. Solid Aluminum Borohydrides for Prospective Hydrogen Storage.

    Science.gov (United States)

    Dovgaliuk, Iurii; Safin, Damir A; Tumanov, Nikolay A; Morelle, Fabrice; Moulai, Adel; Černý, Radovan; Łodziana, Zbigniew; Devillers, Michel; Filinchuk, Yaroslav

    2017-12-08

    Metal borohydrides are intensively researched as high-capacity hydrogen storage materials. Aluminum is a cheap, light, and abundant element and Al 3+ can serve as a template for reversible dehydrogenation. However, Al(BH 4 ) 3 , containing 16.9 wt % of hydrogen, has a low boiling point, is explosive on air and has poor storage stability. A new family of mixed-cation borohydrides M[Al(BH 4 ) 4 ], which are all solid under ambient conditions, show diverse thermal decomposition behaviors: Al(BH 4 ) 3 is released for M=Li + or Na + , whereas heavier derivatives evolve hydrogen and diborane. NH 4 [Al(BH 4 ) 4 ], containing both protic and hydridic hydrogen, has the lowest decomposition temperature of 35 °C and yields Al(BH 4 ) 3 ⋅NHBH and hydrogen. The decomposition temperatures, correlated with the cations' ionic potential, show that M[Al(BH 4 ) 4 ] species are in the most practical stability window. This family of solids, with convenient and versatile properties, puts aluminum borohydride chemistry in the mainstream of hydrogen storage research, for example, for the development of reactive hydride composites with increased hydrogen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  2. Effect of antioxidant supplementation on exercise-induced cardiac troponin release in cyclists: a randomized trial.

    Science.gov (United States)

    Klinkenberg, Lieke J J; Res, Peter T; Haenen, Guido R; Bast, Aalt; van Loon, Luc J C; van Dieijen-Visser, Marja P; Meex, Steven J R

    2013-01-01

    Cardiac troponin is the biochemical gold standard to diagnose acute myocardial infarction. Interestingly however, elevated cardiac troponin concentrations are also frequently observed during and after endurance-type exercise. Oxidative stress associated with prolonged exercise has been proposed to contribute to cardiac troponin release. Therefore, the aim of this study was to assess the effect of 4 week astaxanthin supplementation (a potent cartenoid antioxidant) on antioxidant capacity and exercise-induced cardiac troponin release in cyclists. Thirty-two well-trained male cyclists (age 25±5, weight 73±7 kg, maximum O2 uptake 60±5 mL·kg(-1)·min(-1), Wmax 5.4±0.5 W·kg(-1); mean ± SD) were repeatedly subjected to a laboratory based standardized exercise protocol before and after 4 weeks of astaxanthin (20 mg/day), or placebo supplementation in a double-blind randomized manner. Blood samples were obtained at baseline, at 60 min of cycling and immediately post-exercise (≈ 120 min). The pre-supplementation cycling trial induced a significant rise of median cardiac troponin T concentrations from 3.2 (IQR 3.0-4.2) to 4.7 ng/L (IQR 3.7-6.7), immediately post-exercise (pexercise-induced cardiac troponin T release (p = 0.24), as measured by the incremental area under the curve. Furthermore, the elevation in basal plasma astaxanthin concentrations was not reflected in changes in antioxidant capacity markers (trolox equivalent antioxidant capacity, uric acid, and malondialdehyde). Markers of inflammation (high-sensitivity C-reactive protein) and exercise-induced skeletal muscle damage (creatine kinase) were equally unaffected by astaxanthin supplementation. Despite substantial increases in plasma astaxanthin concentrations, astaxanthin supplementation did not improve antioxidant capacity in well-trained cyclists. Accordingly, exercise-induced cardiac troponin T concentrations were not affected by astaxanthin supplementation. ClinicalTrials.gov NCT01241877.

  3. Hydrostatic Pressure–Induced Release of Stored Calcium in Cultured Rat Optic Nerve Head Astrocytes

    Science.gov (United States)

    Mandal, Amritlal; Delamere, Nicholas A.

    2010-01-01

    Purpose. Elevated intraocular pressure is associated with glaucomatous optic nerve damage. Other investigators have shown functional changes in optic nerve head astrocytes subjected to elevated hydrostatic pressure (HP) for 1 to 5 days. Recently, the authors reported ERK1/2, p90RSK and NHE1 phosphorylation after 2 hours. Here they examine calcium responses at the onset of HP to determine what precedes ERK1/2 phosphorylation. Methods. Cytoplasmic calcium concentration ([Ca2+]i) was measured in cultured rat optic nerve astrocytes loaded with fura-2. The cells were placed in a closed imaging chamber and subjected to an HP increase of 15 mm Hg. Protein phosphorylation was detected by Western blot analysis. Results. The increase of HP caused an immediate slow increase in [Ca2+]i. The response persisted in calcium-free solution and when nickel chloride (4 mM) was added to suppress channel-mediated calcium entry. Previous depletion of the ER calcium stores by cyclopiazonic acid abolished the HP-induced calcium level increase. The HP-induced increase persisted in cells exposed to xestospongin C, an inhibitor of IP3R-mediated calcium release. In contrast, ryanodine receptor (RyR) antagonist ruthenium red (10 μM) or dantrolene (25 μM) inhibited the HP-induced calcium increase. The HP-induced calcium increase was abolished when ryanodine-sensitive calcium stores were pre-depleted with caffeine (3 mM). HP caused ERK1/2 phosphorylation. The magnitude of the ERK1/2 phosphorylation response was reduced by ruthenium red and dantrolene. Conclusions. Increasing HP causes calcium release from a ryanodine-sensitive cytoplasmic store and subsequent ERK1/2 activation. Calcium store release appears to be a required early step in the initial astrocyte response to an HP increase. PMID:20071675

  4. The autocrine role of tryptase in pressure overload-induced mast cell activation, chymase release and cardiac fibrosis

    Directory of Open Access Journals (Sweden)

    Jianping Li

    2016-03-01

    Results and conclusion: The results indicate the presence of PAR-2 on MCs and that tryptase inhibition and nedocromil prevented TAC-induced fibrosis and increases in MC density, activation, and chymase release. Tryptase also significantly increased chymase concentration in ventricular slice culture media, which was prevented by the tryptase inhibitor. Hydroxyproline concentration in culture media was significantly increased with tryptase incubation as compared to the control group and the tryptase group incubated with nafamostat mesilate or chymostatin. We conclude that tryptase contributes to TAC-induced cardiac fibrosis primarily via activation of MCs and the amplified release of chymase.

  5. Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Kiyoshi [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Department of Neurosurgery, Omuta City General Hospital, 2-19-1 Takarazaka, Omuta-City, Fukuoka 836-8567 (Japan); Kawahara, Ko-ichi; Biswas, Kamal Krishna; Ito, Takashi [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Tancharoen, Salunya [Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Rd., Rajthevee Bangkok 10400 (Thailand); Morimoto, Yoko [Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Matsuda, Fumiyo [Division of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8560 (Japan); Oyama, Yoko; Takenouchi, Kazunori [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Miura, Naoki [Laboratory of Veterinary Diagnostic Imaging, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065 (Japan); Arimura, Noboru; Nawa, Yuko; Meng, Xiaojie; Shrestha, Binita; Arimura, Shinichiro [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); and others

    2009-07-24

    High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.

  6. Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells

    International Nuclear Information System (INIS)

    Kikuchi, Kiyoshi; Kawahara, Ko-ichi; Biswas, Kamal Krishna; Ito, Takashi; Tancharoen, Salunya; Morimoto, Yoko; Matsuda, Fumiyo; Oyama, Yoko; Takenouchi, Kazunori; Miura, Naoki; Arimura, Noboru; Nawa, Yuko; Meng, Xiaojie; Shrestha, Binita; Arimura, Shinichiro

    2009-01-01

    High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.

  7. [The effect of aluminum adjuvant and immunization schedule on immunogenicity of Sabin inactivated poliovirus vaccine].

    Science.gov (United States)

    Wang, Fang; Zhang, Ming; Xie, Bing-Feng; Cao, Han; Tong, Shao-Yong; Wang, Jun-Rong; Yu, Xiao-Ping; Tang, Yang; Yang, Jing-Ran; Sun, Ming-Bo

    2013-04-01

    To study the effect of aluminume adjuvant and immunization schedule on immunogenicity of Sabin inactivated poliovirus vaccine. Four batches of Sabin IPV were produced by different concentrations of type 1, 2, and 3 poliovirus and administrated on three-dose schedule at 0, 1, 2 months and 0, 2, 4 months on rats. Serum samples were collected one month after each dose and neutralizing antibody titers against three types poliovirus were determined by micro-neutralization assay. The GMTs of neutralizing antibodies against three types poliovirus increased significantly and the seropositivity rates were 100% in all groups after 3 doses. There was no significant difference between two immunization schedules, and the 0, 2, 4 month schedule could induce higher level neutralizing antibody compared to the 0, 1, 2 month schedule. The groups with aluminum adjuvant could induce higher level neutralizing antibody compared to the groups without adjuvant. Aluminum djuvant and immunization schedule could improve the immunogenicity of Sabin IPV.

  8. Measurement of the residual stress distribution in a thick pre-stretched aluminum plate

    Science.gov (United States)

    Yuan, S. X.; Li, X. Q.; M, S.; Zhang, Y. C.; Gong, Y. D.

    2008-12-01

    Thick pre-stretched aluminum alloy plates are widely used in aircraft, while machining distortion caused by initial residual stress release in thick plates is a common and serious problem. To reduce the distortion, the residual stress distribution in thick plate must be measured. According to the characteristics of the thick pre-stretched aluminum alloy plate, based the elastic mechanical theory, this article deduces the modified layer-removal strain method adapting two different strain situations, which are caused by tensile and compressive stress. To validate this method, the residual stresses distribution along the thick direction of plate 2D70T351 is measured by this method, it is shown that the new method deduced in this paper is simple and accurate, and is very useful in engineering.

  9. Colorimetric properties of TiN coating implanted by aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Q.G. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)]. E-mail: zhouqg99@mails.tsinghua.edu.cn; Bai, X.D. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xue, X.Y. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Ling, Y.H. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Chen, X.W. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xu, J. [Beijing Great Wall Ti-Gold Corporation, Beijing 100095 (China); Wang, D.R. [Beijing Great Wall Ti-Gold Corporation, Beijing 100095 (China)

    2005-04-05

    TiN coating was prepared by cathodic arc deposition and implanted aluminum using a metal vacuum vapor arc ion source with doses ranging from 5 x 10{sup 16} to 2 x 10{sup 17} ions/cm{sup 2}. The purpose of this work was to determine the dependence of the colorimetric properties of TiN films on the implanting conditions, especially by the aluminum ion implantation. The colorimetry of coatings was evaluated quantitatively in terms of CIE L * a * b *. The color coordinate values L *, a *, and b * provide a numerical representation of the color of the surface. With the dose increasing, the surface color has no obvious change but the surface turns brighter, and a * as well as b * values all decline. The X-ray diffraction patterns showed that the aluminum implantation induced a slight shift of diffraction peaks. X-ray photoemission spectroscopy was employed to analyze the surface valence states. The oxygen in surface top layer does not decrease a * and b * values, it partially combined with nitrogen.

  10. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells.

    Science.gov (United States)

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M; Eguchi, Satoru; Brown, Michael D; Park, Joon-Young

    2015-08-01

    The concept of enhancing structural integrity of mitochondria has emerged as a novel therapeutic option for cardiovascular disease. Flow-induced increase in laminar shear stress is a potent physiological stimulant associated with exercise, which exerts atheroprotective effects in the vasculature. However, the effect of laminar shear stress on mitochondrial remodeling within the vascular endothelium and its related functional consequences remain largely unknown. Using in vitro and in vivo complementary studies, here, we report that aerobic exercise alleviates the release of endothelial microparticles in prehypertensive individuals and that these salutary effects are, in part, mediated by shear stress-induced mitochondrial biogenesis. Circulating levels of total (CD31(+)/CD42a(-)) and activated (CD62E(+)) microparticles released by endothelial cells were significantly decreased (∼40% for both) after a 6-mo supervised aerobic exercise training program in individuals with prehypertension. In cultured human endothelial cells, laminar shear stress reduced the release of endothelial microparticles, which was accompanied by an increase in mitochondrial biogenesis through a sirtuin 1 (SIRT1)-dependent mechanism. Resveratrol, a SIRT1 activator, treatment showed similar effects. SIRT1 knockdown using small-interfering RNA completely abolished the protective effect of shear stress. Disruption of mitochondrial integrity by either antimycin A or peroxisome proliferator-activated receptor-γ coactivator-1α small-interfering RNA significantly increased the number of total, and activated, released endothelial microparticles, and shear stress restored these back to basal levels. Collectively, these data demonstrate a critical role of endothelial mitochondrial integrity in preserving endothelial homeostasis. Moreover, prolonged laminar shear stress, which is systemically elevated during aerobic exercise in the vessel wall, mitigates endothelial dysfunction by promoting

  11. Suckling induced insulin-like growth factor-1 (IGF-1) release in mother rats.

    Science.gov (United States)

    Lékó, András H; Cservenák, Melinda; Dobolyi, Árpád

    2017-12-01

    Lactation involves significant neuroendocrine changes. The elevated prolactin (PRL) release from the pituitary, induced markedly by suckling, is the most relevant example. Suckling also causes a significant and rapid elevation in growth hormone (GH) levels. GH is necessary for milk synthesis as milk yield is stopped completely in the absence of PRL and GH, while the absence of PRL alone causes only a 50% reduction. Insulin-like growth factor-1 (IGF-1) plays an important role in the GH axis. GH exerts its effects through IGF-1 in the periphery, for example in the mammary gland. In addition, IGF-1 is responsible for the long-loop feedback control of GH secretion. IGF-1 secretion has not been established yet in mothers. Therefore, in the present study, we investigated the effect of suckling on serum IGF-1 level in rat mothers and correlated it with serum PRL levels. We examined a potential mechanism of the regulation of IGF-1 level during suckling by administering IGF-1 into the lateral ventricle of rat mothers continuously for 12days, or acutely, right before the start of suckling. We described that suckling affected IGF-1 release based on one-way repeated measures ANOVA (F=10.8 and pIGF-1 level 30min after the start of suckling (pIGF-1 release. The prolonged central IGF-1 administration diminished the suckling-induced IGF-1 surge (F=9.19 and pIGF-1 release either by elevating PRL or GH. Long-loop feedback via IGF-1 in the GH axis can diminish this action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Systematic replacement of lysine with glutamine and alanine in Escherichia coli malate synthase G: effect on crystallization

    International Nuclear Information System (INIS)

    Anstrom, David M.; Colip, Leslie; Moshofsky, Brian; Hatcher, Eric; Remington, S. James

    2005-01-01

    Alanine and glutamine mutations were made to the same 15 lysine positions on the surface of E. coli malate synthase G and the impact on crystallization observed. The results support lysine replacement for improvement of crystallization and provide insight into site selection and type of amino-acid replacement. Two proposals recommend substitution of surface lysine residues as a means to improve the quality of protein crystals. In proposal I, substitution of lysine by alanine has been suggested to improve crystallization by reducing the entropic cost of ordering flexible side chains at crystal contacts. In proposal II, substitution of lysine by residues more commonly found in crystal contacts, such as glutamine, has been proposed to improve crystallization. 15 lysine residues on the surface of Escherichia coli malate synthase G, distributed over a variety of secondary structures, were individually mutated to both alanine and glutamine. For 28 variants, detailed studies of the effect on enzymatic activity and crystallization were conducted. This has permitted direct comparison of the relative effects of the two types of mutations. While none of the variants produced crystals suitable for X-ray structural determination, small crystals were obtained in a wide variety of conditions, in support of the general approach. Glutamine substitutions were found to be more effective than alanine in producing crystals, in support of proposal II. Secondary structure at the site of mutation does not appear to play a major role in determining the rate of success

  13. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant

    Science.gov (United States)

    Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong

    2017-02-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

  14. Damage characterization and modeling of a 7075-T651 aluminum plate

    International Nuclear Information System (INIS)

    Jordon, J.B.; Horstemeyer, M.F.; Solanki, K.; Bernard, J.D.; Berry, J.T.; Williams, T.N.

    2009-01-01

    In this paper, the damage-induced anisotropy arising from material microstructure heterogeneities at two different length scales was characterized and modeled for a wrought aluminum alloy. Experiments were performed on a 7075-T651 aluminum alloy plate using sub-standard tensile specimens in three different orientations with respect to the rolling direction. Scanning electron microscopy was employed to characterize the stereology of the final damage state in terms of cracked and or debonded particles. A physically motivated internal state variable continuum model was used to predict fracture by incorporating material microstructural features. The continuum model showed good comparisons to the experimental data by capturing the damage-induced anisotropic material response. Estimations of the mechanical stress-strain response, material damage histories, and final failure were numerically calculated and experimentally validated thus demonstrating that the final failure state was strongly dependent on the constituent particle morphology.

  15. Protective Effect of Ginkgo Biloba Leaf Extract on Learning and Memory Deficit Induced by Aluminum in Model Rats

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To examine the protective effect of Ginkgo biloba leaf extract (GbE) on learning and memory deficit induced by aluminum chloride (AlCl3), and explore its mechanisms. Methods: The rat models with learning and memory deficit were induced by administering via gastrogavage and drinking of AlCl3 solution. And the model rats were treated with GbE at the dose of 50, 100, 200 mg/kg every day for 2months accompanied with drinking of AlCl3 solution, respectively. Their abilities of spatial learning and memory were tested by Morris water maze, and the acetylcholinesterase (AChE) activity in serum was assayed with chemical method, the AChE expression in hippocampus was observed by immunohistochemistry assay,and then quantitative analysis was done by BI 2000 image analysis system. Results: Learning and memory deficit of rats could be induced by AlCl3 solution (P<0.01), and AChE expressions in rats hippocampus were increased (P<0.01); GbE ameliorated learning and memory deficit and reduced AChE expression in rats hippocampus in a dose-dependent manner, while GbE significantly increased serum AChE activity at the dose of 200 mg/kg each day (P<0.05). Conclusion: GbE can ameliorate learning and memory deficit induced by AlCl3, which may be due to its inhibition of the AChE expression in hippocampus.

  16. Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas

    International Nuclear Information System (INIS)

    Ma, Q.L.; Motto-Ros, V.; Lei, W.Q.; Boueri, M.; Bai, X.S.; Zheng, L.J.; Zeng, H.P.; Yu, J.

    2010-01-01

    Laser ablation in background gas implies supplementary complexities with respect to what happens in the vacuum. It is however essential to understand in detail the involved mechanisms for a number of applications requiring the ablation to be performed in an ambient gas at relative high pressure, such as pulsed-laser deposition, or laser-induced breakdown spectroscopy. In this paper, the expansion of a vapor plume ablated from an aluminum target into an argon gas at atmospheric pressure is experimentally investigated using time- and space-resolved emission spectroscopy. The obtained results provide a detailed description of the interplay between the vapor and the gas. The electron density, the temperature and the number densities (and therefore the partial pressures) of aluminum vapor and argon gas have been measured in and surrounding the vapor plume. Our observations show a confinement of the vapor plume by the gas, which is expected as predicted by the usual hydrodynamics models. The result is a plasma core with quite uniform distributions in electron density, temperature and number densities. Such plasma core presents an ideal emission source for spectroscopic applications. It is however evidenced by our observations that a large amount of argon is mixed into the aluminum plume in the plasma core, which invalidates in the experimental conditions that we used, the hydrodynamic 'piston' model where the background gas is pushed out by the shock wave surrounding the vapor plume. Instead, other mechanisms such as laser-supported detonation wave should play important roles in the early stage of the expansion of the plasma for the determination of its morphology at longer delays.

  17. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.

    Science.gov (United States)

    Wu, Liping; Oshima, Tadayuki; Shan, Jing; Sei, Hiroo; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2015-10-15

    Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs. Copyright © 2015 the American Physiological Society.

  18. Research of plating aluminum and aluminum foil on internal surface of carbon fiber composite material centrifuge rotor drum

    International Nuclear Information System (INIS)

    Lu Xiuqi; Dong Jinping; Dai Xingjian

    2014-01-01

    In order to improve the corrosion resistance, thermal conductivity and sealability of the internal surface of carbon fiber/epoxy composite material centrifuge rotor drum, magnetron sputtering aluminum and pasting an aluminum foil on the inner wall of the drum are adopted to realize the aim. By means of XRD, SEM/EDS and OM, the surface topography of aluminum coated (thickness of 5 μm and 12 μm) and aluminum foil (12 μm) are observed and analyzed; the cohesion of between aluminum coated (or aluminum foil) and substrate material (CFRP) is measured by scratching experiment, direct drawing experiment, and shear test. Besides, the ultra-high-speed rotation experiment of CFRP ring is carried out to analyze stress and strain of coated aluminum (or aluminum foil) which is adhered on the ring. The results showed aluminum foil pasted on inner surface do better performance than magnetron sputtering aluminum on CFRP centrifuge rotor drum. (authors)

  19. Mechanisms of the induction of apoptosis mediated by radiation-induced cytokine release

    International Nuclear Information System (INIS)

    Babini, G.; Bellinzona, V.E.; Baiocco, G.; Ottolenghi, A.; Morini, J.; Mariotti, L.; Unger, K.

    2015-01-01

    The aim of the present work was to investigate the mechanisms of radiation-induced bystander signalling leading to apoptosis in non-irradiated co-cultured cells. Cultured non-transformed cells were irradiated, and the effect on the apoptosis rate on co-cultured non-irradiated malignant cells was determined. For this, two different levels of the investigation are presented, i.e. release of signalling proteins and transcriptomic profiling of the irradiated and non-irradiated co-cultured cells. Concerning the signalling proteins, in this study, the attention was focussed on the release of the active and latent forms of the transforming growth factor-β1 protein. Moreover, global gene expression profiles of non-transformed and transformed cells in untreated co-cultures were compared with those of 0.5-Gy-irradiated non-transformed cells co-cultured with the transformed cells. The results show an effect of radiation on the release of signalling proteins in the medium, although no significant differences in release rates were detectable when varying the doses in the range from 0.25 to 1 Gy. Moreover, gene expression results suggest an effect of radiation on both cell populations, pointing out specific signalling pathways that might be involved in the enhanced induction of apoptosis. (authors)

  20. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 1 – Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Kerry J., E-mail: howe@unm.edu [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Mitchell, Lana, E-mail: lmitchell@alionscience.com [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Kim, Seung-Jun, E-mail: skim@lanl.gov [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Blandford, Edward D., E-mail: edb@unm.edu [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Kee, Ernest J., E-mail: erniekee@gmail.com [South Texas Project Nuclear Operating Company, P.O. Box 270, Wadsworth, TX 77483 (United States)

    2015-10-15

    Highlights: • Trisodium phosphate (TSP) causes aluminum corrosion to cease after 24 h of exposure. • Chloride, iron, and copper have a minimal effect on the rate of aluminum corrosion when TSP is present. • Zinc can reduce the rate of aluminum corrosion when TSP is present. • Aluminum occasionally precipitates at concentrations lower than the calculated solubility for Al(OH){sub 3}. • Corrosion and solubility equations can be used to calculate the solids generated during a LOCA. - Abstract: Bench experiments were conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of aluminum from metallic aluminum surfaces under conditions representative of the containment pool following a postulated loss of coolant accident at a nuclear power generating facility. The experiments showed that TSP is capable of passivating the aluminum surface and preventing continued corrosion after about 24 h at the conditions tested. A correlation that describes the rate of corrosion including the passivation effect was developed from the bench experiments and validated with a separate set of experiments from a different test system. The saturation concentration of aluminum was shown to be well described by the solubility of amorphous aluminum hydroxide for the majority of cases, but instances have been observed when aluminum precipitates at concentrations lower than the calculated aluminum hydroxide solubility. Based on the experimental data and previous literature, an equation was developed to calculate the saturation concentration of aluminum as a function of pH and temperature under conditions representative of a loss of coolant accident (LOCA) in a TSP-buffered pressurized water reactor (PWR) containment. The corrosion equation and precipitation equation can be used in concert with each other to calculate the quantity of solids that would form as a function of time during a LOCA if the temperature and pH profiles were known.

  1. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 1 – Aluminum

    International Nuclear Information System (INIS)

    Howe, Kerry J.; Mitchell, Lana; Kim, Seung-Jun; Blandford, Edward D.; Kee, Ernest J.

    2015-01-01

    Highlights: • Trisodium phosphate (TSP) causes aluminum corrosion to cease after 24 h of exposure. • Chloride, iron, and copper have a minimal effect on the rate of aluminum corrosion when TSP is present. • Zinc can reduce the rate of aluminum corrosion when TSP is present. • Aluminum occasionally precipitates at concentrations lower than the calculated solubility for Al(OH) 3 . • Corrosion and solubility equations can be used to calculate the solids generated during a LOCA. - Abstract: Bench experiments were conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of aluminum from metallic aluminum surfaces under conditions representative of the containment pool following a postulated loss of coolant accident at a nuclear power generating facility. The experiments showed that TSP is capable of passivating the aluminum surface and preventing continued corrosion after about 24 h at the conditions tested. A correlation that describes the rate of corrosion including the passivation effect was developed from the bench experiments and validated with a separate set of experiments from a different test system. The saturation concentration of aluminum was shown to be well described by the solubility of amorphous aluminum hydroxide for the majority of cases, but instances have been observed when aluminum precipitates at concentrations lower than the calculated aluminum hydroxide solubility. Based on the experimental data and previous literature, an equation was developed to calculate the saturation concentration of aluminum as a function of pH and temperature under conditions representative of a loss of coolant accident (LOCA) in a TSP-buffered pressurized water reactor (PWR) containment. The corrosion equation and precipitation equation can be used in concert with each other to calculate the quantity of solids that would form as a function of time during a LOCA if the temperature and pH profiles were known

  2. Loss of covalently linked lipid as the mechanism for radiation-induced release of membrane-bound polysaccharide and exonuclease from Micrococcus radiodurans

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    1981-01-01

    The mechanism of γ-radiation-induced release of polysaccharide and exonuclease from the midwall membrane of Micrococcus radiodurans has been examined. These two components appear to be released independently, but by very similar processes. Direct analysis of radiation-released polysaccharide indicated the absence of an alkali-labile neutral lipid normally present in the native material. Radiation-induced release therefore probably results from the radiolytic cleavage of a covalently linked lipid which normally serves to anchor these substances to the membrane. The absence of a natural membrane-bound carotenoid had no effect on the rate of release of these components. Likewise, the absence of exonuclease in an exonuclease minus mutant did not influence the release of polysaccharide. It is suggested that the major pathway of radical transfer from the initiating .OH and culminating in the cleavage of the neutral lipid anchor may not be via the membrane

  3. Expression of the 68-kilodalton neurofilament gene in aluminum intoxication

    International Nuclear Information System (INIS)

    Muma, N.A.; Troncoso, J.C.; Hoffman, P.N.; Price, D.L.

    1986-01-01

    Intrathecal administration of aluminum salts induces accumulation of neurofilaments (NFs) in cell bodies and proximal axons of rabbit spinal motor neurons. Mechanisms leading to this pathological change are not well understood. Although impairments of NF transport have been demonstrated in this model, the hypothesis that NF accumulations are the result of an increase in NF synthesis needs to be explored. In rabbits, a large percentage of neurons develop accumulations of NFs following injections of aluminum lactate directly into the cisterna magna or into a reservoir placed in the lateral ventricle. To study levels of mRNA encoding cytoskeletal proteins, spinal cord RNA was extracted, separated on a denaturing agarose gel, transferred to nitrocellulose paper, and hybridized to [ 32 P]-labeled cDNA clones encoding the mouse 68-kilodalton (kd) NF subunit and tubulin. Examining a constant amount of RNA, the radioactivity of labeled mRNA bands for the 68-kd NF subunit and for tubulin was decreased in spinal cords of aluminum-treated rabbits. These preliminary results will be followed up by in situ hybridization to determine levels of mRNA for tubulin and 68-kd NF subunit in affected and in normal spinal neurons. In conclusion, administration of aluminum decreased mRNA for the 608-kd NF protein in spinal neurons

  4. Coordination Structure of Aluminum in Magnesium Aluminum Hydroxide Studied by 27Al NMR

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The coordination structure of aluminum in magnesium aluminum hydroxide was studiedby 27Al NMR. The result showed that tetrahedral aluminum (AlⅣ) existed in magnesiumaluminum hydroxide, and the contents of AlⅣ increased with the increase of the ratio of Al/Mg andwith the peptizing temperature. AlⅣ originated from the so-called Al13 polymer with the structureof one Al tetrahedron surrounded by twelve Al octahedrons.

  5. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  6. Decarbonization process for carbothermically produced aluminum

    Science.gov (United States)

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  7. Aluminum is More Cytotoxic than Lunar Dust in Human Skin and Lung Fibroblasts

    Science.gov (United States)

    Hammond, D.; Shehata, T.; Hammond, D.; Shehata, T.; Wise, J.P.; Martino, J; Wise, J.P.; Wise, J.P.

    2009-01-01

    NASA plans to build a permanent space station on the moon to explore its surface. The surface of the moon is covered in lunar dust, which consists of fine particles that contain silicon, aluminum and titanium, among others. Because this will be a manned base, the potential toxicity of this dust has to be studied. Also, toxicity standards for potential exposure have to be set. To properly address the potential toxicity of lunar dust we need to understand the toxicity of its individual components, as well as their combined effects. In order to study this we compared NASA simulant JSC-1AVF (volcanic ash particles), that simulates the dust found on the moon, to aluminum, the 3rd most abundant component in lunar dust. We tested the cytotoxicity of both compounds on human lung and skin fibroblasts (WTHBF-6 and BJhTERT cell lines, respectively). Aluminum oxide was more cytotoxic than lunar dust to both cell lines. In human lung fibroblasts 5, 10 and 50 g/sq cm of aluminum oxide induced 85%, 61% and 30% relative survival, respectively. For human skin fibroblasts the same concentrations induced 58%, 41% and 58% relative survival. Lunar dust was also cytotoxic to both cell lines, but its effects were seen at higher concentrations: 50, 100, 200 and 400 g/sq cm of lunar dust induced a 69%, 46%, 35% and 30% relative survival in the skin cells and 53%, 16%, 8% and 2% on the lung cells. Overall, for both compounds, lung cells were more sensitive than skin cells. This work was supported by a NASA EPSCoR grant through the Maine Space Grant Consortium (JPW), the Maine Center for Toxicology and Environmental Health., a Fulbright Grant (JM) and a Delta Kappa Gamma Society International World Fellowship (JM).

  8. Effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy

    International Nuclear Information System (INIS)

    Liu, Shengdan; Li, Chengbo; Han, Suqi; Deng, Yunlai; Zhang, Xinming

    2015-01-01

    Highlights: • The quench-induced hardness inhomogeneity in 7055 Al alloy decreases by natural aging. • The reason is discussed based on natural aging effect on microstructural inhomogeneity. • Natural aging decreases the difference of hardening precipitates due to slow quenching. • GPII zones appear in the rapidly-quenched sample after natural aging for 17,280 h. - Abstract: The effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy was investigated by means of end quenching technique, transmission electron microscopy and differential scanning calorimetry thermal analysis. The hardness inhomogeneity in the end-quenched specimens after artificial aging decreases with the increase of natural aging time prior to artificial aging. The quench-induced differences in the amount and size of η′ phase are large in the end-quenched specimen after artificial aging at 120 °C for 24 h, leading to high hardness inhomogeneity. Natural aging for a long time results in a larger amount of stable GPI zones in the slowly-quenched sample, and thus decreases such differences in the end-quenched specimens after subsequent artificial aging, leading to lower hardness inhomogeneity. The hardness inhomogeneity can be reduced from 14% to be 4% by natural aging for 17,280 h prior to artificial aging

  9. Effect of Fe and C doping on the thermal release of helium from aluminum

    International Nuclear Information System (INIS)

    Xiang, X.; Chen, C.A.; Liu, K.Z.; Peng, L.X.; Rao, Y.C.

    2010-01-01

    The effect of Fe and C doping on the thermal release of helium from Al implanted with 10 keV, 4.0 x 10 21 ion/m 2 He at room temperature (RT) has been investigated by thermal helium desorption spectrometry (THDS) and transmission electron microscope (TEM). The results show that Fe and C doping have significant impact on the release of helium from Al and the extent depends on the doping fluence. Proper fluence of Fe and C doping would lead to the retardation of the release of helium from Al, while excessive fluence of Fe and C doping would result in more desorption peaks and the release of helium in lower temperature ranges. Fe and C doping have different influence on the release of helium from Al, and the difference is related with the secondary phases forming in the samples.

  10. Modulation of tumor necrosis factor {alpha} expression in mouse brain after exposure to aluminum in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Tsunoda, M.; Sharma, R.P. [Georgia Univ., Athens (Greece). College of Veterinary Medicine

    1999-11-01

    Aluminum, a known neurotoxic substance and a ground-water pollutant, is a possible contributing factor in various nervous disorders including Alzheimer's disease. It has been hypothesized that cytokines are involved in aluminum neurotoxicity. We investigated the alterations in mRNA expression of tumor necrosis factor {alpha} (TNF{alpha}), interleukin-1{beta} (IL-1{beta}), and interferon {gamma} (IFN{gamma}), cytokines related to neuronal damage, in cerebrum and peripheral immune cells of mice after exposure to aluminum through drinking water. Groups of male BALB/c mice were administered aluminum ammonium sulfate in drinking water ad libitum at 0, 5, 25, and 125 ppm aluminum for 1 month. An additional group received 250 ppm ammonium as ammonium sulfate. After treatment, the cerebrum, splenic macrophages and lymphocytes were collected. The expression of TNF{alpha} mRNA in cerebrum was significantly increased among aluminum-treated groups compared with the control, in a dose-dependent manner. Other cytokines did not show any aluminum-related effects. In peripheral cells, there were no significant differences of cytokine mRNA expressions among treatment groups. Increased expression of TNF{alpha} mRNA by aluminum in cerebrum may reflect activation of microglia, a major source of TNF{alpha} in this brain region. Because the aluminum-induced alteration in cytokine message occurred at aluminum concentrations similar to those noted in contaminated water, these results may be relevant in considering the risk of aluminum neurotoxicity in drinking water. (orig.)

  11. Weld Repair of Thin Aluminum Sheet

    Science.gov (United States)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  12. The inhibition of cholera toxin-induced 5-HT release by the 5-HT3 receptor antagonist, granisetron, in the rat

    Science.gov (United States)

    Turvill, J L; Connor, P; Farthing, M J G

    2000-01-01

    The secretagogue 5-hydroxytryptamine (5-HT) is implicated in the pathophysiology of cholera. 5-HT released from enterochromaffin cells after cholera toxin exposure is thought to activate non-neuronally (5-HT2 dependent) and neuronally (5-HT3 dependent) mediated water and electrolyte secretion. CT-secretion can be reduced by preventing the release of 5-HT. Enterochromaffin cells possess numerous receptors that, under basal conditions, modulate 5-HT release. These include basolateral 5-HT3 receptors, the activation of which is known to enhance 5-HT release. Until now, 5-HT3 receptor antagonists (e.g. granisetron) have been thought to inhibit cholera toxin-induced fluid secretion by blockading 5-HT3 receptors on secretory enteric neurones. Instead we postulated that they act by inhibiting cholera toxin-induced enterochromaffin cell degranulation. Isolated intestinal segments in anaesthetized male Wistar rats, pre-treated with granisetron 75 μg kg−1, lidoocaine 6 mg kg−1 or saline, were instilled with a supramaximal dose of cholera toxin or saline. Net fluid movement was determined by small intestinal perfusion or gravimetry and small intestinal and luminal fluid 5-HT levels were determined by HPLC with fluorimetric detection. Intraluminal 5-HT release was proportional to the reduction in tissue 5-HT levels and to the onset of water and electrolyte secretion, suggesting that luminal 5-HT levels reflect enterochromaffin cell activity. Both lidocaine and granisetron inhibited fluid secretion. However, granisetron alone, and proportionately, reduced 5-HT release. The simultaneous inhibition of 5-HT release and fluid secretion by granisetron suggests that 5-HT release from enterochromaffin cells is potentiated by endogenous 5-HT3 receptors. The accentuated 5-HT release promotes cholera toxin-induced fluid secretion. PMID:10882387

  13. ApoA-I induces S1P release from endothelial cells through ABCA1 and SR-BI in a positive feedback manner.

    Science.gov (United States)

    Liu, Xing; Ren, Kun; Suo, Rong; Xiong, Sheng-Lin; Zhang, Qing-Hai; Mo, Zhong-Cheng; Tang, Zhen-Li; Jiang, Yue; Peng, Xiao-Shan; Yi, Guang-Hui

    2016-12-01

    Sphingosine-1-phosphate (S1P), which has emerged as a pivotal signaling mediator that participates in the regulation of multiple cellular processes, is derived from various cells, including vascular endothelial cells. S1P accumulates in lipoproteins, especially HDL, and the majority of free plasma S1P is bound to HDL. We hypothesized that HDL-associated S1P is released through mechanisms associated with the HDL maturation process. ApoA-I, a major HDL apolipoprotein, is a critical factor for nascent HDL formation and lipid trafficking via ABCA1. Moreover, apoA-I is capable of promoting bidirectional lipid movement through SR-BI. In the present study, we confirmed that apoA-I can facilitate the production and release of S1P by HUVECs. Furthermore, we demonstrated that ERK1/2 and SphK activation induced by apoA-I is involved in the release of S1P from HUVECs. Inhibitor and siRNA experiments showed that ABCA1 and SR-BI are required for S1P release and ERK1/2 phosphorylation induced by apoA-I. However, the effects triggered by apoA-I were not suppressed by inhibiting ABCA1/JAK2 or the SR-BI/Src pathway. S1P released due to apoA-I activation can stimulate the (ERK1/2)/SphK1 pathway through S1PR (S1P receptor) 1/3. These results indicated that apoA-I not only promotes S1P release through ABCA1 and SR-BI but also indirectly activates the (ERK1/2)/SphK1 pathway by releasing S1P to trigger their receptors. In conclusion, we suggest that release of S1P induced by apoA-I from endothelial cells through ABCA1 and SR-BI is a self-positive-feedback process: apoA-I-(ABCA1 and SR-BI)-(S1P release)-S1PR-ERK1/2-SphK1-(S1P production)-(more S1P release induced by apoA-I).

  14. Gas evolution behavior of aluminum in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs.

  15. Gas evolution behavior of aluminum in mortar

    International Nuclear Information System (INIS)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs

  16. Growth hormone-releasing factor induces c-fos expression in cultured primary pituitary cells

    DEFF Research Database (Denmark)

    Billestrup, Nils; Mitchell, R L; Vale, W

    1987-01-01

    GH-releasing factor (GRF) and somatostatin regulates the secretion and biosynthesis of GH as well as the proliferation of GH-producing cells. In order to further characterize the mitogenic effect of GRF, we studied the expression of the proto-oncogene c-fos in primary pituitary cells. Maximal...... induction of c-fos mRNA was observed 20-60 min after stimulation with 5 nM GRF, returning to basal levels after 2 h. Somatostatin-14 (5 nM) partially inhibited the GRF induced c-fos expression. Forskolin and phorbol 12, 13 dibutyrate induced c-fos gene in cultured primary pituitary cells with similar...

  17. Autocrine Regulation of UVA-Induced IL-6 Production via Release of ATP and Activation of P2Y Receptors

    Science.gov (United States)

    Kawano, Ayumi; Kadomatsu, Remi; Ono, Miyu; Kojima, Shuji; Tsukimoto, Mitsutoshi; Sakamoto, Hikaru

    2015-01-01

    Extracellular nucleotides, such as ATP, are released from cells in response to various stimuli and act as intercellular signaling molecules through activation of P2 receptors. Exposure to the ultraviolet radiation A (UVA) component of sunlight causes molecular and cellular damage, and in this study, we investigated the involvement of extracellular nucleotides and P2 receptors in the UVA-induced cellular response. Human keratinocyte-derived HaCaT cells were irradiated with a single dose of UVA (2.5 J/cm2), and ATP release and interleukin (IL)-6 production were measured. ATP was released from cells in response to UVA irradiation, and the release was blocked by pretreatment with inhibitors of gap junction hemichannels or P2X7 receptor antagonist. IL-6 production was increased after UVA irradiation, and this increase was inhibited by ecto-nucleotidase or by antagonists of P2Y11 or P2Y13 receptor. These results suggest that UVA-induced IL-6 production is mediated by release of ATP through hemichannels and P2X7 receptor, followed by activation of P2Y11 and P2Y13 receptors. Interestingly, P2Y11 and P2Y13 were associated with the same pattern of IL-6 production, though they trigger different intracellular signaling cascades: Ca2+-dependent and PI3K-dependent, respectively. Thus, IL-6 production in response to UVA-induced ATP release involves at least two distinct pathways, mediated by activation of P2Y11 and P2Y13 receptors. PMID:26030257

  18. P-type poly-Si prepared by low-temperature aluminum-induced crystallization and doping for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yasuhiro; Yu, Zhenrui; Morales-Acevedo, Arturo [CINVESTAV-IPN, Mexico, D.F. (Mexico)

    2000-07-01

    P-type poly-Si thin films prepared by low temperature aluminum-induced crystallization and doping are reported. The starting material was boron-doped a-Si:H prepared by PECVD on glass substrates. Aluminum layers with different thickness were evaporated on a-Si:H surface and conventional thermal annealing was performed at temperatures ranging from 300 to 550 Celsius degrees. XRD, SIMS, and Hall effect measurements were carried out to characterize the annealed Al could be crystallized at temperature as low as 300 Celsius degrees in 60 minutes. This material has high carrier concentration as well as high Hall mobility and can be used as a p-layer of seed layer for thin film poly-Si solar cells. The technique reported here is compatible with PECVD process. [Spanish] Se informa sobre la preparacion de peliculas delgadas tipo P y Poli-Si mediante la cristalizacion inducida de aluminio a baja temperatura y el dopado. El material inicial era de boro dopado y a-Si:H preparado PECVD sobre substratos de vidrio. Se evaporaron capas de aluminio de diferente espesor sobre una superficie de a-Si:H y se llevo a cabo un destemplado termico convencional a temperaturas que varian entre 300 y 500 grados Celsius. Se llevaron a cabo mediciones de XRB, SIMS y del efecto Hall para caracterizar el aluminio destemplado para que pudiera ser cristalizado a temperaturas tan bajas como 300 grados Celsius en 60 minutos. Este material tiene una alta concentracion portadora asi como una alta movilidad Hall y puede usarse como una capa de semilla para celdas solares de pelicula delgada Poli-Si. La tecnica reportada aqui es compatible con el proceso PECVD.

  19. Scientific basis for storage criteria for interim dry storage of aluminum-clad fuels

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Peacock, H.B. Jr.; Lam, P.S.; Iyer, N.C.; Louthan, M.R. Jr.; Murphy, J.R.

    1996-01-01

    An engineered system for dry storage of aluminum-clad foreign and domestic research reactor spent fuel owned by the US Department of Energy is being considered to store the fuel up to a nominal period of 40 years prior to ultimate disposition. Scientifically-based criteria for environmental limits to drying and storing the fuels for this system are being developed to avoid excessive degradation in sealed and non-sealed (open to air) dry storage systems. These limits are based on consideration of degradation modes that can cause loss of net section of the cladding, embrittlement of the cladding, distortion of the fuel, or release of fuel and fission products from the fuel/clad system. Potential degradation mechanisms include corrosion mechanisms from exposure to air and/or sources of humidity, hydrogen blistering of the aluminum cladding, distortion of the fuel due to creep, and interdiffusion of the fuel and fission products with the cladding. The aluminum-clad research reactor fuels are predominantly highly-enriched aluminum uranium alloy fuel which is clad with aluminum alloys similar to 1100, 5052, and 6061 aluminum. In the absence of corrodant species, degradation due to creep and diffusion mechanisms limit the maximum fuel storage temperature to 200 C. The results of laboratory scale corrosion tests indicate that this fuel could be stored under air up to 200 C at low relative humidity levels (< 20%) to limit corrosion of the cladding and fuel (exposed to the storage environment through assumed pre-existing pits in the cladding). Excessive degradation of fuels with uranium metal up to 200 C can be avoided if the fuel is sufficiently dried and contained in a sealed system; open storage can be achieved if the temperature is controlled to avoid excessive corrosion even in dry air

  20. Aluminum-based metal-air batteries

    Science.gov (United States)

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  1. GENETIC INFLUENCES ON IN VTIRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE

    Science.gov (United States)

    GENETIC INFLUENCES ON IN VITRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE. JA Dye, JH Richards, DA Andrews, UP Kodavanti. US EPA, RTP, NC, USA.Particulate matter (PM) air pollution is capable of damaging the airway epitheli...

  2. Omega-conotoxin- and nifedipine-insensitive voltage-operated calcium channels mediate K(+)-induced release of pro-thyrotropin-releasing hormone-connecting peptides Ps4 and Ps5 from perifused rat hypothalamic slices.

    Science.gov (United States)

    Valentijn, K; Tranchand Bunel, D; Vaudry, H

    1992-07-01

    The rat thyrotropin-releasing hormone (TRH) precursor (prepro-TRH) contains five copies of the TRH progenitor sequence linked together by intervening sequences. Recently, we have shown that the connecting peptides prepro-TRH-(160-169) (Ps4) and prepro-TRH-(178-199) (Ps5) are released from rat hypothalamic neurones in response to elevated potassium concentrations, in a calcium-dependent manner. In the present study, the role of voltage-operated calcium channels in potassium-induced release of Ps4 and Ps5 was investigated, using a perifusion system for rat hypothalamic slices. The release of Ps4 and Ps5 stimulated by potassium (70 mM) was blocked by the inorganic ions Co2+ (2.6 mM) and Ni2+ (5 mM). In contrast, the stimulatory effect of KCl was insensitive to Cd2+ (100 microM). The dihydropyridine antagonist nifedipine (10 microM) had no effect on K(+)-evoked release of Ps4 and Ps5. Furthermore, the response to KCl was not affected by nifedipine (10 microM) in combination with diltiazem (1 microM), a benzothiazepine which increases the affinity of dihydropyridine antagonists for their receptor. The dihydropyridine agonist BAY K 8644, at concentrations as high as 1 mM, did not stimulate the basal secretion of Ps4 and Ps5. In addition, BAY K 8644 had no potentiating effect on K(+)-induced release of Ps4 and Ps5. The marine cone snail toxin omega-conotoxin, a blocker of both L- and N-type calcium channels had no effect on the release of Ps4 and Ps5 stimulated by potassium. Similarly, the omega-conopeptide SNX-111, a selective blocker of N-type calcium channels, did not inhibit the stimulatory effect of potassium. The release of Ps4 and Ps5 evoked by high K+ was insensitive to the non-selective calcium channel blocker verapamil (20 microM). Amiloride (1 microM), a putative blocker of T-type calcium channels, did not affect KCl-induced secretion of the two connecting peptides. Taken together, these results indicate that two connecting peptides derived from the pro-TRH, Ps

  3. Simulation of uranium aluminide dissolution in a continuous aluminum dissolver system

    International Nuclear Information System (INIS)

    Evans, D.R.; Farman, R.F.; Christian, J.D.

    1990-01-01

    This paper reports on the Idaho Chemical Processing Plant (ICPP) which recovers highly-enriched uranium (uranium that contains at least 20 atom percent 235 U) from spent nuclear reactor fuel by dissolution of the fuel elements and extraction of the uranium from the aqueous dissolver product. Because the uranium is highly-enriched, consideration must be given to whether a critical mass can form at any stage of the process. In particular, suspended 235 U-containing particles are of special concern, due to their high density (6.8 g/cm 3 ) and due to the fact that they can settle into geometrically unfavorable configurations when not adequately mixed. A portion of the spent fuel is aluminum-alloy-clad uranium aluminide (UAl 3 ) particles, which dissolve more slowly than the cladding. As the aluminum alloy cladding dissolves in mercury-catalyzed nitric acid, UAl 3 is released. Under standard operating conditions, the UAl 3 dissolves rapidly enough to preclude the possibility of forming a critical mass anywhere in the system. However, postulated worst-case abnormal operating conditions retard uranium aluminide dissolution, and thus require evaluation. To establish safety limits for operating parameters, a computerized simulation model of uranium aluminide dissolution in the aluminum fuel dissolver system was developed

  4. Smoking-induced dopamine release studied with [11C]raclopride PET

    International Nuclear Information System (INIS)

    Kim, Yu Kyeong; Cho, Sang Soo; Lee, Do Hoon

    2005-01-01

    It has been postulated that dopamine release in the striatum underlies the reinforcing properties of nicotine. Substantial evidence in the animal studies demonstrates that nicotine interacts with and regulates the activation of the dopaminergic neuron. The aim of this study was to visualize the dopamine release by smoking in human brain using PET scan with [ 11 C]raclopride. Four male non-smokers or ex-smokers with an abstinence period longer than 1 year (mean age of 24.3±2.6 years) were enrolled in this study. Dopamine D2 receptor radioligand, [ 11 C]raclopride was administrated with bolus-plus-constant infusion. Dynamic PET was performed during 120 minutes (3x20s, 2x60s, 2x120s, 1x180s and 22x300s). Following the 50 minute-scanning, subjects smoked a cigarette containing 1 mg of nicotine while in the scanner. Blood samples for the measurements of plasma nicotine levels were collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, and 90 minute after smoking. Regions for striatal structures were drawn on the coronal summed PET images guided with co-registered MRI. Binding potential, calculated as striatal-cerebellar/cerebellar activity, was measured under equilibrium condition at baseline and smoking session. The mean change in binding potential between the baseline and smoking in caudate, Putamen and ventral striatum was 3.7 % , 4.0 % and 8.6 %, respectively. This indicated the striatal dopamine release by smoking. The reduction in binding potential in the ventral striatum was significantly correlated with the cumulated plasma level of the nicotine (r 2 =0.91, p=0.04). These data demonstrate that in vivo imaging with [ 11 C]raclopride PET could measure nicotine-induced dopamine release in the human brain, which has a significant positive correlation with the amount of nicotine administered by smoking

  5. Effects of Chronic Alcohol Exposure on the Modulation of Ischemia-Induced Glutamate Release via Cannabinoid Receptors in the Dorsal Hippocampus.

    Science.gov (United States)

    Zheng, Lei; Wu, Xiaoda; Dong, Xiao; Ding, Xinli; Song, Cunfeng

    2015-10-01

    Chronic alcohol consumption is a critical contributing factor to ischemic stroke, as it enhances ischemia-induced glutamate release, leading to more severe excitotoxicity and brain damage. But the neural mechanisms underlying this phenomenon are poorly understood. We evaluated the effects of chronic alcohol exposure on the modulation of ischemia-induced glutamate release via CB1 and CB2 cannabinoid receptors during middle cerebral artery occlusion, using in vivo microdialysis coupled with high-performance liquid chromatography, in alcohol-naïve rats or rats after 1 or 30 days of withdrawal from chronic ethanol intake (6% v/v for 14 days). Intra-dorsal hippocampus (DH) infusions of ACEA or JWH133, selective CB1 or CB2 receptor agonists, respectively, decreased glutamate release in the DH in alcohol-naïve rats in a dose-dependent manner. Such an effect was reversed by co-infusions of SR141716A or AM630, selective CB1 or CB2 receptor antagonists, respectively. After 30 days, but not 1 day of withdrawal, ischemia induced an enhancement in glutamate release in the DH, as compared with non-alcohol-treated control group. Intra-DH infusions of JWH133, but not ACEA, inhibited ischemia-induced glutamate release in the DH after 30 days of withdrawal. Finally, 1 day of withdrawal did not alter the protein level of CB1 or CB2 receptors in the DH, as compared to non-alcohol-treated control rats. Whereas 30 days of withdrawal robustly decreased the protein level of CB1 receptors, but failed to alter the protein level of CB2 receptors, in the DH, as compared to non-alcohol-treated control rats. Together, these findings suggest that loss of expression/function of CB1 receptors, but not CB2 receptors in the DH, is correlated with the enhancement of ischemia-induced glutamate release after prolonged alcohol withdrawal. Copyright © 2015 by the Research Society on Alcoholism.

  6. Proteome modification in tomato plants upon long-term aluminum treatment

    Science.gov (United States)

    This study aimed to identify the aluminum (Al)-induced proteomes in tomato (Solanum lycopersicum, “Micro-Tom”) after long-term exposure to the stress factor. Plants were treated in Magnavaca’s solution (pH 4.5) supplemented with 7.5 uM Al3+ ion activity over a 4 month period beginning at the emergen...

  7. Comparison of the adjuvant activity of aluminum hydroxide and calcium phosphate on the antibody response towards Bothrops asper snake venom.

    Science.gov (United States)

    Olmedo, Hidekel; Herrera, María; Rojas, Leonardo; Villalta, Mauren; Vargas, Mariángela; Leiguez, Elbio; Teixeira, Catarina; Estrada, Ricardo; Gutiérrez, José María; León, Guillermo; Montero, Mavis L

    2014-01-01

    The adjuvanticity of aluminum hydroxide and calcium phosphate on the antibody response in mice towards the venom of the snake Bothrops asper was studied. It was found that, in vitro, most of the venom proteins are similarly adsorbed by both mineral salts, with the exception of some basic phospholipases A2, which are better adsorbed by calcium phosphate. After injection, the adjuvants promoted a slow release of the venom, as judged by the lack of acute toxicity when lethal doses of venom were administered to mice. Leukocyte recruitment induced by the venom was enhanced when it was adsorbed on both mineral salts; however, venom adsorbed on calcium phosphate induced a higher antibody response towards all tested HPLC fractions of the venom. On the other hand, co-precipitation of venom with calcium phosphate was the best strategy for increasing: (1) the capacity of the salt to couple venom proteins in vitro; (2) the venom ability to induce leukocyte recruitment; (3) phagocytosis by macrophages; and (4) a host antibody response. These findings suggest that the chemical nature is not the only one determining factor of the adjuvant activity of mineral salts.

  8. Ammonium intensifies CAM photosynthesis and counteracts drought effects by increasing malate transport and antioxidant capacity in Guzmania monostachia.

    Science.gov (United States)

    Pereira, Paula Natália; Gaspar, Marília; Smith, J Andrew C; Mercier, Helenice

    2018-04-09

    Guzmania monostachia (Bromeliaceae) is a tropical epiphyte capable of up-regulating crassulacean acid metabolism (CAM) in its photosynthetic tissues in response to changing nutrient and water availability. Previous studies have shown that under drought there is a gradient of increasing CAM expression from the basal (youngest) to the apical (oldest) portion of the leaves, and additionally that nitrogen deficiency can further increase CAM intensity in the leaf apex of this bromeliad. The present study investigated the inter-relationships between nitrogen source (nitrate and/or ammonium) and water deficit in regulating CAM expression in G. monostachia leaves. The highest CAM activity was observed under ammonium nutrition in combination with water deficit. This was associated with enhanced activity of the key enzyme phosphoenolpyruvate carboxylase, elevated rates of ATP- and PPi-dependent proton transport at the vacuolar membrane in the presence of malate, and increased transcript levels of the vacuolar malate channel-encoding gene, ALMT. Water deficit was consistently associated with higher levels of total soluble sugars, which were maximal under ammonium nutrition, as were the activities of several antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase). Thus, ammonium nutrition, whilst associated with the highest degree of CAM induction in G. monostachia, also mitigates the effects of water deficit by osmotic adjustment and can limit oxidative damage in the leaves of this bromeliad under conditions that may be typical of its epiphytic habitat.

  9. Effect of antioxidant supplementation on exercise-induced cardiac troponin release in cyclists: a randomized trial.

    Directory of Open Access Journals (Sweden)

    Lieke J J Klinkenberg

    Full Text Available Cardiac troponin is the biochemical gold standard to diagnose acute myocardial infarction. Interestingly however, elevated cardiac troponin concentrations are also frequently observed during and after endurance-type exercise. Oxidative stress associated with prolonged exercise has been proposed to contribute to cardiac troponin release. Therefore, the aim of this study was to assess the effect of 4 week astaxanthin supplementation (a potent cartenoid antioxidant on antioxidant capacity and exercise-induced cardiac troponin release in cyclists.Thirty-two well-trained male cyclists (age 25±5, weight 73±7 kg, maximum O2 uptake 60±5 mL·kg(-1·min(-1, Wmax 5.4±0.5 W·kg(-1; mean ± SD were repeatedly subjected to a laboratory based standardized exercise protocol before and after 4 weeks of astaxanthin (20 mg/day, or placebo supplementation in a double-blind randomized manner. Blood samples were obtained at baseline, at 60 min of cycling and immediately post-exercise (≈ 120 min.The pre-supplementation cycling trial induced a significant rise of median cardiac troponin T concentrations from 3.2 (IQR 3.0-4.2 to 4.7 ng/L (IQR 3.7-6.7, immediately post-exercise (p<0.001. Four weeks of astaxanthin supplementation significantly increased mean basal plasma astaxanthin concentrations from non-detectable values to 175±86 µg·kg(-1. However, daily astaxanthin supplementation had no effect on exercise-induced cardiac troponin T release (p = 0.24, as measured by the incremental area under the curve. Furthermore, the elevation in basal plasma astaxanthin concentrations was not reflected in changes in antioxidant capacity markers (trolox equivalent antioxidant capacity, uric acid, and malondialdehyde. Markers of inflammation (high-sensitivity C-reactive protein and exercise-induced skeletal muscle damage (creatine kinase were equally unaffected by astaxanthin supplementation.Despite substantial increases in plasma astaxanthin concentrations

  10. Validity of the Aluminum Equivalent Approximation in Space Radiation Shielding

    Science.gov (United States)

    Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.

    2009-01-01

    The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I aluminum equivalent approximation for a good polymeric shield material such as genetic polyethylene (PE). The shield thickness is represented by a 25 g/cm spherical shell. Although one could imagine the progression to greater

  11. The improvement of surface roughness for OAP aluminum mirrors: from terahertz to ultraviolet

    Science.gov (United States)

    Peng, Jilong; Yu, Qian; Shao, Yajun; Wang, Dong; Yi, Zhong; Wang, Shanshan

    2018-01-01

    Aluminum reflector, especially OAP (Off-Axis Parabolic) reflector, has been widely used in terahertz and infrared systems for its low cost, lightweight, good machinability, small size, simple structure, and having the same thermal expansion and contraction with the system structure which makes it have a wide temperature adaptability. Thorlabs, Daheng and other large optical components companies even have Aluminum OAP sold on shelf. Most of the precision Aluminum OAP is fabricated by SPDT (single point diamond turing). Affected by intermittent shock, the roughness of aluminum OAP mirrors through conventional single-point diamond lathes is around 7 nm which limits the scope of application for aluminum mirrors, like in the high power density terahertz/infrared systems and visible/UV optical systems. In this paper, a continuous process frock is proposed, which effectively reduces the influence of turning impact on the mirror roughness. Using this process, an off-axis parabolic aluminum reflector with an effective diameter of 50 mm, off-axis angle of 90 degree is fabricated, and the performances are validated. Measurement by VEECO NT1100 optical profiler with 20× objects, the surface roughness achieves 2.3 nm, and the surface figure error is within λ/7 RMS (λ= 632.8 nm) tested by FISB Aμ Phase laser interferometer with the help of a standard flat mirror. All these technical specifications are close to the traditional glass-based reflectors, and make it possible for using Aluminum reflectors in the higher LIDT (laser induced damage threshold) systems and even for the micro sensor of ionospheric for vacuum ultraviolet micro nano satellites.

  12. Effects of aluminum and extremely low frequency electromagnetic radiation on oxidative stress and memory in brain of mice.

    Science.gov (United States)

    Deng, Yuanxin; Zhang, Yanwen; Jia, Shujie; Liu, Junkang; Liu, Yanxia; Xu, Weiwei; Liu, Lei

    2013-12-01

    This study was aimed to investigate the effect of aluminum and extremely low-frequency magnetic fields (ELF-MF) on oxidative stress and memory of SPF Kunming mice. Sixty male SPF Kunming mice were divided randomly into four groups: control group, ELF-MF group (2 mT, 4 h/day), load aluminum group (200 mg aluminum/kg, 0.1 ml/10 g), and ELF-MF + aluminum group (2 mT, 4 h/day, 200 mg aluminum/kg). After 8 weeks of treatment, the mice of three experiment groups (ELF-MF group, load aluminum group, and ELF-MF + aluminum group) exhibited firstly the learning memory impairment, appearing that the escaping latency to the platform was prolonged and percentage in the platform quadrant was reduced in the Morris water maze (MWM) task. Secondly are the pathologic abnormalities including neuronal cell loss and overexpression of phosphorylated tau protein in the hippocampus and cerebral cortex. On the other hand, the markers of oxidative stress were determined in mice brain and serum. The results showed a statistically significant decrease in superoxide dismutase activity and increase in the levels of malondialdehyde in the ELF-MF group (P < 0.05 or P < 0.01), load aluminum group (P < 0.01), and ELF-MF + aluminum group (P < 0.01). However, the treatment with ELF-MF + aluminum induced no more damage than ELF-MF and aluminum did, respectively. In conclusion, both aluminum and ELF-MF could impact on learning memory and pro-oxidative function in Kunming mice. However, there was no evidence of any association between ELF-MF exposure with aluminum loading.

  13. Striatal dopamine release induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex: effect of aging

    International Nuclear Information System (INIS)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Kim, Ji Sun; Lee, Byung Chul; Kim, Yu Kyeong; Kim, Sang Eun

    2007-01-01

    We previously demonstrated dopamine (DA) release in the bilateral striatal regions following prefrontal repetitive transcranial magnetic stimulation (rTMS) in young subjects. Several lines of evidence support substantial age-related changes in human dopaminergic neurotransmission. One possible explanation is alteration of cortico striatal neural connection with aging. Therefore, we investigated how frontal activation by rTMS influences striatal DA release in the elderly with SPECT measurements of striatal binding of [123I]iodobenzamide (lBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy elderly male subjects (age, 64 3 y) were studied with brain [123I]IBZM SPECT under three conditions (resting, sham stimulation, and active rTMS over left dorsolateral prefrontal cortex (DLPFC)), while receiving a bolus plus constant infusion of [123I]IBZM. rTMS session consisted of three blocks. In each block, 15 trains of 2 sec duration were delivered with 10 Hz stimulation frequency and 100% motor threshold. Striatal V3', calculated as (striatal - occipital)/occipital radioactivity, was measured under equilibrium condition at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over left DLPFC induced no significant change in V3' in the right striatum compared with baseline condition (0.91 0.25 vs. 0.96 0.25, P = NS). Interestingly, left striatal V3' showed a significant increase after rTMS over left DLPFC compared with sham condition (1.09 0.33 vs. 0.93 0.27, P < 0.05; 17.0 11.1% increase). These results are discrepant from previous ones from young subjects, who showed frontal rTMS-induced reduction of striatal V3', indicating rTMS-induced striatal DA release. We found no significant striatal DA release induced by rTMS over DLPFC in healthy elderly subjects using in vivo binding competition techniques. These results may support an altered cortico striatal circuit in normal aging

  14. Striatal dopamine release induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex: effect of aging

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Kim, Ji Sun; Lee, Byung Chul; Kim, Yu Kyeong; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    We previously demonstrated dopamine (DA) release in the bilateral striatal regions following prefrontal repetitive transcranial magnetic stimulation (rTMS) in young subjects. Several lines of evidence support substantial age-related changes in human dopaminergic neurotransmission. One possible explanation is alteration of cortico striatal neural connection with aging. Therefore, we investigated how frontal activation by rTMS influences striatal DA release in the elderly with SPECT measurements of striatal binding of [123I]iodobenzamide (lBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy elderly male subjects (age, 64 3 y) were studied with brain [123I]IBZM SPECT under three conditions (resting, sham stimulation, and active rTMS over left dorsolateral prefrontal cortex (DLPFC)), while receiving a bolus plus constant infusion of [123I]IBZM. rTMS session consisted of three blocks. In each block, 15 trains of 2 sec duration were delivered with 10 Hz stimulation frequency and 100% motor threshold. Striatal V3', calculated as (striatal - occipital)/occipital radioactivity, was measured under equilibrium condition at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over left DLPFC induced no significant change in V3' in the right striatum compared with baseline condition (0.91 0.25 vs. 0.96 0.25, P = NS). Interestingly, left striatal V3' showed a significant increase after rTMS over left DLPFC compared with sham condition (1.09 0.33 vs. 0.93 0.27, P < 0.05; 17.0 11.1% increase). These results are discrepant from previous ones from young subjects, who showed frontal rTMS-induced reduction of striatal V3', indicating rTMS-induced striatal DA release. We found no significant striatal DA release induced by rTMS over DLPFC in healthy elderly subjects using in vivo binding competition techniques. These results may support an altered cortico striatal circuit in normal aging.

  15. High Performance Liquid Chromatographic Analysis of Almotriptan Malate in Bulk and Tablets

    Directory of Open Access Journals (Sweden)

    Chandra Bala Sekaran

    2013-02-01

    Full Text Available Purpose: A simple RP-HPLC method has been developed and validated for the determination of almotriptan malate (ATM in bulk and tablets. Methods: Chromatographic separation of ATM was achieved by using a Thermo Scientific C18 column. A Mobile phase containing a mixture of methanol, water and acetic acid (4:8:0.1 v/v was pumped at the flow rate of 1 mL/min. Detection was performed at 227 nm. According to ICH guidelines, the method was validated. Results: The calibration curve was linear in the concentration range 5–60 μg/mL for the ATM with regression coefficient 0.9999. The method was precise with RSD <1.2%. Excellent recoveries of 99.60 - 100.80% proved the accuracy of the method. The limits of detection and quantification were found to be 0.025 and 0.075 μg/mL, respectively. Conclusion: The method was successfully applied for the quantification of ATM in tablets with acceptable accuracy and precision.

  16. The total kinetic energy release in the fast neutron-induced fission of {sup 232}Th

    Energy Technology Data Exchange (ETDEWEB)

    King, Jonathan; Yanez, Ricardo; Loveland, Walter; Barrett, J. Spencer; Oscar, Breland [Oregon State University, Dept. of Chemistry, Corvallis, OR (United States); Fotiades, Nikolaos; Tovesson, Fredrik; Young Lee, Hye [Los Alamos National Laboratory, Physics Division, Los Alamos, NM (United States)

    2017-12-15

    The post-emission total kinetic energy release (TKE) in the neutron-induced fission of {sup 232}Th was measured (using white spectrum neutrons from LANSCE) for neutron energies from E{sub n} = 3 to 91 MeV. In this energy range the average post-neutron total kinetic energy release decreases from 162.3 ± 0.3 at E{sub n} = 3 MeV to 154.9 ± 0.3 MeV at E{sub n} = 91 MeV. Analysis of the fission mass distributions indicates that the decrease in TKE with increasing neutron energy is a combination of increasing yields of symmetric fission (which has a lower associated TKE) and a decrease in the TKE release in asymmetric fission. (orig.)

  17. Depolarization-induced release of [(3)H]D-aspartate from GABAergic neurons caused by reversal of glutamate transporters

    DEFF Research Database (Denmark)

    Jensen, J B; Pickering, D S; Schousboe, A

    2000-01-01

    if glutamate in addition to gamma-aminobutyric acid (GABA) could be released from these cultures. The neurons were preloaded with [(3)H]D-aspartate and subsequently its release was followed during depolarization induced by a high potassium concentration or the alpha-amino-3-hydroxy-5-methyl-4......-isoxazolepropionic acid (AMPA) receptor agonists, AMPA and kainate. Depolarization of the neurons with 55 mM potassium increased the release of [(3)H]D-aspartate by more than 10-fold. When the non-specific calcium-channel blockers cobalt or lanthanum were included in the stimulation buffer with potassium......, the release of [(3)H]D-aspartate was decreased by about 40%. These results indicated that some of the released [(3)H]D-aspartate might originate from a vesicular pool. When AMPA was applied to the neurons, the release of [(3)H]D-aspartate was increased 2-fold and could not be prevented or decreased...

  18. Leaf cDNA-AFLP analysis reveals novel mechanisms for boron-induced alleviation of aluminum-toxicity in Citrus grandis seedlings.

    Science.gov (United States)

    Wang, Liu-Qing; Yang, Lin-Tong; Guo, Peng; Zhou, Xin-Xing; Ye, Xin; Chen, En-Jun; Chen, Li-Song

    2015-10-01

    Little information is available on the molecular mechanisms of boron (B)-induced alleviation of aluminum (Al)-toxicity. 'Sour pummelo' (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing different concentrations of B (2.5 or 20μM H3BO3) and Al (0 or 1.2mM AlCl3·6H2O). B alleviated Al-induced inhibition in plant growth accompanied by lower leaf Al. We used cDNA-AFLP to isolate 127 differentially expressed genes from leaves subjected to B and Al interactions. These genes were related to signal transduction, transport, cell wall modification, carbohydrate and energy metabolism, nucleic acid metabolism, amino acid and protein metabolism, lipid metabolism and stress responses. The ameliorative mechanisms of B on Al-toxicity might be related to: (a) triggering multiple signal transduction pathways; (b) improving the expression levels of genes related to transport; (c) activating genes involved in energy production; and (d) increasing amino acid accumulation and protein degradation. Also, genes involved in nucleic acid metabolism, cell wall modification and stress responses might play a role in B-induced alleviation of Al-toxicity. To conclude, our findings reveal some novel mechanisms on B-induced alleviation of Al-toxicity at the transcriptional level in C. grandis leaves. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Pengaruh Pengasapan (Thermal Fogging Insektisida Piretroid (Malation 95% Terhadap Nyamuk Aedes aegypti dan Culex quinquefasciatus di Pemukiman

    Directory of Open Access Journals (Sweden)

    Hasan Boesri

    2009-12-01

    Full Text Available The evaluation of piretroid insecticide (active ingredient Malation 95% was con-ducted in Sub district Tengarang, Semarang Segency, Central Java Province. The insecti-cide was applied using thermal fogging method for dosages of 125, 250, 375, 500 and 625 ml/ha (diluted in diesel to 10 litters. The evaluation of the efficacy was conducted against two mosquito species, Aedes aegypti (the main dengue haemorrhagic fever and Culex quinquefasciatus (the urban lymphatic fil-ariasis vector. Result of the evaluation was revealed that dosages of 500 and 625 ml/ha were effective against both tested mosquito species indoor and outdoor.

  20. A Virtual Aluminum Reduction Cell

    Science.gov (United States)

    Zhang, Hongliang; Zhou, Chenn Q.; Wu, Bing; Li, Jie

    2013-11-01

    The most important component in the aluminum industry is the aluminum reduction cell; it has received considerable interests and resources to conduct research to improve its productivity and energy efficiency. The current study focused on the integration of numerical simulation data and virtual reality technology to create a scientifically and practically realistic virtual aluminum reduction cell by presenting complex cell structures and physical-chemical phenomena. The multiphysical field simulation models were first built and solved in ANSYS software (ANSYS Inc., Canonsburg, PA, USA). Then, the methodology of combining the simulation results with virtual reality was introduced, and a virtual aluminum reduction cell was created. The demonstration showed that a computer-based world could be created in which people who are not analysis experts can see the detailed cell structure in a context that they can understand easily. With the application of the virtual aluminum reduction cell, even people who are familiar with aluminum reduction cell operations can gain insights that make it possible to understand the root causes of observed problems and plan design changes in much less time.

  1. Crystallization and crystallographic analysis of the ligand-binding domain of the Pseudomonas putida chemoreceptor McpS in complex with malate and succinate

    International Nuclear Information System (INIS)

    Gavira, J. A.; Lacal, J.; Ramos, J. L.; García-Ruiz, J. M.; Krell, T.; Pineda-Molina, E.

    2012-01-01

    The crystallization of the ligand-binding domain of the methyl-accepting chemotaxis protein chemoreceptor McpS (McpS-LBD) is reported. Methyl-accepting chemotaxis proteins (MCPs) are transmembrane proteins that sense changes in environmental signals, generating a chemotactic response and regulating other cellular processes. MCPs are composed of two main domains: a ligand-binding domain (LBD) and a cytosolic signalling domain (CSD). Here, the crystallization of the LBD of the chemoreceptor McpS (McpS-LBD) is reported. McpS-LBD is responsible for sensing most of the TCA-cycle intermediates in the soil bacterium Pseudomonas putida KT2440. McpS-LBD was expressed, purified and crystallized in complex with two of its natural ligands (malate and succinate). Crystals were obtained by both the counter-diffusion and the hanging-drop vapour-diffusion techniques after pre-incubation of McpS-LBD with the ligands. The crystals were isomorphous and belonged to space group C2, with two molecules per asymmetric unit. Diffraction data were collected at the ESRF synchrotron X-ray source to resolutions of 1.8 and 1.9 Å for the malate and succinate complexes, respectively

  2. Emissions of naturally occurring radioactivity from aluminum and copper facilities. Report No. 6 (final)

    International Nuclear Information System (INIS)

    Andrews, V.E.

    1982-11-01

    This report summarizes five surveys which were conducted at a Bauxite mining operation, an alumina reduction plant, an aluminum reduction plant, an underground copper mine and mill, and an open pit copper mine and concentrator. Process components and controlled source releases were sampled for naturally occurring radioactivity. Particular emphasis was given to radon-222, lead-210, and polonium-210 emissions from crushing and drying processes

  3. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  4. Mesoporous aluminum phosphite

    International Nuclear Information System (INIS)

    El Haskouri, Jamal; Perez-Cabero, Monica; Guillem, Carmen; Latorre, Julio; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro

    2009-01-01

    High surface area pure mesoporous aluminum-phosphorus oxide-based derivatives have been synthesized through an S + I - surfactant-assisted cooperative mechanism by means of a one-pot preparative procedure from aqueous solution and starting from aluminum atrane complexes and phosphoric and/or phosphorous acids. A soft chemical extraction procedure allows opening the pore system of the parent as-prepared materials by exchanging the surfactant without mesostructure collapse. The nature of the pore wall can be modulated from mesoporous aluminum phosphate (ALPO) up to total incorporation of phosphite entities (mesoporous aluminum phosphite), which results in a gradual evolution of the acidic properties of the final materials. While phosphate groups in ALPO act as network building blocks (bridging Al atoms), the phosphite entities become basically attached to the pore surface, what gives practically empty channels. The mesoporous nature of the final materials is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N 2 adsorption-desorption isotherms. The materials present regular unimodal pore systems whose order decreases as the phosphite content increases. NMR spectroscopic results confirm the incorporation of oxo-phosphorus entities to the framework of these materials and also provide us useful information concerning the mechanism through which they are formed. - Abstract: TEM image of the mesoporous aluminum phosphite showing the hexagonal disordered pore array that is generated by using surfactant micelles as template. Also a scheme emphasizing the presence of an alumina-rich core and an ALPO-like pore surface is presented.

  5. Ceriodaphnia dubia as a potential bio-indicator for assessing acute aluminum oxide nanoparticle toxicity in fresh water environment.

    Directory of Open Access Journals (Sweden)

    Sunandan Pakrashi

    Full Text Available Growing nanomaterials based consumer applications have raised concerns about their potential release into the aquatic ecosystems and the consequent toxicological impacts. So environmental monitoring of the nanomaterials in aqueous systems becomes imperative. The current study reveals the potential of Ceriodaphnia dubia (C. dubia as a bio-indicator for aluminum oxide nanoparticles in a fresh water aquatic ecosystem where it occupies an important ecological niche as a primary consumer. This study aims to investigate the aluminium oxide nanoparticle induced acute toxicity on Ceriodaphnia dubia in a freshwater system. The bioavailability of the aluminum oxide nanoparticles has been studied with respect to their aggregation behavior in the system and correlated with the toxicity endpoints. The oxidative stress generated by the particles contributed greatly toward their toxicity. The crucial role of leached aluminium ion mediated toxicity in the later phases (48 h and 72 h in conjunction with the effects from the nano-sized particles in the initial phases (24 h puts forth the dynamics of nanotoxicity in the test system. The internalization of nanoparticles (both gross and systemic uptake as substantiated through the transmission electron microscopy (TEM and inductively coupled plasma optical emission spectral (ICP-OES analysis was another major contributor toward acute toxicity. Concluding the present study, Ceriodaphnia dubia can be a promising candidate for bio-monitoring the aluminium oxide nanoparticles in a fresh water system.

  6. Validation of basophil histamine release against the autologous serum skin test and outcome of serum-induced basophil histamine release studies in a large population of chronic urticaria patients

    DEFF Research Database (Denmark)

    Platzer, M H; Grattan, C E H; Poulsen, Lars K.

    2005-01-01

    the immunoglobulin E (IgE) or the high affinity IgE receptor (FcepsilonRI) and serum-induced histamine release (HR) from basophils and mast cells. We have examined the correlation between the ASST and a new basophil histamine-releasing assay (the HR-Urtikaria test) in a group of well-characterized CU patients...... and subsequently determined the frequency of HR-Urticaria-positive sera from a larger population of CU patients....

  7. Laser shock wave consolidation of nanodiamond powders on aluminum 319

    Energy Technology Data Exchange (ETDEWEB)

    Molian, Pal [Laboratory for Lasers, MEMS, and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2161 (United States)], E-mail: molian@iastate.edu; Molian, Raathai; Nair, Rajeev [Laboratory for Lasers, MEMS, and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2161 (United States)

    2009-01-01

    A novel coating approach, based on laser shock wave generation, was employed to induce compressive pressures up to 5 GPa and compact nanodiamond (ND) powders (4-8 nm) on aluminum 319 substrate. Raman scattering indicated that the coating consisted of amorphous carbon and nanocrystalline graphite with peaks at 1360 cm{sup -1} and 1600 cm{sup -1} respectively. Scanning electron microscopy revealed a wavy, non-uniform coating with an average thickness of 40 {mu}m and absence of thermal effect on the surrounding material. The phase transition from nanodiamond to other phases of carbon is responsible for the increased coating thickness. Vicker's microhardness test showed hardness in excess of 1000 kg{sub f}/mm{sup 2} (10 GPa) while nanoindentation test indicated much lower hardness in the range of 20 MPa to 2 GPa. Optical surface profilometry traces displayed slightly uneven surfaces compared to the bare aluminum with an average surface roughness (R{sub a}) in the range of 1.5-4 {mu}m depending on the shock wave pressure and type of confining medium. Ball-on-disc tribometer tests showed that the coefficient of friction and wear rate were substantially lower than the smoother, bare aluminum sample. Laser shock wave process has thus aided in the generation of a strong, wear resistant, durable carbon composite coating on aluminum 319 substrate.

  8. Acute inflammation induces segmental, bilateral, supraspinally mediated opioid release in the rat spinal cord, as measured by μ-opioid receptor internalization

    Science.gov (United States)

    Chen, Wenling; Marvizón, Juan Carlos G.

    2009-01-01

    The objective of this study was to measure opioid release in the spinal cord during acute and long-term inflammation using μ-opioid receptor (MOR) internalization. In particular, we determined whether opioid release occurs in the segments receiving the noxious signals or in the entire spinal cord, and whether it involves supraspinal signals. Internalization of neurokinin 1 receptors (NK1Rs) was measured to track the intensity of the noxious stimulus. Rats received peptidase inhibitors intrathecally to protect opioids from degradation. Acute inflammation of the hindpaw with formalin induced moderate MOR internalization in the L5 segment bilaterally, whereas NK1R internalization occurred only ipsilaterally. MOR internalization was restricted to the lumbar spinal cord, regardless of whether the peptidase inhibitors were injected in a lumbar or thoracic site. Formalin-induced MOR internalization was substantially reduced by isoflurane anesthesia. It was also markedly reduced by a lidocaine block of the cervical-thoracic spinal cord (which did not affect the evoked NK1R internalization) indicating that spinal opioid release is mediated supraspinally. In the absence of peptidase inhibitors, formalin and hindpaw clamp induced a small amount of MOR internalization, which was significantly higher than in controls. To study spinal opioid release during chronic inflammation, we injected Complete Freund's Adjuvant (CFA) in the hindpaw and peptidase inhibitors intrathecally. Two days later, no MOR or NK1R internalization was detected. Furthermore, CFA inflammation decreased MOR internalization induced by clamping the inflamed hindpaw. These results show that acute inflammation, but not chronic inflammation, induce segmental opioid release in the spinal cord that involves supraspinal signals. PMID:19298846

  9. Acute inflammation induces segmental, bilateral, supraspinally mediated opioid release in the rat spinal cord, as measured by mu-opioid receptor internalization.

    Science.gov (United States)

    Chen, W; Marvizón, J C G

    2009-06-16

    The objective of this study was to measure opioid release in the spinal cord during acute and long-term inflammation using mu-opioid receptor (MOR) internalization. In particular, we determined whether opioid release occurs in the segments receiving the noxious signals or in the entire spinal cord, and whether it involves supraspinal signals. Internalization of neurokinin 1 receptors (NK1Rs) was measured to track the intensity of the noxious stimulus. Rats received peptidase inhibitors intrathecally to protect opioids from degradation. Acute inflammation of the hind paw with formalin induced moderate MOR internalization in the L5 segment bilaterally, whereas NK1R internalization occurred only ipsilaterally. MOR internalization was restricted to the lumbar spinal cord, regardless of whether the peptidase inhibitors were injected in a lumbar or thoracic site. Formalin-induced MOR internalization was substantially reduced by isoflurane anesthesia. It was also markedly reduced by a lidocaine block of the cervical-thoracic spinal cord (which did not affect the evoked NK1R internalization) indicating that spinal opioid release is mediated supraspinally. In the absence of peptidase inhibitors, formalin and hind paw clamp induced a small amount of MOR internalization, which was significantly higher than in controls. To study spinal opioid release during chronic inflammation, we injected complete Freund's adjuvant (CFA) in the hind paw and peptidase inhibitors intrathecally. Two days later, no MOR or NK1R internalization was detected. Furthermore, CFA inflammation decreased MOR internalization induced by clamping the inflamed hind paw. These results show that acute inflammation, but not chronic inflammation, induces segmental opioid release in the spinal cord that involves supraspinal signals.

  10. Azadirachtin-induced apoptosis involves lysosomal membrane permeabilization and cathepsin L release in Spodoptera frugiperda Sf9 cells.

    Science.gov (United States)

    Wang, Zheng; Cheng, Xingan; Meng, Qianqian; Wang, Peidan; Shu, Benshui; Hu, Qiongbo; Hu, Meiying; Zhong, Guohua

    2015-07-01

    Azadirachtin as a kind of botanical insecticide has been widely used in pest control. We previously reported that azadirachtin could induce apoptosis of Spodoptera litura cultured cell line Sl-1, which involves in the up-regulation of P53 protein. However, the detailed mechanism of azadirachtin-induced apoptosis is not clearly understood in insect cultured cells. The aim of the present study was to address the involvement of lysosome and lysosomal protease in azadirachtin-induced apoptosis in Sf9 cells. The result confirmed that azadirachtin indeed inhibited proliferation and induced apoptosis. The lysosomes were divided into different types as time-dependent manner, which suggested that changes of lysosomes were necessarily physiological processes in azadirachtin-induced apoptosis in Sf9 cells. Interestingly, we noticed that azadirachtin could trigger lysosomal membrane permeabilization and cathepsin L releasing to cytosol. Z-FF-FMK (a cathepsin L inhibitor), but not CA-074me (a cathepsin B inhibitor), could effectively hinder the apoptosis induced by azadirachtin in Sf9 cells. Meanwhile, the activity of caspase-3 could also be inactivated by the inhibition of cathepsin L enzymatic activity induced by Z-FF-FMK. Taken together, our findings suggest that azadirachtin could induce apoptosis in Sf9 cells in a lysosomal pathway, and cathepsin L plays a pro-apoptosis role in this process through releasing to cytosol and activating caspase-3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells.

    Science.gov (United States)

    Ito, Mai; Arakawa, Toshiya; Okayama, Miki; Shitara, Akiko; Mizoguchi, Itaru; Takuma, Taishin

    2014-11-01

    The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement. © 2013 Wiley Publishing Asia Pty Ltd.

  12. Changes in Some Hematology Parameters in poisoning with Rice Tablet (Aluminum Phosphide)

    OpenAIRE

    Farshid Fayyaz (PhD)

    2015-01-01

    Background and Objective: Aluminum Phosphide (ALP) is a solid non-organic phosphide with dark gray or dark yellow crystals. It reacts with stomach acid after ingestion and causes phosphine gas to be released. It is thought that phosphine causes toxicity from enzymatic interference and may even lead to cell death. This study aimed to investigate the effects of poisoning with rice tablet on levels of platelets, hemoglobin, white blood cells. Methods: The clinical records of 67 cases of acute...

  13. The Drug Release Profile from Calcium-induced Alginate Gel Beads Coated with an Alginate Hydrolysate

    Directory of Open Access Journals (Sweden)

    Susumu Kawashima

    2007-11-01

    Full Text Available Calcium-induced alginate gel bead (Alg-Ca coated with an alginate hydrolysate(Alg, e.g. the guluronic acid block (GB was prepared and the model drug, hydrocortisonerelease profiles were investigated under simulated gastrointestinal conditions. Theirmolecular weights were one sixth or one tenth that of Alg and the diffraction patterns of thehydrolysates resembled that of Alg. The drug release rate from Alg-Ca coated with GBapparently lowered than that of Alg-Ca (coating-free in the gastric juice (pH1.2. And thecoating did not resist the disintegration of Alg-Ca in the intestinal juice (pH 6.8 and thegel erosion accelerated the drug release. On the other hand, for the coated Alg-Cacontaining chitosan, the drug release showed zero-order kinetics without rapid erosion ofAlg-Ca. The drug release rate from Alg-Ca was able to be controlled by the coating andmodifying the composition of the gel matrix.

  14. Evaluation of Radionuclide Release from Aluminum-Based SNF in Basin Storage

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Burke, S.D.; Howell, J.P.

    1998-09-01

    This report provides an evaluation of the release rates of radionuclides from breached A1-SNF assemblies and evaluates the effect of direct storage of breached fuel at a conservative upper bound reference condition on the SRS basin water activity levels

  15. Carbon isotope composition of intermediates of the starch-malate sequence and level of the crassulacean acid metabolism in leaves of Kalanchoe blossfeldiana Tom Thumb.

    Science.gov (United States)

    Deleens, E; Garnier-Dardart, J; Queiroz, O

    1979-09-01

    Isotype analyses were performed on biochemical fractions isolated from leaves of Kalanchoe blossfeldiana Tom Thumb. during aging under long days or short days. Irrespective of the age or photoperiodic conditions, the intermediates of the starch-malate sequence (starch, phosphorylated compounds and organic acids) have a level of (13)C higher than that of soluble sugars, cellulose and hemicellulose. In short days, the activity of the crassulacean acid metabolism pathway is predominant as compared to that of C3 pathway: leaves accumulate organic acids, rich in (13)C. In long days, the activity of the crassulacean acid metabolism pathway increases as the leaves age, remaining, however, relatively low as compared to that of C3 pathway: leaves accumulate soluble sugars, poor in (13)C. After photoperiodic change (long days→short days), isotopic modifications of starch and organic acids suggest evidence for a lag phase in the establishment of the crassulacean acid metabolism pathway specific to short days. The relative proportions of carbon from a C3-origin (RuBPC acitivity as strong discriminating step, isotope discrimination in vivo=20‰) or C4-origin (PEPC activity as weak discriminating step, isotope discrimination in vivo=4‰) present in the biochemical fractions were calculated from their δ(13)C values. Under long days, 30 to 70% versus 80 to 100% under short days, of the carbon of the intermediates linked to the starch-malate sequence, or CAM pathway (starch, phosphorylated compounds and organic acids), have a C4-origin. Products connected to the C3 pathway (free sugars, cellulose, hemicellulose) have 0 to 50% of their carbon, arising from reuptake of the C4 from malate, under long days versus 30 to 70% under short days.

  16. PKA and Epac cooperate to augment bradykinin-induced interleukin-8 release from human airway smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Halayko Andrew J

    2009-09-01

    Full Text Available Abstract Background Airway smooth muscle contributes to the pathogenesis of pulmonary diseases by secreting inflammatory mediators such as interleukin-8 (IL-8. IL-8 production is in part regulated via activation of Gq-and Gs-coupled receptors. Here we study the role of the cyclic AMP (cAMP effectors protein kinase A (PKA and exchange proteins directly activated by cAMP (Epac1 and Epac2 in the bradykinin-induced IL-8 release from a human airway smooth muscle cell line and the underlying molecular mechanisms of this response. Methods IL-8 release was assessed via ELISA under basal condition and after stimulation with bradykinin alone or in combination with fenoterol, the Epac activators 8-pCPT-2'-O-Me-cAMP and Sp-8-pCPT-2'-O-Me-cAMPS, the PKA activator 6-Bnz-cAMP and the cGMP analog 8-pCPT-2'-O-Me-cGMP. Where indicated, cells were pre-incubated with the pharmacological inhibitors Clostridium difficile toxin B-1470 (GTPases, U0126 (extracellular signal-regulated kinases ERK1/2 and Rp-8-CPT-cAMPS (PKA. The specificity of the cyclic nucleotide analogs was confirmed by measuring phosphorylation of the PKA substrate vasodilator-stimulated phosphoprotein. GTP-loading of Rap1 and Rap2 was evaluated via pull-down technique. Expression of Rap1, Rap2, Epac1 and Epac2 was assessed via western blot. Downregulation of Epac protein expression was achieved by siRNA. Unpaired or paired two-tailed Student's t test was used. Results The β2-agonist fenoterol augmented release of IL-8 by bradykinin. The PKA activator 6-Bnz-cAMP and the Epac activator 8-pCPT-2'-O-Me-cAMP significantly increased bradykinin-induced IL-8 release. The hydrolysis-resistant Epac activator Sp-8-pCPT-2'-O-Me-cAMPS mimicked the effects of 8-pCPT-2'-O-Me-cAMP, whereas the negative control 8-pCPT-2'-O-Me-cGMP did not. Fenoterol, forskolin and 6-Bnz-cAMP induced VASP phosphorylation, which was diminished by the PKA inhibitor Rp-8-CPT-cAMPS. 6-Bnz-cAMP and 8-pCPT-2'-O-Me-cAMP induced GTP

  17. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25{+-}2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% {+-} 1.3% and 10.6% {+-} 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% {+-} 4.5% vs. 6.6% {+-} 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release.

  18. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    International Nuclear Information System (INIS)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun

    2005-01-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25±2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% ± 1.3% and 10.6% ± 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% ± 4.5% vs. 6.6% ± 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release

  19. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles.

    Science.gov (United States)

    Robatjazi, Hossein; Zhao, Hangqi; Swearer, Dayne F; Hogan, Nathaniel J; Zhou, Linan; Alabastri, Alessandro; McClain, Michael J; Nordlander, Peter; Halas, Naomi J

    2017-06-21

    The rational combination of plasmonic nanoantennas with active transition metal-based catalysts, known as 'antenna-reactor' nanostructures, holds promise to expand the scope of chemical reactions possible with plasmonic photocatalysis. Here, we report earth-abundant embedded aluminum in cuprous oxide antenna-reactor heterostructures that operate more effectively and selectively for the reverse water-gas shift reaction under milder illumination than in conventional thermal conditions. Through rigorous comparison of the spatial temperature profile, optical absorption, and integrated electric field enhancement of the catalyst, we have been able to distinguish between competing photothermal and hot-carrier driven mechanistic pathways. The antenna-reactor geometry efficiently harnesses the plasmon resonance of aluminum to supply energetic hot-carriers and increases optical absorption in cuprous oxide for selective carbon dioxide conversion to carbon monoxide with visible light. The transition from noble metals to aluminum based antenna-reactor heterostructures in plasmonic photocatalysis provides a sustainable route to high-value chemicals and reaffirms the practical potential of plasmon-mediated chemical transformations.Plasmon-enhanced photocatalysis holds promise for the control of chemical reactions. Here the authors report an Al@Cu 2 O heterostructure based on earth abundant materials to transform CO 2 into CO at significantly milder conditions.

  20. Gut: An underestimated target organ for Aluminum.

    Science.gov (United States)

    Vignal, C; Desreumaux, P; Body-Malapel, M

    2016-06-01

    Since World War II, several factors such as an impressive industrial growth, an enhanced environmental bioavailability and intensified food consumption have contributed to a significant amplification of human exposure to aluminum. Aluminum is particularly present in food, beverages, some drugs and airbone dust. In our food, aluminum is superimposed via additives and cooking utensils. Therefore, the tolerable intake of aluminum is exceeded for a significant part of the world population, especially in children who are more vulnerable to toxic effects of pollutants than adults. Faced with this oral aluminum influx, intestinal tract is an essential barrier, especially as 38% of ingested aluminum accumulates at the intestinal mucosa. Although still poorly documented to date, the impact of oral exposure to aluminum in conditions relevant to real human exposure appears to be deleterious for gut homeostasis. Aluminum ingestion affects the regulation of the permeability, the microflora and the immune function of intestine. Nowadays, several arguments are consistent with an involvement of aluminum as an environmental risk factor for inflammatory bowel diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Infrared radiation properties of anodized aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, S. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology; Niimi, Y. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology

    1996-12-31

    The infrared radiation heating is an efficient and energy saving heating method. Ceramics have been used as an infrared radiant material, because the emissivity of metals is lower than that of ceramics. However, anodized aluminum could be used as the infrared radiant material since an aluminum oxide film is formed on the surface. In the present study, the infrared radiation properties of anodized aluminum have been investigated by determining the spectral emissivity curve. The spectral emissivity curve of anodized aluminum changed with the anodizing time. The spectral emissivity curve shifted to the higher level after anodizing for 10 min, but little changed afterwards. The infrared radiant material with high level spectral emissivity curve can be achieved by making an oxide film thicker than about 15 {mu}m on the surface of aluminum. Thus, anodized aluminum is applicable for the infrared radiation heating. (orig.)

  2. Stimulatory effects of neuronally released norepinephrine on renin release in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Yasuo; Kawazoe, Shinka; Ichihara, Toshio; Shinyama, Hiroshi; Kageyama, Masaaki; Morimoto, Shiro (Osaka Univ. of Pharmaceutical Sciences (Japan))

    1988-10-01

    Extracellular high potassium inhibits renin release in vitro by increasing calcium concentrations in the juxtaglomerular cells. The authors found that the decreased response of renin release from rat kidney cortical slices in high potassium solution changed to a strikingly increased one in the presence of nifedipine at doses over 10{sup {minus}6} M. They then examined the stimulatory effect of extracellular high potassium in the presence of nifedipine on renin release. The enhancement of release was significantly suppressed either by propranolol or by metoprolol but not by prazosin. High potassium plus nifedipine-induced increase in renin release was markedly attenuated by renal denervation. The enhancing effect was not observed when the slices were incubated in calcium-free medium. Divalent cations such as Cd{sup 2+}, Co{sup 2+}, and Mn{sup 2+} blocked this enhancement in a concentration-dependent manner. High potassium elicited an increase in {sup 3}H efflux from the slices preloaded with ({sup 3}H)-norepinephrine. The increasing effect was not influenced by nifedipine but was abolished by the removal of extracellular calcium or by the addition of divalent cations. These observations suggest to us that the high potassium plus nifedipine-induced increase in renin release from the slices is mediated by norepinephrine derived from renal sympathetic nerves and that this neuronally released norepinephrine stimulates renin release via activation of {beta}-adrenoceptors.

  3. Vapor corrosion of aluminum cladding alloys and aluminum-uranium fuel materials in storage environments

    International Nuclear Information System (INIS)

    Lam, P.; Sindelar, R.L.; Peacock, H.B. Jr.

    1997-04-01

    An experimental investigation of the effects of vapor environments on the corrosion of aluminum spent nuclear fuel (A1 SNF) has been performed. Aluminum cladding alloys and aluminum-uranium fuel alloys have been exposed to environments of air/water vapor/ionizing radiation and characterized for applications to degradation mode analysis for interim dry and repository storage systems. Models have been developed to allow predictions of the corrosion response under conditions of unlimited corrodant species. Threshold levels of water vapor under which corrosion does not occur have been identified through tests under conditions of limited corrodant species. Coupons of aluminum 1100, 5052, and 6061, the US equivalent of cladding alloys used to manufacture foreign research reactor fuels, and several aluminum-uranium alloys (aluminum-10, 18, and 33 wt% uranium) were exposed to various controlled vapor environments in air within the following ranges of conditions: Temperature -- 80 to 200 C; Relative Humidity -- 0 to 100% using atmospheric condensate water and using added nitric acid to simulate radiolysis effects; and Gamma Radiation -- none and 1.8 x 10 6 R/hr. The results of this work are part of the body of information needed for understanding the degradation of the A1 SNF waste form in a direct disposal system in the federal repository. It will provide the basis for data input to the ongoing performance assessment and criticality safety analyses. Additional testing of uranium-aluminum fuel materials at uranium contents typical of high enriched and low enriched fuels is being initiated to provide the data needed for the development of empirical models

  4. Initiation, Propagation, and Mitigation of Aluminum and Chlorine Induced Pitting Corrosion

    OpenAIRE

    Marshall, Becki Jean

    2004-01-01

    Previous research by Rushing et al. (2002) identified key factors contributing to the formation of pinhole leaks in copper plumbing. These factors included high chlorine, pH levels and the presence of aluminum solids. Experiments were conducted to 1) examine the interplay between these constituents, 2) confirm that the water was aggressive enough to eat a hole through a pipe, 3) examine phosphate inhibition, and 4) try to determine the scope of this pitting problem in other distribution sy...

  5. Evaluation of precipitates used in strainer head loss testing: Part II. Precipitates by in situ aluminum alloy corrosion

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Kasza, Ken E.; Shack, William J.; Natesan, Ken; Klein, Paul

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → Sump strainer head loss testing to evaluate chemical effects. → Aluminum hydroxide precipitates by in situ Al alloy corrosion caused head loss. → Intermetallic particles released from Al alloy can also cause significant head loss. → When evaluating Al effect on head loss, intermetallics should be considered. - Abstract: Vertical loop head loss tests were performed with 6061 and 1100 aluminum (Al) alloy plates immersed in borated solution at pH = 9.3 at room temperature and 60 o C. The results suggest that the potential for corrosion of an Al alloy to result in increased head loss across a glass fiber bed may depend on its microstructure, i.e., the size distribution and number density of intermetallic particles that are present in Al matrix and FeSiAl ternary compounds, as well as its Al release rate. Per unit mass of Al removed from solution, the WCAP-16530 aluminum hydroxide (Al(OH) 3 ) surrogate was more effective in increasing head loss than the Al(OH) 3 precipitates formed in situ by corrosion of Al alloy. However, in choosing a representative amount of surrogate for plant specific testing, consideration should be given to the potential for additional head losses due to intermetallic particles and the apparent reduction in the effective solubility of Al(OH) 3 when intermetallic particles are present.

  6. Effect of liquid properties on laser ablation of aluminum and titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Peixuan, E-mail: oypx12@mails.tsinghua.edu.cn [National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084 (China); Li, Peijie [National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Leksina, E.G.; Michurin, S.V. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992 (Russian Federation); He, Liangju [School of Aerospace, Tsinghua University, Beijing 100084 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Porous surfaces are formed in Al alloy after wet ablation due to phase explosion. • A higher ablation rate is produced in glycerin than that in water and isopropanol. • Effect of liquid properties on mass-removal mechanisms was discussed. • Phase explosion and plasma-induced pressure contribute greatly to mass removal. • Density, heat conductivity and shock impendence of liquid affect ablation rates. - Abstract: In order to study the effect of liquid properties on laser ablation in liquids, aluminum 5A06 and titanium TB5 targets were irradiated by single-pulse infrared laser in isopropanol, distilled water, glycerin and as a comparison, in air, respectively. Craters induced by laser ablation were characterized using scanning electron and white-light interferometric microscopies. The results show that for liquid-mediated ablation, craters with porous surface structures were formed in aluminum target through phase explosion, while no micro-cavities were formed in titanium target owing to high critical temperature of titanium. In addition, ablation rates of aluminum and titanium targets vary with types of ambient media in accordance with such sequence: air < isopropanol < water < glycerin. Further, the influence of liquid properties on material-removal mechanisms for laser ablation in liquid is discussed. It is concluded that the density, thermal conductivity and acoustical impedance of liquid play a dominant role in laser ablation efficiency.

  7. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    Science.gov (United States)

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  8. Release of mannoproteins during Saccharomyces cerevisiae autolysis induced by Pulsed Electric Field

    Directory of Open Access Journals (Sweden)

    Juan Manuel Martínez

    2016-09-01

    Full Text Available The potential of the application of PEF to induce accelerate autolysis of a commercial strain of Sacharomyces cerevisiae for winemaking use was evaluated. The influence of PEF treatments of different intensity (5-25 kV/cm for 30-240 µs on cell viability, cytoplasmic membrane permeabilization, release of mannoproteins and compounds absorbing at 260 and 280 nm has been investigated.After 8 days of incubation at 25 ºC the Abs600 of the suspension containing the control cells was kept constant while the Abs600 of the suspension containing the cells treated by PEF decreased. The measurement of the absorbance at 260 and 280 nm revealed no release of UV absorbing material from untreated cells after 8 days of incubation but the amount of UV absorbing material released drastically increased in the samples that contained cells treated by PEF after the same storage period. After 18 days of storage the amount of mannoproteins released from the untreated cell was negligible. Conversely, mannoprotein concentration increased linearly for the samples containing cells of S. cerevisiae treated by PEF. After 18 days of incubation the concentration of mannoproteins in the supernatant increased 4.2 times for the samples containing cells treated by PEF at 15 and 25 kV/cm for 45 and 150 µs.Results obtained in this study indicates that PEF could be used in winemaking to accelerate the sur lie aging or to obtain mannoproteins from yeast cultures to be used in winemaking.

  9. Solidification of metallic aluminum on magnesium phosphate cements

    International Nuclear Information System (INIS)

    Lahalle, Hugo

    2016-01-01

    acid. On the contrary, lithium nitrate, dissolved in the mixing solution, acts as a corrosion inhibitor. A 4-step mechanism makes it possible to model the impedance diagrams. The evolution of the corrosion rate and of the amount of dihydrogen released with ongoing hydration is then calculated. The results are in good agreement with the experimental determination of the H_2 production by aluminum sheets embedded in magnesium phosphate mortar. (author) [fr

  10. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Science.gov (United States)

    2010-07-01

    ... HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753... Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5753 How do I calculate the combined organic HAP content of aluminum...

  11. Calcium-Induced calcium release during action potential firing in developing inner hair cells.

    Science.gov (United States)

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J

    2015-03-10

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights

  12. Casting Characteristics of High Cerium Content Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D; Rios, O R; Sims, Z C; McCall, S K; Ott, R T

    2017-09-05

    This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems for melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.

  13. Experimental and numerical analysis of the combustor for a cogeneration system based on the aluminum/water reaction

    International Nuclear Information System (INIS)

    Milani, Massimo; Montorsi, Luca; Paltrinieri, Fabrizio; Stefani, Matteo

    2014-01-01

    Highlights: • Aluminum reaction with water is studied as a technology for hydrogen production. • A test rig is developed for the analysis of aluminum/water reaction. • The system is the core component of a cogeneration plant for hydrogen/power production. • The interaction of liquid aluminum jet and water steam stream is investigated. • The main capabilities of the injection system are assessed. - Abstract: The paper focuses on the design of the experimental apparatus aimed at analyzing the performance of the combustion chamber of a cogeneration system based on the reaction of liquid aluminum and water steam. The cogeneration system exploits the heat released by the oxidation of aluminum with water for super-heating the vapor of a steam cycle and simultaneously producing hydrogen. The only by-product is alumina, which in a closed loop can be recycled back and transformed again into aluminum. Therefore, aluminum is used as an energy carrier to transport the energy from the alumina reduction plant to the location of the proposed system. The water is also used in a closed loop since the amount of water produced employing the hydrogen obtained by the proposed system corresponds to the oxidizing water for the Al/H 2 O reaction. This study investigates the combustor where the liquid aluminum–steam reaction takes place. In particular, the design of the combustion chamber and the interaction between the liquid aluminum jet and the water steam flow are evaluated using a numerical and an experimental approach. The test rig is specifically designed for the analysis of the liquid aluminum injection in a slightly super-heated steam stream. The first experiments are carried out to verify the correct behavior of the test rig. Thermography is employed to qualitatively assess the steam entrainment of the liquid aluminum jet. Finally, the experimental measurements are compared with the multi-dimension multi-phase flow simulations in order to estimate the influence of

  14. Endurance training increases exercise-induced prostacyclin release in young, healthy men--relationship with VO2max.

    Science.gov (United States)

    Zoladz, Jerzy A; Majerczak, Joanna; Duda, Krzysztof; Chłopicki, Stefan

    2010-01-01

    In the present study, we evaluated the effect of 5 weeks of moderate-intensity endurance training on the basal and exercise-induced systemic release of prostacyclin (PGI(2)), as assessed by plasma 6-keto-PGF(1 alpha) concentration. Twelve physically active young men with the following characteristics participated in this study (the mean +/- SD): age, 22.7 +/- 2.0 years; body mass, 76.8 +/- 8.9 kg; BMI, 23.48 +/- 2.17 kg x m(-2); and maximal oxygen uptake (VO(2 max)), 46.1 +/- 4.0 ml x kg(-1) x min(-1). Plasma 6-keto-PGF(1 alpha) concentrations were measured in venous blood samples taken prior to the exercise and at exhaustion (at VO(2 max)) before and after completing the training protocol. On average, the training resulted in a significant increase in VO(2 max) (p = 0.03), power output at VO(2 max) (p = 0.001) and a significant increase (p = 0.05) in the net-exercise-induced increase in plasma 6-keto-PGF(1 alpha) concentration (Delta 6-keto-PGF(1 alpha) i.e., the difference between the end-exercise and pre-exercise 6-keto-PGF(1 alpha) concentrations). No effect of training on the basal PGI(2) concentration was found. Interestingly, within the study sample (n = 12), two subgroups could be defined with a differential pattern of response with respect to Delta 6-keto-PGF(1 alpha) concentrations. In one subgroup (n = 7), a significant increase in Delta 6-keto-PGF(1 alpha) concentration after training was found (p < 0.02) (responders). This enhancement in the exercise-induced PGI(2) release was accompanied by a significant (p < 0.05) increase in VO(2 max) after training. In contrast, in another subgroup (n = 5), there was no observed effect of training on the Delta 6-keto-PGF(1 alpha) concentration and the VO(2 max) after training (non-responders). In both of these subgroups, training did not influence the basal PGI(2) concentration. In conclusion, the endurance training resulted in the adaptive augmentation of the systemic release of PGI(2) in response to exercise

  15. Borax counteracts genotoxicity of aluminum in rat liver.

    Science.gov (United States)

    Turkez, Hasan; Geyikoğlu, Fatime; Tatar, Abdulgani

    2013-10-01

    This study was carried out to evaluate the protective role of borax (BX) on genotoxicity induced by aluminum (Al) in rat liver, using liver micronucleus assay as an indicator of genotoxicity. Sprague-Dawley rats were randomly separated into six groups and each group had four animals. Aluminum chloride (AlCl₃; 5 mg/kg b.w.) and BX (3.25 and 13 mg/kg b.w.) were injected intraperitoneally to rats. Besides, animals were also treated with Al for 4 consecutive days followed by BX for 10 days. Rats were anesthetized after Al and BX injections and the hepatocytes were isolated for counting the number of micronucleated hepatocytes (MNHEPs). AlCl₃ was found to significantly (p < 0.05) increase the number of MNHEPs. Rats treated with BX, however, showed no increase in MNHEPs. Moreover, simultaneous treatments with BX significantly modulated the genotoxic effects of AlCl₃ in rats. It can be concluded that BX has beneficial influences and has the ability to antagonize Al toxicity.

  16. Molecular regulation of aluminum resistance and sulfur nutrition during root growth.

    Science.gov (United States)

    Alarcón-Poblete, Edith; Inostroza-Blancheteau, Claudio; Alberdi, Miren; Rengel, Zed; Reyes-Díaz, Marjorie

    2018-01-01

    Aluminum toxicity and sulfate deprivation both regulate microRNA395 expression, repressing its low-affinity sulfate transporter ( SULTR2;1 ) target. Sulfate deprivation also induces the high-affinity sulfate transporter gene ( SULTR12 ), allowing enhanced sulfate uptake. Few studies about the relationships between sulfate, a plant nutrient, and aluminum, a toxic ion, are available; hence, the molecular and physiological processes underpinning this interaction are poorly understood. The Al-sulfate interaction occurs in acidic soils, whereby relatively high concentrations of trivalent toxic aluminum (Al 3+ ) may hamper root growth, limiting uptake of nutrients, including sulfur (S). On the other side, Al 3+ may be detoxified by complexation with sulfate in the acid soil solution as well as in the root-cell vacuoles. In this review, we focus on recent insights into the mechanisms governing plant responses to Al toxicity and its relationship with sulfur nutrition, emphasizing the role of phytohormones, microRNAs, and ion transporters in higher plants. It is known that Al 3+ disturbs gene expression and enzymes involved in biosynthesis of S-containing cysteine in root cells. On the other hand, Al 3+ may induce ethylene biosynthesis, enhance reactive oxygen species production, alter phytohormone transport, trigger root growth inhibition and promote sulfate uptake under S deficiency. MicroRNA395, regulated by both Al toxicity and sulfate deprivation, represses its low-affinity Sulfate Transporter 2;1 (SULTR2;1) target. In addition, sulfate deprivation induces High Affinity Sulfate Transporters (HAST; SULTR1;2), improving sulfate uptake from low-sulfate soil solutions. Identification of new microRNAs and cloning of their target genes are necessary for a better understanding of the role of molecular regulation of plant resistance to Al stress and sulfate deprivation.

  17. Anti-inflammatory homoeopathic drug dilutions restrain lipopolysaccharide-induced release of pro-inflammatory cytokines: In vitro and in vivo evidence

    Directory of Open Access Journals (Sweden)

    Umesh B Mahajan

    2017-01-01

    Full Text Available Context: The lipopolysaccharide (LPS-induced cytokine release and oxidative stress are validated experimental parameters used to test anti-inflammatory activity. We investigated the effects of homoeopathic mother tinctures, 6 CH, 30 CH and 200 CH dilutions of Arnica montana, Thuja occidentalis and Bryonia alba against LPS (1 μg/ml-induced cytokine release from RAW-264.7 cells and human whole-blood culture. Materials and Methods: For in vivo evaluations, mice were orally treated with 0.1 ml drug dilutions twice a day for 5 days followed by an intraperitoneal injection of 0.5 mg/kg LPS. After 24 h, the mice were sacrificed and serum levels of pro-inflammatory cytokines and nitric oxide were determined. The extent of oxidative stress was determined in the liver homogenates as contents of reduced glutathione, malondialdehyde, superoxide dismutase and catalase. Results: The tested drug dilutions significantly reduced in vitro LPS-induced release of tumour necrosis factor-α, interleukin-1 (IL-1 and IL-6 from the RAW-264.7 cells and human whole blood culture. Similar suppression of cytokines was evident in mice serum samples. These drugs also protected mice from the LPS-induced oxidative stress in liver tissue. Conclusions: Our findings substantiate the protective effects of Arnica, Thuja and Bryonia homoeopathic dilutions against LPS-induced cytokine elevations and oxidative stress. This study authenticates the claims of anti-inflammatory efficacy of these homoeopathic drugs.

  18. Aluminum industry options paper

    International Nuclear Information System (INIS)

    1999-10-01

    In 1990, Canada's producers of aluminum (third largest in the world) emitted 10 million tonnes of carbon dioxide and equivalent, corresponding to 6.4 tonnes of greenhouse gas intensity per tonne of aluminum. In 2000, the projection is that on a business-as-usual (BAU) basis Canadian producers now producing 60 per cent more aluminum than in 1990, will emit 10.7 million tonnes of carbon dioxide and equivalent, corresponding to a GHG intensity of 4.2 tonnes per tonne of aluminum. This improvement is due to production being based largely on hydro-electricity, and partly because in general, Canadian plants are modern, with technology that is relatively GHG-friendly. The Aluminum Association of Canada estimates that based on anticipated production, and under a BAU scenario, GHG emissions from aluminum production will rise by 18 per cent by 2010 and by 30 per cent by 2020. GHG emissions could be reduced below the BAU forecast first, by new control and monitoring systems at some operations at a cost of $4.5 to 7.5 million per smelter. These systems could reduce carbon dioxide equivalent emissions by 0.8 million tonnes per year. A second alternative would require installation of breaker feeders which would further reduce perfluorocarbon (PFC) emissions by 0.9 million tonnes of carbon dioxide equivalent. Cost of the breakers feeders would be in the order of $200 million per smelter. The third option calls for the the shutting down of some of the smelters with older technology by 2015. In this scenario GHG emissions would be reduced by 2010 by 0.8 million tonnes per year of carbon dioxide equivalent. However, the cost in this case would be about $1.36 billion. The industry would support measures that would encourage the first two sets of actions, which would produce GHG emissions from aluminum production in Canada of about 10.2 million tonnes per year of carbon dioxide equivalent, or about two per cent above 1990 levels with double the aluminum production of 1990. Credit for

  19. Steam explosions of single drops of pure and alloyed molten aluminum

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1995-01-01

    Studies of steam explosion phenomena have been performed related to the hypothetical meltdown of the core and other components of aluminum alloy-fueled production reactors. Our objectives were to characterise the triggers, if any, required to initiate these explosions and to determine the energetics and chemical processes associated with these events. Three basic studies have been carried out with 1-10 g single drops of molten aluminum or aluminum-based alloys: untriggered experiments in which drops of melt were released into water; triggered experiments in which thermal-type steam explosions occurred; and one triggered experiment in which an ignition-type steam explosion occurred. In untriggered experiments, spontaneous steam explosions never occurred during the free fall through water of single drops of pure Al or of the alloys studied here. Moreover, spontaneous explosions never occurred upon or during contact of the globules with several underwater surfaces. When Li was present in the alloy, H 2 was generated as a stream of bubbles as the globules fell through the water, and also as they froze on the bottom surface of the chamber. The triggered experiments were performed with pure Al and the 6061 alloy. Bare bridgewire discharges and those focused with cylindrical reflectors produced a small first bubble that collapsed and was followed by a larger second bubble. When the bridgewire was discharged at one focus of an ellipsoidal reflector, a melt drop at the other focus triggered only very mildly in spite of a 30-fold increase in peak pressure above that of the bridgewire discharge without the reflector. Experiments were also performed with globules of high purity Al in which the melt release temperature was progressively increased. Moderate thermal-type explosions were produced over the temperature range 1273-1673 K. At about 1773 K, however, one experiment produced a brilliant flash of light and bubble growth about an order of magnitude faster than normal; it

  20. Anodizing Aluminum with Frills.

    Science.gov (United States)

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…