WorldWideScience

Sample records for aluminum oxide templates

  1. Fabrication of YBCO nanowires with anodic aluminum oxide (AAO) template

    Energy Technology Data Exchange (ETDEWEB)

    Dadras, Sedigheh, E-mail: dadras@alzahra.ac.ir; Aawani, Elaheh

    2015-10-15

    We have fabricated YBCO nanowires by using anodic aluminum oxide (AAO) template and sol–gel method, to investigate the fundamental properties of the one-dimensional nanostructure YBCO high-temperature superconductor and enhance its applications. The field-emission scanning electron microscopy and X-ray diffraction pattern results have shown forming of Y-123 nanowires in the template. As an outcome, the YBCO nanowires, prepared by dipping AAO template into YBCO sol method, have average diameter of about 38 nm and length of 1 μm; this is an optimum nanowire sample with larger diameter and length. The resistance–temperature measurement indicates that the onset critical temperature of these samples occurs at 91 K, and the resistance of the optimum sample at onset transition is 10 times lower than the other sample.

  2. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    Science.gov (United States)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  3. Fabrication of Nanostructured PLGA Scaffolds Using Anodic Aluminum Oxide Templates

    CERN Document Server

    Hsueh, Cheng-Chih; Hsu, Shan-Hui; Hung, Huey-Shan

    2008-01-01

    PLGA (poly(lactic-co-glycolic acid)) is one of the most used biodegradable and biocompatible materials. Nanostructured PLGA even has great application potentials in tissue engineering. In this research, a fabrication technique for nanostructured PLGA membrane was investigated and developed. In this novel fabrication approach, an anodic aluminum oxide (AAO) film was use as the template ; the PLGA solution was then cast on it ; the vacuum air-extraction process was applied to transfer the nano porous pattern from the AAO membrane to the PLGA membrane and form nanostures on it. The cell culture experiments of the bovine endothelial cells demonstrated that the nanostructured PLGA membrane can double the cell growing rate. Compared to the conventional chemical-etching process, the physical fabrication method proposed in this research not only is simpler but also does not alter the characteristics of the PLGA. The nanostructure of the PLGA membrane can be well controlled by the AAO temperate.

  4. Electrochemical fabrication of CdS/Co nanowire arrays in porous aluminum oxide templates

    CERN Document Server

    Yoon, C H

    2002-01-01

    A procedure for preparing semiconductor/metal nanowire arrays is described, based on a template method which entails electrochemical deposition into nanometer-wide parallel pores of anodic aluminum oxide films on aluminum. Aligned CdS/Co heterostructured nanowires have been prepared by ac electrodeposition in the anodic aluminum oxide templates. By varying the preparation conditions, a variety of CdS/Co nanowire arrays were fabricated, whose dimensional properties could be adjusted.

  5. Field Emission From Ordered Nano-array Structures Based on Porous Aluminum Oxide Templates

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ This thesis reports my research work of fabricating nanostructures by using nanoporous anodic aluminum oxide (AAO) templates and their field emission properties in the past few years. Some important results obtained are as follows: 1. We first proposed a new concept of fabricating field emitters with ordered nanostructures based on porous aluminum oxide templates such as AAO/Al, metal/AAO, PANI/AAO, CNTs/AAO, Si/AAO and did a lot of research in this field.

  6. Field Emission From Ordered Nano-array Structures Based on Porous Aluminum Oxide Templates

    Institute of Scientific and Technical Information of China (English)

    WANG; ChengWei

    2001-01-01

    This thesis reports my research work of fabricating nanostructures by using nanoporous anodic aluminum oxide (AAO) templates and their field emission properties in the past few years. Some important results obtained are as follows:  1. We first proposed a new concept of fabricating field emitters with ordered nanostructures based on porous aluminum oxide templates such as AAO/Al, metal/AAO, PANI/AAO, CNTs/AAO, Si/AAO and did a lot of research in this field.  ……

  7. Nanopatterning of Crystalline Silicon Using Anodized Aluminum Oxide Templates for Photovoltaics

    Science.gov (United States)

    Chao, Tsu-An

    A novel thin film anodized aluminum oxide templating process was developed and applied to make nanopatterns on crystalline silicon to enhance the optical properties of silicon. The thin film anodized aluminum oxide was created to improve the conventional thick aluminum templating method with the aim for potential large scale fabrication. A unique two-step anodizing method was introduced to create high quality nanopatterns and it was demonstrated that this process is superior over the original one-step approach. Optical characterization of the nanopatterned silicon showed up to 10% reduction in reflection in the short wavelength range. Scanning electron microscopy was also used to analyze the nanopatterned surface structure and it was found that interpore spacing and pore density can be tuned by changing the anodizing potential.

  8. Fabrication of polymeric nano-batteries array using anodic aluminum oxide templates.

    Science.gov (United States)

    Zhao, Qiang; Cui, Xiaoli; Chen, Ling; Liu, Ling; Sun, Zhenkun; Jiang, Zhiyu

    2009-02-01

    Rechargeable nano-batteries were fabricated in the array pores of anodic aluminum oxide (AAO) template, combining template method and electrochemical method. The battery consisted of electropolymerized PPy electrode, porous TiO2 separator, and chemically polymerized PAn electrode was fabricated in the array pores of two-step anodizing aluminum oxide (AAO) membrane, based on three-step assembling method. It performs typical electrochemical battery behavior with good charge-discharge ability, and presents a capacity of 25 nAs. AFM results show the hexagonal array of nano-batteries' top side. The nano-battery may be a promising device for the development of Micro-Electro-Mechanical Systems (MEMS), and Nano-Electro-Mechanical Systems (NEMS).

  9. Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.

    Science.gov (United States)

    Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong

    2014-05-01

    Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively.

  10. Enhanced Elastic Modulus of Regenerated Silk Fibroin by Geometric Confinement in Anodized Aluminum Oxide Templates

    Science.gov (United States)

    Li, Jiankang; Li, Liang

    2017-02-01

    Geometric confinement is a promising method for the reconstruction of silk fibroin to form diversified structures with excellent mechanical properties. To accomplish geometric confinement, a water vapor assistant embossing process is used with porous anodic aluminum oxide templates, yielding silk fibroin nanopillars with diameters ranging from 40 nm to 130 nm. The elastic modulus of the regenerated silk fibroin nanopillars is investigated with atomic force microscopy nanoindentation analysis. Compared to films with the same treatment conditions, geometric confinement provided a twofold increase in elastic modulus in embossed silk fibroin nanopillars, indicating that β-sheet crystal ordering occurred during the water vapor assistant embossing process. These results demonstrate the feasibility and mechanical property enhancement of the embossing method to fabricate silk nanostructures, and will be useful in designing miniaturized devices.

  11. Growth Mechanism of γ-MnS Nanorod-Arrays by Hydrothermal Method on Anodic Aluminum Oxide Template

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianming; Liu, Weifeng; Lv, Yong; Yao, Lianzeng [Chinese Academy of Science, Hefei, Anhui (China)

    2010-09-15

    Hydrothermal method is a general, low-cost and convenience method which was utilized for synthesis of nanomaterials. Our research group has reported that oriented MnS nanorods on anodic aluminum oxide template were synthesized under a hydrothermal condition and demonstrated the effect of precursor content on the morphology evolution of as-samples. In order to research the growth mechanism of the arrays, herein we synthesized MnS nanorod arrays by combination of anodic aluminum oxide template and hydrothermal method on different substrates. Through-hole anodic aluminum oxide templates were prepared using Al foil (99.999%) via a two-step anodization process as described in literature. To investigate the effect of different substrates on the morphology of the-products, different substrates including anodic aluminum oxide template (sample A), one-step anodization Al foil (sample B, which was prepared by first anodizing Al foil for 10h and then removing the alumina layer with the mixed acid (0.6 M H{sub 3}PO{sub 4} and 0.15 M H{sub 2}CrO{sub 4}), where the foil still kept the close-packed concave nano-pits consistently with the nanopole of anodic aluminum oxide template), Al foil (sample C, dipped in HNO{sub 3} solution and covered by a compact alumina layer), Si wafer (sample D) respectively were put into Teflon-lined stainless steel autoclaves of 20 mL capacity filled with 16 mL mixed solution consisting of 2 mol/L MnCl{sub 4} and 2 mol/L thiourea. We kept the reaction at 150 .deg. C for 20 h. When reactions completed the products were washed three times with distilled water and absolute ethanol, respectively. Then the products were dried in an oven at 60 .deg. C.

  12. Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates

    Energy Technology Data Exchange (ETDEWEB)

    Sulka, Grzegorz D., E-mail: Sulka@chemia.uj.edu.pl [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Department of Physical Chemistry and Electrochemistry, Jagiellonian University, Ingardena 3, 30060 Krakow (Poland); Brzozka, Agnieszka [AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, Krakow 30-059 (Poland); Liu, Lifeng [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany)

    2011-05-30

    Graphical abstract: Display Omitted Highlights: > AAO templates with modulated pore diameter were fabricated by pulse anodization. > HA pulse duration tunes the shape of pores and the structure of AAO channels. > Au, Ag, Ni and Ag-Au diameter-modulated nanowires were synthetized. > Porous ultrathin Au nanowires were obtained by dealloying Ag-Au nanowires. - Abstract: Anodic aluminum oxide (AAO) membranes with modulated pore diameter were synthesized by pulse anodization in 0.3 M sulfuric acid at 1 deg. C. For AAO growth, a typical combination of alternating mild anodizing (MA) and hard anodizing (HA) pulses with applied potential pulses of 25 V and 35 V was applied. The control of the duration of HA pulses will provide an interesting way to tune the shape of pores and the structure of AAO channels. It was found that a non-uniform length of HA segments in cross section of AAO is usually observed when the HA pulse duration is shorter than 1.2 s. The pulse anodization performed with longer HA pulses leads to the formation of AAO templates with periodically modulated pore diameter and nearly uniform length of segments. Various diameter-modulated metallic nanowires (Au, Ag, Ni and Ag-Au) were fabricated by electrodeposition in the pores of anodic alumina membranes. A typical average nanowire diameter was about 30 nm and 48 nm for MA and HA nanowire segments, respectively. After a successful dealloying silver from Ag-Au nanowires, porous ultrathin Au nanowires were obtained.

  13. Wetting characteristics of the anodic aluminum oxide template and fabrication of cracks using ultraviolet curable resin solution

    Science.gov (United States)

    Sung Yoon, Jae; Phuong, NguyenThi; Hwan Kim, Jeong; Choi, Doo-Sun; Whang, Kyung-hyun; Yoo, Yeong-eun

    2014-03-01

    We have investigated the wetting characteristics of the anodic aluminum oxide (AAO) template with ultraviolet curable polymer resin. The wettability of the template depends on the pore size on the surface, where it is improved with smaller pores and vice versa. Plasma treatment on the surface of the template is used to improve the wettability and the adhesion of the cured polymer to the template. And we also introduce the cracks on the polymer layer for possible application as nano-sized cavities. The resin within the pore is cleaved during the curing process so that cavities or cracks could be made which are much smaller than the original pores of the AAO template.

  14. Effect of ac electrodeposition conditions on the growth of high aspect ratio copper nanowires in porous aluminum oxide templates.

    Science.gov (United States)

    Gerein, Nathan J; Haber, Joel A

    2005-09-22

    The effect of several deposition parameters on the uniformity of copper electrodeposition through the alumina barrier layer into porous aluminum oxide templates grown in sulfuric or oxalic acid was systematically investigated. A fractional factorial design of experiment was conducted to find suitable deposition conditions among the variables: frequency, voltage, pulsed or continuous deposition, electrolyte concentration, and barrier layer thinning voltage. Continuous ac sine wave deposition conditions yielded excellent uniformity of pore-filling but damaged the porous aluminum oxide templates when deposition was continued to grow bulk copper on the surface. Pulsed electrodeposition yielded comparable uniformity of pore-filling and no damage to the porous aluminum oxide templates, even when bulk copper was deposited on them. Further optimization of pulsed deposition conditions was accomplished by comparing square and sine waveforms and pulse polarity. Pulsed square waveforms produced better pore-filling than pulsed sine waveforms. For sine wave depositions, the oxidative/reductive pulse polarity was more efficient than the commonly used reductive/oxidative pulse polarity. For square wave depositions into sulfuric acid grown pores, the reductive/oxidative pulse polarity produces more uniform pore-filling, likely as a result of enhanced resonant tunneling through the barrier layer and reoxidation of copper in faster filling pores.

  15. Electrically conducting polymer nanostructures confined in anodized aluminum oxide templates (AAO

    Directory of Open Access Journals (Sweden)

    I. Blaszczyk-Lezak

    2016-03-01

    Full Text Available Intrinsically or extrinsically conducting polymers are considered good candidates for replacement of metals in specific applications. In order to further expand their applications, it seems necessary to examine the influence of confinement effects on the electric properties of nanostructured conducting polymers in comparison to the bulk. The present study reports a novel way to fabricate and characterize high quality and controllable one-dimensional (1D polymer nanostructures with promising electrical properties, with the aid of two examples polyaniline (PANI and poly(vinylidene fluoride with multiwall carbon nanotubes (PVDF-MWCNT as representative of intrinsically and extrinsically conducting polymers, respectively. In this work, porous anodic aluminum oxide (AAO templates have been used both as a nanoreactor to synthesize 1D PANI nanostructures by polymerization of the ANI monomer and as a nanomold to prepare 1D PVDFMWCNT nanorods by melt infiltration of the precursor PVDF-MWCNT film. The obtained polymer nanostructures were morphologically and chemically characterized by SEM and Confocal Raman Spectroscopy, respectively, and the electrical properties determined by Broadband Dielectric Spectroscopy (BDS in a non-destructive way. SEM study allowed to establish the final nanostructure of PANI and PVDF-MWCNT and confirmed, in both cases, the well-aligned and uniform rodlike polymer nanostructures. Confocal Raman Microscopy has been performed to study the formation of the conducting emeraldine salt of PANI through all the length of AAO nanocavities. Finally, the electrical conductivity of both types of polymer nanostructures was easily evaluated by means of Dielectric Spectroscopy.

  16. Fabrication of a Ni nano-imprint stamp for an anti-reflective layer using an anodic aluminum oxide template.

    Science.gov (United States)

    Park, Eun-Mi; Lim, Seung-Kyu; Ra, Senug-Hyun; Suh, Su-Jung

    2013-11-01

    Aluminum anodizing can alter pore diameter, density distribution, periodicity and layer thickness in a controlled way. Because of this property, porous type anodic aluminum oxide (AAO) was used as a template for nano-structure fabrication. The alumina layer generated at a constant voltage increased the pore size from 120 nm to 205 nm according to an increasing process time from 60 min to 150 min. The resulting fabricated AAO templates had pore diameters at or less than 200 nm. Ni was sputtered as a conductive layer onto this AAO template and electroplated using DC and pulse power. Comparing these Ni stamps, those generated from electroplating using on/reverse/off pulsing had an ordered pillar array and maintained the AAO template morphology. This stamp was used for nano-imprinting on UV curable resin coated glass wafer. Surface observations via electron microscopy showed that the nano-imprinted patterned had the same shape as the AAO template. A soft mold was subsequently fabricated and nano-imprinted to form a moth-eye structure on the glass wafer. An analysis of the substrate transmittance using UV-VIS/NIR spectroscopy showed that the transmittance of the substrate with the moth-eye structure was 5% greater that the non-patterned substrate.

  17. Nano integrated lithium polymer electrolytes based on anodic aluminum oxide (AAO) templates

    Science.gov (United States)

    Bokalawela, Roshan S. P.

    Since their discovery in the 1970s, polymer electrolytes have been actively studied because they have properties important for many device applications. However, even after 40 years, the detailed mechanisms of conductivity in these electrolytes are still not completely understood. Moreover, the conductivity in polymer electrolytes is one of the limiting factors of these devices so that different methods to enhance conductivity are actively being explored. One proposed method of enhancing the conductivity is to confine the polymer electrolyte in the nanoscale, but the study of material properties at the nanoscale is challenging in this area. In this work, we confine poly(ethylene oxide) lithium triflate (PEO:LiTf)(X:1)X=10,30 polymer electrolytes in carefully fabricated nanometer-diameter anodized aluminum oxide (AAO) pore structures. We demonstrate two orders of magnitude higher conductivity in the confined structures versus that of bulk films. Using x-ray characterization we show that this increased conductivity is associated with ordered PEO polymer chains aligned in the template pore direction. The activation energy of the AAO-confined polymer electrolyte is found to be smaller than that of the unconfined melt and about half that of the unconfined solid. This result indicates that not only is the room-temperature confined polymer ordered, but that this order persists at temperatures where the nano-confined polymer electrolyte is expected to be a liquid. The geometric bulk resistances of the electrolytes were obtained by AC-impedance spectra, from which the ionic conductivities were calculated. The Arrhenius plots of temperature dependent ionic conductivities showed that the usual melting temperature of the PEO phase in confined PEO:LiTf(X:1) X=10,30 is suppressed and a single activation energy was evident throughout the temperature range 25--90 °C. Wide-angle x-ray scattering (WAXS) patterns show that the polymer chains in both the pure PEO and PEO:LiTf(10

  18. Silver nanoparticles deposited on anodic aluminum oxide template using magnetron sputtering for surface-enhanced Raman scattering substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wong-ek, Krongkamol [Nanoscience and Technology Program, Chulalongkorn University, Bangkok 10330 (Thailand); Eiamchai, Pitak; Horprathum, Mati; Patthanasettakul, Viyapol [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand); Limnonthakul, Puenisara [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Chindaudom, Pongpan [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand); Nuntawong, Noppadon, E-mail: noppadon.nuntawong@nectec.or.t [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand)

    2010-09-30

    Low-cost and highly sensitive surface-enhanced Raman scattering (SERS) substrates have been fabricated by a simple anodizing process and a magnetron sputtering deposition. The substrates, which consist of silver nanoparticles embedded on anodic aluminum oxide (AAO) templates, are investigated by a scanning electron microscope and a confocal Raman spectroscopy. The SERS activities are demonstrated by Raman scattering from adsorbed solutions of methylene blue and pyridine on the SERS substrate surface. The most optimized SERS substrate contains the silver nanoparticles, with a size distribution of 10-30 nm, deposited on the AAO template. From a calculation, the SERS enhancement factor is as high as 8.5 x 10{sup 7}, which suggests strong potentials for direct applications in the chemical detection and analyses.

  19. Highly Ordered Zinc Oxide Nanotubules Synthesized within the Anodic Aluminum Oxide Template

    Institute of Scientific and Technical Information of China (English)

    WANG; Zhen

    2001-01-01

    Zinc oxide (ZnO) is a wide-band-gap semiconductor, which has a broad range of applications, e.g., in pigment, rubber additives, gas sensors, varistors and transducers1. It has recently been demonstrated that nanophase zinc oxide can be used in photocells of the Gatzel type2, which results in improved current generation efficiency. The properties of high aspect ratios and small sizes of zinc oxide nanotubules or nanowires are expected to improve the luminescence efficiency of the electro-optical devices and the sensitivity of the chemical sensors3.  ……

  20. Highly Ordered Zinc Oxide Nanotubules Synthesized within the Anodic Aluminum Oxide Template

    Institute of Scientific and Technical Information of China (English)

    WANG Zhen; LI HuLin

    2001-01-01

    @@ Zinc oxide (ZnO) is a wide-band-gap semiconductor, which has a broad range of applications, e.g., in pigment, rubber additives, gas sensors, varistors and transducers1. It has recently been demonstrated that nanophase zinc oxide can be used in photocells of the Gatzel type2, which results in improved current generation efficiency. The properties of high aspect ratios and small sizes of zinc oxide nanotubules or nanowires are expected to improve the luminescence efficiency of the electro-optical devices and the sensitivity of the chemical sensors3.

  1. Fabrication of Polymeric Antireflection Film Manufactured by Anodic Aluminum Oxide Template on Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Jenn-Kai Tsai

    2017-03-01

    Full Text Available In this study, high energy conversion efficient dye-sensitized solar cells (DSSCs were successfully fabricated by attaching a double anti-reflection (AR layer, which is composed of a subwavelength moth-eye structured polymethyl methacrylate (PMMA film and a polydimethylsiloxane (PDMS film. An efficiency of up to 6.79% was achieved. The moth-eye structured PMMA film was fabricated by using an anodic aluminum oxide (AAO template which is simple, low-cost and scalable. The nano-pattern of the AAO template was precisely reproduced onto the PMMA film. The photoanode was composed of Titanium dioxide (TiO2 nanoparticles (NPs with a diameter of 25 nm deposited on the fluorine-doped tin oxide (FTO glass substrate and the sensitizer N3. The double AR layer was proved to effectively improve the short-circuit current density (JSC and conversion efficiency from 14.77 to 15.79 mA/cm2 and from 6.26% to 6.79%, respectively.

  2. Anodized Aluminum Oxide Templated Synthesis of Metal-Organic Frameworks Used as Membrane Reactors.

    Science.gov (United States)

    Yu, Yifu; Wu, Xue-Jun; Zhao, Meiting; Ma, Qinglang; Chen, Junze; Chen, Bo; Sindoro, Melinda; Yang, Jian; Han, Shikui; Lu, Qipeng; Zhang, Hua

    2017-01-09

    The incorporation of metal-organic frameworks (MOFs) into membrane-shaped architectures is of great importance for practical applications. The currently synthesized MOF-based membranes show many disadvantages, such as poor compatibility, low dispersity, and instability, which severely limit their utility. Herein, we present a general, facile, and robust approach for the synthesis of MOF-based composite membranes through the in situ growth of MOF plates in the channels of anodized aluminum oxide (AAO) membranes. After being used as catalysis reactors, they exhibit high catalytic performance and stability in the Knoevenagel condensation reaction. The high catalytic performance might be attributed to the intrinsic structure of MOF-based composite membranes, which can remove the products from the reaction zone quickly, and prevent the aggregation and loss of catalysts during reaction and recycling process.

  3. Fabrication of Orderly Copper Particle Arrays on a Multi-Electrolyte-Step Anodic Aluminum Oxide Template

    Directory of Open Access Journals (Sweden)

    Chun-Ko Chen

    2013-01-01

    Full Text Available A multi-electrolyte-step (MES anodic aluminum oxide (AAO method was used to achieve nanochannel arrays with good circularity and periodic structure. The nano-channel array fabrication process included immersion in a phosphoric acid solution with a 120–150 bias voltage. Bowl-shaped structures were then formed by removing the walls of the nano-channel arrays. The nano-channel arrays were grown from the bottom of the bowl structure in an oxalic solution using a 50 V bias voltage. A comparison of this new MES process with the one-step and five-step AAO process showed a 50% improvement in the circularity over the one-step process. The standard deviation of the average period in the MES array was 25 nm which is less than that of one-step process. This MES method also took 1/4 of the growing time of the five-step process. The orderliness of the nano-channel arrays for the five-step and MES process was similar. Finally, Cu nanoparticle arrays with a 200 nm period were grown using an electroplating process inside the MES nano-channel arrays on fluorine doped tin oxide glass. Stronger surface plasmon resonance absorption from 550 nm to 750 nm was achieved with the MES process than was possible with the one-step process.

  4. Nanostructures Based on Porous Aluminum Oxide Templates: Fabrication, Properties and Applications

    Institute of Scientific and Technical Information of China (English)

    LI HuLin

    2001-01-01

    @@ Using the template method to fabricate nanostructures is an entirely new approach for fabricating nanostructures based on self-organization that developed since the middle 1990s, which means that nanostructures can be made directly in the openings of the template under an environment of liquid or vapor. In this case the size and shape of the nano-objects are determined by the size and shape of the openings in the nanotemplates,and may vary over a wide range depending on the template used. This flexibility also extends to the range of materials deposited in the template's openings. This approach is particularly attractive since it circumvents the lithographic limitations altogether by making use of naturally occurring nanotemplates.

  5. Nanostructures Based on Porous Aluminum Oxide Templates: Fabrication, Properties and Applications

    Institute of Scientific and Technical Information of China (English)

    LI; HuLin

    2001-01-01

    Using the template method to fabricate nanostructures is an entirely new approach for fabricating nanostructures based on self-organization that developed since the middle 1990s, which means that nanostructures can be made directly in the openings of the template under an environment of liquid or vapor. In this case the size and shape of the nano-objects are determined by the size and shape of the openings in the nanotemplates,and may vary over a wide range depending on the template used. This flexibility also extends to the range of materials deposited in the template's openings. This approach is particularly attractive since it circumvents the lithographic limitations altogether by making use of naturally occurring nanotemplates.  ……

  6. Preparation of thin hexagonal highly-ordered anodic aluminum oxide (AAO) template onto silicon substrate and growth ZnO nanorod arrays by electrodeposition

    Science.gov (United States)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Qaeed, M. A.; Bououdina, M.

    2014-12-01

    In this study, anodic aluminum oxide (AAO) templates of Aluminum thin films onto Ti-coated silicon substrates were prepared for growth of nanostructure materials. Hexagonally highly ordered thin AAO templates were fabricated under controllable conditions by using a two-step anodization. The obtained thin AAO templates were approximately 70 nm in pore diameter and 250 nm in length with 110 nm interpore distances within an area of 3 cm2. The difference between first and second anodization was investigated in details by in situ monitoring of current-time curve. A bottom barrier layer of the AAO templates was removed during dropping the voltage in the last period of the anodization process followed by a wet etching using phosphoric acid (5 wt%) for several minutes at ambient temperature. As an application, Zn nanorod arrays embedded in anodic alumina (AAO) template were fabricated by electrodeposition. Oxygen was used to oxidize the electrodeposited Zn nanorods in the AAO template at 700 °C. The morphology, structure and photoluminescence properties of ZnO/AAO assembly were analyzed using Field-emission scanning electron microscope (FESEM), Energy dispersive X-ray spectroscopy (EDX), Atomic force microscope (AFM), X-ray diffraction (XRD) and photoluminescence (PL).

  7. Ion channel mimetic membranes and silica nanotubes prepared from porous aluminum oxide templates

    Science.gov (United States)

    Mitchell, David Tanner

    Chapter 1 provides background information on the template synthesis of nanomaterials. The template synthesis method is examined with special attention to the use of membranes containing monodisperse cylindrical pores as templates. Several examples of the utility of template-synthesized nanomaterials are given. The production of one type of template membrane, nanopore alumina, is reviewed. Reviews of sol-gel and silane chemistry are also provided. In Chapter 2, a sol-gel template synthesis process is used to produce silica nanotubes within the pores of alumina templates. The nanotubes can be modified using a variety of chemistries, typically via a silanization process. Because the nanotubes are formed in a template, the interior and exterior surface can be modified independently. Modified nanotubes can be used for drug detoxification or as extractants for the removal of metal ions. The nanotube surface can also be biotinylated, which causes binding to avidinated surfaces. Composite microtubes of silica and various polymers are also prepared. Additionally, Au nanowires are shown to assemble with colloidal Au particles using dithiols as linkers. Chapter 3 describes the attachment of proteins onto template-synthesized silica nanotubes. The proteins are covalently linked via an aldehyde silane bridge that binds to pendant primary amino moieties on the protein. Protein-modified nanotubes function as highly specific extractants. Avidin-modified nanotubes extract biotin-coated Au nanoparticles from solution with high extraction efficiency. Immunoprotein-modified nanotubes extract the corresponding antibody from solution with high specificity. Antibody-modified nanotubes extract one enantiomer from a racemic mix. Enzymes, including drug detoxification enzymes, were also attached to the nanotubes and were shown to retain their catalytic activity. Immunoproteins on the outside of nanotubes can be used to direct nanotube binding, creating specific labeling agents. Chapter 4

  8. Growth of Anodic Aluminum Oxide Templates and the Application in Fabrication of the BiSbTe-Based Thermoelectric Nanowires

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2014-01-01

    Full Text Available A two-step electrochemical anodization was used to form the anodic aluminum oxide (AAO thin films with nanotube arrays of self-organized honeycomb structure. Al foil was anodized in 10% sulfuric acid (H2SO4 and 3% oxalic acid (H2C2O4 at 25°C at constant voltage of 40 V for 60 min for two times. Ethylene glycol (C2H6O2 was used as a solution and 0.3 M potassium iodide (KI was used to improve the solution’s conductivity. Different electrolyte concentrations of Bi(NO33-5H2O, SbCl3, and TeCl4 were added into KI-C2H6O2 solution and the cyclic voltammetry experiment was used to find the reduced voltages of Bi3+, Sb3+, and Te4+ ions. The potentiostatic deposition and pulse electrodeposition (PED processes were used to deposit the (Bi,Sb2−xTe3+x-based materials. Field-emission scanning electron microscope and energy dispersive spectrometers were used to analyze the compositions of the deposited (Bi,Sb2−xTe3+x-based materials. After finding the optimal deposition parameter of the PED process the AAO nanotube arrays were used as the templates to deposit the (Bi,Sb2−xTe3+x-based thermoelectric nanowires.

  9. Magnetron sputtering of silver nanowires using anodic aluminum oxide template: a new active substrate of surface enhanced Raman scattering and an investigation of its enhanced mechanism.

    Science.gov (United States)

    Zhang, Lisheng; Zhang, Pengxiang; Fang, Yan

    2007-05-22

    A high quality anodic aluminum oxide (AAO) template with ordered apertures about 50-80 nm was fabricated by anodizing aluminum in electrolytes through a two-step method, and silver nanowires with diameters from 40 nm to 70 nm were prepared on this AAO template by magnetron sputtering. On the glass covered with silver nanowires, high quality surface enhanced Raman scattering (SERS) spectra of sudan II (C18H16N2O) with enhancement factors of 10(5) were obtained. And comparison of SERS spectra on silver nanowires with the SERS spectra of silver colloids indicates that main enhanced mode is lightning rod effect of nanorods on the Sudan II/silver nanowires system.

  10. The fabrication of high sensitivity gold nanorod H2S gas sensors utilizing the highly uniform anodic aluminum oxide template

    Science.gov (United States)

    Li, Chien-Yu; Li, Ciao-Yu; Wu, You-Lin; Hsu, Chung-Ping; Lee, Ming-Ching; Houng, Mau-Phon

    2016-12-01

    Gold nanorod were fabricated using anodic alumina oxide template for H2S gas detection. The nanorod gas sensor exhibits high surface density and contact area, which can increase detection sensitivity. The anodic alumina oxide template contains an array of pores, with a width of 70 nm and a length of 27 μ m . Au nanorod were obtained through electro-deposition under a pulse bias of -1 V. The resistance of the Au nanorod was recorded upon exposure to various concentrations of H2S. The resistance could be attributed to the high electron affinity between sulfide and Au nanorod. Au-sulfide bonds provide strong bonding, which could alter the conductivity of the sensor. The gas sensor exhibits high sensitivity and short response time for H2S detection at room temperature.

  11. The fabrication of high sensitivity gold nanorod H2S gas sensors utilizing the highly uniform anodic aluminum oxide template

    Directory of Open Access Journals (Sweden)

    Chien-Yu Li

    2016-12-01

    Full Text Available Gold nanorod were fabricated using anodic alumina oxide template for H2S gas detection. The nanorod gas sensor exhibits high surface density and contact area, which can increase detection sensitivity. The anodic alumina oxide template contains an array of pores, with a width of 70 nm and a length of 27μm. Au nanorod were obtained through electro-deposition under a pulse bias of −1 V. The resistance of the Au nanorod was recorded upon exposure to various concentrations of H2S. The resistance could be attributed to the high electron affinity between sulfide and Au nanorod. Au–sulfide bonds provide strong bonding, which could alter the conductivity of the sensor. The gas sensor exhibits high sensitivity and short response time for H2S detection at room temperature.

  12. Preparation of well-aligned carbon nanotubes/silicon nanowires core-sheath composite structure arrays in porous anodic aluminum oxide templates

    Institute of Scientific and Technical Information of China (English)

    李梦轲; 陆梅; 王成伟; 力虎林

    2002-01-01

    The well-aligned carbon nanotubes (CNTs) arrays with opened ends were prepared in ordered pores of anodic aluminum oxide (AAO) template by the chemical vapor deposition (CVD) method. After then, silicon nanowires (SiNWs) were deposited in the hollow cavities of CNTs. By using this method, CNTs/SiNWs core-sheath composite structure arrays were synthesized successfully. Growing structures and physical properties of the CNTs/SiNWs composite structure arrays were analyzed and researched by the scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction spectrum (XRD), respectively. The field emission (FE) behavior of the CNTs/SiNWs composite structure arrays was studied based on Fowler- Nordheim tunneling mechanism and current-voltage (I -V) curve. And the photoluminescence (PL) was also characterized. Significantly, the CNTs/SiNWs core-sheath composite structure nanowire fabricated by AAO template method is characteristic of a metal/semiconductor (M/S) behavior and can be utilized to synthesize nanoscale PN junction or Schottky diode device. This process also could be useful for the fabrication of SiNWs and other nanoscale core-sheath composite structure nanowires with chemically inert interfaces for nanoscale electronic and device applications where surface oxidation is undesirable. The diameters and lengths of nanoscale composite structure arrays can be dominated easily, and the experimental result shows that the curling and twisting structures are fewer than those prepared by other synthesized methods.

  13. Effect of anodic aluminum oxide template imprinting on TiO2 blocking layer of flexible dye-sensitized solar cell.

    Science.gov (United States)

    Kim, Kang-Pil; Lee, Sang-Ju; Kim, Dae-Hwan; Hwang, Dae-Kue

    2013-03-01

    In this paper, we have proposed a new flexible dye-sensitized solar cell (DSSC) structure that employs an Anodic Aluminum Oxide (AAO) template imprinted TiO2 blocking layer, in which the AAO template creates TiO2 nano-particle aggregated islands on the TiO2 blocking layer. The TiO2 blocking layer prevents charge recombination between the metal foil and the liquid electrolyte. TiO2 nano-particle aggregated islands improve the scattering of incident light during back illumination and provide the wider surface area, yielding enhanced power conversion efficiency (PCE). All the flexible DSSC structure with TiO2 nano-particle aggregated islands on the TiO2 blocking layer exhibited higher photocurrent than did conventional DSSC because light that passed through the photoanode was scattered, thereby giving it improved PCE that was as much as 23% higher than that of a conventional DSSC. This proposed method is an effective manufacturing process for flexible DSSC.

  14. Preparation of well-aligned carbon nanotubes/silicon nanowires core-sheath composite structure arrays in porous anodic aluminum oxide templates

    Institute of Scientific and Technical Information of China (English)

    李梦轲; 力虎林; 陆梅; 王成伟

    2002-01-01

    The well-aligned carbon nanotubes (CNTs) arrays with opened ends were prepared in ordered pores of anodic aluminum oxide (AAO) template by the chemical vapor deposition (CVD) method. After then, silicon nanowires (SiNWs) were deposited in the hollow cavities of CNTs. By using this method, CNTs/SiNWs core-sheath composite structure arrays were synthesized successfully. Growing structures and physical properties of the CNTs/SiNWs composite structure arrays were analyzed and researched by the scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction spectrum (XRD), respectively. The field emission (FE) behavior of the CNTs/SiNWs composite structure arrays was studied based on Fowler-Nordheim tunneling mechanism and current-voltage (/-V) curve. And the photoluminescence (PL) was also characterized. Significantly, the CNTs/SiNWs core-sheath composite structure nanowire fabricated by AAO template method is characteristic of a metal/semiconductor (M/S) behavior and can be

  15. Self-Ordered Nanoporous Alumina Templates Formed by Anodization of Aluminum in Oxalic Acid

    Science.gov (United States)

    Vida-Simiti, Ioan; Nemes, Dorel; Jumate, Nicolaie; Thalmaier, Gyorgy; Sechel, Niculina

    2012-10-01

    Anodic aluminum oxide (AAO) membranes with highly ordered nanopores serve as ideal templates for the formation of various nanostructured materials. The procedure of the template preparation is based on a two-step self-organized anodization of aluminum. In the current study, AAO templates were fabricated in 0.3 M oxalic acid under the anodizing potential range of 30-60 V at an electrolyte temperature of ~5°C. The AAO templates were analyzed using scanning electron microscopy, x-ray diffraction, Fourier-transform infrared spectroscopy, and differential thermal analysis. The as obtained layers are amorphous; the mean pore size is between 40 nm and 75 nm and increases with the increase of the anodization potential. Well-defined pores across the whole aluminum template, a pore density of ~1010 pores/cm2, and a tendency to form a porous structure with hexagonal symmetry were observed.

  16. Nanostructures Using Anodic Aluminum Oxide

    Science.gov (United States)

    Valmianski, Ilya; Monton, Carlos M.; Pereiro, Juan; Basaran, Ali C.; Schuller, Ivan K.

    2013-03-01

    We present two fabrication methods for asymmetric mesoscopic dot arrays over macroscopic areas using anodic aluminum oxide templates. In the first approach, metal is deposited at 45o to the template axis to partially close the pores and produce an elliptical shadow-mask. In the second approach, now underway, nanoimprint lithography on a polymer intermediary layer is followed by reactive ion etching to generate asymmetric pore seeds. Both these techniques are quantified by an analysis of the lateral morphology and lattice of the pores or dots using scanning electron microscopy and a newly developed MATLAB based code (available for free download at http://ischuller.ucsd.edu). The code automatically provides a segmentation of the measured area and the statistics of morphological properties such as area, diameter, and eccentricity, as well as the lattice properties such as number of nearest neighbors, and unbiased angular and radial two point correlation functions. Furthermore, novel user defined statistics can be easily obtained. We will additionally present several applications of these methods to superconducting, ferromagnetic, and organic nanostructures. This work is supported by AFOSR FA9550-10-1-0409

  17. Effect of processing on structural features of anodic aluminum oxides

    Science.gov (United States)

    Erdogan, Pembe; Birol, Yucel

    2012-09-01

    Morphological features of the anodic aluminum oxide (AAO) templates fabricated by electrochemical oxidation under different processing conditions were investigated. The selection of the polishing parameters does not appear to be critical as long as the aluminum substrate is polished adequately prior to the anodization process. AAO layers with a highly ordered pore distribution are obtained after anodizing in 0.6 M oxalic acid at 20 °C under 40 V for 5 minutes suggesting that the desired pore features are attained once an oxide layer develops on the surface. While the pore features are not affected much, the thickness of the AAO template increases with increasing anodization treatment time. Pore features are better and the AAO growth rate is higher at 20 °C than at 5 °C; higher under 45 V than under 40 V; higher with 0.6 M than with 0.3 M oxalic acid.

  18. Optical Transmittance of Anodically Oxidized Aluminum Alloy

    Science.gov (United States)

    Saito, Mitsunori; Shiga, Yasunori; Miyagi, Mitsunobu; Wada, Kenji; Ono, Sachiko

    1995-06-01

    Optical transmittance and anisotropy of anodic oxide films that were made from pure aluminum and an aluminum alloy (A5052) were studied. The alloy oxide film exhibits an enhanced polarization function, particularly when anodization is carried out at a large current density. It was revealed by chemical analysis that the alloy oxide film contains a larger amount of unoxidized aluminum than the pure-aluminum oxide film. The polarization function can be elucidated by considering unoxidized aluminum particles that are arranged in the columnar structure of the alumina film. Electron microscope observation showed that many holes exist in the alloy oxide film, around which columnar cells are arranged irregularly. Such holes and irregular cell arrangement cause the increase in the amount of unoxidized aluminum, and consequently induces scattering loss.

  19. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    Directory of Open Access Journals (Sweden)

    Gerrard Eddy Jai Poinern

    2011-02-01

    Full Text Available The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  20. Oxidation kinetics of aluminum diboride

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, Michael L., E-mail: michaelwhittaker2016@u.northwestern.edu [Department of Materials Science and Engineering, University of Utah, 122S. Central Campus Drive, Salt Lake City, UT 84112 (United States); Sohn, H.Y. [Department of Metallurgical Engineering, University of Utah, 135S 1460 E, Rm 00412, Salt Lake City, UT 84112 (United States); Cutler, Raymond A. [Ceramatec, Inc., 2425S. 900W., Salt Lake City, UT 84119 (United States)

    2013-11-15

    The oxidation characteristics of aluminum diboride (AlB{sub 2}) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB{sub 2} in the onset of oxidation and final conversion fraction, with AlB{sub 2} beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB{sub 2} and Al+2B in both air and oxygen. AlB{sub 2} exhibited O{sub 2}-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O{sub 2} than in air. Differences in the composition and morphology between oxidized Al+2B and AlB{sub 2} suggested that Al{sub 2}O{sub 3}–B{sub 2}O{sub 3} interactions slowed Al+2B oxidation by converting Al{sub 2}O{sub 3} on aluminum particles into a Al{sub 4}B{sub 2}O{sub 9} shell, while the same Al{sub 4}B{sub 2}O{sub 9} developed a needle-like morphology in AlB{sub 2} that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB{sub 2}, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB{sub 2} in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Time

  1. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  2. Silver nanowires-templated metal oxide for broadband Schottky photodetector

    Science.gov (United States)

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-04-01

    Silver nanowires (AgNWs)-templated transparent metal oxide layer was applied for Si Schottky junction device, which remarked the record fastest photoresponse of 3.4 μs. Self-operating AgNWs-templated Schottky photodetector showed broad wavelength photodetection with high responsivity (42.4 A W-1) and detectivity (2.75 × 1015 Jones). AgNWs-templated indium-tin-oxide (ITO) showed band-to-band excitation due to the internal photoemission, resulting in significant carrier collection performances. Functional metal oxide layer was formed by AgNWs-templated from ITO structure. The grown ITO above AgNWs has a cylindrical shape and acts as a thermal protector of AgNWs for high temperature environment without any deformation. We developed thermal stable AgNWs-templated transparent oxide devices and demonstrated the working mechanism of AgNWs-templated Schottky devices. We may propose the high potential of hybrid transparent layer design for various photoelectric applications, including solar cells.

  3. Adhesive modification of indium-tin-oxide surface for template attachment for deposition of highly ordered nanostructure arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gu, W. [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Liao, L.S., E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Cai, S.D.; Zhou, D.Y.; Jin, Z.M.; Shi, X.B.; Lei, Y.L. [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China)

    2012-08-01

    Polyvinyl alcohol (PVA), a very cheap polymer with one hydroxyl group in each repeating unit, was spun coated on the surface of an indium-tin-oxide (ITO) substrate to improve the adhesion between the substrate and a nanoporous anodic aluminum oxide (AAO) template layer for a template-directed fabrication of nanostructures. Compared with dihydroxy-terminated polystyrene (PS-dOH) and a silane coupling agent (KH550), PVA was a superior binder because of its abundant hydroxyl groups for adhesion enhancement and its low cost for applications. As an example, a highly ordered CdSe nanorod array free standing on the ITO substrate was electrochemically deposited by using an ultrathin AAO layer as the template on the PVA modified surface. It was demonstrated that the PVA modified ITO can be reliably used for the template-directed fabrication of nanostructures.

  4. Fabrication of micro-Ni arrays by electroless and electrochemical depositions with etched porous aluminum template

    Indian Academy of Sciences (India)

    Houfang Lu; Kangping Yan; Jixin Yan; Jianzhong Wang

    2010-10-01

    Nickel micro-arrays were fabricated by electroless and electrochemical deposition in an etched porous aluminum membrane. The aluminum membrane with metal characteristic could be fabricated from high-purity aluminium by electrochemical method. The aluminum reduced Ni2+ into Ni and the formed Ni nuclei served as the catalyst for further reduction of Ni2+ in electroless solution. With the help of the membrane, nickel micro-columns of about 1–2 m diameter were obtained. The surface-deposited nickel layer served as a substrate for the nickel micro-columns, and the resulting material possessed strong mechanical strength. Electrochemical deposition was operated without preparing a conductive layer on the template due to the conductivity of the aluminum membrane. Nickel micro-tubes with an outer diameter of about 1–2 m and a wall thickness in the order of tens of nm were obtained. The nickel micro-arrays were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).

  5. Selective-Area Growth of Transferable InN Nanocolumns by Using Anodic Aluminum Oxide Nanotemplates

    Science.gov (United States)

    Wang, Xiao; Zhang, Guozhen; Xu, Yang; Wu, Hao; Liu, Chang

    2017-02-01

    InN nanocolumn arrays were grown on c-plane sapphire with and without anodic aluminum oxide (AAO) nanotemplates. The crystalline quality of InN nanocolumns was significantly improved by selective-area growth (SAG) using AAO templates, as verified by X-ray diffraction measurements. Then, InN nanocolumns were transferred onto p-type silicon substrates after etching off the AAO templates. Current-voltage characteristic of the transferred n-InN/p-Si heterojunctions shows on/off ratio as high as 4.65 × 103 at 2 V. This work offers a potential way to grow transferable devices with improving performances.

  6. Monolithic Approach to Oxide Dispersion Strengthened Aluminum Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nassau Stern Company is investigating an approach for manufacturing oxide dispersion strengthened (ODS) aluminum in bulk rather than powder form. The approach...

  7. PREPARATION AND CHARACTERIZATION OF IRON OXIDE NANOPARTICLES ON DISACCHARIDE TEMPLATES

    Directory of Open Access Journals (Sweden)

    B ANILREDDY

    2013-09-01

    Full Text Available We report here the preparation of nanoparticles of iron oxide in the presence of polysaccharidetemplates. Interaction between iron sulfate and template has been carried out in aqueous phase,followed by the selective and controlled removal of the template to achieve narrow distribution ofparticle size. Particles of iron oxide obtained have been characterized for their stability in solventmedia, size, size distribution and crystallinity and it was found that when the negative value of thezeta potential increases, particle size decreases. A narrow particle size distribution with D100 = 275nm was obtained with chitosan and starch templates. SEM measurements further confirm the particlesize measurement. Diffuse reflectance UV–VIS spectra values show that the template is completelyremoved from the final iron oxide particles and powder XRD measurements show that the peaks ofthe diffractogram are in agreement with the theoretical data of hematite. The salient observations ofour study shows that there occurs a direct correlation between zeta potential, polydispersity index,band gap energy and particle size. The crystallite size of the particles was found to be 30–35 nm. Alarge negative zeta potential was found to be advantageous for achieving lower particle sizes, as theparticles remained discrete without agglomeration.

  8. Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites

    Science.gov (United States)

    Apperson, S.; Shende, R. V.; Subramanian, S.; Tappmeyer, D.; Gangopadhyay, S.; Chen, Z.; Gangopadhyay, K.; Redner, P.; Nicholich, S.; Kapoor, D.

    2007-12-01

    Nanothermite composites containing metallic fuel and inorganic oxidizer are gaining importance due to their outstanding combustion characteristics. In this paper, the combustion behaviors of copper oxide/aluminum nanothermites are discussed. CuO nanorods were synthesized using the surfactant-templating method, then mixed or self-assembled with Al nanoparticles. This nanoscale mixing resulted in a large interfacial contact area between fuel and oxidizer. As a result, the reaction of the low density nanothermite composite leads to a fast propagating combustion, generating shock waves with Mach numbers up to 3.

  9. Supported lipid bilayers as templates to design manganese oxide nanoparticles

    Indian Academy of Sciences (India)

    J Maheshkumar; B Sreedhar; B U Nair; A Dhathathreyan

    2012-09-01

    This work reports on the preparation of nanoclusters of manganese oxide using biotemplating techniques. Supported lipid bilayers (SLBs) on quartz using cationic lipid [Dioctadecyldimethylammonium bromide (DOMA)] and mixed systems with neutral phospholipids dipalmitoyl phosphatidylcholine (DPPC) and dioleoyl phosphatidylcholine (DOPC) have been used as templates to synthesize these nanoparticles in a waterbased medium at room temperature. The Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) show manganese oxide nanostructures that are composed of crystals or small clusters in the size range of 20-50 nm in diameter. Small angle XRD showed that template removal through calcining process results in nanostructures of the manganese oxide in sizes from 30 to 50 nm. Using these organized assemblies it is possible to control the nano and mesoscopic morphologies of particles and both rod-like and spherical particles can be synthesized.

  10. Oxidation kinetics of aluminum nitride at different oxidizing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hou Xinmei [Metallurgical and Ecological Engineering School, University of Science and Technology Beijing, Beijing 100083 (China); Chou, K.-C. [Metallurgical and Ecological Engineering School, University of Science and Technology Beijing, Beijing 100083 (China)], E-mail: kcc126@126.com; Zhong Xiangchong [High Temperature Ceramics Institute, Zhengzhou University, Henan Province 450052 (China); Seetharaman, Seshadri [Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm (Sweden)

    2008-10-06

    In the present work, the oxidation kinetics of AlN powder was investigated by using thermogravimetric analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The experiments were carried out both in isothermal as well as non-isothermal modes under two different oxidizing atmospheres. The results showed that the oxidation reaction started at around 1100 K and the rate increased significantly beyond 1273 K forming porous aluminum oxide as the reaction product. The oxidation rate was affected by temperature and oxygen partial pressure. A distinct change in the oxidation mechanism was noticed in the temperature range 1533-1543 K which is attributed to the phase transformation in oxidation product, viz. alumina. Diffusion is the controlling step during the oxidation process. Based on the experimental data, a new model for predicting the oxidation process of AlN powder had been developed, which offered an analytic form expressing the oxidation weight increment as a function of time, temperature and oxygen partial pressure. The application of this new model to this system demonstrated that this model could be used to describe the oxidation behavior of AlN powder.

  11. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  12. Fabrication of anodic aluminum oxide with incorporated chromate ions

    Science.gov (United States)

    Stępniowski, Wojciech J.; Norek, Małgorzata; Michalska-Domańska, Marta; Bombalska, Aneta; Nowak-Stępniowska, Agata; Kwaśny, Mirosław; Bojar, Zbigniew

    2012-10-01

    The anodization of aluminum in 0.3 M chromic acid is studied. The influence of operating conditions (like anodizing voltage and electrolyte's temperature) on the nanoporous anodic aluminum oxide geometry (including pore diameter, interpore distance, the oxide layer thickness and pores density) is thoroughly investigated. The results revealed typical correlations of the anodic alumina nanopore geometry with operating conditions, such as linear increase of pore diameter and interpore distance with anodizing voltage. The anodic aluminum oxide is characterized by a low pores arrangement, as determined by Fast Fourier transforms analyses of the FE-SEM images, which translates into a high concentration of oxygen vacancies. Moreover, an optimal experimental condition where chromate ions are being successfully incorporated into the anodic alumina walls, have been determined: the higher oxide growth rate the more chromate ions are being trapped. The trapped chromate ions and a high concentration of oxygen vacancies make the anodic aluminum oxide a promising luminescent material.

  13. Polarization properties of real aluminum mirrors; I. Influence of the aluminum oxide layer

    CERN Document Server

    van Harten, G; Keller, C U

    2009-01-01

    In polarimetry it is important to characterize the polarization properties of the instrument itself to disentangle real astrophysical signals from instrumental effects. This article deals with the accurate measurement and modeling of the polarization properties of real aluminum mirrors, as used in astronomical telescopes. Main goals are the characterization of the aluminum oxide layer thickness at different times after evaporation and its influence on the polarization properties of the mirror. The full polarization properties of an aluminum mirror are measured with Mueller matrix ellipsometry at different incidence angles and wavelengths. The best fit of theoretical Mueller matrices to all measurements simultaneously is obtained by taking into account a model of bulk aluminum with a thin aluminum oxide film on top of it. Full Mueller matrix measurements of a mirror are obtained with an absolute accuracy of ~1% after calibration. The determined layer thicknesses indicate logarithmic growth in the first few hou...

  14. The Effect of Anodic Oxide Films on the Nickel-Aluminum Reaction in Aluminum Braze Sheet

    Science.gov (United States)

    Tadgell, Colin A.; Wells, Mary A.; Corbin, Stephen F.; Colley, Leo; Cheadle, Brian; Winkler, Sooky

    2017-03-01

    The influence of an anodic oxide surface film on the nickel-aluminum reaction at the surface of aluminum brazing sheet has been investigated. Samples were anodized in a barrier-type solution and subsequently sputtered with nickel. Differential scanning calorimetry (DSC) and metallography were used as the main investigative techniques. The thickness of the anodic film was found to control the reaction between the aluminum substrate and nickel coating. Solid-state formation of nickel-aluminum intermetallic phases occurred readily when a relatively thin oxide film (13 to 25 nm) was present, whereas intermetallic formation was suppressed in the presence of thicker oxides ( 60 nm). At an intermediate oxide film thickness of 35 nm, the Al3Ni phase formed shortly after the initiation of melting in the aluminum substrate. Analysis of DSC traces showed that formation of nickel-aluminum intermetallic phases changed the melting characteristics of the aluminum substrate, and that the extent of this change can be used as an indirect measure of the amount of nickel incorporated into the intermetallic phases.

  15. Radiolysis of water with aluminum oxide surfaces

    Science.gov (United States)

    Reiff, Sarah C.; LaVerne, Jay A.

    2017-02-01

    Aluminum oxide, Al2O3, nanoparticles with water were irradiated with γ-rays and 5 MeV He ions followed by the determination of the production of molecular hydrogen, H2, and characterization of changes in the particle surface. Surface analysis techniques included: diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), nitrogen absorption with the Brunauer - Emmett - Teller (BET) methodology for surface area determination, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Production of H2 by γ-ray radiolysis was determined for samples with adsorbed water and for Al2O3 - water slurries. For Al2O3 samples with adsorbed water, the radiation chemical yield of H2 was measured as 80±20 molecules/100 eV (1 molecule/100 eV=1.04×10-7 mol/J). The yield of H2 was observed to decrease as the amount of water present in the Al2O3 - water slurries increased. Surface studies indicated that the α-phase Al2O3 samples changed phase following irradiation by He ions, and that the oxyhydroxide layer, present on the pristine sample, is removed by γ-ray and He ion irradiation.

  16. Oxidation resistant, thoria-dispersed nickel-chromium-aluminum alloy

    Science.gov (United States)

    Baranow, S.; Klingler, L. J.

    1973-01-01

    Modified thoria-dispersed nickel-chromium alloy has been developed that exhibits greatly improved resistance to high-temperature oxidation. Additions of aluminum have been made to change nature of protective oxide scale entirely and to essentially inhibit oxidation at temperatures up to 1260 C.

  17. Modeling the ignition of a copper oxide aluminum thermite

    Science.gov (United States)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2017-01-01

    An experimental "striker confinement" shock compression experiment was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. Sample of materials such as a thermite mixture of copper oxide and aluminum powders are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into the reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces, that nominally make copper liquid and aluminum oxide products. We discuss our model of the ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model [1], that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide, can predict the events observed at the particle scale in the experiments.

  18. Hangzhou Jinjiang Group Shanxi Fusheng Aluminum Phase I 800,000 t/a Aluminum Oxide Project Started Operation

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On October 19,the Shanxi Province Pinglu County Phase I 800,000t/a Aluminum Oxide Project of Shanxi Fusheng Aluminum Co.,Ltd,a subordinate of Hangzhou Jinjiang Group,started operation.This is the fourth Aluminum oxide project constructed and operated by Jinjiang Group.

  19. Methods for both coating a substrate with aluminum oxide and infusing the substrate with elemental aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Pyung; Weil, Kenneth Scott

    2016-11-01

    Methods of aluminizing the surface of a metal substrate. The methods of the present invention do not require establishment of a vacuum or a reducing atmosphere, as is typically necessary. Accordingly, aluminization can occur in the presence of oxygen, which greatly simplifies and reduces processing costs by allowing deposition of the aluminum coating to be performed, for example, in air. Embodiments of the present invention can be characterized by applying a slurry that includes a binder and powder granules containing aluminum to the metal substrate surface. Then, in a combined step, a portion of the aluminum is diffused into the substrate and a portion of the aluminum is oxidized by heating the slurry to a temperature greater than the melting point of the aluminum in an oxygen-containing atmosphere.

  20. Iron oxide nanotubes synthesized via template-based electrodeposition

    Science.gov (United States)

    Lim, Jin-Hee; Min, Seong-Gi; Malkinski, Leszek; Wiley, John B.

    2014-04-01

    Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition. In the case of magnetite nanotubes, which consist of slightly larger nanoparticles, magnetization curves show ferromagnetism with weak coercivity at room temperature, while FC-ZFC curves exhibit the Verwey transition at 125 K.Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition

  1. Electrical transport through single-wall carbon nanotube-anodic aluminum oxide-aluminum heterostructures

    Science.gov (United States)

    Kukkola, Jarmo; Rautio, Aatto; Sala, Giovanni; Pino, Flavio; Tóth, Géza; Leino, Anne-Riikka; Mäklin, Jani; Jantunen, Heli; Uusimäki, Antti; Kordás, Krisztián; Gracia, Eduardo; Terrones, Mauricio; Shchukarev, Andrey; Mikkola, Jyri-Pekka

    2010-01-01

    Aluminum foils were anodized in sulfuric acid solution to form thick porous anodic aluminum oxide (AAO) films of thickness ~6 µm. Electrodes of carboxyl-functionalized single-wall carbon nanotube (SWCNT) thin films were inkjet printed on the anodic oxide layer and the electrical characteristics of the as-obtained SWCNT-AAO-Al structures were studied. Nonlinear current-voltage transport and strong temperature dependence of conduction through the structure was measured. The microstructure and chemical composition of the anodic oxide layer was analyzed using transmission and scanning electron microscopy as well as x-ray photoelectron spectroscopy. Schottky emission at the SWCNT-AAO and AAO-Al interfaces allowed by impurity states in the anodic aluminum oxide film together with ionic surface conduction on the pore walls of AAO gives a reasonable explanation for the measured electrical conduction. Calcined AAO is proposed as a dielectric material for SWCNT-field effect transistors.

  2. The fabrication and thermal properties of bismuth-aluminum oxide nanothermometers

    Science.gov (United States)

    Wang, Chiu-Yen; Chen, Shih-Hsun; Tsai, Ping-Hsin; Chiou, Chung-Han; Hsieh, Sheng-Jen

    2017-01-01

    Bismuth (Bi) nanowires, well controlled in length and diameter, were prepared by using an anodic aluminum oxide (AAO) template-assisted molding injection process with a high cooling rate. A high performance atomic layer deposition (ALD)-capped bismuth-aluminum oxide (Bi-Al2O3) nanothermometer is demonstrated that was fabricated via a facile, low-cost and low-temperature method, including AAO templated-assisted molding injection and low-temperature ALD-capped processes. The thermal behaviors of Bi nanowires and Bi-Al2O3 nanocables were studied by in situ heating transmission electron microscopy. Linear thermal expansion of liquid Bi within native bismuth oxide nanotubes and ALD-capped Bi-Al2O3 nanocables were evaluated from 275 °C to 700 °C and 300 °C to 1000 °C, respectively. The results showed that the ALD-capped Bi-Al2O3 nanocable possesses the highest working temperature, 1000 °C, and the broadest operation window, 300 °C-1000 °C, of a thermal-expanding type nanothermometer. Our innovative approach provides another way of fabricating core-shell nanocables and to further achieve sensing local temperature under an extreme high vacuum environment.

  3. Two-Dimensional Porous Micro/Nano Metal Oxides Templated by Graphene Oxide.

    Science.gov (United States)

    Cao, Hailiang; Zhou, Xufeng; Zheng, Chao; Liu, Zhaoping

    2015-06-10

    Novel two-dimensional (2D) porous metal oxides with micro-/nanoarchitecture have been successfully fabricated using graphene oxide (GO) as a typical sacrificial template. GO as a 2D template ensures that the growth and fusion of metal oxides nanoparticles is restricted in the 2D plane. A series of metal oxides (NiO, Fe2O3, Co3O4, Mn2O3, and NiFe2O4) with similar nanostructure were investigated using this simple method. Some of these special nanostructured materials, such as NiO, when being used as anode for lithium-ion batteries, can exhibit high specific capacity, good rate performance, and cycling stability. Importantly, this strategy of creating a 2D porous micro/nano architecture can be easily extended to controllably synthesize other binary/polynary metal oxides nanostructures for lithium-ion batteries or other applications.

  4. Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production

    CERN Document Server

    Czapski, M; Tardivat, C; Stora, T; Bouville, F; Leloup, J; Luis, R Fernandes; Augusto, R Santos

    2013-01-01

    New silicon carbide (SiC) and aluminum oxide (Al2O3) of a tailor-made microstructure were produced using the ice-templating technique, which permits controlled pore formation conditions within the material. These prototypes will serve to verify aging of the new advanced target materials under irradiation with proton beams. Before this, the evaluation of their mechanical integrity was made based on the energy deposition spectra produced by FLORA codes. (C) 2013 Elsevier B.V. All rights reserved.

  5. Electron microscopic study on aerosol-assisted synthesis of aluminum organophosphonates using flexible colloidal PS-b-PEO templates.

    Science.gov (United States)

    Kimura, Tatsuo; Yamauchi, Yusuke

    2012-09-04

    A wide variety of synthetic approaches from homogeneous precursor solutions have so far been developed for precise structural design of materials in multiscale. In organic templating approaches for porous materials design, we have recently developed a new approach to fabricate colloidal polystyrene-block-poly(oxyethylene) (PS-b-PEO) templated large pores that can be controlled in thick films of aluminum organophosphonate (AOP). In this study, we extended this approach using colloidal PS-b-PEO aggregates to aerosol-assisted synthesis for the fabrication of spherical particles. Structural variations (morphology and porous structure) depended on the synthetic conditions, which were mainly investigated by using electron microscopies (SEM and TEM). In addition to the insight on the colloidal PS-b-PEO templating of spherical pores in AOP spheres, it was found that colloidal PS-b-PEO aggregates were flexible for further design of pore shape that was strongly affected by external morphology. In this context, we proposed this method as flexible colloidal PS-b-PEO templating to fabricate unusual macroporous structures during morphological control from precursor solutions containing colloidal PS-b-PEO aggregates. The insights will be promising for precise construction of unique devices using porous materials templated by colloidal organic aggregates. In addition, we found a useful water adsorption-desorption behavior over the macroporous AOP bulky powders when the macropores were connected through large pores, which is also significant for future development of AOP-based porous materials.

  6. Fabrication of anodic aluminium oxide templates on curved surfaces.

    Science.gov (United States)

    Yin, Aijun; Guico, Rodney S; Xu, Jimmy

    2007-01-24

    Aluminium anodization provides a simple and inexpensive way to obtain nanoporous templates with uniform and controllable pore diameters and periods over a wide range. Moreover, one of the interesting possibilities afforded by the anodization process is that the anodization can take place on arbitrary surfaces, such as curved surfaces, which has not yet been well studied or applied in nanofabrication. In this paper, we characterize the anodization of Al films on silicon substrates with a curved top surface. The structures of the resultant anodic aluminium oxide (AAO) films are examined by scanning electron microscopy. Unique features including cessation, bending, and branching of pore channels are observed in the curved area. Possible growth mechanisms are proposed, which can also contribute to the understanding of the self-organization mechanism in the formation of porous AAO membranes. The new structures may open new opportunities in optical, electronic and electrochemical applications.

  7. Preparation and analysis of anodic aluminum oxide films with continuously tunable interpore distances

    Science.gov (United States)

    Qin, Xiufang; Zhang, Jinqiong; Meng, Xiaojuan; Deng, Chenhua; Zhang, Lifang; Ding, Guqiao; Zeng, Hao; Xu, Xiaohong

    2015-02-01

    Nanoporous anodic aluminum oxides are often used as templates for preparation of nanostructures such as nanodot, nanowire and nanotube arrays. The interpore distance of anodic aluminum oxide is the most important parameter in controlling the periodicity of these nanostructures. Herein we demonstrate a simple and yet powerful method to fabricate ordered anodic aluminum oxides with continuously tunable interpore distances. By using mixed solution of citric and oxalic acids with different molar ratio, the range of anodizing voltages within which self-ordered films can be formed were extended to between 40 and 300 V, resulting in the interpore distances change from 100 to 750 nm. Our work realized very broad range of interpore distances in a continuously tunable fashion and the experiment processes are easily controllable and reproducible. The dependence of the interpore distances on acid ratios in mixed solutions was discussed through analysis of anodizing current and it was found that the effective dissociation constant of the mixed acids is of great importance. The interpore distances achieved are comparable to wavelengths ranging from UV to near IR, and may have potential applications in optical meta-materials for photovoltaics and optical sensing.

  8. Templating Routes to Supported Oxide Catalysts by Design

    Energy Technology Data Exchange (ETDEWEB)

    Notestein, Justin M. [Northwestern Univ., Evanston, IL (United States)

    2016-09-08

    The rational design and understanding of supported oxide catalysts requires at least three advancements, in order of increasing complexity: the ability to quantify the number and nature of active sites in a catalytic material, the ability to place external controls on the number and structure of these active sites, and the ability to assemble these active sites so as to carry out more complex functions in tandem. As part of an individual investigator research program that is integrated with the Northwestern University Institute for Catalysis in Energy Processes (ICEP) as of 2015, significant advances were achieved in these three areas. First, phosphonic acids were utilized in the quantitative assessment of the number of active and geometrically-available sites in MOx-SiO2 catalysts, including nanocrystalline composites, co-condensed materials, and grafted structures, for M=Ti, Zr, Hf, Nb, and Ta. That work built off progress in understanding supported Fe, Cu, and Co oxide catalysts from chelating and/or multinuclear precursors to maximize surface reactivity. Secondly, significant progress was made in the new area of using thin oxide overcoats containing ‘nanocavities’ from organic templates as a method to control the dispersion and thermal stability of subsequently deposited metal nanoparticles or other catalytic domains. Similar methods were used to control surface reactivity in SiO2-Al2O3 acid catalysts and to control reactant selectivity in Al2O3-TiO2 photocatalysts. Finally, knowledge gained from the first two areas has been combined to synthesize a tandem catalyst for hydrotreating reactions and an orthogonal tandem catalyst system where two subsequent reactions in a reaction network are independently controlled by light and heat. Overall, work carried out under this project significantly advanced the knowledge of synthesis-structure-function relationships in supported

  9. Analysis of peel strength of consisting of an aluminum sheet, anodic aluminum oxide and a copper foil laminate composite

    Science.gov (United States)

    Shin, Hyeong-Won; Lee, Hyo-Soo; Jung, Seung-Boo

    2017-01-01

    Laminate composites consisting of an aluminum sheet, anodic aluminum oxide, and copper foil have been used as heat-spreader materials for high-power light-emitting diodes (LEDs). These composites are comparable to the conventional structure comprising an aluminum sheet, epoxy adhesives, and copper foil. The peel strength between the copper foil and anodic aluminum oxide should be more than 1.0 kgf/cm in order to be applied in high-power LED products. We investigated the effect of the anodic aluminum oxide morphology and heat-treatment conditions on the peel strength of the composites. We formed an anodic aluminum oxide layer on a 99.999% pure aluminum sheet using electrochemical anodization. A Ti/Cu seed layer was formed using the sputtering direct bonding copper process in order to form a copper circuit layer on the anodic aluminum oxide layer by electroplating. The developed heat spreader, composed of an aluminum layer, anodic aluminum oxide, and a copper circuit layer, showed peel strengths ranging from 1.05 to 3.45 kgf/cm, which is very suitable for high-power LED applications.

  10. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Tiago P. [Langmuir - Laboratorio de Adsorcao e Catalise, Departamento de Quimica Analitica e Fisico-Quimica, Universidade Federal do Ceara, CP 6021, CEP 60455-970 Campus do Pici, Fortaleza (Brazil); Vasconcelos, Igor F. [Departamento de Engenharia Metalurgica e de Materiais, Universidade Federal do Ceara, Fortaleza (Brazil); Sasaki, Jose M. [Laboratorio de Raios X, Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Fortaleza, CE (Brazil); Fabris, J.D.; Oliveira, Diana Q.L. de [Departamento de Quimica, Universidade Federal de Minas Gerais, Belo Horizonte (Brazil); Valentini, Antoninho, E-mail: valent@ufc.b [Langmuir - Laboratorio de Adsorcao e Catalise, Departamento de Quimica Analitica e Fisico-Quimica, Universidade Federal do Ceara, CP 6021, CEP 60455-970 Campus do Pici, Fortaleza (Brazil)

    2010-03-15

    Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Moessbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Moessbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.

  11. Use of aluminum as an oxidation barrier for titanium

    Science.gov (United States)

    Unnam, J.; Shenoy, R. N.; Wiedemann, K. E.; Clark, R. K.

    1985-01-01

    A study is conducted of the use of aluminum coatings as oxidation retardants for Ti alloys, using room temperature normal emittance and spectral emittance as bases for the characterization of oxidation properties with and without the coatings. Thermal exposures were conducted in a thermogravimetric analysis apparatus in which specimen weight was continuously monitored. The results obtained indicate that the weight gains are proportional to the square root of the time for uncoated alloys and for 649 C-exposed aluminum-coated alloys. For the 704 C-exposed aluminum-coated alloys, weight gain exhibits a low rate for short and a high rate for long exposure times, implying that the 0.5-micron coating's protection decreases for long exposures at this temperature.

  12. Electrochemical formation of a composite polymer-aluminum oxide film

    Science.gov (United States)

    Runge-Marchese, Jude Mary

    1997-10-01

    The formation of polymer films through electrochemical techniques utilizing electrolytes which include conductive polymer is of great interest to the coatings and electronics industries as a means for creating electrically conductive and corrosion resistant finishes. One of these polymers, polyamino-benzene (polyaniline), has been studied for this purpose for over ten years. This material undergoes an insulator-to-metal transition upon doping with protonic acids in an acid/base type reaction. Review of prior studies dealing with polyaniline and working knowledge of aluminum anodization has led to the development of a unique process whereby composite polymer-aluminum oxide films are formed. The basis for the process is a modification of the anodizing electrolyte which results in the codeposition of polyaniline during aluminum anodization. A second process, which incorporates electrochemical sealing of the anodic layer with polyaniline was also developed. The formation of these composite films is documented through experimental processing, and characterized by way of scientific analysis and engineering tests. Analysis results revealed the formation of unique dual phase anodic films with fine microstructures which exhibited full intrusion of the columnar aluminum oxide structure with polyaniline, indicating the polymer was deposited as the metal oxidation proceeded. An aromatic amine derivative of polyaniline with aluminum sulfate was determined to be the reaction product within the aluminum oxide phase of the codeposited films. Scientific characterization determined the codeposition process yields completely chemically and metallurgically bound composite films. Engineering studies determined the films, obtained through a single step, exhibited superior wear and corrosion resistance to conventionally anodized and sealed films processed through two steps, demonstrating the increased manufacturing process efficiency that can be realized with the modification of the

  13. Upconversion spectroscopy of erbium in amorphous aluminum oxide microstructures

    NARCIS (Netherlands)

    Agazzi, L.; Wörhoff, K.; Pollnau, M.

    2012-01-01

    The influence of energy migration and energy-transfer upconversion (ETU) among neighboring erbium ions on luminescence decay and steady-state population densities in amorphous aluminum oxide microstructures is investigated by means of photoluminescence decay measurements under quasi-CW excitation. .

  14. Plasma diagnostics during magnetron sputtering of aluminum doped zinc oxide

    DEFF Research Database (Denmark)

    Stamate, Eugen; Crovetto, Andrea; Sanna, Simone

    2016-01-01

    Plasma parameters during magnetron sputtering of aluminum-doped zinc oxide are investigated with optical emission spectroscopy, electrostatic probes and mass spectrometry with the aim of understanding the role of negative ions of oxygen during the film growth and improving the uniformity...

  15. Stratospheric aluminum oxide. [possibly from solid-fuel rocket exhausts

    Science.gov (United States)

    Brownlee, D. E.; Tomandl, D.; Ferry, G. V.

    1976-01-01

    Balloons and U-2 aircraft were used to collect micrometer-sized stratospheric aerosols. It was discovered that for the past 6 years at least, aluminum oxide spheres have been the major stratospheric particulate in the size range from 3 to 8 micrometers. The most probable source of the spheres is the exhaust from solid-fuel rockets.

  16. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide (Pigment Blue 36) (CAS Reg....

  17. Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays

    Science.gov (United States)

    Hao, Qi; Huang, Hao; Fan, Xingce; Hou, Xiangyu; Yin, Yin; Li, Wan; Si, Lifang; Nan, Haiyan; Wang, Huaiyu; Mei, Yongfeng; Qiu, Teng; Chu, Paul K.

    2017-03-01

    Ultra-thin anodic aluminum oxide (AAO) membranes are efficient templates for the fabrication of patterned nanostructures. Herein, a three-step etching method to control the morphology of AAO is described. The morphological evolution of the AAO during phosphoric acid etching is systematically investigated and a nonlinear growth mechanism during unsteady-state anodization is revealed. The thickness of the AAO can be quantitatively controlled from ∼100 nm to several micrometers while maintaining the tunablity of the pore diameter. The AAO membranes are robust and readily transferable to different types of substrates to prepare patterned plasmonic nanoarrays such as nanoislands, nanoclusters, ultra-small nanodots, and core–satellite superstructures. The localized surface plasmon resonance from these nanostructures can be easily tuned by adjusting the morphology of the AAO template. The custom AAO template provides a platform for the fabrication of low-cost and large-scale functional nanoarrays suitable for fundamental studies as well as applications including biochemical sensing, imaging, photocatalysis, and photovoltaics.

  18. Microwave Absorption Behavior of Mesoporous Transition Metal Oxide Templated from SBA-15 and KIT-6

    Science.gov (United States)

    Wu, Hongjing; Wang, Liuding; Wang, Yiming

    2014-12-01

    In this paper, we have synthesized meso-oxides (i.e., Co3O4 and NiO) by using mesoporous silica as hard template. The microstructures and chemical compositions of the corresponding meso-oxides were characterized by the Transmission electron microscope-selected area electron diffusion (TEM-SAED), X-ray diffraction (XRD), scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS), respectively. And, their electromagnetic and microwave absorption properties were investigated in the frequency range of 2-18 GHz. The results indicate that meso-oxide templated from KIT-6 (i.e., meso-K-Co/Ni) exhibit a dual absorption characteristic compared with those using SBA-15 as hard template. This phenomenon suggests that meso-oxides templated from SBA-15 and KIT-6 can exhibit different microwave absorption behaviors due to their respective microstructures.

  19. Synthesis of silver nanotubes by electroless deposition in porous anodic aluminium oxide templates.

    Science.gov (United States)

    Zhang, Shu-Hong; Xie, Zhao-Xiong; Jiang, Zhi-Yuan; Xu, Xin; Xiang, Juan; Huang, Rong-Bin; Zheng, Lan-Sun

    2004-05-07

    An electroless deposition method has been employed for the synthesis of silver nanotubes using porous anodic aluminium oxide as templates, by which high-yield silver nanotubes with length over ten microns have been synthesized.

  20. Electrochemical Fabrication of Pd-Ag Alloy Nanowire Arrays in Anodic Alumina Oxide Template

    Institute of Scientific and Technical Information of China (English)

    Erhong YUE; Gang YU; Yuejun OUYANG; Baicheng WENG; Weiwei SI; Liyuan YE

    2008-01-01

    The synthesis of Pd-Ag alloy nanowires in nanopores of porous anodic aluminum oxide (AAO) template by electrochemical deposition technique was reported.Pd-Ag alloy nanowires with 16%-25% Ag content are expected to serve as candidates of useful nanomaterials for the hydrogen sensors.Scanning electron microscopy (SEM) and energy dispersed X-ray spectroscopy (EDX) were employed to characterize the morphologies and compositions of the Pd-Ag nanowires.X-ray diffraction (XRD) was used to characterize the phase properties of the Pd-Ag nanowires.Pd-Ag alloy nanowire arrays with 17.28%-23.76% Ag content have been successfully fabricated by applying potentials ranging from -0.8 to -1.0 V (vs SCE).The sizes of the alloy nanowires are in agreement with the diameter of AAO nanopores.The underpotential deposition of Ag+ on Pd and Au plays an important role in producing an exceptionally high Ag content in the alloy.Alloy compositions can still be controlled by adjusting the ion concentration ratio of Pd2+ and Ag+ and the electrodeposition processes.XRD shows that nanowires obtained are in the form of alloy of Pd and Ag.

  1. Oxidation dynamics of nanophase aluminum clusters : a molecular dynamics study.

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, S.

    1998-01-27

    Oxidation of an aluminum nanocluster (252,158 atoms) of radius 100{angstrom} placed in gaseous oxygen (530,727 atoms) is investigated by performing molecular-dynamics simulations on parallel computers. The simulation takes into account the effect of charge transfer between Al and O based on the electronegativity equalization principles. We find that the oxidation starts at the surface of the cluster and the oxide layer grows to a thickness of {approximately}28{angstrom}. Evolutions of local temperature and densities of Al and O are investigated. The surface oxide melts because of the high temperature resulting from the release of energy associated with Al-O bondings. Amorphous surface-oxides are obtained by quenching the cluster. Vibrational density-of-states for the surface oxide is analyzed through comparisons with those for crystalline Al, Al nanocluster, and {alpha}-Al{sub 2}O{sub 3}.

  2. Nanoscale growth and patterning of inorganic oxides using DNA nanostructure templates.

    Science.gov (United States)

    Surwade, Sumedh P; Zhou, Feng; Wei, Bryan; Sun, Wei; Powell, Anna; O'Donnell, Christina; Yin, Peng; Liu, Haitao

    2013-05-08

    We describe a method to form custom-shaped inorganic oxide nanostructures by using DNA nanostructure templates. We show that a DNA nanostructure can modulate the rate of chemical vapor deposition of SiO2 and TiO2 with nanometer-scale spatial resolution. The resulting oxide nanostructure inherits its shape from the DNA template. This method generates both positive-tone and negative-tone patterns on a wide range of substrates and is compatible with conventional silicon nanofabrication processes. Our result opens the door to the use of DNA nanostructures as general-purpose templates for high-resolution nanofabrication.

  3. Shuttle Redesigned Solid Rocket Motor aluminum oxide investigations

    Science.gov (United States)

    Blomshield, Fred S.; Kraeutle, Karl J.; Stalnaker, Richard A.

    1994-10-01

    During the launch of STS-54, a 15 psi pressure blip was observed in the ballistic pressure trace of one of the two Space Shuttle Redesigned Solid Rocket Motors (RSRM). One possible scenario for the observed pressure increase deals with aluminum oxide slag formation in the RSRM. The purpose of this investigation was to examine changes which may have occurred in the aluminum oxide formation in shuttle solid propellant due to changes in the ammonium perchlorate. Aluminum oxide formation from three propellants, all having the same formulation, but containing ammonium perchlorate from different manufacturers, will be compared. Three methods have been used to look for possible differences among the propellants. The first method was to examine window bomb movies of the propellants burning at 100, 300 and 600 psia. The motor operating pressure during the pressure blip was around 600 psia. The second method used small samples of propellant which were fired in a combustion bomb which quenched the burning aluminum particles soon after they left the propellant surface. The bomb was fired in both argon and Nitrogen atmospheres at various pressures. Products from this device were examined by optical microscopy. The third method used larger propellant samples fired into a particle collection device which allowed the aluminum to react and combust more completely. This device was pressurized with Nitrogen to motor operating pressures. The collected products were subdivided into size fractions by screening and sedimentation and analyzed optically with an optical microscope. the results from all three methods indicate very small changes in the size distribution of combustion products.

  4. Characteristic Exoemission From Oxide Covered Aluminum Alloys.

    Science.gov (United States)

    1978-07-01

    with a Bayart— Alpert pressure gauge during the elongation of a thick, dense oxide on clad Al 2024. Considerable signal was observed that correlated...Principal Investigator 2. 3. T. Dickinson: Assoc. Prof. of Physics, Co—Principal Investigator 3. Larry Larson: Graduate Student (Ph.D. Candidate) 4

  5. Thermocurrent dosimetry with high purity aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Fullerton, G.D.; Cameron, J.R.; Moran, P.R.

    1976-01-01

    The application of thermocurrent (TC) to ionizing radiation dosimetry was studied. It was shown that TC in alumina (Al/sub 2/O/sub 3/) has properties that are suited to personnel dosimetry and environmental monitoring. TC dosimeters were made from thin disks of alumina. Aluminum electrodes were evaporated on each side: on one face a high voltage electrode and on the opposite face a measuring electrode encircled by a guard ring. Exposure to ionizing radiation resulted in stored electrons and holes in metastable trapping sites. The signal was read-out by heating the dosimeter with a voltage source and picnometer connected in series between the opposite electrodes. The thermally remobilized charge caused a transient TC. The thermogram, TC versus time or temperature, is similar to a TL glow curve. Either the peak current or the integrated current is a measure of absorbed dose. Six grades of alumina were studied from a total of four commercial suppliers. All six materials displayed radiation induced TC signals. Sapphire of uv-grade quality from the Adolf Meller Co. (AM) had the best dosimetry properties of those investigated. Sources of interference were studied. Thermal fading, residual signal and radiation damage do not limit TC dosimetry. Ultraviolet light can induce a TC response but it is readily excluded with uv-opaque cladding. Improper surface preparation prior to electrode evaporation was shown to cause interference. A spurious TC signal resulted from polarization of surface contaminants. Spurious TC was reduced by improved cleaning prior to electrode application. Polished surfaces resulted in blocking electrodes and caused a sensitivity shift due to radiation induced thermally activated polarization. This was not observed with rough cut surfaces.

  6. Radiation induced defects and thermoluminescence mechanism in aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Atobe, K.; Kobayashi, T.; Awata, T. [Naruto Univ. of Education, Tokushima (Japan); Okada, M. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Nakagawa, M. [Kagawa Univ., Faculty of Education, Takamatsu, Kagawa (Japan)

    2001-01-01

    The thermoluminescence of the irradiated aluminum oxides were measured to study the radiation induced defects and their behaviors. Neutron and {gamma}-ray irradiation were performed for a shingle crystal of the high purity aluminum oxide. The thermoluminescence glow curve and its activation energy were measured. The spectroscopy measurement on the thermoluminescence and the absorption are also carried out. The observed 430 and 340 nm peaks are discussed relating to the F{sup +} and F centers, respectively. Activation state of the F center transits to 3P state through 1P state by emitting phonons. Trapped electron on 3P state emits phonon of 2.9 eV (430 nm) during transition to the ground state. The above reaction can be written by the equation. F{sup +} + e {yields} (F){sup *} {yields} F + h{nu}(2.9 eV, 470 nm). (Katsuta, H.)

  7. Oxide mediated spectral shifting in aluminum resonant optical antennas.

    Science.gov (United States)

    Schwab, Patrick M; Moosmann, Carola; Dopf, Katja; Eisler, Hans-Jürgen

    2015-10-01

    As a key feature among metals showing good plasmonic behavior, aluminum extends the spectrum of achievable plasmon resonances of optical antennas into the deep ultraviolet. Due to degradation, a native oxide layer gives rise to a metal-core/oxide-shell nanoparticle and influences the spectral resonance peak position. In this work, we examine the role of the underlying processes by applying numerical nanoantenna models that are experimentally not feasible. Finite-difference time-domain simulations are carried out for a large variety of elongated single-arm and two-arm gap nanoantennas. In a detailed analysis, which takes into account the varying surface-to-volume ratio, we show that the overall spectral shift toward longer wavelengths is mainly driven by the higher index surrounding material rather than by the decrease of the initial aluminum volume. In addition, we demonstrate experimentally that this shifting can be minimized by an all-inert fabrication and subsequent proof-of-concept encapsulation.

  8. Development of topologically structured membranes of aluminum oxide

    Science.gov (United States)

    Bankova, A.; Videkov, V.; Tzaneva, B.

    2014-05-01

    In recent years, nanomembranes have become one of the most widely used construction material for ultrasensitive and ultrathin applications in micro-electromechanical systems (MEMS) and other sensor structures due to their remarkable mechanical properties. Among these, the mechanical stability is of particular importance. We present an approach to the analysis of the stability of nanostructured anodic aluminum oxide free membranes subjected to mechanical bending. The membranes tested were with a thickness of 500 nm to 15 urn in various topological shapes; we describe the technological schemes of their preparation. Bends were applied to membranes prepared by using a selective process of etching and anodizing. The results of the preparation of the membranes are discussed, together with the influence of the angle of deflection, and the number of bendings. The results obtained can be used in designing MEMS structures and sensors which use nanostructured anodic aluminum oxide.

  9. Thermally stimulated luminescence studies in combustion synthesized polycrystalline aluminum oxide

    Indian Academy of Sciences (India)

    K R Nagabhushana; B N Lakshminarasappa; D Revannasiddaiah; Fouran Singh

    2008-08-01

    Synthesis of materials by combustion technique results in homogeneous and fine crystalline product. Further, the technique became more popular since it not only saved time and energy but also was easy to process. Aluminum oxide phosphor was synthesized by using urea as fuel in combustion reaction. Photoluminescence (PL) and thermally stimulated luminescence (TSL) characteristics of -irradiated aluminum oxide samples were studied. A broad PL emission with a peak at ∼ 465 nm and a pair of strong and sharp emissions with peaks at 679 and 695 nm were observed in -rayed samples. The PL intensity was observed to increase with increase in -ray dose. Two prominent and well resolved TSL glows with peaks at 210°C and 365°C were observed in all -irradiated Al2O3 samples. The TSL intensity was also found to increase with increase in -ray dose. The TSL glow curves indicated second order kinetics.

  10. Catalytic Behaviour of Mesoporous Cobalt-Aluminum Oxides for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Ankur Bordoloi

    2014-01-01

    Full Text Available Ordered mesoporous materials are promising catalyst supports due to their uniform pore size distribution, high specific surface area and pore volume, tunable pore sizes, and long-range ordering of the pore packing. The evaporation-induced self-assembly (EISA process was applied to synthesize mesoporous mixed oxides, which consist of cobalt ions highly dispersed in an alumina matrix. The characterization of the mesoporous mixed cobalt-aluminum oxides with cobalt loadings in the range from 5 to 15 wt% and calcination temperatures of 673, 973, and 1073 K indicates that Co2+ is homogeneously distributed in the mesoporous alumina matrix. As a function of the Co loading, different phases are present comprising poorly crystalline alumina and mixed cobalt aluminum oxides of the spinel type. The mixed cobalt-aluminum oxides were applied as catalysts in CO oxidation and turned out to be highly active.

  11. Characterization of Anodic Aluminum Oxide Membrane with Variation of Crystallizing Temperature for pH Sensor.

    Science.gov (United States)

    Yeo, Jin-Ho; Lee, Sung-Gap; Jo, Ye-Won; Jung, Hye-Rin

    2015-11-01

    We fabricated electrolyte-dielectric-metal (EDM) device incorporating a high-k Al2O3 sensing membrane from a porous anodic aluminum oxide (AAO) using a two step anodizing process for pH sensors. In order to change the properties of the AAO template, the crystallizing temperature was varied from 400 degrees C to 700 degrees C over 2 hours. The structural properties were observed by field emission scanning electron microscopy (FE-SEM). The pH sensitivity increased with an increase in the crystallizing temperature from 400 degrees C to 600 degrees C. However at 700 degrees C, deformation occurred. The porous AAO sensor with a crystallizing temperature of 600 degrees C displayed the good sensitivity and long-term stability and the values were 55.7 mV/pH and 0.16 mV/h, respectively.

  12. Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering

    Science.gov (United States)

    Zhang, Su; Wang, Yang; Tan, Yingling; Zhu, Jianfeng; Liu, Kai; Zhu, Jia

    2016-07-01

    Air pollution is widely considered as one of the most pressing environmental health issues. Particularly, atmospheric particulate matters (PM), a complex mixture of solid or liquid matter suspended in the atmosphere, are a harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing permanent damages such as DNA mutations and premature death. Therefore, porous materials which can effectively filter out particulate matters are highly desirable. Here, for the first time, we demonstrate that anodic aluminum oxide with fine pore size control fabricated through a scalable process can serve as effective and selective filtering materials for different types of particulate matters (such as PM2.5, PM10). Combining selective and dramatic filtering effect, fine pore size control and a scalable process, this type of anodic aluminum oxide templates can potentially serve as a novel selective filter for different kinds of particulate matters, and a promising and complementary solution to tackle this serious environmental issue.

  13. Tailoring oxidation of aluminum nanoparticles reinforced with carbon nanotubes

    Science.gov (United States)

    Sharma, Manjula; Sharma, Vimal

    2016-05-01

    In this report, the oxidation temperature and reaction enthalpy of Aluminum (Al) nanoparticles has been controlled by reinforcing with carbon nanotubes. The physical mixing method with ultrasonication was employed to synthesize CNT/Al nanocomposite powders. The micro-morphology of nanoconmposite powders has been analysed by scanning electron microscopy, energy dispersive spectroscopy, raman spectroscopy and X-ray diffraction techniques. The oxidation behavior of nanocomposite powders analyzed by thermogravimetry/differential scanning calorimertry showed improvement in the exothermic enthalpy. Largest exothermic enthalpy of-1251J/g was observed for CNT (4 wt%)/Al nanocomposite.

  14. Hard template synthesis of metal nanowires

    Directory of Open Access Journals (Sweden)

    Go eKawamura

    2014-11-01

    Full Text Available Metal nanowires (NWs have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  15. Prediction of new thermodynamically stable aluminum oxides

    CERN Document Server

    Liu, Yue; Wang, Shengnan; Zhu, Qiang; Dong, Xiao; Kresse, Georg

    2015-01-01

    Recently, it has been shown that under pressure, unexpected and counterintuitive chemical compounds become stable. Laser shock experiments (A. Rode, unpublished) on alumina (Al2O3) have shown non-equilibrium decomposition of alumina with the formation of free Al and a mysterious transparent phase. Inspired by these observations, with have explored the possibility of the formation of new chemical compounds in the system Al-O. Using the variable-composition structure prediction algorithm USPEX, in addition to the well-known Al2O3, we have found two extraordinary compounds Al4O7 and AlO2 to be thermodynamically stable in the pressure range 330-443 GPa and above 332 GPa, respectively. Both of these compounds at the same time contain oxide O2- and peroxide O22- ions, and both are insulating. Peroxo-groups are responsible for gap states, which significantly reduce the electronic band gap of both Al4O7 and AlO2.

  16. Radioluminescence of rare-earth doped aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, M.; Molina, P. [Universidad Nacional del Centro de la Provincia de Buenos Aires, Instituto de Fisica Arroyo Seco, Pinto 399, 7000 Tandil (Argentina); Barros, V. S.; Khoury, H. J.; Elihimas, D. R., E-mail: msantiag@exa.unicen.edu.ar [Universidade Federal de Pernambuco, Departamento de Energia Nuclear, Av. Prof. Luiz Freire 1000, Recife, PE 50740-540 (Brazil)

    2011-10-15

    Carbon-doped aluminum oxide (Al{sub 2}O{sub 3}:C) is one of the most used radioluminescence (Rl) materials for fiberoptic dosimetry due to its high efficiency and commercial availability. However, this compound presents the drawback of emitting in the spectral region, where the spurious radioluminescence of fibers is also important. In this work, the radioluminescence response of rare-earth doped Al{sub 2}O{sub 3} samples has been evaluated. The samples were prepared by mixing stoichiometric amounts of aluminum nitrate, urea and dopants with different amounts of terbium, samarium, cerium and thulium nitrates varying from 0 to 0.15 mo 1%. The influence of the different activators on the Rl spectra has been investigated in order to determine the feasibility of using these compounds for Rl fiberoptic dosimetry. (Author)

  17. Core–Shell Electrospun Hollow Aluminum Oxide Ceramic Fibers

    Directory of Open Access Journals (Sweden)

    Jonathan W. Rajala

    2015-10-01

    Full Text Available In this work, core–shell electrospinning was employed as a simple method for the fabrication of composite coaxial polymer fibers that became hollow ceramic tubes when calcined at high temperature. The shell polymer solution consisted of polyvinyl pyrollidone (PVP in ethanol mixed with an aluminum acetate solution to act as a ceramic precursor. The core polymer was recycled polystyrene to act as a sacrificial polymer that burned off during calcination. The resulting fibers were analyzed with X-ray diffraction (XRD and energy dispersive spectroscopy (EDS to confirm the presence of gamma-phase aluminum oxide when heated at temperatures above 700 °C. The fiber diameter decreased from 987 ± 19 nm to 382 ± 152 nm after the calcination process due to the polymer material being burned off. The wall thickness of these fibers is estimated to be 100 nm.

  18. Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production

    Energy Technology Data Exchange (ETDEWEB)

    Czapski, M., E-mail: michal.czapski@cern.ch [CERN, Genève 23 CH-1211 (Switzerland); Stora, T. [CERN, Genève 23 CH-1211 (Switzerland); Tardivat, C.; Deville, S. [Lab. de Synthèse et Fonctionnalisation des Céramiques, CNRS/Saint-Gobain, Av. Jauffret 84306 Cavaillon (France); Santos Augusto, R. [CERN, Genève 23 CH-1211 (Switzerland); Leloup, J.; Bouville, F. [Lab. de Synthèse et Fonctionnalisation des Céramiques, CNRS/Saint-Gobain, Av. Jauffret 84306 Cavaillon (France); Fernandes Luis, R. [Univ. Técnica de Lisboa Estrada Nacional 10, 2686-953 Sacavem, Loures (Portugal)

    2013-12-15

    Highlights: • SiC and Al{sub 2}O{sub 3} of uniaxial porosity were produced with ice-templating method. • The method allows controlled pore formation within the material. • Calculation of mechanical integrity under irradiation with protons was performed. • Generated thermal stresses should not exceed material’s strength. -- Abstract: New silicon carbide (SiC) and aluminum oxide (Al{sub 2}O{sub 3}) of a tailor-made microstructure were produced using the ice-templating technique, which permits controlled pore formation conditions within the material. These prototypes will serve to verify aging of the new advanced target materials under irradiation with proton beams. Before this, the evaluation of their mechanical integrity was made based on the energy deposition spectra produced by FLUKA codes.

  19. Morphology of Platinum Nanowire Array Electrodeposited Within Anodic Aluminium Oxide Template Characterized by Atomic Force Microscopy

    Institute of Scientific and Technical Information of China (English)

    孔令斌; 陆梅; 李梦轲; 郭新勇; 力虎林

    2003-01-01

    Uniform platinum nanowires were synthesized by electrodepositing the platinum under a very low altering current frequency (20Hz) and increasing voltage (5-15 V) in the pores of anodic aluminium oxide (AAO) template.Atomic force microscopy observation indicates that the template membranes we obtained have hexagonally closepacked nanochannels. The platinum nanowires have highly ordered arrays after partially dissolving the aluminium oxide membrane. With the increasing dissolving time, the platinum nanowire array collapsed. A concave topography of the aluminium substrate was observed after the aluminium oxide membrane was dissolved completely and the platinum nanowires were released from the template. Platinum nanowires were also characterized by transmission electron microscopy and the phase structure of the Al/AAO/Pt composite was proven by x-ray diffraction.

  20. Standard specification for nuclear-grade aluminum oxide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification applies to pellets of aluminum oxide that may be ultimately used in a reactor core, for example, as filler or spacers within fuel, burnable poison, or control rods. In order to distinguish between the subject pellets and “burnable poison” pellets, it is established that the subject pellets are not intended to be used as neutron-absorbing material. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

  1. Formation of Anodic Aluminum Oxide with Branched and Meshed Pores.

    Science.gov (United States)

    Kim, Byeol; Lee, Jin Seok

    2016-06-01

    Anodic aluminum oxide (AAO), with a self-ordered hexagonal array, is important for various applications in nanofabrication including as the fabrication of nanotemplates and other nanostructures. With the consideration, there have been many efforts to control the characteristic parameters of porous anodic alumina by adjustment of the anodizing conditions such as the electrolyte, temperature, applied potential, and Al purity. In particular, impurities in Al are changing the morphology of an alumina film; however, the formation mechanism has not yet been explained. In this work, we anodized a high purity (99.999%, Al(high)) and low purity (99.8%, Al(low)) aluminum foil by a two-step anodization process in an oxalic acid solution or phosphoric acid. It was found that the purity of aluminum foil has influenced the morphology of the alumina film resulting in branched and meshed pores. Also, electrochemical analysis indicated that the branched and meshed pores in the low-purity Al foil formed by the presence of impurities. Impurities act as defects and change the general growth mechanism for pore formation by inducing an electric field imbalance during anodization. This work contributes to the research field of topographical chemistry and applied fields including nanofabrication.

  2. Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates

    Indian Academy of Sciences (India)

    M Nidhin; R Indumathy; K J Sreeram; Balachandran Unni Nair

    2008-02-01

    We report here the preparation of nanoparticles of iron oxide in the presence of polysaccharide templates. Interaction between iron (II) sulfate and template has been carried out in aqueous phase, followed by the selective and controlled removal of the template to achieve narrow distribution of particle size. Particles of iron oxide obtained have been characterized for their stability in solvent media, size, size distribution and crystallinity and found that when the negative value of the zeta potential increases, particle size decreases. A narrow particle size distribution with 100 = 275 nm was obtained with chitosan and starch templates. SEM measurements further confirm the particle size measurement. Diffuse reflectance UV–vis spectra values show that the template is completely removed from the final iron oxide particles and powder XRD measurements show that the peaks of the diffractogram are in agreement with the theoretical data of hematite. The salient observations of our study shows that there occurs a direct correlation between zeta potential, polydispersity index, bandgap energy and particle size. The crystallite size of the particles was found to be 30–35 nm. A large negative zeta potential was found to be advantageous for achieving lower particle sizes, owing to the particles remaining discrete without agglomeration.

  3. Electrophoretic deposition of multi-walled carbon nanotubes on porous anodic aluminum oxide using ionic liquid as a dispersing agent

    Science.gov (United States)

    Hekmat, F.; Sohrabi, B.; Rahmanifar, M. S.; Jalali, A.

    2015-06-01

    Multi-wall carbon nanotubes (MW-CNTs) have been arranged in nanochannels of anodic aluminum oxide template (AAO) by electrophoretic deposition (EPD) to make a vertically-aligned carbon nanotube (VA-CNT) based electrode. Well ordered AAO templates were prepared by a two-step anodizing process by applying a constant voltage of 45 V in oxalic acid solution. The stabilized CNTs in a water-soluble room temperature ionic liquid (1-methyl-3-octadecylimidazolium bromide), were deposited in the pores of AAO templates which were conductive by deposition of Ni nanoparticles in the bottom of pores. In order to obtain ideal results, different EPD parameters, such as concentration of MWCNTs and ionic liquid on stability of MWCNT suspensions, deposition time and voltage which are applied in EPD process and also optimal conditions for anodizing of template were investigated. The capacitive performance of prepared electrodes was analyzed by measuring the specific capacitance from cyclic voltammograms and the charge-discharge curves. A maximum value of 50 Fg-1 at the scan rate of 20 mV s-1was achieved for the specific capacitance.

  4. Thermoluminescence study of aluminum oxide doped with therbium and thulium

    Energy Technology Data Exchange (ETDEWEB)

    Barros, V.S.M., E-mail: vdbarros@terra.com.b [Laboratorio de Metrologia das Radiacoes Ionizantes, DEN, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire 1000, 50740-540, Recife, PE (Brazil); Azevedo, W.M. de [Laboratorio de Quimica do Estado Solido, CCEN, Universidade Federal de Pernambuco, BR101 s/n, 50670-901, Recife-PE (Brazil); Khoury, H.J.; Andrade, M.E.A. [Laboratorio de Metrologia das Radiacoes Ionizantes, DEN, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire 1000, 50740-540, Recife, PE (Brazil); Filho, P. Linhares [Curso de Ciencia dos Materiais, CCEN, Universidade Federal de Pernambuco, BR101 s/n, 50670-901, Recife-PE (Brazil)

    2010-03-15

    In this work, {alpha}-Al{sub 2}O{sub 3} doped either with Tb{sup 3+} or Tm{sup 3+} was prepared by combustion synthesis techniques for thermoluminescent (TL) ionizing radiation dosimetry applications. In this method, the reactants (aluminum nitrate, urea and therbium or thulium nitrate) are ignited in a muffle furnace at temperatures as low as 500 {sup o}C. This synthesis route is an alternative technique to the conventional fabrication methods of materials based on {alpha}-Al{sub 2}O{sub 3} (Czochralsky, Vernuil), where high melting temperatures and reducing atmospheres are required. After combustion, the samples were annealed at temperatures ranging from 1000 to 1400 {sup o}C for 4 h in order to obtain the pure {alpha}-phase structure and were then irradiated with a Co-60 gamma radiation source. The annealed samples present a well defined TL glow peak with a maximum at approximately 200 {sup o}C and linear TL response in the dose range 0.5-5 Gy. It was observed that a 0.1 mol% concentration of Tb{sup 3+} or Tm{sup 3+} and annealing at 1400 {sup o}C optimize the TL sensitivity. The highest sensitivity was found for Tm{sup 3+} doped samples which were approximately 25 times more sensitive than Tb{sup 3+} doped samples. These results strongly suggest that combustion synthesis is a suitable technique to prepare doped aluminum oxide material and that Tm{sup 3+} doped aluminum oxide is a potential material for TL radiation dosimetry.

  5. Formation of anodic aluminum oxide with serrated nanochannels.

    Science.gov (United States)

    Li, Dongdong; Zhao, Liang; Jiang, Chuanhai; Lu, Jia G

    2010-08-11

    We report a simple and robust method to self-assemble porous anodic aluminum oxide membranes with serrated nanochannels by anodizing in phosphoric acid solution. Due to high field conduction and anionic incorporation, an increase of anodizing voltage leads to an increase of the impurity levels and also the field strength across barrier layer. On the basis of both experiment and simulation results, the initiation and formation of serrated channels are attributed to the evolution of oxygen gas bubbles followed by plastic deformation in the oxide film. Alternating anodization in oxalic and phosphoric acids is applied to construct multilayered membranes with smooth and serrated channels, demonstrating a unique way to design and construct a three-dimensional hierarchical system with controllable morphology and composition.

  6. Ester oxidation on an aluminum surface using chemiluminescence

    Science.gov (United States)

    Jones, William R., Jr.; Meador, Michael A.; Morales, Wilfredo

    1986-01-01

    The oxidation characteristics of a pure ester (trimethyolpropane triheptanoate) were studied by using a chemiluminescence technique. Tests were run in a thin film microoxidation apparatus with an aluminum alloy catalyst. Conditions included a pure oxygen atmosphere and a temperature range of 176 to 206 C. Results indicated that oxidation of the ester (containing .001 M diphenylanthracene as an intensifier) was accompanied by emission of light. The maximum intensity of light emission was a function of the amount of ester, the concentration of intensifier, and the test temperature. The induction period, or the time to reach one-half of maximum intensity was inversely proportional to test temperature. Decreases in light emission at the later stages of a test were caused by depletion of the intensifier.

  7. Comparative effects of macro-sized aluminum oxide and aluminum oxide nanoparticles on erythrocyte hemolysis: influence of cell source, temperature, and size

    Energy Technology Data Exchange (ETDEWEB)

    Vinardell, M. P., E-mail: mpvinardellmh@ub.edu; Sordé, A. [Universitat de Barcelona, Departament de Fisiologia, Facultat de Farmàcia (Spain); Díaz, J. [Universitat de Barcelona CCiT, Scientific and Technological Centers (Spain); Baccarin, T.; Mitjans, M. [Universitat de Barcelona, Departament de Fisiologia, Facultat de Farmàcia (Spain)

    2015-02-15

    Al{sub 2}O{sub 3} is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military, and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm, and nanowire 2–6 × 200–400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats, and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50 % hemolysis (HC{sub 50}) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al{sub 2}O{sub 3}, but not on Al{sub 2}O{sub 3}. The drop in HC{sub 50} correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation. Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.

  8. Corrosion evaluation of zirconium doped oxide coatings on aluminum formed by plasma electrolytic oxidation.

    Science.gov (United States)

    Bajat, Jelena; Mišković-Stanković, Vesna; Vasilić, Rastko; Stojadinović, Stevan

    2014-01-01

    The plasma electrolytic oxidation (PEO) of aluminum in sodium tungstate (Na(2)WO(4) · (2)H(2)O) and Na(2)WO(4) · (2)H(2)O doped with Zr was analyzed in order to obtain oxide coatings with improved corrosion resistance. The influence of current density in PEO process and anodization time was investigated, as well as the influence of Zr, with the aim to find out how they affect the chemical content, morphology, surface roughness, and corrosion stability of oxide coatings. It was shown that the presence of Zr increases the corrosion stability of oxide coatings for all investigated PEO times. Evolution of EIS spectra during the exposure to 3% NaCl, as a strong corrosive agent, indicated the highest corrosion stability for PEO coating formed on aluminum at 70 mA/cm(2) for 2 min in a zirconium containing electrolyte.

  9. Aluminum Oxide Formation On Fecral Catalyst Support By Electro-Chemical Coating

    Directory of Open Access Journals (Sweden)

    Yang H.S.

    2015-06-01

    Full Text Available FeCrAl is comprised essentially of Fe, Cr, Al and generally considered as metallic substrates for catalyst support because of its advantage in the high-temperature corrosion resistance, high mechanical strength, and ductility. Oxidation film and its adhesion on FeCrAl surface with aluminum are important for catalyst life. Therefore various appropriate surface treatments such as thermal oxidation, Sol, PVD, CVD has studied. In this research, PEO (plasma electrolytic oxidation process was applied to form the aluminum oxide on FeCrAl surface, and the formed oxide particle according to process conditions such as electric energy and oxidation time were investigated. Microstructure and aluminum oxide particle on FeCrAl surface after PEO process was observed by FE-SEM and EDS with element mapping analysis. The study presents possibility of aluminum oxide formation by electro-chemical coating process without any pretreatment of FeCrAl.

  10. Hemispherical Shell Nanostructures from Metal-Stripped Embossed Alumina on Aluminum Templates

    DEFF Research Database (Denmark)

    Nielsen, Peter; Albrektsen, Ole; Simonsen, Adam Cohen

    2011-01-01

    anodized Al. Utilizing for this process the linear relationship between anodization voltage and the resulting interpore distance in the formed oxide, it is possible to tune the radius of curvature of the resulting hemispherical shells continuously, which in turn results in tunable optical properties...

  11. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  12. Nacre-like calcium carbonate controlled by ionic liquid/graphene oxide composite template

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Chengli [School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039 (China); School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui 230601 (China); Xie, Anjian, E-mail: anjx@163.com [School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039 (China); Shen, Yuhua [School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039 (China); Zhu, Jinmiao; Li, Hongying [School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui 230601 (China)

    2015-06-01

    Nacre-like calcium carbonate nanostructures have been mediated by an ionic liquid (IL)-graphene oxide (GO) composite template. The resultant crystals were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffractometry (XRD). The results showed that either 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF{sub 4}) or graphene oxide can act as a soft template for calcium carbonate formation with unusual morphologies. Based on the time-dependent morphology changes of calcium carbonate particles, it is concluded that nacre-like calcium carbonate nanostructures can be formed gradually utilizing [BMIM]BF{sub 4}/GO composite template. During the process of calcium carbonate formation, [BMIM]BF{sub 4} acted not only as solvents but also as morphology templates for the fabrication of calcium carbonate materials with nacre-like morphology. Based on the observations, the possible mechanisms were also discussed. - Highlights: • Nacre-like CaCO{sub 3}/GO were prepared by gas diffusion. • Ionic liquid/GO served as composite templates. • The interaction of Ca{sup 2+} ions and GO played a very important role in the formation of nacre-like CaCO{sub 3}.

  13. Astaxanthin ameliorates aluminum chloride-induced spatial memory impairment and neuronal oxidative stress in mice.

    Science.gov (United States)

    Al-Amin, Md Mamun; Reza, Hasan Mahmud; Saadi, Hasan Mahmud; Mahmud, Waich; Ibrahim, Abdirahman Adam; Alam, Musrura Mefta; Kabir, Nadia; Saifullah, A R M; Tropa, Sarjana Tarannum; Quddus, A H M Ruhul

    2016-04-15

    Aluminum chloride induces neurodegenerative disease in animal model. Evidence suggests that aluminum intake results in the activation of glial cells and generation of reactive oxygen species. By contrast, astaxanthin is an antioxidant having potential neuroprotective activity. In this study, we investigate the effect of astaxanthin on aluminum chloride-exposed behavioral brain function and neuronal oxidative stress (OS). Male Swiss albino mice (4 months old) were divided into 4 groups: (i) control (distilled water), (ii) aluminum chloride, (iii) astaxanthin+aluminum chloride, and (iv) astaxanthin. Two behavioral tests; radial arm maze and open field test were conducted, and OS markers were assayed from the brain and liver tissues following 42 days of treatment. Aluminum exposed group showed a significant reduction in spatial memory performance and anxiety-like behavior. Moreover, aluminum group exhibited a marked deterioration of oxidative markers; lipid peroxidation (MDA), nitric oxide (NO), glutathione (GSH) and advanced oxidation of protein products (AOPP) in the brain. To the contrary, co-administration of astaxanthin and aluminum has shown improved spatial memory, locomotor activity, and OS. These results indicate that astaxanthin improves aluminum-induced impaired memory performances presumably by the reduction of OS in the distinct brain regions. We suggest a future study to determine the underlying mechanism of astaxanthin in improving aluminum-exposed behavioral deficits.

  14. Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles

    Science.gov (United States)

    Pathania, Deepak; Katwal, Rishu; Kaur, Harpreet

    2016-03-01

    In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reaction parameters such as supporting electrolytes, solvent, current and electrolysis time on the shape and size of the resulting NPs were investigated. The Al2O3 NPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis/differential thermal analysis, energy-dispersive X-ray analysis, and ultraviolet-visible spectroscopy. Moreover, the Al2O3 NPs were explored for photocatalytic degradation of malachite green (MG) dye under sunlight irradiation via two processes: adsorption followed by photocatalysis; coupled adsorption and photocatalysis. The coupled process exhibited a higher photodegradation efficiency (45%) compared to adsorption followed by photocatalysis (32%). The obtained kinetic data was well fitted using a pseudo-first-order model for MG degradation.

  15. Solid propellant exhausted aluminum oxide and hydrogen chloride - Environmental considerations

    Science.gov (United States)

    Cofer, W. R., III; Winstead, E. L.; Purgold, G. C.; Edahl, R. A.

    1993-01-01

    Measurements of gaseous hydrogen chloride (HCl) and particulate aluminum oxide (Al2O3) were made during penetrations of five Space Shuttle exhaust clouds and one static ground test firing of a shuttle booster. Instrumented aircraft were used to penetrate exhaust clouds and to measure and/or collect samples of exhaust for subsequent analyses. The focus was on the primary solid rocket motor exhaust products, HCl and Al2O3, from the Space Shuttle's solid boosters. Time-dependent behavior of HCl was determined for the exhaust clouds. Composition, morphology, surface chemistry, and particle size distributions were determined for the exhausted Al2O3. Results determined for the exhaust cloud from the static test firing were complicated by having large amounts of entrained alkaline ground debris (soil) in the lofted cloud. The entrained debris may have contributed to neutralization of in-cloud HCl.

  16. Structural consequences of mild oxidative template removal in the synthesis of modified MCM-41 silicates

    Science.gov (United States)

    Meretei, Edit; Halász, János; Méhn, Dóra; Kónya, Zoltán; Korányi, Tamás I.; Nagy, János B.; Kiricsi, Imre

    2003-06-01

    Results concerning the structural consequences of template removal from MCM-41 mesoporous materials are described using ozone, N 2O and NO 2 as oxidants in comparison with the conventional method applying oxygen. Si, TiSi-, VSi and ZrSi-MCM-41 samples were synthesized by the usual methods. For characterization of the as-synthesized and treated samples XRD, nitrogen adsorption, 29Si MAS NMR-, IR- and UV-Vis spectroscopic methods were used. The catalytic activity of the samples was tested in the Friedel-Crafts alkylation of toluene by benzyl chloride. The comparison of template removal agents showed that ozone was the most active at low temperature (423 K), and the treatment was less destructive than burning off the template in oxygen. Nitrogen oxide treatment (NO 2 and N 2O) resulted in template removal at relatively low temperature (573-623 K), and structure deterioration was small. Si NMR spectroscopic data and IR spectra taken in the framework vibration range revealed that more original -SiOH groups remained as hydroxyl nests, furthermore, the heteroatom remained in tetrahedral coordination after ozone and nitrogen oxide treatment compared to burning off the template by oxygen. The results proved the advantages of ozone or nitrogen oxide treatments: (i) gentler to heteroatoms situated in the framework of the materials, probably leaves them intact, (ii) does not result in the formation of secondary micropores, which would decrease the uniform arrangement of the original pore systems, (iii) by preserving the active centers in their original coordination more uniform product distribution may be expected in catalytic reactions.

  17. Preparation of Manganese Oxide Hollow Spheres Using pH-responsive Microgels as Templates

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Zhi-cheng Zhang

    2009-01-01

    Manganese oxide hollow spheres were prepared by a novel and facile approach using pH-responsive microgels as templates. The final products were thoroughly characterized with X-ray powder diffraction, thermogravimetric analysis, scanning electron microscopy, Fourier transform infrared, and transmission electron microscopy. The results reveal that the shell thickness of manganese oxide hollow spheres increased with the dosage of KMnO4, which implies that a controllable and feasible strategy for manganese oxide hollow spheres prepa-ration has been established. Further studies on the microgels template showed some of them had an irreversible swelling/deswelling transition due to the uneven cross-link extent. Based on the results, a probable formation mechanism for the hollow spheres was proposed.

  18. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    Science.gov (United States)

    Deluca, J. J. (Inventor)

    1979-01-01

    An element comprising sapphire, ruby or blue sapphire can be bonded to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  19. Nickel oxide nanotube synthesis using multiwalled carbon nanotubes as sacrificial templates for supercapacitor application

    Science.gov (United States)

    Abdalla, Ahmed M.; Sahu, Rakesh P.; Wallar, Cameron J.; Chen, Ri; Zhitomirsky, Igor; Puri, Ishwar K.

    2017-02-01

    A novel approach for the fabrication of nickel oxide nanotubes based on multiwalled carbon nanotubes as a sacrificial template is described. Electroless deposition is employed to deposit nickel onto carbon nanotubes. The subsequent annealing of the product in the presence of air oxidizes nickel to nickel oxide, and carbon is released as gaseous carbon dioxide, leaving behind nickel oxide nanotubes. Electron microscopy and elemental mapping confirm the formation of nickel oxide nanotubes. New chelating polyelectrolytes are used as dispersing agents to achieve high colloidal stability for both the nickel-coated carbon nanotubes and the nickel oxide nanotubes. A gravimetric specific capacitance of 245.3 F g-1 and an areal capacitance of 3.28 F cm-2 at a scan rate of 2 mV s-1 is achieved, with an electrode fabricated using nickel oxide nanotubes as the active element with a mass loading of 24.1 mg cm-2.

  20. Ultralyophobic oxidized aluminum surfaces exhibiting negligible contact angle hysteresis.

    Science.gov (United States)

    Hozumi, Atsushi; McCarthy, Thomas J

    2010-02-16

    Ultralyophobic oxidized aluminum surfaces exhibiting negligible contact angle hysteresis for probe liquids were prepared by chemical vapor deposition (CVD) of bis((tridecafluoro-1,1,2,2,-tetrahydrooctyl)-dimethylsiloxy)methylsilane (CF(3)(CF(2))(5)CH(2)CH(2)Si(CH(3))(2)O)(2)SiCH(3)H, (R(F)Si(Me)(2)O)(2)SiMeH). Oxidized aluminum surfaces were prepared by photooxidation/cleaning of sputter-coated aluminum on silicon wafers (Si/Al(Al(2)(O(3)))) using oxygen plasma. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) confirmed that this facile CVD method produces a monolayer with a thickness of 1.1 nm on the Si/Al(Al(2)(O(3))) surface without a discernible change in surface morphology. After monolayer deposition, the hydrophilic Si/Al(Al(2)(O(3))) surface became both hydrophobic and oleophobic and exhibited essentially no contact angle hysteresis for water and n-hexadecane (advancing/receding contact angles (theta(A)/theta(R)) = 110 degrees/109 degrees and 52 degrees/50 degrees, respectively). Droplets move very easily on this surface and roll off of slightly tilted surfaces, independently of the contact angle (which is a practical definition of ultralyophobic). A conventional fluoroalkylsilane monolayer was also prepared from 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (CF(3)(CF(2))(7)CH(2)CH(2)Si(OCH(3))(3), R(F)Si(OMe)(3)) for comparison. The theta(A)/theta(R) values for water and n-hexadecane are 121 degrees/106 degrees and 76 degrees/71 degrees, respectively. The larger hysteresis values indicate the "pinning" of probe liquids, even though advancing contact angles are larger than those of the (R(F)Si(Me)(2)O)(2)SiMeH-derived monolayers. The (R(F)Si(Me)(2)O)(2)SiMeH-derived monolayers have excellent hydrolytic stability in water. We propose that the (R(F)Si(Me)(2)O)(2)SiMeH-derived monolayers are flexible and liquidlike and that drops in contact with these surfaces experience very low energy barriers between metastable states, leading to the

  1. Quantificational Etching of AAO Template

    Institute of Scientific and Technical Information of China (English)

    Guojun SONG; Dong CHEN; Zhi PENG; Xilin SHE; Jianjiang LI; Ping HAN

    2007-01-01

    Ni nanowires were prepared by electrodeposition in porous anodized aluminum oxide (AAO) template from a composite electrolyte solution. Well-ordered Ni nanowire arrays with controllable length were then made by the partial removal of AAO using a mixture of phosphoric acid and chromic acid (6 wt pct H3PO4:1.8 wt pct H3CrO4). The images of Ni nanowire arrays were studied by scanning electron microscopy (SEM) to determine the relationship between etching time and the length of Ni nanowire arrays. The results indicate that the length of nanowires exposed from the template can be accurately controlled by controlling etching time.

  2. Synthesis of mesoporous cerium-zirconium mixed oxides by hydrothermal templating method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template.The effects of amount of template,pH value of solution and hydrothermal temperature on mesostructure of samples were systematically investigated.The final products were characterized by XRD,TEM,FT-IR,and BET.The results indicate that all the cerium-zirconium mixed oxides present a meso-structure.At molar ratio of n(CTAB)/n((Ce)+(Zr))=0.15,pH value of 9,and hydrothermal temperature of 120 ℃,the samples obtained possess a specific surface area of 207.9 m2/g with pore diameter of 3.70 nm and pore volume of 0.19 cm3/g.

  3. Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates.

    Science.gov (United States)

    Zhang, Wang; Zhang, Di; Fan, Tongxiang; Ding, Jian; Gu, Jiajun; Guo, Qixin; Ogawa, Hiroshi

    2006-09-01

    Nano-structured colorful zinc oxide (ZnO) replicas were produced using the wings of the Ideopsis similis butterfly as templates. The ZnO replicas we obtained exhibit iridescence, which was clearly observed under an optical microscope (OM). Field emission scanning electron microscope analysis shows that all the microstructure details are maintained faithfully in the ZnO replica. A computer model was established to simulate the diffraction spectral results, which agreed well with the OM images.

  4. Nanoscale carbon tubules deposited in anodic aluminium oxide template:a study of soft x-ray transmission

    Institute of Scientific and Technical Information of China (English)

    Liu Li-Feng; Zhou Zhen-Ping; Yuan Hua-Jun; Ci Li-Jie; Liu Dong-Fang; Gao Yan; Wang Jian-Xiong; Wang Gang; Zhou Wei-Ya; Zhu Pei-Ping; Cui Ming-Qi; Zheng Lei; Zhu Jie; Zhao Yi-Dong; Song Li; Yan Xiao-Qin

    2004-01-01

    Well-aligned, catalyst-free nanoscale carbon tubules array was prepared by organic compound vapour deposition method using anodic aluminium oxide (AAO) as a template. The experiment of soft x-ray channelling in such carbon tubules array deposited in AAO template was performed at Beijing Synchrotron Radiation Facility. The transmission of x-rays in carbon tubules array with AAO template support was found even higher than that in bare AAO template at high-energy part of energy spectrum though the porous area of the former was smaller than that of the latter. A qualitative explanation is presented to interpret our results.

  5. Vertically aligned zinc oxide nanowires electrodeposited within porous polycarbonate templates for vibrational energy harvesting

    Science.gov (United States)

    Boughey, Francesca L.; Davies, Timothy; Datta, Anuja; Whiter, Richard A.; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-07-01

    A piezoelectric nanogenerator has been fabricated using a simple, fast and scalable template-assisted electrodeposition process, by which vertically aligned zinc oxide (ZnO) nanowires were directly grown within a nanoporous polycarbonate (PC) template. The nanowires, having average diameter 184 nm and length 12 μm, are polycrystalline and have a preferred orientation of the [100] axis parallel to the long axis. The output power density of a nanogenerator fabricated from the as-grown ZnO nanowires still embedded within the PC template was found to be 151 ± 25 mW m-3 at an impedance-matched load, when subjected to a low-level periodic (5 Hz) impacting force akin to gentle finger tapping. An energy conversion efficiency of ˜4.2% was evaluated for the electrodeposited ZnO nanowires, and the ZnO-PC composite nanogenerator was found to maintain good energy harvesting performance through 24 h of continuous fatigue testing. This is particularly significant given that ZnO-based nanostructures typically suffer from mechanical and/or environmental degradation that otherwise limits their applicability in vibrational energy harvesting. Our template-assisted synthesis of ZnO nanowires embedded within a protective polymer matrix through a single growth process is thus attractive for the fabrication of low-cost, robust and stable nanogenerators.

  6. Growth and Magnetic Characterization of 1D Permalloy Nanowires Using Self Developed Anodic Aluminium Oxide Templates.

    Science.gov (United States)

    Singh, Ashutosh K; Mandal, Kalyan

    2016-01-01

    1D Permalloy refers to arrays of nanowires (NWs) made of an alloy of Ni and Fe with 80 and 20 at% composition respectively. In the present work 1 D Permalloy NWs arrays were fabricated into the pores of self engineered Anodic Aluminium Oxide (AAO) templates by a simple electrodeposition technique (EDT). By varying the anodization voltage and parameters of the electrolyte solutions we developed AAO templates with different average pore diameters (40 nm to 70 nm) and developed 1D Permalloy NWs within them. Structural characterization of AAO templates and 1D Permalloy NWs were performed by Transmission and Scanning Electron Microscopy (TEM and SEM respectively). X-ray diffraction (XRD) studies of 1D Permalloy NWs showed their fcc crystalline structure and the AAO template was found to be amorphous in nature. Magnetic studies showed the 1D Permalloy NWs arrays to have strong shape anisotropy, and the easy axis was found to be parallel to the NWs axis. We studied the angular dependence of magnetic properties of the NWs. Coercivity (Hc) and remanence (Mr/Ms) measured along the NWs axis were found to be higher than those measured in a direction perpendicular to the NWs axis. 1D Permalloy NWs developed in this work have the potential to be used in magnetic recording devices.

  7. RF Magnetron Sputtering Aluminum Oxide Film for Surface Passivation on Crystalline Silicon Wafers

    Directory of Open Access Journals (Sweden)

    Siming Chen

    2013-01-01

    Full Text Available Aluminum oxide films were deposited on crystalline silicon substrates by reactive RF magnetron sputtering. The influences of the deposition parameters on the surface passivation, surface damage, optical properties, and composition of the films have been investigated. It is found that proper sputtering power and uniform magnetic field reduced the surface damage from the high-energy ion bombardment to the silicon wafers during the process and consequently decreased the interface trap density, resulting in the good surface passivation; relatively high refractive index of aluminum oxide film is benefic to improve the surface passivation. The negative-charged aluminum oxide film was then successfully prepared. The surface passivation performance was further improved after postannealing by formation of an SiOx interfacial layer. It is demonstrated that the reactive sputtering is an effective technique of fabricating aluminum oxide surface passivation film for low-cost high-efficiency crystalline silicon solar cells.

  8. In-process oxidation protection in fluxless brazing or diffusion bonding of aluminum alloys

    Science.gov (United States)

    Okelly, K. P.; Featherston, A. B.

    1974-01-01

    Aluminum is cleaned of its oxide coating and is sealed immediately with polymeric material which makes it suitable for fluxless brazing or diffusion bonding. Time involved between cleaning and brazing is no longer critical factor.

  9. The thickness of native oxides on aluminum alloys and single crystals

    OpenAIRE

    Evertsson, J.; Bertram, F.; Weissenrieder, J.; Goethelid, Mats; Pan, J; Mikkelsen, A.; Nilsson, J.-O.; Lundgren, E.; Zhang, F.; Rullik, L.; Merte, L. R.; Shipilin, Mikhail; Soldemo, M.; S Ahmadi; Vinogradov, N.

    2015-01-01

    We present results from measurements of the native oxide film thickness on four different industrial aluminum alloys and three different aluminum single crystals. The thicknesses were determined using X-ray reflectivity, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. In addition, atomic force microscopy was used for micro-structural studies of the oxide surfaces. The reflectivity measurements were performed in ultra-high vacuum, vacuum, ambient, nitrogen and liq...

  10. Nanoporous Pirani sensor based on anodic aluminum oxide

    Science.gov (United States)

    Jeon, Gwang-Jae; Kim, Woo Young; Shim, Hyun Bin; Lee, Hee Chul

    2016-09-01

    A nanoporous Pirani sensor based on anodic aluminum oxide (AAO) is proposed, and the quantitative relationship between the performance of the sensor and the porosity of the AAO membrane is characterized with a theoretical model. The proposed Pirani sensor is composed of a metallic resistor on a suspended nanoporous membrane, which simultaneously serves as the sensing area and the supporting structure. The AAO membrane has numerous vertically-tufted nanopores, resulting in a lower measurable pressure limit due to both the increased effective sensing area and the decreased effective thermal loss through the supporting structure. Additionally, the suspended AAO membrane structure, with its outer periphery anchored to the substrate, known as a closed-type design, is demonstrated using nanopores of AAO as an etch hole without a bulk micromachining process used on the substrate. In a CMOS-compatible process, a 200 μm × 200 μm nanoporous Pirani sensor with porosity of 25% was capable of measuring the pressure from 0.1 mTorr to 760 Torr. With adjustment of the porosity of the AAO, the measurable range could be extended toward lower pressures of more than one decade compared to a non-porous membrane with an identical footprint.

  11. Fractal dimension analysis of aluminum oxide particle for sandblasting dental use.

    Science.gov (United States)

    Oshida, Y; Munoz, C A; Winkler, M M; Hashem, A; Itoh, M

    1993-01-01

    Aluminum oxide particles are commonly used as a sandblasting media, particularly in dentistry, for multiple purposes including divesting the casting investment materials and increasing effective surface area for enhancing the mechanical retention strengths of succeedingly applied fired porcelain or luting cements. Usually fine aluminum oxide particles are recycled within the sandblasting machine. Ceramics such as aluminum oxides are brittle, therefore, some portions of recycling aluminum oxide particles might be brittle fractured. If fractured sandblasting particles are involved in the recycling media, it might result in irregularity metallic materials surface as well as the recycling sandblasting media itself be contaminated. Hence, it is necessary from both clinical and practical reasons to monitor the particle conditions in terms of size/shape and effectiveness of sandblasting, so that sandblasting dental prostheses can be fabricated in optimum and acceptable conditions. In the present study, the effect of recycling aluminum oxide particles on the surface texture of metallic materials was evaluated by Fractal Dimension Analysis (FDA). Every week the alumina powder was sampled and analyzed for weight fraction and contaminants. Surface texture of sandblasted standard samples was also characterized by FDA. Results indicate very little change in particle size, while the fractal dimension increased. Fractal dimension analysis showed that the aluminum oxide particle as a sandblasting media should be replaced after 30 or 40 min of total accumulated operation time.

  12. Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications.

    Science.gov (United States)

    Ou, Canlin; Sanchez-Jimenez, Pedro E; Datta, Anuja; Boughey, Francesca L; Whiter, Richard A; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-06-08

    A flexible and robust piezoelectric nanogenerator (NG) based on a polymer-ceramic nanocomposite structure has been successfully fabricated via a cost-effective and scalable template-assisted hydrothermal synthesis method. Vertically aligned arrays of dense and uniform zinc oxide (ZnO) nanowires (NWs) with high aspect ratio (diameter ∼250 nm, length ∼12 μm) were grown within nanoporous polycarbonate (PC) templates. The energy conversion efficiency was found to be ∼4.2%, which is comparable to previously reported values for ZnO NWs. The resulting NG is found to have excellent fatigue performance, being relatively immune to detrimental environmental factors and mechanical failure, as the constituent ZnO NWs remain embedded and protected inside the polymer matrix.

  13. Combined in situ PM-IRRAS/QCM studies of water adsorption on plasma modified aluminum oxide/aluminum substrates

    Science.gov (United States)

    Giner, Ignacio; Maxisch, Michael; Kunze, Christian; Grundmeier, Guido

    2013-10-01

    Water adsorption on plasma modified oxyhydroxide covered aluminum surfaces was analyzed by means of a set-up combining in situ photoelastic modulated infrared reflection absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance (QCM) in a low-temperature plasma cell. The chemical structure of the surface before and after the plasma treatment was moreover characterized by means of X-ray photoelectron spectroscopy (XPS) analysis. The surface chemistry of oxide covered aluminum was modified by oxidative and reductive low-temperature plasma pre-treatments. The Ar-plasma treatment reduced the surface hydroxyl density and effectively removed adsorbed organic contaminations. Surface modification by means of a water plasma treatment led to an increased surface hydroxyl density as well as an increase of the thickness of the native oxide film. The adsorption of water at atmospheric pressures on plasma modified aluminum surfaces led to a superimposition of reversible water layer adsorption and a simultaneous increase of the oxyhydroxide film thickness as a result of a chemisorption process. The amount of physisorbed water increased with the surface hydroxyl density whereas the chemisorption process was most significant for the surface after Ar-plasma treatment and almost negligible for the already water plasma treated surface.

  14. Passivation effects of atomic-layer-deposited aluminum oxide

    Directory of Open Access Journals (Sweden)

    Kotipalli R.

    2013-09-01

    Full Text Available Atomic-layer-deposited (ALD aluminum oxide (Al2O3 has recently demonstrated an excellent surface passivation for both n- and p-type c-Si solar cells thanks to the presence of high negative fixed charges (Qf ~ 1012−1013 cm-2 in combination with a low density of interface states (Dit. This paper investigates the passivation quality of thin (15 nm Al2O3 films deposited by two different techniques: plasma-enhanced atomic layer deposition (PE-ALD and Thermal atomic layer deposition (T-ALD. Other dielectric materials taken into account for comparison include: thermally-grown silicon dioxide (SiO2 (20 nm, SiO2 (20 nm deposited by plasma-enhanced chemical vapour deposition (PECVD and hydrogenated amorphous silicon nitride (a-SiNx:H (20 nm also deposited by PECVD. With the above-mentioned dielectric layers, Metal Insulator Semiconductor (MIS capacitors were fabricated for Qf and Dit extraction through Capacitance-Voltage-Conductance (C-V-G measurements. In addition, lifetime measurements were carried out to evaluate the effective surface recombination velocity (SRV. The influence of extracted C-V-G parameters (Qf,Dit on the injection dependent lifetime measurements τ(Δn, and the dominant passivation mechanism involved have been discussed. Furthermore we have also studied the influence of the SiO2 interfacial layer thickness between the Al2O3 and silicon surface on the field-effect passivation mechanism. It is shown that the field effect passivation in accumulation mode is more predominant when compared to surface defect passivation.

  15. Passivation effects of atomic-layer-deposited aluminum oxide

    Science.gov (United States)

    Kotipalli, R.; Delamare, R.; Poncelet, O.; Tang, X.; Francis, L. A.; Flandre, D.

    2013-09-01

    Atomic-layer-deposited (ALD) aluminum oxide (Al2O3) has recently demonstrated an excellent surface passivation for both n- and p-type c-Si solar cells thanks to the presence of high negative fixed charges (Qf ~ 1012-1013 cm-2) in combination with a low density of interface states (Dit). This paper investigates the passivation quality of thin (15 nm) Al2O3 films deposited by two different techniques: plasma-enhanced atomic layer deposition (PE-ALD) and Thermal atomic layer deposition (T-ALD). Other dielectric materials taken into account for comparison include: thermally-grown silicon dioxide (SiO2) (20 nm), SiO2 (20 nm) deposited by plasma-enhanced chemical vapour deposition (PECVD) and hydrogenated amorphous silicon nitride (a-SiNx:H) (20 nm) also deposited by PECVD. With the above-mentioned dielectric layers, Metal Insulator Semiconductor (MIS) capacitors were fabricated for Qf and Dit extraction through Capacitance-Voltage-Conductance (C-V-G) measurements. In addition, lifetime measurements were carried out to evaluate the effective surface recombination velocity (SRV). The influence of extracted C-V-G parameters (Qf,Dit) on the injection dependent lifetime measurements τ(Δn), and the dominant passivation mechanism involved have been discussed. Furthermore we have also studied the influence of the SiO2 interfacial layer thickness between the Al2O3 and silicon surface on the field-effect passivation mechanism. It is shown that the field effect passivation in accumulation mode is more predominant when compared to surface defect passivation.

  16. The Surface Science of Catalysis and More, Using Ultrathin Oxide Films as Templates: A Perspective.

    Science.gov (United States)

    Freund, Hans-Joachim

    2016-07-27

    Surface science has had a major influence on the understanding of processes at surfaces relevant to catalysis. Real catalysts are complex materials, and in order to approach an understanding at the atomic level, it is necessary in a first step to drastically reduce complexity and then systematically increase it again in order to capture the various structural and electronic factors important for the function of the real catalytic material. The use of thin oxide films as templates to mimic three-dimensional supports as such or for metal particles as well as to model charge barriers turns out to be appropriate to approach an understanding of metal-support interactions. Thin oxide films also exhibit properties in their own right that turn out to be relevant in catalysis. Thin oxide film formation may also be used to create unique two-dimensional materials. The present perspective introduces the subject using case studies and indicates possible routes to further apply this approach successfully.

  17. Synthesis of 3D ordered macroporous indium tin oxide using polymer colloidal crystal template

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Xue'ao; MAN; Yahui; WANG; Jianfang; LIU; Changli; WU; Wenjian

    2006-01-01

    Three-dimensional (3D) ordered macroporous indium tin oxide (ITO) is prepared using a polymer colloidal crystal template that is formed by self-assembly of the monodisperse poly(methyl methacrylate) (PMMA) microspheres. The morphologies and BET surface area of the macroporous material is examined by scanning electron microscope, transmission electron microscopy and N2 adsorption/desorption. Results indicate that the macroporous material has highly ordered arrays of the uniform pores replicated from the PMMA colloidal crystal template when the polymer colloidal crystal template is removed by calcinations at 500℃. The pore diameter (about 450 nm) of macroporous ITO slightly shrank to the PMMA microspheres. The BET surface area and pore volume of the macroporous material are 389 m2·g-1 and 0.36 cm3·g-1, respectively. Moreover, the macroporous ITO, containing 5 mol% Sn and after annealing under vacuum, shows the minimum resistivity of ρ= 8.2×10-3 Ω· cm. The conductive mechanism of macroporous ITO is discussed, and it is believed that the oxygen vacancies are the major factor for excellent electrical properties.

  18. A perspective of microplasma oxidation (MPO) and vapor deposition coatings in surface engineering of aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    AWAD Samir Hamid; QIAN Han-cheng

    2004-01-01

    Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.

  19. Fabrication of SERS-active substrates using silver nanofilm-coated porous anodic aluminum oxide for detection of antibiotics.

    Science.gov (United States)

    Chen, Jing; Feng, Shaolong; Gao, Fang; Grant, Edward; Xu, Jie; Wang, Shuo; Huang, Qian; Lu, Xiaonan

    2015-04-01

    We have developed a silver nanofilm-coated porous anodic aluminum oxide (AAO) as a surface-enhanced Raman scattering (SERS)-active substrate for the detection of trace level of chloramphenicol, a representative antibiotic in food systems. The ordered aluminum template generated during the synthesis of AAO serves as a patterned matrix on which a coated silver film replicates the patterned AAO matrix to form a 2-dimensional ordered nanostructure. We used atomic force microscopy and scanning electron microscopy images to determine the morphology of this nanosubstrate, and characterized its localized surface plasmon resonance by ultraviolet-visible reflection. We gauged the SERS effect of this nanosubstrate by confocal micro-Raman spectroscopy (782-nm laser), finding a satisfactory and consistent performance with enhancement factors of approximately 2 × 10(4) and a limit of detection for chloramphenicol of 7.5 ppb. We applied principal component analysis to determine the limit of quantification for chloramphenicol of 10 ppb. Using electromagnetic field theory, we developed a detailed mathematical model to explain the mechanism of Raman signal enhancement of this nanosubstrate. With simple sample pretreatment and separation steps, this silver nanofilm-coated AAO substrate could detect 50 ppb chloramphenicol in milk, indicating good potential as a reliable SERS-active substrate for rapid detection of chemical contaminants in agricultural and food products.

  20. Anomalous hexagonal superstructure of aluminum oxide layer grown on NiAl(110) surface

    Science.gov (United States)

    Krukowski, Pawel; Chaunchaiyakul, Songpol; Minagawa, Yuto; Yajima, Nami; Akai-Kasaya, Megumi; Saito, Akira; Kuwahara, Yuji

    2016-11-01

    A modified method for the fabrication of a highly crystallized layer of aluminum oxide on a NiAl(110) surface is reported. The fabrication method involves the multistep selective oxidation of aluminum atoms on a NiAl(110) surface resulting from successive oxygen deposition and annealing. The surface morphology and local electronic structure of the novel aluminum oxide layer were investigated by high-resolution imaging using scanning tunneling microscopy (STM) and current imaging tunneling spectroscopy. In contrast to the standard fabrication method of aluminum oxide on a NiAl(110) surface, the proposed method produces an atomically flat surface exhibiting a hexagonal superstructure. The superstructure exhibits a slightly distorted hexagonal array of close-packed bright protrusions with a periodicity of 4.5 ± 0.2 nm. Atomically resolved STM imaging of the aluminum oxide layer reveals a hexagonal arrangement of dark contrast spots with a periodicity of 0.27 ± 0.02 nm. On the basis of the atomic structure of the fabricated layer, the formation of α-Al2O3(0001) on the NiAl(110) surface is suggested.

  1. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    Science.gov (United States)

    Zhang, Dongya; Dong, Guangneng; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-01

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm2 for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  2. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongya; Dong, Guangneng, E-mail: donggn@mail.xjtu.edu.cn; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-30

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm{sup 2} for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  3. Structural features of anodic oxide films formed on aluminum substrate coated with self-assembled microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Asoh, Hidetaka [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)], E-mail: asoh@cc.kogakuin.ac.jp; Uchibori, Kota; Ono, Sachiko [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)

    2009-07-15

    The structural features of anodic oxide films formed on an aluminum substrate coated with self-assembled microspheres were investigated by scanning electron microscopy and atomic force microscopy. In the first anodization in neutral solution, the growth of a barrier-type film was partially suppressed in the contact area between the spheres and the underlying aluminum substrate, resulting in the formation of ordered dimple arrays in an anodic oxide film. After the subsequent second anodization in acid solution at a voltage lower than that of the first anodization, nanopores were generated only within each dimple. The nanoporous region could be removed selectively by post-chemical etching using the difference in structural dimensions between the porous region and the surrounding barrier region. The mechanism of anodic oxide growth on the aluminum substrate coated with microspheres through multistep anodization is discussed.

  4. Porous Spherical Cellulose Composites Coated by Aluminum (Ⅲ) Oxide and Silicone: Preparation,Characterization and Adsorption Behavior

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Porous spherical cellulose composite (PSCA) coated by aluminum (Ⅲ) oxide was prepared andmodified by organosilicone. SEM images of the surface morphology of the bead cellulose shows that it hasspherical shape and abundant porous structure on its surface. The mapping images of aluminum and silicon ofthe composite (PSCAS) present aluminum( Ⅲ ) oxide and silicone are uniformly dispersed on the surface. Theadsorption behavior of PSCAS toward metal ions was determined.

  5. Mismatched wear couple zirconium oxide and aluminum oxide in total hip arthroplasty.

    Science.gov (United States)

    Morlock, M; Nassutt, R; Janssen, R; Willmann, G; Honl, M

    2001-12-01

    A patient complained about a squeaking noise in his total hip arthroplasty. Clinical evaluation revealed good function, and there were no signs of loosening on the radiograph. Physiotherapy did not alter this phenomenon, and ultimately a revision was performed 42 months after the first surgery. The analysis of the retrievals revealed that a zirconium oxide ceramic head had been paired with a monolithic alumina ceramic cup. The cup showed large deviations from an ideal sphere but minor wear signs. The head exhibited heavy local damage in the articulation zone. This damage might have been caused by the observed unsatisfactory fit between cup and ball, resulting in high stress concentrations and increased wear of the zirconium head. The characteristics of the zirconium and aluminum ceramics pairing might have worsened the process. The combination of implants used in this retrieved wear couple was never approved. To prevent such problems, components of different manufacturers should never be mixed and matched unless explicitly stated.

  6. Cerium oxide as conversion coating for the corrosion protection of aluminum

    Directory of Open Access Journals (Sweden)

    JELENA GULICOVSKI

    2013-11-01

    Full Text Available CeO2 coatings were formed on the aluminum after Al surface preparation, by dripping the ceria sol, previously prepared by forced hydrolysis of Ce(NO34. The anticorrosive properties of ceria coatings were investigated by the electrochemical impedance spectroscopy (EIS during the exposure to 0.03 % NaCl. The morphology of the coatings was examined by the scanning electron microscopy (SEM. EIS data indicated considerably larger corrosion resistance of CeO2-coated aluminum than for bare Al. The corrosion processes on Al below CeO2 coating are subjected to more pronounced diffusion limitations in comparison to the processes below passive aluminum oxide film, as the consequence of the formation of highly compact protective coating. The results show that the deposition of ceria coatings is an effective way to improve corrosion resistance for aluminum.

  7. Synthesis and Characterization of Aluminum Doped Zinc Oxide Nanostructures via Hydrothermal Route

    Directory of Open Access Journals (Sweden)

    A. Alkahlout

    2014-01-01

    Full Text Available Stable crystalline aluminum doped zinc oxide (AZO nanopowders were synthesized using hydrothermal treatment processing. Three different aluminum precursors have been used. The Al-precursors were found to affect the morphology of the obtained nanopowders. AZO nanoparticles based on zinc acetate and aluminum nitrate have been prepared with different Al/Zn molar ratios. XRD investigations revealed that all the obtained powders have single phase zincite structure with purity of about 99%. The effect of aluminum doping ratio in AZO nanoparticles (based on Al-nitrate precursor on structure, phase composition, and particle size has been investigated. The incorporation of Al in ZnO was confirmed by UV-Vis spectroscopy revealing a blue shift due to Burstein-Moss effect.

  8. Thermal oxidation of the surface of binary aluminum alloys with rare-earth metals

    Science.gov (United States)

    Akashev, L. A.; Popov, N. A.; Kuznetsov, M. V.; Shevchenko, V. G.

    2015-05-01

    The kinetics of oxidation of the surface of Al alloys with 1-2.5 at % rare-earth metals (REMs) at 400-500°C in air was studied by ellipsometry and X-ray photoelectron spectroscopy (XPS). The addition (1-2.5 at % REM) of all rare-earth metals to aluminum was shown to increase the thickness of the oxide layer. The addition of surfactant and chemically active REMs (Yb, Sm, La, and Ce) increased the rate of oxidation of solid aluminum most effectively. The oxidation can be accelerated by the polymorphic transformations of the individual REM oxides in the film. The surface activity of Sm with respect to solid Al was confirmed by XRS.

  9. Characterization and Tribological Properties of Hard Anodized and Micro Arc Oxidized 5754 Quality Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    M. Ovundur

    2015-03-01

    Full Text Available This study was initiated to compare the tribological performances of a 5754 quality aluminum alloy after hard anodic oxidation and micro arc oxidation processes. The structural analyses of the coatings were performed using XRD and SEM techniques. The hardness of the coatings was determined using a Vickers micro-indentation tester. Tribological performances of the hard anodized and micro arc oxidized samples were compared on a reciprocating wear tester under dry sliding conditions. The dry sliding wear tests showed that the wear resistance of the oxide coating generated by micro arc oxidation is remarkably higher than that of the hard anodized alloy.

  10. Fluorescent detection of copper(II) based on DNA-templated click chemistry and graphene oxide.

    Science.gov (United States)

    Zhou, Lifen; Shen, Qinpeng; Zhao, Peng; Xiang, Bingbing; Nie, Zhou; Huang, Yan; Yao, Shouzhuo

    2013-12-15

    A novel DNA-templated click chemistry strategy for homogenous fluorescent detection of Cu(2+) has been developed based on click ligation-dependent DNA structure switch and the selective quenching ability of graphene oxide (GO) nanosheet. The clickable duplex probe consists of two DNA strands with alkyne and azide group, respectively, and Cu(+)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction can chemically ligate these two strands. Toehold sequence displacement was consequently exploited to achieve DNA structure transformation bearing fluorescent tag FAM. Cu(2+)-induced chemical ligation caused the probe transfer to hybrid structure with single stranded DNA (ssDNA) tail, while only duplex structure was obtained without Cu(2+). This structural difference can be probed by GO-based fluorescence detection due to the preferential binding of GO to ssDNA. Under the optimum conditions, this sensor can sensitively and specifically detect Cu(2+) with a low detection limit of 58 nM and a linear range of 0.1-10 μM. This new strategy is highly sensitive and selective for Cu(2+) detection because of the great specificity of click chemistry and super-quenching ability of GO. Moreover, with the aid of high efficient DNA templated synthesis, the detection process requires only about half an hour which is much quicker than previous click-chemistry-based Cu(2+) sensors.

  11. Electrodeposition of Nanometer-Sized Ferric Oxide Materials in Colloidal Templates for Conversion of Light to Chemical Energy

    Directory of Open Access Journals (Sweden)

    James M. Gardner

    2011-01-01

    Full Text Available Colloidal crystal templates were prepared by gravitational sedimentation of 0.5 micron polystyrene particles onto fluorine-doped tin oxide (FTO electrodes. Scanning electron microscopy (SEM shows that the particles were close packed and examination of successive layers indicated a predominantly face-centered-cubic (fcc crystal structure where the direction normal to the substrate surface corresponds to the (111 direction. Oxidation of aqueous ferrous solutions resulted in the electrodeposition of ferric oxide into the templates. Removal of the colloidal templates yielded ordered macroporous electrodes (OMEs that were the inverse structure of the colloidal templates. Current integration during electrodeposition and cross-sectional SEM images revealed that the OMEs were about 2 μm thick. Comparative X-ray diffraction and infrared studies of the OMEs did not match a known phase of ferric oxide but suggested a mixture of goethite and hematite. The spectroscopic properties of the OMEs were insensitive to heat treatments at 300∘C. The OMEs were utilized for photoassisted electrochemical oxidation. A sustained photocurrent was observed from visible light in aqueous photoelectrochemical cells. Analysis of photocurrent action spectra revealed an indirect band gap of 1.85 eV. Addition of formate to the aqueous electrolytes resulted in an approximate doubling of the photocurrent.

  12. Addressing the Limit of Detectability of Residual Oxide Discontinuities in Friction Stir Butt Welds of Aluminum using Phased Array Ultrasound

    Science.gov (United States)

    Johnston, P. H.

    2008-01-01

    This activity seeks to estimate a theoretical upper bound of detectability for a layer of oxide embedded in a friction stir weld in aluminum. The oxide is theoretically modeled as an ideal planar layer of aluminum oxide, oriented normal to an interrogating ultrasound beam. Experimentally-measured grain scattering level is used to represent the practical noise floor. Echoes from naturally-occurring oxides will necessarily fall below this theoretical limit, and must be above the measurement noise to be potentially detectable.

  13. Core–Shell Electrospun Hollow Aluminum Oxide Ceramic Fibers

    OpenAIRE

    2015-01-01

    In this work, core–shell electrospinning was employed as a simple method for the fabrication of composite coaxial polymer fibers that became hollow ceramic tubes when calcined at high temperature. The shell polymer solution consisted of polyvinyl pyrollidone (PVP) in ethanol mixed with an aluminum acetate solution to act as a ceramic precursor. The core polymer was recycled polystyrene to act as a sacrificial polymer that burned off during calcination. The resulting fibers were analyzed wit...

  14. Self-templated synthesis and thermal conductivity investigation for ultrathin perovskite oxide nanowires.

    Science.gov (United States)

    Yadav, Gautam G; Zhang, Genqiang; Qiu, Bo; Susoreny, Joseph A; Ruan, Xiulin; Wu, Yue

    2011-10-01

    The large thermal conductivity of bulk complex metal oxides such as SrTiO(3), NaCo(2)O(4), and Ca(3)Co(4)O(9) has set a barrier for the improvement of thermoelectric figure of merit and the applications of these materials in high temperature (≥1000 K) thermoelectric energy harvesting and solid-state cooling. Here, we present a self-templated synthesis approach to grow ultrathin SrTiO(3) nanowires with an average diameter of 6 nm in large quantity. The thermal conductivity of the bulk pellet made by compressing nanowire powder using spark plasma sintering shows a 64% reduction in thermal conductivity at 1000 K, which agrees well with theoretical modeling.

  15. Gold-platinum bimetallic nanotubes templated from tellurium nanowires as efficient electrocatalysts for methanol oxidation reaction

    Science.gov (United States)

    Lu, Chenchen; Kong, Wei; Zhang, Huying; Song, Bo; Wang, Zhenghua

    2015-11-01

    In this paper, gold-platinum (Au-Pt) bimetallic nanotubes with different Au/Pt ratio are successfully synthesized through a simple wet-chemical reduction route in which tellurium (Te) nanowires serve as both sacrificial template and reducing agent. The hollow nanostructure of Au-Pt nanotubes is formed due to Kirkendall effect. The as-prepared Au-Pt nanotubes can be applied as catalyst for methanol oxidation reaction, and the results indicate that the Au-Pt nanotubes with an Au/Pt ratio of 1:1 show the best electrochemical catalytic performances. Furthermore, the catalytic activity of the Au-Pt nanotubes is also better than Pt nanotubes and commercial Pt/C catalyst.

  16. Template Assisted Growth of Zinc Oxide-Based Nanowires by Electrochemical Deposition

    Directory of Open Access Journals (Sweden)

    T. Singh

    2011-01-01

    Full Text Available Ordered ZnO and Zn1 – xCdxO nanowire/nanorod arrays were fabricated by cathodic electrodeposition based on anodic alumina (AAO membrane and polycarbonate membrane (PCM from an aqueous solution containing zinc nitrate precursor at different bath temperatures. The electrodeposition process involves the electroreduction of nitrate ions to alter the local pH within the pores and precipitation of the metal oxide within the pores. X-Ray diffraction measurements showed that the nanowires/nanorods were of wurtzite crystallographic structures and the average length and diameter of nanorods were measured by SEM and TEM. HRTEM measurements confirm the crystallinity and elemental composition of grown nanowires on PCM/AAO templates.

  17. Nanostructured sapphire vicinal surfaces as templates for the growth of self-organized oxide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Thune, E., E-mail: elsa.thune@unilim.fr [Laboratoire Sciences des Procedes Ceramiques et de Traitements de Surface (SPCTS), UMR CNRS 6638, ENSCI, 47-73 Avenue Albert Thomas, F-87065 Limoges Cedex (France); Boulle, A. [Laboratoire Sciences des Procedes Ceramiques et de Traitements de Surface (SPCTS), UMR CNRS 6638, ENSCI, 47-73 Avenue Albert Thomas, F-87065 Limoges Cedex (France); Babonneau, D.; Pailloux, F. [Laboratoire de Physique des Materiaux (PHYMAT), UMR CNRS 6630, Universite de Poitiers, Boulevard Marie et Pierre Curie - Teleport 2, BP 30179, F-86962 Futuroscope - Chasseneuil Cedex (France); Hamd, W.; Guinebretiere, R. [Laboratoire Sciences des Procedes Ceramiques et de Traitements de Surface (SPCTS), UMR CNRS 6638, ENSCI, 47-73 Avenue Albert Thomas, F-87065 Limoges Cedex (France)

    2009-11-15

    Vicinal substrates of sapphire with miscut angle of 10 deg. from the (0 0 1) planes towards the [1 1 0] direction have been annealed in air in the range from 1000 to 1500 deg. C. The behaviour of these surfaces has been characterized as a function of the temperature and the thermal treatment time by Atomic Force Microscopy observations. A thermal treatment at 1250 deg. C allows to stabilize a surface made of periodically spaced nanosized step-bunches. Such stepped surfaces were used as template to grow self-patterned epitaxial oxide nanoparticles by thermal annealing of yttria-stabilized zirconia thin films produced by sol-gel dip-coating. Grazing Incidence Small Angle X-ray Scattering and High-Resolution Transmission Electron Microscopy were used to study the morphology of the nanoparticles and their epitaxial relationships with the substrate.

  18. Tungsten Oxide and Polyaniline Composite Fabricated by Surfactant-Templated Electrodeposition and Its Use in Supercapacitors

    Directory of Open Access Journals (Sweden)

    Benxue Zou

    2014-01-01

    Full Text Available Composite nanostructures of tungsten oxide and polyaniline (PANI were fabricated on carbon electrode by electrocodeposition using sodium dodecylbenzene sulfonate (SDBS as the template. The morphology of the composite can be controlled by changing SDBS surfactant and aniline monomer concentrations in solution. With increasing concentration of aniline in surfactant solution, the morphological change from nanoparticles to nanofibers was observed. The nanostructured WO3/PANI composite exhibited enhanced capacitive charge storage with the specific capacitance of 201 F g−1 at 1.28 mA cm−2 in large potential window of -0.5~ 0.65 V versus SCE compared to the bulk composite film. The capacitance retained about 78% when the sweeping potential rate increased from 10 to 150 mV/s.

  19. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    NARCIS (Netherlands)

    Yildirim, Oktay; Gang, Tian; Kinge, Sachin; Reinhoudt, David N.; Blank, Dave H.; Wiel, van der Wilfred G.; Rijnders, Guus; Huskens, Jurriaan

    2010-01-01

    FePt nanoparticles (NPs) were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(on)ates were used as an adsorbate to form self-assembled monolayers (SAMs) on alumina to direct the assembly of NPs ont

  20. Plasma-enhanced Chemical Vapor Deposition of Aluminum Oxide Using Ultrashort Precursor Injection Pulses

    NARCIS (Netherlands)

    Dingemans, G.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2012-01-01

    An alternative plasma-enhanced chemical vapor deposition (PECVD) method is developed and applied for the deposition of high-quality aluminum oxide (AlOx) films. The PECVD method combines a continuous plasma with ultrashort precursor injection pulses. We demonstrate that the modulation of the precurs

  1. In-situ measurement of the electrical conductivity of aluminum oxide in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; White, D.P.; Snead, L.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    A collaborative DOE/Monbusho irradiation experiment has been completed which measured the in-situ electrical resistivity of 12 different grades of aluminum oxide during HFIR neutron irradiation at 450{degrees}C. No evidence for bulk RIED was observed following irradiation to a maximum dose of 3 dpa with an applied dc electric field of 200 V/mm.

  2. Standard specification for nuclear-grade aluminum oxide-boron carbide composite pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This specification applies to pellets composed of mixtures of aluminum oxide and boron carbide that may be ultimately used in a reactor core, for example, in neutron absorber rods. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  3. Spectroscopy of photonic band gaps in mesoporous one-dimensional photonic crystals based on aluminum oxide

    Science.gov (United States)

    Gorelik, V. S.; Voinov, Yu. P.; Shchavlev, V. V.; Bi, Dongxue; Shang, Guo Liang; Fei, Guang Tao

    2016-12-01

    Mesoporous one-dimensional photonic crystals based on aluminum oxide have been synthesized by electrochemical etching method. Reflection spectra of the obtained mesoporous samples in a wide spectral range that covers several band gaps are presented. Microscopic parameters of photonic crystals are calculated and corresponding reflection spectra for the first six band gaps are presented.

  4. Versatile (Bio)Functionalization of Bromo-Terminated Phosphonate-Modified Porous Aluminum Oxide

    NARCIS (Netherlands)

    Debrassi, A.; Roeven, E.; Thijssen, S.; Scheres, L.M.W.; Vos, de W.M.; Wennekes, T.; Zuilhof, H.

    2015-01-01

    Porous aluminum oxide (PAO) is a nanoporous material used for various (bio)technological applications, and tailoring its surface properties via covalent modification is a way to expand and refine its application. Specific and complex chemical modification of the PAO surface requires a stepwise appro

  5. Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W; Nielsch, K; Goesele, U [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany)

    2007-11-28

    The self-ordering behavior of anodic aluminum oxide (AAO) has been investigated for anodization of aluminum in malonic acid (H{sub 4}C{sub 3}O{sub 4}) solution. In the present study it is found that a porous oxide layer formed on the surface of aluminum can effectively suppress catastrophic local events (such as breakdown of the oxide film and plastic deformation of the aluminum substrate), and enables stable fast anodic oxidation under a high electric field of 110-140 V and {approx}100 mA cm{sup -2}. Studies on the self-ordering behavior of AAO indicated that the cell homogeneity of AAO increases dramatically as the anodization voltage gets higher than 120 V. Highly ordered AAO with a hexagonal arrangement of the nanopores could be obtained in a voltage range 125-140 V. The current density (i.e., the electric field strength (E) at the bottom of a pore) is an important parameter governing the self-ordering of the nanopores as well as the interpore distance (D{sub int}) for a given anodization potential (U) during malonic acid anodization.

  6. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    Science.gov (United States)

    2016-01-04

    diborane, hydrogen, and a white solid. Whatley et al.8 studied the products of diborane oxidation. Roth and co-workers9 found HOBO to be the main...product during the oxidation of diborane. Roth and Bauer10 proposed that the formation of HOBO severely inhibits the oxidation of boranes by breaking...Whatley and R. N . Pease, J. Am. Chem. Soc, 76, 1997 (1954). 9 W. Roth and W. H. Bauer, J. Phys. Chem, 60, 639 (1956). 10 W. Roth , and W. H. Bauer

  7. Studies of oxidation of iron nanowires encased in porous aluminium oxide template

    Energy Technology Data Exchange (ETDEWEB)

    Mazeika, Kestutis, E-mail: kestas@ar.fi.lt; Reklaitis, Jonas [Institute of Physics (Lithuania); Jagminas, Arunas [Institute of Chemistry (Lithuania); Baltrunas, Dalis [Institute of Physics (Lithuania)

    2009-02-15

    The transformations of phase composition of iron nanowires deposited into porous alumina template when annealing in the air were studied. The samples of iron nanowires of different diameter (8, 13, 15, 30 nm) were annealed for 1.5 h at temperature up to 600{sup o}C. In addition, for nanowires of 15 nm diameter the dependence of phase composition on annealing time was investigated. The phases were determined by applying Moessbauer spectroscopy. New Fe(II) and Fe(III) contributions to Moessbauer spectra were found and those were indentified as caused by the formation of hercynite FeAl{sub 2}O{sub 4} and (Fe{sub x}Al{sub 1-x}){sub 2}O{sub 3} with small x values (x {<=} 0.15). It has been found that though initially the Fe(II) compound forms rapidly, afterwards its formation rate becomes lower than that of Fe(III) and after longer annealing time the Fe(III) content exceeds Fe(II) one.

  8. Evolution of Surface Oxide Film of Typical Aluminum Alloy During Medium-Temperature Brazing Process

    Institute of Scientific and Technical Information of China (English)

    程方杰; 赵海微; 王颖; 肖兵; 姚俊峰

    2014-01-01

    The evolution of the surface oxide film along the depth direction of typical aluminum alloy under medium-temperature brazing was investigated by means of X-ray photoelectron spectroscopy (XPS). For the alloy with Mg content below 2.0wt%, whether under cold rolling condition or during medium-temperature brazing process, the en-richment of Mg element on the surface was not detected and the oxide film was pure Al2O3. However, the oxide film grew obviously during medium-temperature brazing process, and the thickness was about 80 nm. For the alloy with Mg content above 2.0wt%, under cold rolling condition, the original surface oxide film was pure Al2O3. However, the Mg element was significantly enriched on the outermost surface during medium-temperature brazing process, and MgO-based oxide film mixed with small amount of MgAl2O4 was formed with a thickness of about 130 nm. The alloy-ing elements of Mn and Si were not enriched on the surface neither under cold rolling condition nor during medium-temperature brazing process for all the selected aluminum alloy, and the surface oxide film was similar to that of pure aluminum, which was almost entire Al2O3.

  9. Magnetic studies of mesoporous nanostructured iron oxide materials synthesized by one-step soft-templating.

    Science.gov (United States)

    Jin, Jing; Hines, William A; Kuo, Chung-Hao; Perry, David M; Poyraz, Altug S; Xia, Yan; Zaidi, Taha; Nieh, Mu-Ping; Suib, Steven L

    2015-07-14

    A combined magnetization and (57)Fe spin-echo nuclear magnetic resonance (NMR) study has been carried out on mesoporous nanostructured materials consisting of the magnetite (Fe3O4) and maghemite (γ-Fe2O3) phases. Two series of samples were synthesized using a recently developed one-step soft-templating approach with systematic variations in calcination temperature and reaction atmosphere. Nuclear magnetic resonance has been shown to be a valuable tool for distinguishing between the two magnetic iron oxide spinel phases, Fe3O4 and γ-Fe2O3, on the nanoscale as well as monitoring phase transformation resulting from oxidation. For the Fe3O4 and γ-Fe2O3 phases, peaks in the NMR spectra are attributed to Fe in the tetrahedral (A) sites and octahedral (B) sites. The magnetic field dependence of the peaks was observed and confirmed the site assignments. Fe3O4 on a nanoscale readily oxidizes to form γ-Fe2O3 and this was clearly evident in the NMR spectra. As evidenced by transmission electron microscope (TEM) images, the porous mesostructure for the iron oxide materials is formed by a random close-packed aggregation of nanoparticles; correspondingly, superparamagnetic behavior was observed in the magnetic measurements. Although X-ray diffraction (XRD) shows the spinel structure for the Fe3O4 and γ-Fe2O3 phases, unlike NMR, it is difficult to distinguish between the two phases with XRD. Nitrogen sorption isotherms characterize the mesoporous structures of the materials, and yield BET surface area values and limited BJH pore size distribution curves.

  10. Laser sintering of magnesia with nanoparticles of iron oxide and aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    García, L.V.; Mendivil, M.I.; Roy, T.K. Das; Castillo, G.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66451 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66451 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • Laser sintered MgO pellets with nanoparticles of Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3}. • Characterized these pellets by XRD, SEM and XPS. • Spinel formations were observed in both cases. • Changes in morphology and structure were analyzed. - Abstract: Nanoparticles of iron oxide (Fe{sub 2}O{sub 3}, 20–40 nm) and aluminum oxide (Al{sub 2}O{sub 3}, 50 nm) were mixed in different concentrations (3, 5 and 7 wt%) in a magnesium oxide (MgO) matrix. The mixture pellet was irradiated with 532 nm output from a Q-switched Nd:YAG laser using different laser fluence and translation speed for sintering. The refractory samples obtained were analyzed using X-ray diffraction technique, scanning electron microscopy and X-ray photoelectron spectroscopy. The results showed that the samples irradiated at translation speed of 110 μm/s and energy fluence of 1.7 J/cm{sup 2} with a concentration of 5 and 7 wt% of Fe{sub 2}O{sub 3} presented the MgFe{sub 2}O{sub 4} spinel-type phase. With the addition of Al{sub 2}O{sub 3} nanoparticles, at a translation speed of 110 μm/s and energy fluence of 1.7 J/cm{sup 2}, there were the formations of MgAl{sub 2}O{sub 4} spinel phase. The changes in morphologies and microstructure due to laser irradiation were analyzed.

  11. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    Science.gov (United States)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  12. Modelling the growth process of porous aluminum oxide film during anodization

    Science.gov (United States)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2015-11-01

    Currently it has become important for the development of metamaterials and nanotechnology to obtain regular self-assembled structures. One such structure is porous anodic alumina film that consists of hexagonally packed cylindrical pores. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. In present work we consider those effects. And as a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process.

  13. Oxidative addition of the C-I bond on aluminum nanoclusters

    Science.gov (United States)

    Sengupta, Turbasu; Das, Susanta; Pal, Sourav

    2015-07-01

    Energetics and the in-depth reaction mechanism of the oxidative addition step of the cross-coupling reaction are studied in the framework of density functional theory (DFT) on aluminum nanoclusters. Aluminum metal in its bulk state is totally inactive towards carbon-halogen bond dissociation but selected Al nanoclusters (size ranging from 3 to 20 atoms) have shown a significantly lower activation barrier towards the oxidative addition reaction. The calculated energy barriers are lower than the gold clusters and within a comparable range with the conventional and most versatile Pd catalyst. Further investigations reveal that the activation energies and other reaction parameters are highly sensitive to the geometrical shapes and electronic structures of the clusters rather than their size, imposing the fact that comprehensive studies on aluminum clusters can be beneficial for nanoscience and nanotechnology. To understand the possible reaction mechanism in detail, the reaction pathway is investigated with the ab initio Born Oppenheimer Molecular Dynamics (BOMD) simulation and the Natural Bond Orbital (NBO) analysis. In short, our theoretical study highlights the thermodynamic and kinetic details of C-I bond dissociation on aluminum clusters for future endeavors in cluster chemistry.Energetics and the in-depth reaction mechanism of the oxidative addition step of the cross-coupling reaction are studied in the framework of density functional theory (DFT) on aluminum nanoclusters. Aluminum metal in its bulk state is totally inactive towards carbon-halogen bond dissociation but selected Al nanoclusters (size ranging from 3 to 20 atoms) have shown a significantly lower activation barrier towards the oxidative addition reaction. The calculated energy barriers are lower than the gold clusters and within a comparable range with the conventional and most versatile Pd catalyst. Further investigations reveal that the activation energies and other reaction parameters are highly

  14. The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas

    2013-10-01

    The oxidation in air of high-purity Al foil was studied as a function of temperature using Thermogravimetric Analysis with Differential Scanning Calorimetry (TGA/DSC). The rate and/or extent of oxidation was found to be a non-linear function of the temperature. Between 650 and 750 ÀC very little oxidation took place; at 850 ÀC oxidation occurred after an induction period, while at 950 ÀC oxidation occurred without an induction period. At oxidation temperatures between 1050 and 1150 ÀC rapid passivation of the surface of the aluminum foil occurred, while at 1250 ÀC and above, an initial rapid mass increase was observed, followed by a more gradual increase in mass. The initial rapid increase was accompanied by a significant exotherm. Cross-sections of oxidized specimens were characterized by scanning electron microscopy (SEM); the observed alumina skin thicknesses correlated qualitatively with the observed mass increases.

  15. Combined flame and electrodeposition synthesis of energetic coaxial tungsten-oxide/aluminum nanowire arrays.

    Science.gov (United States)

    Dong, Zhizhong; Al-Sharab, Jafar F; Kear, Bernard H; Tse, Stephen D

    2013-09-11

    A nanostructured thermite composite comprising an array of tungsten-oxide (WO2.9) nanowires (diameters of 20-50 nm and lengths of >10 μm) coated with single-crystal aluminum (thickness of ~16 nm) has been fabricated. The method involves combined flame synthesis of tungsten-oxide nanowires and ionic-liquid electrodeposition of aluminum. The geometry not only presents an avenue to tailor heat-release characteristics due to anisotropic arrangement of fuel and oxidizer but also eliminates or minimizes the presence of an interfacial Al2O3 passivation layer. Upon ignition, the energetic nanocomposite exhibits strong exothermicity, thereby being useful for fundamental study of aluminothermic reactions as well as enhancing combustion characteristics.

  16. Effects of aluminum and extremely low frequency electromagnetic radiation on oxidative stress and memory in brain of mice.

    Science.gov (United States)

    Deng, Yuanxin; Zhang, Yanwen; Jia, Shujie; Liu, Junkang; Liu, Yanxia; Xu, Weiwei; Liu, Lei

    2013-12-01

    This study was aimed to investigate the effect of aluminum and extremely low-frequency magnetic fields (ELF-MF) on oxidative stress and memory of SPF Kunming mice. Sixty male SPF Kunming mice were divided randomly into four groups: control group, ELF-MF group (2 mT, 4 h/day), load aluminum group (200 mg aluminum/kg, 0.1 ml/10 g), and ELF-MF + aluminum group (2 mT, 4 h/day, 200 mg aluminum/kg). After 8 weeks of treatment, the mice of three experiment groups (ELF-MF group, load aluminum group, and ELF-MF + aluminum group) exhibited firstly the learning memory impairment, appearing that the escaping latency to the platform was prolonged and percentage in the platform quadrant was reduced in the Morris water maze (MWM) task. Secondly are the pathologic abnormalities including neuronal cell loss and overexpression of phosphorylated tau protein in the hippocampus and cerebral cortex. On the other hand, the markers of oxidative stress were determined in mice brain and serum. The results showed a statistically significant decrease in superoxide dismutase activity and increase in the levels of malondialdehyde in the ELF-MF group (P < 0.05 or P < 0.01), load aluminum group (P < 0.01), and ELF-MF + aluminum group (P < 0.01). However, the treatment with ELF-MF + aluminum induced no more damage than ELF-MF and aluminum did, respectively. In conclusion, both aluminum and ELF-MF could impact on learning memory and pro-oxidative function in Kunming mice. However, there was no evidence of any association between ELF-MF exposure with aluminum loading.

  17. The thickness of native oxides on aluminum alloys and single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Evertsson, J., E-mail: jonas.evertsson@sljus.lu.se [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Bertram, F. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Zhang, F. [KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas Vg 51, 100 44 Stockholm (Sweden); Rullik, L.; Merte, L.R.; Shipilin, M. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Soldemo, M.; Ahmadi, S. [KTH Royal Institute of Technology, ICT, Material Physics, 16440 Kista (Sweden); Vinogradov, N.; Carlà, F. [ESRF, B.P. 220, 38043 Grenoble (France); Weissenrieder, J.; Göthelid, M. [KTH Royal Institute of Technology, ICT, Material Physics, 16440 Kista (Sweden); Pan, J. [KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas Vg 51, 100 44 Stockholm (Sweden); Mikkelsen, A. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Nilsson, J.-O. [Sapa Technology, Kanalgatan 1, 612 31 Finspång (Sweden); Lundgren, E. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden)

    2015-09-15

    Highlights: • We have determined the native oxide film thickness on several Al samples. • The results obtained from XRR and XPS show excellent agreement. • The results obtained from EIS show consistently thinner oxide films. • The oxides on the alloys are thicker than the oxides on the single crystals. - Abstract: We present results from measurements of the native oxide film thickness on four different industrial aluminum alloys and three different aluminum single crystals. The thicknesses were determined using X-ray reflectivity, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. In addition, atomic force microscopy was used for micro-structural studies of the oxide surfaces. The reflectivity measurements were performed in ultra-high vacuum, vacuum, ambient, nitrogen and liquid water conditions. The results obtained using X-ray reflectivity and X-ray photoelectron spectroscopy demonstrate good agreement. However, the oxide thicknesses determined from the electrochemical impedance spectroscopy show a larger discrepancy from the above two methods. In the present contribution the reasons for this discrepancy are discussed. We also address the effect of the substrate type and the presence of water on the resultant oxide thickness.

  18. Aluminum cladding oxidation of prefilmed in-pile fueled experiments

    Science.gov (United States)

    Marcum, W. R.; Wachs, D. M.; Robinson, A. B.; Lillo, M. A.

    2016-04-01

    A series of fueled irradiation experiments were recently completed within the Advanced Test Reactor Full size plate In center flux trap Position (AFIP) and Gas Test Loop (GTL) campaigns. The conduct of the AFIP experiments supports ongoing efforts within the global threat reduction initiative (GTRI) to qualify a new ultra-high loading density low enriched uranium-molybdenum fuel. This study details the characterization of oxide growth on the fueled AFIP experiments and cross-correlates the empirically measured oxide thickness values to existing oxide growth correlations and convective heat transfer correlations that have traditionally been utilized for such an application. This study adds new and valuable empirical data to the scientific community with respect to oxide growth measurements of highly irradiated experiments, of which there is presently very limited data. Additionally, the predicted oxide thickness values are reconstructed to produce an oxide thickness distribution across the length of each fueled experiment (a new application and presentation of information that has not previously been obtainable in open literature); the predicted distributions are compared against experimental data and in general agree well with the exception of select outliers.

  19. Hysteresis in Lanthanide Aluminum Oxides Observed by Fast Pulse CV Measurement

    Directory of Open Access Journals (Sweden)

    Chun Zhao

    2014-10-01

    Full Text Available Oxide materials with large dielectric constants (so-called high-k dielectrics have attracted much attention due to their potential use as gate dielectrics in Metal Oxide Semiconductor Field Effect Transistors (MOSFETs. A novel characterization (pulse capacitance-voltage method was proposed in detail. The pulse capacitance-voltage technique was employed to characterize oxide traps of high-k dielectrics based on the Metal Oxide Semiconductor (MOS capacitor structure. The variation of flat-band voltages of the MOS structure was observed and discussed accordingly. Some interesting trapping/detrapping results related to the lanthanide aluminum oxide traps were identified for possible application in Flash memory technology. After understanding the trapping/detrapping mechanism of the high-k oxides, a solid foundation was prepared for further exploration into charge-trapping non-volatile memory in the future.

  20. Nanofiber of ultra-structured aluminum and zirconium oxide hybrid.

    Science.gov (United States)

    Kim, Hae-Won; Kim, Hyoun-Ee

    2006-02-01

    An internally ultrastructured Al- and Zr-oxide hybrid was developed into a nanofiber. As a precursor for the generation of nanofiber, a hybridized sol was prepared using the Pechini-type sol-gel process, whereby the Al- and Zr-metallic ions were to be efficiently distributed and stabilized within the polymeric network. The hybridized sol was subsequently electrospun and heat treated to a nanofiber with diameters of tens to hundreds of nanometers. The internal structure of the nanofiber was organized at the molecular level, with the Al- and Zr-oxide regions being interspaced at distances of less than ten nanometers. This ultrastructured Al- and Zr-oxide hybrid nanofiber is considered to be potentially applicable in numerous fields.

  1. Simultaneous chromizing and aluminizing using chromium oxide and aluminum: (II) on austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Heo, N.H.; Kim, M.T.; Shin, J.H.; Kim, C.Y. [Korea Electr. Power Res. Inst., Taejon (Korea). Machinery and Mater. Group

    2000-02-01

    For pt.I see ibid., vol.123, p.227-30, 2000. The codeposition of Cr and Al on 304 stainless steel has been investigated, using the conversion reaction of Cr{sub 2}O{sub 3} to halide. An increase in ratio of Cr{sub 2}O{sub 3} to Al in the pack composition tends to form a chromide coating, which is very poor in high temperature oxidation resistance. A codeposited coating layer, which shows high oxidation resistance, is mainly characterized by three zones: an outer layer of iron aluminide, a nickel-rich iron aluminide, and an interdiffusion zone consisting of alpha ferrite and nickel aluminide precipitates. Oxidation resistance increased as the thickness of the outer iron aluminide layer increased. This means that the aluminum in the outer layer, rather than that in nickel aluminide precipitates or alpha ferrite, acts as a strong aluminum source forming a protective Al{sub 2}O{sub 3} scale at the coating surface. Using a pack mixture containing 10 wt.% Cr{sub 2}O{sub 3} and 10 wt.% Al, a coating, which shows excellent oxidation resistance at 1100 C, was obtained after codeposition of aluminum and chromium on 304 stainless steel at 1050 C for about 6-8 h. (orig.)

  2. Bimodal spatial distribution of pores in anodically oxidized aluminum thin films

    Science.gov (United States)

    Behnke, J. F.; Sands, T.

    2000-12-01

    Though porous anodic aluminum oxide has been the subject of considerable research since the 1950s, little attention has been devoted to the characterization of the self-organization of the pore structures, and fewer of these studies have focused on anodization of thin films. The degree to which these structures self-organize, however, could play a vital role in future applications of porous anodic aluminum oxide. In this study a model is developed to describe pore ordering in thin anodized aluminum films. The model is based on a radial distribution function approach to describe the interpore spacings. Idealized one-dimensional and two-dimensional (2D) radial distribution functions are combined by linear superposition to approximate experimental radial distribution functions. Using these radial distribution functions, an order parameter is developed and an improved definition of pore spacing is constructed. This method confirms that the oxide initially forms with a highly frustrated porous structure and reorganizes toward greater 2D order as the oxide grows into the film.

  3. Large pore volume mesoporous aluminum oxide synthesized via nano-assembly

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new nano-assembly approach has been proposed for the preparation of macropore volume mesoporous aluminum oxide supports. Secondary nano-assembly and a frame structure mechanism for large pore volume mesoporous supports have been proposed. In a primary nano-assembly supersoluble micelle,aluminum hydroxide nanoparticles were precipitated in situ in surfactants with a volume balance (VB) less than 1,followed by secondary nano-assembly in linear and cylindrical shapes. The secondary nano-assembly of cylindrical aluminum hydroxides was calcined to form nano cylindrical aluminum oxides. For the formation of macropore volume mesoporous supports,we utilized a frame structure mechanism of mesoporous support,in which the exterior surface of the carrier may not be continuous. This macropore volume support has been used for the hydrotreatment of a residual oil catalyst,which possesses the following physical characteristics:pore volume 1.8―2.7 mL·g-1,specific surface area 180―429 m2·g-1,average pore diameter 17―57 nm,average pore diameter more than 10 nm (81%―94%),porosity 87%―93%,and crush strength 7.7―25 N·mm-1.

  4. Synthesis of one-dimensional silver oxide nanoparticle arrays and silver nanorods templated by Langmuir monolayers.

    Science.gov (United States)

    Liu, Hong-Guo; Xiao, Fei; Wang, Chang-Wei; Xue, Qingbin; Chen, Xiao; Lee, Yong-Ill; Hao, Jingcheng; Jiang, Jianzhuang

    2007-10-01

    One-dimensional (1D) silver oxide nanoparticle arrays were synthesized by illuminating the composite Langmuir-Blodgett monolayers of porphyrin derivatives/Ag(+) and n-hexadecyl dihydrogen phosphate (n-HDP)/Ag(+) deposited on carbon-coated copper grids with daylight and then exposing them to air. Transmission electron microscopy (TEM) observation shows that the nanoparticle size is around 3 nm, with the separation of about 2-3 nm. High-resolution TEM (HRTEM) investigation indicates that the particles are made up of Ag(2)O. Ag nanorods with the width of 15-35 nm and the length of several hundreds of nanometers were synthesized by irradiating the composite Langmuir monolayers of porphyrin derivatives/Ag(+) and n-HDP/Ag(+) by UV-light directly at the air/water interface at room temperature. HRTEM image and selected-area electron diffraction (SAED) pattern indicate that the nanorods are single crystals with the (110) face of the face-centered cubic (fcc) silver parallel to the air/water interface. The formation of the 1D arrays and the nanorods should be attributed to the templating effect of the linear supramolecules formed by porphyrin derivative or n-HDP molecules in Langmuir monolayers through non-covalent interactions.

  5. Nanowires: properties, applications and synthesis via porous anodic aluminium oxide template

    Indian Academy of Sciences (India)

    Jaya Sarkar; Gobinda Gopal Khan; A Basumallick

    2007-06-01

    Quasi one-dimensional nanowires possess unique electrical, electronic, thermoelectrical, optical, magnetic and chemical properties, which are different from that of their parent counterpart. The physical properties of nanowires are influenced by the morphology of the nanowires, diameter dependent band gap, carrier density of states etc. Nanowires hold lot of promises for different applications. Basic electronic devices like junction diodes, transistors, FETs and logic gates can be fabricated by using semiconductor and superlattice nanowires. Thermoelectric cooling system can be fabricated by using metallic nanowires. Semiconductor nanowire junctions can be used for different opto-electronic applications. Moreover, periodic arrays of magnetic nanowires hold high potential for recording media application. Nanowires are also potential candidates for sensor and bio-medical applications. In the present article, the physical and chemical properties of nanowires along with their probable applications in different fields have been reviewed in detail. The review also includes highlights of the synthesis of nanowires via porous anodic aluminium oxide template since the technique is simple, cost-effective and a low temperature technique.

  6. Fabrication and optical properties of platinum nanowire arrays on anodic aluminium oxide templates

    Institute of Scientific and Technical Information of China (English)

    高铁仁; 陈子瑜; 彭勇; 李发伸

    2002-01-01

    Arrays of Pt nanowires, fabricated by electrodepositing Pt metal into nanoporous anodic aluminium oxide (AAO)templates, exhibit a preferable optical absorption band in the ultraviolet-visible (UV-VIS) spectra and present a blueshift as the wire aspect ratio increases or its radius decreases. This type of optical property of Pt nanowire/porous alumina composites has been theoretically explored using Maxwell-Garnett (MG) effective medium theory. The MG theory,however, is only applicable to nanowires with an infinitesimally small radius relative to the wavelength of an incident light. The nanowire radius is controlled by the pore radius of the host alumina, which depends on anodizing conditions such as the selected electrolyte, anodizing time, temperature and voltage. The nanowire aspect ratios depend on the amount of Pt deposited into the nanopores of AAO films. The optical absorption properties of the arrays of Pt nanowires with diameters of 24, 55 and 90nm have been investigated by the UV-VIS spectra, which show that the extinction maximum (λmax) shifts to shorter wavelength side as the wire aspect ratio increases or its radius decreases.The results are qualitatively consistent with those calculated based on the MG theory.

  7. Biosynthesis of cathodoluminescent zinc oxide replicas using butterfly (Papilio paris) wing scales as templates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wang [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai (China); Zhang Di [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai (China)], E-mail: zhangdi@sjtu.edu.cn; Fan Tongxiang; Ding Jian; Gu Jiajun [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai (China); Guo Qixin; Ogawa, Hiroshi [Department of Electrical and Electronic Engineering, Saga University, Saga 840-8502 (Japan)

    2009-01-01

    Papilio paris butterflies have an iridescent blue color patch on their hind wings which is visible over a wide viewing angle. Optical and scanning electron microscopy observations of scales from the wings show that the blue color scales have very different microstructure to the matt black ones which also populate the wings. Scanning electron micrographs of the blue scales show that their surfaces comprise a regular two-dimensional array of concavities. By contrast the matt black scales have fine, sponge-like structure, between the ridges and the cross ribs in the scales. Using both types of scale as bio-templates, we obtain zinc oxide (ZnO) replicas of the microstructures of the original scales. Room temperature (T = 300 K) cathodoluminescence spectra of these ZnO replicas have also been studied. Both spectra show a similar sharp near-band-edge emission, but have different green emission, which we associate with the different microstructures of the ZnO replicas.

  8. Effects of Iron and Aluminum Oxides and Kaolinite on Adsorpion and Activities on Invertase

    Institute of Scientific and Technical Information of China (English)

    HUANGQIAOYUN; JIANGMINGHUA; 等

    1998-01-01

    Experiments were conducted to study the influences of synthetic bayerite,non-crystalline aluminum oxide(N-AlOH) ,geoethite,non-crystalline iron oxide (N-FeOH) and kaolinite on the adsorption,activity,kinetics and thermal stability of invertase.Adsorption of invertase on iron,aluminum oxides fitted Langmuir equation,The amount of invertase held on the minerals followed the sequence kaolinite>goethite>N-AlOH>bayerite>N-FeOH.No correlation was found between enzyme adsorption and the specific surface area of minerals exmined.The differences in the surface structure of minerals and the arrangement of enzymatic molecules on mineral surfaces led to the different capacities of minerals for enzyme adsorption. The adsorption of invertase on bayerite,N-AlOH,goethite ,H-FeOH and kaolinite was differently affected by pH.The order for the activity of invertase adsorbed on minerals was N-FeOH>N-AlOH>bayerite> goethite> kalinite.The inhibition effect of minerals on enzyme activity was kaolinite> crystalline oxides> non -crystalline oxides.The pH optimum of iron oxide-and aluminum oxide-invertase complexes was sililar to that of free enzyme(pH4.0),whereas the pH optimum of kaolinite-invertase complex was one pH unit highr than that of free enzyme.The affinity to substrate and the maximum reaction velocity as well as the thermal stability of combined inverthase were lower than those of the free enzyme.

  9. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Boron by Titrimetry 7 to 13 Separation of Boron for Mass Spectrometry 14 to 19 Isotopic Composition by Mass Spectrometry 20 to 23 Separation of Halides by Pyrohydrolysis 24 to 27 Fluoride by Ion-Selective Electrode 28 to 30 Chloride, Bromide, and Iodide by Amperometric Microtitrimetry 31 to 33 Trace Elements by Emission Spectroscopy 34 to 46 1.3 The values stated in SI units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (F...

  10. Application of the Generic Modeling Template Approach to Unsaturated Fatty Acid Oxidation and Crystallization Systems

    DEFF Research Database (Denmark)

    Fedorova, Marina; Papadakis, Emmanouil; Meisler, Kresten Troelstrup;

    2014-01-01

    In this work, a couple of applications of the template-based approach for model development are presented. The computer-aided template concept has been developed based on a model decomposition technique and has been implemented as a software tool, which provides a user-friendly interface for foll...

  11. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors.

    Science.gov (United States)

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F; Su, Wu

    2015-01-14

    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m(2) g(-1)). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.

  12. Structure and properties of ceramic coatings formed on aluminum alloys by microarc oxidation

    Institute of Scientific and Technical Information of China (English)

    LIU Wan-hui; BAO Ai-lian; LIU Rong-xiang; WU Wan-liang

    2006-01-01

    The thick and hard ceramic coatings were deposited on 2024 Al alloy by microarc oxidation in the electrolytic solution.Microstructure, phase composition and wear resistance of the oxide coatings were investigated by SEM, XRD and friction and wear tester. The microhardness and thickness of the oxide coatings were measured. The results show that the ceramic coating is mainly composed of α-Al2O3 and γ-Al2O3. During oxidation, the temperature in the microarc discharge channel is very high to make the local coating molten. From the surface to interior of the coating, microhardness increases gradually. The microhardness of the ceramic coating is HV1 800, and the microarc oxidation coatings greatly improve the antiwear properties of aluminum alloys.

  13. Oxidation behavior of nickel-chromium-aluminum-yttrium - Magnesium oxide and nickel-chromium-aluminum-yttrium - zirconate type of cermets

    Science.gov (United States)

    Zaplatynsky, I.

    1976-01-01

    The 1100 and 1200 C cyclic oxidation resistance of dense Ni-Cr-Al-Y - MgO, Ni-Cr-Al-Y - CaZrO3, Ni-Cr-Al-Y - SrZrO3, Ni-Cr-Al-Y - MgZro3 cermets and a 70 percent dense Ni-Cr-Al-Y developmental material was determined. The cermets contained 60 and 50 volume percent of Ni-Cr-Al-Y which formed a matrix with the oxide particles imbedded in it. The cermets containing MgO were superior to cermets based on zirconates and to the porous Ni-Cr-Al-Y material.

  14. Graphene oxide-templated synthesis of ultrathin or tadpole-shaped au nanowires with alternating hcp and fcc domains.

    Science.gov (United States)

    Huang, Xiao; Li, Shaozhou; Wu, Shixin; Huang, Yizhong; Boey, Freddy; Gan, Chee Lip; Zhang, Hua

    2012-02-14

    Ultrathin Au nanowires (AuNWs) and tadpole-shaped nanowires are synthesized on graphene oxide (GO) sheet templates. For the first time, 1.6 nm-diameter AuNWs are shown to contain hexagonal close-packed (hcp) crystal domains, and the tadpole-shaped nanowires exhibit alternating sets of hcp and face-centered cubic (fcc) structures, associated with variation in wire thickness.

  15. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  16. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts.

    Science.gov (United States)

    Willhite, Calvin C; Karyakina, Nataliya A; Yokel, Robert A; Yenugadhati, Nagarajkumar; Wisniewski, Thomas M; Arnold, Ian M F; Momoli, Franco; Krewski, Daniel

    2014-10-01

    oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer's disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances.

  17. Reaction behavior between the oxide film of LY12 aluminum alloy and the flux

    Institute of Scientific and Technical Information of China (English)

    薛松柏; 董健; 吕晓春; 顾文华

    2004-01-01

    In this paper, the brazing mechanism of LY12 aluminum alloy at middle range temperature was presented. The CsF-AlF3 non-corrosive flux was utilized to remove the complex oxide film on the surface of LY12 aluminum alloy. The results revealed that the oxide film was removed by the improved CsF-AlF3 flux accompanied with the occurrence of reaction as well as dissolution and the compounds CsF played an important role to remove the oxide film. Actually, the high activity of flux, say, the ability to remove the oxide film, was due to the presence of the compounds, such as NH4F,NH4AlF4 and composite molten salt. The production of HF was the key issue to accelerate the reaction and enhance to eliminate the oxide film by dissolution. It was found that the rare earth element La at small percentage was not enriched at the interface. Moreover, the rare earth fluoride enhanced the dissolution behavior.

  18. Noble Metal-Free Ceria-Zirconia Solid Solutions Templated by Tobacco Materials for Catalytic Oxidation of CO

    Directory of Open Access Journals (Sweden)

    Donglai Zhu

    2016-09-01

    Full Text Available A series of ceria-zirconia solid solutions were synthesized using tobacco leaves, stems and stem-silks as biotemplates. A combination of physicochemical techniques such as powder X-ray diffraction (XRD, N2 adsorption/desorption measurement, scanning electron microscopy (SEM, and transmission electron microscopy (TEM were used to characterize the as-synthesized samples. The results show that the morphologies of the templates were well replicated in the obtained ceria-zirconia solid solutions. Catalytic oxidation activities of CO over the ceria-zirconia solid solutions were then investigated. The catalyst templated by tobacco stem-silk exhibited higher conversion of CO at lower temperature than that of ceria-zirconia solid solutions templated by tobacco leaves and stems or without templates due to its special morphology. The catalyst even showed similar CO conversion when compared to ceria-zirconia solid solutions doped with 1.0 wt % noble metals such as Pt, Ag and Au. The results highlighted the advantages of using tobacco as biotemplate.

  19. Elaboration of aluminum oxide-based graphite containing castables

    Science.gov (United States)

    Zhou, Ningsheng

    The aim of this work was set to develop effective and practicable new methods to incorporate natural flake graphite (FG) into the Al2O 3 based castables for iron and steel making applications. Three approaches, viz. micro-pelletized graphite (PG), crushed briquette of Al2O3-graphite (BAG) and TiO2 coated graphite (CFG), have been developed to insert flake graphite into Al2O 3 rich Al2O3-SiC based and Al2O 3-MgO based castables. These approaches were put into effect as countermeasures against the problems caused by FG in order: (1) to agglomerate the FG powders so as to decrease the specific surface area; (2) to diminish the density difference by using crushed carbon bonded compact of oxide-FG mixture; (3) to modify the surface of the flake graphite by forming hydrophilic coating; (4) to control the dispersion state of the graphite in the castable to maintain enough bonding strength; and (5) to use appropriate antioxidants to inhibit the oxidation of FG. The whole work was divided into two stages. In stage one, Al2O 3-SiC-C castables were dealt with to compare 4 modes of inserting graphite, i.e., by PG, BAG, CFG and FG. Overall properties were measured, all in correlation with graphite amount and incorporating mode. In stage two, efforts were made to reduce water demand in the Al2O3-MgO castables system. For this purpose, the matrix portion of the castable mixes was extracted and a coaxial double cylinder viscometer was adopted to investigate rheological characteristics of the matrix slurries vs. 4 kinds of deflocculants, through which the best deflocculant and its appropriate amount were found. Efforts were then made to add up to 30% MgO into the castables, using a limited amount of powders (UMI.)

  20. Multifunctional organized mesoporous tin oxide films templated by graft copolymers for dye-sensitized solar cells.

    Science.gov (United States)

    Park, Jung Tae; Ahn, Sung Hoon; Roh, Dong Kyu; Lee, Chang Soo; Kim, Jong Hak

    2014-07-01

    The synthesis of organized mesoporous SnO2 films with high porosity, larger pores, and good interconnectivity, obtained by sol-gel templating with an amphiphilic graft copolymer, poly(vinyl chloride)-graft-poly(oxyethylene methacrylate), is reported. An improved performance of dye-sensitized solar cells (DSSCs) is demonstrated by the introduction of a 400 nm thick organized mesoporous SnO2 interfacial (om-SnO2 IF) layer between nanocrystalline TiO2 (nc-TiO2 ) and a fluorine-doped tin oxide substrate. To elucidate the improved efficiency, the structural, optical, and electrochemical properties of the devices were characterized by SEM, UV/Vis spectroscopy, noncontact 3D surface profilometry, intensity-modulated photocurrent/voltage spectroscopy, incident photon-to-electron conversion efficiency, and electrochemical impedance spectroscopy measurements. The energy-conversion efficiency of the solid polymerized ionic liquid based DSSC fabricated with the om-SnO2 IF/nc-TiO2 photoanode reached 5.9% at 100 mW cm(-2) ; this is higher than those of neat nc-TiO2 (3.5%) and organized mesoporous TiO2 interfacial/nc-TiO2 layer (5.4%) photoanodes. The improved efficiency is attributed to the antireflective property, cascadal energy band gap, good interconnectivity, and high electrical conductivity of the om-SnO2 IF layer, which results in enhanced light harvesting, increased electron transport, reduced charge recombination, and decreased interfacial/internal resistance.

  1. Application of diffusion barriers to the refractory fibers of tungsten, columbium, carbon and aluminum oxide

    Science.gov (United States)

    Douglas, F. C.; Paradis, E. L.; Veltri, R. D.

    1973-01-01

    A radio frequency powered ion-plating system was used to plate protective layers of refractory oxides and carbide onto high strength fiber substrates. Subsequent overplating of these combinations with nickel and titanium was made to determine the effectiveness of such barrier layers in preventing diffusion of the overcoat metal into the fibers with consequent loss of fiber strength. Four substrates, five coatings, and two metal matrix materials were employed for a total of forty material combinations. The substrates were tungsten, niobium, NASA-Hough carbon, and Tyco sapphire. The diffusion-barrier coatings were aluminum oxide, yttrium oxide, titanium carbide, tungsten carbide with 14% cobalt addition, and zirconium carbide. The metal matrix materials were IN 600 nickel and Ti 6/4 titanium. Adhesion of the coatings to all substrates was good except for the NASA-Hough carbon, where flaking off of the oxide coatings in particular was observed.

  2. High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric

    KAUST Repository

    Nayak, Pradipta K.

    2013-07-18

    We report high performance solution-deposited indium oxide thin film transistors with field-effect mobility of 127 cm2/Vs and an Ion/Ioff ratio of 106. This excellent performance is achieved by controlling the hydroxyl group content in chemically derived aluminum oxide (AlOx) thin-film dielectrics. The AlOx films annealed in the temperature range of 250–350 °C showed higher amount of Al-OH groups compared to the films annealed at 500 °C, and correspondingly higher mobility. It is proposed that the presence of Al-OH groups at the AlOx surface facilitates unintentional Al-doping and efficient oxidation of the indium oxide channel layer, leading to improved device performance.

  3. Auger electron spectroscopy study of initial stages of oxidation in a copper - 19.6-atomic-percent-aluminum alloy

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine the initial stages of oxidation of a polycrystalline copper - 19.6 a/o-aluminum alloy. The growth of the 55-eV aluminum oxide peak and the decay of the 59-, 62-, and 937-eV copper peaks were examined as functions of temperature, exposure, and pressure. Pressures ranged from 1x10 to the minus 7th power to 0.0005 torr of O2. Temperatures ranged from room temperature to 700 C. A completely aluminum oxide surface layer was obtained in all cases. Complete disappearance of the underlying 937-eV copper peak was obtained by heating at 700 C in O2 at 0.0005 torr for 1 hr. Temperature studies indicated that thermally activated diffusion was important to the oxidation studies. The initial stages of oxidation followed a logarithmic growth curve.

  4. The influence of titanium and iron oxides on the coloring and friability of the blue fired aluminum oxide as an abrasive material

    Directory of Open Access Journals (Sweden)

    E. R. Passos

    2016-03-01

    Full Text Available Abstract The quality of abrasive grains is crucial to increase the lifespan of roughing, polishing and cutting tools. The purpose of the work herein was to evaluate the variables of the blue fired aluminum oxide heat treatment process. This heat treatment process improves the physical properties of the brown fused aluminum oxide and results in a blue coloring, which uniquely identifies it within the abrasives industry. The work herein includes information beginning with the electro-fusion process of bauxite (the manufacturing of the brown fused aluminum oxide to the Blue Fired process. It also compares the fracture resistance index between these materials. This index is the inverse of the friability. Besides the content of titanium and iron oxides, process variables such as time, temperature and atmospheric conditions are important to monitor in order to reach standard requirements. Experimental evidence measuring these parameters is presented in the article herein. The blue coloring of this aluminum oxide is explained by the optical phenomena of electron transition, and not by the formation of aluminum titanate, as some technical literature has stated. Furthermore, it was proved that the coloring of blue fired material should not be used exclusively as an indicator of the optimal abrasive characteristics of this class of aluminum oxide.

  5. Synthesis and structure analysis of aluminum doped zinc oxide powders

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hexagonal Al-doped zinc oxide (ZnO) powders with a nominal composition of Zn1-xAlxO (0≤x≤0.028) were synthesized by the co-precipitation method. The contents of the Al element in the samples were measured by the inductively coupled plasma-optical emission spectroscopy (ICP-OES) technique. The structures of the Zn1-xAlxO (0≤x≤0.028) compounds calcined at 1000 and 1200℃ have been deter- mined using the Rietveld full-profile analysis method. Rietveld refinements of the diffraction data indi- cated that the addition of Al initially has a considerably positive effect on the decreasing of the lattice parameters a and c of Zn1-xAlxO, but the effect becomes very slight and even negative with the further increase of the Al content. The solid solubility limit of Al in ZnO (mole fraction y) is 2.2l%, resulting in Zn0.978Al0.22O. It seems that when the Al content is excessive, Al prefers to form a ZnAl2O4 compound with ZnO, but not to incorporate into the ZnO lattice to occupy the Zn2+ cites. Two phases, [ZnO] (or Al-doped ZnO) and [ZnAl2O4], are obviously segregated in Zn1-xAlxO while the value of x is larger than 0.024. The UV-Vis absorption spectra show that the Al-doped ZnO exhibits a red-shift in the absorption edge without reduced transmission compared with pure ZnO, which also confirms that Al ions enter the ZnO lattice and form a Zn1-xAlxO solid solution.

  6. Synthesis and structure analysis of aluminum doped zinc oxide powders

    Institute of Scientific and Technical Information of China (English)

    NIE DengPan; XUE Tao; ZHANG Yu; LI XiangJun

    2008-01-01

    Hexagonal Al-doped zinc oxide (ZnO) powders with a nominal composition of Zn1-xAlxO (0≤x≤0.028) were synthesized by the co-precipitation method. The contents of the Al element in the samples were measured by the inductively coupled plasma-optical emission spectroscopy (ICP-OES) technique. The structures of the Zn1-xAlxO (0≤x≤0.028) compounds calcined at 1000 and 1200℃ have been deter-mined using the Rietveld full-profile analysis method. Rietveld refinements of the diffraction data indi-cated that the addition of Al initially has a considerably positive effect on the decreasing of the lattice parameters a and c of Zn1-xAlxO, but the effect becomes very slight and even negative with the further increase of the Al content. The solid solubility limit of Al in ZnO (mole fraction y) is 2.21%, resulting in Zn0.978Al0.22O. It seems that when the Al content is excessive, Al prefers to form a ZnAl2O4 compound with ZnO, but not to incorporate into the ZnO lattice to occupy the Zn2+ cites. Two phases, [ZnO] (or Al-doped ZnO) and [ZnAl2O4], are obviously segregated in Zn1-xAlxO while the value of x is larger than 0.024. The UV-Vis absorption spectra show that the Al-doped ZnO exhibits a red-shift in the absorption edge without reduced transmission compared with pure ZnO, which also confirms that Al ions enter the ZnO lattice and form a Zn1-xAlxO solid solution.

  7. Sound Absorption Characteristics of Aluminum Foams Treated by Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2015-11-01

    Full Text Available Open-celled aluminum foams with different pore sizes were fabricated. A plasma electrolytic oxidation (PEO treatment was applied on the aluminum foams to create a layer of ceramic coating. The sound absorption coefficients of the foams were measured by an impedance tube and they were calculated by a transfer function method. The experimental results show that the sound absorption coefficient of the foam increases gradually with the decrease of pore size. Additionally, when the porosity of the foam increases, the sound absorption coefficient also increases. The PEO coating surface is rough and porous, which is beneficial for improvement in sound absorption. After PEO treatment, the maximum sound absorption of the foam is improved to some extent.

  8. Surface reaction mechanisms during ozone and oxygen plasma assisted atomic layer deposition of aluminum oxide.

    Science.gov (United States)

    Rai, Vikrant R; Vandalon, Vincent; Agarwal, Sumit

    2010-09-07

    We have elucidated the reaction mechanism and the role of the reactive intermediates in the atomic layer deposition (ALD) of aluminum oxide from trimethyl aluminum in conjunction with O(3) and an O(2) plasma. In situ attenuated total reflection Fourier transform infrared spectroscopy data show that both -OH groups and carbonates are formed on the surface during the oxidation cycle. These carbonates, once formed on the surface, are stable to prolonged O(3) exposure in the same cycle. However, in the case of plasma-assisted ALD, the carbonates decompose upon prolonged O(2) plasma exposure via a series reaction kinetics of the type, A (CH(3)) --> B (carbonates) --> C (Al(2)O(3)). The ratio of -OH groups to carbonates on the surface strongly depends on the oxidizing agent, and also the duration of the oxidation cycle in plasma-assisted ALD. However, in both O(3) and O(2) plasma cycles, carbonates are a small fraction of the total number of reactive sites compared to the hydroxyl groups.

  9. Determining the Effect of Aluminum Oxide Nanoparticles on the Aggregation of Amyloid-Beta in Transgenic Caenorhabditis elegans

    Science.gov (United States)

    Patel, Suhag; Matticks, John; Howell, Carina

    2014-03-01

    The cause of Alzheimer's disease has been linked partially to genetic factors but the predicted environmental components have yet to be determined. In Alzheimer's, accumulation of amyloid-beta protein in the brain forms plaques resulting in neurodegeneration and loss of mental functions. It has been postulated that aluminum influences the aggregation of amyloid-beta. To test this hypothesis, transgenic Caenorhabditis elegans, CL2120, was used as a model organism to observe neurodegeneration in nematodes exposed to aluminum oxide nanoparticles. Behavioral testing, fluorescent staining, and fluorescence microscopy were used to test the effects of aggregation of amyloid-beta in the nervous systems of effected nematodes exposed to aluminum oxide nanoparticles. Energy-dispersive x-ray spectroscopy was used to quantify the total concentration of aluminum oxide that the worms were exposed to during the experiment. Exposure of transgenic and wild type worms to a concentration of 4 mg mL-1 aluminum oxide showed a decrease in the sinusoidal motion, as well as an infirmity of transgenic worms when compared to control worms. These results support the hypothesis that aluminum may play a role in neurodegeneration in C. elegans, and may influence and increase the progression of Alzheimer's disease. This work was supported by National Science Foundation grants DUE-1058829, DMR-0923047 DUE-0806660 and Lock Haven FPDC grants.

  10. Fabrication of multi-level branched metal nanowires by AAO template electrodeposition

    Institute of Scientific and Technical Information of China (English)

    XU Liping; YUAN Zhihao; ZHANG Xiaoguang

    2006-01-01

    Anodic aluminum oxide (AAO) templates with various branched pores were prepared through one- to multi-step varying the anodic voltage by a factor of 1√2 during an anodization of aluminum. The corresponding branched Fe nanowires (i.e. Y-branched, two-level branched and more complex tree-like nanostructures) were achieved by electrodepositing Fe into the branched pores of the AAO template. Selecting area electron diffraction and high-resolution TEM images show that the stem and branches of the branched Fe nanowires are single- crystalline with a face-centered cubic lattice. These branched Fe nanowires will be of great fundamental and practical significance.

  11. Polymer-templated mesoporous carbons synthesized in the presence of nickel nanoparticles, nickel oxide nanoparticles, and nickel nitrate

    Science.gov (United States)

    Choma, Jerzy; Jedynak, Katarzyna; Marszewski, Michal; Jaroniec, Mietek

    2012-02-01

    Mesoporous carbon composites, containing nickel and nickel oxide nanoparticles, were obtained by soft-templating method. Samples were synthesized under acidic conditions using resorcinol and formaldehyde as carbon precursors, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock co-polymer Lutrol F127 as a soft template and nickel and nickel oxide nanoparticles, and nickel nitrate as metal precursors. In addition, a one set of samples was obtained by impregnation of mesoporous carbons with a nickel nitrate solution followed by further annealing at 400 °C. Wide angle X-ray powder diffraction along with thermogravimetric analysis proved the presence of nickel nanoparticles in the final composites obtained using nickel and nickel oxide nanoparticles, and Ni(NO3)2 solution. Whereas, the impregnation of carbons with a nickel nitrate solution followed by annealing at 400 °C resulted in needle-like nickel oxide nanoparticles present inside the composites’ pores. Low-temperature (-196 °C) nitrogen physisorption, X-ray powder diffraction, and thermogravimetric analysis confirmed good adsorption and structural properties of the synthesized nickel-carbon composites, in particular, the samples possessed high surface areas (>600 m2/g), large total pore volumes (>0.50 cm3/g), and maxima of pore size distribution functions at circa 7 nm. It was found that the composites were partially graphitized during carbonization process at 850 °C. The samples are stable in an air environment below temperature of 500 °C. All these features make the synthesized nickel-carbon composites attractive materials for adsorption, catalysis, energy storage, and environmental applications.

  12. Removal of hydrogen chloride from gaseous streams using magnesium-aluminum oxide.

    Science.gov (United States)

    Kameda, Tomohito; Uchiyama, Naoya; Park, Kye-Sung; Grause, Guido; Yoshioka, Toshiaki

    2008-10-01

    Magnesium-aluminum oxide (Mg-Al oxide) obtained by thermal decomposition of Mg-Al layered double hydroxide (Mg-Al LDH) effectively removed HCl from gaseous streams. HCl removal was greater in the presence of added water vapor at all temperatures examined and increased with decreasing temperature in both the presence and absence of added water vapor. Wet and dry removal of gaseous HCl were attributed to the production of MgCl2 . 6H2O and MgCl2 . 4H2O, respectively. For the wet scrubbing process, the reconstruction reaction of Mg-Al LDH from Mg-Al oxide was the primary mechanism for increased HCl removal.

  13. Selection of crucible oxides in molten titanium and titanium aluminum alloys by thermo-chemistry calculations

    Directory of Open Access Journals (Sweden)

    Kostov A.

    2005-01-01

    Full Text Available Titanium and its alloys interstitially dissolve a large amount of impurities such as oxygen and nitrogen, which degrade the mechanical and physical properties of alloys. On the other hand crucible oxides based on CaO, ZrO2 Y2O3, etc., and their spinels (combination of two or more oxides can be used for melting titanium and its alloys. However, the thermodynamic behavior of calcium, zirconium, yttrium on the one side, and oxygen on the other side, in molten Ti and Ti-Al alloys have not been made clear and because of that, it is very interesting for research. Owing of literature data, as well as these crucibles are cheaper than standard crucibles for melting titanium and titanium alloys, in this paper will be presented the results of selection of thermo-chemistry analysis with the aim to determine the crucible oxide stability in contact with molten titanium and titanium-aluminum alloys.

  14. Hydrotalcite-derived cobalt-aluminum mixed oxide catalysts for toluene combustion

    Science.gov (United States)

    Białas, Anna; Mazur, Michal; Natkański, Piotr; Dudek, Barbara; Kozak, Marek; Wach, Anna; Kuśtrowski, Piotr

    2016-01-01

    Hydrotalcite-like compounds (HTlcs) containing cobalt and aluminum (intended Co/Al molar ratio = 3.0) were coprecipitated at 30, 50 and 70 °C. Their crystallinity, which was confirmed by powder X-ray diffraction, increased with the precipitation temperature. Furthermore, HTlcs with various cobalt contents were prepared at 70 °C. Thermogravimetric analysis showed that HTlcs were transformed into stable oxides at 550 °C. The decrease in the crystallite size of the formed spinels with the increase in the precipitation temperature was observed. Low temperature sorption of nitrogen revealed meso-macroporous nature of the oxides with extended interparticle porosity. Aluminum segregated on the samples surface, which contained various amounts of lattice and adsorbed/electrophilic oxygen as detected by X-ray electron spectroscopy. The high ratio of lattice to adsorbed/electrophilic oxygen found for the sample with Co/Al = 3:1 caused that it turned out to be the most efficient catalyst in the total oxidation of toluene (50% conversion at 257 °C).

  15. Hydrotalcite-derived cobalt–aluminum mixed oxide catalysts for toluene combustion

    Energy Technology Data Exchange (ETDEWEB)

    Białas, Anna, E-mail: anbialas@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, Kraków 30-060 (Poland); Mazur, Michal; Natkański, Piotr; Dudek, Barbara [Faculty of Chemistry, Jagiellonian University, Ingardena 3, Kraków 30-060 (Poland); Kozak, Marek [Division of Petroleum Processing, Oil and Gas Institute, Łukasiewicza 1, Kraków 31-429 (Poland); Wach, Anna; Kuśtrowski, Piotr [Faculty of Chemistry, Jagiellonian University, Ingardena 3, Kraków 30-060 (Poland)

    2016-01-30

    Graphical abstract: - Highlights: • Crystallinity of CoAl3 HT-like compounds increases with coprecipitation temperature. • After calcination CoAl3HTlcs with larger crystallites form low crystalline spinels. • The surface of Co{sub 3}O{sub 4} or Co{sub 2}AlO{sub 4}spinels is enriched in aluminum. • CoAl3 spinel is the most efficient catalyst in toluene combustion with T50 = 257 °C. • Catalytic activity results from the high lattice/adsorbed, electrophilic oxygen ratio. - Abstract: Hydrotalcite-like compounds (HTlcs) containing cobalt and aluminum (intended Co/Al molar ratio = 3.0) were coprecipitated at 30, 50 and 70 °C. Their crystallinity, which was confirmed by powder X-ray diffraction, increased with the precipitation temperature. Furthermore, HTlcs with various cobalt contents were prepared at 70 °C. Thermogravimetric analysis showed that HTlcs were transformed into stable oxides at 550 °C. The decrease in the crystallite size of the formed spinels with the increase in the precipitation temperature was observed. Low temperature sorption of nitrogen revealed meso-macroporous nature of the oxides with extended interparticle porosity. Aluminum segregated on the samples surface, which contained various amounts of lattice and adsorbed/electrophilic oxygen as detected by X-ray electron spectroscopy. The high ratio of lattice to adsorbed/electrophilic oxygen found for the sample with Co/Al = 3:1 caused that it turned out to be the most efficient catalyst in the total oxidation of toluene (50% conversion at 257 °C).

  16. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    OpenAIRE

    Guus Rijnders; Jurriaan Huskens; van der Wiel, Wilfred G.; Blank, Dave H. A.; Reinhoudt, David N.; Sachin Kinge; Tian Gang; Oktay Yildirim

    2010-01-01

    FePt nanoparticles (NPs) were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(on)ates were used as an adsorbate to form self-assembled monolayers (SAMs) on alumina to direct the assembly of NPs onto the surface. The Al2O3 substrates were functionalized with aminobutylphosphonic acid (ABP) or phosphonoundecanoic acid (PNDA) SAMs or with poly(ethyleneimine) (PEI) as a reference. FePt NPs assem...

  17. Effects of iron and aluminum oxides and clay content on penetration resistance of five Greek soils

    OpenAIRE

    2013-01-01

    The effect of amorphous and crystalline iron (Fe) and aluminum (Al) oxides and oxy-hydroxides as well as clay on soil penetration resistance of five Greek soils, as a function of soil water suction was studied for the whole range of soil moisture. The soils tested were of loamy texture and were collected from cultivated and non-cultivated areas of north and central Greece (Macedonia and Thessaly). The study aimed at understanding the role of the above mentioned soil components on penetration ...

  18. A simple dip coat patterning of aluminum oxide to constitute a bistable memristor

    Science.gov (United States)

    Sharma, Bindu; Rabinal, M. K.

    2016-12-01

    Charge transport studies on a bipolar resistive random access memory device based on aluminum oxide were successfully undertaken. The device was designed in a simple metal-insulator-metal format, which was characterized in detail for structural, morphological and electrical measurements. A low cost technique has been adopted for the formation of the memristive element, exhibiting three orders of magnitude change between its two states of conductivity. The obtained memristive behavior is explained based on evidence obtained from charge transport characteristics. Formation/rupture of the conducting filament by external electric field is found to be the main mechanism behind resistive switching.

  19. Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid

    Science.gov (United States)

    Nourmohammadi, Abolghasem; Asadabadi, Saeid Jalali; Yousefi, Mohammad Hasan; Ghasemzadeh, Majid

    2012-12-01

    The photoluminescence emission of nanoporous anodic aluminum oxide films formed in phosphoric acid is studied in order to explore their defect-based subband electronic structure. Different excitation wavelengths are used to identify most of the details of the subband states. The films are produced under different anodizing conditions to optimize their emission in the visible range. Scanning electron microscopy investigations confirm pore formation in the produced layers. Gaussian analysis of the emission data indicates that subband states change with anodizing parameters, and various point defects can be formed both in the bulk and on the surface of these nanoporous layers during anodizing.

  20. Study on phosphating treatment of aluminum alloy: role of yttrium oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shenglin

    2009-01-01

    Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical measurements. Significant variations in the morphology and corrosion resistance afforded by zinc phosphate coating were especially observed as Y2O3 in phosphating solution varied from 0 to 40 mg/L. The addition of Y2O3 changed the initial potential of the interface between aluminum alloy substrate and phosphating solution and increased the number of nucleation sites. The phosphate coating thereby was less porous structure and covered the surface of aluminum alloy completely within short phosphating time. Phosphate coating was mainly composed of Zn3(PO4)2-4H2O (hopeite) and AIPO4(aluminum phosphate). Y2O3, as an additive of phosphatization, accelerated precipitation and refined the gain size of phosphate coating. The corrosion resistance of zinc phosphate coating in 3% NaCl solution was improved as shown by po-larization measurement. In the present research, the optimal amount of Y2O3 was 10-20 mg/L, and the optimal phosphating time was 600 s.

  1. 3-D matrix template-assisted growth of oriented oxide nanowire arrays using glancing angle pulsed laser deposition

    Science.gov (United States)

    Wright, N.; Mateo-Feliciano, D.; Ostoski, A.; Mukherjee, P.; Witanachchi, S.

    Nanosphere lithography is a combination of different methods to nanofabrication. In this work nanosphere lithography is used to study the growth of Zinc Oxide Nano-columns (ZnO NCs) on different diameter Silica Nanosphere (SNS) self-assembled templates. ZnO NCs are promising building blocks for many existing and emerging optical, electrical, and piezoelectric devices, specifically, the seeded growth of other oxide materials. Recently, reports have shown a ferroelectric phase of zinc stannate (ZnSnO3) and while lead zirconium titanate oxide (PZT) has been the main material of interest in ferroelectric and piezoelectric applications, the toxicity of lead has been of great concern. The possibility of developing lead free piezoelectric materials is of great interest in the ferroelectric community. Langmuir-Blodgett method was used to construct a self-assembled monolayer of SNSs on silicon substrates. Oriented ZnO NCs were grown on top of the spheres using the glancing angle pulsed laser deposition technique. Columns were formed in a spatially ordered closed-packed hexagonal configuration. Growth of ZnO NCs was studied as function of ambient Oxygen pressure with SNS size ranging from 250-1000 nm. Cross-sectional Scanning Electron Microscopy and X-ray diffraction (XRD) were used to study the template structure. Relative aspect ratios were studied and showed tunability of column dimensions with sphere size. XRD revealed ZnO NC arrays were c-axis oriented with hexagonal wurtzite structure.

  2. Coral reef-like polyanaline nanotubes prepared by a reactive template of manganese oxide for supercapacitor electrode

    Institute of Scientific and Technical Information of China (English)

    Ling Ren Wang; Fen Ran; Yong Tao Tan; Lei Zhao; Ling Bin Kong; Long Kang

    2011-01-01

    Coral reef-like PANI nanotubes composed of nanopaticles were successfully synthesized by a reactive template of manganese oxide. The structure was characterized by using SEM, TEM, and FT-IR, and the supercapacitive behaviors of these nanotubes were investigated with cyclic voltammetry (CV), and charge-discharge tests, respectively. A maximum specific capacitance of 533 F/g could be achieved in 1 mol/L aqueous H2SO4 with the potential range of -0.2 to 0.8 V (vs. the saturated calomel electrode) in a half-cell setup configuration for PANI electrode, suggesting its potential application in the electrode material for electrochemical capacitors.

  3. New nanotube synthesis strategy--application of sodium nanotubes formed inside anodic aluminium oxide as a reactive template.

    Science.gov (United States)

    Wang, Lung-Shen; Lee, Chi-Young; Chiu, Hsin-Tien

    2003-08-07

    Formation of Na nanotubes inside the channels of anodic aluminium oxide (AAO) membranes has been achieved by decomposing NaH thermally on AAO. The as-produced material, Na@AAO, is applied as a reactive template to prepare other tubular materials. Reacting Na@AAO with gaseous C6Cl6 generates carbon nanotubes (ca. 250 nm, wall thickness of 20 nm, tube length of 60 microm) inside the AAO channels. Highly aligned bundles of nearly amorphous carbon nanotubes are isolated after AAO is removed.

  4. Effect of environment on iodine oxidation state and reactivity with aluminum.

    Science.gov (United States)

    Smith, Dylan K; McCollum, Jena; Pantoya, Michelle L

    2016-04-28

    Iodine oxide is a highly reactive solid oxidizer and with its abundant generation of iodine gas during reaction, this oxidizer also shows great potential as a biocidal agent. A problem with using I2O5 in an energetic mixture is its highly variable reactive behavior. This study isolates the variable reactivity associated with I2O5 as a function of its chemical reaction in various environments. Specifically, aluminum fuel and iodine oxide powder are combined using a carrier fluid to aid intermixing. The carrier fluid is shown to significantly affect the oxidation state of iodine oxide, thereby affecting the reactivity of the mixture. Four carrier fluids were investigated ranging in polarity and water miscibility in increasing order from hexane X-ray photoelectric spectroscopy (XPS) and differential scanning calorimetry (DSC). Results are compared with thermal equilibrium simulations. Flame speeds increased with polarity of the fluid used to intermix the powder and ranged from 180 to 1202 m s(-1). The I2O5 processed in the polar fluids formed hydrated states of iodine oxide: HIO3 and HI3O8; and, the nonpolar and dry-mixed samples formed: I2O4 and I4O9. During combustion, the hydrated iodine oxides rapidly dehydrated from HIO3 to HI3O8 and from HI3O8 to I2O5. Both steps release 25% of their mass as vapor during combustion. Increased gas generation enhances convective energy transport and accounts for the increase in reactivity seen in the mixtures processed in polar fluids. These results explain the chemical mechanisms underlying the variable reactivity of I2O5 that are a function of the oxide's highly reactive nature with its surrounding environment. These results will significantly impact the selection of carrier fluid in the synthesis approach for iodine containing reactive mixtures.

  5. Impurity-defect structure of anodic aluminum oxide produced by two-sided anodizing in tartaric acid

    Science.gov (United States)

    Chernyakova, K. V.; Vrublevsky, I. A.; Ivanovskaya, M. I.; Kotsikau, D. A.

    2012-03-01

    Porous aluminum oxide is prepared in a 0.4 M aqueous solution of tartaric acid by two-sided anodizing. Fourier Transform IR spectroscopy (FTIR) data reveal the presence, in the alumina, of unoxidized tartarate ions, as well as products of their partial (radical organic products and CO) and complete (CO2) oxidation. Carboxylate ions and elemental carbon contained in the anodic oxide impart a gray color to the films.

  6. Light extraction enhancement of organic light-emitting diodes using aluminum zinc oxide embedded anodes.

    Science.gov (United States)

    Hsu, Ching-Ming; Lin, Bo-Ting; Zeng, Yin-Xing; Lin, Wei-Ming; Wu, Wen-Tuan

    2014-12-15

    Aluminum zinc oxide (AZO) has been embedded onto indium tin oxide (ITO) anode to enhance the light extraction from an organic light-emitting diode (OLED). The embedded AZO provides deflection and scattering interfaces on the newly generated AZO/organics and AZO/ITO interfaces rather than the conventional ITO/organic interface. The current efficiency of AZO embedded OLEDs was enhanced by up to 64%, attributed to the improved light extraction by additionally created reflection and scattering of emitted light on the AZO/ITO interfaces which was roughed in AZO embedding process. The current efficiency was found to increase with the increasing AZO embedded area ratio, but limited by the accompanying increases in haze and electrical resistance of the AZO embedded ITO film.

  7. Effects of rare earth oxide additives on the thermal behaviors of aluminum nitride ceramics

    Institute of Scientific and Technical Information of China (English)

    YAO Yijun; WANG Ling; LI Chuncheng; JIANG Xiaolong; QIU Tai

    2009-01-01

    The effects of Y_2O_3 and Er_2O_3 on the sintering behaviors, thermal properties and microstructure of AIN ceramics were investigated. The ex-perimental results show that the sintering temperature can be decreased; the relative density and thermal behavior can be improved by adding rare earth oxide in AIN ceramics. For AIN ceramics with 3 wt.% Er_2O_3 additive, the relative density is 98.8%, and the thermal conductivity reaches 106 W·m~(-1)·K~(-1). The microstructure research found that no obvious aluminum erbium oxide was found in AIN ceramics doped with 3 wt.% Er_2O_3, which favored the improvement of the thermal conductivity of AIN ceramics.

  8. Characterization of monolayer formation on aluminum-doped zinc oxide thin films.

    Science.gov (United States)

    Rhodes, Crissy L; Lappi, Simon; Fischer, Daniel; Sambasivan, Sharadha; Genzer, Jan; Franzen, Stefan

    2008-01-15

    The optical and electronic properties of aluminum-doped zinc oxide (AZO) thin films on a glass substrate are investigated experimentally and theoretically. Optical studies with coupling in the Kretschmann configuration reveal an angle-dependent plasma frequency in the mid-IR for p-polarized radiation, suggestive of the detection of a Drude plasma frequency. These studies are complemented by oxygen depletion density functional theory studies for the calculation of the charge carrier concentration and plasma frequency for bulk AZO. In addition, we report on the optical and physical properties of thin film adlayers of n-hexadecanethiol (HDT) and n-octadecanethiol (ODT) self-assembled monolayers (SAMs) on AZO surfaces using reflectance FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), contact angle, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Our characterization of the SAM deposition onto the AZO thin film reveals a range of possible applications for this conducting metal oxide.

  9. The application of the barrier-type anodic oxidation method to thickness testing of aluminum films

    Science.gov (United States)

    Chen, Jianwen; Yao, Manwen; Xiao, Ruihua; Yang, Pengfei; Hu, Baofu; Yao, Xi

    2014-09-01

    The thickness of the active metal oxide film formed from a barrier-type anodizing process is directly proportional to its formation voltage. The thickness of the consumed portion of the metal film is also corresponding to the formation voltage. This principle can be applied to the thickness test of the metal films. If the metal film is growing on a dielectric substrate, when the metal film is exhausted in an anodizing process, because of the high electrical resistance of the formed oxide film, a sudden increase of the recorded voltage during the anodizing process would occur. Then, the thickness of the metal film can be determined from this voltage. As an example, aluminum films are tested and discussed in this work. This method is quite simple and is easy to perform with high precision.

  10. Flexible aluminum-doped zinc-oxide thin-film transistor fabricated on plastic substrates

    Science.gov (United States)

    Han, Dedong; Chen, Zhuofa; Zhao, Nannan; Wang, Wei; Huang, Fuqing; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2014-03-01

    We have studied processing and characteristics of flexible Aluminum-doped Zinc Oxide thin-film transistors (AZO TFTs) fabricated on plastic substrates using radio frequency (rf) magnetron sputtering. To improve the performance of flexible AZO TFT, we studied effects of device structures on characteristics of the aluminum-doped zinc oxide thin film transistors. The electrical properties of top-gate type and bottom-gate type AZO TFTs were investigated, respectively. The top-gate type AZO TFTs shows a threshold voltage of 1.4 V, a Ion/Ioff current ratio of 1.0×107, a field effect mobility of 28.2 cm2/ V•s, a subthreshold swing of 0.19 V/decade. And the bottom-gate type AZO TFTs shows a threshold voltage of 1.7 V, a Ion/Ioff ratio of 1.0×107, a field effect mobility of 209 cm2/ V•s, a subthreshold swing of 0.16 V/decade, and the off current of less than 10-11A at room temperature. Both TFTs show low threshold voltage, high Ion/Ioff ratio and high field effect mobility. By comparison, the bottom-gate type AZO TFTs shows better characteristics. The flexible AZO-TFT is a very promising low-cost optoelectronic device for the next generation of invisible and flexible electronics due to flexible, transparency, high mobility, and low-temperature processing.

  11. A molecular beacon biosensor based on the nanostructured aluminum oxide surface.

    Science.gov (United States)

    Che, Xiangchen; He, Yuan; Yin, Haocheng; Que, Long

    2015-10-15

    A new class of molecular beacon biosensors based on the nanostructured aluminum oxide or anodic aluminum oxide (AAO) surface is reported. In this type of sensor, the AAO surface is used to enhance the fluorescent signals of the fluorophore-labeled hairpin DNA. When a target DNA with a complementary sequence to that of the hairpin DNA is applied on the sensor, the fluorophores are forced to move away from the AAO surface due to the hybridization between the hairpin DNA and the target DNA, resulting in the significant decrease of the fluorescent signals. The observed signal reduction is sufficient to achieve a demonstrated detection limit of 10nM, which could be further improved by optimizing the AAO surface. The control experiments have also demonstrated that the bioassay used in the experiments has excellent specificity and selectivity, indicating the great promise of this type of sensor for diagnostic applications. Since the arrayed AAO micropatterns can be fabricated on a single chip in a cost-effective manner, the arrayed sensors could provide an ideal technical platform for studying fundamental biological process and monitoring disease biomarkers.

  12. Effects of iron and aluminum oxides and clay content on penetration resistance of five Greek soils

    Directory of Open Access Journals (Sweden)

    Stefanos Stefanou

    2013-07-01

    Full Text Available The effect of amorphous and crystalline iron (Fe and aluminum (Al oxides and oxy-hydroxides as well as clay on soil penetration resistance of five Greek soils, as a function of soil water suction was studied for the whole range of soil moisture. The soils tested were of loamy texture and were collected from cultivated and non-cultivated areas of north and central Greece (Macedonia and Thessaly. The study aimed at understanding the role of the above mentioned soil components on penetration resistance. The findings showed that the increase of iron and aluminum oxides and oxy-hydroxides content resulted in an increase of soil penetration resistance and the relationships between them were significant. Crystalline iron forms found to have a more profound effect on penetration resistance as compared to amorphous iron forms. Finally, positive and significant relationships were also found between penetration resistance and clay content. However, it is not entirely clear which of the two soil components plays the most important role in penetration resistance changes in soils.

  13. Modification of Shape Memory Polymer Foams Using Tungsten, Aluminum Oxide, and Silicon Dioxide Nanoparticles.

    Science.gov (United States)

    Hasan, S M; Thompson, R S; Emery, H; Nathan, A L; Weems, A C; Zhou, F; Monroe, M B B; Maitland, D J

    Shape memory polymer (SMP) foams were synthesized with three different nanoparticles (tungsten, silicon dioxide, and aluminum oxide) for embolization of cerebral aneurysms. Ultra-low density SMP foams have previously been utilized for aneurysm occlusion, resulting in a rapid, stable thrombus. However, the small cross section of foam struts can potentially lead to fracture and particulate generation, which would be a serious adverse event for an embolic device. The goal of this study was to improve the mechanical properties of the system by physically incorporating fillers into the SMP matrix. Thermal and mechanical characterization suggested minimal changes in thermal transition of the SMP nanocomposites and improved mechanical strength and toughness for systems with low filler content. Actuation profiles of the three polymer systems were tuned with filler type and content, resulting in faster SMP foam actuation for nanocomposites containing higher filler content. Additionally, thermal stability of the SMP nanocomposites improved with increasing filler concentration, and particulate count remained well below accepted standard limits for all systems. Extraction studies demonstrated little release of silicon dioxide and aluminum oxide from the bulk over 16 days. Tungstun release increased over the 16 day examination period, with a maximum measured concentration of approxiately 2.87 μg/mL. The SMP nanocomposites developed through this research have the potential for use in medical devices due to their tailorable mechanical properties, thermal resisitivity, and actuation profiles.

  14. Nitric oxide alleviates aluminum-induced oxidative damage through regulating the ascorbate-glutathione cycle in roots of wheat

    Institute of Scientific and Technical Information of China (English)

    Chengliang Sun; Lijuan Liu; Yan Yu; Wenjing Liu; Lingli Lu; Chongwei Jin; Xianyong Lin

    2015-01-01

    The possible association with nitric oxide (NO) and ascorbate-glutathione (AsA-GSH) cycle in regulating aluminum (Al) tolerance of wheat (Triticum aestivum L.) was investigated using two genotypes with different Al resistance. Exposure to Al inhibited root elongation, and triggered lipid peroxidation and oxidation of AsA to dehydroascorbate and GSH to glutathione disulfide in wheat roots. Exogenous NO significantly increased endogenous NO levels, and subsequently al eviated Al-induced inhibition of root elongation and oxidation of AsA and GSH to maintain the redox molecules in the reduced form in both wheat genotypes. Under Al stress, significantly increased activities and gene transcriptional levels of ascorbate peroxi-dase, glutathione reductase, and dehydroascorbate reductase, were observed in the root tips of the Al-tolerant genotype Jian-864. Nitric oxide application enhanced the activity and gene transcriptional level of these enzymes in both wheat geno-types. g-Glutamylcysteine synthetase was not significantly affected by Al or NO, but NO treatments increased the activity of glutathione peroxidase and glutathione S-transferase to a greater extent than the Al-treated wheat seedlings. Proline was significantly decreased by Al, while it was not affected by NO. These results clearly suggest that NO protects wheat root against Al-induced oxidative stress, possibly through its regulation of the AsA-GSH cycle.

  15. New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum

    Directory of Open Access Journals (Sweden)

    Satoru Inoue, Song-Zhu Chu, Kenji Wada, Di Li and Hajime Haneda

    2003-01-01

    Full Text Available New processes for the preparation of nanostructure on glass surfaces have been developed through anodic oxidation of sputtered aluminum. Aluminum thin film sputtered on a tin doped indium oxide (ITO thin film on a glass surface was converted into alumina by anodic oxidation. The anodic alumina gave nanometer size pore array standing vertically on the glass surface. Kinds of acids used in the anodic oxidation changed the pore size drastically. The employment of phosphoric acid solution gave several tens nanometer size pores. Oxalic acid cases produced a few tens nanometer size pores and sulfuric acid solution provided a few nanometer size pores. The number of pores in a unit area could be changed with varying the applied voltage in the anodization and the pore sizes could be increased by phosphoric acid etching. The specimen consisting of a glass substrate with the alumina nanostructures on the surface could transmit UV and visible light. An etched specimen was dipped in a TiO2 sol solution, resulting in the impregnation of TiO2 sol into the pores of alumina layer. The TiO2 sol was heated at ~400 °C for 2 h, converting into anatase phase TiO2. The specimens possessing TiO2 film on the pore wall were transparent to the light in UV–Visible region. The electro deposition technique was applied to the introduction of Ni metal into pores, giving Ni nanorod array on the glass surface. The removal of the barrier layer alumina at the bottom of the pores was necessary to attain smooth electro deposition of Ni. The photo catalytic function of the specimens possessing TiO2 nanotube array was investigated in the decomposition of acetaldehyde gas under the irradiation of UV light, showing that the rate of the decomposition was quite large.

  16. Photoluminescence blue shift of indium phosphide nanowire networks with aluminum oxide coating

    Energy Technology Data Exchange (ETDEWEB)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan J.; Oye, Michael M.; Kobayashi, Nobuhiko P. [Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California, Santa Cruz, CA (United States); Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); NASA Ames Research Center, Moffett Field, CA (United States); Wei, Min [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); School of Micro-Electronics and Solid-Electronics, University of Electronic Science and Technology of China, Chengdu (China)

    2014-07-15

    This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three-dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Fabrication of hybrid graphene oxide/polyelectrolyte capsules by means of layer-by-layer assembly on erythrocyte cell templates

    Directory of Open Access Journals (Sweden)

    Joseba Irigoyen

    2015-12-01

    Full Text Available A novel and facile method was developed to produce hybrid graphene oxide (GO–polyelectrolyte (PE capsules using erythrocyte cells as templates. The capsules are easily produced through the layer-by-layer technique using alternating polyelectrolyte layers and GO sheets. The amount of GO and therefore its coverage in the resulting capsules can be tuned by adjusting the concentration of the GO dispersion during the assembly. The capsules retain the approximate shape and size of the erythrocyte template after the latter is totally removed by oxidation with NaOCl in water. The PE/GO capsules maintain their integrity and can be placed or located on other surfaces such as in a device. When the capsules are dried in air, they collapse to form a film that is approximately twice the thickness of the capsule membrane. AFM images in the present study suggest a film thickness of approx. 30 nm for the capsules in the collapsed state implying a thickness of approx. 15 nm for the layers in the collapsed capsule membrane. The polyelectrolytes used in the present study were polyallylamine hydrochloride (PAH and polystyrenesulfonate sodium salt (PSS. Capsules where characterized by transmission electron microscopy (TEM, atomic force microscopy (AFM, dynamic light scattering (DLS and Raman microscopy, the constituent layers by zeta potential and GO by TEM, XRD, and Raman and FTIR spectroscopies.

  18. Fabrication of hybrid graphene oxide/polyelectrolyte capsules by means of layer-by-layer assembly on erythrocyte cell templates.

    Science.gov (United States)

    Irigoyen, Joseba; Politakos, Nikolaos; Diamanti, Eleftheria; Rojas, Elena; Marradi, Marco; Ledezma, Raquel; Arizmendi, Layza; Rodríguez, J Alberto; Ziolo, Ronald F; Moya, Sergio E

    2015-01-01

    A novel and facile method was developed to produce hybrid graphene oxide (GO)-polyelectrolyte (PE) capsules using erythrocyte cells as templates. The capsules are easily produced through the layer-by-layer technique using alternating polyelectrolyte layers and GO sheets. The amount of GO and therefore its coverage in the resulting capsules can be tuned by adjusting the concentration of the GO dispersion during the assembly. The capsules retain the approximate shape and size of the erythrocyte template after the latter is totally removed by oxidation with NaOCl in water. The PE/GO capsules maintain their integrity and can be placed or located on other surfaces such as in a device. When the capsules are dried in air, they collapse to form a film that is approximately twice the thickness of the capsule membrane. AFM images in the present study suggest a film thickness of approx. 30 nm for the capsules in the collapsed state implying a thickness of approx. 15 nm for the layers in the collapsed capsule membrane. The polyelectrolytes used in the present study were polyallylamine hydrochloride (PAH) and polystyrenesulfonate sodium salt (PSS). Capsules where characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and Raman microscopy, the constituent layers by zeta potential and GO by TEM, XRD, and Raman and FTIR spectroscopies.

  19. The formation and structure of the oxide and hydroxide chemisorbed phases at the aluminum surface, and relevance to hydrogen embrittlement

    Science.gov (United States)

    Francis, Michael; Kelly, Robert; Neurock, Matthew

    2010-03-01

    Aluminum alloys used in aerospace structures are susceptible to environmentally assisted cracking (EAC) induced by hydrogen embrittlement (HE) (Gangloff and Ives 1990). Crack growth experiments have demonstrated a linear relation between the relative humidity of the environment and crack growth rates, indicating the importance of water (Speidel and Hyatt 1972). While the presence of water has been demonstrated to be necessary for EAC of aluminum, crack growth rates have been linked to the diffusivity of hydrogen in aluminum (Gangloff 2003) and hydrogen densities at the crack tip as high as Al2H have been observed (Young and Scully 1998). While the mechanism by which hydrogen embrittles aluminum is yet not well understood, without the entry of hydrogen into the aluminum matrix, embrittlement would not occur. While at the crack tip high hydrogen concentrations exist, the solubility of hydrogen in aluminum is normal near 1 ppm (Wolverton 2004). In this work combined first principles and kinetic Monte Carlo methods will be used to examine the oxide and hydroxide structure resulting from exposure of aluminum to H2O or O2 and relevance to hydrogen entry as well as EAC is discussed.

  20. Murine pulmonary responses after sub-chronic exposure to aluminum oxide-based nanowhiskers

    Directory of Open Access Journals (Sweden)

    Adamcakova-Dodd Andrea

    2012-06-01

    Full Text Available Abstract Background Aluminum oxide-based nanowhiskers (AO nanowhiskers have been used in manufacturing processes as catalyst supports, flame retardants, adsorbents, or in ceramic, metal and plastic composite materials. They are classified as high aspect ratio nanomaterials. Our aim was to assess in vivo toxicity of inhaled AO nanowhisker aerosols. Methods Primary dimensions of AO nanowhiskers specified by manufacturer were 2–4 nm x 2800 nm. The aluminum content found in this nanomaterial was 30% [mixed phase material containing Al(OH3 and AlOOH]. Male mice (C57Bl/6 J were exposed to AO nanowhiskers for 4 hrs/day, 5 days/wk for 2 or 4 wks in a dynamic whole body exposure chamber. The whiskers were aerosolized with an acoustical dry aerosol generator that included a grounded metal elutriator and a venturi aspirator to enhance deagglomeration. Average concentration of aerosol in the chamber was 3.3 ± 0.6 mg/m3 and the mobility diameter was 150 ± 1.6 nm. Both groups of mice (2 or 4 wks exposure were necropsied immediately after the last exposure. Aluminum content in the lung, heart, liver, and spleen was determined. Pulmonary toxicity assessment was performed by evaluation of bronchoalveolar lavage (BAL fluid (enumeration of total and differential cells, total protein, activity of lactate dehydrogenase [LDH] and cytokines, blood (total and differential cell counts, lung histopathology and pulmonary mechanics. Results Following exposure, mean Al content of lungs was 0.25, 8.10 and 15.37 μg/g lung (dry wt respectively for sham, 2 wk and 4 wk exposure groups. The number of total cells and macrophages in BAL fluid was 2-times higher in animals exposed for 2 wks and 6-times higher in mice exposed for 4 wks, compared to shams (p p  Conclusions Sub-chronic inhalation exposures to aluminum-oxide based nanowhiskers induced increased lung macrophages, but no inflammatory or toxic responses were observed.

  1. Effect of interfacial oxide thickness on the photocatalytic activity of magnetron-sputtered TiO2 coatings on aluminum substrate

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Petit, Jean-Pierre; Shabadi, Rajashekhara;

    2015-01-01

    measurements showed a maximum UV-light absorption by titanium dioxide occurring slightly prior to the energy of the maximum photocurrent. The photocurrent of titanium dioxide decreases with increasing thickness of the aluminum oxide interface layer. Aluminum oxide acts as an insulator; disfavoring the electron...

  2. Effect of interfacial oxide thickness on the photocatalytic activity of magnetron-sputtered TiO2coatings on aluminum substrate

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Petit, Jean-Pierre; Shabadi, Rajashekhara

    2015-01-01

    measurements showed a maximum UV-light absorption by titanium dioxide occurring slightly prior to the energy of the maximum photocurrent. The photocurrent of titanium dioxide decreases with increasing thickness of the aluminum oxide interface layer. Aluminum oxide acts as an insulator; disfavoring the electron...

  3. Defective, Porous TiO2 Nanosheets with Pt Decoration as an Efficient Photocatalyst for Ethylene Oxidation Synthesized by a C3N4 Templating Method.

    Science.gov (United States)

    Pan, Xiaoyang; Chen, Xuxing; Yi, Zhiguo

    2016-04-27

    We report herein a C3N4 templating method for successfully synthesizing defective, porous TiO2 nanosheets with Pt decoration as an efficient photocatalyst for C2H4 oxidation. During the synthetic procedure, C3N4 not only acts as a 2D template to direct synthesize porous TiO2 nanosheets (TiO2-NS) but also facilitates oxygen vacancy formation on TiO2. The resultant TiO2-NS shows enhanced UV and visible-light photoactivities toward C2H4 oxidation as compared to blank TiO2 (TiO2-B) prepared without C3N4 template. Subsquently, Pt nanoparticles are homogeneously decorated onto the surface of TiO2-NS. The as-obtained Pt-TiO2-NS exhibits efficient photocatalytic activity and stability toward ethylene oxidation.

  4. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bayata, Fatma [Istanbul Bilgi University, Department of Mechanical Engineering, 34060, Eyup, Istanbul (Turkey); Ürgen, Mustafa, E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul (Turkey)

    2015-10-15

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH{sub 4}F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO{sub 2} anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO{sub 2} structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO{sub 2} nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO{sub 2} were investigated. • Al doping into nanoporous TiO{sub 2} retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation.

  5. Oxidative stress in blood and testicle of rat following intraperitoneal administration of aluminum and indium.

    Science.gov (United States)

    Maghraoui, S; Clichici, Simona; Ayadi, A; Login, C; Moldovan, R; Daicoviciu, D; Decea, N; Mureşan, A; Tekaya, L

    2014-03-01

    Aluminum (Al) and indium (In) have embryotoxic, neurotoxic and genotoxic effects, oxidative stress being one of the possible mechanisms involved in their cytotoxicity. We have recently demonstrated that indium intraperitoneal (ip) administration induced histological disorganization of testicular tissue. In the present research we aimed at investigating the effect of Al and In ip administration on systemic and testicular oxidative stress status. Studies were performed on Wistar rats ip injected with Al, In or physiological solution for two weeks. Our results showed that In significantly decreased the absolute weight of testicles. Measurements of lactate dehydrogenase (LDH) and paraoxonase (PON) activities showed that In induced a significant augmentation in the first parameter but no changes were observed in the second. Both Al and In caused oxidative stress in testicles by increasing malondialdehyde (MDA) and protein carbonyls (PC) production. Concomitantly, thiol group (-SH) and glutathione (GSH) level were enhanced in the testicles. In the blood, while concentrations of MDA was not changed, those of GSH was significantly decreased in the Al and In groups. Our results indicated that Al and In cause oxidative stress both in blood and testicles but In has cytotoxic effect as well as negative impact on testicle weights. These findings could explain the testicular histological alterations previously described after In ip administration.

  6. Covalent functionalization of graphene oxide with polyglycerol and their use as templates for anchoring magnetic nanoparticles

    NARCIS (Netherlands)

    Pham, Tuan Anh; Kumar, Nanjundan Ashok; Jeong, Yeon Tae

    2010-01-01

    An efficient strategy for the preparation of water-dispersible hybrid material containing graphene oxide and polyglycerol for the first time is demonstrated. Pristine graphite was firstly oxidized to obtain graphene oxide with hydroxyl functional groups. Then, the covalent grafting of polyglycerol o

  7. The role of stress in self-ordered porous anodic oxide formation and corrosion of aluminum

    Science.gov (United States)

    Capraz, Omer Ozgur

    The phenomenon of plastic flow induced by electrochemical reactions near room temperature is significant in porous anodic oxide (PAO) films, charging of lithium batteries and stress-corrosion cracking (SCC). As this phenomenon is poorly understood, fundamental insight into flow from our work may provide useful information for these problems. In-situ monitoring of the stress state allows direct correlation between stress and the current or potential, thus providing fundamental insight into technologically important deformation and failure mechanisms induced by electrochemical reactions. A phase-shifting curvature interferometry was designed to investigate the stress generation mechanisms on different systems. Resolution of our curvature interferometry was found to be ten times more powerful than that obtained by state-of-art multiple deflectometry technique and the curvature interferometry helps to resolve the conflicting reports in the literature. During this work, formation of surface patterns during both aqueous corrosion of aluminum and formation of PAO films were investigated. Interestingly, for both cases, stress induced plastic flow controls the formation of surface patterns. Pore formation mechanisms during anodizing of the porous aluminum oxide films was investigated . PAO films are formed by the electrochemical oxidation of metals such as aluminum and titanium in a solution where oxide is moderately soluble. They have been used extensively to design numerous devices for optical, catalytic, and biological and energy related applications, due to their vertically aligned-geometry, high-specific surface area and tunable geometry by adjusting process variables. These structures have developed empirically, in the absence of understanding the process mechanism. Previous experimental studies of anodizing-induced stress have extensively focused on the measurement of average stress, however the measurement of stress evolution during anodizing does not provide

  8. Polystyrene-block-poly(ethylene oxide) copolymers as templates for stacked, spherical large-mesopore silica coatings: dependence of silica pore size on the PS/PEO ratio

    OpenAIRE

    2016-01-01

    Large-mesopore silica films with a narrow pore size distribution and high porosity have been obtained by a sol–gel reaction of a silicon oxide precursor (TEOS) and using polystyrene-block-poly(ethylene oxide) (PS-b-PEO) copolymers as templates in an acidic environment. PS-b-PEO copolymers with different molecular weight and composition have been studied in order to assess the effects of the block length on the pore size of the templated silica films. The changes in the morphology of the porou...

  9. Photo- and electroluminescence properties of lanthanide tungstate-doped porous anodic aluminum oxide

    Science.gov (United States)

    Staninski, Krzysztof; Piskuła, Zbigniew; Kaczmarek, Małgorzata

    2017-02-01

    A new cathode material for the potential use in light-emitting devices, based on porous anodic alumina (PAA), aluminum and ITO layers has been synthesized. Porous alumina samples with ordered pore arrays were prepared electrochemically from high purity Al sheet in H2SO4 and H3PO4. To be able to apply the matrix obtained in the electroluminescence cell, the thickness of the barrier layer of aluminum oxide was decreased by slow reduction of the anodization voltage to zero. The luminescence and electroluminescence (EL) properties of the Al2O3 matrix admixtured with Eu3+ and Tb3+ ions as well as europium and terbium tungstates, were determined. The particles of inorganic luminophore were synthesized on the walls of the matrix cylindrical nanopores in the two-step process of immersion in solutions of TbCl3 or EuCl3 and Na2WO4. The effect of the nanopores diameter and the thickness of the porous Al2O3 layer on the intensity and relative yield of electroluminescence was analyzed, the best results were obtained for 80-90 μm PAA layers with 140 nm nanopores.

  10. Aluminum work function: Effect of oxidation, mechanical scraping and ion bombardment

    Science.gov (United States)

    Vinet, P.; Lemogne, T.; Montes, H.

    1985-01-01

    Surface studies have been performed on aluminum polycrystalline surfaces which have been mechanically scraped. Such studies were initiated in order to understand surface effects occurring in tribological processes which involve rubbing surfaces and the effects of adsorption of oxygen. To characterize the surfaces, the following three different experimental approaches have been used: (1) X.P.S. (X-ray photoelectron spectroscopy), in order to check the cleanliness of the surfaces and follow the adsorption and oxidation kinetics; (2) Analysis of the work function changes by following the energy spectra of secondary electrons emitted under low energy electron bombardment; and (3) Analysis of photoemission intensities under U.V. excitation. The reference state being chosen to be the surface cleaned by ion bombardment and exposures to oxygen atmospheres have been shown to lower the work function of clean polycrystalline aluminum by 1.2 eV. The oxygen pressure is found to affect only the kinetics of these experiments. Mechanical scraping has been shown to induce a decrease ( 0.3 eV) in the work function, which could sharply modify the kinetics of adsorption on the surface.

  11. Effects of Complex Structured Anodic Oxide Dielectric Layer Grown in Pore Matrix for Aluminum Capacitor.

    Science.gov (United States)

    Shin, Jin-Ha; Yun, Sook Young; Lee, Chang Hyoung; Park, Hwa-Sun; Suh, Su-Jeong

    2015-11-01

    Anodization of aluminum is generally divided up into two types of anodic aluminum oxide structures depending on electrolyte type. In this study, an anodization process was carried out in two steps to obtain high dielectric strength and break down voltage. In the first step, evaporated high purity Al on Si wafer was anodized in oxalic acidic aqueous solution at various times at a constant temperature of 5 degrees C. In the second step, citric acidic aqueous solution was used to obtain a thickly grown sub-barrier layer. During the second anodization process, the anodizing potential of various ranges was applied at room temperature. An increased thickness of the sub-barrier layer in the porous matrix was obtained according to the increment of the applied anodizing potential. The microstructures and the growth of the sub-barrier layer were then observed with an increasing anodizing potential of 40 to 300 V by using a scanning electron microscope (SEM). An impedance analyzer was used to observe the change of electrical properties, including the capacitance, dissipation factor, impedance, and equivalent series resistance (ESR) depending on the thickness increase of the sub-barrier layer. In addition, the breakdown voltage was measured. The results revealed that dielectric strength was improved with the increase of sub-barrier layer thickness.

  12. Preparation of amorphous aluminum oxide-hydroxide nanoparticles in amphiphilic silicone-based copolymer microemulsions.

    Science.gov (United States)

    Berkovich, Yana; Aserin, Abraham; Wachtel, Ellen; Garti, Nissim

    2002-01-01

    Organo-inorgano nanocomposites with colloidal dimensions have interesting optical, catalytic, and mechanical properties, particularly when such hybrids are reinforced with transition metal oxide nanoparticles. Nanoparticles with a mean size of 1.0-2.4 nm are obtained through hydrolysis of aluminum isopropoxide in the L(2) phase of amphiphilic (PDMS-POE) polydimethylsiloxane-polyoxyethylene Silwet L-7607-octanol/acetylacetone-water mixtures. The particle sizes are related weakly to the microemulsion composition: 0.8-1.2 nm for 20 wt% Silwet L-7607 and 2.0-2.4 nm for 50 wt% Silwet L-7607. Protection of the particles against aggregation is ensured through their confinement in the intraaggregate colloidal domains. Factors affecting the hydrolysis-condensation process of acetylacetone-complexed aluminum isopropoxide in copolymer-poor and copolymer-rich regions of PDMS-POE W/O microemulsions are studied by Fourier transform infrared spectroscopy, small angle X-ray scattering, and transmission electron microscopy. Prepared nanoparticulate dispersions possess long-term stability and form clear mixtures in different organic polar and nonpolar solvents.

  13. High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials.

    Science.gov (United States)

    Riley, Conor T; Smalley, Joseph S T; Post, Kirk W; Basov, Dimitri N; Fainman, Yeshaiahu; Wang, Deli; Liu, Zhaowei; Sirbuly, Donald J

    2016-02-17

    Aluminum-doped zinc oxide (AZO) is a tunable low-loss plasmonic material capable of supporting dopant concentrations high enough to operate at telecommunication wavelengths. Due to its ultrahigh conformality and compatibility with semiconductor processing, atomic layer deposition (ALD) is a powerful tool for many plasmonic applications. However, despite many attempts, high-quality AZO with a plasma frequency below 1550 nm has not yet been realized by ALD. Here a simple procedure is devised to tune the optical constants of AZO and enable plasmonic activity at 1550 nm with low loss. The highly conformal nature of ALD is also exploited to coat silicon nanopillars to create localized surface plasmon resonances that are tunable by adjusting the aluminum concentration, thermal conditions, and the use of a ZnO buffer layer. The high-quality AZO is then used to make a layered AZO/ZnO structure that displays negative refraction in the telecommunication wavelength region due to hyperbolic dispersion. Finally, a novel synthetic scheme is demonstrated to create AZO embedded nanowires in ZnO, which also exhibits hyperbolic dispersion.

  14. Synthesis and characterization of ordered hexagonal and cubic mesoporous tin oxides via mixed-surfactant templates route.

    Science.gov (United States)

    Wang, Yude; Ma, Chunlai; Sun, Xiaodan; Li, Hengde

    2005-06-15

    Ordered hexagonal and cubic mesoporous tin oxides were synthesized for the first time in the presence of mixed cationic and neutral surfactants (a mixture of cetyltrimethylammonium bromide cationic surfactant and dodecylamine neutral surfactant) with different alkali and simple inorganic precursors at room temperature. In the synthesis systems, the dodecylamine neutral surfactant may function as a polar organic cosolvent and cosurfactant. The formation of the tin oxide mesostructured material was proposed to be due to the presence of hydrogen-bonding interactions between the supramolecular template and inorganic precursors Sn4+ and OH-, which were assumed to self-assemble around the cationic surfactant molecules. The materials are characterized by X-ray powder diffraction, transmission electron microscopy, thermogravimetric analysis, and N2 adsorption/desorption isotherm. The surface areas of materials evaluated from the N2 sorption isotherms are about 248 m(2)/g for hexagonal mesoporous tin oxide (SnH) and 281 m(2)/g for cubic mesoporous tin oxide (Sn-C) for calcination at 350 degrees C.

  15. Influence of the atmospheric species water, oxygen, nitrogen and carbon dioxide on the degradation of aluminum doped zinc oxide layers

    NARCIS (Netherlands)

    Theelen, M.; Dasgupta, S.; Vroon, Z.; Kniknie, B.; Barreau, N.; Berkum, J. van; Zeman, M.

    2014-01-01

    Aluminum doped zinc oxide (ZnO:Al) layers were exposed to the atmospheric gases carbon dioxide (CO2), oxygen (O2), nitrogen (N 2) and air as well as liquid H2O purged with these gases, in order to investigate the chemical degradation behavior of these layers. The samples were analyzed by electrical,

  16. Formation of bismuth oxide nanowires by simultaneous templating and electrochemical adhesion of DNA on Si/SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Michael G. [School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Little, Ross; Salem, Mohamed Ali [School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Hedley, Joseph H.; Horrocks, Benjamin R. [School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Siller, Lidija, E-mail: Lidija.Siller@ncl.ac.uk [School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2012-10-01

    Deoxyribonucleic acid (DNA)-templated growth of Bi/Bi{sub 2}O{sub 3} nanowires attached to the Si surface was obtained by electrochemical reduction of Bi(III) at an n-type Si electrode in aqueous Bi(NO{sub 3}){sub 3}/HNO{sub 3} at pH 2.5 with calf thymus DNA. The nanowires had a mean diameter of 5 nm and a range of lengths from 1.4 {mu}m to 6.1 {mu}m. The composition and structure of the wires were determined by atomic force microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray photoemission spectroscopy. The dominant component of the material is Bi{sub 2}O{sub 3} owing to the rapid re-oxidation of nanoscale Bi in the presence of air and water. Our method has the potential to construct complex architectures of Bi/Bi{sub 2}O{sub 3} nanostrucures on high quality Si substrates. - Highlights: Black-Right-Pointing-Pointer We have developed an electrochemical method to grow Bi/Bi{sub 2}O{sub 3} nanowires on silicon. Black-Right-Pointing-Pointer Bi/Bi{sub 2}O{sub 3} nanowires are templated by deoxyribonucleic acid molecules. Black-Right-Pointing-Pointer The procedure also adheres the nanowires to the electrode for characterization.

  17. The optical constants of several atmospheric aerosol species - Ammonium sulfate, aluminum oxide, and sodium chloride

    Science.gov (United States)

    Toon, O. B.; Pollack, J. B.; Khare, B. N.

    1976-01-01

    An investigation is conducted of problems which are related to a use of measured optical constants in the simulation of the optical constants of real atmospheric aerosols. The techniques of measuring optical constants are discussed, taking into account transmission measurements through homogeneous and inhomogeneous materials, the immersion of a material in a liquid of a known refractive index, the consideration of the minimum deviation angle of prism measurement, the interference of multiply reflected light, reflectivity measurements, and aspects of mathematical analysis. Graphs show the real and the imaginary part of the refractive index as a function of wavelength for aluminum oxide, NaCl, and ammonium sulfate. Tables are provided for the dispersion parameters and the optical constants.

  18. Synthesis and properties of iridescent Zn-containing anodic aluminum oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xiaoxuan; Sun, Huiyuan, E-mail: huiyuansun@126.com; Liu, Lihu; Hou, Xue; Liu, Huiyuan

    2015-07-01

    A simple method of fabricating Zn-containing anodic aluminum oxide films for multifunctional anticounterfeit technology is reported. The resulting membranes were characterized with UV–vis illumination studies, natural light illumination color experiments, and electron microscopy analysis. Deposition of Zn in the nanopore region can enhance the color saturation of the thin alumina film with different colors dramatically. Both the anodization time and etching time have great influence on the structural color. The mechanisms for the emergence of this phenomenon are discussed and theoretical analysis further demonstrates the experimental results. - Highlights: • Iridescent PAA@Zn nanocomposite films were successfully fabricated. • A simple organics-assisted method is applied to making a series of fancy and multicolor patterns. • The color varies with the angle of incidence of the light used to view the film as is expected with Bragg–Snell formula. • Such colored films could be used in multifunctional anti-counterfeiting applications.

  19. Taguchi Optimization for Combustion Synthesis of Aluminum Oxide Nano-particles

    Institute of Scientific and Technical Information of China (English)

    EDRISSI Mohammad; NOROUZBEIGI Reza

    2008-01-01

    Nano-structured aluminum oxide powders were prepared by a combustion synthesis method utilizing serine as a new fuel. The product was sonicated to obtain nano powders. A Taguchi L-4 statistical design of combustion syn- thesis was utilized to optimize the production of γ-alumina powder. The product was characterized by XRD, BET, SEM, EDX and LLS. Nano crystalline γ-alumina with crystal sizes between 4.26 and 5.47 nm and α-Al2O3 powders with crystal sizes 24.51 and 28.62 nm were obtained by the combustion synthesis. The specific surface area was measured by a BET method to be 75.21 m2/g. The average particle size after sonication of product, observed by LLS, was 79.32 nm.

  20. Effect of magnesium in aluminum alloys on characteristics of microarc oxidation coatings

    Institute of Scientific and Technical Information of China (English)

    LIU Yao-hui; LI Song; YU Si-rong; ZHU Xian-yong; XU Bai-ming

    2006-01-01

    Microarc oxidation(MAO) coatings were prepared on the surface of aluminum alloys with different contents of magnesium. The morphologies and surface roughness of the coatings were characterized by Confocal laser scanning microscopy(CLSM). Phase and chemical composition of the MAO coatings were analyzed by X-ray diffractometry(XRD) and X-ray photoelectron spectroscopy(XPS). The experimental results show that the coatings formed on different substrates have two-layer morphologies and are mainly composed of Al2O3 and Al-Si-O phases. In addition, the content of Al2O3 increases with increasing the content of magnesium. XPS results prove that magnesium from substrate indeed participates in the MAO process and is incorporated into the coating in the form of MgO. The coating formed on Al-3Mg substrate has the smallest mass loss and the lowest friction coefficient of 0.17-0.19.

  1. Europium-doped aluminum oxide phosphors as indicators for frontal polymerization dynamics.

    Science.gov (United States)

    Carranza, Arturo; Gewin, Mariah; Pojman, John A

    2014-06-01

    In this study, we present an inexpensive and practical method that allows the monitoring and visualization of front polymerization, propagation, and dynamics. Commercially available europium-doped aluminum oxide powders were combined with video imaging to visualize free-radical propagating polymer fronts. In order to demonstrate the applicability of this method, frontal copolymerization reactions of propoxylated glycerin triacrylate (EB53), pentaerythritol triacrylate (PETA), and pentaerythritol tetra-acrylate (PETEA) with 1,1-Bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (Luperox 231®) as an initiator were studied and compared to the results obtained by IR imaging. Systems exhibiting higher filler loading, higher EB53 content, and less acrylated monomers showed a marked decrease in front velocity, while those with more acrylated monomers and higher crosslinking density showed a marked increase in front velocity. Finally, in order to show the potential of the imaging technique, we studied fronts propagating in planar and spherical geometries.

  2. Photoluminescence and Raman studies in swift heavy ion irradiated polycrystalline aluminum oxide

    Indian Academy of Sciences (India)

    K R Nagabhushana; B N Lakshminarasappa; Fouran Singh

    2009-10-01

    Polycrystalline aluminum oxide is synthesized by combustion technique and XRD studies of the sample revealed the -phase. The synthesized sample is irradiated with 120 MeV swift Au9+ ions for the fluence in the range from 1 × 1011 to 1 × 1013 ions cm-2. A broad photoluminescence (PL) emission with peak at ∼447 nm and two sharp emissions with peak at ∼ 679 and ∼ 695 nm are observed in pristine when sample was excited with 326 nm. However, in the irradiated samples the PL intensity at ∼ 447, 679 and 695 nm decreases with increase in ion fluence. The -Al2O3 gives rise to seven Raman modes with Raman intensity with peaks at ∼ 253, 396, 417, 546, 630, 842, 867 cm-1 observed in pristine. The intensity of these modes decreases with increase in ion fluence. However, the Raman modes observed at lower fluences are found to disappear at higher fluence.

  3. Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

    Science.gov (United States)

    Li, Song-mei; Li, Ying-dong; Zhang, You; Liu, Jian-hua; Yu, Mei

    2015-02-01

    Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.

  4. Optical properties of one-dimensional photonic crystals based on porous films of anodic aluminum oxide

    Science.gov (United States)

    Gorelik, V. S.; Klimonsky, S. O.; Filatov, V. V.; Napolskii, K. S.

    2016-04-01

    The optical properties of one-dimensional photonic crystals based on porous anodic aluminum oxide films have been studied by measuring transmittance and specular reflectance spectra in the visible and UV spectral regions. Angular dependences of the spectral positions of optical stop bands are obtained. It is shown that the reflectance within the first stop band varies from point to point on the sample surface, reaching a level of 98-99% at some points. The dispersion relation for electromagnetic waves in the model of infinite periodic structure is calculated for the samples under study. The possibility of using models with an infinite or finite number of layers to calculate reflectance spectra near the first optical stop band is discussed.

  5. Europium-doped aluminum oxide phosphors as indicators for frontal polymerization dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Carranza, Arturo; Gewin, Mariah; Pojman, John A., E-mail: japojman@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804 (United States)

    2014-06-15

    In this study, we present an inexpensive and practical method that allows the monitoring and visualization of front polymerization, propagation, and dynamics. Commercially available europium-doped aluminum oxide powders were combined with video imaging to visualize free-radical propagating polymer fronts. In order to demonstrate the applicability of this method, frontal copolymerization reactions of propoxylated glycerin triacrylate (EB53), pentaerythritol triacrylate (PETA), and pentaerythritol tetra-acrylate (PETEA) with 1,1-Bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (Luperox 231®) as an initiator were studied and compared to the results obtained by IR imaging. Systems exhibiting higher filler loading, higher EB53 content, and less acrylated monomers showed a marked decrease in front velocity, while those with more acrylated monomers and higher crosslinking density showed a marked increase in front velocity. Finally, in order to show the potential of the imaging technique, we studied fronts propagating in planar and spherical geometries.

  6. Microstructures and Composition of Ceramic Coatings on Aluminum Produced by Micro-Arc Oxidation

    Institute of Scientific and Technical Information of China (English)

    SHEN De-jiu; WANG Yu-lin; GU Wei-chao; XING Guang-zhong

    2004-01-01

    Microstructures and phase composition of the ceramic coatings formed on pure aluminum by heteropolar pulsed current ceramic synthesizing system for different periods were investigated by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). Results show that the amount of the discharge channels in the ceramic coating sminish while the aperture largen in the micro-arc oxidation process, and the surface of the ceramic coatingmelted and solidified in the process.XRD studies of ceramic coatings deposited for different time show that these coatings consist mainly of α-Al2 O3, γ-Al2 O3 , θ-Al2 O3 and a little amorphous phase, and phase composition of compact and porous ceramic coatings don' t have much difference but have a little change of the content of α-Al2 O3 and amorphous phase.

  7. Contribution of Iron and Aluminum Oxides to Electrokinetic Characteristics of Variable Charge Soils in Relation to Surface Charge

    Institute of Scientific and Technical Information of China (English)

    ZHANGHONG; ZHANGXIAO-NIAN

    1992-01-01

    The contribution of iron and aluminum oxides to electrokinetic characteristics of variable charge soils was studied through determination of electrophoretic mobilities of the red soils treated with either removal of iron oxides or coating of aluminum oxides,and of those deferrated under natural conditions.After removal of the iron oxides,zeta potentials of the latosol and the red earth decreased obviously with a shift of IEP to a lower pH,from 6.4 to 5.3 and 4.1 to 2.4 for the former and the latter,respectively,and the electrokinetic change for the latosol was greater than for the red earth.Zeta potentials of the kaolinite sample increased markedly after coated with iron oxides.The striking effect of iron oxides on electrokinetix properties of the soils was also demonstrated by the electrokinetic differences between the samples from the red and white zones of a plinthitic horizon formed naturally,and between the samples from the gley and bottom horizons of a paddy soil derived from a red earth.The coatings of aluminum oxides on the latosol and the yellow earth made their zeta potentials rise pronouncedly and their IEFs move toward higher pHs,from 6.2 to 6.8 and 4.3 to 5.3 for the former and the latter,respectively.The samples with different particle sizes also exhibited some electrokinetic variation.The experiment showed that the effects of iron and aluminum oxides were closely related to the pH and type of the soils.

  8. Stability of Indium Gallium Zinc Aluminum Oxide Thin-Film Transistors with Treatment Processes

    Science.gov (United States)

    Lin, Yung-Hao; Lee, Ching-Ting

    2016-10-01

    The indium-gallium-zinc-aluminum-oxide (IGZAO) channel layer of the bottom-gate-type thin-film transistors (TFTs) was deposited on indium tin oxide-coated glass substrates using a magnetron radio frequency co-sputtering system with dual targets of indium gallium zinc oxide and Al. The 3 s orbital of Al cations provided an extra transport pathway and widened the bottom of the conduction band, thus increasing the electron mobility in the IGZAO films. The Al-O bonds could sustain the stability of oxygen of the IGZAO films. The IGZAO TFTs were processed by O2 plasma and post-annealing treatments. Hysteresis analysis was carried out in order to study the stability of the resulting IGZAO TFTs, the positive bias temperature stress (PBTS) performance, and the hot carrier effect were also measured. For the IGZAO TFTs, the threshold voltage shift of the PBTS performance and the hot carrier effect were 0.1 V and 0.06 V, respectively. Overall, the IGZAO TFTs exhibited good stability in this study.

  9. Stability of Indium Gallium Zinc Aluminum Oxide Thin-Film Transistors with Treatment Processes

    Science.gov (United States)

    Lin, Yung-Hao; Lee, Ching-Ting

    2017-02-01

    The indium-gallium-zinc-aluminum-oxide (IGZAO) channel layer of the bottom-gate-type thin-film transistors (TFTs) was deposited on indium tin oxide-coated glass substrates using a magnetron radio frequency co-sputtering system with dual targets of indium gallium zinc oxide and Al. The 3 s orbital of Al cations provided an extra transport pathway and widened the bottom of the conduction band, thus increasing the electron mobility in the IGZAO films. The Al-O bonds could sustain the stability of oxygen of the IGZAO films. The IGZAO TFTs were processed by O2 plasma and post-annealing treatments. Hysteresis analysis was carried out in order to study the stability of the resulting IGZAO TFTs, the positive bias temperature stress (PBTS) performance, and the hot carrier effect were also measured. For the IGZAO TFTs, the threshold voltage shift of the PBTS performance and the hot carrier effect were 0.1 V and 0.06 V, respectively. Overall, the IGZAO TFTs exhibited good stability in this study.

  10. Microstructural Effects on the Reactivity of Nano-Aluminum/Iodine (V) Oxide Films

    Science.gov (United States)

    Little, Brian; Langhals, Jarred; Emery, Sam; Martinez, Lucas; Welle, Eric; Lindsay, Michael

    2015-06-01

    Recent efforts investigating the self-ignition mechanism of nanoaluminum blended with iodine (V) oxide in the form of powders with and without additives suggests that ignition begins below the decomposition point of either reactant and takes place at the alumina shell surrounding the aluminum nanoparticle. As observed in previous studies of powder composites, microstructural features such as particle morphology are expected to strongly influence properties that govern the combustion behavior of this energetic material (EM). In this study, highly reactive composites containing amorphous and/or crystalline iodine oxide and nano-sized Al was blended with an additive and deposited as films. Physiochemical techniques such as thermal gravimetric analysis, scanning calorimetry, X-ray diffraction, electron microscopy, high-speed imaging, time of arrival data via photodiodes and planar doppler velocimetry were employed to characterize these EMs with emphasis on correlating the reaction rate (burn rate) with inherent microstructural features (porosity, thickness, TMD, etc). This work was a continuation of efforts to probe the self-ignition mechanism of Al-iodine (V) oxide composites.

  11. Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides.

    Science.gov (United States)

    Chen, Wan-Ru; Huang, Ching-Hua

    2012-08-15

    Aromatic organoarsenicals roxarsone (ROX) and p-arsanilic acid (ASA) are common feed additives for livestock and could be released into the environment via animal manure and agricultural runoff. To evaluate their environmental fate, the adsorption behavior of ROX and ASA was investigated with two common soil metal oxides, goethite (FeOOH) and aluminum oxide (Al(2)O(3)), under different reactant loading, water pH and competing ion conditions. ROX and ASA exhibit essentially identical adsorption characteristics. FeOOH and Al(2)O(3) exhibit similar adsorption trends for both organoarsenicals; however, the adsorption efficiency on the surface site basis was about three times lower for Al(2)O(3) than for FeOOH. The adsorption reaction is favorable at neutral and acidic pH. Phosphate and natural organic matter significantly interfere with aromatic arsenical adsorption on both metal oxides, whereas sulfate and nitrate do not. Pre-adsorbed aromatic arsenicals can be quickly but not completely displaced by phosphate, indicating that ion exchange is not the only mechanism governing the adsorption process. The adsorption envelope was successfully modeled by a diffuse double layer surface complexation model, identifying the critical role of di-anionic organoarsenic species in the adsorption. Results of this research can help predict and control the mobility of aromatic arsenicals in the environment.

  12. Preparation and Properties of Microarc Oxidation Self-Lubricating Composite Coatings on Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Zhenwei Li

    2017-04-01

    Full Text Available Microarc oxidation (MAO coatings were prepared on 2024-T4 aluminum alloy using pulsed bipolar power supply at different cathode current densities. The MAO ceramic coatings contained many crater-like micropores and a small number of microcracks. After the MAO coatings were formed, the coated samples were immersed into a water-based Polytetrafluoroethylene (PTFE dispersion. The micropores and microcracks on the surface of the MAO coatings were filled with PTFE dispersion for preparing MAO self-lubricating composite coatings. The microstructure and properties of MAO coatings and the wear resistance of microarc oxidation self-lubricating composite coatings were analyzed by SEM, laser confocal microscope, X-ray diffractometry (XRD, Vickers hardness test, scratch test and ball-on-disc abrasive tests, respectively. The results revealed that the wear rates of the MAO coatings decreased significantly with an increase in cathode current density. Compared to the MAO coatings, the microarc oxidation self-lubricating composite coatings exhibited a lower friction coefficient and lower wear rates.

  13. Oxide and proton conductivity in aluminum-doped tricalcium oxy-silicate

    Energy Technology Data Exchange (ETDEWEB)

    Porras-Vazquez, J.M.; De la Torre, A.G.; Losilla, E.R.; Aranda, M.A.G. [Dept. Quimica Inorganica, Cristalografia y Mineralogia, Universidad de Malaga, Campus Teatinos, 29071-Malaga (Spain)

    2007-06-15

    Aluminum doping in tricalcium silicate, Ca{sub 3}(SiO{sub 4})O, has been studied by high-resolution laboratory X-ray powder diffraction and the Rietveld method. Two nominal series have been designed and studied. Oxygen-fixed Ca{sub 3-x/2}Al{sub x/2}(Si{sub 1-x/2}Al{sub x/2}O{sub 4})O series has been prepared as single-phase up to x = 0.03. However, oxygen-variable Ca{sub 3}(Si{sub 1-x}Al{sub x}O{sub 4})O{sub 1-x/2}{open_square}{sub x/2} series has not been stabilized for any composition. The samples show oxide anion conductivity with a small p-type electronic contribution under oxidizing conditions. Typical total conductivities for these solids are 10{sup -} {sup 5}-10{sup -} {sup 4}S cm{sup -} {sup 1} at 1100 K. The oxide ion transference numbers are very high, {proportional_to} 0.98, under reducing conditions, i.e. dry 5%H{sub 2}-N{sub 2}/air gradient. The oxide ion transference numbers are slightly lower, {proportional_to} 0.91 under oxidizing conditions, i.e. dry O{sub 2}/air gradient. These compounds display a very important proton contribution to the overall conductivities under humidified atmospheres. The proton transference number ranges between 0.72 and 0.55 at 873 and 1023 K, respectively. (author)

  14. Anodic-Aluminium-Oxide Template-Assisted Growth of ZnO Nanodots on Si (100) at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    XU Tian-Ning; WU Hui-Zhen; LAO Yan-Feng; QIU Dong-Jiang; CHEN Nai-Bo; DAI Ning

    2004-01-01

    ZnO nanodots have been grown on Si (100) assisted by anodic aluminium oxide (AAO) template at low temperature (350℃). Regular arrangement to a certain extent in local for ZnO nanodots is observed, and the average diameter of nanodots is about 9. 7nm. Photoluminescence studies at room temperature for photon energy between 2.0 and 3.6 eV reveal a strong single exciton peak at 3.274 eV (378.8 nm) with the green emission fully quenched.Narrow full width at half maximum (FWHM) of the UV emission band (0.14 eV) suggests the as-grown ZnO nanodots have a narrow size distribution.

  15. Polystyrene-block-poly(ethylene oxide) copolymers as templates for stacked, spherical large-mesopore silica coatings: dependence of silica pore size on the PS/PEO ratio.

    Science.gov (United States)

    Nisticò, Roberto; Magnacca, Giuliana; Jadhav, Sushilkumar A; Scalarone, Dominique

    2016-01-01

    Large-mesopore silica films with a narrow pore size distribution and high porosity have been obtained by a sol-gel reaction of a silicon oxide precursor (TEOS) and using polystyrene-block-poly(ethylene oxide) (PS-b-PEO) copolymers as templates in an acidic environment. PS-b-PEO copolymers with different molecular weight and composition have been studied in order to assess the effects of the block length on the pore size of the templated silica films. The changes in the morphology of the porous systems have been investigated by transmission electron microscopy and a systematic analysis has been carried out, evidencing the dependence between the hydrophilic/hydrophobic ratio of the two polymer blocks and the size of the final silica pores. The obtained results prove that by tuning the PS/PEO ratio, the pore size of the templated silica films can be easily and finely predicted.

  16. Graphene Oxide Templated Growth and Superior Lithium Storage Performance of Novel Hierarchical Co2V2O7 Nanosheets.

    Science.gov (United States)

    Luo, Yanzhu; Xu, Xu; Zhang, Yuxiang; Chen, Chih-Yen; Zhou, Liang; Yan, Mengyu; Wei, Qiulong; Tian, Xiaocong; Mai, Liqiang

    2016-02-01

    Hierarchical Co2V2O7 nanosheets consisted of interconnected nanoparticles are synthesized by a facile method using graphene oxide as the template. The electrochemical reaction mechanism of the Co2V2O7 nanosheets is thoroughly investigated by in situ XRD and ex situ TEM. The initial Co2V2O7 transforms into CoO nanoparticles and vanadium oxides in the first cycle, and the following reversible conversion reaction mainly occurs between CoO and Co and lithiation/delithiation of the vanadium oxides. The Co2V2O7 nanosheet displays a high reversible capacity (962 mAh/g at 0.5 A/g) and remarkable high rate capability. When cycled at 5.0 A/g, a reversible capacity of 441 mAh/g can be retained after 900 cycles. The stable high capacity and excellent rate capability make the hierarchical Co2V2O7 nanosheets a promising anode material for lithium-ion batteries.

  17. Adsorption kinetics of organophosphonic acids on plasma-modified oxide-covered aluminum surfaces.

    Science.gov (United States)

    Giza, M; Thissen, P; Grundmeier, G

    2008-08-19

    Tailoring of oxide chemistry on aluminum by means of low-pressure water and argon plasma surface modification was performed to influence the kinetics of the self-assembly process of octadecylphosphonic acid monolayers. The plasma-induced surface chemistry was studied by in situ FTIR reflection-absorption spectroscopy (IRRAS). Ex situ IRRAS and X-ray photoelectron spectroscopy were applied for the analysis of the adsorbed self-assembled monolayers. The plasma-induced variation of the hydroxide to oxide ratio led to different adsorption kinetics of the phosphonic acid from dilute ethanol solutions as measured by means of a quartz crystal microbalance. Water plasma treatment caused a significant increase in the density of surface hydroxyl groups in comparison to that of the argon-plasma-treated surface. The hydroxyl-rich surface led to significantly accelerated adsorption kinetics of the phosphonic acid with a time of monolayer formation of less than 1 min. On the contrary, decreasing the surface hydroxyl density slowed the adsorption kinetics.

  18. Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells.

    Science.gov (United States)

    Zhao, Xingyue; Shen, Heping; Zhang, Ye; Li, Xin; Zhao, Xiaochong; Tai, Meiqian; Li, Jingfeng; Li, Jianbao; Li, Xin; Lin, Hong

    2016-03-01

    Although low-temperature, solution-processed zinc oxide (ZnO) has been widely adopted as the electron collection layer (ECL) in perovskite solar cells (PSCs) because of its simple synthesis and excellent electrical properties such as high charge mobility, the thermal stability of the perovskite films deposited atop ZnO layer remains as a major issue. Herein, we addressed this problem by employing aluminum-doped zinc oxide (AZO) as the ECL and obtained extraordinarily thermally stable perovskite layers. The improvement of the thermal stability was ascribed to diminish of the Lewis acid-base chemical reaction between perovskite and ECL. Notably, the outstanding transmittance and conductivity also render AZO layer as an ideal candidate for transparent conductive electrodes, which enables a simplified cell structure featuring glass/AZO/perovskite/Spiro-OMeTAD/Au. Optimization of the perovskite layer leads to an excellent and repeatable photovoltaic performance, with the champion cell exhibiting an open-circuit voltage (Voc) of 0.94 V, a short-circuit current (Jsc) of 20.2 mA cm(-2), a fill factor (FF) of 0.67, and an overall power conversion efficiency (PCE) of 12.6% under standard 1 sun illumination. It was also revealed by steady-state and time-resolved photoluminescence that the AZO/perovskite interface resulted in less quenching than that between perovskite and hole transport material.

  19. Steam reforming of methanol over copper loaded anodized aluminum oxide (AAO) prepared through electrodeposition

    Science.gov (United States)

    Linga Reddy, E.; Karuppiah, J.; Lee, Hyun Chan; Kim, Dong Hyun

    2014-12-01

    In order to study the steam reforming of methanol (SRM) to produce hydrogen for fuel cells, porous γ-alumina support is developed on Al substrate using anodic oxidation process and copper catalyst particles are deposited homogeneously over anodic aluminum oxide (AAO) surface by electrodeposition method. We investigated the effect of electrodeposition time and hot water treatment (HWT) on the activity of catalysts for SRM reaction in the temperature range between 160 and 360 °C. The experimental results indicate that the SRM activity, CO2 and dimethyl ether (DME) selectivity's over Cu catalysts increased as the electrodeposition time increased from 30 to 120 s, further increment in deposition time of Cu have no significant effect on it. The rates of SRM conversion are found to be higher for the catalysts made from the supports obtained after HWT, which may be due to the enhancement in the surface area of AAO support. It is found that the SRM activity and CO2 selectivity strongly depended upon the free exposed copper sites available for methanol adsorption and reaction, and DME in products is mainly observed in the reaction temperature range between 300 and 350 °C and it is higher for the catalysts with low Cu content.

  20. Aluminum oxide films deposited in low pressure conditions by reactive pulsed dc magnetron sputtering

    CERN Document Server

    Seino, T

    2002-01-01

    The reactive pulsed dc sputtering technique is widely used for the deposition of oxide films. The operating pressure for sputtering is commonly above 0.13 Pa. In this study, however, aluminum oxide (alumina) films were deposited at operating pressures from 0.06 to 0.4 Pa using a sputtering system equipped with a scanning magnetron cathode and a pulsed dc power supply. The pulsed dc power was found to be useful not only to reduce arcing, but also to sustain the discharge at low pressure. The electrical breakdown field, intrinsic stress, O/Al ratio, refractive index, and surface roughness were investigated. Both a low intrinsic stress and an O/Al ratio around the stoichiometry were required to get the film having a high breakdown field. A low operating pressure of 0.1 Pa was found to provide the necessary stress and O/Al ratio targets. A 50-nm-thick alumina film having a maximum breakdown field of 7.4 MV/cm was obtained.

  1. Evaluation of cerium oxide coated Cu cermets as inert anodes for aluminum electrowinning

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Cu/NiFe{sub 2}O{sub 4} cermets were evaluated, with and without an in-situ deposited CEROX (TM; cerium oxide) coating, in 100 h laboratory A1 electrowinning tests. Bath ratio and current density were varied between tests and corrosion was determined by contamination of the aluminum and cryolite by cermet components (Cu, Fe, and Ni). Higher bath ratios of 1.5 to 1.6 led to less corrosion and thicker CEROX coatings. Lower current densities led to slightly less corrosion but much less oxidation of the Cu cermet substrate. At identical test conditions, the corrosion of the CEROX coated cermets was 1/7 that of an uncoated cermet. Corrosion was increased in CEROX coated cermets tested under unsaturated alumina conditions. The electrical conductivity of the CEROX coating was measured to be {approximately}0.2 ohm{sup {minus}1}cm{sup {minus}1}, resulting in a slight voltage penalty, depending on the thickness of the coating.

  2. Microarc Oxidation of the High-Silicon Aluminum AK12D Alloy

    Directory of Open Access Journals (Sweden)

    S. K. Kiseleva

    2015-01-01

    Full Text Available The aim of work is to study how the high-silicon aluminum AK12D alloy microstructure and MAO-process modes influence on characteristics (microhardness, porosity and thickness of the oxide layer of formed surface layer.Experimental methods of study:1 MAO processing of AK12D alloy disc-shaped samples. MAO modes features are concentration of electrolyte components – soluble water glass Na2SiO3 and potassium hydroxide (KOH. The content of two components both the soluble water glass and the potassium hydroxide was changed at once, with their concentration ratio remaining constant;2 metallographic analysis of AK12D alloy structure using an optical microscope «Olympus GX51»;3 image analysis of the system "alloy AK12D - MAO - layer" using a scanning electron microscope «JEOL JSM 6490LV»;4 hardness evaluation of the MAO-layers using a micro-hardness tester «Struers Duramin».The porosity, microhardness and thickness of MAO-layer formed on samples with different initial structures are analyzed in detail. Attention is paid to the influence of MAO process modes on the quality layer.It has been proved that the MAO processing allows reaching quality coverage with high microhardness values of 1200-1300HV and thickness up to 114 μm on high-silicon aluminum alloy. It has been found that the initial microstructure of alloy greatly affects the thickness of the MAO - layer. The paper explains the observed effect using the physical principles of MAO process and the nature of silicon particles distribution in the billet volume.It has been shown that increasing concentration of sodium silicate and potassium hydroxide in the electrolyte results in thicker coating and high microhardness.It has been revealed that high microhardness is observed in the thicker MAO-layers.Conclusions:1 The microstructure of aluminum AK12D alloy and concentration of electrolyte components - liquid glass Na2SiO3 and potassium hydroxide affect the quality of coating resulted from MAO

  3. Green light emission in aluminum oxide powders doped with different terbium concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Mariscal B, L; Falcony, C. [IPN, Centro de Investigacion y de Estudios Avanzados, 07360 Ciudad de Mexico (Mexico); Carmona T, S.; Murrieta, H.; Sanchez A, M. A. [UNAM, Instituto de Fisica, 04510 Ciudad de Mexico (Mexico); Vazquez A, R. [IPN, Escuela Superior de Computo, 07738 Ciudad de Mexico (Mexico); Garcia R, C. M., E-mail: mariscal2005@gmail.com [UNAM, Facultad de Ciencias, 04510 Ciudad de Mexico (Mexico)

    2016-11-01

    Different emission intensities presented in aluminum oxide phosphors corresponding to different concentrations of doping performed with terbium are analyzed. The phosphors were synthesized by the evaporation technique and were characterized by photo and cathodoluminescence, X-ray diffraction and EDS techniques for different incorporation percentages of terbium as dopant; they show characteristic transitions in 494, 543, 587 and 622 nm, corresponding to {sup 5}D{sub 4} → {sup 7}F{sub 6}, {sup 5}D{sub 4} → {sup 7}F{sub 5}, {sup 5}D{sub 4} → {sup 7}F{sub 4} and {sup 5}D{sub 4} → {sup 7}F{sub 3}, respectively when they are excited with λ{sub exc} = 380 nm wavelength at room temperature. The results of X-ray diffraction show the presence of α-Al{sub 2}O{sub 3} phases with peaks located at 2θ = 25.78, 35.34, 37.96, 43.56, 45.8, 52.74, 57.7, 61.5, 66.74, 68.44, 77.12 and 80.94, and the δ-Al{sub 2}O-3 phase 2θ = 32.82, 45.8, 61.36 and 66.74. These compounds were heat treated for two hours at 1100 degrees Celsius. EDS analyzes indicate that these compounds have close to 60% oxygen around of 40% aluminum in the presence of terbium as dopant which indicates a stoichiometry close to the expected one for alumina. (Author)

  4. Interactive effect of cerium and aluminum on the ignition point and the oxidation resistance of magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin Pengyu [Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Nanling Campus of Jilin University, Changchun Jilin 130025 (China)], E-mail: linpengyu2000@yahoo.com.cn; Zhou Hong; Li Wei; Li Wenping; Sun Na [Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Nanling Campus of Jilin University, Changchun Jilin 130025 (China); Yang Rong [Public Mathematics Teaching and Research Center, College of Mathematics, Qianwei Campus of Jilin University, Changchun Jilin 130012 (China)

    2008-09-15

    This paper focused on the interactive effect of cerium (Ce) addition and aluminum (Al) content in magnesium alloy on ignition point and oxidation resistance. Ce content played an important role in improving the oxidation resistance of Mg alloy. Ignition point ascended with increasing Ce content. 0.25 wt% Ce content in Mg alloys could greatly improve tightness of the oxide film of Mg alloys. However, when Ce content in the alloy exceeded its solid solubility, ignition point descended. Furthermore, Al content in the alloy also influenced the ignition point. The higher the Al content was, the lower the ignition point.

  5. Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors

    KAUST Repository

    Chen, Wei

    2013-01-01

    A remarkable energy density of 84 W h kg(cell) -1 and a power density of 182 kW kg(cell) -1 have been achieved for full-cell pseudocapacitors using conducting polymer nanotubes (polyaniline) as electrode materials and ionic liquid as electrolytes. The polyaniline nanotubes were synthesized by a one-step in situ chemical polymerization process utilizing MnO2 nanotubes as sacrificial templates. The polyaniline-nanotube pseudocapacitors exhibit much better electrochemical performance than the polyaniline-nanofiber pseudocapacitors in both acidic aqueous and ionic liquid electrolytes. Importantly, the incorporation of ionic liquid with polyaniline-nanotubes has drastically improved the energy storage capacity of the PAni-nanotube pseudocapacitors by a factor of ∼5 times compared to that of the PAni-nanotube pseudocapacitors in the acidic aqueous electrolyte. Furthermore, even after 10000 cycles, the PAni-nanotube pseudocapacitors in the ionic liquid electrolyte maintain sufficient high energy density and can light LEDs for several minutes, with only 30 s quick charge. © 2013 The Royal Society of Chemistry.

  6. Fabrication of Acrylonitrile-Butadiene-Styrene Nanostructures with Anodic Alumina Oxide Templates, Characterization and Biofilm Development Test for Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Camille Desrousseaux

    Full Text Available Medical devices can be contaminated by microbial biofilm which causes nosocomial infections. One of the strategies for the prevention of such microbial adhesion is to modify the biomaterials by creating micro or nanofeatures on their surface. This study aimed (1 to nanostructure acrylonitrile-butadiene-styrene (ABS, a polymer composing connectors in perfusion devices, using Anodic Alumina Oxide templates, and to control the reproducibility of this process; (2 to characterize the physico-chemical properties of the nanostructured surfaces such as wettability using captive-bubble contact angle measurement technique; (3 to test the impact of nanostructures on Staphylococcus epidermidis biofilm development. Fabrication of Anodic Alumina Oxide molds was realized by double anodization in oxalic acid. This process was reproducible. The obtained molds present hexagonally arranged 50 nm diameter pores, with a 100 nm interpore distance and a length of 100 nm. Acrylonitrile-butadiene-styrene nanostructures were successfully prepared using a polymer solution and two melt wetting methods. For all methods, the nanopicots were obtained but inside each sample their length was different. One method was selected essentially for industrial purposes and for better reproducibility results. The flat ABS surface presents a slightly hydrophilic character, which remains roughly unchanged after nanostructuration, the increasing apparent wettability observed in that case being explained by roughness effects. Also, the nanostructuration of the polymer surface does not induce any significant effect on Staphylococcus epidermidis adhesion.

  7. Reduction of interface states by hydrogen treatment at the aluminum oxide/4H-SiC Si-face interface

    Directory of Open Access Journals (Sweden)

    Hironori Yoshioka

    2016-10-01

    Full Text Available Processes to form aluminum oxide as a gate insulator on the 4H-SiC Si-face are investigated to eliminate the interface state density (DIT and improve the mobility. Processes that do not involve the insertion or formation of SiO2 at the interface are preferential to eliminate traps that may be present in SiO2. Aluminum oxide was formed by atomic layer deposition with hydrogen plasma pretreatment followed by annealing in forming gas. Hydrogen treatment was effective to reduce DIT at the interface of aluminum oxide and SiC without a SiO2 interlayer. Optimization of the process conditions resulted in DIT for the metal oxide semiconductor (MOS capacitor of 1.7×1012 cm−2eV−1 at 0.2 eV, and the peak field-effect mobility of the MOS field-effect transistor (MOSFET was approximately 57 cm2V−1s−1.

  8. A General Silica-Templating Synthesis of Alkaline Mesoporous Carbon Catalysts for Highly Efficient H2S Oxidation at Room Temperature.

    Science.gov (United States)

    Zhang, Zixiao; Jiang, Wuyou; Long, Donghui; Wang, Jitong; Qiao, Wenming; Ling, Licheng

    2017-01-25

    A general synthesis of alkaline mesoporous carbons (AMCs) is developed based on a simplified silica-templating method for room-temperature catalytic oxidation of H2S. The key to the success relies on dissolving the silica templates to create the interconnected mesoporous structure as well as leaving parts of the alkaline products in the pores; both of them are prerequisites for H2S oxidation. By adjusting the alkaline etching degree and organic/inorganic ratio, the porosity and basicity of the AMC could be simultaneously tuned, allowing the AMCs direct use for H2S catalytic oxidation with an unprecedented removal capacities of 4.49 ± 0.12 g/g. Such excellent catalytic performance should be attributed to the developed pore structure that stores the product sulfur and the strong basicity that promotes the dissociation of H2S into HS(-) ions. Moreover, this simplified silica-templating method could be easily extended to the preparation of various silica templated mesoporous carbon catalysts. All these AMCs demonstrate a successful combination of low cost with high performance, which may well be the answer for the technical development of industrial H2S removal.

  9. High-temperature tensile deformation behavior of aluminum oxide with and without an applied electric field

    Science.gov (United States)

    Campbell, James

    1998-12-01

    Ceramics are usually considered to be brittle, but under certain conditions some ceramics exhibit a large degree of ductility. They are fine-grained and exhibit superplastic behavior when deformed at high temperatures and low stresses. Whereas superplasticity gives enhanced ductility to metals, it may be the only method for imparting large plasticity to ceramics. Electric fields have been shown to increase ductility, reduce flow stress and reduce cavitation in the superplastic forming of 7475 Al and yttria-stabilized zirconia. Thus, the concurrent application of an electric field may give improved superplastic properties and increased plasticity to a marginally ductile ceramic such as aluminum oxide (alpha-alumina). Fine-grained alumina tensile specimens, formed by dry pressing and sintering a spray-dried powder, were tested in tension at high temperature with and without an electric field of 300 V/cm. Constant strain rate, strain rate cycling and stress relaxation tests were performed. The effects of an electric field on the ductility, flow stress, cavitation and parameters of the Weertman-Dorn deformation equation were measured. Without an electric field, the following deformation parameters were found: the stress exponent n = 2.2, the grain size exponent p = 1.9, the activation energy Q = 490 kJ/mol and the threshold stress sigmao ≈ 0 MPa, indicating structural superplasticity where grain boundary sliding is the predominant deformation mode and was likely accommodated by the motion of grain boundary dislocations. An electric field of 300 V/cm gave a Joule heating temperature increase of ˜30°C and caused the alumina to swell 5--25% (increasing with time), even while under no applied stress, thereby reducing its ductility and flow stress. After correcting for Joule heating and swelling there was still a significant flow stress reduction produced by the field and the following deformation parameters were found: n = 2.2, p = 1.9, Q = 950 kJ/mol and sigmao ≈ 0

  10. Photo-oxidative action in MCF-7 cancer cells induced by hydrophobic cyanines loaded in biodegradable microemulsion-templated nanocapsules.

    Science.gov (United States)

    Wilk, Kazimiera A; Zielińska, Katarzyna; Pietkiewicz, Jadwiga; Skołucka, Nina; Choromańska, Anna; Rossowska, Joanna; Garbiec, Arnold; Saczko, Jolanta

    2012-07-01

    Searching for photodynamic therapy-effective nanocarriers which enable a photosensitizer to be selectively delivered to tumor cells with enhanced bioavailability and diminished dark cytotoxicity is of current interest. We have employed a polymer-based nanoparticle approach to encapsulate the cyanine-type photosensitizer IR-780 in poly(n-butyl cyanoacrylate) (PBCA) nanocapsules. The latter were fabricated by interfacial polymerization in oil-in-water (o/w) microemulsions formed by dicephalic and gemini saccharide-derived surfactants. Nanocarriers were characterized by SEM, AFM and DLS. The efficiency of PBCA nanocapsules as a potential system of photosensitizer delivery to human breast cancer cells was established by dark and photocytotoxicity as the function of the cellular mitochondria. The photodynamic effect of cyanine IR-780 was determined by investigation of oxidative stress markers. The nanocapsules were the main focus of our studies to examine their cellular uptake and dark and photocytotoxicity as the function of the cellular mitochondria as well as oxidative stress markers (i.e., lipid peroxidation and protein damage) in MCF-7/WT cancer cells. The effects of encapsulated IR-780 were compared with those of native photosensitizer. The penetration of the nanocapsules into cancer cells was visualized by CLSM and their uptake was estimated by FACS analysis. Cyanine IR-780 delivered in PBCA nanocapsules to MCF-7/WT cells retains its sensitivity upon photoirradiation and it is regularly distributed in the cell cytoplasm. The intensity of the photosensitizer-generated oxidative stress depends on IR-780 release from the effective uptake of polymeric nanocapsules and seems to remain dependent upon the surfactant structure in o/w microemulsion-based templates applied to nanocapsule fabrication.

  11. An in Situ Generated Palladium on Aluminum Oxide: Applications in Gram-Scale Matsuda-Heck Reactions.

    Science.gov (United States)

    Pape, Simon; Daukšaitė, Lauryna; Lucks, Sandra; Gu, Xiaoting; Brunner, Heiko

    2016-12-16

    In situ generated palladium on aluminum oxide provides an active catalytic system for Matsuda-Heck reactions in gram-scale. The novel catalyst proceeded through a significantly higher catalytic activity compared to the classical Pd/C system. Based on the high catalytic activity the first α,β,β-triarylation of methyl acrylate in good yields could be provided in one-step.

  12. Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors

    Science.gov (United States)

    Xu, Yanjie; Wang, Lincai; Cao, Peiqi; Cai, Chuanlin; Fu, Yanbao; Ma, Xiaohua

    2016-02-01

    A simple co-precipitation method utilizing SDS (sodium dodecyl sulfate) as template and ammonia as precipitant is successfully employed to synthesize nickel cobalt oxide/graphene oxide (NiCo2O4/GO) composite. The as-prepared composite (NCG-10) exhibits a high capacitance of 1211.25 F g-1, 687 F g-1 at the current density of 1 A g-1, 10 A g-1 and good cycling ability which renders NCG-10 as promising electrode material for supercapacitors. An asymmetric supercapacitor (ASC) (full button cell) has been constructed with NCG-10 as positive electrode and lab-made reduced graphene oxide (rGO) as negative electrode. The fabricated NCG-10//rGO with an extended stable operational voltage of 1.6 V can deliver a high specific capacitance of 144.45 F g-1 at a current density of 1 A g-1. The as-prepared NCG-10//rGO demonstrates remarkable energy density (51.36 W h kg-1 at 1 A g-1), high power density (50 kW kg-1 at 20 A g-1). The retention of capacitance is 88.6% at the current density of 8 A g-1 after 2000 cycles. The enhanced capacitive performance can be attributed to the improved specific surface area and 3D open area of NCG-10 generated by the pores and channels with the substantial function of SDS.

  13. Preparation and thermal properties of form-stable palmitic acid/active aluminum oxide composites as phase change materials for latent heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Guiyin, E-mail: gyfang@nju.edu.cn [School of Physics, Nanjing University, Nanjing 210093 (China); Li, Hui [Department of Material Science and Engineering, Nanjing University, Nanjing 210093 (China); Cao, Lei; Shan, Feng [School of Physics, Nanjing University, Nanjing 210093 (China)

    2012-12-14

    Form-stable palmitic acid (PA)/active aluminum oxide composites as phase change materials were prepared by adsorbing liquid palmitic acid into active aluminum oxide. In the composites, the palmitic acid was used as latent heat storage materials, and the active aluminum oxide was used as supporting material. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine the chemical structure, crystalloid phase and microstructure of the composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetry analyzer (TGA). The FT-IR analyses results indicated that there is no chemical interaction between the palmitic acid and active aluminum oxide. The SEM results showed that the palmitic acid was well adsorbed into porous network of the active aluminum oxide. The DSC results indicated that the composites melt at 60.25 Degree-Sign C with a latent heat of 84.48 kJ kg{sup -1} and solidify at 56.86 Degree-Sign C with a latent heat of 78.79 kJ kg{sup -1} when the mass ratio of the PA to active aluminum oxide is 0.9:1. Compared with that of the PA, the melting and solidifying time of the composites CPCM5 was reduced by 20.6% and 21.4% because of the increased heat transfer rate through EG addition. The TGA results showed that the active aluminum oxide can improve the thermal stability of the composites. -- Highlights: Black-Right-Pointing-Pointer Form-stable PA/active aluminum oxide composites as PCMs were prepared. Black-Right-Pointing-Pointer Chemical structure, crystalloid phase and microstructure of composites were determined. Black-Right-Pointing-Pointer Thermal properties and thermal stability of the composites were investigated. Black-Right-Pointing-Pointer Expanded graphite can improve thermal conductivity of the composites.

  14. Monolayer-directed assembly and magnetic properties of FePt nanoparticles on patterned aluminum oxide.

    Science.gov (United States)

    Yildirim, Oktay; Gang, Tian; Kinge, Sachin; Reinhoudt, David N; Blank, Dave H; van der Wiel, Wilfred G; Rijnders, Guus; Huskens, Jurriaan

    2010-03-19

    FePt nanoparticles (NPs) were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(on)ates were used as an adsorbate to form self-assembled monolayers (SAMs) on alumina to direct the assembly of NPs onto the surface. The Al(2)O(3) substrates were functionalized with aminobutylphosphonic acid (ABP) or phosphonoundecanoic acid (PNDA) SAMs or with poly(ethyleneimine) (PEI) as a reference. FePt NPs assembled on all of these monolayers, but much less on unmodified Al(2)O(3), which shows that ligand exchange at the NPs is the most likely mechanism of attachment. Proper modification of the Al(2)O(3) surface and controlling the immersion time of the modified Al(2)O(3) substrates into the FePt NP solution resulted in FePt NPs assembly with controlled NP density. Alumina substrates were patterned by microcontact printing using aminobutylphosphonic acid as the ink, allowing local NP assembly. Thermal annealing under reducing conditions (96%N(2)/4%H(2)) led to a phase change of the FePt NPs from the disordered FCC phase to the ordered FCT phase. This resulted in ferromagnetic behavior at room temperature. Such a process can potentially be applied in the fabrication of spintronic devices.

  15. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Guus Rijnders

    2010-03-01

    Full Text Available FePt nanoparticles (NPs were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(onates were used as an adsorbate to form self-assembled monolayers (SAMs on alumina to direct the assembly of NPs onto the surface. The Al2O3 substrates were functionalized with aminobutylphosphonic acid (ABP or phosphonoundecanoic acid (PNDA SAMs or with poly(ethyleneimine (PEI as a reference. FePt NPs assembled on all of these monolayers, but much less on unmodified Al2O3, which shows that ligand exchange at the NPs is the most likely mechanism of attachment. Proper modification of the Al2O3 surface and controlling the immersion time of the modified Al2O3 substrates into the FePt NP solution resulted in FePt NPs assembly with controlled NP density. Alumina substrates were patterned by microcontact printing using aminobutylphosphonic acid as the ink, allowing local NP assembly. Thermal annealing under reducing conditions (96%N2/4%H2 led to a phase change of the FePt NPs from the disordered FCC phase to the ordered FCT phase. This resulted in ferromagnetic behavior at room temperature. Such a process can potentially be applied in the fabrication of spintronic devices.

  16. Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications.

    Science.gov (United States)

    Hong, Chitsung; Tang, Tsung-Ta; Hung, Chi-Yu; Pan, Ru-Pin; Fang, Weileun

    2010-07-16

    This paper reports the implementation and integration of a self-assembled nanoporous anodic aluminum oxide (np-AAO) film and liquid crystal (LC) on an ITO-glass substrate for liquid crystal display (LCD) panel applications. An np-AAO layer with a nanopore array acts as the vertical alignment layer to easily and uniformly align the LC molecules. Moreover, the np-AAO nanoalignment layer provides outstanding material properties, such as being inorganic with good transmittance, and colorless on ITO-glass substrates. In this application, an LCD panel, with the LC on the np-AAO nanoalignment layer, is successfully implemented on an ITO-glass substrate, and its performance is demonstrated. The measurements show that the LCD panel, consisting of an ITO-glass substrate and an np-AAO layer, has a transmittance of 60-80%. In addition, the LCD panel switches from a black state to a bright state at 3 V(rms), with a response time of 62.5 ms. In summary, this paper demonstrates the alignment of LC on an np-AAO layer for LCD applications.

  17. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Canteli, D., E-mail: david.canteli@ciemat.es [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Fernandez, S. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Molpeceres, C. [Centro Laser, Universidad Politecnica de Madrid, Ctra. de Valencia Km 7.3, 28031 Madrid (Spain); Torres, I.; Gandia, J.J. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. Black-Right-Pointing-Pointer The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. Black-Right-Pointing-Pointer A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 Degree-Sign C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  18. Mechanistic Study of Adsorption of Acid Orange-7 over Aluminum Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ekta Khosla

    2013-01-01

    Full Text Available The adsorption behavior of acid orange-7 (AO-7 on aluminum oxide nanoparticles (ANP generated by sol-gel method has been investigated to understand the physicochemical process involved and to explore the potential use of nano particles in textile effluent treatment and management. The results revealed that ANP can remove AO-7 dye up to 97.6 mg/g at 303 K. The adsorption process is found to be pH dependent and the optimum pH obtained is 2.0. The equilibrium was established in 1 h. Langmuir, Freundlich, and Temkin Isotherm models were applied on the system. Scanning electron microscopic analysis reveals eye-catching nanoporous morphology of the material. The results of FTIR spectroscopy reveal that the process is electrostatic complexation mechanism driven. XRD studies revealed nanocrystalline structure of ANP. BET surface area measurement suggests high pore volume and surface area of adsorbent. The kinetic measurements suggest pseudo-second-order kinetic processes. The thermodynamic measurements suggest that all processes are endothermic accompanied with negative ΔG° and positive ΔS°, ΔH°.

  19. Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition.

    Science.gov (United States)

    Kim, Woo-Hee; Park, Sang-Joon; Son, Jong-Yeog; Kim, Hyungjun

    2008-01-30

    We fabricated metallic nanostructures directly on Si substrates through a hybrid nanoprocess combining atomic layer deposition (ALD) and a self-assembled anodic aluminum oxide (AAO) nanotemplate. ALD Ru films with Ru(DMPD)(EtCp) as a precursor and O(2) as a reactant exhibited high purity and low resistivity with negligible nucleation delay and low roughness. These good growth characteristics resulted in the excellent conformality for nanometer-scale vias and trenches. Additionally, AAO nanotemplates were fabricated directly on Si and Ti/Si substrates through a multiple anodization process. AAO nanotemplates with various hole sizes (30-100 nm) and aspect ratios (2:1-20:1) were fabricated by controlling the anodizing process parameters. The barrier layers between AAO nanotemplates and Si substrates were completely removed by reactive ion etching (RIE) using BCl(3) plasma. By combining the ALD Ru and the AAO nanotemplate, Ru nanostructures with controllable sizes and shapes were prepared on Si and Ti/Si substrates. The Ru nanowire array devices as a platform for sensor devices exhibited befitting properties of good ohmic contact and high surface/volume ratio.

  20. Volatile organic compound gas sensor based on aluminum-doped zinc oxide with nanoparticle.

    Science.gov (United States)

    Choi, Nak-Jin; Lee, Hyung-Kun; Moon, Seung Eon; Yang, Woo Seok; Kim, Jongdae

    2013-08-01

    Thick film semiconductor gas sensors based on aluminum-doped zinc oxide (AZO) with nanoparticle size were fabricated to detect volatile organic compound (VOC) existed in building, especially, formaldehyde (HCHO) gas which was known as the cause of sick building syndrome. The sensing materials for screen printing were prepared using roll milling process with binder. The crystallite sizes of prepared materials were about 15 nm through X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). Gas response characteristics were examined for formaldehyde (HCHO), benzene, carbon monoxide, carbon dioxide gas existing in building. In particular, the sensors showed responses to HCHO gas at sub ppm as a function of operating temperatures and gas concentrations. Also, we investigated sensitivity, repeativity, selectivity, and response time of sensor. The transients were very sharp, taking less than 2 s for 90% response. The sensor has shown very stable response at 350 degrees C and followed a very good behavior and showed 60% response in 50 ppb HCHO concentration at 350 degrees C operating temperatures.

  1. Atomic layer deposition as pore diameter adjustment tool for nanoporous aluminum oxide injection molding masks.

    Science.gov (United States)

    Miikkulainen, Ville; Rasilainen, Tiina; Puukilainen, Esa; Suvanto, Mika; Pakkanen, Tapani A

    2008-05-06

    The wetting properties of polypropylene (PP) surfaces were modified by adjusting the dimensions of the surface nanostructure. The nanostructures were generated by injection molding with nanoporous anodized aluminum oxide (AAO) as the mold insert. Atomic layer deposition (ALD) of molybdenum nitride film was used to control the pore diameters of the AAO inserts. The original 50-nm pore diameter of AAO was adjusted by depositing films of thickness 5, 10, and 15 nm on AAO. Bis(tert-butylimido)-bis(dimethylamido)molybdenum and ammonia were used as precursors in deposition. The resulting pore diameters in the nitride-coated AAO inserts were 40, 30, and 20 nm, respectively. Injection molding of PP was conducted with the coated inserts, as well as with the non-coated insert. Besides the pore diameter, the injection mold temperature was varied with temperatures of 50, 70, and 90 degrees C tested. Water contact angles of PP casts were measured and compared with theoretical contact angles calculated from Wenzel and Cassie-Baxter theories. The highest contact angle, 140 degrees , was observed for PP molded with the AAO mold insert with 30-nm pore diameter. The Cassie-Baxter theory showed better fit than the Wenzel theory to the experimental values. With the optimal AAO mask, the nanofeatures in the molded PP pieces were 100 nm high. In explanation of this finding, it is suggested that some sticking and stretching of the nanofeatures occurs during the molding. Increase in the mold temperature increased the contact angle.

  2. Vibration Durability Testing of Nickel Cobalt Aluminum Oxide (NCA Lithium-Ion 18650 Battery Cells

    Directory of Open Access Journals (Sweden)

    James Michael Hooper

    2016-04-01

    Full Text Available This paper outlines a study undertaken to determine if the electrical performance of Nickel Cobalt Aluminum Oxide (NCA 3.1 Ah 18650 battery cells can be degraded by road induced vibration typical of an electric vehicle (EV application. This study investigates if a particular cell orientation within the battery assembly can result in different levels of cell degradation. The 18650 cells were evaluated in accordance with Society of Automotive Engineers (SAE J2380 standard. This vibration test is synthesized to represent 100,000 miles of North American customer operation at the 90th percentile. This study identified that both the electrical performance and the mechanical properties of the NCA lithium-ion cells were relatively unaffected when exposed to vibration energy that is commensurate with a typical vehicle life. Minor changes observed in the cell’s electrical characteristics were deemed not to be statistically significant and more likely attributable to laboratory conditions during cell testing and storage. The same conclusion was found, irrespective of cell orientation during the test.

  3. NOM removal by adsorption and membrane filtration using heated aluminum oxide particles.

    Science.gov (United States)

    Cai, Zhenxiao; Kim, Jaeshin; Benjamin, Mark M

    2008-01-15

    Heated aluminum oxide particles (HAOPs) are a newly synthesized adsorbent with attractive properties for use in hybrid adsorption/membrane filtration systems. This study compared removal of natural organic matter (NOM) from water by adsorption onto HAOPs with that by adsorption onto powdered activated carbon (PAC) or coagulation with alum or ferric chloride (FeCl3); explored the overlap between the NOM molecules that preferentially adsorb to HAOPs and those that are removed by the more conventional approaches; and evaluated NOM removal and fouling in hybrid adsorbent/membrane systems. For equivalent molar doses of the trivalent metals, HAOPs remove more NOM, and NOM with higher SUVA254, than alum or FeCl3. Most of the HAOPs-nonadsorbable fraction of the NOM can be adsorbed by PAC; in fact, that fraction appears to be preferentially adsorbed compared to the average NOM in untreated water. Predeposition of the adsorbents on a microfiltration membrane improves system performance. For the water tested, at a flux of 100 L/m2-hr, predeposition of 11 mg/L PAC and 5 mg/L HAOPs (as Al3+) allowed the system to operate 5 times as long before the transmembrane pressure increased by 1 psi and to remove 10-20 times as much NOM as when no adsorbents were added.

  4. Nanoscale aluminum concaves for light-trapping in organic thin-films

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Adam, Jost; Cielecki, Pawel Piotr;

    2016-01-01

    Anodic aluminum oxide (AAO) templates, fabricated from oxalic acid and phosphoric acid, lead to non-periodic nanoscale concave structures in their underlying aluminum layer, which are investigated for their field-enhancement properties by applying a thin-film polymer coating based laser ablation...... technique. Local ablation spots, corresponding to field enhancement on the ridge edges of the aluminum concave nanostructures, are observed in surface-covering polymer films, and confirmed with FDTD studies. The field enhancement leads to improved light absorption in the applied polymer layers, which may...

  5. Nanoscale aluminum concaves for light-trapping in organic thin-films

    Science.gov (United States)

    Goszczak, Arkadiusz Jarosław; Adam, Jost; Cielecki, Paweł Piotr; Fiutowski, Jacek; Rubahn, Horst-Günter; Madsen, Morten

    2016-07-01

    Anodic aluminum oxide (AAO) templates, fabricated from oxalic acid and phosphoric acid, lead to non-periodic nanoscale concave structures in their underlying aluminum layer, which are investigated for their field-enhancement properties by applying a thin-film polymer coating based laser ablation technique. Local ablation spots, corresponding to field enhancement on the ridge edges of the aluminum concave nanostructures, are observed in surface-covering polymer films, and confirmed with FDTD studies. The field enhancement leads to improved light absorption in the applied polymer layers, which may be used as an efficient method for enhancing the power conversion efficiency of organic solar cells.

  6. Growth Mechanism and Optimized Parameters to Synthesize Nation-115 Nanowire Arrays with Anodic Aluminium Oxide Membranes as Templates

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lu; PAN Cao-Feng; ZHU Jing

    2008-01-01

    @@ Nafion-115 nanowire arrays are synthesized with an extrusion method using AAO membranes as templates. It is indicated that the vacuum treating of AAO templates before surface decoration plays an important role in obtaining high filling rate of the Nafion-115 nanowires in the AAO templates, while the concentration of Nafion-115 DMSO solutions does not affect the filling rate greatly. The optimized parameters to synthesize the Nafion-115 nanowire arrays are studied. The filling rate of the Nafion-115 nanowires in the AAO templates synthesized with the optimized parameters is about 95%. The growth mechanism of Nafion-115 nanowires is discussed to qualitatively explain the experimental results.

  7. Semitransparent polymer-based solar cells with aluminum-doped zinc oxide electrodes.

    Science.gov (United States)

    Wilken, Sebastian; Wilkens, Verena; Scheunemann, Dorothea; Nowak, Regina-Elisabeth; von Maydell, Karsten; Parisi, Jürgen; Borchert, Holger

    2015-01-14

    With the use of two transparent electrodes, organic polymer-fullerene solar cells are semitransparent and may be combined to parallel-connected multijunction devices or used for innovative applications like power-generating windows. A challenging issue is the optimization of the electrodes, to combine high transparency with adequate electric properties. In the present work, we study the potential of sputter-deposited aluminum-doped zinc oxide as an alternative to the widely used but relatively expensive indium tin oxide (ITO) as cathode material in semitransparent polymer-fullerene solar cells. Concerning the anode, we utilized an insulator-metal-insulator structure based on ultrathin Au films embedded between two evaporated MoO3 layers, with the outer MoO3 film (capping layer) serving as a light coupling layer. The performance of the ITO-free semitransparent polymer-fullerene solar cells was systematically studied as dependent on the thickness of the capping layer and the active layer as well as the illumination direction. These variations were found to have strong impact on the obtained photocurrent densities. We performed optical simulations of the electric field distribution within the devices using the transfer-matrix method, to analyze the origin of the current density variations in detail and provide deep insight into the device physics. With the conventional absorber materials studied here, optimized ITO-free and semitransparent devices reached 2.0% power conversion efficiency and a maximum optical transmission of 60%, with the device concept being potentially transferable to other absorber materials.

  8. Facile and environmentally friendly solution-processed aluminum oxide dielectric for low-temperature, high-performance oxide thin-film transistors.

    Science.gov (United States)

    Xu, Wangying; Wang, Han; Xie, Fangyan; Chen, Jian; Cao, Hongtao; Xu, Jian-Bin

    2015-03-18

    We developed a facile and environmentally friendly solution-processed method for aluminum oxide (AlOx) dielectrics. The formation and properties of AlOx thin films under various annealing temperatures were intensively investigated by thermogravimetric analysis-differential scanning calorimetry (TGA-DSC), X-ray diffraction (XRD), spectroscopic ellipsometry, atomic force microscopy (AFM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), impedance spectroscopy, and leakage current measurements. The sol-gel-derived AlOx thin film undergoes the decomposition of organic residuals and nitrate groups, as well as conversion of aluminum hydroxides to form aluminum oxide, as the annealing temperature increases. Finally, the AlOx film is used as gate dielectric for a variety of low-temperature solution-processed oxide TFTs. Above all, the In2O3 and InZnO TFTs exhibited high average mobilities of 57.2 cm(2) V(-1) s(-1) and 10.1 cm(2) V(-1) s(-1), as well as an on/off current ratio of ∼10(5) and low operating voltages of 4 V at a maximum processing temperature of 300 °C. Therefore, the solution-processable AlOx could be a promising candidate dielectric for low-cost, low-temperature, and high-performance oxide electronics.

  9. ATOMIC LAYER DEPOSITION OF TITANIUM OXIDE THIN FILMS ONNANOPOROUS ALUMINA TEMPLATES FOR MEDICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.

    2009-05-05

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. In addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

  10. Fabrication of large-area self-organizing gold nanostructures on a porous Al2O3 template for application as a SERS-substrate

    DEFF Research Database (Denmark)

    Nielsen, Peter; Hassing, Søren; Albrektsen, Ole;

    A new technique for fabrication of large-area self-organizing variably ordered gold nanostructures with sub-10 nm gaps on templates of hexagonally ordered porous anodic aluminum oxide is demonstrated. The size as well as the interparticle distance of the fabricated gold nanostructures are adjusted...... by application of various electrolytes used in anodization of the aluminum template and the thickness of gold sputter-coated on the pore layer. The fabricated substrates are characterized by SEM, and the applicability as SERS substrates is investigated by adsorption of rhodamine 6G on the nanostructures...

  11. The effect of plasma electrolytic oxidation on the mean stress sensitivity of the fatigue life of the 6082 aluminum alloy

    Science.gov (United States)

    Winter, L.; Morgenstern, R.; Hockauf, K.; Lampke, T.

    2016-03-01

    In this work the mean stress influence on the high cycle fatigue behavior of the plasma electrolytic oxidized (PEO) 6082 aluminum alloy (AlSi1MgMn) is investigated. The present study is focused on the fatigue life time and the susceptibility of fatigue-induced cracking of the oxide coating and their dependence on the applied mean stress. Systematic work is done comparing conditions with and without PEO treatment, which have been tested using three different load ratios. For the uncoated substrate the cycles to failure show a significant dependence on the mean stress, which is typical for aluminum alloys. With increased load ratio and therefore increased mean stress, the fatigue strength decreases. The investigation confirms the well-known effect of PEO treatment on the fatigue life: The fatigue strength is significantly reduced by the PEO process, compared to the uncoated substrate. However, also the mean stress sensitivity of the fatigue performance is reduced. The fatigue limit is not influenced by an increasing mean stress for the PEO treated conditions. This effect is firstly shown in these findings and no explanation for this effect can be found in literature. Supposedly the internal compressive stresses and the micro-cracks in the oxide film have a direct influence on the crack initiation and growth from the oxide film through the interface and in the substrate. Contrary to these findings, the susceptibility of fatigue-induced cracking of the oxide coating is influenced by the load ratio. At tension-tension loading a large number of cracks, which grow partially just in the aluminum substrate, are present. With decreasing load ratio to alternating tension-compression stresses, the crack number and length increases and shattering of the oxide film is more pronounced due to the additional effective compressive part of the load cycle.

  12. Constructing inverse V-type TiO{sub 2}-based photocatalyst via bio-template approach to enhance the photosynthetic water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jinghui; Zhou, Han; Ding, Jian; Zhang, Fan; Fan, Tongxiang, E-mail: txfan@sjtu.edu.cn; Zhang, Di

    2015-08-30

    Graphical abstract: Inverse V-type TiO{sub 2}-based photocatalyst was synthesized by using cross-linked titanium precursor to duplicate bio-template. - Highlights: • Cross-linked titanium precursor can facilitate an accurate duplication of templates. • In situ deposition of Ag{sup 0} from AgBr can maintain the completeness of surface structure. • Perfect inverse V-type Ag{sup 0}/TiO{sub 2} can achieve efficient water oxidation. - Abstract: Bio-template approach was employed to construct inverse V-type TiO{sub 2}-based photocatalyst with well distributed AgBr in TiO{sub 2} matrix by making dead Troides Helena wings with inverse V-type scales as the template. A cross-linked titanium precursor with homogenous hydrolytic rate, good liquidity, and low viscosity was employed to facilitate a perfect duplication of the template and the dispersion of AgBr based on appropriate pretreatment of the template by alkali and acid. The as-synthesized inverse V-type TiO{sub 2}/AgBr can be turned into inverse V-type TiO{sub 2}/Ag{sup 0} from AgBr photolysis during photocatalysis to achieve in situ deposition of Ag{sup 0} in TiO{sub 2} matrix, by this approach, to avoid the deformation of surface microstructure inherited from the template. The result showed that the cooperation of perfect inverse V-type structure and the well distributed TiO{sub 2}/Ag{sup 0} microstructures can efficiently boost the photosynthetic water oxidation compared to non-inverse V-type TiO{sub 2}/Ag{sup 0} and TiO{sub 2}/Ag{sup 0} without using template. The anti-reflection function of inverse V-type structure and the plasmatic effect of Ag{sup 0} might be able to account for the enhanced photon capture and efficient photoelectric conversion.

  13. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    Science.gov (United States)

    Hainey, Mel F.; Redwing, Joan M.

    2016-12-01

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  14. Ceriodaphnia dubia as a potential bio-indicator for assessing acute aluminum oxide nanoparticle toxicity in fresh water environment.

    Directory of Open Access Journals (Sweden)

    Sunandan Pakrashi

    Full Text Available Growing nanomaterials based consumer applications have raised concerns about their potential release into the aquatic ecosystems and the consequent toxicological impacts. So environmental monitoring of the nanomaterials in aqueous systems becomes imperative. The current study reveals the potential of Ceriodaphnia dubia (C. dubia as a bio-indicator for aluminum oxide nanoparticles in a fresh water aquatic ecosystem where it occupies an important ecological niche as a primary consumer. This study aims to investigate the aluminium oxide nanoparticle induced acute toxicity on Ceriodaphnia dubia in a freshwater system. The bioavailability of the aluminum oxide nanoparticles has been studied with respect to their aggregation behavior in the system and correlated with the toxicity endpoints. The oxidative stress generated by the particles contributed greatly toward their toxicity. The crucial role of leached aluminium ion mediated toxicity in the later phases (48 h and 72 h in conjunction with the effects from the nano-sized particles in the initial phases (24 h puts forth the dynamics of nanotoxicity in the test system. The internalization of nanoparticles (both gross and systemic uptake as substantiated through the transmission electron microscopy (TEM and inductively coupled plasma optical emission spectral (ICP-OES analysis was another major contributor toward acute toxicity. Concluding the present study, Ceriodaphnia dubia can be a promising candidate for bio-monitoring the aluminium oxide nanoparticles in a fresh water system.

  15. Microstructure and corrosion behavior of micro-arc oxidation coating on 6061 aluminum alloy pre-treated by high-temperature oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Dejiu, E-mail: sdj217@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Li, Guolong, E-mail: lglysu@163.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Guo, Changhong [College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China); Zou, Jie [China Aviation Industry Chengdu Engine (Group) Co. Ltd., Chengdu 610503 (China); Cai, Jingrui; He, Donglei; Ma, Haojie; Liu, Fangfei [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2013-12-15

    In this paper, we investigate the microstructure and corrosion behavior of the micro-arc oxidation (MAO) coating on 6061 aluminum alloy that pre-treated by high-temperature oxidation (HTO). Microstructure, chemical and corrosion behaviors of the fabricated MAO ceramic coatings were studied by using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and electrochemical corrosion tests. The results reveal that the pre-fabricated HTO film remarkably affects the formation of the MAO coating, leads to an enriched content of Mg, and decreases the compactness of the coating. The corrosion resistance of the 6061 aluminum alloy has been significantly improved by treatments of HTO, normal MAO (NMAO) and HTO pre-treated MAO (HTO-MAO), and the NMAO coating exhibits the best corrosion performance. The content of Mg in HTO pre-fabricated film is remarkedly higher than that in the substrate, which greatly influences the formation of the MAO coating.

  16. Influence of the surface pre-treatment of aluminum on the processes of formation of cerium oxides protective films

    Science.gov (United States)

    Andreeva, R.; Stoyanova, E.; Tsanev, A.; Stoychev, D.

    2016-03-01

    It is known that there is special interest in the contemporary investigations on conversion treatment of aluminum aimed at promoting its corrosion stability, which is focused on electrolytes on the basis of salts of metals belonging to the group of rare-earth elements. Their application is especially attractive, as it enables a successful substitution of the presently applied highly efficient, but at the same time toxic Cr6+-containing electrolytes. The present paper presents a study on the influence of the preliminary alkaline activation and acidic de-oxidation of the aluminum surface on the processes of immersion formation of protective cerium oxides films on Al 1050. The results obtained show that their deposition from simple electrolytes (containing only salts of Ce3+ ions) on the Al surface, treated only in alkaline solution, occurs at a higher rate, which leads to preparing thicker oxide films having a better protective ability. In the cases when the formation of oxide films is realized in a complex electrolyte (containing salts of Ce3+ and Cu2+ ions), better results are obtained with respect to the morphology and protective action of cerium oxides film on samples that have been consecutively activated in alkaline solution and deoxidized in acidic solution. Electrochemical investigations were carried out in a model corrosion medium (0.1 M NaCl); it was shown that the cerium protective films, deposited by immersion, have a cathodic character with regard to the aluminum support and inhibit the occurrence of the depolarizing corrosion process -- the reaction of oxygen reduction.

  17. Effects of aluminum additions to gas atomized reaction synthesis produced oxide dispersion strengthened alloys

    Science.gov (United States)

    Spicher, Alexander Lee

    The production of an aluminum containing ferritic oxide dispersion strengthened (ODS) alloy was investigated. The production method used in this study was gas atomization reaction synthesis (GARS). GARS was chosen over the previously commercial method of mechanical alloying (MA) process due to complications from this process. The alloy compositions was determined from three main components; corrosion resistance, dispersoid formation, and additional elements. A combination of Cr and Al were necessary in order to create a protective oxide in the steam atmosphere that the boiler tubing in the next generation of coal-fired power plants would be exposed to. Hf and Y were chosen as dispersoid forming elements due to their increased thermal stability and potential to avoid decreased strength caused by additions of Al to traditional ODS materials. W was used as an additive due to benefits as a strengthener as well as its benefits for creep rupture time. The final composition chosen for the alloy was Fe-16Cr-12Al-0.9W-0.25Hf-0.2Y at%. The aforementioned alloy, GA-1-198, was created through gas atomization with atomization gas of Ar-300ppm O2. The actual composition created was found to be Fe-15Cr-12.3Al-0.9W-0.24Hf-0.19Y at%. An additional alloy that was nominally the same without the inclusion of aluminum was created as a comparison for the effects on mechanical and corrosion properties. The actual composition of the comparison alloy, GA-1-204, was Fe-16Cr-0Al-0.9W-0.25Hf-0.24Y at%. An investigation on the processing parameters for these alloys was conducted on the GA-1-198 alloy. In order to predict the necessary amount of time for heat treatment, a diffusion study was used to find the diffusion rate of oxygen in cast alloys with similar composition. The diffusion rate was found to be similar to that of other GARS compositions that have been created without the inclusion of aluminum. The effect of heat treatment time was investigated with temperatures of 950°C, 1000

  18. Growth of porous type anodic oxide films at micro-areas on aluminum exposed by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Tatsuya [Graduate School of Engineering, Hokkaido University, N13-W8, Kita-Ku, Sapporo 060-8628 (Japan)], E-mail: kiku@eng.hokudai.ac.jp; Sakairi, Masatoshi [Graduate School of Engineering, Hokkaido University, N13-W8, Kita-Ku, Sapporo 060-8628 (Japan); Takahashi, Hideaki [Asahikawa National College of Technology, Syunkohdai, 2-2, 1-6, Asahikawa 071-8142 (Japan)

    2009-11-30

    Aluminum covered with pore-sealed anodic oxide films was irradiated with a pulsed Nd-YAG laser to remove the oxide film at micro-areas. The specimen was re-anodized for long periods to examine the growth of porous anodic oxide films at the area where substrate had been exposed by measuring current variations and morphological changes in the oxide during the re-anodizing. The chemical dissolution resistance of the pore-sealed anodic oxide films in an oxalic acid solution was also examined by measuring time-variations in rest potentials during immersion. The resistance to chemical dissolution of the oxide film became higher with increasing pore-sealing time and showed higher values at lower solution temperatures. During potentiostatic re-anodizing at five 35-{mu}m wide and 4-mm long lines for 72 h after the film was removed the measured current was found to increase linearly with time. Semicircular columnar-shaped porous type anodic oxide was found to form during the re-anodizing at the laser-irradiated area, and was found to grow radially, thus resulting in an increase in the diameter. After long re-anodizing, the central and top parts of the oxide protruded along the longitudinal direction of the laser-irradiated area. The volume expansion during re-anodizing resulted in the formation of cracks, parallel to the lines, in the oxide film formed during the first anodizing.

  19. Template method for fabricating interdigitate p-n heterojunction for organic solar cell

    OpenAIRE

    Hu, Jianchen; Shirai, Yasuhiro; Han, Liyuan; Wakayama, Yutaka

    2012-01-01

    Anodic aluminum oxide (AAO) templates are used to fabricate arrays of poly(3-hexylthiophene) (P3HT) pillars. This technique makes it possible to control the dimensions of the pillars, namely their diameters, intervals, and heights, on a tens-of-nanometer scale. These features are essential for enhancing carrier processes such as carrier generation, exciton diffusion, and carrier dissociation and transport. An interdigitated p-n junction between P3HT pillars and fullerene (C60) exhibits a phot...

  20. Characterization of Nano-scale Aluminum Oxide Transport Through Porous Media

    Science.gov (United States)

    Norwood, Sasha Norien

    Land application of biosolids has become common practice in the United States as an alternative to industrial fertilizers. Although nutrient rich, biosolids have been found to contain high concentrations of unregulated and/or unrecognized emerging contaminants (e.g., pharmaceuticals, personal care products) while containing a significant fraction of inorganic nano-scale colloidal materials such as oxides of iron, titanium, and aluminum. Given their reactivity and small size, there are many questions concerning the potential migration of these nano-sized colloidal materials through the soil column and into our surface and groundwater bodies. Transport of emerging pollutants of concern through the soil column, at minimum, is impacted by colloidal properties (e.g., chemical composition, shape, aggregation kinetics), solution chemistry (e.g., pH, ionic strength, natural organic matter), and water flow velocity. The purpose of this current research was to characterize the long-term transport behavior of aluminum oxide nanoparticles (Al 2O3) through a natural porous media with changes in pH, aqueous-phase concentration, pore-water velocity and electrolyte valence. Additionally, deposition rates during the initial stages of deposition were compared to several models developed based on colloid filtration theory and DLVO stability theory. Benchtop column laboratory experiments showed that, under environmentally relevant groundwater conditions, Al2O3 nanoparticles are mobile through saturated porous media. Mobility increased under conditions in which the nanoparticles and porous media were of like charge (pH 9). Changes in linear pore water velocity, under these same high pH conditions, showed similar transport behavior with little mass retained in the system. Deposition is believed to be kinetically controlled at pH 9, as evidenced by the slightly earlier breakthrough as flow rate increased and was further supported by observed concentration effects on the arrival wave

  1. Evaluation of alpha and gamma aluminum oxide nanoparticle accumulation, toxicity, and depuration in Artemia salina larvae.

    Science.gov (United States)

    Ates, Mehmet; Demir, Veysel; Arslan, Zikri; Daniels, James; Farah, Ibrahim O; Bogatu, Corneliu

    2015-01-01

    In this study, Artemia salina (crustacean filter feeders) larvae were used as a test model to investigate the toxicity of aluminum oxide nanoparticles (Al2O3 NPs) on marine microorganisms. The uptake, toxicity, and elimination of α-Al2O3 (50 nm and 3.5 μm) and γ-Al2O3 (5 nm and 0.4 μm) NPs were studied. Twenty-four and ninety-six hour exposures of different concentrations of Al2O3 NPs to Artemia larvae were conducted in a seawater medium. When suspended in water, Al2O3 NPs aggregated substantially with the sizes ranging from 6.3 nm to >0.3 µm for spherical NPs and from 250 to 756 nm for rod-shaped NPs. The phase contrast microscope images showed that NPs deposited inside the guts as aggregates. Inductively coupled plasma mass spectrometry analysis showed that large particles (3.5 μm α-Al2O3) were not taken up by Artemia, whereas fine NPs (0.4 μm γ-Al2O3) and ultra-fine NPs (5 nm γ-Al2O3 and 50 nm α-Al2O3) accumulated substantially. Differences in toxicity were detected as changing with NP size and morphology. The malondialdehyde levels indicated that smaller γ-Al2O3 (5 nm) NPs were more toxic than larger γ-Al2O3 (0.4 µm) particulates in 96 h. The highest mortality was measured as 34% in 96 h for γ-Al2O3 NPs (5 nm) at 100 mg/L (LC50 > 100 mg/L). γ-Al2O3 NPs were more toxic than α-Al2O3 NPs at all conditions.

  2. Rapid susceptibility testing and microcolony analysis of Candida spp. cultured and imaged on porous aluminum oxide.

    Directory of Open Access Journals (Sweden)

    Colin J Ingham

    Full Text Available BACKGROUND: Acquired resistance to antifungal agents now supports the introduction of susceptibility testing for species-drug combinations for which this was previously thought unnecessary. For pathogenic yeasts, conventional phenotypic testing needs at least 24 h. Culture on a porous aluminum oxide (PAO support combined with microscopy offers a route to more rapid results. METHODS: Microcolonies of Candida species grown on PAO were stained with the fluorogenic dyes Fun-1 and Calcofluor White and then imaged by fluorescence microscopy. Images were captured by a charge-coupled device camera and processed by publicly available software. By this method, the growth of yeasts could be detected and quantified within 2 h. Microcolony imaging was then used to assess the susceptibility of the yeasts to amphotericin B, anidulafungin and caspofungin (3.5 h culture, and voriconazole and itraconazole (7 h culture. SIGNIFICANCE: Overall, the results showed good agreement with EUCAST (86.5% agreement; n = 170 and E-test (85.9% agreement; n = 170. The closest agreement to standard tests was found when testing susceptibility to amphotericin B and echinocandins (88.2 to 91.2% and the least good for the triazoles (79.4 to 82.4%. Furthermore, large datasets on population variation could be rapidly obtained. An analysis of microcolonies revealed subtle effects of antimycotics on resistant strains and below the MIC of sensitive strains, particularly an increase in population heterogeneity and cell density-dependent effects of triazoles. Additionally, the method could be adapted to strain identification via germ tube extension. We suggest PAO culture is a rapid and versatile method that may be usefully adapted to clinical mycology and has research applications.

  3. Oxalate-assisted oxidative degradation of 4-chlorophenol in a bimetallic, zero-valent iron-aluminum/air/water system.

    Science.gov (United States)

    Fan, Jinhong; Wang, Hongwu; Ma, Luming

    2016-08-01

    The reaction of zero-valent iron and aluminum with oxygen produced reactive oxidants that can oxidize 4-chlorophenol (4-CP). However, oxidant yield without metal surface cleaning to dissolve the native oxide layer or in the absence of ligands was too low for practical applications. The addition of oxalate (ox) to dissolved oxygen-saturated solution of Fe(0)-Al(0) significantly increased oxidant yield because of the dissolution, pH buffer, and complexing characteristics of ox. Ox-enhanced reactive oxidant generation was affected by ox concentration and solution pH. The critical effect of ox dosing was confirmed with the reactive species of [Fe(II)(ox)0] and [Fe(II)(ox)2 (2-)]. Systematic studies on the effect of the initial and in situ solution pH revealed that 4-CP oxidation was controlled by the continuous release of dissolved Fe(2+) and Al(3+), their fate, and the activation mechanisms of O2 reduction. The degradation pathway of 4-CP in ox-enhanced Fe(0)-Al(0)/O2 may follow the 4-chlorocatechol pathway. The robustness of the ox-enhanced Al(0)-Fe(0)-O2 process was determined with one-time dosing of ox. Therefore, ox is an ideal additive to enhancing the Fe(0)-Al(0)/O2 system for the oxidative degradation of aqueous organic pollutants.

  4. The simultaneous removal of calcium, magnesium and chloride ions from industrial wastewater using magnesium-aluminum oxide.

    Science.gov (United States)

    Hamidi, Roya; Kahforoushan, Davood; Fatehifar, Esmaeil

    2013-01-01

    In this article, a method for simultaneous removal of calcium, magnesium and chloride by using Mg0.80Al0.20O1.10 as a Magnesium-Aluminum oxide (Mg‒Al oxide) was investigated. Mg‒Al oxide obtained by thermal decomposition of the Mg-Al layered double hydroxide (Mg-Al LDH). The synthesized Mg‒Al oxide were characterized with respect to nitrogen physicosorption, X-ray diffraction (XRD) and field emission scan electron microscopy (FESEM) morphology. Due to high anion-exchange capacity of Mg‒Al oxide, it was employed in simultaneously removal of Cl(-), Mg(+2) and Ca(+2) from distiller waste of a sodium carbonate production factory. For this purpose, experiments were designed to evaluate the effects of quantity of Mg‒Al oxide, temperature and time on the removal process. The removal of Cl(-), Mg(+2) and Ca(+2) from wastewater was found 93.9%, 93.74% and 93.25% at 60°C after 0.5 h, respectively. Results showed that the removal of Cl(-), Mg(+2) and Ca(+2) by Mg‒Al oxide increased with increasing temperature, time and Mg‒Al oxide quantity.

  5. Hydrogen absorption in solid aluminum during high-temperature steam oxidation

    Science.gov (United States)

    Andreev, L. A.; Gelman, B. G.; Zhukhovitskiy, A. A.

    1979-01-01

    Hydrogen is emitted by aluminum heated in a vacuum after high-temperature steam treatment. Wire samples are tested for this effect, showing dependence on surface area. Two different mechanisms of absorption are inferred, and reactions deduced.

  6. Preparation of Chromium Oxide Coatings on Aluminum Borate Whiskers by a Hydrothermal Deposition Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Aluminum borate whiskers (9Al2O32B2O3) can be used to reinforce aluminum alloys to produce light and strong composites. However, the adverse interfacial reactions between the whiskers and the aluminum alloys inhibit their practical uses; therefore, a protective coating is needed on whiskers. In this work, aluminum borate whiskers were coated with chromium-coating deposits in a hydrothermal solution containing CrCl3, Na2C4H4O6, NaPH2O2, and H3BO3. The presence of the impurity P in the hydrothermal deposits can be avoided by reducing the amount of NaPH2O2 in the coating solution. Thermodynamic analysis was used to discuss the behavior of ions in the coating process. The subsequent heating of the hydrothermal products in air at 800 ℃ yielded smooth Cr2O3 films with a thickness of 0.060.07 μm.

  7. Facile template-free synthesis of pine needle-like Pd micro/nano-leaves and their associated electro-catalytic activities toward oxidation of formic acid

    Directory of Open Access Journals (Sweden)

    Wang Chuanyi

    2011-01-01

    Full Text Available Abstract Pine needle-like Pd micro/nano-leaves have been synthesized by a facile, template-free electrochemical method. As-synthesized Pd micro/nano-leaves were directly electrodeposited on an indium tin oxide substrate in the presence of 1.0 mM H2PdCl4 + 0.33 M H3PO4. The formation processes of Pd micro/nano-leaves were revealed by scanning electron microscope, and further characterized by X-ray diffraction and electrochemical analysis. Compared to conventional Pd nanoparticles, as-prepared Pd micro/nano-leaves exhibit superior electrocatalytic activities for the formic acid oxidation.

  8. Aluminum-doped zinc oxide (ZnO:Al) thin films deposited on glass substrates by chemical spray starting from zinc pentanedionate and aluminum chloride

    Energy Technology Data Exchange (ETDEWEB)

    Olvera, M. de la L, E-mail: molvera@cinvestav.mx [Departamento de Ingenieria Electrica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional CINVESTAV-IPN, SEES, Apartado Postal 14740, Mexico, D.F. 07000 (Mexico); Maldonado, A.; Vega-Perez, J. [Departamento de Ingenieria Electrica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional CINVESTAV-IPN, SEES, Apartado Postal 14740, Mexico, D.F. 07000 (Mexico); Solorza-Feria, O. [Departamento de Quimica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional CINVESTAV-IPN, SEES, Apartado Postal 14740, Mexico, D.F. 07000 (Mexico)

    2010-10-25

    Aluminum-doped zinc oxide thin films (ZnO:Al) were deposited on sodalime glass substrates by the chemical spray technique, starting from zinc pentanedionate and aluminum chloride. The effect of the substrate temperature on the structural, morphological, optical, and electrical properties was studied. A constant [Al]/[Zn] = 3 at.% ratio was used. As the substrate temperature increases, the electrical resistance decreases, reaching a minimum value, in the order of 3 x 10{sup -2} {Omega} cm, for as-grown films deposited at 475 deg. C. The Hall mobility and carrier concentration for these films were around 0.6 cm{sup 2}/(V s), and 3.42 x 10{sup 20} cm{sup -3}, respectively. Further decrease in the resistivity, in the order of 1.5 x 10{sup -2} {Omega} cm, was observed after a heat treatment in vacuum, during 1 h, at 400 deg. C. All the samples were polycrystalline, with a variation in the preferential growth. Samples deposited at 450 deg. C show a (0 0 2) preferential growth whereas films deposited at higher temperatures present a significant contribution of other planes. As the substrate temperature increases, the morphology shows slight changes, since the grain size increases. The transmittance in the visible region (400-700 nm) is high, typically of 85% at 550 nm, and band gap values oscillated around 3.3 eV. These results show that zinc pentanedionate can be a good candidate for the manufacturing of transparent conductive ZnO:Al thin films.

  9. Chemical and structural analysis of solvothermal synthesized tungsten oxide nanotube without template and its hydrogen sensitive property

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Taisheng; Zhang, Yue, E-mail: zhangy@buaa.edu.cn; Li, Chen

    2014-01-25

    Graphical abstract: Imaged models of formation of nanotube during crystal growth: (a) precursor react with each other; (b) the crystal plane bended as crystallization; (c) the nanotube formed finally. Highlights: • The WO{sub 3} naonotube was prepared by solvothermal method without any addition. • The steric effect and the nucleation and growth mechanism resulted in the nanotube. • The nanotube film surface showed high oxygen vacancies. • The nanotube film showed diffusion dominated sensitivity. -- Abstract: Tungsten oxide nanotubes were synthesized by solvothermal process without template. The steric effect and the concentration of WCl{sub 6} are the dominant factors for the formation mechanism of the nanotube. The steric effect was experimentally and systematically studied with solvents including ethanol, isopropanol, n-propanol and butylalcohol, which have different molecular configuration and length, while the effect of concentration was investigated by characterizing the nanostructured productions. The samples have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The surface chemistry of the nanotube is characterized by X-ray photoelectron spectroscopy (XPS). The results indicated that the solvents species and WCl{sub 6} concentration obviously diversified the morphologies of the products; the nanotubes synthesized with isopropanol composed of W{sub 18}O{sub 49} phase; the crystal defects (O atom vacancy) formed during rapid crystallization could be modified by heat treatment. The DC electrical response of the nanotube thin film to hydrogen was measured the temperature range from 200 °C to 300 °C, which indicated a decline in electrical resistance with good sensitivity, and showed the mechanism that the reaction limited process works at low temperature, whereas the diffusion limited process works at higher temperature.

  10. Syntheses, structures, and ionic conductivities of perovskite-structured lithium–strontium–aluminum/gallium–tantalum-oxides

    Energy Technology Data Exchange (ETDEWEB)

    Phraewphiphat, Thanya, E-mail: thanya@echem.titech.ac.jp [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Iqbal, Muhammad, E-mail: iqbal@echem.titech.ac.jp [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Suzuki, Kota, E-mail: ksuzuki@echem.titech.ac.jp [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Matsuda, Yasuaki, E-mail: matsuda@chem.mie-u.ac.jp [Department of Chemistry, Mie University, 1577 Kurimamachiyacho, Tsu, Mie 514-8507 (Japan); Yonemura, Masao, E-mail: masao.yonemura@kek.jp [High Energy Accelerator Research Organization, Tokai-mura, Naka-gun, Ibaraki 319-1106 (Japan); Hirayama, Masaaki, E-mail: hirayama@echem.titech.ac.jp [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Kanno, Ryoji, E-mail: kanno@echem.titech.ac.jp [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan)

    2015-05-15

    The ionic conductivities of new perovskite-structured lithium–strontium–aluminum/gallium–tantalum oxides were investigated. Solid solutions of the new perovskite oxides, (Li{sub x}Sr{sub 1−x})(Al{sub (1−x)/2}Ta{sub (1+x)/2})O{sub 3} and (Li{sub x}Sr{sub 1−x})(Ga{sub (1−x)/2}Ta{sub (1+x)/2})O{sub 3}, were synthesized using a ball-milled-assisted solid-state method. The partial substitution of the smaller Ga{sup +3} for Ta{sup +5} resulted in new compositions, the structures of which were determined by neutron diffraction measurements using a cubic perovskite structural model with the Pm−3m space group. Vacancies were introduced into the Sr(Li) sites by the formation of solid solutions with compositions (Li{sub x}Sr{sub 1−x−y}☐{sub y})(Ga{sub [(1−x)/2]−y}Ta{sub [(1+x)/2]+y})O{sub 3}, where the composition range of 0≤y≤0.20 was examined for x=0.2 and 0.25. The highest conductivity, 1.85×10{sup −3} S cm{sup −1} at 250 °C, was obtained for (Li{sub 0.25}Sr{sub 0.625}☐{sub 0.125})(Ga{sub 0.25}Ta{sub 0.75})O{sub 3} (x=0.25, y=0.125). Enhanced ionic conductivities were achieved by the introduction of vacancies at the A-sites. - Graphical abstract: Novel lithium-conducting oxides with the cubic perovskite structure (Li{sub x}Sr{sub 1−x−y}☐{sub y})(Ga{sub [(1−x)/2]−y}Ta{sub [(1+x)/2]+y})O{sub 3} provide a specific solid-solution region with various x and y values, exhibiting the highest ionic conductivity (1.85 S cm{sup −1} at 250 °C) for (Li{sub 0.25}Sr{sub 0.625}☐{sub 0.125})(Ga{sub 0.25}Ta{sub 0.75})O{sub 3} (x=0.25, y=0.125 in (Li{sub x}Sr{sub 1−x−y}☐{sub y})(Ga{sub [(1−x)/2]−y}Ta{sub [(1+x)/2]+y})O{sub 3}). The vacancies (☐) introduced into the A-sites contribute to the enhancement of lithium diffusion in the perovskite structure because of the enlargement of the bottleneck size and suppression of the interaction between lithium and oxygen. - Highlights: • The perovskite-structured novel Li

  11. Influence of Surface Oxide Films on Elastic Behaviors of Straight Screw Dislocations Parallel to the Surface of Pure Aluminum

    Institute of Scientific and Technical Information of China (English)

    Weimin MAO; Dong LI; Yongning YU

    2007-01-01

    The image stress of straight screw dislocations parallel to the medium surface covered by thin heterogeneous films was analyzed and deduced, in order to calculate the image shear stress. The relationship between image stress and distance from the screw dislocation to the interface of pure aluminum and its oxide covering was calculated based on the analysis. It was shown quantitatively that a sign conversion of the image stress appears in the case of thin oxide covering, while dislocation would pile up near the interface because of the possible slips of the screw dislocations induced by the image stress, which might break down the very thin oxide covering. Further investigation on edge dislocations or other dislocation configurations need to be done.

  12. A colorimetric sensor based on anodized aluminum oxide (AAO) substrate for the detection of nitroaromatics.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Wang, H. H.; Indacochea, J. E.; Wang, M. L. (Materials Science Division); (Northeastern Univ.); (Univ. of Illinois at Chicago)

    2011-12-15

    Simple and low cost colorimetric sensors for explosives detection were explored and developed. Anodized aluminum oxide (AAO) with large surface area through its porous structure and light background color was utilized as the substrate for colorimetric sensors. Fabricated thin AAO films with thickness less than {approx} 500 nm allowed us to observe interference colors which were used as the background color for colorimetric detection. AAO thin films with various thickness and pore-to-pore distance were prepared through anodizing aluminum foils at different voltages and times in dilute sulfuric acid. Various interference colors were observed on these samples due to their difference in structures. Accordingly, suitable anodization conditions that produce AAO samples with desired light background colors for optical applications were obtained. Thin film interference model was applied to analyze the UV-vis reflectance spectra and to estimate the thickness of the AAO membranes. We found that the thickness of produced AAO films increased linearly with anodization time in sulfuric acid. In addition, the growth rate was higher for AAO anodized using higher voltages. The thin film interference formulism was further validated with a well established layer by layer deposition technique. Coating poly(styrene sulfonate) sodium salt (PSS) and poly(allylamine hydrochloride) (PAH) layer by layer on AAO thin film consistently shifted its surface color toward red due to the increase in thickness. The red shift of UV-vis reflectance was correlated quantitatively to the number of layers been assembled. This sensitive red shift due to molecular attachment (increase in thickness) on AAO substrate was applied toward nitroaromatics detection. Aminopropyltrimethoxysilane (APTS) which can be attached onto AAO nanowells covalently through silanization and attract TNT molecules was coated and applied for TNT detection. UV-vis spectra of AAO with APTS shifted to the longer wavelength side due to

  13. Soft template strategy to synthesize iron oxide-titania yolk-shell nanoparticles as high-performance anode materials for lithium-ion battery applications.

    Science.gov (United States)

    Lim, Joohyun; Um, Ji Hyun; Ahn, Jihoon; Yu, Seung-Ho; Sung, Yung-Eun; Lee, Jin-Kyu

    2015-05-18

    Yolk-shell-structured nanoparticles with iron oxide core, void, and a titania shell configuration are prepared by a simple soft template method and used as the anode material for lithium ion batteries. The iron oxide-titania yolk-shell nanoparticles (IO@void@TNPs) exhibit a higher and more stable capacity than simply mixed nanoparticles of iron oxide and hollow titania because of the unique structure obtained by the perfect separation between iron oxide nanoparticles, in combination with the adequate internal void space provided by stable titania shells. Moreover, the structural effect of IO@void@TNPs clearly demonstrates that the capacity retention value after 50 cycles is approximately 4 times that for IONPs under harsh operating conditions, that is, when the temperature is increased to 80 °C.

  14. Structural, Optical, and Dielectric Properties of Aluminum Oxide Nanofibers Synthesized by a Lower-Temperature Sol-Gel Approach

    Science.gov (United States)

    Riaz, Saira; Sajid-ur-Rehman; Abutalib, Mymona; Naseem, Shahzad

    2016-10-01

    Alumina (Al2O3) is the most versatile and important ceramic material, having applications in various fields including electronic devices. It is stable at high temperatures and is chemically inert. The sol-gel method, a relatively lower-temperature technique, has been used to synthesize aluminum oxide nanofibers. The molarity of the sol concentration was varied as 0.7 M, 0.8 M, 0.9 M, 1.0 M, and 1.1 M. The structural, optical, and dielectric properties of the as-synthesized nanofibers were characterized. x-ray diffraction (XRD) analysis results confirmed formation of α-Al2O3 phase of aluminum oxide, notably without any heat treatment or use of water as solvent. The crystallite size and unit cell volume of the nanofibers increased as the sol concentration was increased to 0.9 M, but further increase in sol concentration resulted in reduction of crystallite size and increase in dislocations. Scanning electron microscopy (SEM) results revealed uniform distribution of nanofibers (˜25 nm to 30 nm) under all conditions. Nanofibers prepared using sol concentration of 0.9 M showed high transmission (˜89%) in the visible and infrared regions. The energy bandgap varied from 3.69 eV to 4.1 eV with the variation in molar concentration. Lower bandgap correlated with defect-induced states in the bandgap. The high refractive index is indicative of high density of aluminum oxide nanofibers. High grain-boundary resistance (1.455 MΩ) and high dielectric constant (˜15.76) along with low tangent loss were observed at molar concentration of 0.9 M.

  15. Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures

    Science.gov (United States)

    Yang, Xi; Gao, Pingqi; Yang, Zhenhai; Zhu, Juye; Huang, Feng; Ye, Jichun

    2017-03-01

    Among new flexible transparent conductive electrode (TCE) candidates, ultrathin Ag film (UTAF) is attractive for its extremely low resistance and relatively high transparency. However, the performances of UTAF based TCEs critically depend on the threshold thickness for growth of continuous Ag films and the film morphologies. Here, we demonstrate that these two parameters could be strongly altered through the modulation of substrate surface energy. By minimizing the surface energy difference between the Ag film and substrate, a 9 nm UTAF with a sheet resistance down to 6.9 Ω sq‑1 can be obtained using an electron-beam evaporation process. The resultant UTAF is completely continuous and exhibits smoother morphologies and smaller optical absorbances in comparison to the counterpart of granular-type Ag film at the same thickness without surface modulation. Template-stripping procedure is further developed to transfer the UTAFs to flexible polymer matrixes and construct Al2O3/Ag/MoOx (AAM) electrodes with excellent surface morphology as well as optical and electronic characteristics, including a root-mean-square roughness below 0.21 nm, a transparency up to 93.85% at 550 nm and a sheet resistance as low as 7.39 Ω sq‑1. These AAM based electrodes also show superiority in mechanical robustness, thermal oxidation stability and shape memory property.

  16. Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures

    Science.gov (United States)

    Yang, Xi; Gao, Pingqi; Yang, Zhenhai; Zhu, Juye; Huang, Feng; Ye, Jichun

    2017-01-01

    Among new flexible transparent conductive electrode (TCE) candidates, ultrathin Ag film (UTAF) is attractive for its extremely low resistance and relatively high transparency. However, the performances of UTAF based TCEs critically depend on the threshold thickness for growth of continuous Ag films and the film morphologies. Here, we demonstrate that these two parameters could be strongly altered through the modulation of substrate surface energy. By minimizing the surface energy difference between the Ag film and substrate, a 9 nm UTAF with a sheet resistance down to 6.9 Ω sq−1 can be obtained using an electron-beam evaporation process. The resultant UTAF is completely continuous and exhibits smoother morphologies and smaller optical absorbances in comparison to the counterpart of granular-type Ag film at the same thickness without surface modulation. Template-stripping procedure is further developed to transfer the UTAFs to flexible polymer matrixes and construct Al2O3/Ag/MoOx (AAM) electrodes with excellent surface morphology as well as optical and electronic characteristics, including a root-mean-square roughness below 0.21 nm, a transparency up to 93.85% at 550 nm and a sheet resistance as low as 7.39 Ω sq−1. These AAM based electrodes also show superiority in mechanical robustness, thermal oxidation stability and shape memory property. PMID:28291229

  17. Gas-Phase Partial Oxidation of Lignin to Carboxylic Acids over Vanadium Pyrophosphate and Aluminum-Vanadium-Molybdenum.

    Science.gov (United States)

    Lotfi, Samira; Boffito, Daria C; Patience, Gregory S

    2015-10-26

    Lignin is a complex polymer that is a potential feedstock for aromatic compounds and carboxylic acids by cleaving the β-O-4 and 5-5' linkages. In this work, a syringe pump atomizes an alkaline solution of lignin into a catalytic fluidized bed operating above 600 K. The vanadium heterogeneous catalysts convert all the lignin into carboxylic acids (up to 25 % selectivity), coke, carbon oxides, and hydrogen. Aluminum-vanadium-molybdenum mostly produced lactic acid (together with formic acid, acrylic acid, and maleic anhydride), whereas the vanadium pyrophosphate catalyst produced more maleic anhydride.

  18. Multi-electrolyte-step anodic aluminum oxide method for the fabrication of self-organized nanochannel arrays

    Science.gov (United States)

    2012-01-01

    Nanochannel arrays were fabricated by the self-organized multi-electrolyte-step anodic aluminum oxide [AAO] method in this study. The anodization conditions used in the multi-electrolyte-step AAO method included a phosphoric acid solution as the electrolyte and an applied high voltage. There was a change in the phosphoric acid by the oxalic acid solution as the electrolyte and the applied low voltage. This method was used to produce self-organized nanochannel arrays with good regularity and circularity, meaning less power loss and processing time than with the multi-step AAO method. PMID:22333268

  19. Antibacterial activity of Nb–aluminum oxide prepared by the non-hydrolytic sol–gel route

    OpenAIRE

    Alfenas, C. dos S.; Ricci, G. P.; De Faria, E. H.; Saltarelli, M.; Lima, O. J. de; Rocha, Z. N. da; E. J. Nassar; Calefi,Paulo Sergio; Montanari, Lilian B.; Martins, Carlos H. Gomes; Katia J. Ciuffi

    2011-01-01

    Acesso restrito: Texto completo. p. 65-70. Brazil has been the largest producer of niobium (Nb2O5) since 1980, and this material is usually applied to reduce corrosion in alloys. In addition, it has recently been evaluated for use in other technological areas, such as adsorption and catalysis. This paper presents the results of the antibacterial activity of Nb–aluminum oxide, designated MAC–Nb5+, prepared by the non-hydrolytic sol–gel route. The resulting material MAC–Nb5+ was character...

  20. Understanding materials behavior from atomistic simulations: Case study of al-containing high entropy alloys and thermally grown aluminum oxide

    Science.gov (United States)

    Yinkai Lei

    Atomistic simulation refers to a set of simulation methods that model the materials on the atomistic scale. These simulation methods are faster and cheaper alternative approaches to investigate thermodynamics and kinetics of materials compared to experiments. In this dissertation, atomistic simulation methods have been used to study the thermodynamic and kinetic properties of two material systems, i.e. the entropy of Al-containing high entropy alloys (HEAs) and the vacancy migration energy of thermally grown aluminum oxide. (Abstract shortened by ProQuest.).

  1. Factors influencing catalytic wet peroxide oxidation of maleic acid in aqueous phase over copper/micelle templated silica-3-aminopropyltrimethoxysilane catalyst.

    Science.gov (United States)

    Daniel, Lilian; Katima, Jamidu H Y

    2009-01-01

    Catalytic wet peroxide oxidation (CWPO) of initial maleic acid feed concentration (0.005 to 0.03 M) was carried out in a temperature range of 20-50 degrees Celsius, on micelle templated silica-3-aminopropyltrimethoxysilane (MTS-AMP) supported copper catalyst. The influence of various operating parameters such as initial feed concentration of maleic acid, temperature, catalyst loading and the stability of the catalyst were investigated. CWPO reactions were performed in a stirred batch reactor at an atmospheric pressure in the presence of H(2)O(2) as an oxidant. Total conversion of maleic acid into acetic acid was obtained under mild conditions (i.e. atmospheric pressure and 40 degrees Celsius). Blank experiments showed no measurable maleic acid conversion (i.e. only approximately 0.5% conversion of initial maleic acid), indicating that a significant oxidation reaction of maleic acid is enhanced by the presence of a catalyst. Copper on micelle templated silica-3-aminopropyltrimethoxysilane catalyst therefore was found to be suitable for aqueous phase oxidation of maleic acid with 100% of maleic acid conversion.

  2. Modeling the Normal Spectral Emissivity of Aluminum 1060 at 800-910 K During the Growth of Oxide Layer

    Science.gov (United States)

    Shi, Deheng; Zou, Fenghui; Zhu, Zunlue; Sun, Jinfeng

    2015-04-01

    This work strives to model the normal spectral emissivity of aluminum 1060 during the growth of oxide layer in air over the temperatures ranging from 800 to 910 K. For this reason, the normal spectral emissivity of aluminum 1060 has been measured over a 6 h heating period at a definite temperature. In our experiment, the radiance coming from the specimen is received by an InGaAs photodiode detector, which works at 1.5 μm with the bandwidth of 20 nm. The temperature of specimen surface is measured by averaging the two platinum-rhodium thermocouples, which are symmetrically welded in the front surface of specimen near the measuring area viewed by the detector. The strong oscillations of normal spectral emissivity have been observed and discussed, which are affirmed to be connected with the thickness of oxide layer on the specimen surface, and originate from the interference effect between the radiation coming from the oxide layer on the specimen surface and the radiation stemming from the substrate. The uncertainty of normal spectral emissivity contributed only by the surface oxidization is about 4.6-10.6%, and the corresponding uncertainty of temperature contributed only by the surface oxidization is about 3.5-8.4 K. The analytical model between the normal spectral emissivity and the heating time is evaluated at a definite temperature. A simple functional form with the exponential and logarithmic functions can be employed to reproduce well the variation of normal spectral emissivity with the heating time at a definite temperature, including the reproduction of strong oscillations.

  3. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  4. Quasi-hexagonal vortex-pinning lattice using anodized aluminum oxide nanotemplates

    DEFF Research Database (Denmark)

    Hallet, X.; Mátéfi-Tempfli, M.; Michotte, S.;

    2009-01-01

    The bottom barrier layer of well-ordered nanoporous alumina membranes reveals a previously unexploited nanostructured template surface consisting of a triangular lattice of hemispherical nanoscale bumps. Quasi-hexagonal vortex-pinning lattice arrays are created in superconducting Nb films deposited...

  5. Laser Melt Injection in Aluminum Alloys : On the Role of the Oxide Skin

    NARCIS (Netherlands)

    Vreeling, J.A.; Ocelík, V.; Pei, Y.T.; Agterveld, D.T.L. van; Hosson, J.Th.M. De

    2000-01-01

    In this paper the method of laser melt injection of SiC particles into an aluminum substrate is investigated both experimentally and theoretically. An extremely small operational parameter window was found for successful injection processing. It is shown that the final injection depth of the particl

  6. Controlling the resistivity gradient in chemical vapor deposition-deposited aluminum-doped zinc oxide

    NARCIS (Netherlands)

    Ponomarev, M. V.; Verheijen, M. A.; Keuning, W.; M. C. M. van de Sanden,; Creatore, M.

    2012-01-01

    Aluminum-doped ZnO (ZnO:Al) grown by chemical vapor deposition (CVD) generally exhibit a major drawback, i.e., a gradient in resistivity extending over a large range of film thickness. The present contribution addresses the plasma-enhanced CVD deposition of ZnO: Al layers by focusing on the control

  7. Dental enamel: qualitative evaluation of the surface after application of aluminum oxide (microetching using the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    SILVA Paulo César Gomes

    2000-01-01

    Full Text Available Dentistry nowadays can count on a wide range of resources to treat patients. With the development of adhesive materials and several newly introduced restorative techniques, the dental structure can be subjected to different sorts of surface treatment. The use of aluminum oxide flow at high speed to remove dental structure was described by Black in 1945, however, the literature regarding the use of aluminum oxide jet is still scarce, as far as the alterations occurring in the dental structure are concerned. At the present, with the development of new abrasive air equipment, microabrasion has been added to several adhesive restorative techniques, in the preparation of the dental surface and of inner surfaces of indirect restorations, which will receive the application of adhesive materials. The aim of this study was to assess the alterations produced by abrasive air applied on the dental enamel by means of electronic microscopy, taking into consideration micromorphological surface alterations. The importance of this study is based on the fact that alternative surface treatments both chemical and mechanical could be introduced in surface priming, including dental enamel priming.

  8. Electronic Effects of Aluminum Complexes in the Copolymerization of Propylene Oxide with Tricyclic Anhydrides: Access to Well-Defined, Functionalizable Aliphatic Polyesters.

    Science.gov (United States)

    Van Zee, Nathan J; Sanford, Maria J; Coates, Geoffrey W

    2016-03-02

    The synthesis of well-defined and functionalizable aliphatic polyesters remains a key challenge in the advancement of emerging drug delivery and self-assembly technologies. Herein, we investigate the factors that influence the rates of undesirable transesterification and epimerization side reactions at high conversion in the copolymerization of tricyclic anhydrides with excess propylene oxide using aluminum salen catalysts. The structure of the tricyclic anhydride, the molar ratio of the aluminum catalyst to the nucleophilic cocatalyst, and the Lewis acidity of the aluminum catalyst all influence the rates of these side reactions. Optimal catalytic activity and selectivity against these side reactions requires a careful balance of all these factors. Effective suppression of undesirable transesterification and epimerization was achieved even with sterically unhindered monomers using a fluorinated aluminum salph complex with a substoichiometric amount of a nucleophilic cocatalyst. This process can be used to synthesize well-defined block copolymers via a sequential addition strategy.

  9. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  10. Ginkgo biloba extract alleviates oxidative stress and some neurotransmitters changes induced by aluminum chloride in rats.

    Science.gov (United States)

    Mohamed, Naglaa El-Shahat; Abd El-Moneim, Ahmed E

    2017-03-01

    In the present study, twenty four adult male albino rats were classified into four groups. The control group received normal diet and water; the second group was treated daily with oral dose of Ginkgo biloba (200 mg/kg body weight [b.wt]) for 3 mo; the third group was treated daily with oral dose of aluminum chloride (10 mg/kg b.wt) for 3 mo; and the fourth group was treated with both Ginkgo biloba and aluminum chloride (200 and 10 mg/kg b.wt, respectively) using a stomach tube for 3 mo. The results showed that administration of AlCl3 to rats induced significant increase (P Ginkgo biloba group. It could be concluded that the protective effect of Ginkgo biloba may be attributed to its antioxidant properties.

  11. Equation of state of aluminum-iron oxide-epoxy composite

    Science.gov (United States)

    Jordan, Jennifer L.; Ferranti, Louis; Austin, Ryan A.; Dick, Richard D.; Foley, Jason R.; Thadhani, Naresh N.; McDowell, David L.; Benson, David J.

    2007-05-01

    We report on the measurements of the shock equation of state (Hugoniot) of an Al/Fe2O3/epoxy composite, prepared by epoxy cast curing of powder mixtures. Explosive loading, with Baratol, trinitrotoluene (TNT), and Octol, was used for performing experiments at higher pressures, in which case shock velocities were measured in the samples and aluminum, copper, or polymethyl methacrylate (PMMA) donor material, using piezoelectric pins. The explosive loading of the metal donors (aluminum and copper) will be discussed. Gas gun experiments provide complementary lower pressure data in which piezoelectric polyvinylidene fluoride (PVDF) stress gauges were used to measure the input and propagated stress wave profiles in the sample and the corresponding shock propagation velocity. The results of the Hugoniot equation of state are compared with mesoscale finite-element simulations, which show good agreement.

  12. Oxide-Bridged Heterobimetallic Aluminum/Zirconium Catalysts for Ethylene Polymerization

    NARCIS (Netherlands)

    Boulho, Cedric; Zijlstra, Harmen S.; Harder, Sjoerd

    2015-01-01

    A bimetallic aluminum/zirconium complex Cp*Zr-2(Me)OAl(DIPH) [DIPH-H-2 = 3,3-bis(2-methylallyl)-(1,1-biphenyl)-2,2-diol; Cp* = C5Me5] was prepared in good yield by the reaction of (DIPH)AlMe with Cp*Zr-2(Me)OH. In contrast to Roesky's catalyst, Cp2Zr(Me)O(Me)Al(DIPP-nacnac) {DIPP-nacnac = CH[(CMe)(2

  13. Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense.

    Science.gov (United States)

    Pandey, Poonam; Srivastava, Rajneesh Kumar; Dubey, R S

    2013-05-01

    Aluminum toxicity is a major constraint to crop production in acid soils. The present study was undertaken to examine the comparative ameliorating effects of salicylic acid, Ca and Mg on Al toxicity in rice (Oryza sativa L.) seedlings grown in hydroponics. Al treatment (0.5 mM AlCl3) caused decrease in plant vigour, loss of root plasma membrane integrity, increased contents of O 2 (∙-) , H2O2, lipid peroxidation, protein carbonyls and decline in the level of protein thiol. Al treatment caused significant changes in activity of antioxidative enzymes in rice seedlings. Exogenously added salicylic acid (60 μM), Ca (1 mM) and Mg (0.25 mM) significantly alleviated Al toxicity effects in the seedlings marked by restoration of growth, suppression of Al uptake, restoration of root plasma membrane integrity and decline in O 2 (∙-) , H2O2, lipid peroxidation and protein carbonyl contents. Salicylic acid, Ca and Mg suppressed Al-induced increase in SOD, GPX and APX activities while it elevated Al-induced decline in CAT activity. By histochemical staining of O 2 (∙-) using NBT and H2O2 using DAB, it was further confirmed that added salicylic acid, Ca or Mg decreased Al-induced accumulation of O 2 (∙-) and H2O2 in the leaf tissues. Results indicate that exogenously added salicylic acid, Ca or Mg alleviates Al toxicity in rice seedlings by suppressing Al uptake, restoring root membrane integrity, reducing ROS level and ROS induced oxidative damage and regulating the level of antioxidative enzyme activities. Further salicylic appears to be superior to Mg and Ca in alleviating Al toxicity effects in rice plants.

  14. An aluminum-based rat model for Alzheimer's disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration.

    Science.gov (United States)

    Walton, J R

    2007-09-01

    In Alzheimer's disease (AD), oxidative damage leads to the formation of amyloid plaques while low PP2A activity results in hyperphosphorylated tau that polymerizes to form neurofibrillary tangles. We probed these early events, using brain tissue from a rat model for AD that develops memory deterioration and AD-like behaviors in old age after chronically ingesting 1.6 mg aluminum/kg bodyweight/day, equivalent to the high end of the human dietary aluminum range. A control group consumed 0.4 mg aluminum/kg/day. We stained brain sections from the cognitively-damaged rats for evidence of amyloid plaques, neurofibrillary tangles, aluminum, oxidative damage, and hyperphosphorylated tau. PP2A activity levels measured 238.71+/-17.56 pmol P(i)/microg protein and 580.67+/-111.70 pmol P(i)/microg protein (paluminum-loading occurs in some aged rat neurons as in some aged human neurons; (2) aluminum-loading in rat neurons is accompanied by oxidative damage, hyperphosphorylated tau, neuropil threads, and granulovacuolar degeneration; and (3) amyloid plaques and neurofibrillary tangles were absent from all rat brain sections examined. Known species difference can reasonably explain why plaques and tangles are unable to form in brains of genetically-normal rats despite developing the same pathological changes that lead to their formation in human brain. As neuronal aluminum can account for early stages of plaque and tangle formation in an animal model for AD, neuronal aluminum could also initiate plaque and tangle formation in humans with AD.

  15. Entropic nature of the adsorption of sodium dodecylbenzenesulfonate on nanoparticles of aluminum and iron oxides in aqueous medium

    Science.gov (United States)

    Mansurov, R. R.; Safronov, A. P.; Lakiza, N. V.

    2016-06-01

    The adsorption of anionic surfactant sodium dodecylbenzenesulfonate (SDBS) from aqueous solution on the hydrophilic surfaces of aluminum oxide and iron oxide nanoparticles is studied via UV spectrophotometry, electrophoretic light scattering, and isothermal microcalorimetry. It is shown that the isotherms of the adsorption of SDBS on the surfaces of both oxides in the area of concentrations up to 0.6 mmol/L is linear. It is found that the positive zeta potential of the surfaces of the particles falls to zero and shifts toward the range of negative values due to adsorption. The adsorption of SDBS is characterized by positive enthalpy values over the investigated range of concentrations, while the loss of energy during adsorption indicates it is of an entropic nature. It is concluded that the probable cause of the increase in entropy is the dehydration of SDBS molecules during on surface adsorption. The obtained results are discussed in terms of the formation of hemimicelles of surfactant on the hydrophilic surfaces of metal oxide nanoparticles in an aqueous medium.

  16. Synthesis of hierarchical NiCo2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation.

    Science.gov (United States)

    Yang, Jiao; Cho, Misuk; Lee, Youngkwan

    2016-01-15

    Hierarchical NiCo2O4 hollow nanorods (HR) were directly grown on stainless steel via a sacrificial template accelerated hydrolysis and post calcination using ZnO nanorod as a template. The composition of the NiCo2O4 HR electrode was determined using X-ray diffraction and X-ray photoelectron spectroscopy. The morphology of the NiCo2O4 HR is comprised of nanoflakes that were characterized with scanning electron microscopy and transmission electron microscopy. The mixed-valence metal oxide and hollow structure provided high chemical reactivity and a large surface area for glucose oxidation in an alkaline solution. Under an optimal applied potential of +0.6 V, the developed NiCo2O4 HR electrode showed a broad detection range of 0.0003–1.0 mM, a sensitivity of 1685.1 μA mM−1 cm−2, and a low detection limit of 0.16 μM. These results represent a significant improvement over both NiO and Co3O4 HR. The developed NiCo2O4 HR electrode not only demonstrated excellent selectivity in the presence of several electro-active species, but also exhibited high stability following a 200 cycles voltammetry test.

  17. Template-assisted hydrothermally obtained titania-ceria composites and their application as catalysts in ethyl acetate oxidation and methanol decomposition with a potential for sustainable environment protection

    Science.gov (United States)

    Tsoncheva, Tanya; Mileva, Alexandra; Issa, Gloria; Dimitrov, Momtchil; Kovacheva, Daniela; Henych, Jiří; Scotti, Nicola; Kormunda, Martin; Atanasova, Genoveva; Štengl, Vaclav

    2017-02-01

    High surface area mesoporous ceria-titania binary materials with high Lewis acidity and improved reduction properties were synthesized using template assisted hydrothermal technique. The obtained materials were characterized by low temperature nitrogen physisorption, XRD, SEM, TEM, Raman, UV-vis, XPS, FTIR, FTIR of adsorbed pyridine and thermo-programmed reduction with hydrogen. Their catalytic activity was tested in total oxidation of ethyl acetate and methanol decomposition to CO and hydrogen with a potential application in VOCs elimination and alternative fuels, respectively. The structural changes in the binary materials, which could be tuned by the variation in the Ce/Ti ratio and the temperature of hydrothermal treatment, provoked significant changes in their textural, surface and redox properties, which is in close relation to the catalytic activity and selectivity in various catalytic processes. The intimate contact between the individual oxides results in the formation of different catalytic active sites and their role in the studied catalytic reactions was discussed in details.

  18. Density control and wettability enhancement by functionalizing carbon nanotubes with nickel oxide in aluminum-carbon nanotube system.

    Science.gov (United States)

    Kim, Tae-Hoon; Park, Min-Ho; Song, Kwan-Woo; Bae, Jee-Hwan; Lee, Jae-Wook; Lee, Choong Do; Yang, Cheol-Woong

    2013-11-01

    Excellent mechanical properties of carbon nanotubes (CNTs) make them ideal reinforcements for synthesizing light weight, high strength metal matrix composite. Aluminum is attractive matrix due to its light weight and Al/CNT composites are promising materials for various industrial applications. Powder metallurgy and casting techniques are normally used for bulk fabrications of composites. Casting process which can mass-produce delicate product is more suitable than existing powder metallurgy in view point of application in industries. In CNT-metal matrix composites, however, composite bulk fabrication has been limited because of the large density gap and poor wettability between the metal and CNTs. This study suggests a method for alleviating such problems. It was found that the wettability between aluminum and CNT could be enhanced by functionalizing the CNTs with nickel oxide. This functionalization of CNTs with heavier element also reduces the density gap between the matrix and reinforcements. It is suggested that this method could possibly be used in a casting process to enable mass fabrication of CNT-metal matrix composites.

  19. Oxidative removal of acetaminophen using zero valent aluminum-acid system:Efficacy, influencing factors, and reaction mechanism

    Institute of Scientific and Technical Information of China (English)

    Honghua Zhang; Beipei Cao; Wanpeng Liu; Kunde Lin; Jun Feng

    2012-01-01

    Commercial available zero valent aluminum under air-equilibrated acidic conditions (ZVA1/H+/air system) demonstrated an excellent capacity to remove aqueous organic compounds.Acetaminophen (ACTM),the active ingredient of the over-the-counter drug Tylenol(R),is widely present in the aquatic environment and therefore the treatment of ACTM-contaminated water calls for further research.Herein we investigated the oxidative removal of ACTM by ZVAl/H+/air system and the reaction mechanism.In acidic solutions (pH < 3.5),ZVAl displayed an excellent capacity to remove ACTM.More than 99% of ACTM was eliminated within 16 hr in pH 1.5 reaction solutions initially containing 2.0 g/L aluminum and 2.0 mg/L ACTM at 25 ± 1℃.Higher temperature and lower pH facilitated ACTM removal.The addition of different iron species Fe0,Fe2+ and Fe3+ into ZVAl/H+/air system dramatically accelerated the reaction likely due to the enhancing transformation of H2O2 to HO·via Fenton's reaction.Furthermore,the primary intermediate h.ydroquinone and the anions formate,acetate and nitrate,were identified and a possible reaction scheme was proposed.This work suggested that ZVA1/H+/air system may be potentially employed to treat ACTM-contaminated water.

  20. Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration.

    Science.gov (United States)

    Rahman, Tanzina; Millwater, Harry; Shipley, Heather J

    2014-11-15

    Aluminum oxide nanoparticles have been widely used in various consumer products and there are growing concerns regarding their exposure in the environment. This study deals with the modeling, sensitivity analysis and uncertainty quantification of one-dimensional transport of nano-sized (~82 nm) aluminum oxide particles in saturated sand. The transport of aluminum oxide nanoparticles was modeled using a two-kinetic-site model with a blocking function. The modeling was done at different ionic strengths, flow rates, and nanoparticle concentrations. The two sites representing fast and slow attachments along with a blocking term yielded good agreement with the experimental results from the column studies of aluminum oxide nanoparticles. The same model was used to simulate breakthrough curves under different conditions using experimental data and calculated 95% confidence bounds of the generated breakthroughs. The sensitivity analysis results showed that slow attachment was the most sensitive parameter for high influent concentrations (e.g. 150 mg/L Al2O3) and the maximum solid phase retention capacity (related to blocking function) was the most sensitive parameter for low concentrations (e.g. 50 mg/L Al2O3).

  1. Oxidation of hydrogen-passivated silicon surfaces by scanning near-field optical lithography using uncoated and aluminum-coated fiber probes

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Birkelund, Karen;

    1997-01-01

    Optically induced oxidation of hydrogen-passivated silicon surfaces using a scanning near-field optical microscope was achieved with both uncoated and aluminum-coated fiber probes. Line scans on amorphous silicon using uncoated fiber probes display a three-peak profile after etching in potassium ...

  2. Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se2 solar cells

    NARCIS (Netherlands)

    Theelen, M.; Boumans, T.; Stegeman, F.; Colberts, F.; Illiberi, A.; Berkum, J. van; Barreau, N.; Vroon, Z.; Zeman, M.

    2014-01-01

    Sputtered aluminum doped zinc oxide (ZnO:Al) layers on borosilicate glass were exposed to damp heat (85 C/85% relative humidity) for 2876 h to accelerate the physical and chemical degradation behavior. The ZnO:Al samples were characterized by electrical, compositional and optical measurements before

  3. Very low surface recombination velocities on p- and n-type c-Si by ultrafast spatial atomic layer deposition of aluminum oxide

    NARCIS (Netherlands)

    Werner, F.; Veith, B.; Tiba, V.; Poodt, P.W.G.; Roozeboom, F.; Brendel, R.; Schmidt, J.

    2010-01-01

    Using aluminum oxide (Al2 O3) films deposited by high-rate spatial atomic layer deposition (ALD), we achieve very low surface recombination velocities of 6.5 cm/s on p -type and 8.1 cm/s on n -type crystalline silicon wafers. Using spatially separated reaction zones instead of

  4. The influence of atmospheric species on the degradation of aluminum doped zinc oxide and Cu(In,Ga)Se2 solar cells

    NARCIS (Netherlands)

    Theelen, M.J.; Foster, C.; Dasgupta, S.; Vroon, Z.A.E.P.; Barreau, N.; Zeman, M.

    2014-01-01

    Aluminum doped zinc oxide (ZnO:Al) layers were exposed to the atmospheric gases carbondioxide (CO2), oxygen (O2), nitrogen (N2) and air as well as liquid H2O purged with these gases, in order to investigate the chemical degradation behavior of these layers. The samples were analyzed by electrical, c

  5. Energy transfer among rare earth ions induced by annealing process of Tm sbnd Er codoped aluminum oxide thin films

    Science.gov (United States)

    Xiao, Zhisong; Zhou, Bo; Xu, Fei; Zhu, Fang; Yan, Lu; Zhang, Feng; Huang, Anping

    2009-02-01

    Er sbnd Tm codoped amorphous aluminum oxide (a-Al 2O 3) thin films have been prepared by pulsed laser deposition. Efficient photoluminescence (PL) in the region of 1400-1700 nm with two peaks centered at 1533 nm and 1620 nm were observed with pumping at the wavelength of 791 nm. The PL performance has been investigated as a function of annealing temperature, which was varied from 650 to 850 °C in air. Infrared emission was improved by annealing, and energy transfer processes occurred obviously for annealing temperatures between 800 and 850 °C. All possible energy transfer channels were investigated and our results suggest that the quasi-resonant energy transfer and cross relaxation between Tm 3+ and Er 3+ play an important role in the evolution of the luminescent response.

  6. Residual stress and texture in Aluminum doped Zinc Oxide layers deposited by reactive radio frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Azanza Ricardo, C.L., E-mail: Cristy.Azanza@ing.unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 via Mesiano 77, Trento (Italy); Pastorelli, M.; D' Incau, M. [Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 via Mesiano 77, Trento (Italy); Aswath, P. [College of Engineering, University of Texas at Arlington, TX (United States); Scardi, P. [Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 via Mesiano 77, Trento (Italy)

    2016-04-30

    Aluminum doped Zinc Oxide thin films were deposited on standard soda-lime substrates by reactive radio frequency magnetron sputtering. Residual stress and texture were studied by X-ray diffraction, while X-ray Absorption Near Edge Spectroscopy provided information on the Al environment in the best performing thin films. The influence of deposition parameters on structural and microstructural properties is discussed. A correlation between microstructure and residual stress state with electrical and optical properties is proposed. - Highlights: • Al doped ZnO thin films were obtained by reactive radio frequency magnetron sputtering. • Correlation of stresses and texture with electrical and optical properties is shown. • Homogeneous and stress-free thin-films are the best performing ones. • XANES confirmed the doping mechanism and excluded some spurious phases.

  7. The effect of oxygen flow rate on refractive index of aluminum oxide film deposited by electron beam evaporation technique

    Directory of Open Access Journals (Sweden)

    R Shakouri

    2016-02-01

    Full Text Available The effects of oxygen flow rate on refractive index of aluminum oxide film have been investigated. The Al2O3 films are deposited by electron beam on glass substrate at different oxygen flow rates. The substrate was heated to reach  and the temperature was constant during the thin film growth. The transmittance spectrum of samples was recorded in the wavelength 400-800 nm.  Then, using the maxima and minima of transmittance the refractive index and the extinction coefficient of samples were determined. It has been found that if we reduce the oxygen flow, while the evaporation rate is kept constant, the refractive index of Al2O3 films increases. On the other hand, reduced oxygen pressure causes the Al2O3 films to have some absorption.

  8. Improved light extraction of LYSO scintillator by the photonic structure from a layer of anodized aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhichao [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Liu, Bo, E-mail: lbo@tongji.edu.cn [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Cheng, Chuanwei; Zhang, Haifeng; Wu, Shuang; Gu, Mu; Chen, Hong [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Chen, Liang; Liu, Jinliang; Ouyang, Xiaoping [Northwest Institute of Nuclear Technology, Xi’an 710024 (China)

    2015-06-21

    As a promising scintillator in the field of medical imaging systems, LYSO with its high refractive index suffers from a low light extraction efficiency due to the total internal reflection. Here, we demonstrate that a photonic structure formed by an anodized aluminum oxide layer can enhance the light extraction efficiency by the outcoupling the light trapped in the crystal. An enhancement of light output by 25% can be achieved by an AAO layer covered on the surface of LYSO. The imperfect periodicity of AAO can lead to a consistent enhancement for the entire range of emission wavelength and directionality. Such enhanced light output is practical and attractive for use in the scintillation detection systems. It is important to note that the fabrication method of AAO is simple and low-cost for the large area applications, which is obviously advantageous over the expensive traditional methods such as electron beam lithography.

  9. Fabrication of Pd Micro-Membrane Supported on Nano-Porous Anodized Aluminum Oxide for Hydrogen Separation.

    Science.gov (United States)

    Kim, Taegyu

    2015-08-01

    In the present study, nano-porous anodized aluminum oxide (AAO) was used as a support of the Pd membrane. The AAO fabrication process consists of an electrochemical polishing, first/second anodizing, barrier layer dissolving and pores widening. The Pd membrane was deposited on the AAO support using an electroless plating with ethylenediaminetetraacetic acid (EDTA) as a plating agent. The AAO had the regular pore structure with the maximum pore diameter of ~100 nm so it had a large opening area but a small free standing area. The 2 µm-thick Pd layer was obtained by the electroless plating for 3 hours. The Pd layer thickness increased with increasing the plating time. However, the thickness was limited to ~5 µm in maximum. The H2 permeation flux was 0.454 mol/m2-s when the pressure difference of 66.36 kPa0.5 was applied at the Pd membrane under 400 °C.

  10. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Science.gov (United States)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  11. Effect of co-existing copper and calcium on the removal of As(V) by reused aluminum oxides.

    Science.gov (United States)

    Yang, J K; Park, Y J; Kim, K H; Lee, H Y; Min, K C; Lee, S M

    2013-01-01

    Among the various heavy metals, arsenic is frequently found in abandoned mine drainage and the environmental fate of arsenic in real aqueous solutions can be highly dependent on the presence of co-existing ions. In this study, removal of arsenate through adsorption on the reused aluminum oxide or through precipitation was investigated in a single and in a binary system as a function of pH and concentration. Different removal behaviors of arsenate were observed in the presence of different cations as well as a variation of the molar ratios of arsenate to cations. Co-operative effects on arsenate removal by precipitation in solution occurred with an increase of copper concentration, while a decrease of arsenate removal resulted in increasing calcium concentration. It was observed that the arsenate removal in the presence of calcium would be highly dependent on the molar ratios of both elements.

  12. Compression Molded Ultra High Molecular Weight Polyethylene-Hydroxyapatite-Aluminum Oxide-Carbon Nanotube Hybrid Composites for Hard Tissue Replacement

    Institute of Scientific and Technical Information of China (English)

    Ankur Gupta; Garima Tripathi; Debrupa Lahiri; Kantesh Balani

    2013-01-01

    Ultra high molecular weight polyethylene (UHMWPE) is widely used for articulating surfaces in total hip and knee replacements.In the present work,UHMWPE based polymer composites were synthesized by synergistic reinforcing of bioactive hydroxyapatite (HA),bioinert aluminum oxide (Al2O3),and carbon nanotubes (CNTs) using compression molding.Phase and microstructural analysis suggests retention of UHMWPE and reinforcing phases in the compression molded composites.Microstructural analysis elicited variation in densification due to the size effect of the reinforcing particles.The hybrid composites exhibited hardness,elastic modulus and toughness comparable to that of UHMWPE.The interfacial effect of reinforcement phases has evinced the effectiveness of Al2O3 over HA and CNT reinforcements,depicting synergistic enhancement in hardness and elastic modulus.Weak interfacial bonding of polymer matrix with HA and CNT requires utilization of coupling agents to achieve enhanced mechanical properties without deteriorating cytocompatible properties.

  13. Simulation study of a highly efficient, high resolution X-ry sensor based on self-organizing aluminum oxide

    CERN Document Server

    Muehlbauer, Joerg; Reims, Nils; Krueger, Peter; Schreiber, Juergen; Mukhurov, Nikolai I; Uhlmann, Norman

    2012-01-01

    State of the art X-ray imaging sensors comprise a trade-off between the achievable efficiency and the spatial resolution. To overcome such limitations, the use of structured and scintillator filled aluminum oxide (AlOx) matrices has been investigated. We used Monte-Carlo (MC) X-ray simulations to determine the X-ray imaging quality of these AlOx matrices. Important factors which influence the behavior of the matrices are: filling factor (surface ratio between channels and 'closed' AlOx), channel diameter, aspect ratio, filling material etc. Therefore we modeled the porous AlOx matrix in several different ways with the MC X-ray simulation tool ROSI [1] and evaluated its properties to investigate the achievable performance at different X-ray spectra, with different filling materials (i.e. scintillators) and varying channel height and pixel readout. In this paper we focus on the quantum efficiency, the spatial resolution and image homogeneity.

  14. Effects of acetic acid on microstructure and electrochemical properties of nano cerium oxide films coated on AA7020-T6 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    H. Hasannejad; T. Shahrabi; M. Aliofkhazraei

    2009-01-01

    Nano cerium oxide films were applied on AA7020-T6 aluminum alloy and the effects of acetic acid concentration on the microstructure and electrochemical properties of the coated samples were investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), crack-flee films with well-developed grains were obtained and grain sizes of the films decreased. Elimination of cracks and decreasing grain size of the nano cerium oxide films caused corrosion resistance to increase.

  15. Corrosion protection of silver-based telescope mirrors using evaporated anti-oxidation overlayers and aluminum oxide films by atomic layer deposition

    Science.gov (United States)

    Fryauf, David M.; Phillips, Andrew C.; Kobayashi, Nobuhiko P.

    2016-09-01

    An urgent demand remains in astronomy for high-reflectivity silver mirrors that can withstand years of exposure in observatory environments. The University of California Observatories Astronomical Coatings Lab has undertaken development of protected silver coatings suitable for telescope mirrors that maintain high reflectivity at wavelengths from 340 nm through the mid-infrared spectrum. We present results on superior protective layers of transparent dielectrics produced by evaporation and atomic layer deposition. Several novel coating recipes have been developed with ion-assisted electron beam deposition (IAEBD) of various fluorides, oxides, and nitrides in combination with conformal layers of aluminum oxide (AlOx) deposited by ALD using trimethylaluminum as a metal precursor and water vapor as a reactant. Extending on our previous results demonstrating the superior durability of ALD-based AlOx top barrier layers over conventionally-deposited AlOx, this work investigates the effects on mirror barrier durability comparing different anti-oxidation materials on Ag with an identical AlOx top barrier layer deposited by ALD. Samples of coating recipes with different anti-oxidation layers undergo aggressive environmental testing, including high temperature/high humidity (HTHH), in which samples are exposed to an environment of 80% humidity at 80°C for ten days in a simple test set-up. While most samples show fairly successful endurance after HTHH testing, visible results suggest that MgAl2O4, Al2O3, and AlN anti-oxidation layers offer enhanced robust protection against chemical corrosion and moisture in an accelerated aging environment, which is attributed to superior adhesion and intermolecular bonding between the Al-based anti-oxidation layers and the AlOx top barrier layer. Mirror samples are further characterized by reflectivity/absorption before and after deposition of oxide coatings. We also show that the performance of the ALD-AlOx barrier layer depends in part

  16. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Leilei Yu

    2016-12-01

    Full Text Available Aluminum (Al is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury.

  17. Electrochemical potentials of layered oxide and olivine phosphate with aluminum substitution: A first principles study

    Indian Academy of Sciences (India)

    Arun Kumar Varanasi; Phani Kanth Sanagavarapu; Arghya Bhowmik; Mridula Dixit Bharadwaj; Balasubramanian Narayana; Umesh V Waghmare; Dipti Deodhare; Alind Sharma

    2013-12-01

    First-principles prediction of enhancement in the electrochemical potential of LiCoO2 with aluminum substitution has been realized through earlier experiments. For safer and less expensive Li-ion batteries, it is desirable to have a similar enhancement for alternative cathode materials, LiFePO4 and LiCoPO4. Here, we present first-principles density functional theory based analysis of the effects of aluminum substitution on electrochemical potential of LiCoO2, LiFePO4 and LiCoPO4. While Al substitution for transition metal results in increase in electrochemical potential of LiCoO2, it leads to reduction in LiFePO4 and LiCoPO4. Through comparative topological analysis of charge density of these materials, we identify a ratio of Bader charges that correlates with electrochemical potential and determine the chemical origin of these contrasting effects: while electronic charge from lithium is transferred largely to oxygen in LiCoO2, it gets shared by the oxygen and Co/Fe in olivine phosphates due to strong covalency between O and Co/Fe. Our work shows that covalency of transition metal–oxygen bond plays a key role in determining battery potential.

  18. Tropical soils with high aluminum concentrations cause oxidative stress in two tomato genotypes.

    Science.gov (United States)

    Nogueirol, Roberta Corrêa; Monteiro, Francisco Antonio; Gratão, Priscila Lupino; Borgo, Lucélia; Azevedo, Ricardo Antunes

    2015-03-01

    Tropical and subtropical soils are usually acidic and have high concentrations of aluminum (Al). Aluminum toxicity in plants is caused by the high affinity of the Al cation for cell walls, membranes, and metabolites. In this study, the response of the antioxidant-enzymatic system to Al was examined in two tomato genotypes: Solanum lycopersicum var. esculentum (Calabash Rouge) and Solanum lycopersicum var. cerasiforme (CNPH 0082) grown in tropical soils with varying levels of Al. Plant growth; activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPOX), and glutathione reductase (GR) enzymes; stress-indicating compounds (malondialdehyde (MDA) and hydrogen peroxide); and morphology (root length and surface area) were analyzed. Increased levels of Al in soils were correlated with reduced shoot and root biomass and with reduced root length and surface area. Calabash Rouge exhibited low Al concentrations and increased growth in soils with the highest levels of Al. Plants grown in soils with high availability of Al exhibited higher levels of stress indicators (MDA and hydrogen peroxide) and higher enzyme activity (CAT, APX, GPOX, and GR). Calabash Rouge absorbed less Al from soils than CNPH 0082, which suggests that the genotype may possess mechanisms for Al tolerance.

  19. 模板组装纳米结构氧化铈催化材料%The Study of Cerium Oxide Nanostructure Catalytic Materials by Templated Assemble

    Institute of Scientific and Technical Information of China (English)

    张久兴; 杜玉成; 孙立柏; 何洪

    2003-01-01

      介绍了模板剂结构诱导下均相沉淀法组装纳米结构氧化铈工艺方法.0.02mol SDS、0.01mol Ce(NO3)·6H2O、0.44mol (NH2)2CO,反应72h可获得肩峰较宽、具有CeO2,Ce2O3固溶峰的、粒径在5~10nm、孔径在3~5nm、比表面积达181.45m2/g的纳米结构氧化铈.N2吸附分析表明样品具有良好的吸附催化活性.%  In this paper, the nanostructure cerium-oxide-based surfactant mesophases templated by template agent assemblies were synthesized by homogeneous precipitation method. Nanostructure cerium oxide has been obtained, when SDS, cerium nitrate, urea were mixed at the molar ratio of 0.02mol, 0.01mol, 0.44mol and have been reacted 72h. The cerium oxide was characterized by a wider shoulder peak of CeO2 and Ce2O3, and the character with the mean particle size of 5~10nm, pore size 3~5nm, specific surface area of as large as 181.45m2/g. As catalyst, the sample has better absorption property by absorbed of nitrogen gas .

  20. Graphene oxide nanosheets as an effective template for the synthesis of porous TiO2 film in dye-sensitized solar cells

    Science.gov (United States)

    Wang, Ping; He, Fenglong; Wang, Jin; Yu, Huogen; Zhao, Li

    2015-12-01

    Template method by using various organic components as the pore-forming agent is an effective strategy for the preparation of various porous inorganic materials. After high-temperature calcination in air, the organic components can be in situ decomposed into the gaseous CO2, resulting in the formation of porous structures in inorganic materials. In addition to the well-known organic components, it is highly required to develop new and simple carbon-containing template to prepare porous inorganic nanostructures. In this study, graphene oxide (GO) nanosheets were used as a new template for the preparation of porous TiO2 film photoelectrode, which can be applied in dye-sensitized solar cells (DSSCs). The porous TiO2 film was fabricated via a three-step method, including the initially homogeneous grafting of GO nanosheets on the TiO2 surface (TiO2-GO), the preparation of TiO2-GO film using blade method and final formation of porous structure after the in situ removal of GO by high-temperature calcination. The effect of GO content on photoelectric conversion performance of the as-fabricated DSSCs was investigated. It was found that the conversion efficiency of DSSC based on porous TiO2-GO (0.75%) film reached up to a maximum value (4.65%), which was much higher than that of DSSC based on nonporous TiO2 film (4.01%). The enhanced conversion efficiency can be attributed to the formation of more porous structures caused by the GO nanosheets after high-temperature calcination. This work may provide a new insight for preparing other porous structured materials.

  1. The Effect of Silicon and Aluminum Additions on the Oxidation Resistance of Lean Chromium Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, J.S.; Alman, D.E.; Rawers, J.C.

    2001-09-01

    The effect of Si and Al additions on the oxidation of lean chromium austenitic stainless steels has been studied. A baseline composition of Fe-16Cr-16Ni-2Mn-1Mo was selected to allow combined Si and Al additions of up to 5 wt. pct. in a fully austenitic alloy. The baseline composition was selected using a net Cr equivalent equation to predict the onset of G-ferrite formation in austenite. Cyclic oxidation tests in air for 1000 hours were carried out on alloys with Si only or combined Si and Al additions in the temperature range 700 C to 800 C. Oxidation resistance of alloys with Si only additions were outstanding, particularly at 800 C. It was evident that different rate controlling mechanisms for oxidation were operative at 700 C and 800 C in the Si alloys. In addition, Si alloys pre-oxidized at 800 C, showed a zero weight gain in subsequent testing for 1000 hours at 700 C. The rate controlling mechanism in alloys with combined Si and Al addition for oxidation at 800 C was also different than alloys with Si only. SEM and ESCA analysis of the oxide films and base material at the oxide/base metal interface were conducted to study potential rate controlling mechanisms.

  2. Templating Sol-Gel Hematite Films with Sacrificial Copper Oxide: Enhancing Photoanode Performance with Nanostructure and Oxygen Vacancies.

    Science.gov (United States)

    Li, Yang; Guijarro, Néstor; Zhang, Xiaoli; Prévot, Mathieu S; Jeanbourquin, Xavier A; Sivula, Kevin; Chen, Hong; Li, Yongdan

    2015-08-12

    Nanostructuring hematite films is a critical step for enhancing photoelectrochemical performance by circumventing the intrinsic limitations on minority carrier transport. Herein, we present a novel sol-gel approach that affords nanostructured hematite films by including CuO as sacrificial templating agent. First, by annealing in air at 450 °C a film comprising an intimate mixture of CuO and Fe2O3 nanoparticles is obtained. The subsequent treatment with NaCl and annealing at 700 °C under Argon reveals a nanostructured highly crystalline hematite film devoid of copper. Photoelectrochemical investigations reveal that the incorporation of CuO as templating agent and the inert conditions employed during the annealing play a crucial role in the performance of the hematite electrodes. Mott-Schottky analysis shows a higher donor concentration when annealing in inert conditions, and even higher when combined with the NaCl treatment. These findings agree well with the presence of an oxygen-deficient shell on the material's surface evidenced by FT-IR and XPS measurements. Likewise, the incorporation of the CuO enhances the photocurrent obtained at 1.23 V from 0.55 to 0.8 mA·cm(-2) because of an improved nanostructure. Optimized films demonstrate an incident photon-to-current efficiency (IPCE) of 52% at 380 nm when applying 1.23 V versus RHE, and a faradaic efficiency for water splitting close to unity.

  3. Oxidation-Induced Surface Roughening of Aluminum Nanoparticles Formed in an Ablation Plume

    Science.gov (United States)

    Förster, Georg Daniel; Girault, Marie; Menneveux, Jérôme; Lavisse, Luc; Jouvard, Jean-Marie; Marco de Lucas, Maria del Carmen; Potin, Valérie; Ouf, François-Xavier; Kerkar, Moussa; Le Garrec, Jean-Luc; Carvou, Erwann; Carles, Sophie; Rabilloud, Franck; Calvo, Florent; Yu, Jin; Mitchell, James Brian

    2015-12-01

    Nanoparticles formed within an ablation plume produced by the impact of a nanosecond laser pulse on the surface of an aluminum target have been directly measured using small-angle x-ray scattering. The target was immersed in an oxygen-nitrogen gas mixture at atmospheric pressure with the O2/N2 ratio being precisely controlled. The results for an increasing oxygen content reveal remarkable effects on the morphology of the generated particles, which include a decrease in the particle volume but a marked increase in its surface ruggedness. Molecular dynamics simulations using a reactive potential and performed under similar conditions as the experiment reproduce the experimental trends and show in detail how the shape and surface structure of the nanoparticles evolve with increasing oxygen content. This good agreement between in situ observations in the plume and atomistic simulations emphasizes the key role of chemical reactivity together with thermodynamic conditions on the morphology of the particles thus produced.

  4. Influence of copper in spheres of iron and aluminum oxide; Influencia do cobre nas propriedades texturais e estruturais de esferas de oxido de ferro e aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, A.F. de; Gomes, E.C.C.; Valentini, A.; Longhinotti, E., E-mail: adfrsou@hotmail.co [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Analitica e Fisico-Quimica; Sales, F.A.M. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisica

    2010-07-01

    The various applications of mesoporous materials in adsorption and catalysis have driven research for new synthetic routes to improve the structural and morphological characteristics of the compounds currently available. Spherical mesoporous materials of aluminum oxide and / or iron were synthesized in proportions of 10.30 and 50%, and then impregnated with copper oxide by wet impregnation method. Supporters of spherical iron oxide and aluminum before and after impregnation with copper were characterized by XRD, SEM, chemical analysis, BET and TPR. The analysis results of XRD showed the formation of crystalline phases AB{sub 2}O{sub 4} type, the results of TPR showed a shift of the band of iron reduction with the incorporation of copper and the samples indicated a decrease in porosity, possibly due to the closure of pores with the addition of copper. (author)

  5. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Tang Junlei; Han Zhongzhi [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-01-15

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  6. Laser-MBE of nickel nanowires using AAO template: a new active substrate of surface enhanced Raman scattering.

    Science.gov (United States)

    Zhang, Lisheng; Fang, Yan; Zhang, Pengxiang

    2008-01-01

    The highly ordered anodic aluminum oxide (AAO) template was fabricated using aluminum anodizing in electrolytes with two-step method, which apertures were about 50-80nm. The nickel nanowires with about 40-70nm in diameter was prepared on the AAO template by laser-MBE (molecular beam epitaxy). And high quality Raman spectra of SudanII were obtained on the glass covered with the nickel nanowires. On the nickel nanowires there are both surface enhanced Raman scattering (SERS) and tip enhanced Raman scattering (TERS). The new observations not only enlarge the range of SERS applications, but also imply a possible new enhancement mechanism. Otherwise the Raman and SERS frequencies of SudanII molecule were calculated using, respectively, DFT and B3PW91.

  7. Partial oxidation of dimethyl ether using the structured catalyst Rh/Al2O3/Al prepared through the anodic oxidation of aluminum.

    Science.gov (United States)

    Yu, B Y; Lee, K H; Kim, K; Byun, D J; Ha, H P; Byun, J Y

    2011-07-01

    The partial oxidation of dimethyl ether (DME) was investigated using the structured catalyst Rh/Al2O3/Al. The porous Al2O3 layer was synthesized on the aluminum plate through anodic oxidation in an oxalic-acid solution. It was observed that about 20 nm nanopores were well developed in the Al2O3 layer. The thickness of Al2O3 layer can be adjusted by controlling the anodizing time and current density. After pore-widening and hot-water treatment, the Al2O3/Al plate was calcined at 500 degrees C for 3 h. The obtained delta-Al2O3 had a specific surface area of 160 m2/g, making it fit to be used as a catalyst support. A microchannel reactor was designed and fabricated to evaluate the catalytic activity of Rh/Al2O3/Al in the partial oxidation of DME. The structured catalyst showed an 86% maximum hydrogen yield at 450 degrees C. On the other hand, the maximum syngas yield by a pack-bed-type catalyst could be attained by using a more than fivefold Rh amount compared to that used in the structured Rh/Al2O3/Al catalyst.

  8. Oxidative stress is a consequence, not a cause, of aluminum toxicity in the forage legume Lotus corniculatus.

    Science.gov (United States)

    Navascués, Joaquín; Pérez-Rontomé, Carmen; Sánchez, Diego H; Staudinger, Christiana; Wienkoop, Stefanie; Rellán-Álvarez, Rubén; Becana, Manuel

    2012-02-01

    Aluminum (Al) toxicity is a major limiting factor of crop production on acid soils, but the implication of oxidative stress in this process is controversial. A multidisciplinary approach was used here to address this question in the forage legume Lotus corniculatus. • Plants were treated with low Al concentrations in hydroponic culture, and physiological and biochemical parameters, together with semiquantitative metabolic and proteomic profiles, were determined. • The exposure of plants to 10 μM Al inhibited root and leaf growth, but had no effect on the production of reactive oxygen species or lipid peroxides. By contrast, exposure to 20 μM Al elicited the production of superoxide radicals, peroxide and malondialdehyde. In response to Al, there was a progressive replacement of the superoxide dismutase isoforms in the cytosol, a loss of ascorbate and consistent changes in amino acids, sugars and associated enzymes. • We conclude that oxidative stress is not a causative factor of Al toxicity. The increased contents in roots of two powerful Al chelators, malic and 2-isopropylmalic acids, together with the induction of an Al-activated malate transporter gene, strongly suggest that both organic acids are implicated in Al detoxification. The effects of Al on key proteins involved in cytoskeleton dynamics, protein turnover, transport, methylation reactions, redox control and stress responses underscore a metabolic dysfunction, which affects multiple cellular compartments, particularly in plants exposed to 20 μM Al.

  9. Evaluation of cerium oxide coated Cu cermets as inert anodes for aluminum electrowinning. Final report, August 1990--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Cu/NiFe{sub 2}O{sub 4} cermets were evaluated, with and without an in-situ deposited CEROX (TM; cerium oxide) coating, in 100 h laboratory A1 electrowinning tests. Bath ratio and current density were varied between tests and corrosion was determined by contamination of the aluminum and cryolite by cermet components (Cu, Fe, and Ni). Higher bath ratios of 1.5 to 1.6 led to less corrosion and thicker CEROX coatings. Lower current densities led to slightly less corrosion but much less oxidation of the Cu cermet substrate. At identical test conditions, the corrosion of the CEROX coated cermets was 1/7 that of an uncoated cermet. Corrosion was increased in CEROX coated cermets tested under unsaturated alumina conditions. The electrical conductivity of the CEROX coating was measured to be {approximately}0.2 ohm{sup {minus}1}cm{sup {minus}1}, resulting in a slight voltage penalty, depending on the thickness of the coating.

  10. Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide.

    Science.gov (United States)

    Kerr, A J; Chagarov, E; Gu, S; Kaufman-Osborn, T; Madisetti, S; Wu, J; Asbeck, P M; Oktyabrsky, S; Kummel, A C

    2014-09-14

    A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al2O3 gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge. These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001).

  11. Poly(furfuryl alcohol) nanospheres: a facile synthesis approach based on confinement effect of polymer and a template for synthesis of metal oxide hollow nanospheres

    Indian Academy of Sciences (India)

    Wei-Zhi Wang; Zhi-Qiang Li; Kong-Lin Wu; Ya-Jing Lu; Ya-Fei Xu; Xin-Jie Song

    2015-12-01

    This paper describes a facile hydrothermal approach to the large-scale synthesis of well-dispersed poly(furfuryl alcohol) (PFA) nanospheres with an average diameter of 350 nm in the presence of poly(vinyl pyrrolidone) (PVP). Scanning electron microscopy and transmission electron microscopy studies showed that different morphologies of PFA could be obtained by adjusting the ratio of PVP and furfuryl alcohol (FA). As a whole, the results demonstrate that PVP plays a key role in controlling the polymerization process of FA. The confinement effect of PVP is proposed to explain the formation process of PFA nanospheres. Furthermore, the as-prepared PFA nanospheres have a functional surface that allow them to act as an ideal template for fabricating metal oxide hollow nanospheres.

  12. Facile fabrication of high-quality Ag/PS coaxial nanocables based on the mixed mode of soft/hard templates.

    Science.gov (United States)

    Wan, Mimi; Zhao, Wenbo; Peng, Fang; Wang, Qi; Xu, Ping; Mao, Chun; Shen, Jian

    2016-08-01

    A new kind of high-quality Ag/PS coaxial nanocables can be facilely synthesized by using soft/hard templates method. In order to effectively introduce Ag sources into porous polystyrene (PS) nanotubes which were trapped in porous anodic aluminum oxide (AAO) hard template, Pluronic F127 (F127) was used as guiding agent, soft template and reductant. Meanwhile, ethylene glycol solution was also used as solvent and co-reducing agent to assist in the formation of silver nanowires. The influences of concentration of F127 and reducing reaction time on the formation of Ag/PS coaxial nanocables were discussed. Results indicated that the high-quality Ag/PS coaxial nanocables can be obtained by the mixed mode of soft/hard templates under optimized conditions. This strategy is expected to be extended to design more metal/polymer coaxial nanocables for the benefit of creation of complex and functional nanoarchitectures and components.

  13. Effect of aluminum addition on electrical properties, dielectric characteristics, and its stability of (Pr, Co, Cr, Y)-added zinc oxide-based varistors

    Indian Academy of Sciences (India)

    Choon-W Nahm

    2010-06-01

    The electrical properties, dielectric characteristics, and its stability against d.c. accelerated aging stress of (Pr, Co, Cr, Y)-added zinc oxide-based varistors were investigated for different aluminum concentrations under a sintering temperature of 1280°C. As the aluminum concentration increased, the average grain size () increased in the range of 4.3–5.5 m and the sintered density increased in the range of 5.63–5.67 g/cm3. As the aluminum concentration increased, the breakdown field decreased in the range of 6327–710 V/cm and the maximum nonlinear coefficient (46.9) was obtained for 0.005 mol% in aluminum concentration, further additions impaired the nonlinear properties. As the aluminum concentration increased, the apparent dielectric constant increased in the range of 500.5–1327.4 and dissipation factor increased in the range of 0.00493–0.0724. The varistor added with 0.001 mol% Al exhibited the highest stability for – characteristics in which % 1\\ mA is +1.4% and % is –5.7%, under stress state of 0.95 1\\ mA/150° C/24 h.

  14. Facile one-step template-free synthesis of uniform hollow microstructures of cryptomelane-type manganese oxide K-OMS-2.

    Science.gov (United States)

    Galindo, Hugo M; Carvajal, Yadira; Njagi, Eric; Ristau, Roger A; Suib, Steven L

    2010-08-17

    Hollow microstructures of cryptomelane-type manganese oxide were produced in a template-free one-step process based on the fine-tuning of the oxidation rate of manganese species during the synthesis. The tuning of the reaction rate brought about by a mixture of the oxidants oxone and potassium nitrate becomes apparent from the gradual physical changes taking place in the reaction medium at early times of the synthesis. The successful synthesis of the hollow uniform structures could be performed in the ranges 120-160 degrees C and 8.2-10.7 for temperature and mass ratio oxone/potassium nitrate, respectively. Independent of the conditions of the synthesis, all of the complex microstructures showed the same pattern for the array of very long nanofibers in which some of these elongated around the surface confining the cavity and the other fibers grew normal to the surface created by the previous arrangement. A mechanism based on the heterogeneous nucleation of the cryptomelane phase on the surface of an amorphous precursor and the growth of the nanoscale fibers by processes such as dissolution-crystallization and lateral attachment of primary nanocrystalline fibers is proposed to explain the formation of the hollow structures.

  15. Assembly of crosslinked oxo-cyanoruthenate and zirconium oxide bilayers: Application in electrocatalytic films based on organically modified silica with templated pores

    Science.gov (United States)

    Rutkowska, Iwona A.; Sek, Jakub P.; Mehdi, B. Layla; Kulesza, Pawel J.; Cox, James A.

    2014-01-01

    Electrochemical deposition of crosslinked oxo-cyanoruthenate, Ru-O/CN-O, from a mixture of RuCl3 and K4Ru(CN)6 is known to yield a film on glassy carbon that promotes oxidations by a combination of electron and oxygen transfer. Layer-by-layer (LbL) deposition of this species and of a film formed by cycling of the electrode potential in a ZrO2 solution systematically increases the number of catalytically active sites of the Ru-O/CN-O on the electrode. The evaluation of the electrocatalytic activity was by cyclic voltammetric oxidation of cysteine at pH 2. Plots of the anodic peak current vs. the square root of scan rate were indicative of linear diffusion control of this oxidation, even in the absence of ZrO2, but the slopes of these linear plots increased with bilayer number, n, of (ZrO2 | Ru-O/CN-O)n. The latter observation is hypothesized to be due to an increased number of active sites for a given geometric electrode area, but proof required further study. To optimize utilization of the catalyst and to provide a size-exclusion characteristic to the electrode, the study was extended to LbL deposition of the composite in 50-nm pores of an organically modified silica film deposited by electrochemically assisted sol-gel processing using surface-bound poly(styrene sulfonate) nanospheres as a templating agent. PMID:24683266

  16. Assembly of crosslinked oxo-cyanoruthenate and zirconium oxide bilayers: Application in electrocatalytic films based on organically modified silica with templated pores.

    Science.gov (United States)

    Rutkowska, Iwona A; Sek, Jakub P; Mehdi, B Layla; Kulesza, Pawel J; Cox, James A

    2014-03-10

    Electrochemical deposition of crosslinked oxo-cyanoruthenate, Ru-O/CN-O, from a mixture of RuCl3 and K4Ru(CN)6 is known to yield a film on glassy carbon that promotes oxidations by a combination of electron and oxygen transfer. Layer-by-layer (LbL) deposition of this species and of a film formed by cycling of the electrode potential in a ZrO2 solution systematically increases the number of catalytically active sites of the Ru-O/CN-O on the electrode. The evaluation of the electrocatalytic activity was by cyclic voltammetric oxidation of cysteine at pH 2. Plots of the anodic peak current vs. the square root of scan rate were indicative of linear diffusion control of this oxidation, even in the absence of ZrO2, but the slopes of these linear plots increased with bilayer number, n, of (ZrO2 | Ru-O/CN-O) n . The latter observation is hypothesized to be due to an increased number of active sites for a given geometric electrode area, but proof required further study. To optimize utilization of the catalyst and to provide a size-exclusion characteristic to the electrode, the study was extended to LbL deposition of the composite in 50-nm pores of an organically modified silica film deposited by electrochemically assisted sol-gel processing using surface-bound poly(styrene sulfonate) nanospheres as a templating agent.

  17. Improving the phase stability and oxidation resistance of beta-nickel aluminum

    Science.gov (United States)

    Brammer, Travis Michael

    This thesis is written in an alternate format. The thesis is composed of a general introduction, four original manuscripts, and a general conclusion. References cited within each chapter are located immediately after that section. In addition, figures and tables are numbered independently within each chapter. The general introduction focuses on the driving force behind this research, and gives an overview of previous work done on nickel-based superalloys. Chapter 2 describes the preliminary experiments and how those experiments guided the rest of the thesis work. Chapter 3 deals specifically with the oxidation performance of platinum group metal (PGM) and hafnium modifications to beta-NiAl intermetallic. Chapter 4 investigates the role of grain size on the oxidation resistance of NiAl based alloys. Chapter 5 focuses on the role of melting temperature on the oxidation resistance of NiAl based alloys. Chapter 6 summarizes the important results of this study.

  18. Up-regulation of heme oxygenase-1 contributes to the amelioration of aluminum-induced oxidative stress in Medicago sativa.

    Science.gov (United States)

    Cui, Weiti; Zhang, Jing; Xuan, Wei; Xie, Yanjie

    2013-10-15

    In this report, pharmacological, histochemical and molecular approaches were used to investigate the effect of heme oxygenase-1 (HO-1) up-regulation on the alleviation of aluminum (Al)-induced oxidative stress in Medicago sativa. Exposure of alfalfa to AlCl3 (0-100 μM) resulted in a dose-dependent inhibition of root elongation as well as the enhancement of thiobarbituric acid reactive substances (TBARS) content. 1 and 10 μM (in particular) Al(3+) increased alfalfa HO-1 transcript or its protein level, and HO activity in comparison with the decreased changes in 100 μM Al-treated samples. After recuperation, however, TBARS levels in 1 and 10 μM Al-treated alfalfa roots returned to control values, which were accompanied with the higher levels of HO activity. Subsequently, exogenous CO, a byproduct of HO-1, could substitute for the cytoprotective effects of the up-regulation of HO-1 in alfalfa plants upon Al stress, which was confirmed by the alleviation of TBARS and Al accumulation, as well as the histochemical analysis of lipid peroxidation and loss of plasma membrane integrity. Theses results indicated that endogenous CO generated via heme degradation by HO-1 could contribute in a critical manner to its protective effects. Additionally, the pretreatments of butylated hydroxytoluene (BHT) and hemin, an inducer of HO-1, exhibited the similar cytoprotective roles in the alleviation of oxidative stress, both of which were impaired by the potent inhibitor of HO-1, zinc protoporphyrin IX (ZnPP). However, the Al-induced inhibition of root elongation was not influenced by CO, BHT and hemin, respectively. Together, the present results showed up-regulation of HO-1 expression could act as a mechanism of cell protection against oxidative stress induced by Al treatment.

  19. Pretreatment with H2O2 Alleviates Aluminum-induced Oxidative Stress in Wheat Seedlings

    Institute of Scientific and Technical Information of China (English)

    Fang Jie Xu; Chong Wei Jin; Wen Jing Liu; Yong Song Zhang; Xian Yong Lin

    2011-01-01

    Hydrogen peroxide(H2O2)is a key reactive oxygen species(ROS)in signal transduction pathways Ieading to activation of plant defenses against biotic and abiotic stresses.In this study,we investigated the effects of H2O2 pretreatment on aluminum (Al)induced antioxidant responses in root tips of two wheat(Triticum aestivum L.)genotypes,Yangmai-5(Al-sensitive)and Jian-864(Al-tolerant).Al increased and root elongation inhibition in Yangmai-5 than in Jian-864.However,H2O2 pretreatment alleviated Alinduced deleterious effects in both genotypes.Under Al stress,H2O2 pretreatment increased the activities of superoxide dismutase,catalase,peroxidase,ascorbate peroxidase and monodehydroascorbate reductase,glutathione reductase and giutathione peroxidase as well as the levels of ascorbate and glutathione more significantly in Yangmai-5 than in Jian-864.Furthermore,H2O2 pretreatment also increased the total antioxidant capacity evaluated as the 2,2-diphenyl-1-picrylhydrazyl-radical scavenging activity and the ferric reducing/antioxidant power more significantly in Yangmai-5 than in Jian-864.Therefore,we conclude that H2O2 pretreatment improves wheat Al acclimation during subsequent Al exposure by enhancing the antioxidant defense capacity,which prevents ROS accumulation,and that the enhancement is greater in the Al-sensitive genotype than in the Al-tolerant genotype.

  20. Studies on anodic oxide coating with low absorptance and high emittance on aluminum alloy 2024

    Energy Technology Data Exchange (ETDEWEB)

    Siva Kumar, C. [Department of Post-graduate studies in Chemistry, Central College, Bangalore (India); Sharma, A.K. [Thermal Process Section, ISRO Satellite Centre, Vimanapura Post, Bangalore (India); Mahendra, K.N.; Mayanna, S.M. [Department of Post-graduate studies in Chemistry, Central College, Bangalore (India)

    2000-01-01

    Anodization of AA 2024 in sulfuric acid bath containing glycerol, lactic acid and ammonium metavenadate has been studied to develop white anodic oxide coating. Investigation on the influence of various operating parameters - coating thickness, current density and ammonium metavenadate concentration on the optical properties was carried out to optimize the process. Infrared, atomic absorption spectroscopic techniques and scanning electron micrograph were used to characterize the coating. The obtained oxide coating provides a ratio of solar absorptance ({alpha}) to infrared emittance ({epsilon}), as low as 0.2. The optical properties and hardness values measured under optimum experimental conditions support its use as a thermal control coating.

  1. Biocompatibility tests performed on nanoporous aluminum oxide coated with polyethyleneglycol and titanium dioxide

    OpenAIRE

    2011-01-01

    Anodized aluminium oxide may be chemically treated to yield a uniform self-organized distribution of pores with a specific pore diameter. The thickness of in-house anodized alumina and its pore size can be modified by changing the electrolyte, the temperature of the electrolyte, the time of anodization and the potential over the anodized plates.  In this thesis, a method for anodized aluminium oxide (AAO) was optimized for creating custom-made porous alumina membranes and coating them with Ti...

  2. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina.

    Science.gov (United States)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2008-10-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method.

  3. Comparative Assessment of Antimicrobial Efficiency of Ionic Silver, Silver Monoxide, and Metallic Silver Incorporated onto an Aluminum Oxide Nanopowder Carrier

    Directory of Open Access Journals (Sweden)

    Agnieszka Maria Jastrzębska

    2013-01-01

    Full Text Available The present paper provides comparative assessment of antimicrobial efficiency of ionic silver (Ag+, silver monoxide (Ag2O, and metallic silver (Ag incorporated onto an aluminum oxide nanopowder carrier (Al2O3. The deposition of Ag+ ions, Ag2O nanoparticles, and Ag nanoparticles on an different phases of aluminum oxide nanopowder carrier was realized using consecutive stages of dry sol-gel method. The Al2O3-Ag+, Al2O3-Ag2O, and Al2O3-Ag nanopowders were widely characterized qualitatively and quantitatively by SEM, physical nitrogen sorption and XRD analyses. Results indicate that the Al2O3 nanopowders added with Ag+, Ag2O, and Ag, apart from phase composition, were not differing considerably from one another in terms of their morphology and physical properties. However, nanopowders of Al2O3-Ag were more agglomerated than Al2O3-Ag2O and Al2O3-Ag+ nanopowders. The antibacterial activity of the nanopowders was examined by the spread plate method using bacterial strains such as Escherichia coli, Sarcina lutea, and Bacillus subtilis. The best antibacterial properties against Sarcina lutea strain were achieved in the amorphous-Al2O3-Ag+ and Al2O3-Ag2O nanopowders, whereas the worst antimicrobial activity against Bacillus subtilis and Escherichia coli was shown by the Al2O3-Ag+ and Al2O3-Ag nanopowders. The observed increase of the antibacterial activity as the silver content was not however significant for Al2O3-Ag nanopowders. The results obtained in the present experiments show that the Al2O3-Ag+, Al2O3-Ag2O, and Al2O3-Ag nanopowders, possessing good bactericidal properties, can be produced by using consecutive stages of dry sol-gel method, and Al2O3 nanopowder added with Ag2O is considered as the best raw material in the production of antiseptic materials.

  4. Aluminum/Copper Oxide/Copper Memristive Devices: Fabrication, Characterization, and Modeling

    Science.gov (United States)

    McDonald, Nathan R.

    Memristive devices have become very popular in recent years due to their potential to dramatically alter logic processing in CMOS circuitry. Memristive devices function as electrical potentiometers, allowing for such diverse applications as memory storage, multi-state logic, and reconfigurable logic gates. This research covered the fabrication, characterization, and modeling of Al/CuxO/Cu memristive devices created by depositing Al top electrodes atop a CuxO film grown using plasma oxidation to grow the oxide on a Cu wafer. Power settings of the plasma oxidation system were shown to control the grown oxide thickness and oxygen concentration, which subsequently affected memristive device behaviors. These memristive devices demonstrated complete nonpolar behavior and could be switched either in a vertical (Al/Cu xO/Cu) or lateral (Al/CuxO/Cu/CuxO/Al) manner. The switching mechanism of these devices was shown to be filamentary in nature. Physical and empirical models of these devices were created for MATLAB, HSPICE, & Verilog A environments. While the physical model proved of limited practical consequence, the robust empirical model allows for rapid prototyping of CMOS-memristor circuitry.

  5. Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum).

    Science.gov (United States)

    Sun, Chengliang; Lu, Lingli; Liu, Lijuan; Liu, Wenjing; Yu, Yan; Liu, Xiaoxia; Hu, Yan; Jin, Chongwei; Lin, Xianyong

    2014-03-01

    • Nitric oxide (NO) is an important signaling molecule involved in the physiological processes of plants. The role of NO release in the tolerance strategies of roots of wheat (Triticum aestivum) under aluminum (Al) stress was investigated using two genotypes with different Al resistances. • An early NO burst at 3 h was observed in the root tips of the Al-tolerant genotype Jian-864, whereas the Al-sensitive genotype Yang-5 showed no NO accumulation at 3 h but an extremely high NO concentration after 12 h. Stimulating NO production at 3 h in the root tips of Yang-5 with the NO donor relieved Al-induced root inhibition and callose production, as well as oxidative damage and ROS accumulation, while elimination of the early NO burst by NO scavenger aggravated root inhibition in Jian-864. • Synthesis of early NO in roots of Jian-864 was mediated through nitrate reductase (NR) but not through NO synthase. Elevated antioxidant enzyme activities were induced by Al stress in both wheat genotypes and significantly enhanced by NO donor, but suppressed by NO scavenger or NR inhibitor. • These results suggest that an NR-mediated early NO burst plays an important role in Al resistance of wheat through modulating enhanced antioxidant defense to adapt to Al stress.

  6. Fractionation of fulvic acid by iron and aluminum oxides: influence on copper toxicity to Ceriodaphnia dubia

    Science.gov (United States)

    Smith, Kathleen S.; James F. Ranville,; Emily K. Lesher,; Daniel J. Diedrich,; Diane M. McKnight,; Ruth M. Sofield,

    2014-01-01

    This study examines the effect on aquatic copper toxicity of the chemical fractionation of fulvic acid (FA) that results from its association with iron and aluminum oxyhydroxide precipitates. Fractionated and unfractionated FAs obtained from streamwater and suspended sediment were utilized in acute Cu toxicity tests on ,i>Ceriodaphnia dubia. Toxicity test results with equal FA concentrations (6 mg FA/L) show that the fractionated dissolved FA was 3 times less effective at reducing Cu toxicity (EC50 13 ± 0.6 μg Cu/L) than were the unfractionated dissolved FAs (EC50 39 ± 0.4 and 41 ± 1.2 μg Cu/L). The fractionation is a consequence of preferential sorption of molecules having strong metal-binding (more aromatic) moieties to precipitating Fe- and Al-rich oxyhydroxides, causing the remaining dissolved FA to be depleted in these functional groups. As a result, there is more bioavailable dissolved Cu in the water and hence greater potential for Cu toxicity to aquatic organisms. In predicting Cu toxicity, biotic ligand models (BLMs) take into account dissolved organic carbon (DOC) concentration; however, unless DOC characteristics are accounted for, model predictions can underestimate acute Cu toxicity for water containing fractionated dissolved FA. This may have implications for water-quality criteria in systems containing Fe- and Al-rich sediment, and in mined and mineralized areas in particular. Optical measurements, such as specific ultraviolet absorbance at 254 nm (SUVA254), show promise for use as spectral indicators of DOC chemical fractionation and inferred increased Cu toxicity.

  7. Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide

    Science.gov (United States)

    Saint-Cast, Pierre; Kania, Daniel; Hofmann, Marc; Benick, Jan; Rentsch, Jochen; Preu, Ralf

    2009-10-01

    Aluminum oxide layers can provide excellent passivation for lowly and highly doped p-type silicon surfaces. Fixed negative charges induce an accumulation layer at the p-type silicon interface, resulting in very effective field-effect passivation. This paper presents highly negatively charged (Qox=-2.1×1012 cm-2) aluminum oxide layers produced using an inline plasma-enhanced chemical vapor deposition system, leading to very low effective recombination velocities (˜10 cm s-1) on low-resistivity p-type substrates. A minimum static deposition rate (100 nm min-1) at least one order of magnitude higher than atomic layer deposition was achieved on a large carrier surfaces (˜1 m2) without significantly reducing the resultant passivation quality.

  8. The effect of Bi{sup 3+} and Li{sup +} co-doping on the luminescence characteristics of Eu{sup 3+}-doped aluminum oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Padilla-Rosales, I., E-mail: ipadilla@cinvestav.mx [Centro de Investigación y de Estudios Avanzados del IPN, Nanociencias y Nanotecnología, Av. IPN 2508, Col. San Pedro Zacatenco, CP 07360 México D.F. (Mexico); Martinez-Martinez, R. [Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, Carretera a Acatlima Km. 2.5, CP 69000 Huajuapan de León, Oax, México (Mexico); Cabañas, G. [Centro de Investigación y de Estudios Avanzados del IPN, Nanociencias y Nanotecnología, Av. IPN 2508, Col. San Pedro Zacatenco, CP 07360 México D.F. (Mexico); Falcony, C. [Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Física, Av. IPN 2508, Col. San Pedro Zacatenco, CP 07360 México D.F. (Mexico)

    2015-09-15

    The incorporation of Bi{sup 3+} and Li{sup +} as co-dopants in Eu{sup 3+}-doped aluminum oxide films deposited by the ultrasonic spray pyrolysis technique and its effect on the luminescence characteristics of this material are described. Both Bi{sup 3+} and Li{sup +} do not introduce new luminescence features but affect the luminescence intensity of the Eu{sup 3+} related emission spectra as well as the excitation spectra. The introduction of Bi{sup 3+} generates localized states in the aluminum oxide host that result in a quenching of the luminescence intensity, while Li{sup +} and Bi{sup 3+} co-doping increase the luminescence intensity of these films. - Highlights: • Li and Bi co-doping increase the luminescence. • Bi creates localized states in the Al{sub 2}O{sub 3} host. • Li was incorporated as a co-activator.

  9. Fabrication of aluminum foam from aluminum scrap Hamza

    Directory of Open Access Journals (Sweden)

    O. A. Osman1 ,

    2015-02-01

    Full Text Available In this study the optimum parameters affecting the preparation of aluminum foam from recycled aluminum were studied, these parameters are: temperature, CaCO3 to aluminum scrap wt. ratio as foaming agent, Al2O3 to aluminum scrap wt. ratio as thickening agent, and stirring time. The results show that, the optimum parameters are the temperature ranged from 800 to 850oC, CaCO3 to aluminum scrap wt. ratio was 5%, Al2O3 to aluminum scrap wt. ratio was 3% and stirring time was 45 second with stirring speed 1200 rpm. The produced foam apparent densities ranged from 0.40-0.60 g/cm3. The microstructure of aluminum foam was examined by using SEM, EDX and XRD, the results show that, the aluminum pores were uniformly distributed along the all matrices and the cell walls covered by thin oxide film.

  10. Emulsion-templated macroporous carbons synthesized by hydrothermal carbonization and their application for the enzymatic oxidation of glucose.

    Science.gov (United States)

    Brun, Nicolas; Edembe, Lise; Gounel, Sébastien; Mano, Nicolas; Titirici, Magdalena M

    2013-04-01

    Carbon-based monoliths have been designed using a simple synthetic pathway based on using high internal phase emulsion (HIPE) as a soft template to confine the polymerization and hydrothermal carbonization of saccharide derivatives (furfural) and phenolic compounds (phloroglucinol). Monosaccharides can be isolated from the cellulosic fraction of lignocellulosic biomass and phloroglucinol can be extracted from the bark of fruit trees; however, this approach constitutes an interesting sustainable synthetic route. The macroscopic characteristics can be easily modulated; a high macroporosity and total pore volume of up to 98 % and 18 cm(3)g(-1) have been obtained, respectively. After further thermal treatment under inert atmosphere, the as-synthesized macroporous carbonized HIPEs (carbo-HIPEs) have shaping capabilities relating to interesting mechanical properties as well as a high electrical conductivity of up to 300 Sm(-1) . These conductive foams exhibit a hierarchical structure associated with the presence of both meso- and micropores that exhibit specific Brunauer-Emmett-Teller (BET) surface areas and DFT total pore volumes up to 730 m(2)g(-1) and 0.313 cm(3)g(-1) , respectively. Because of their attractive structural characteristics and intrinsic properties, these macroporous monoliths have been incorporated as a proof of principle within electrochemical devices as modified thin carbon disc electrodes. A promising two-fold improvement in the catalytic current is observed for the electrooxidation of glucose after the immobilization of a glucose oxidase-based biocatalytic mixture onto the carbo-HIPE electrodes compared to that observed if using commercial glassy carbon electrodes.

  11. DEGRADATION OF SM2ZR2O7 THERMAL BARRIER COATING CAUSED BY CALCIUM-MAGNESIUM-ALUMINUM-SILICON OXIDE (CMAS) DEPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Honglong; Sheng, Zhizhi; Tarwater, Emily; Zhang, Xingxing; Dasgupta, Sudip; Fergus, Jeffrey

    2015-03-16

    Rare earth zirconates are promising materials for use as thermal barrier coatings in gas turbine engines. Among the lanthanide zirconate materials, Sm2Zr2O7 with the pyrochlore structure has lower thermal conductivity and better corrosion resistance against calcium-magnesium-aluminum-silicon oxide (CMAS). In this work, after reaction with CMAS, the pyrochlore structure transforms to the cubic fluorite structure and Ca2Sm8(SiO4)6O2 forms in elongated grain.

  12. Aluminum-, Calcium- And Titanium-Rich Oxide Stardust In Ordinary Chondrite Meteorites

    CERN Document Server

    Nittler, Larry R; Gallino, Roberto; Hoppe, Peter; Nguyen, Ann N; Stadermann, Frank J; Zinner, Ernst K

    2008-01-01

    We report isotopic data for a total of 96 presolar oxide grains found in residues of several unequilibrated ordinary chondrite meteorites. Identified grain types include Al2O3, MgAl2O4, hibonite (CaAl12O19) and Ti oxide. This work greatly increases the presolar hibonite database, and is the first report of presolar Ti oxide. O-isotopic compositions of the grains span previously observed ranges and indicate an origin in red giant and asymptotic giant branch (AGB) stars of low mass (<2.5 MSun) for most grains. Cool bottom processing in the parent AGB stars is required to explain isotopic compositions of many grains. Potassium-41 enrichments in hibonite grains are attributable to in situ decay of now-extinct 41Ca. Inferred initial 41Ca/40Ca ratios are in good agreement with model predictions for low-mass AGB star envelopes, provided that ionization suppresses 41Ca decay. Stable Mg and Ca isotopic ratios of most of the hibonite grains reflect primarily the initial compositions of the parent stars and are gener...

  13. Hydrogen-rich water alleviates aluminum-induced inhibition of root elongation in alfalfa via decreasing nitric oxide production.

    Science.gov (United States)

    Chen, Meng; Cui, Weiti; Zhu, Kaikai; Xie, Yanjie; Zhang, Chunhua; Shen, Wenbiao

    2014-02-28

    One of the earliest and distinct symptoms of aluminum (Al) toxicity is the inhibition of root elongation. Although hydrogen gas (H2) is recently described as an important bio-regulator in plants, whether and how H2 regulates Al-induced inhibition of root elongation is largely unknown. To address these gaps, hydrogen-rich water (HRW) was used to investigate a physiological role of H2 and its possible molecular mechanism. Individual or simultaneous (in particular) exposure of alfalfa seedlings to Al, or a fresh but not old nitric oxide (NO)-releasing compound sodium nitroprusside (SNP), not only increased NO production, but also led to a significant inhibition of root elongation. Above responses were differentially alleviated by pretreatment with 50% saturation of HRW. The addition of HRW also alleviated the appearance of Al toxicity symptoms, including the improvement of seedling growth and less accumulation of Al. Subsequent results revealed that the removal of NO by the NO scavenger, similar to HRW, could decrease NO production and alleviate Al- or SNP-induced inhibition of root growth. Thus, we proposed that HRW alleviated Al-induced inhibition of alfalfa root elongation by decreasing NO production. Such findings may be applicable to enhance crop yield and improve stress tolerance.

  14. Ultrafast carrier dynamics and third order nonlinear optical properties of aluminum doped zinc oxide (AZO) thin films

    Science.gov (United States)

    Htwe, Zin Maung; Zhang, Yun-Dong; Yao, Cheng-Bao; Li, Hui; Yuan, Ping

    2017-04-01

    Aluminum doped zinc oxide (AZO) thin films were fabricated by simultaneous RF/DC magnetron sputtering technique on sapphire (Al2O3) substrate with different DC sputtering power 2, 6, 8 and 10 W respectively. The sputtered thin films were annealed at 350 °C in order to improve the crystal quality. AZO thin films are systematically analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-VIS spectrometer for structural and optical properties. XRD patterns show that all sputtered thin films are well crystallized with hexagonal wurtzite structure. SEM images reveal the average crystallite sizes are increased after doping Al in ZnO which agreed with the calculated values from XRD. All thin films possess high optical transmittance in visible region and optical band gap values are relatively increased with Al concentration. The ultrafast transient absorption (TA) of AZO was analyzed by femtosecond pump-probe spectroscopy. The kinetic TA curves were fitted by tri-exponential decay function and obtained decay time constants are found to be in few picosecond and nanosecond range for ultrafast and slow processes respectively. Third order nonlinear optical absorption and refraction coefficients were investigated by using Z-scan technique. The observed nonlinear coefficients are enhanced with Al concentration in ZnO.

  15. Anodic aluminum oxide films formed in mixed electrolytes of oxalic and sulfuric acid and their optical constants

    Science.gov (United States)

    Zhao, Li-Rong; Wang, Jian; Li, Yan; Wang, Cheng-Wei; Zhou, Feng; Liu, Wei-Min

    2010-01-01

    Porous anodic aluminum oxide (AAO) films were fabricated electrochemically in the mixed electrolytes with various volume ratios of 0.3 M C 2H 2O 4 and 0.3 M H 2SO 4. The transmission spectra with the interference fringes were measured and the modified Swanepoel method was used to determine the optical constants of the free standing AAO films. The calculated thickness agrees well with the measured thickness from the FE-SEM images of the cross section, which indicates that the modified Swanepoel method is very fit for the determination of the optical constants of the free standing AAO films. Meantime, with the decrease of the volume ratio of C 2H 2O 4 and H 2SO 4, the refractive index and thickness of AAO films increase, but the extinction coefficient decreases. The optical band gap is appropriately fitted to the direct transition model proposed by Tauc in the strong-absorption region of investigated films, and is derived from Tauc's extrapolation. The reasons were investigated.

  16. Impedance spectroscopy of highly ordered nano-porous electrodes based on Au-AAO (anodic aluminum oxide) structure.

    Science.gov (United States)

    Ahn, Jaehwan; Cho, Sungbo; Min, Junhong

    2013-11-01

    Electrochemical measurements using the microelectrodes are increasingly utilized for the label-free detection of the small amount of biological materials such as DNA, protein, and cells. However, the interfacial electrode impedance increases and may hinder the detection of weak signals as the size of electrode decreases. To enhance the measurement sensitivity while reducing the electrode size, in this study, microelectrodes employing a nanoporous structure were fabricated and characterized by using electrical impedance spectroscopy. We made the highly ordered honeycomb nanoporous structure of Anodic Aluminum Oxide (AAO) by electrochemical anodizing and formed Au layer on the surface of AAO (Au/AAO) by electroless Au plating method. The electrical characteristics of the fabricated Au/AAO electrodes were evaluated by using de Levie's model derived for the pore electrodes. As a result, the interfacial electrode impedance of the fabricated Au/AAO electrodes was 2-3 order lower than the value of the planar electrodes at frequencies below 1 kHz. It implies this nanoporous electrode could be directly applied to label free detection of biomaterials.

  17. Preparation and characterization of solid-state sintered aluminum-doped zinc oxide with different alumina contents

    Indian Academy of Sciences (India)

    Yu-Hsien Chou; J L H Chau; W L Wang; C S Chen; S H Wang; C C Yang

    2011-06-01

    Aluminum-doped zinc oxide (AZO) ceramics with 0−2.5 wt.% alumina (Al2O3) content were prepared using a solid-state reaction technique. It was found that AZO grains became finer in size and more irregular in shape than undoped ZnO as the Al2O3 content increased. Addition of Al2O3 dopant caused the formation of phase transformation stacking faults in ZnO grains. The second phase, ZnAl2O4 spinel, was observed at the grain boundaries and triple junctions, and inside the grains. In this study, a 3-inch circular Al2O3 (2 wt.%)-doped ZnO ceramic target sintered at 1500°C for 6 h has a relative density of 99.8% with a resistivity of 1.8 × 10-3 -cm. The AZO film exhibits optical transparency of 90.3% in the visible region and shows an electrical resistivity of 2.5 × 10-3 -cm.

  18. Deposition of duplex Al 2O 3/aluminum coatings on steel using a combined technique of arc spraying and plasma electrolytic oxidation

    Science.gov (United States)

    Gu, Weichao; Shen, Dejiu; Wang, Yulin; Chen, Guangliang; Feng, Wenran; Zhang, Guling; Fan, Songhua; Liu, Chizi; Yang, Size

    2006-02-01

    Plasma electrolytic oxidation (PEO) is a cost-effective technique that can be used to prepare ceramic coatings on metals such as Ti, Al, Mg, Nb, etc., and their alloys, but this promising technique cannot be used to modify the surface properties of steels, which are the most widely used materials in engineering. In order to prepare metallurgically bonded ceramic coatings on steels, a combined technique of arc spraying and plasma electrolytic oxidation (PEO) was adopted. In this work, metallurgically bonded ceramic coatings on steels were obtained using this method. We firstly prepared aluminum coatings on steels by arc spraying, and then obtained the metallurgically bonded ceramic coatings on aluminum coatings by PEO. The characteristics of duplex coatings were analyzed by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The corrosion and wear resistance of the ceramic coatings were also studied. The results show that, duplex Al 2O 3/aluminum coatings have been deposited on steel substrate after the combined treatment. The ceramic coatings are mainly composed of α-Al 2O 3, γ-Al 2O 3, θ-Al 2O 3 and some amorphous phase. The duplex coatings show favorable corrosion and wear resistance properties. The investigations indicate that the combination of arc spraying and plasma electrolytic oxidation proves a promising technique for surface modification of steels for protective purposes.

  19. Yttrium aluminum garnet (YAG) obtained by rare-earth mixed oxide (RE{sub 2}O{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Castro, D.F.; Daguano, J.K.M.F.; Rodrigues Junior, D., E-mail: claudinei@demar.eel.usp.b [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia; Santos, C. [Centro Universitario de Volta Redonda (MEMAT/UNIFOA), RJ (Brazil); Suzuki, P.A. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Silva, O.M.M. [Centro Tecnico Aeroespacial (CTA-IAE), Sao Jose dos Campos, SP (Brazil). Inst. de Atividades Espaciais. Div. de Materiais

    2010-07-01

    In this work, the substitution of commercial Y{sub 2}O{sub 3} by a rare earth mixed oxide, RE{sub 2}O{sub 3}, to form Yttrium aluminum Garnet-Y{sub 3}Al{sub 5}O{sub 12}, was investigated. Al{sub 2}O{sub 3}:Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3}:RE{sub 2}O{sub 3} powder-mixtures, in a molar ratio of 60:40, were milled and subsequently cold uniaxially-pressed. Compacts were sintered at 1000, 1400 or 1600 deg C, for 120 minutes. RE{sub 2}O{sub 3} oxide was characterized by high-resolution synchrotron X-ray diffraction (HRXRD) and compared to Y{sub 2}O{sub 3}. X-ray diffraction pattern of the RE{sub 2}O{sub 3} indicates a true solid solution formation. Rietveld refinement of the sintered YAG and (RE)AG reveled a similar crystal structure to the YAGs obtained by the use of Al{sub 2}O{sub 3}-Y{sub 2}O{sub 3} or Al{sub 2}O{sub 3}-RE{sub 2}O{sub 3} respectively. Microstructural analysis of both, YAG or (RE)AG, revealed similar grain sizes of about 2.5 {mu}m besides mechanical properties, with hardness of 400HV and fracture toughness of 3.8MPa.m1/2. It could be, thus, demonstrated that pure Y{sub 2}O{sub 3} can be substituted by the rare-earth solid solution, RE{sub 2}O{sub 3}, in the formation YAGs, presenting similar microstructural and mechanical properties. (author)

  20. Influence of sodium silicate concentration on structural and tribological properties of microarc oxidation coatings on 2017A aluminum alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Aytekin, E-mail: apolat@nigde.edu.t [Department of Mechanical Engineering, Nigde University, Nigde 51100 (Turkey); Makaraci, Murat [Department of Mechanical Engineering, Kocaeli University, Kocaeli (Turkey); Usta, Metin [Department of Materials Science and Engineering, Gebze Institute of Technology, Kocaeli (Turkey)

    2010-08-20

    In this paper, thick and hard oxide coatings resistant to wear were produced on 2017A-T6 Al alloy by the microarc oxidation (MAO) technique in an alkali electrolyte consisting of different sodium silicate concentrations (0-8 g/l). The coatings were characterized by means of optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and surface profilometry. Microhardness, scratch adhesion and pin-on-disk sliding wear tests were also performed to evaluate the tribological properties of the coatings. The influence of sodium silicate concentration on the structural and tribological properties of the MAO coatings was discussed. Results reveal that increasing sodium silicate concentration from 0 to 8 g/l in the electrolyte caused an increase in the electrolyte conductivity (from 7.71 to 18.1 mS/cm) and a decrease in positive final voltage (from 627 to 590 V) in the MAO process. In response to the increase in sodium silicate concentration, the thickness, surface roughness (R{sub a}) and critical load (L{sub c}) corresponding to adhesive failure of the coatings were increased simultaneously from 74 to 144 {mu}m, and 4.4 to 6.58 {mu}m, and 127.76 to 198.54 N, respectively. At the same time, the phase structure and composition of the coatings also varied by the participation of silicate ions in the reactions and their incorporation into the coating structure. Moreover, it was observed that the coating formed in the low sodium silicate concentration (4 g/l) had higher surface hardness (2020 HV) and improved wear resistance than the one (1800 HV) formed in the high sodium silicate concentration (8 g/l). The coatings produced in three different electrolytic solutions provided an excellent wear resistance and a load carrying capacity compared to the uncoated aluminum alloy.

  1. Oxidation study on as-bonded intermetallic of copper wire-aluminum bond pad metallization for electronic microchip

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Sahaya Anand, T., E-mail: anand@utem.edu.my [Faculty of Manufacturing Engineering, University Technical Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Yau, Chua Kok [Faculty of Manufacturing Engineering, University Technical Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); University of Technical Malaysia Supported by Infineon Technology - Malaysia - Sdn. Bhd., Melaka (Malaysia); Huat, Lim Boon [Department of Innovation, Infineon Technology - Malaysia - Sdn. Bhd., FTZ Batu Berendam, 75350 Melaka (Malaysia)

    2012-10-15

    In this work, influence of Copper free air ball (FAB) oxidation towards Intermetallic Compound (IMC) at Copper wire-Aluminum bond pad metallization (Cu/Al) is studied. Samples are synthesized with different Copper FAB oxidation condition by turning Forming Gas supply ON and OFF. Studies are performed using Optical Microscope (OM), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and line-scan Energy Dispersive X-ray (EDX). SEM result shows there is a cross-sectional position offset from center in sample synthesized with Forming Gas OFF. This is due to difficulty of determining the position of cross-section in manual grinding/polishing process and high occurrence rate of golf-clubbed shape of oxidized Copper ball bond. TEM inspection reveals that the Copper ball bond on sample synthesized with Forming Gas OFF is having intermediate oxidation. Besides, the presence of IMC at the bonding interface of Cu/Al for both samples is seen. TEM study shows voids form at the bonding interface of Forming Gas ON sample belongs to unbonded area; while that in Forming Gas OFF sample is due to volume shrinkage of IMC growth. Line-scan EDX shows the phases present in the interfaces of as-bonded samples are Al{sub 4}Cu{sub 9} ({approx}3 nm) for sample with Forming Gas ON and mixed CuAl and CuAl{sub 2} ({approx}15 nm) for sample with Forming Gas OFF. Thicker IMC in sample with Forming Gas OFF is due to cross-section is positioned at high stress area that is close to edge of ball bond. Mechanical ball shear test shows that shear strength of sample with Forming Gas OFF is about 19% lower than that of sample with Forming Gas ON. Interface temperature is estimated at 437 Degree-Sign C for as-bonded sample with Forming Gas ON by using empirical parabolic law of volume diffusion. -- Highlights: Black-Right-Pointing-Pointer 3 nm Al{sub 4}Cu{sub 9} are found in sample prepared with Forming Gas ON. Black-Right-Pointing-Pointer 15 nm mixed CuAl + CuAl{sub 2} are found

  2. Activity and leaching features of zinc-aluminum ferrites in catalytic wet oxidation of phenol.

    Science.gov (United States)

    Xu, Aihua; Yang, Min; Qiao, Ruiping; Du, Hongzhang; Sun, Chenglin

    2007-08-17

    A series of ZnFe(2-x)Al(x)O(4) spinel type catalysts prepared by sol-gel method have been characterized and tested for catalytic wet oxidation (CWO) of phenol with pure oxygen. The iron species existed in these materials as aggregated iron oxide clusters and Fe3+ species in octahedral sites. With a decrease in iron content the concentration of the first iron species decreased and the latter increased. Complete phenol conversions and high chemical oxygen demand (COD) removals were obtained for all catalysts during phenol degradation at mild reaction conditions (160 degrees C and 1.0 MPa of oxygen pressure). Increasing with the concentration of Fe3+ species in octahedral sites, induction period became significantly shortened. After phenol was completely degraded, the concomitant recycling of the leaching Fe3+ ions back to the catalyst surface was observed, and in this case it is possible to perform successful CWO reactions with some cycles. It is also suggested that during the reaction the Fe3+ cations coordinated in octahedral sites in the ZnFe(2-x)Al(x)O(4) catalysts are resistant to acid leaching, but the reduced Fe2+ cations become much more labile, leading to increased Fe leaching.

  3. Oxidation and corrosion behavior of titanium aluminum nitride coatings by arc ion plating

    Institute of Scientific and Technical Information of China (English)

    LI Ming-sheng; FENG Chang-jie; ZHANG Zhi-feng; WANG Fu-hui

    2006-01-01

    Composite metastable TiN and Ti1-xAlxN coatings with different Al content were deposited on 1Cr11Ni2W2MoV stainless steel for aero-engine compressor blades by arc ion plating. The results show that all coatings have a B1NaCl structure and the preferred orientation changes from (111) to (220) with increasing Al content; the lattice parameter of Ti1-xAlxN decreases with the increase of Al content. The oxidation-resistance of (Ti,Al)N coatings is significantly improved owing to the formation of Al-riched oxide on the surface of the coatings. The nitride coatings can significantly improve the corrosion-resistance of 1Cr11Ni2W2MoV stainless steel under the synergistic of water vapor and NaCl, and the corrosion-resistance becomes better when the Al content increases, because not only the quick formation of thin alumina layer prevents the further corrosion but also the formation of alumina seals the pinholes or defects in the coatings, which prevents the occurrence of localized nodules-like corrosion.

  4. Kinetic of sintering of polyethilene glycol and lanthanum dopped aluminum oxide obtained by the sol-gel method

    Directory of Open Access Journals (Sweden)

    Novaković Tatjana B.

    2011-01-01

    Full Text Available Sintering and crystallization of low-density polyethylene glycol (PEG and lanthanum, La(III-doped Al2O3 aerogels prepared from aluminum isopropoxide were investigated. The sintering behavior of non-doped and doped aerogels was examined by following the change of specific surface area with isothermal heat-treatment. The specific surface area and crystalline phases of non-doped and PEG+La(III-doped aerogels were determined, and the effects of dopants on the sintering and crystallization of Al2O3 aerogels are discussed. Isothermal sintering experiments showed that the sintering mechanism of non-doped and PEG+La(III-doped Al2O3 aerogels is surface diffusion. The specific surface areas of alumina samples decrease rapidly during the initial period of sintering, and more slowly with prolonged sintering time. The change of the porous structure is correlated with the phase transformation of γ-Al2O3 during calcinations of Al2O3 aerogels. The surface area of non-doped Al2O3 aerogels came to about 20 m2g-1 with heat-treatment at 1100°C because of crystallization of α-Al2O3 after densification. In the case of heattreatment at 1200°C, the largest surface area was observed for PEG+La(III doped Al2O3 aerogels and the XRD pattern showed only low ordered θ-Al2O3. These indicate that the addition of PEG+La(III to boehmite sol prevents Al2O3 aerogels from sintering and crystallizing to the α-Al2O3 phase. Even after 20 h at 1000°C, PEG+La (III-doped alumina samples maintain a rather good specific surface area (108 m2 g-1 in comparison to the non-doped, containing mainly θ-Al2O3 and minor amounts of δ-Al2O3. Aluminum-oxides with these structural and textural properties are widely used as a coatings and catalyst supports in the field of various catalysis.

  5. Catalytical oxidation of styrene by molecularly imprinted polymer with phenylacetic acid as template and hemin as co-monomer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This letter used the molecular imprinting technology to build up the microenvironment around co-monomer hemin to mimic the cytochrome P450 catalyzing the epoxidation of styrene. The results showed that the conversion rates of products were obviously enhanced by molecularly imprinted polymers, compared to free hemin solution, using three kinds of oxidants. The used axial ligand in polymers synthesis also improved the total conversion rates.

  6. Crystal orientation dependent thermoelectric properties of highly oriented aluminum-doped zinc oxide thin films

    KAUST Repository

    Abutaha, Anas I.

    2013-02-06

    We demonstrate that the thermoelectric properties of highly oriented Al-doped zinc oxide (AZO) thin films can be improved by controlling their crystal orientation. The crystal orientation of the AZO films was changed by changing the temperature of the laser deposition process on LaAlO3 (100) substrates. The change in surface termination of the LaAlO3 substrate with temperature induces a change in AZO film orientation. The anisotropic nature of electrical conductivity and Seebeck coefficient of the AZO films showed a favored thermoelectric performance in c-axis oriented films. These films gave the highest power factor of 0.26 W m−1 K−1 at 740 K.

  7. Template-Based Electrochemically Controlled Growth of Segmented Multimetal Nanorods

    Directory of Open Access Journals (Sweden)

    Mee Rahn Kim

    2010-01-01

    Full Text Available Multisegmented one-dimensional nanostructures composed of gold, copper, and nickel have been fabricated by depositing metals electrochemically in the pores of anodic aluminum oxide (AAO templates. The electrodeposition process has been carried out using a direct current in a two-electrode electrochemical cell, where a silver-evaporated AAO membrane and a platinum plate have served as a working electrode and a counter electrode, respectively. The striped multimetal rods with an average diameter of about 300 nm have tunable lengths ranging from a few hundred nanometers to a few micrometers. The lengths and the sequence of metal segments in a striped rod can be tailored readily by controlling the durations of electrodeposition and the order of electroplating solutions, respectively.

  8. Nanowires and nanostructures fabrication using template methods

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.; Vlad, A.;

    2009-01-01

    One of the great challenges of today is to find reliable techniques for the fabrication of nanomaterials and nanostructures. Methods based on template synthesis and on self organization are the most promising due to their easiness and low cost. This paper focuses on the electrochemical synthesis ...... of nanowires and nanostructures using nanoporous host materials such as supported anodic aluminum considering it as a key template for nanowires based devices. New ways are opened for applications by combining such template synthesis methods with nanolithographic techniques.......One of the great challenges of today is to find reliable techniques for the fabrication of nanomaterials and nanostructures. Methods based on template synthesis and on self organization are the most promising due to their easiness and low cost. This paper focuses on the electrochemical synthesis...

  9. Template method for fabricating interdigitate p-n heterojunction for organic solar cell

    Science.gov (United States)

    Hu, Jianchen; Shirai, Yasuhiro; Han, Liyuan; Wakayama, Yutaka

    2012-08-01

    Anodic aluminum oxide (AAO) templates are used to fabricate arrays of poly(3-hexylthiophene) (P3HT) pillars. This technique makes it possible to control the dimensions of the pillars, namely their diameters, intervals, and heights, on a tens-of-nanometer scale. These features are essential for enhancing carrier processes such as carrier generation, exciton diffusion, and carrier dissociation and transport. An interdigitated p-n junction between P3HT pillars and fullerene (C60) exhibits a photovoltaic effect. Although the device properties are still preliminary, the experimental results indicate that an AAO template is an effective tool with which to develop organic solar cells because highly regulated nanostructures can be produced on large areas exceeding 100 mm2.

  10. Phase separation of a binary liquid in anodic aluminium oxide templates: a structural study by small angle neutron scattering.

    Science.gov (United States)

    Lefort, R; Duvail, J-L; Corre, T; Zhao, Y; Morineau, D

    2011-07-01

    The radial nanostructure of the binary liquid triethylamine/water confined in 60 nm diameter independent cylindrical pores of anodic aluminium oxide membranes is studied by small angle neutron scattering. It is shown that composition inhomogeneities are present in the confined mixtures well below the bulk critical point. An analysis of the neutron scattering form factor reveals the existence of an adsorbed water layer of a few nanometers at the liquid/alumina interface, coexisting with a TEA-rich phase in the core.

  11. GROWTH, MORPHOLOGICAL, STRUCTURAL, ELECTRICAL AND OPTICAL PROPERTIES OF NITROGEN DOPED ZINC OXIDE THIN FILM ON POROUS GALLIUM NITRIDE TEMPLATE

    OpenAIRE

    2016-01-01

    Gallium nitride (GaN) is susceptible of producing efficient display and lighting devices.  Low cost hybrid heterostructured lighting devices are developed by combining zinc oxide (ZnO) with GaN that has gained much more research interest, nowadays.  Porous GaN receives a great deal of attraction by its excellent and improved properties compared with its bulk counterpart.  Several potential applications have been realized, including for serving as a strain-relaxed substrates for...

  12. Transparent resistive switching memory using aluminum oxide on a flexible substrate

    Science.gov (United States)

    Yeom, Seung-Won; Shin, Sang-Chul; Kim, Tan-Young; Ha, Hyeon Jun; Lee, Yun-Hi; Shim, Jae Won; Ju, Byeong-Kwon

    2016-02-01

    Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al2O3-based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400-800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al2O3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole-Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al2O3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices.

  13. Utilization of Anodized Aluminum Oxide Substrate for the Growth of ZnO Microcrystals on Polygonized Spirals

    Science.gov (United States)

    Deulkar, Sundeep H.; Bhosale, C. H.; Huang, Jow-Lay

    2015-04-01

    Anodized Aluminum Oxide (AAO) has been utilized as a substrate for the screw dislocation assisted growth of polygonize spirals (PS) of ZnO with diameter of the order of 230 μm by Chemical Vapour Deposition (CVD) process. Stoichiometric ZnO microcrystals nucleated on the terraces and tops of these polygonized spirals. Stress inherent in the ZnO polygonized spiral morphology ( 3.57 GPa) was deciphered from the values of the magnitude of shift in observed 2θ values of Glancing Incidence angle XRD (GIXRD) peaks from the standard values (JCPDS 36-1451) for hexagonal Zincite. The growth mechanism of these PS was explained albeit to a limited extent on the basis of the Burton, Cabrera and Frank (BCF) theory and its later modification, wherein data obtained from exsitu SEM measurements concomitant with numerical analysis was utilized to decipher values of the critical radius and supersaturation ratios. Nucleation of ZnO microcrystals on the PS was explained on the basis of the supersaturation ratio and the plausible values of diffusion lengths, existent on the summits of these PS. Retardation of the step rotation of the PS, due to elastic stress around the dislocation source and the Gibbs-Thomson effect, was explained on the basis of numerical coefficient ω0, the dimensionless frequency of spiral rotation. Role of stress in inhibition of ZnO nucleation on PS of smaller heights and with larger supersaturation ratio, has been discussed albeit qualitatively. The optical characteristics of a single ZnO microcrystal has been analyzed by room temperature CL measurements in the wavelength range 350 nm to 650 nm, revealing a single high intensity peak at 382 nm corresponding to a excitonic bandgap of 3.25 eV.

  14. Pulsed Dielectric Breakdown of Aluminum Oxide (ALOX) Filled Epoxy Encapsulants: Effects of Formulation and Electric Stress Concentration

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON, ROBERT A.; LAGASSE, ROBERT R.; SCHROEDER, JOHN L.; ZEUCH, DAVID H.; MONTGOMERY, STEPHEN T.

    2001-09-01

    Aluminum oxide (ALOX) filled epoxy is the dielectric encapsulant in shock driven high-voltage power supplies. ALOX encapsulants display a high dielectric strength under purely electrical stress, but minimal information is available on the combined effects of high voltage and mechanical shock. We report breakdown results from applying electrical stress in the form of a unipolar high-voltage pulse of the order of 10-{micro}s duration, and our findings may establish a basis for understanding the results from proposed combined-stress experiments. A test specimen geometry giving approximately uniform fields is used to compare three ALOX encapsulant formulations, which include the new-baseline 459 epoxy resin encapsulant and a variant in which the Alcoa T-64 alumina filler is replaced with Sumitomo AA-10 alumina. None of these encapsulants show a sensitivity to ionizing radiation. We also report results from specimens with sharp-edged electrodes that cause strong, localized field enhancement as might be present near electrically-discharged mechanical fractures in an encapsulant. Under these conditions the 459-epoxy ALOX encapsulant displays approximately 40% lower dielectric strength than the older Z-cured Epon 828 formulation. An investigation of several processing variables did not reveal an explanation for this reduced performance. The 459-epoxy encapsulant appears to suffer electrical breakdown if the peak field anywhere reaches a critical level. The stress-strain characteristics of Z-cured ALOX encapsulant are measured under high triaxial pressure and we find that this stress causes permanent deformation and a network of microscopic fractures. Recommendations are made for future experimental work.

  15. Oxidative stress determined through the levels of antioxidant enzymes and the effect of N-acetylcysteine in aluminum phosphide poisoning

    Directory of Open Access Journals (Sweden)

    Avinash Agarwal

    2014-01-01

    Full Text Available Introduction: The primary objective of this study was to determine the serum level of antioxidant enzymes and to correlate them with outcome in patients of aluminum phosphide (ALP poisoning and, secondly, to evaluate the effect of N-acetylcysteine (NAC given along with supportive treatment of ALP poisoning. Design: We conducted a cohort study in patients of ALP poisoning hospitalized at a tertiary care center of North India. The treatment group and control group were enrolled during the study period of 1 year from May 2011 to April 2012. Interventions: Oxidative stress was evaluated in each subject by estimating the serum levels of the enzymes, viz. catalase, superoxide dismutase (SOD and glutathione reductase (GR. The treatment group comprised of patients who were given NAC in addition to supportive treatment (magnesium sulfate and vasopressors, if required, while in the control group, only supportive treatment was instituted. The primary endpoint of the study was the survival of the patients. Measurements and Results: The baseline catalase (P = 0.008 and SOD (P < 0.01 levels were higher among survivors than non-survivors. Of the total patients in the study, 31 (67.4% expired and 15 (32.6% survived. Among those who expired, the mean duration of survival was 2.92 ± 0.40 days in the test group and 1.82 ± 0.33 days in the control group (P = 0.043. Conclusions: This study suggests that the baseline level of catalase and SOD have reduced in ALP poisoning, but baseline GR level has not suppressed but is rather increasing with due time, and more so in the treatment group. NAC along with supportive treatment may have improved survival in ALP poisoning.

  16. Aluminum oxide nanoparticles alter cell cycle progression through CCND1 and EGR1 gene expression in human mesenchymal stem cells.

    Science.gov (United States)

    Periasamy, Vaiyapuri Subbarayan; Athinarayanan, Jegan; Alshatwi, Ali A

    2016-05-01

    Aluminum oxide nanoparticles (Al2 O3 -NPs) are important ceramic materials that have been used in a variety of commercial and industrial applications. However, the impact of acute and chronic exposure to Al2 O3 -NPs on the environment and on human health has not been well studied. In this investigation, we evaluated the cytotoxic effects of Al2 O3 -NPs on human mesenchymal stem cells (hMSCs) by using a cell viability assay and observing cellular morphological changes, analyzing cell cycle progression, and monitoring the expression of cell cycle response genes (PCNA, EGR1, E2F1, CCND1, CCNC, CCNG1, and CYCD3). The Al2 O3 -NPs reduced hMSC viability in a dose- and time-dependent manner. Nuclear condensation and fragmentation, chromosomal DNA fragmentation, and cytoplasmic vacuolization were observed in Al2 O3 -NP-exposed cells. The nuclear morphological changes indicated that Al2 O3 -NPs alter cell cycle progression and gene expression. The cell cycle distribution revealed that Al2 O3 -NPs cause cell cycle arrest in the sub-G0-G1 phase, and this is associated with a reduction in the cell population in the G2/M and G0/G1 phases. Moreover, Al2 O3 -NPs induced the upregulation of cell cycle response genes, including EGR1, E2F1, and CCND1. Our results suggested that exposure to Al2 O3 -NPs could cause acute cytotoxic effects in hMSCs through cell cycle regulatory genes.

  17. Robust, functionalizable, nanometer-thick poly(acrylic acid) films spontaneously assembled on oxidized aluminum substrates: structures and chemical properties.

    Science.gov (United States)

    Koo, Eunhae; Yoon, Sungho; Atre, Sundar V; Allara, David L

    2011-04-05

    Immersion of oxidized aluminum substrates in ethanol solutions of poly(acrylic acid) (PAA), followed by extensive solvent immersion, results in tenaciously chemisorbed, nanometer scale, controllable thickness films for a wide range of solution concentrations and molecular weights. Atomic force microscope images reveal isolated polymer globules from adsorption in low-concentration solutions with crossover to conformal, highly uniform, nanometer-thickness films at higher concentrations, an indication that the chemisorbing chains start to overlap and trap underlying segments to form planar chemisorbed films only two or three chains in thickness. Quantitative IR reflection spectroscopy in combination with chemical derivitization on a standard set of 1.0(±0.2) nm thick films reveals a film structure with 5.5(±1) chemisorbed -CO(-)(2) groups/nm(2) and 6.3 unattached -CO(2)H groups/nm(2), with up to ∼3.6/nm(2) available for chemical derivitization, a comparable number to typical self-assembled monolayer coverages of ∼4-5 molecules/nm(2). Thermal treatment of the ∼1 nm chemisorbed films, at even extreme temperatures of ∼150 °C, results in almost no anhydride formation via adjacent -CO(2)H condensation, in strong contrast to bulk PAA, a clear indication that the films have a frozen glass structure with effectively no segment and side group mobility. Overall, these results demonstrate that these limiting thickness nanometer films provide a model surface for understanding the behavior of strongly bound polymer chains at substrates and show potential as a path to creating highly stable, chemically functionalized inorganic substrates with highly variable surface properties.

  18. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    Science.gov (United States)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices.

  19. Large-area zinc oxide nanorod arrays templated by nanoimprint lithography: control of morphologies and optical properties

    Science.gov (United States)

    Zhang, Chen; Huang, Xiaohu; Liu, Hongfei; Chua, Soo Jin; Ross, Caroline A.

    2016-12-01

    Vertically aligned, highly ordered, large area arrays of nanostructures are important building blocks for multifunctional devices. Here, ZnO nanorod arrays are selectively synthesized on Si substrates by a solution method within patterns created by nanoimprint lithography. The growth modes of two dimensional nucleation-driven wedding cakes and screw dislocation-driven spirals are inferred to determine the top end morphologies of the nanorods. Sub-bandgap photoluminescence of the nanorods is greatly enhanced by the manipulation of the hydrogen donors via a post-growth thermal treatment. Lasing behavior is facilitated in the nanorods with faceted top ends formed from wedding cakes growth mode. This work demonstrates the control of morphologies of oxide nanostructures in a large scale and the optimization of the optical performance.

  20. Code Generation with Templates

    CERN Document Server

    Arnoldus, Jeroen; Serebrenik, A

    2012-01-01

    Templates are used to generate all kinds of text, including computer code. The last decade, the use of templates gained a lot of popularity due to the increase of dynamic web applications. Templates are a tool for programmers, and implementations of template engines are most times based on practical experience rather than based on a theoretical background. This book reveals the mathematical background of templates and shows interesting findings for improving the practical use of templates. First, a framework to determine the necessary computational power for the template metalanguage is presen

  1. Mechanical behavior of shock-wave consolidated nano and micron-sized aluminum/silicon carbide and aluminum/aluminum oxide two-phase systems characterized by light and electron metallography

    Science.gov (United States)

    Alba-Baena, Noe Gaudencio

    This dissertation reports the results of the exploratory study of two-phase systems consisting of 150 microm diameter aluminum powder mechanically mixed with 30 nm and 30 microm diameter SiC and Al2O3 powders (in volume fractions of 2, 4, and 21 percent). Powders were mechanically mixed and green compacted to ˜80% theorical density in a series of cylindrical fixtures (steel tubes). The compacted arrangements were explosively consolidated using ammonium nitrate-fuel oil (ANFO) to form stacks of two-phase systems. As result, successfully consolidated cylindrical monoliths of 50 mm (height) x 32 mm (in diameter) were obtained. By taking advantage of the use of SWC (shock wave consolidation) and WEDM (wire-electric discharge machining), the heterogeneous systems were machined in a highly efficiency rate. The sample cuts used for characterization and mechanical properties testing, require the use of less that 10cc of each monolith, in consequence there was preserved an average of 60% of the obtained system monoliths. Consolidated test cylinders of the pure Al and two-phase composites were characterized by optical metallography and TEM. The light micrographs for the five explosively consolidated regimes: aluminum powder, nano and micron-sized Al/Al2O3 systems, and the nano and micron-sized Al/SiC systems exhibit similar ductility in the aluminum grains. Low volume fraction systems exhibit small agglomerations at the grain boundaries for the Al/Al2O3 system and the Al/SiC system reveal a well distributed phase at the grain boundaries. Large and partially bonded agglomerations were observable in the nano-sized high volume fraction (21%) systems, while the micron-sized Al/ceramic systems exhibit homogeneous distribution along the aluminum phase grains. TEM images showed the shock-induced dislocation cell structure, which has partially recrystallized to form a nano grain structure in the consolidated aluminum powder. Furthermore, the SiC nano-agglomerates appeared to have

  2. Synthesis of titanium oxide nanoparticles using DNA-complex as template for solution-processable hybrid dielectric composites

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J.C. [Center for Sustainable Materials Chemistry, 153 Gilbert Hall, Oregon State University, Corvallis, OR (United States); Mejia, I.; Murphy, J.; Quevedo, M. [Department of Materials Science and Engineering, University of Texas at Dallas, Dallas, TX (United States); Garcia, P.; Martinez, C.A. [Engineering and Technology Institute, Autonomous University of Ciudad Juarez, Ciudad Juarez, Chihuahua (Mexico)

    2015-09-15

    Highlights: • We developed a synthesis method to produce TiO{sub 2} nanoparticles using a DNA complex. • The nanoparticles were anatase phase (~6 nm diameter), and stable in alcohols. • Composites showed a k of 13.4, 4.6 times larger than the k of polycarbonate. • Maximum processing temperature was 90 °C. • Low temperature enables their use in low-voltage, low-cost, flexible electronics. - Abstract: We report the synthesis of TiO{sub 2} nanoparticles prepared by the hydrolysis of titanium isopropoxide (TTIP) in the presence of a DNA complex for solution processable dielectric composites. The nanoparticles were incorporated as fillers in polycarbonate at low concentrations (1.5, 5 and 7 wt%) to produce hybrid dielectric films with dielectric constant higher than thermally grown silicon oxide. It was found that the DNA complex plays an important role as capping agent in the formation and suspension stability of nanocrystalline anatase phase TiO{sub 2} at room temperature with uniform size (∼6 nm) and narrow distribution. The effective dielectric constant of spin-cast polycarbonate thin-films increased from 2.84 to 13.43 with the incorporation of TiO{sub 2} nanoparticles into the polymer host. These composites can be solution processed with a maximum temperature of 90 °C and could be potential candidates for its application in low-cost macro-electronics.

  3. Effects of tool geometry and welding rates on the tool wear behavior and shape optimization in friction stir welding of aluminum alloy 6061 + 20% aluminum oxide MMC

    Science.gov (United States)

    Prado, Rafael Arcangel

    FSW is a new solid-state process currently being investigated for joining aluminum alloys that are difficult to weld, where there is no perceptible wear of the pin tool throughout the experiment. The present report investigates and examines tool wear in the friction-stir welding of Al 6061-T6 and Al 6061-T6 containing 20% (volume) Al2O3 particles, a metal matrix composite (MMC), in order to compare wear optimized tool geometries and corresponding parameters. The weld tool, referred to as pin tool or nib, did not exhibit any measurable wear in the FSW of the 6061 Al alloy even after traversing tens of meters of material. However, the pin tool geometry changed during the FSW of the Al 6061-T6 containing 20% (volume) Al2O3 particles. Tool wear was measured in relation to the original tool by weighing the photograph of the tool and comparing the percentage change relative to the original tool photograph. The maximum wear rate was roughly 0.64 %/cm at 1000 rpm for the MMC at 1 mm/s traverse speed. The best performance involving the least wear for MMC FSW was observed at a tool rotational speed of 500 rpm and a traverse speed of 3 mm/s; where the corresponding wear rate was 0.13 %/cm. Optical, scanning and transmission microscopy were used to characterize the microstructures of the base material and weld zone for the MMC confirming the solid phase nature of the technique. The microstructure of the friction stir weld zone shows a characteristic dynamic recrystallization phenomenon that acts as a mechanism to accommodate the super-plastic deformation and facilitates the bonding. Rockwell E hardness profiles for both aluminum alloys were measured from the base metals through the FSW zone near the through-thickness mid-section. In the FSW of Al 6061 containing 20% (volume) Al2O3 particles, tool wear has been shown to depend primarily on rotational and traverse speeds, with optimum wear occurring at 1000 rpm. However, as the traverse or actual weld speed is increased from 1

  4. Subsurface Aluminum Nitride Formation in Iron-Aluminum Alloys

    Science.gov (United States)

    Bott, June H.

    Transformation-induced plasticity (TRIP) steels containing higher amounts of aluminum than conventional steels are ideal for structural automotive parts due to their mechanical properties. However, the aluminum tends to react with any processing environment at high temperatures and therefore presents significant challenges during manufacturing. One such challenge occurs during secondary cooling, reheating, and hot-rolling and is caused by a reaction with nitrogen-rich atmospheres wherein subsurface aluminum nitride forms in addition to internal and external oxides. The nitrides are detrimental to mechanical properties and cause surface cracks. It is important to understand how these nitrides and oxides form and their consequences for the quality of steel products. This study looks at model iron-aluminum (up to 8 wt.% aluminum) alloys and uses confocal laser scanning microscopy, x-ray diffraction, scanning electron microscopy with energy dispersive x-ray spectrometry, and transmission electron microscopy to study the effect of various conditions on the growth and development of these precipitates in a subsurface oxygen-depleted region. By using model alloys and controlling the experimental atmosphere, this study is able to understand some of the more fundamental materials science behind aluminum nitride formation in aluminum-rich iron alloys and the relationship between internal nitride and oxide precipitation and external oxide scale morphology and composition. The iron-aluminum alloys were heated in N2 atmospheres containing oxygen impurities. It was found that nitrides formed when bulk aluminum content was below 8 wt.% when oxygen was sufficiently depleted due to the internal oxidation. In the samples containing 1 wt.% aluminum, the depth of the internal oxide and nitride zones were in agreement with a diffusion-based model. Increasing aluminum content to 3 and 5 wt% had the effects of modifying the surface-oxide scale composition and increasing its continuity

  5. Evolution of insoluble eutectic Si particles in anodic oxidation films during adipic-sulfuric acid anodizing processes of ZL114A aluminum alloys

    Science.gov (United States)

    Hua, Lei; Liu, Jian-hua; Li, Song-mei; Yu, Mei; Wang, Lei; Cui, Yong-xin

    2015-03-01

    The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25°C and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.

  6. Template-assisted fabrication of free-standing nanorod arrays of a hole-conducting cross-linked triphenylamine derivative: toward ordered bulk-heterojunction solar cells.

    Science.gov (United States)

    Haberkorn, Niko; Gutmann, Jochen S; Theato, Patrick

    2009-06-23

    Free-standing nanorod arrays of a thermally cross-linked semiconducting triphenylamine were fabricated on conductive ITO/glass substrates via an anodic aluminum oxide (AAO) template-assisted approach. By using a solution wetting method combined with a subsequent thermal imprinting step to fill the nanoporous structure of the template with a cross-linkable triphenylamine derivative, a polymeric replication of the AAO was obtained after thermal curing and selective removal of the template. To obtain well-aligned and free-standing nanorod arrays, aggregation and collapse of the nanorods were prevented by optimizing their aspect ratio and applying a freeze-drying technique to remove the aqueous medium after the etching step. Because of their electrochemical properties and their resistance against organic solvents after curing, these high density nanorod arrays have potential application in organic photovoltaics.

  7. Low temperature solid oxide fuel cells with proton-conducting Y:BaZrO{sub 3} electrolyte on porous anodic aluminum oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Seungbum [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Mechanical and Aerospace Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of); Su, Pei-Chen [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ji, Sanghoon [Graduate School of Convergence Science and Technology, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of); Cha, Suk Won, E-mail: swcha@snu.ac.kr [School of Mechanical and Aerospace Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of)

    2013-10-01

    This paper presents the architecture of a nano thin-film yttrium-doped barium zirconate (BYZ) solid-oxide fuel cell that uses nanoporous anodic aluminum oxide (AAO) as a supporting and gas-permeable substrate. The anode was fabricated by sputtering 300 nm platinum thin film that partially covered the AAO surface pores, followed by an additional conformal platinum coating to tune the pore size by atomic layer deposition. Two different nano-porous anode structures with a pore size of 10 nm or 50 nm were deposited. Proton-conducting BYZ ceramic electrolyte with increasing thicknesses of 300, 600, and 900 nm was deposited on top of the platinum anode by pulsed laser deposition, followed by a 200 nm layer of porous Pt sputtered on BYZ electrolyte as a cathode. The open circuit voltage (OCV) of the fuel cells was characterized at 250 °C with 1:1 volumetric stoichiometry of a methanol/water vapor mixture as the fuel. The OCVs were 0.17 V with a 900 nm-thick BYZ electrolyte on 50 nm pores and 0.3 V with a 600 nm-thick BYZ electrolyte on 10 nm pores, respectively, but it increased to 0.8 V for a 900 nm-thick BYZ electrolyte on 10 nm pores, indicating that increasing the film thickness and decreasing a surface pore size help to reduce the number of electrolyte pinholes and the gas leakage through the electrolyte. A maximum power density of 5.6 mW/cm{sup 2} at 250 °C was obtained from the fuel cell with 900 nm of BYZ electrolyte using methanol vapor as a fuel. - Highlights: • A low temperature ceramic fuel cell on nano-porous substrate was demonstrated. • A thin-film yttrium doped barium zirconate (BYZ) was deposited as an electrolyte. • An open circuit voltage (OCV) was measured to verify the BYZ film quality. • An OCV increased by increasing BYZ film thickness and decreasing pore size of anode. • The current–voltage performance was measured using vaporized methanol fuel at 250 °C.

  8. Dispersion fraction enhances cellular growth of carbon nanotube and aluminum oxide reinforced ultrahigh molecular weight polyethylene biocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Anup Kumar; Balani, Kantesh, E-mail: kbalani@iitk.ac.in

    2015-01-01

    Ultrahigh molecular weight polyethylene (UHMWPE) is widely used as bone-replacement material for articulating surfaces due to its excellent wear resistance and low coefficient of friction. But, the wear debris, generated during abrasion between mating surfaces, leads to aseptic loosening of implants. Thus, various reinforcing agents are generally utilized, which may alter the surface and biological properties of UHMWPE. In the current work, the cellular response of compression molded UHMWPE upon reinforcement of bioactive multiwalled carbon nanotubes (MWCNTs) and bioinert aluminum oxide (Al{sub 2}O{sub 3}) is investigated. The phase retention and stability were observed using X-ray diffraction, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The reinforcement of MWCNTs and Al{sub 2}O{sub 3} has shown to alter the wettability (from contact angle of ∼ 88° ± 2° to ∼ 118° ± 4°) and surface energy (from ∼ 23.20 to ∼ 17.75 mN/m) of composites with respect to UHMWPE, without eliciting any adverse effect on cytocompatibility for the L929 mouse fibroblast cell line. Interestingly, the cellular growth of the L929 mouse fibroblast cell line is observed to be dominated by the dispersion fraction of surface free energy (SFE). After 48 h of incubation period, a decrease in metabolic activity of MWCNT–Al{sub 2}O{sub 3} reinforced composites is attributed to apatite formation that reduces the dispersion fraction of surface energy. The mineralized apatite during incubation was confirmed and quantified by energy dispersive spectroscopy and X-ray diffraction respectively. Thus, the dispersion fraction of surface free energy can be engineered to play an important role in achieving enhanced metabolic activity of the MWCNT–Al{sub 2}O{sub 3} reinforced UHMWPE biopolymer composites. - Highlights: • The cellular response of UHMWPE upon MWCNT and Al{sub 2}O{sub 3} reinforcement is highlighted. • Wettability decreases with Al{sub 2}O{sub 3} and

  9. Investigation of the weldability of iron-aluminum-chromium overlay coatings for corrosion protection in oxidizing/sulfidizing environments

    Science.gov (United States)

    Regina, Jonathan R.

    The current study investigated the effect of chromium additions on the hydrogen cracking susceptibility of Fe-Al weld overlay claddings containing chromium additions. It was found that the weldability of FeAlCr claddings was a function of both the aluminum and chromium concentrations of the weld coatings. Weld overlay compositions that were not susceptible to hydrogen cracking were identified and the underlying mechanism behind the hydrogen cracking phenomenon was investigated further. It was concluded that the cracking behavior of the FeAlCr welds depended strongly on the microstructure of the weld fusion zone. Although it was found that the cracking susceptibility was influenced by the presence of Fe-Al intermetallic phases (namely Fe3 Al and FeAl), the cracking behavior of FeAlCr weld overlay claddings also depended on the size and distribution of carbide and oxide particles present within the weld structure. These particles acted as hydrogen trapping sites, which are areas where free hydrogen segregates and can no longer contribute to the hydrogen embrittlement of the metal. It was determined that in practical applications of these FeAlCr weld overlay coatings, carbon should be present within these welds to reduce the amount of hydrogen available for hydrogen cracking. Based on the weldability results of the FeAlCr weld claddings, coating compositions that were able to be deposited crack-free were used for long-term corrosion testing in a simulated low NOx environment. These alloys were compared to a Ni-based superalloy (622), which is commonly utilized as boiler tube coatings in power plant furnaces for corrosion protection. It was found that the FeAlCr alloys demonstrated superior corrosion resistance when compared to the Ni-based superalloy. Due to the excellent long-term corrosion behavior of FeAlCr weld overlays that were immune to hydrogen cracking, it was concluded that select FeAlCr weld overlay compositions would make excellent corrosion resistant

  10. Efficient indium-tin-oxide free inverted organic solar cells based on aluminum-doped zinc oxide cathode and low-temperature aqueous solution processed zinc oxide electron extraction layer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dazheng; Zhang, Chunfu, E-mail: cfzhang@xidian.edu.cn; Wang, Zhizhe; Zhang, Jincheng; Tang, Shi; Wei, Wei; Sun, Li; Hao, Yue, E-mail: yhao@xidian.edu.cn [State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, No. 2 South Taibai Road, Xi' an 710071 (China)

    2014-06-16

    Indium-tin-oxide (ITO) free inverted organic solar cells (IOSCs) based on aluminum-doped zinc oxide (AZO) cathode, low-temperature aqueous solution processed zinc oxide (ZnO) electron extraction layer, and poly(3-hexylthiophene-2, 5-diyl):[6, 6]-phenyl C{sub 61} butyric acid methyl ester blend were realized in this work. The resulted IOSC with ZnO annealed at 150 °C shows the superior power conversion efficiency (PCE) of 3.01%, if decreasing the ZnO annealing temperature to 100 °C, the obtained IOSC also shows a PCE of 2.76%, and no light soaking issue is observed. It is found that this ZnO film not only acts as an effective buffer layer but also slightly improves the optical transmittance of AZO substrates. Further, despite the relatively inferior air-stability, these un-encapsulated AZO/ZnO IOSCs show comparable PCEs to the referenced ITO/ZnO IOSCs, which demonstrates that the AZO cathode is a potential alternative to ITO in IOSCs. Meanwhile, this simple ZnO process is compatible with large area deposition and plastic substrates, and is promising to be widely used in IOSCs and other relative fields.

  11. Acetalization of acetone with glycerol catalyzed by niobium-aluminum mixed oxides synthesized by a sol–gel process

    NARCIS (Netherlands)

    Rodrigues, Raphael; Mandelli, Dalmo; Gonçalves, Norberto S.; Pescarmona, Paolo P.; Carvalho, Wagner A.

    2016-01-01

    Niobium-aluminum-based catalysts were synthesized by a sol–gel process and successfully applied to the reaction of acetalization of acetone with glycerol yielding 2,2-dimethyl-1,3-dioxolane-4-methanol (solketal) and 2,2-dimethyl-1,3-dioxan-5-ol. The synthesis procedure was developed using high-throu

  12. Impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel

    Directory of Open Access Journals (Sweden)

    Omid Ali Akbari

    2015-11-01

    Full Text Available This article aims to study the impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. To this aim, compulsory convection heat transfer of water–aluminum oxide nanofluid in a rib-roughened microchannel has been numerically studied. The results of this simulation for rib-roughened three-dimensional microchannel have been evaluated in contrast to the smooth (unribbed three-dimensional microchannel with identical geometrical and heat–fluid boundary conditions. Numerical simulation is performed for different nanoparticle volume fractions for Reynolds numbers of 10 and 100. Cold fluid entering the microchannel is heated in order to apply constant flux to external surface of the microchannel walls and then leaves it. Given the results, the fluid has a higher heat transfer with a hot wall in surfaces with ribs rather than in smooth ones. As Reynolds number, number of ribs, and nanoparticle volume fractions increase, more temperature increase happens in fluid in exit intersection of the microchannel. By investigating Nusselt number and friction factor, it is observed that increase in nanoparticle volume fractions causes nanofluid heat transfer properties to have a higher heat transfer and friction factor compared to the base fluid used in cooling due to an increase in viscosity.

  13. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates.

    Science.gov (United States)

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-20

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation.

  14. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    Science.gov (United States)

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  15. Characterization of Aluminum-Based-Surface Matrix Composites with Iron and Iron Oxide Fabricated by Friction Stir Processing

    Directory of Open Access Journals (Sweden)

    Essam R. I. Mahmoud

    2016-06-01

    Full Text Available Surface composite layers were successfully fabricated on an A 1050-H24 aluminum plate by dispersed iron (Fe and magnetite (Fe3O4 particles through friction stir processing (FSP. Fe and Fe3O4 powders were packed into a groove of 3 mm in width and 1.5 mm in depth, cut on the aluminum plate, and covered with an aluminum sheet that was 2-mm thick. A friction stir processing (FSP tool of square probe shape, rotated at a rate of 1000–2000 rpm, was plunged into the plate through the cover sheet and the groove, and moved along the groove at a travelling speed of 1.66 mm/s. Double and triple passes were applied. As a result, it is found that the Fe particles were homogenously distributed in the whole nugget zone at a rotation speed of 1000 rpm after triple FSP passes. Limited interfacial reactions occurred between the Fe particles and the aluminum matrix. On the other hand, the lower rotation speed (1000 rpm was not enough to form a sound nugget when the dispersed particles were changed to the larger Fe3O4. The Fe3O4 particles were dispersed homogenously in a sound nugget zone when the rotation speed was increased to 1500 rpm. No reaction products could be detected between the Fe3O4 particles and the aluminum matrix. The saturation magnetization (Ms of the Fe-dispersed nugget zone was higher than that of the Fe3O4-dispersed nugget zone. Moreover, there were good agreement between the obtained saturation magnetization values relative to that of pure Fe and Fe3O4 materials and the volume content of the dispersed particles in the nugget zone.

  16. Studies on the properties of anodic oxidation film on aluminum alloy%铝合金阳极氧化膜的性能研究

    Institute of Scientific and Technical Information of China (English)

    许旋; 罗一帆; 林国辉

    2001-01-01

    在硫酸电解液中加入适量由羧酸和有机化合物组成的添加剂,制得铝合金阳极氧化膜。研究了温度对所得氧化膜厚度和硬度和影响,并利用扫描电镜观察了氧化膜的结构。结果表明,高温下形成的氧化膜结构松散,厚度和硬度低,而加入添加剂后,氧化膜溶解减慢,在高温下所形成的氧化膜的厚度和硬度大大增加。%Anodic oxidation film was prepared on aluminum alloy in sulfuricacid electrolyte. An additive was developed which consists of carboxylic acids and organic compounds. The effect of temperature on thickness and hardness of the obtained anodic oxidation film was studied, structure of the oxidation film was analyzed by SEM. The results show that oxidation film obtained at high temperature has loose structure. Thickness and hardness of the film decrease with the increase of temperature, while the addition of the additive reduces the dissolution of the oxidation film, and increases film thickness and hardness greatly at high temperature.

  17. Evidências da formação de monocamada de óxido de alumínio sobre sílica, através de reações de enxerto Evidence of aluminum oxide monolayer formation on a silica gel surface using grafting reactions

    Directory of Open Access Journals (Sweden)

    Julia M. D. Cónsul

    2005-06-01

    Full Text Available Aluminum oxide was dispersed on a commercial silica gel surface, using successive grafting reactions. The reaction products were characterized by N2 adsorption-desorption isotherms, scanning electron microscopy and infrared spectroscopy. The progressive incorporation of aluminum, up to 5.5% (w/w, does not produce agglomeration of alumina, since changes in the original pore size distribution of the silica matrix were not observed. The aluminum oxide covers homogeneously the silica surface.

  18. Atomic scale structure of amorphous aluminum oxyhydroxide, oxide and oxycarbide films probed by very high field (27)Al nuclear magnetic resonance.

    Science.gov (United States)

    Baggetto, L; Sarou-Kanian, V; Florian, P; Gleizes, A N; Massiot, D; Vahlas, C

    2017-03-15

    The atomic scale structure of aluminum in amorphous alumina films processed by direct liquid injection chemical vapor deposition from aluminum tri-isopropoxide (ATI) and dimethyl isopropoxide (DMAI) is investigated by solid-state (27)Al nuclear magnetic resonance (SSNMR) using a very high magnetic field of 20.0 T. This study is performed as a function of the deposition temperature in the range 300-560 °C, 150-450 °C, and 500-700 °C, for the films processed from ATI, DMAI (+H2O), and DMAI (+O2), respectively. While the majority of the films are composed of stoichiometric aluminum oxide, other samples are partially or fully hydroxylated at low temperature, or contain carbidic carbon when processed from DMAI above 500 °C. The quantitative analysis of the SSNMR experiments reveals that the local structure of these films is built from AlO4, AlO5, AlO6 and Al(O,C)4 units with minor proportions of the 6-fold aluminum coordination and significant amounts of oxycarbides in the films processed from DMAI (+O2). The aluminum coordination distribution as well as the chemical shift distribution indicate that the films processed from DMAI present a higher degree of structural disorder compared to the films processed from ATI. Hydroxylation leads to an increase of the 6-fold coordination resulting from the trend of OH groups to integrate into AlO6 units. The evidence of an additional environment in films processed from DMAI (+O2) by (27)Al SSNMR and first-principle NMR calculations on Al4C3 and Al4O4C crystal structures supports that carbon is located in Al(O,C)4 units. The concentration of this coordination environment strongly increases with increasing process temperature from 600 to 700 °C favoring a highly disordered structure and preventing from crystallizing into γ-alumina. The obtained results are a valuable guide to the selection of process conditions for the CVD of amorphous alumina films with regard to targeted applications.

  19. Simultaneous determination of trace iron and aluminum by catalytic spectrophotometry based on a novel oxidation reaction of xylene cyanol FF.

    Science.gov (United States)

    Cai, Longfei; Xu, Chunxiu

    2008-06-01

    A new, simple, sensitive and selective method for the simultaneous determination of trace iron and aluminum by catalytic spectrophotometry was presented, based on the catalytic effects of iron and aluminum on the discoloring reaction of xylene cyanol FF proceeded by hydrogen peroxide and potassium periodate in weak nitric acid medium. No catalytic effect was obtained in the presence of hydrogen peroxide or potassium periodate only. With the conditional rate constants determined in reaction systems catalyzed by Al or Fe only, the concentrations of Fe and Al in the samples can be calculated. The method was applied to the simultaneous determination of trace Fe and Al in tap water, lake water, river water and tea leaves without separation and preconcentration.

  20. Plasmonic silicon solar cell comprised of aluminum nanoparticles: Effect of nanoparticles' self-limiting native oxide shell on optical and electrical properties

    Science.gov (United States)

    Parashar, Piyush K.; Sharma, R. P.; Komarala, Vamsi K.

    2016-10-01

    The aluminum nanoparticles' (Al NPs) morphology is optimized initially, for maximum light confinement into a silicon substrate. With self-limiting native oxide shell on the Al NPs after ageing, the maximum photocurrent enhancement (from 26.89 to 29.21 mA/cm2) from a silicon solar cell is observed as compared to the bare cell, in surface plasmon resonance and off-resonance regions due to improved light forward scattering, with no occurrence of Fano resonances. Related to the electrical properties of the plasmonic device, an increase in fill factor (from 56.11 to 62.58) and a decrease in series resistance (from 1.80 Ω to 1.24 Ω) are also observed after the oxide layer formation on Al NPs. The passive partial dielectric oxide layer at the interface helped in electrical passivation by reducing lateral resistance to current flow along the plane of the interface. A finite-element method is also adapted to calculate spatial and angular radiative dipole field distributions for the experimentally optimized Al NPs' size on a silicon substrate, without and with oxide inclusion in NPs for explaining the plasmonic device performance enhancement. With oxide inclusion, Al NPs' dipole field exhibited a large shift towards a silicon due to the modified dielectric environment as compared to without oxide. Bruggeman effective medium theory (for dielectric response) is also used to explain the results with the modification in peak radiative power, spectral field distribution, and spatial and angular radiative dipole field distributions of Al NPs with oxide inclusion in Al.

  1. Synthesis of ternary metal nitride nanoparticles using mesoporous carbon nitride as reactive template.

    Science.gov (United States)

    Fischer, Anna; Müller, Jens Oliver; Antonietti, Markus; Thomas, Arne

    2008-12-23

    Mesoporous graphitic carbon nitride was used as both a nanoreactor and a reactant for the synthesis of ternary metal nitride nanoparticles. By infiltration of a mixture of two metal precursors into mesoporous carbon nitride, the pores act first as a nanoconfinement, generating amorphous mixed oxide nanoparticles. During heating and decomposition, the carbon nitride second acts as reactant or, more precisely, as a nitrogen source, which converts the preformed mixed oxide nanoparticles into the corresponding nitride (reactive templating). Using this approach, ternary metal nitride particles with diameters smaller 10 nm composed of aluminum gallium nitride (Al-Ga-N) and titanium vanadium nitride (Ti-V-N) were synthesized. Due to the confinement effect of the carbon nitride matrix, the composition of the resulting metal nitride can be easily adjusted by changing the concentration of the preceding precursor solution. Thus, ternary metal nitride nanoparticles with continuously adjustable metal composition can be produced.

  2. Next Generation Energetic Materials: New Cluster Hydrides and Metastable Alloys of Aluminum in Very Low Oxidation States

    Science.gov (United States)

    2016-10-01

    Zavalij, P; Bowen, K.; Schnöckel, H.; Eichhorn, B. Inorganic Chemistry , submitted Jan 2016. 2. “Growth of metalloid aluminum clusters on graphene...organometallic chemistry . ■ REFERENCES (1) (a) Holleman-Wiberg, Inorganic Chemistry ; Academic Press: San Diego, London, 2001. (b)Holleman-Wiberg, Lehrbuch... Chemistry , Johns Hopkins University, Baltimore, Maryland 21218, USA 2Institute of Inorganic Chemistry , Karlsruhe Institute of Technology, 76128 Karlsruhe

  3. Modeling and Predicting the Effect of Surface Oxidation on the Normal Spectral Emissivity of Aluminum 5052 at 800 K to 910 K

    Science.gov (United States)

    Shi, Deheng; Zou, Fenghui; Zhu, Zunlue; Sun, Jinfeng

    2016-01-01

    In this study, we tried to develop a model to predict the effect of surface oxidization on the normal spectral emissivity of aluminum 5052 at a temperature range of 800 to 910 K and wavelength of 1.5 \\upmu m. In experiments, specimens were heated in air for 6 h at certain temperatures. Two platinum-rhodium thermocouples were symmetrically welded onto the front surface of the specimens near the measuring area for accurate monitoring of the temperature at the specimen surface. The temperatures measured by the two thermocouples had an uncertainty of 1 K. The normal spectral emissivity values were measured over the 6-h heating period at temperatures from 800 K to 910 K in increments of 10 K. Strong oscillations in the normal spectral emissivity were observed at each temperature. These oscillations were determined to form by the interference between the radiation stemming from the oxide layer and radiation from the substrate. The present measurements were compared with previous experimental results, and the variation in the normal spectral emissivity at given temperatures was evaluated. The uncertainty of the normal spectral emissivity caused only by the surface oxidization was found to be approximately 12.1 % to 21.8 %, and the corresponding uncertainty in the temperature caused only by the surface oxidization was approximately 9.1 K to 15.2 K. The model can reproduce the normal spectral emissivity well, including the strong oscillations that occur during the initial heating period.

  4. Template-assisted self-assembly of individual and clusters of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Badini Confalonieri, G A; Ebbing, A; Mishra, D; Szary, P; Petracic, O; Zabel, H [Ruhr-Universitaet Bochum, Institut fuer Experimentalphysik/Festkoerperphysik, Bochum 44780 (Germany); Vega, V; Prida, V M, E-mail: giovanni.badini@rub.de [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo s/n, E-33007 Oviedo (Spain)

    2011-07-15

    The deliberate control over the spatial arrangement of nanostructures is the desired goal for many applications such as, for example, in data storage, plasmonics or sensor arrays. Here we present a novel method to assist the self-assembly process of magnetic nanoparticles. The method makes use of nanostructured aluminum templates obtained after anodization of aluminum discs and the subsequent growth and removal of the newly formed alumina layer, resulting in a regular honeycomb-type array of hexagonally shaped valleys. The iron oxide nanoparticles, 20 nm in diameter, are spin-coated onto the surface of honeycomb nanostructured Al templates. Depending on the size, each hexagon site can host up to 30 nanoparticles. These nanoparticles form clusters of different arrangements within the valleys, such as collars, chains and hexagonally closed islands. Ultimately, it is possible to isolate individual nanoparticles. The strengths of the magnetic interaction between particles in a cluster are probed using the memory effect known from the coupled state in superspin glass systems.

  5. Adsorption and chemical reaction of gaseous mixtures of hydrogen chloride and water on aluminum oxide and application to solid-propellant rocket exhaust clouds

    Science.gov (United States)

    Cofer, W. R., III; Pellett, G. L.

    1978-01-01

    Hydrogen chloride (HCl) and aluminum oxide (Al2O3) are major exhaust products of solid rocket motors (SRM). Samples of calcination-produced alumina were exposed to continuously flowing mixtures of gaseous HCl/H2O in nitrogen. Transient sorption rates, as well as maximum sorptive capacities, were found to be largely controlled by specific surface area for samples of alpha, theta, and gamma alumina. Sorption rates for small samples were characterized linearly with an empirical relationship that accounted for specific area and logarithmic time. Chemisorption occurred on all aluminas studied and appeared to form from the sorption of about a 2/5 HCl-to-H2O mole ratio. The chemisorbed phase was predominantly water soluble, yielding chloride/aluminum III ion mole ratios of about 3.3/1 suggestive of dissolved surface chlorides and/or oxychlorides. Isopiestic experiments in hydrochloric acid indicated that dissolution of alumina led to an increase in water-vapor pressure. Dissolution in aqueous SRM acid aerosol droplets, therefore, might be expected to promote evaporation.

  6. Oxidative Cleavage of C=S and P=S Bonds at an Al(I) Center: Preparation of Terminally Bound Aluminum Sulfides.

    Science.gov (United States)

    Chu, Terry; Vyboishchikov, Sergei F; Gabidullin, Bulat; Nikonov, Georgii I

    2016-10-10

    The treatment of cyclic thioureas with the aluminum(I) compound NacNacAl (1; NacNac=[ArNC(Me)CHC(Me)NAr](-) , Ar=2,6-Pr(i)2 C6 H3 ) resulted in oxidative cleavage of the C=S bond and the formation of 3 and 5, the first monomeric aluminum complexes with an Al=S double bond stabilized by N-heterocyclic carbenes. Compound 1 also reacted with triphenylphosphine sulfide in a similar manner, which resulted in cleavage of the P=S bond and production of the adduct [NacNacAl=S(S=PPh3 )] (8). The Al=S double bond in 3 can react with phenyl isothiocyanate to furnish the cycloaddition product 9 and zwitterion 10 as a result of coupling between the liberated carbene and PhN=C=S. All novel complexes were characterized by multinuclear NMR spectroscopy, and the structures of 5, 9, and 10 were confirmed by X-ray diffraction analysis. The nature of the Al=S bond in 5 was also probed by DFT calculations.

  7. Effect of the Thermodynamic Behavior of Selective Laser Melting on the Formation of In situ Oxide Dispersion-Strengthened Aluminum-Based Composites

    Directory of Open Access Journals (Sweden)

    Lianfeng Wang

    2016-11-01

    Full Text Available This paper presents a comprehensive investigation of the phase and microstructure, the thermodynamic behavior within the molten pool, and the growth mechanism of in situ oxide dispersion-strengthened (ODS aluminum-based composites processed by a selective laser melting (SLM additive manufacturing/3D printing process. The phase and microstructure were characterized by X-ray diffraction (XRD and a scanning electronic microscope (SEM equipped with EDX, respectively. The thermodynamic behavior within the molten pool was investigated for a comprehensive understanding on the growth mechanism of the SLM-processed composite using a finite volume method (FVM. The results revealed that the in situ Al2Si4O10 ODS Al-based composites were successfully fabricated by SLM. Combined with the XRD spectrum and EDX analysis, the new silica-rich Al2Si4O10 reinforcing phase was identified, which was dispersed around the grain boundaries of the aluminum matrix under a reasonable laser power of 200 W. Combined with the activity of Marangoni convection and repulsion forces, the characteristic microstructure of SLM-processed Al2Si4O10 ODS Al-based composites tended to transfer from the irregular network structure to the nearly sphere-like network structure in regular form by increasing the laser power. The formation mechanism of the microstructure of SLM-processed Al2Si4O10 ODS Al-based composites is thoroughly discussed herein.

  8. Effect of Pore Size and Film Thickness on Gold-Coated Nanoporous Anodic Aluminum Oxide Substrates for Surface-Enhanced Raman Scattering Sensor.

    Science.gov (United States)

    Kassu, Aschalew; Farley, Carlton; Sharma, Anup; Kim, Wonkyu; Guo, Junpeng

    2015-11-30

    A sensitive surface enhanced Raman scattering chemical sensor is demonstrated by using inexpensive gold-coated nanoporous anodic aluminum oxide substrates. To optimize the performance of the substrates for sensing by the Surface-enhanced Raman scattering (SERS) technique, the size of the nanopores is varied from 18 nm to 150 nm and the gold film thickness is varied from 30 nm to 120 nm. The sensitivity of gold-coated nanoporous surface enhanced Raman scattering sensor is characterized by detecting low concentrations of Rhodamine 6G laser dye molecules. The morphology of the SERS substrates is characterized by atomic force microscopy. Optical properties of the nanoporous SERS substrates including transmittance, reflectance, and absorbance are also investigated. Relative signal enhancement is plotted for a range of substrate parameters and a detection limit of 10(-6) M is established.

  9. Effects of Melatonin, Aluminum Oxide, and Polymethylsiloxane Complex on the Expression of LYVE-1 in the Liver of Mice with Obesity and Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Michurina, S V; Ishchenko, I Yu; Arkhipov, S A; Klimontov, V V; Rachkovskaya, L N; Konenkov, V I; Zavyalov, E L

    2016-12-01

    The effects of melatonin, aluminum oxide, and polymethylsiloxane complex on the expression of LYVE-1 (lymphatic vessel endothelial hyaluronan receptor) in the liver were studied in db/db mice with experimental obesity and type 2 diabetes mellitus. The complex or placebo was administered daily by gavage from week 8 to week 16 of life. The animals receiving the complex exhibited enhanced, in comparison with the placebo group, immunohistochemical LYVE-1+ staining of endothelial cells in sinusoids. Enhanced expression of LYVE-1 was associated with less pronounced dilatation of interlobular arteries, veins, and lymphatic vessels. Thee findings suggest a protective effect of the complex towards structural changes in the liver of mice with obesity and type 2 diabetes.

  10. COPOLYMERIZATION OF CARBON DIOXIDE AND CYCLOHEXENE OXIDE CATALYZED BY ALUMINUM PORPHYRIN-QUATERNARY AMMONIUM SALT IN THE PRESENCE OF BULKY LEWIS ACID

    Institute of Scientific and Technical Information of China (English)

    Yu-sheng Qin; Xian-hong Wang; Xiao-jiang Zhao; Fo-song Wang

    2008-01-01

    Chloro(5,10,15,20-tetraphenyl-porphyrinato)-aluminum/tetraethylammonium bromide (Et4NBr) in combinationwith bulky Lewis acid was used for the copolymerization of CO2 and cyclohexene oxide (CHO). Bulky Lewis acid havingsubstituents at the ortho positions of the phenolate ligands, like methylaluminum bis(2,6-di-tert-butyl-4-methylphenolate),significantly shortened the induction period and raised the catalytic activity, the corresponding turnover frequency reached44.9 h-1 in 9 h, which was 23.8% higher than that from (TPP)AICI/EtaNBr binary catalyst. The resulting polycarbonate hascarbonate linkage over 93% with number average molecular weight of (4.5-6.5)×103 and polydispersity index below 1.10.

  11. Effect of the ion-beam bombardment and annealing temperature on sol-gel derived yttrium aluminum oxide film as liquid crystal alignment layer

    Science.gov (United States)

    Jeong, Hae-Chang; Heo, Gi-Seok; Kim, Eun-Mi; Lee, Ju Hwan; Han, Jeong-Min; Seo, Dae-Shik

    2017-02-01

    We demonstrated a homogeneous liquid-crystal (LC) alignment state on yttrium aluminum oxide (YAlO) films, where the alignment was induced by ion-beam (IB) irradiation. Topographical analysis was performed by atomic force microscopy as a function of annealing temperature. Higher annealing temperatures yielded a smoother surface, accompanied by reduced light scattering. Transparency in the visible region increased on the surface fabricated at higher annealing temperatures. LC alignment mechanism was determined by X-ray diffraction (XRD) analysis. Moreover, IB-irradiated YAlO films annealed at temperatures greater than 200 °C exhibited good thermal stability and low capacitance-voltage hysteresis. The IB-irradiated YAlO films are suitable as alternative alignment layers in advanced LC display applications.

  12. Sub-band transport mechanism and switching properties for resistive switching nonvolatile memories with structure of silver/aluminum oxide/p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanhong; Li, La; Wang, Song; Gao, Ping; Pan, Lujun; Zhang, Jialiang [School of Physics and Optoelectronic Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024 (China); Zhou, Peng [Department of Microelectronics, State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433 (China); Li, Jinhua; Weng, Zhankun [Center for Nano Metrology and Manufacturing Technologies and International Joint Research Center for Nanophotonics and Biophotonics, Changchun University of Science and Technology, Changchun 130022 (China)

    2015-02-09

    In this paper, we discuss a model of sub-band in resistive switching nonvolatile memories with a structure of silver/aluminum oxide/p-type silicon (Ag/Al{sub x}O{sub y}/p-Si), in which the sub-band is formed by overlapping of wave functions of electron-occupied oxygen vacancies in Al{sub x}O{sub y} layer deposited by atomic layer deposition technology. The switching processes exhibit the characteristics of the bipolarity, discreteness, and no need of forming process, all of which are discussed deeply based on the model of sub-band. The relationships between the SET voltages and distribution of trap levels are analyzed qualitatively. The semiconductor-like behaviors of ON-state resistance affirm the sub-band transport mechanism instead of the metal filament mechanism.

  13. Effects of Al2O3 Nano-Particles on Corrosion Performance of Plasma Electrolytic Oxidation Coatings Formed on 6061 Aluminum Alloy

    Science.gov (United States)

    Vakili-Azghandi, Mojtaba; Fattah-alhosseini, Arash; Keshavarz, Mohsen K.

    2016-12-01

    Corrosion resistance improvement of plasma electrolyte oxidation coatings on 6061 aluminum alloy in silicate electrolyte containing Al2O3 nano-particles was studied, with particular emphasis on the microstructure, coating growth, and corrosion behavior in 3.5 wt.% NaCl solution. The microstructure of coatings, their thickness, and phase composition were characterized using scanning electron microscopy and x-ray diffraction. All characterization data showed that the maximum coating thickness and lowest amount of porosity were obtained in a low concentration of KOH, a high concentration of Na2SiO3, and moderate concentration of Al2O3 nano-particles in the electrolyte. This combination describes the optimum plasma electrolytic oxidation electrolyte, which has the best conductivity and oxidizing state, as well as the highest incorporation of electrolyte components in the coating growth process. On the other hand, incorporation and co-deposition of Al2O3 nano-particles were more pronounced than SiO3 2- ions in some level of molar concentration, which is due to the higher impact of electron discharge force on the adsorption of Al2O3 nano-particles. The electrochemical results showed that the best protective behavior was obtained in the sample having a coat with the lowest porosity and highest thickness.

  14. Effect of Al2O3 Micro-powder Additives on the Properties of Micro-arc Oxidation Coatings Formed on 6061 Aluminum Alloy

    Science.gov (United States)

    Wang, Ping; Wu, Ting; Xiao, You Tao; Pu, Jun; Guo, Xiao Yang; Huang, Jun; Xiang, Chun Lang

    2016-09-01

    Al2O3 micro-powder was suspended in the basis electrolyte to form micro-arc oxidation (MAO) coatings on 6061 aluminum alloy by MAO. During the stage of micro-arc oxidation, Al2O3 micro-powder with negative surface charge was melted by the micro-arc around the anode and incorporated into the MAO coatings. With the continuous addition of Al2O3 micro-powder, the oxidation voltages rose up firstly and then decreased. The surface and cross-sectional morphologies showed that the size of micropores decreased and the MAO coatings surface got loosened following the variation in Al2O3 micro-powder concentration. As a consequence of the changing coating structure, the corrosion resistance of the coatings decreased apparently. The micro-hardness of the coatings increased firstly and then decreased, opposite to the trend of the average friction coefficient. It revealed the minimum average friction coefficient of MAO coatings and maximum adhesion between the coatings and substrate when 2.0 g/L Al2O3 micro-powder was added into electrolyte. There were visible cracks and peelings on the coating surface merely at 4.0 g/L after thermal shock tests. The x-ray diffraction results indicated that the addition of Al2O3 micro-powder had less effect on the phase composition of MAO coatings.

  15. Highly ordered TiO2 nano-pore arrays fabricated from a novel polymethylmethacrylate/polydimethylsiloxane soft template

    Institute of Scientific and Technical Information of China (English)

    P. Zhong; W. X. Que

    2010-01-01

    A novel soft polymer template containing a double-layer structure, which includes a thin layer of polymethylmethacrylate (PMMA) used as a pattern layer and a thicker layer of polydimethylsiloxane (PDMS) used as a back layer, was fabricated from a replica molding process. Anodic aluminum oxide (AAO) template was used as the replica mold to be replicated to the polymethylmethacrylate layer by a thermal infiltration process under a vacuum condition. Results indicate that PMMA/PDMS soft templates with different sizes could be easily fabricated from the as-prepared AAO replica mold. The PMMA/PDMS soft templates were then employed to imprint a TiO2 gel for achieving TiO2 nano-pore arrays. After the imprinting process, the PDMS layer was firstly peeled off and the PMMA layer was then removed into acetonitrile, which can avoid any demolding problems like damages or distortions. The TiO2 nano-pore arrays with the crystalline of anatase could be obtained at a heat treatment temperature of 450°C.

  16. Wettability of Aluminum on Alumina

    Science.gov (United States)

    Bao, Sarina; Tang, Kai; Kvithyld, Anne; Tangstad, Merete; Engh, Thorvald Abel

    2011-12-01

    The wettability of molten aluminum on solid alumina substrate has been investigated by the sessile drop technique in a 10-8 bar vacuum or under argon atmosphere in the temperature range from 1273 K to 1673 K (1000 °C to 1400 °C). It is shown that the reduction of oxide skin on molten aluminum is slow under normal pressures even with ultralow oxygen potential, but it is enhanced in high vacuum. To describe the wetting behavior of the Al-Al2O3 system at lower temperatures, a semiempirical calculation was employed. The calculated contact angle at 973 K (700 °C) is approximately 97 deg, which indicates that aluminum does not wet alumina at aluminum casting temperatures. Thus, a priming height is required for aluminum to infiltrate a filter. Wetting in the Al-Al2O3 system increases with temperature.

  17. Fabrication of cobalt-nickel binary nanowires in a highly ordered alumina template via AC electrodeposition.

    Science.gov (United States)

    Ali, Ghafar; Maqbool, Muhammad

    2013-08-14

    Cobalt-nickel (Co-Ni) binary alloy nanowires of different compositions were co-deposited in the nanopores of highly ordered anodic aluminum oxide (AAO) templates from a single sulfate bath using alternating current (AC) electrodeposition. AC electrodeposition was accomplished without modifying or removing the barrier layer. Field emission scanning electron microscope was used to study the morphology of templates and alloy nanowires. Energy-dispersive X-ray analysis confirmed the deposition of Co-Ni alloy nanowires in the AAO templates. Average diameter of the alloy nanowires was approximately 40 nm which is equal to the diameter of nanopore. X-ray diffraction analysis showed that the alloy nanowires consisted of both hexagonal close-packed and face-centered cubic phases. Magnetic measurements showed that the easy x-axis of magnetization is parallel to the nanowires with coercivity of approximately 706 Oe. AC electrodeposition is very simple, fast, and is useful for the homogenous deposition of various secondary nanostuctured materials into the nanopores of AAO.

  18. Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte

    Directory of Open Access Journals (Sweden)

    Yüzer Hayrettin

    2010-01-01

    Full Text Available Abstract A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current–time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM, energy-dispersive X-ray (EDX methods and X-Ray diffraction (XRD. It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm−2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially.

  19. Role of melt behavior in modifying oxidation distribution using an interface incorporated model in selective laser melting of aluminum-based material

    Science.gov (United States)

    Gu, Dongdong; Dai, Donghua

    2016-08-01

    A transient three dimensional model for describing the molten pool dynamics and the response of oxidation film evolution in the selective laser melting of aluminum-based material is proposed. The physical difference in both sides of the scan track, powder-solid transformation and temperature dependent physical properties are taken into account. It shows that the heat energy tends to accumulate in the powder material rather than in the as-fabricated part, leading to the formation of the asymmetrical patterns of the temperature contour and the attendant larger dimensions of the molten pool in the powder phase. As a higher volumetric energy density is applied (≥1300 J/mm3), a severe evaporation is produced with the upward direction of velocity vector in the irradiated powder region while a restricted operating temperature is obtained in the as-fabricated part. The velocity vector continuously changes from upward direction to the downward one as the scan speed increases from 100 mm/s to 300 mm/s, promoting the generation of the debris of the oxidation films and the resultant homogeneous distribution state in the matrix. For the applied hatch spacing of 50 μm, a restricted remelting phenomenon of the as-fabricated part is produced with the upward direction of the convection flow, significantly reducing the turbulence of the thermal-capillary convection on the breaking of the oxidation films, and therefore, the connected oxidation films through the neighboring layers are typically formed. The morphology and distribution of the oxidation are experimentally acquired, which are in a good agreement with the results predicted by simulation.

  20. Sulfur Dioxide Enhances Endogenous Hydrogen Sulfide Accumulation and Alleviates Oxidative Stress Induced by Aluminum Stress in Germinating Wheat Seeds

    Directory of Open Access Journals (Sweden)

    Dong-Bo Zhu

    2015-01-01

    Full Text Available Aluminum ions are especially toxic to plants in acidic soils. Here we present evidences that SO2 protects germinating wheat grains against aluminum stress. SO2 donor (NaHSO3/Na2SO3 pretreatment at 1.2 mM reduced the accumulation of superoxide anion, hydrogen peroxide, and malondialdehyde, enhanced the activities of guaiacol peroxidase, catalase, and ascorbate peroxidase, and decreased the activity of lipoxygenase in germinating wheat grains exposed to Al stress. We also observed higher accumulation of hydrogen sulfide (H2S in SO2-pretreated grain, suggesting the tight relation between sulfite and sulfide. Wheat grains geminated in water for 36 h were pretreated with or without 1 mM SO2 donor for 12 h prior to exposure to Al stress for 48 h and the ameliorating effects of SO2 on wheat radicles were studied. SO2 donor pretreatment reduced the content of reactive oxygen species, protected membrane integrity, and reduced Al accumulation in wheat radicles. Gene expression analysis showed that SO2 donor pretreatment decreased the expression of Al-responsive genes TaWali1, TaWali2, TaWali3, TaWali5, TaWali6, and TaALMT1 in radicles exposed to Al stress. These results suggested that SO2 could increase endogenous H2S accumulation and the antioxidant capability and decrease endogenous Al content in wheat grains to alleviate Al stress.

  1. Preparation technology and anti-corrosion performances of black ceramic coatings formed by micro-arc oxidation on aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Ling; HAN Jing; YU Shengxue

    2006-01-01

    In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied.The influence of content of Na2WO4 and combination additive in solution on the performance of black ceramic coatings was studied; the anticorrosion performances of black ceramic coatings were evaluated through whole-immersion test and electrochemical method in 3.5% NaCl solution at different pH value; SEM and XRD were used to analyze the surface morphology and phase constitutes of the black ceramic coatings.Experimental results indicated that, without combination additives, with the increasing of Na2WO4 content in the electrolyte, ceramic coating became darker and thicker, but the color was not black; after adding combination additive, the coating turned to be black; the black ceramic coating was multi-hole form in surface.There was a small quantity of tungsten existing in the black ceramic coating beside α-Al2O3 phase and β-Al2O3 phase.And aluminum alloy with black ceramic coating exhibited excellent anti-corrosion property in acid, basic and neutral 3.5% NaCl solution.

  2. Effect of Silica Sol on Boric-sulfuric Acid Anodic Oxidation of LY12CZ Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    LIU Hui-cong

    2016-07-01

    Full Text Available Aluminum alloy anodizing coatings were prepared for LY12CZ in the boric-sulfuric acid solution (45g/L sulfuric acid,8g/L boric acid with the addition of 10%,20%,30% (volume fractionsilica sol,with the gradient voltage of 15V. The current and voltage transients of the anodizing process were collected by data collection instrument. The surface morphologies,microstructure and chemical composition of the anodic coatings were characterized by scanning electron microscopy (SEM. The corrosion resistance was examined by neutral salt spray,electrochemical impedance spectroscopy (EIS test and titrating test. The results show that the different concentration of silica sol addition can influence the forming and dissolution of anodizing coatings,improve the compactness smoothness and corrosion resistance during the anodizing process in the boric-sulfuric acid solution.

  3. Templating mesoporous zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Christina Hviid; Kustova, Marina

    2008-01-01

    The application of templating methods to produce zeolite materials with hierarchical bi- or trimodal pore size distributions is reviewed with emphasis on mesoporous materials. Hierarchical zeolite materials are categorized into three distinctly different types of materials: hierarchical zeolite...... crystals, nanosized zeolite crystals, and supported zeolite crystals. For the pure zeolite materials in the first two categories, the additional meso- or macroporosity can be classified as being either intracrystalline or intercrystalline, whereas for supported zeolite materials, the additional porosity...... originates almost exclusively from the support material. The methods for introducing mesopores into zeolite materials are discussed and categorized. In general, mesopores can be templated in zeolite materials by use of solid templating, supramolecular templating, or indirect templating...

  4. Time-Dependent and Light-Induced Fading in Victoreen Model 2600-80 Aluminum Oxide Thermoluminescence Dosemeters

    Science.gov (United States)

    1993-01-01

    2600-80 Aluminium Oxide Thermoluminescence Dosemeters ":"TIC,7 • :+ " 7-t-•CTE S , E 1P 1993 F’ t LEA l E J. H. Musk AFRRI TR93-6 Cleared for Public...SUBTITLE 5. FUNDING NUMBERS Time-Dependent and Light-Induced Fading in Victoreen0 Model 2600-80 Aluminium Oxide Thermoluminescence PE: QAXM...MODEL 2600-80 ALUMINIUM OXIDE THERMOLUMINESCENCE DOSEMETERS J. H. Musk Accesion For NTIS CRA&I DTIC TAB U.,announced D Justification ........ -.. By

  5. Predictive model for Pb(II) adsorption on soil minerals (oxides and low-crystalline aluminum silicate) consistent with spectroscopic evidence

    Science.gov (United States)

    Usiyama, Tomoki; Fukushi, Keisuke

    2016-10-01

    Mobility of Pb(II) in surface condition is governed by adsorption processes on soil minerals such as iron oxides and low-crystalline aluminum silicates. The adsorption effectiveness and the surface complex structures of Pb(II) vary sensitively with solution conditions such as pH, ionic strength, Pb(II) loading, and electrolyte anion type. This study was undertaken to construct a quantitative model for Pb(II) on soil minerals. It can predict the adsorption effectiveness and surface complex structures under any solution conditions using the extended triple layer model (ETLM). The Pb(II) adsorption data for goethite, hydrous ferric oxide (HFO), quartz, and low-crystalline aluminum silicate (LCAS) were analyzed with ETLM to retrieve the surface complexation reactions and these equilibrium constants. The adsorption data on goethite, HFO and quartz were referred from reports of earlier studies. Those data for LCAS were measured under a wide range of pH, ionic strength and Pb(II) loadings in NaNO3 and NaCl solutions. All adsorption data can be reasonably regressed using ETLM with the assumptions of inner sphere bidentate complexation and inner sphere monodentate ternary complexation with electrolyte anions, which are consistent with previously reported spectroscopic evidence. Predictions of surface speciation under widely various solution conditions using ETLM revealed that the inner sphere bidentate complex is the predominant species at neutral to high pH conditions. The inner sphere monodentate ternary complex becomes important at low pH, high surface Pb(II) coverage, and high electrolyte concentrations, of which the behavior is consistent with the spectroscopic observation. Comparisons of the obtained adsorption constants on goethite, HFO and quartz exhibited good linear relations between the reciprocals of dielectric constants of solids and adsorption constants. Those linear relations support predictions of the adsorption constants of all oxides based on Born

  6. Behaviors of Oxide Layer at Interface between Semi-solid Filler Metal and Aluminum Matrix Composites during Vibration

    Institute of Scientific and Technical Information of China (English)

    Lei Shi; Jiuchun Yan; Yanfei Han; Bo Peng

    2011-01-01

    The joint interface between semi-solid Zn-Al filler metal and SiCp/Al composites with applying vibration for different time was examined. With increasing vibrating time, the oxide layer was disrupted prior at the centre to the periphery of the interface. And the solid grains near the centre of interface in semi-solid filler metal aggregated into two solid regions and compressed the composites during vibration; the solid grains near the periphery of interface moved toward the edge and scraped the composites during vibration. The models of disrupting oxide layer under the vibration condition were developed. At the centre of interface, the oxide layer was tore and stripped during the solid grains in the semi-solid filler metal depressing the composites with a very high compressive stress. At the periphery of interface, the oxide layer was cut and stripped into the filler metal during the solid grains scraping the interface.

  7. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids

    Science.gov (United States)

    Kao, Tzung-Ta; Chang, Yao-Chung

    2014-01-01

    The growth of anodic alumina oxide was conducted in the mixed solution of phosphoric and oxalic acids. The influence of anodizing voltage, electrolyte temperature, and concentration of phosphoric and oxalic acids on the volume expansion of anodic aluminum oxide has been investigated. Either anodizing parameter is chosen to its full extent of range that allows the anodization process to be conducted without electric breakdown and to explore the highest possible volume expansion factor. The volume expansion factors were found to vary between 1.25 and 1.9 depending on the anodizing parameters. The variation is explained in connection with electric field, ion transport number, temperature effect, concentration, and activity of acids. The formation of anodic porous alumina at anodizing voltage 160 V in 1.1 M phosphoric acid mixed with 0.14 M oxalic acid at 2 °C showed the peak volume expansion factor of 1.9 and the corresponding moderate growth rate of 168 nm/min.

  8. Size-Dependent Filling Behavior of UV-Curable Di(meth)acrylate Resins into Carbon-Coated Anodic Aluminum Oxide Pores of around 20 nm.

    Science.gov (United States)

    Nakagawa, Masaru; Nakaya, Akifumi; Hoshikawa, Yasuto; Ito, Shunya; Hiroshiba, Nobuya; Kyotani, Takashi

    2016-11-09

    Ultraviolet (UV) nanoimprint lithography is a promising nanofabrication technology with cost efficiency and high throughput for sub-20 nm size semiconductor, data storage, and optical devices. To test formability of organic resist mask patterns, we investigated whether the type of polymerizable di(meth)acrylate monomer affected the fabrication of cured resin nanopillars by UV nanoimprinting using molds with pores of around 20 nm. We used carbon-coated, porous, anodic aluminum oxide (AAO) films prepared by electrochemical oxidation and thermal chemical vapor deposition as molds, because the pore diameter distribution in the range of 10-40 nm was suitable for combinatorial testing to investigate whether UV-curable resins comprising each monomer were filled into the mold recesses in UV nanoimprinting. Although the UV-curable resins, except for a bisphenol A-based one, detached from the molds without pull-out defects after radical photopolymerization under UV light, the number of cured resin nanopillars was independent of the viscosity of the monomer(s) in each resin. The number of resin nanopillars increased and their diameter decreased as the number of hydroxy groups in the aliphatic diacrylate monomers increased. It was concluded that the filling of the carbon-coated pores having diameters of around 20 nm with UV-curable resins was promoted by the presence of hydroxy groups in the aliphatic di(meth)acrylate monomers.

  9. Effect of chronic accumulation of aluminum on renal function, cortical renal oxidative stress and cortical renal organic anion transport in rats.

    Science.gov (United States)

    Mahieu, Stella T; Gionotti, Marisa; Millen, Néstor; Elías, María Mónica

    2003-11-01

    The aim of the present work was to study the nephrotoxicity of aluminum lactate administered for 3 months (0.57 mg/100 g bodyweight aluminum, i.p., three times per week) to male Wistar rats. Renal function was studied after 6 weeks of treatment (urine was obtained from rats in metabolic cages) and at the end of the treatment using clearance techniques. Another group of rats was used as kidneys donors at the end of treatment. The renal cortex was separated and homogenized to determine glutathione (GSH) level, glutathione S-transferase (GST) activity and lipid peroxidation (LPO) level. Renal cortex slices were also used to study the p-aminohippuric acid (PAH) accumulation during steady-state conditions and the kinetics of uptake process. Clearance results, at the end of the treatment, indicated that renal functions in treated-rats were not different from those measured in control rats, although the renal concentration parameters differ when they were measured in treated rats after 24 h of food and water deprivation. Balances of water and sodium were also modified at both 1.5 and 3 months of treatment. The activity of alkaline phosphatase (AP) relative to inulin excreted in urine was significantly impaired: controls 2.2+/-0.6 IUI/mg, Al-treated 5.1+/-0.5 IU/mg, Prats. Renal accumulation of PAH, estimated as slice-to-medium ratio, decreased significantly in the Al-treated rats: control rats 3.06+/-0.02 ( n=12), Al-treated rats 2.26+/-0.04 ( n=12), Prats, while the apparent affinity remained unchanged. All these results indicate that aluminum accumulation in renal tissue affects cellular metabolism, promotes oxidative stress and induces alterations in renal tubular PAH transport, together with an impairment in sodium and water balance only detected under conditions of water deprivation, without other evident changes in glomerular filtration rate or other global functions measured by clearance techniques at least at this time of chronic toxicity.

  10. Anodic aluminium oxide membranes used for the growth of carbon nanotubes.

    Science.gov (United States)

    López, Vicente; Morant, Carmen; Márquez, Francisco; Zamora, Félix; Elizalde, Eduardo

    2009-11-01

    The suitability of anodic aluminum oxide (AAO) membranes as template supported on Si substrates for obtaining organized iron catalyst for carbon nanotube (CNT) growth has been investigated. The iron catalyst was confined in the holes of the AAO membrane. CVD synthesis with ethylene as carbon source led to a variety of carbon structures (nanotubes, helices, bamboo-like, etc). In absence of AAO membrane the catalyst was homogeneously distributed on the Si surface producing a high density of micron-length CNTs.

  11. Decomposition kinetics of AgO cathode material for silver oxide/aluminum battery%铝氧化银电池正极材料AgO的分解动力学研究

    Institute of Scientific and Technical Information of China (English)

    吕霖娜; 林沛; 韩雪荣

    2011-01-01

    The instability of silver (Ⅱ). Oxide electrodes used in silver oxide/aluminum reserve batteries is the well-known cause of capacity loss and the delayed activation in reserve batteries after stored in the dry and inactivated state for the extended periods of time. The decomposition kinetics of the thermodynamically unstable AgO component of silver oxide cathodes used in silver/aluminum reverse batteries was determined by a rapid and accelerated-aging thermogravimetry (TG) technique. The calculated decomposition rates of AgO could be used to predict the storage life time of primary, and reserve silver oxide/aluminum reserve batteries.%氧化银的不稳定性是导致铝氧化银贮备电池在于态、未激活的状态下长期储存容量减少、激活时间延长的主要原因.通过加速老化实验测得电化学方法制备的氧化银的分解动力学参数,并通过建立模型计算氧化银的分解速率,以此来预测铝氧化银贮备电池中氧化银电极的储存寿命.

  12. Aluminum alloy

    Science.gov (United States)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  13. Impact of aluminum on the oxidation of lipids and enzymatic lipolysis in monomolecular films at the air/water interface.

    Science.gov (United States)

    Corvis, Yohann; Korchowiec, Beata; Brezesinski, Gerald; Follot, Sébastien; Rogalska, Ewa

    2007-03-13

    There is evidence that serious pathologies are associated with aluminum (Al). In the present work, the influence of Al on enzymatic lipolysis was studied with the aim to get more insight into the possible link between the Al-induced membrane modification and the cytotoxicity of the trivalent cation (AlIII). Lipid monolayers were used as model membranes. The monomolecular film technique allowed monitoring the Al-dependent modifications of the lipid monolayer properties and enzyme kinetics. Two enzymes, namely, Candida rugosa lipase and a calcium (CaII)-dependent phospholipase A2 from porcine pancreas, were used to catalyze the lipolysis of triglyceride and phosphoglyceride monolayers, respectively. The results obtained show that Al modifies both the monolayer structure and enzymatic reaction rates. While the enzymes used in this study can be considered as probes detecting lipid membrane properties, it cannot be excluded that in physiological conditions modulation of the enzyme action by the Al-bound membranes is among the reasons for Al toxicity.

  14. Oxide-cladding aluminum nitride photonic crystal slab: Design and investigation of material dispersion and fabrication induced disorder

    Energy Technology Data Exchange (ETDEWEB)

    Melo, E. G., E-mail: emerdemelo@usp.br; Alvarado, M. A.; Carreño, M. N. P.; Alayo, M. I. [Electronic Systems Engineering Department, University of São Paulo, CEP 05508-010 São Paulo, SP (Brazil); Carvalho, D. O. [UNESP - São Paulo State University, CEP 13874-149 São João da Boa Vista, SP (Brazil); Ferlauto, A. S. [Department of Physics, Federal University of Minas Gerais, CEP 31270-901 Belo Horizonte, MG (Brazil)

    2016-01-14

    Photonic crystal slabs with a lower-index material surrounding the core layer are an attractive choice to circumvent the drawbacks in the fabrication of membranes suspended in air. In this work we propose a photonic crystal (PhC) slab structure composed of a triangular pattern of air holes in a multilayer thin film of aluminum nitride embedded in silicon dioxide layers designed for operating around 450 nm wavelengths. We show the design of an ideal structure and analyze the effects of material dispersion based on a first-order correction perturbation theory approach using dielectric functions obtained by experimental measurements of the thin film materials. Numerical methods were used to investigate the effects of fabrication induced disorder of typical nanofabrication processes on the bandgap size and spectral response of the proposed device. Deviation in holes radii and positions were introduced in the proposed PhC slab model with a Gaussian distribution profile. Impacts of slope in holes sidewalls that might result from the dry etching of AlN were also evaluated. The results show that for operation at the midgap frequency, slope in holes sidewalls is more critical than displacements in holes sizes and positions.

  15. Progress in Anodic Aluminum Oxide Microchannel Plates%阳极氧化铝微通道板研究的进展

    Institute of Scientific and Technical Information of China (English)

    张洋; 黄永刚; 刘辉; 李国恩

    2012-01-01

    微通道板(Microchannel Plates,MCP)是一种先进的电子倍增器件,在微光夜视等多个领域有着广泛的应用.传统铅硅酸盐玻璃微通道板(Lead Silicate Glass Microchannel Plates,LSG-MCP)越来越不能满足小孔径、高分辨率、环境友好等方面的要求,寻求替代产品成为研究热点.详细介绍了一种新型微通道板—阳极氧化铝微通道板(Anodic Aluminum Oxide Microchannel Plates,AAO-MCP)的研究进展,包括多孔AAO的特点、微通道的形成、功能层的制备、计算机模拟等.AAO-MCP具有孔径小、面积大、耐强磁场、工作温度范围宽等特点,应用前景广阔.最后分析了AAO-MCP存在的问题以及未来发展方向.%MicroChannel plates (MCP) are advanced electron multiplier devices, which are widely used in low-light-level night vision and other fields. The traditional lead silicate glass microchannel plates (LSG-MCP) are increasingly unable to meet the requirements of small diameter, high resolution and environment-friendness, so it is necessary to find some novel alternative materials and technology, such as anodic aluminum oxide microchannel plates (AAO-MCP). This paper describes the research progress of the AAO-MCP in details, including the characteristics of the porous AAO, the forming of microchannel, functional film preparation and computer simulation. AAO-MCP has some advantages, such as smaller channel diameter, large area, low sensitivity to strong magnetic field, and wide operating temperature range. Finally, the most difficult problems in AAO-MCP and the development in the future are presented.

  16. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elnaiem, Alaa M., E-mail: alaa.abd-elnaiem@science.au.edu.eg [KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Mebed, A.M. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Department of Physics, Faculty of Science, Al-Jouf University, Sakaka 2014 (Saudi Arabia); El-Said, Waleed Ahmed [Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Abdel-Rahim, M.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2014-11-03

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes.

  17. images_template

    Data.gov (United States)

    National Aeronautics and Space Administration — Images for the website template go here. It will not change their names or locations, but will hopefully help to organize them. Oh, but for a directory structure...

  18. The Trouble With Templates

    CERN Document Server

    Sampson, Laura; Yunes, Nicolas

    2013-01-01

    Waveform templates are a powerful tool for extracting and characterizing gravitational wave signals, acting as highly restrictive priors on the signal morphologies that allow us to extract weak events buried deep in the instrumental noise. The templates map the waveform shapes to physical parameters, thus allowing us to produce posterior probability distributions for these parameters. However, there are attendant dangers in using highly restrictive signal priors. If strong field gravity is not accurately described by General Relativity (GR), then using GR templates may result in fundamental bias in the recovered parameters, or even worse, a complete failure to detect signals. Here we study such dangers, concentrating on three distinct possibilities. First, we show that there exist modified theories compatible with all existing tests that would fail to be detected by the LIGO/Virgo network using searches based on GR templates, but which would be detected using a one parameter post-Einsteinian extension. Second...

  19. Fractionation of fulvic acid by iron and aluminum oxides--influence on copper toxicity to Ceriodaphnia dubia.

    Science.gov (United States)

    Smith, Kathleen S; Ranville, James F; Lesher, Emily K; Diedrich, Daniel J; McKnight, Diane M; Sofield, Ruth M

    2014-10-21

    This study examines the effect on aquatic copper toxicity of the chemical fractionation of fulvic acid (FA) that results from its association with iron and aluminum oxyhydroxide precipitates. Fractionated and unfractionated FAs obtained from streamwater and suspended sediment were utilized in acute Cu toxicity tests on Ceriodaphnia dubia. Toxicity test results with equal FA concentrations (6 mg FA/L) show that the fractionated dissolved FA was 3 times less effective at reducing Cu toxicity (EC50 13 ± 0.6 μg Cu/L) than were the unfractionated dissolved FAs (EC50 39 ± 0.4 and 41 ± 1.2 μg Cu/L). The fractionation is a consequence of preferential sorption of molecules having strong metal-binding (more aromatic) moieties to precipitating Fe- and Al-rich oxyhydroxides, causing the remaining dissolved FA to be depleted in these functional groups. As a result, there is more bioavailable dissolved Cu in the water and hence greater potential for Cu toxicity to aquatic organisms. In predicting Cu toxicity, biotic ligand models (BLMs) take into account dissolved organic carbon (DOC) concentration; however, unless DOC characteristics are accounted for, model predictions can underestimate acute Cu toxicity for water containing fractionated dissolved FA. This may have implications for water-quality criteria in systems containing Fe- and Al-rich sediment, and in mined and mineralized areas in particular. Optical measurements, such as specific ultraviolet absorbance at 254 nm (SUVA254), show promise for use as spectral indicators of DOC chemical fractionation and inferred increased Cu toxicity.

  20. The influence of aminopolycarboxylates on the sorption of copper (II) cations by (Hydro)oxides of iron, Aluminum, and manganese

    Science.gov (United States)

    Kropacheva, T. N.; Antonova, A. S.; Kornev, V. I.

    2016-07-01

    The influence of some complexing agents of (poly)aminopolycarboxylic acids (diethylenetriaminopentaacetic acid (DTPA), ethylenediaminotetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and iminodiacetic acid (IDA)) on the sorption of Cu2+ by crystal and amorphous (hydr)oxides of Fe(III), Al(III), and Mn(IV) that are widespread mineral components of soils was studied. The obtained results are considered in terms of complex-formation in the solution and on the sorbent's surface. The effect of the complexing agents on the metal sorption (mobilization/immobilization) is determined by (1) the stability, structure, and sorption capability of compexonates formed in the solution; (2) the acidity, and (3) the nature of the sorbent. The desorption effect on Cu2+ cations was found to change in the following sequence of complexing agents: EDTA > DTPA ≫ NTA > IDA. The high-dentate complexing agents (EDTA, DTPA) had the greatest impact on ?u2+ cations bound with crystalline (hydr)oxides of Fe, Al, and Mn. The low denticity of the complexing agents (IDA, NTA) and binding of ?u2+ with amorphous sorbents leads to the weakening of desorption. The decrease in acidity promoted the mobilization of the metal under the influence of complexing agents; the increase in acidity caused its immobilization. The growth in the mobility of heavy metals bound with soil (hydr)oxides of Fe, Al, and Mn due to the complexing agents entering the surface and ground water is considered a factor of ecological risk.