Sample records for aluminum inorganic compounds

  1. Two New Organo-Inorganic Hybrid Compounds: Nitrilophosphonates of Aluminum and Copper (United States)

    Cabeza, Aurelio; Bruque, Sebastián; Guagliardi, Antonietta; Aranda, Miguel A. G.


    Two new organo-inorganic hybrid compounds, aluminum nitrilotris(methylene)trismonohydrogenphosphonate hydrate, Al[(HO3PCH2)3N]H2O, and tricopper(II) bis-nitrilobis(methylene)diphosphonate, Cu3[(O3PCH2)2NH2]2, have been synthesized. The crystal structures have been determined ab initio from powder diffraction data and refined by the Rietveld method. Al[(HO3PCH2)3N]H2O is monoclinic, space group P21/n, with a=12.1945(3) Å, b=9.1129(3) Å, c=8.5495(2) Å, β=94.317(2)°, Z=4, and the X-ray powder diffraction pattern has been refined to RwP=8.7%. Cu3[(O3PCH2)2NH2]2 is orthorhombic, space group Pbca, with a=16.1209(6) Å, b=9.4890(4) Å, c=9.4113(4) Å, Z=4 and its pattern was refined to RwP=13.5%. The crystal structure of aluminum phosphonate contains a close packing of inorganic chains, formed by alternating AlO6 octahedra and O3PC tetrahedra. These chains are covalently interconnected by the organic groups to give the 3D framework. The structure of copper phosphonate has two distinct copper environments, one a tetragonally elongated tetrahedron and the other a distorted square plane. These structural units are linked by the organic phosphonate. Thermal and infrared data are discussed.

  2. Intercalation compounds involving inorganic layered structures

    Directory of Open Access Journals (Sweden)



    Full Text Available Two-dimensional inorganic networks can shown intracrystalline reactivity, i.e., simple ions, large species as Keggin ions, organic species, coordination compounds or organometallics can be incorporated in the interlayer region. The host-guest interaction usually causes changes in their chemical, catalytic, electronic and optical properties. The isolation of materials with interesting properties and making use of soft chemistry routes have given rise the possibility of industrial and technological applications of these compounds. We have been using several synthetic approaches to intercalate porphyrins and phthalocyanines into inorganic materials: smectite clays, layered double hydroxides and layered niobates. The isolated materials have been characterized by elemental and thermal analysis, X-ray diffraction, surface area measurements, scanning electronic microscopy, electronic and resonance Raman spectroscopies and EPR. The degree of layer stacking and the charge density of the matrices as well their acid-base nature were considered in our studies on the interaction between the macrocycles and inorganic hosts.

  3. Transport of inorganic compounds through compacted clay

    Energy Technology Data Exchange (ETDEWEB)

    Liao, W.P.


    Compacted clay liners are widely utilized as leachate barrier in landfills for waste. The main purpose of this research was to study the transport of inorganic compounds through compacted clay. The subjects of interest included the diffusional migration of chemicals at low flow rates, the effective porosity of fine-grained soils, the transport of solutes in unsaturated clays, and the effect of adsorption processes on the transport of reactive solutes. Two clay soils, kaolinite and Lufkin clay, were used in the laboratory column tests and subjected to constant hydraulic gradients of 1 to 50. Inorganic tracers (Cl{sup {minus}} Br{sup {minus}}, K{sup +}, and Zn{sup 2+}) were added to the permeating water as a step input. Conclusions are: (a) the experimental data from soil specimens subjected to various gradients showed that diffusional transport did affect the migration of the tracers in fine-grained media. At low gradients, hydrodynamic dispersion was almost solely related to molecular diffusion rather than mechanical mixing; (b) the breakthrough curves for kaolinite specimens showed that the ratios of effective porosity to total porosity were 0.25 to 1.0. The effect of low effective porosity on transport of the tracers was much greater than that of diffusion; (c) the soils that were not presoaked before tracers were introduced had lower effective porosity and greater dispersion of solutes that did the presoaked soils; (d) no evidence of the existence of a threshold gradient was observed; and (e) the retardation factors predicted from batch equilibrium tests matched the results from column tests poorly, probably due to hydrodynamic effects or geochemical differences between the two soil/solution systems.

  4. Total allowable concentrations of monomeric inorganic aluminum and hydrated aluminum silicates in drinking water. (United States)

    Willhite, Calvin C; Ball, Gwendolyn L; McLellan, Clifton J


    Maximum contaminant levels are used to control potential health hazards posed by chemicals in drinking water, but no primary national or international limits for aluminum (Al) have been adopted. Given the differences in toxicological profiles, the present evaluation derives total allowable concentrations for certain water-soluble inorganic Al compounds (including chloride, hydroxide, oxide, phosphate and sulfate) and for the hydrated Al silicates (including attapulgite, bentonite/montmorillonite, illite, kaolinite) in drinking water. The chemistry, toxicology and clinical experience with Al materials are extensive and depend upon the particular physical and chemical form. In general, the water solubility of the monomeric Al materials depends on pH and their water solubility and gastrointestinal bioavailability are much greater than that of the hydrated Al silicates. Other than Al-containing antacids and buffered aspirin, food is the primary source of Al exposure for most healthy people. Systemic uptake of Al after ingestion of the monomeric salts is somewhat greater from drinking water (0.28%) than from food (0.1%). Once absorbed, Al accumulates in bone, brain, liver and kidney, with bone as the major site for Al deposition in humans. Oral Al hydroxide is used routinely to bind phosphate salts in the gut to control hyperphosphatemia in people with compromised renal function. Signs of chronic Al toxicity in the musculoskeletal system include a vitamin D-resistant osteomalacia (deranged membranous bone formation characterized by accumulation of the osteoid matrix and reduced mineralization, reduced numbers of osteoblasts and osteoclasts, decreased lamellar and osteoid bands with elevated Al concentrations) presenting as bone pain and proximal myopathy. Aluminum-induced bone disease can progress to stress fractures of the ribs, femur, vertebrae, humerus and metatarsals. Serum Al ≥100 µg/L has a 75-88% positive predictive value for Al bone disease. Chronic Al

  5. Microbiological disproportionation of inorganic sulfur compounds

    DEFF Research Database (Denmark)

    Finster, Kai


    the delta subclass of Proteobacteria. The organisms grow with sulfate as their external electron acceptor and low-molecular weight organic compounds or hydrogen as energy sources. Studies of the biochemistry of a few isolates indicate that the disproportionating microbes reverse the sulfate reduction...

  6. Investigations on organogermanium compounds XII. Reactions of trialkylgermylalkalimetal compounds in hexamethylphosphoric triamide (HMPT) with some inorganic and organic compounds

    NARCIS (Netherlands)

    Bulten, E.J.; Noltes, J.G.


    Trialkylgermyl alkali metal compounds in HMPT have been found to be highly reactive nucleophiles. Reactions with some inorganic and organic compounds, such as oxygen, carbon dioxide, inorganic and orgaanic halides, aldehydes, ketones, epoxides and lactones are described. Several new carbon-functiona

  7. Aromaticity in Polyacene Analogues of Inorganic Ring Compounds

    CERN Document Server

    Chattaraj, P K; Chattaraj, Pratim Kumar; Roy, Debesh Ranjan


    The aromaticity in the polyacene analogues of several inorganic ring compounds (BN-acenes, CN-acenes, BO-acenes and Na6-acenes) is reported here for the first time. Conceptual density functional theory based reactivity descriptors and the nucleus independent chemical shift (NICS) values are used in this analysis.

  8. Survey of electrochemical production of inorganic compounds. Final report

    Energy Technology Data Exchange (ETDEWEB)


    The electrochemical generation of inorganic compounds, excluding chlorine/caustic, has been critically reviewed. About 60 x 10/sup 12/ Btu/y fossil fuel equivalent will be used in the year 2000 for the electrosynthesis of inorganic compounds. Significant energy savings in chlorate production can result from the development of suitable electrocatalysts for lowering the cathodic overpotential. Perchlorates, electrolytic hypochlorite, electrolytic manganese dioxide, fluorine and other miscellaneous compounds use relatively small amounts of electrical energy. Implementation of caustic scrubber technology for stack gas cleanup would result in appreciable amounts of sodium sulfate which could be electrolyzed to regenerate caustic. Hydrogen peroxide, now produced by the alkyl anthraquinone process, could be made electrolytically by a new process coupling anodic oxidation of sulfate with cathodic reduction of oxygen in alkaline solution. Ozone is currently manufactured using energy-inefficient silent discharge equipment. A novel energy-efficient approach which uses an oxygen-enhanced anodic reaction is examined.

  9. Infrared and Raman spectra of inorganic and coordination compounds theory and applications in inorganic chemistry

    CERN Document Server

    Nakamoto, Kazuo


    The Sixth Edition of this classic work comprises the most comprehensive and current guide to infrared and Raman spectra of inorganic, organometallic, bioinorganic, and coordination compounds. From fundamental theories of vibrational spectroscopy to applications in a variety of compound types, this has been extensively updated. New topics include the theoretical calculations of vibrational frequencies (DFT method), chemical synthesis by matrix co-condensation reactions, time-resolved Raman spectroscopy, and more. This volume is a core reference for chemists and medical professionals working with infrared or Raman spectroscopies and an excellent textbook for graduate courses.

  10. FEM and FVM compound numerical simulation of aluminum extrusion processes

    Institute of Scientific and Technical Information of China (English)

    周飞; 苏丹; 彭颖红; 阮雪榆


    The finite element method (FEM) and the finite volume method (FVM) numerical simulation methods have been widely used in forging industries to improve the quality of products and reduce the costs. Because of very concentrative large deformation during the aluminum extrusion processes, it is very difficult to simulate the whole forming process only by using either FEM or FVM. In order to solve this problem, an FEM and FVM compound simulation method was proposed. The theoretical equations of the compound simulation method were given and the key techniques were studied. Then, the configuration of the compound simulation system was established. The tube extrusion process was simulated successfully so as to prove the validity of this approach for aluminum extrusion processes.

  11. Multifunctional slow-release organic-inorganic compound fertilizer. (United States)

    Ni, Boli; Liu, Mingzhu; Lü, Shaoyu; Xie, Lihua; Wang, Yanfang


    Multifunctional slow-release organic-inorganic compound fertilizer (MSOF) has been investigated to improve fertilizer use efficiency and reduce environmental pollution derived from fertilizer overdosage. The special fertilizer is based on natural attapulgite (APT) clay used as a matrix, sodium alginate used as an inner coating and sodium alginate-g-poly(acrylic acid-co-acrylamide)/humic acid (SA-g-P(AA-co-AM)/HA) superabsorbent polymer used as an outer coating. The coated multielement compound fertilizer granules were produced in a pan granulator, and the diameter of the prills was in the range of 2.5-3.5 mm. The structural and chemical characteristics of the product, as well as its efficiency in slowing the nutrients release, were examined. In addition, a mathematical model for nutrient release from the fertilizer was applied to calculate the diffusion coefficient D of nutrients in MSOF. The degradation of the SA-g-P(AA-co-AM)/HA coating was assessed by examining the weight loss with incubation time in soil. It is demonstrated that the product prepared by a simple route with good slow-release property may be expected to have wide potential applications in modern agriculture and horticulture.

  12. Anodization process produces opaque, reflective coatings on aluminum (United States)


    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  13. Electricity generation from an inorganic sulfur compound containing mining wastewater by acidophilic microorganisms

    NARCIS (Netherlands)

    Ni, Gaofeng; Christel, Stephan; Roman, Pawel; Wong, Zhen Lim; Bijmans, Martijn F.M.; Dopson, Mark


    Sulfide mineral processing often produces large quantities of wastewaters containing acid-generating inorganic sulfur compounds. If released untreated, these wastewaters can cause catastrophic environmental damage. In this study, microbial fuel cells were inoculated with acidophilic microorganism

  14. Separation of nonionic compounds by electrokinetic chromatography using an inorganic layered compound as a pseudostationary phase. (United States)

    Koike, Ryo; Kitagawa, Fumihiko; Otsuka, Koji


    The use of an inorganic layered compound as a pseudostationary phase (PSP) in EKC was investigated. A synthetic smectite, which is the most typical swellable clay mineral, with an average diameter of 130 nm was selected as the PSP. The retention characteristics of the smectite and on-line sample concentration by sweeping were examined for the analysis of polyoxyethylene mono phenyl ethers (PPEs) with different degrees of ethoxylation. The retention factor was increased with increase in the number of ethylene oxide groups and a good separation of the PPE homologs was achieved by smectite-EKC. The RSD of the migration time, plate number, and peak area were 0.60, 8.3, and 2.7% (n = 5), respectively. The developed method can be applied to the analysis of PPEs in commercially available consumer products without any sample pretreatments. In addition, ca. 100-fold sensitivity enhancements for the PPEs with high retention factors were obtained by sweeping.

  15. Binary systems solubilities of inorganic and organic compounds, v.1 pt.2

    CERN Document Server

    Stephen, H


    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w


    Institute of Scientific and Technical Information of China (English)

    ZhangWanxi; CheJitai; 等


    In this paper,the radiation graft copolymer of MgO,SiO2 and Y-molecular sieve onto organic compounds,such as methacrylate,styrene and acrylomitrile obtained by per-radiation method were characterized by X-ray diffraction,pyrolysis gas chromatography,GPC and X-ray photoelectron spectroscopy.

  17. Some organic compounds as inhibitors for the corrosion of aluminum alloy 6063 in deaerated carbonate solution

    Energy Technology Data Exchange (ETDEWEB)

    Bazzi, L.; Hamdani, M. [Lab. de Chimie Physique, Agadir (Morocco); Kertit, S. [Ecole Normale Superieure de Takaddoum, Rabat (Morocco). Lab. de Physico-Chimie des Materiaux


    Some organic compounds were tested as corrosion inhibitors for aluminum alloy 6063 (Al 6063, UNS A96063) in a deaerated carbonate solution using the electrochemical polarization method. The compounds studied were thiourea (TOR), diorthoaminodiphenyldisulfane (DOAPD), and benzotriazole (BTA). Results showed DOAPD was the best inhibitor. Its inhibition efficiency reaches a maximum value of 95.8% at 10{sup {minus}2} M. Polarization measurements indicated DOAPD acted as a cathodic and anodic (mixed) inhibitor without changing the mechanism of the water evolution reaction. DOAPD was adsorbed on the aluminum surface according to a Langmuir isotherm model. The other compounds tested had no effect on pitting corrosion of Al 6063.

  18. Biological and chemical investigation of Allium cepa L. response to selenium inorganic compounds. (United States)

    Michalska-Kacymirow, M; Kurek, E; Smolis, A; Wierzbicka, M; Bulska, E


    The aim of this study was to evaluate the biological and chemical response of Allium cepa L. exposed to inorganic selenium compounds. Besides the investigation of the total content of selenium as well as its chemical speciation, the Allium test was used to evaluate the growth of onion roots and mitotic activity in the roots' meristem. The total content of selenium was determined by inductively coupled plasma mass spectrometry (ICP MS). High-performance liquid chromatography (HPLC), coupled to ICP MS, was used for the selenium chemical speciation. Results indicated that A. cepa plants are able to biotransform inorganic selenium compounds into their organic derivatives, e.g., Se-methylselenocysteine from the Se(IV) inorganic precursor. Although the differences in the biotransformation of selenium are due mainly to the oxidation state of selenium, the experiment has also shown a fine effect of counter ions (H(+), Na(+), NH4 (+)) on the response of plants and on the specific metabolism of selenium.

  19. A golden future in medicinal inorganic chemistry : The promise of anticancer gold organometallic compounds

    NARCIS (Netherlands)

    Bertrand, B.; Casini, A.


    From wedding rings on fingers to stained glass windows, by way of Olympic medals, gold has been highly prized for millennia. Nowadays, organometallic gold compounds occupy an important place in the field of medicinal inorganic chemistry due to their unique chemical properties with respect to gold co

  20. [Responses of rice-wheat rotation system in south Jiangsu to organic-inorganic compound fertilizers]. (United States)

    Tian, Heng-Da; Zhang, Li; Zhang, Jian-Chao; Wang, Qiu-Jun; Xu, Da-Bing; Yibati, Halihashi; Xu, Jia-Le; Huang, Qi-Wei


    In 2006-2007, a field trial was conducted to study the effects of applying three kinds of organic-inorganic compound fertilizers [rapeseed cake compost plus inorganic fertilizers (RCC), pig manure compost plus inorganic fertilizers (PMC), and Chinese medicine residues plus inorganic fertilizers (CMC)] on the crop growth and nitrogen (N) use efficiency of rice-wheat rotation system in South Jiangsu. Grain yield of wheat and rice in the different fertilization treatments was significantly higher than the control (no fertilization). In treatments RCC, PMC and CMC, the wheat yield was 13.1%, 32.2% and 39.3% lower than that of the NPK compound fertilizer (CF, 6760 kg x hm(-2)), respectively, but the rice yield (8504-9449 kg x hm(-2)) was significantly higher than that (7919 kg x hm(-2)) of CF, with an increment of 7.4%-19.3%. In wheat season, the aboveground dry mass, N accumulation, and N use efficiency in treatments RCC, PMC, and CMC were lower than those of CF, but in rice season, these parameters were significantly higher than or as the same as CF. In sum, all the test three compound fertilizers had positive effects on the rice yield and its nitrogen use efficiency in the rice-wheat rotation system, being most significant for RCC.

  1. Moessbauer spectroscopic study on inorganic compounds. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Masashi; Kitazawa, Takafumi; Nanba, Hiroshi; Yoshinaga, Tomohiro; Nakajima, Norio; Sumisawa, Yasuhiro; Takeda, Masuo [Toho Univ., Funabashi, Chiba (Japan). Faculty of Science; Sawahata, Hiroyuki; Ito, Yasuo


    {sup 166}Er and {sup 127}I Moessbauer spectra were observed. {sup 166}Er Moessbauer spectrum of Er metal and 9 compounds were measured by {sup 166}Ho/Y{sub 0.6}Ho{sub 0.4}H{sub 2} source at 12K and the parameters such as e{sup 2}qQ(mm s{sup -1}), Heff(T) and {tau}(ns) were determined. The relaxation time of ErCl{sub 3}{center_dot}6H{sub 2}O was 0.7ns, long, but that of ErCl{sub 3} was 10 ps, short time. {sup 127}I Moessbauer spectrum of PhI(O{sub 2}CR){sub 2} (R=CH{sub 3}, CHF{sub 2}, CH{sub 2}Cl, CHCl{sub 2}, CCl{sub 3}, CH{sub 2}Br, CHBr{sub 2} and CBr{sub 3}) were observed and compared with that of R`{sub 3}Sb(O{sub 2}CR){sub 2} was similar to that of PhI(O{sub 2}CR){sub 2}. The correlation coefficient between e{sup 2}qQ({sup 127}I) and Mulliken population of carboxylic hydrogen atom of R{sub 2}CO{sub 2}H was -0.87. The relation between the hypervalent bond of O-I-O and that of O-Sb-0 was shown by the equation: e{sup 2}qQ({sup 121}Sb)/mm s{sup -1} = -47.2 + 1.32 e{sup 2}qQ({sup 127}I)/mm s{sup -1}. Hypervalent iodine complex such as (PhI(py){sub 2}){sup 2+} salt and E-Sb-I (E=O, I, N and C) were studied, too. (S.Y.)

  2. Topological Research on Standard Absolute Entropies,S(○)298, for Binary Inorganic Compounds

    Institute of Scientific and Technical Information of China (English)


    For predicting the standard entropy of a binary inorganic compound, two novel connectivity indexes mQ,mG and their converse indexes mQ',mG' based on adjacency matrix of molecular graphs and ionic parameters gi, qi were pro-posed. The qi and gi are defined as qi=(1.1+Zi1.1)/(1.7+ni), gi:(1.4d-Zi)/(0.9+ri+ri-1), where Zi, ni, ri are the charge numbers, the outer electronic shell primary quantum numbers, and the radii of ionic I respectively. The good Quantitative Structure-Property Relationship (QSPR) models for the standard entropies of binary inorganic com-pound can be constructed from 0Q,0Q',1G, and 1G', by using a multivariate linear regression (MLR) method and an artificial neural network (NN) method. The correlation coefficient r, the standard error s, and the average absolute deviation of the MLR model and the NN model are 0.9905, 8.29 J·K-1,mol-1 and 6.48 J·K-1·mol-1, and 0.9960,5.37 J·K-1·mol-1 and 3.90 J·K-1·mol-1, respectively, for 371 binary inorganic compounds (training set). The cross-validation by using the leave-one-out method demonstrates that the MLR model is highly reliable from the point of view of statistics. The correlation coefficients, standard deviations and average absolute deviations of pre-dicted values of the standard entropies of other 185 binary inorganic compounds (test set) are 0.9897, 8.64 J·K-1·mol-1 and 6.84 J·K-1·mol-1, and 0.9957, 5.63 J·K-1·mol-1 and 4.18 J·K-1·mol-1 for the MLR model and the Nnmodel, respectively. The results show that the current method is more effective than literature methods for estimat-ing the standard entropy of a binary inorganic compound. Both MLR and NN methods can provide acceptable mod-els for the prediction of the standard entropies of binary inorganic compounds. The NN model for the standard en-tropies appears to be more reliable than the MLR model.

  3. Quantitative Structure Property Relations (QSPR) for Predicting Molar Diamagnetic Susceptibilities, χm, of Inorganic Compounds

    Institute of Scientific and Technical Information of China (English)

    MU,Lai-Long; HE,Hong-Mei; FENG,Chang-Jun


    For predicting the molar diamagnetic susceptibilities of inorganic compounds, a novel connectivity index mG based on adjacency matrix of molecular graphs and ionic parameter gi was proposed. The gi is defined as gi= (ni0.5-0.91)4·xi0.5/Zi0.5, where Zi, ni, xi are the valence, the outer electronic shell primary quantum number, and the electronegativity of atom I respectively. The good QSPR models for the molar diamagnetic susceptibilities can be constructed from 0G and 1G by using multivariate linear regression (MLR) method and artificial neural network (NN) method. The correlation coefficient r, standard error, and average absolute deviation of the MLR model and NN model are 0.9868, 5.47 cgs, 4.33 cgs, 0.9885, 5.09 cgs and 4.06 cgs, respectively, for the 144 inorganic compounds. The cross-validation by using the leave-one-out method demonstrates that the MLR model is highly reliable from the point of view of statistics. The average absolute deviations of predicted values of the molar diamagnetic susceptibility of other 62 inorganic compounds (test set) are 4.72 cgs and 4.06 cgs for the MLR model and NN model. The results show that the current method is more effective than literature methods for estimating the molar diamagnetic susceptibility of an inorganic compound. Both MLR and NN methods can provide acceptable models for the prediction of the molar diamagnetic susceptibilities. The NN model for the molar diamagnetic susceptibilities appears more reliable than the MLR model.

  4. Crystal chemical characterization of mullite-type aluminum borate compounds (United States)

    Hoffmann, K.; Hooper, T. J. N.; Zhao, H.; Kolb, U.; Murshed, M. M.; Fischer, M.; Lührs, H.; Nénert, G.; Kudějová, P.; Senyshyn, A.; Schneider, H.; Hanna, J. V.; Gesing, Th. M.; Fischer, R. X.


    Al-rich aluminum borates were prepared by different synthesis routes using various Al/B ratios, characterized by diffraction methods, spectroscopy and prompt gamma activation analysis. The 11B NMR data show a small amount of BO4 species in all samples. The chemical analysis indicates a trend in the Al/B ratio instead of a fixed composition. Both methods indicate a solid solution Al5-xB1+xO9 where Al is substituted by B in the range of 1-3%. The structure of B-rich Al4B2O9 (C2/m, a=1488 pm, b=553 pm, c=1502 pm, ß=90.6°), was re-investigated by electron diffraction methods, showing that structural details vary within a crystallite. In most of the domains the atoms are orderly distributed, showing no signal for the postulated channel oxygen atom O5. The absence of O5 is supported by density functional theory calculations. Other domains show a probable disordered configuration of O5 and O10, indicated by diffuse scattering along the b direction.

  5. Thickness of compound layer in steel-aluminum solid to liquid bonding

    Institute of Scientific and Technical Information of China (English)

    Peng Zhang; Yunhui Du; Hanwu Liu; Shuming Xing; Daben Zeng; Jianzhong Cui; Limin Ba


    The bonding of solid steel plate to liquid aluminum was studied using rapid solidification. The surface of solid steel plate was defatted, descaled, immersed (in K2ZrF6 flux aqueous solution) and stoved. In order to determine the thickness of Fe-A1 compound layer at the interface of steel-aluminum solid to liquid bonding under rapid solidification, the interface of bonding plate was investigated by SEM (Scanning Electron Microscope) experiment. The relationship between bonding parameters (such as preheat temperature of steel plate, temperature of aluminum liquid and bonding time) and thickness of Fe-Al compound layer at the interface was established by artificial neural networks (ANN) perfectly. The maximum of relative error between the output and the desired output of the ANN is only 5.4%. From the bonding parameters for the largest interfacial shear strength of bonding plate (226℃ for preheat temperature of steel plate, 723 ℃ for temperature of aluminum liquid and 15.8 s for bonding time), the reasonable thickness of Fe-A1 compound layer 10.8 μm was got.

  6. Magnetostriction of some rare earth-aluminum Laves phase compounds (United States)

    Pourarian, F.; Wallace, W. E.


    Measurements of the linear and volume magnetostriction of RAl2 cubic Laves compounds in which R is one of the rare earth elements Gd, Dy, Ho or Er, at temperatures between 4.2 K and the Curie temperature of each compound, are reported. Magnetic fields up to 2.5 Tesla were applied, and magnetostriction was measured using standard strain gage techniques. Saturation magnetostrictions of 17 x 10 to the -6th, -1420 x 10 to the -6th, 60 x 10 to the -6th and -920 x 10 to the -6th are determined at 4.2 K for GdAl2, DyAl2, HoAl2 and ErAl2, respectively. Large forced magnetostriction is observed in GdAl2 above the saturation field and the strain temperature dependence shows a decrease in magnitude below 40 K. A linear dependence of magnetostriction on magnetic field was observed for DyAl2 above 40 K, and the observed temperature dependence is interpreted in terms of the lowest order single-ion magnetoelastic theory. An observed decrease in the magnitude of the strain of HoAl2 below 15 K is associated with a change of the easy direction of magnetization, while in the case of ErAl2, magnetostriction is observed to occur normally up to the Curie temperature. Large volume magnetostriction is obtained for all the compounds with the exception of GdAl2.

  7. A golden future in medicinal inorganic chemistry: the promise of anticancer gold organometallic compounds. (United States)

    Bertrand, Benoît; Casini, Angela


    From wedding rings on fingers to stained glass windows, by way of Olympic medals, gold has been highly prized for millennia. Nowadays, organometallic gold compounds occupy an important place in the field of medicinal inorganic chemistry due to their unique chemical properties with respect to gold coordination compounds. In fact, several studies have proved that they can be used to develop highly efficient metal-based drugs with possible applications in the treatment of cancer. This Perspective summarizes the results obtained for different families of bioactive organometallic gold compounds including cyclometallated gold(iii) complexes with C,N-donor ligands, gold(I) and gold(I/III) N-heterocyclic (NHC) carbene complexes, as well as gold(I) alkynyl complexes, with promising anticancer effects. Most importantly, we will focus on recent developments in the field and discuss the potential of this class of organometallic compounds in relation to their versatile chemistry and innovative mechanisms of action.

  8. Nano-Aluminum Powder Mediated Allylation of Carbonyl Compounds in Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    YUAN Shi-Zhen; LIU Jin


    A new and effective Barbier-Grignard allylation of aldehydes or ketones has been carried out with nano-aluminum powder in aqueous 0.1 mol·L-1 NH4Cl (aq.) under an atmosphere of nitrogen. Aromatic carbonyl compounds gave homoallylic alcohols in good yields. The effectiveness of reaction was strongly influenced by the steric environment surrounding the carbonyl group. Aliphatic carbonyl compounds proceeded in low yields. The dominant stereoisomer was an erythro-isomer when an ortho-hydroxyl carbonyl compound was reacted under such a reaction condition.

  9. The effect of various naturally occurring metal-binding compounds on the electrochemical behavior of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, D.C.; McCafferty, E. [Naval Research lab., Washington, DC (United States)


    Naturally occurring biological molecules are of considerable interest as possible corrosion inhibitors because of increased attention on the development of environmentally compatible, nonpolluting corrosion inhibitors. A hydroxamate yeast siderophore (rhodotorulic acid), a catecholate bacterial siderophore (parabactin), an adhesive protein from the blue mussel Mytilus edulis, and two metal-binding compounds isolated from the tomato and sunflower roots, namely, chlorogenic and caffeic acid, respectively, were adsorbed from solution onto pure aluminum (99.9995%) and their effect on the critical pitting potential and polarization resistance in deaerated 0.1 M NaCl was measured. These measurements were made using anodic polarization and ac impedance spectroscopy. The catechol-containing siderophore has an inhibitive effect on the critical pitting potential of aluminum in 0.1 M NaCl and increases the polarization resistance of the metal over time. The adhesive protein from the blue mussel is also effective in inhibiting the pitting of aluminum.

  10. Influence of Inorganic Ions and Organic Substances on the Degradation of Pharmaceutical Compound in Water Matrix

    Directory of Open Access Journals (Sweden)

    Edyta Kudlek


    Full Text Available The paper determined the influence of inorganic substances and high-molecular organic compounds on the decomposition of diclofenac, ibuprofen, and carbamazepine in the process of photocatalysis conducted with the presence of Titanium dioxide (TiO2. It was determined that the presence of such ions as CO 3 2 − , HCO 3 − , HPO 4 2 − as well as SO 4 2 − inhibited the decomposition of carbamazepine, whereas the efficiency of diclofenac degradation was decreased only by the presence of CO 3 2 − and HCO 3 − anions. In case of ibuprofen sodium salt (IBU, all investigated anions influenced the increase in its decomposition rate. The process of pharmaceutical photooxidation conducted in suspensions with Al3+ and Fe3+ cations was characterized by a significantly decreased efficiency when compared to the solution deprived of inorganic compounds. The addition of Ca2+, Mg2+ and NH4+ affected the increase of reaction rate constant value of diclofenac and ibuprofen decomposition. On the other hand, high molecular organic compounds present in the model effluent additionally catalysed the degradation process of pharmaceutical compounds and constituted an additional sorbent that enabled to decrease their concentration. Toxicological analysis conducted in deionized water with pharmaceutical compounds’ patterns proved the production of by-products from oxidation and/or reduction of micropollutants, which was not observed for model effluent irradiation.

  11. Studies on the Synthesis and the Structure of Ferric Aluminum Magnesium Hydrotalcite-like Compounds

    Institute of Scientific and Technical Information of China (English)


    The particles of ferric aluminum magnesium hydrotalcite-like compounds (Fe-Al-Mg_HTlc) were synthesized by co-precipitation method. It was found that when n(Fe)/n(Al+Mg+Fe)0.30, Al(OH)3 will emerge; when the molar ratio of Fe/(Fe+Al+Mg) >0.30, the amorphous composition will appear. Hence Fe3+ and Al3+ have no concentration superposition effect on the crystal structure of the samples.

  12. A Novel Inorganic Low Melting Electrolyte for Secondary-Aluminum-Nickel Sulfide Batteries

    DEFF Research Database (Denmark)

    Hjuler, H.A.; Winbrush, S. von; Berg, Rolf W.;


    A new, inorganic low melting electrolyte with the composition LiAlCl4-NaAlCl4-NaAlBr4-KAlCl4 (3:2:3:2) [or equivalentlyLiAlBr4-NaAlCl4-KAlCl4 (3:5:2)] has been developed. The melting point for this neutral melt is 86°C; the decompositionpotential is approximately 2.0V; the ionic conductivity...... ±10% from their combination expectations. The low melting electrolyte is employed in the rechargeable batterysystem Al/electrolyte/Ni3S2 at 100°C. The open-circuit voltage of this system is from 0.82 to 1.0V. Dendrite-free aluminumdeposits are obtained. The cycling behavior of the battery system...

  13. Preparation of Metallic Aluminum Compound Particles by Submerged Arc Discharge Method in Aqueous Media (United States)

    Liao, Chih-Yu; Tseng, Kuo-Hsiung; Lin, Hong-Shiou


    Fine metal particles are produced by chemical methods, which add surfactants to control particle size and concentration. This study used the submerged arc discharge method (SADM) to prepare metal fluid containing nanoparticles and submicron particles in pure dielectric fluid (deionized water or alcohol). The process is fast and simple, and it does not require the addition of chemical agents. The SADM uses electrical discharge machining (EDM) equipment, and the key parameters of the production process include discharge voltage, current, and pulse discharge on-off duration. This study added a capacitive component between the electrodes and the electrode Z-axis regulation in the control parameters to render the aluminum fluid process smooth, which is the main difference of this article from the literature. The experimental results showed that SADM can produce aluminum particles from nanometer to submicron grade, and it can obtain different compounds from different dielectric fluids. The dielectric fluids used in this study were deionized water and ethanol, and aluminum hydroxide Al(OH)3 particles with suspending power and precipitated aluminum particles were obtained, respectively. The preparations of metal colloid and particles by the SADM process have the characteristics of low cost, high efficiency, high speed, and mass production. Thus, the process has high research value and developmental opportunities.

  14. Structural Characterization and Infrared and Electrical Properties of the New Inorganic-Organic Hybrid Compound

    Directory of Open Access Journals (Sweden)

    A. Oueslati


    Full Text Available New inorganic-organic hybrid [(C3H74N]2Hg2Cl6 compound was obtained and characterised by single-crystal X-ray diffraction, infrared, and impedance spectroscopy. The latter crystallizes in the monoclinic system (space group C 2/c, with the following unit cell dimensions: (1 Å, (6 Å, (2 Å, and (2. Besides, its structure was solved using 84860 independent reflections leading to . Electrical properties of the material were studied using impedance spectroscopic technique at different temperatures in the frequency range of 209 Hz to 5 MHz. Detailed analysis of the impedance spectrum suggested that the electrical properties of the material are strongly temperature-dependent. The Nyquist plots clearly showed the presence of bulk and grain boundary effect in the compound.

  15. Electricity generation from an inorganic sulfur compound containing mining wastewater by acidophilic microorganisms. (United States)

    Ni, Gaofeng; Christel, Stephan; Roman, Pawel; Wong, Zhen Lim; Bijmans, Martijn F M; Dopson, Mark


    Sulfide mineral processing often produces large quantities of wastewaters containing acid-generating inorganic sulfur compounds. If released untreated, these wastewaters can cause catastrophic environmental damage. In this study, microbial fuel cells were inoculated with acidophilic microorganisms to investigate whether inorganic sulfur compound oxidation can generate an electrical current. Cyclic voltammetry suggested that acidophilic microorganisms mediated electron transfer to the anode, and that electricity generation was catalyzed by microorganisms. A cation exchange membrane microbial fuel cell, fed with artificial wastewater containing tetrathionate as electron donor, reached a maximum whole cell voltage of 72 ± 9 mV. Stepwise replacement of the artificial anolyte with real mining process wastewater had no adverse effect on bioelectrochemical performance and generated a maximum voltage of 105 ± 42 mV. 16S rRNA gene sequencing of the microbial consortia resulted in sequences that aligned within the genera Thermoplasma, Ferroplasma, Leptospirillum, Sulfobacillus and Acidithiobacillus. This study opens up possibilities to bioremediate mining wastewater using microbial fuel cell technology.

  16. Immunomodulatory effect of selenosemicarbazides and selenium inorganic compounds, distribution in organs after selenium supplementation. (United States)

    Musik, I; Koziol-Montewka, M; Toś-Luty, S; Pasternak, K; Latuszyńska, J; Tokarska, M; Kielczykowska, M


    Antioxidant properties of selenium producing a protective barrier against free radicals play an important role in numerous metabolic and immunologic processes associated with oxidation-reduction reactions which take place during intracellular digestion of phagocyted bacteria. The aim of our study was to examine the properties of an organic compound of selenium, 4-(o-tolilo)-selenosemicarbazide of p-chlorobenzoic acid in terms of its retention in organs, effect on erythropoesis and phagocytic abilities of neutrophiles as well as antioxidant properties in neutrophiles tested with NBT test. This compound as well as inorganic sodium selenate was given to Swiss mice at the dose of 10(-3) g Se/kg for the period of 10 days. The concentrations of selenium in livers of mice treated with sodium selenate and selenosemicarbazide were found to be higher than in controls (18.7 micrograms lg-1 and 23.2 micrograms lg-1 vs. 12 micrograms lg-1, respectively). Analysis of blood cells count has shown a significant decrease in neutrophile levels in both groups treated with selenium. The influence of selenium compounds on phagocytosis and especially NBT test has been determined (3.8% of positive cells in the controls vs. 2.2% and 0.9% in the groups treated with sodium selenate and selenosemicarbazide, respectively). Our preliminary investigations suggest that selenosemicarbazides are biologically active compounds and can modify neutrophile functions.

  17. Apparent Disequilibrium of Inorganic and Organic Carbon Compounds in Serpentinizing Fluids (United States)

    Robinson, K.; Shock, E.


    During serpentinization of ultramafic rocks, ferrous iron in silicates is oxidized to ferric minerals and H2O is reduced to H2. This process is accompanied by the reduction of inorganic carbon, as observed in experiments and natural systems. To test the extent to which stable and metastable equilibria are reached among aqueous organic compounds during serpentinization, we sampled water and dissolved gases from circumneutral surface pools and hyperalkaline seeps in the Samail ophiolite in the Sultanate of Oman and analyzed for various carbon constituents, including dissolved inorganic carbon, dissolved organic carbon, methane, carbon monoxide, formate, acetate, and other small organic acid anions. Measurements of temperature, pH, dissolved H2, O2, major cations, major anions, and major and trace elements were also made. The aqueous composition of the analyzed samples was speciated based on ionic equilibrium interactions in order to obtain activities for inorganic carbon species, reduced carbon species, H2, and O2. The redox disequilibria among carbon species was then assessed using data and parameters for the revised HKF equations of state. This analysis demonstrates that the carbon species in this system are out of equilibrium with respect to one another in ways that cannot be compensated by altering the abundance of the other constituents within analytical uncertainties. Specifically, there is too much formate and too little methane relative to stable and metastable equilibria. This result implies the following: 1) Methane and formate equilibrated in separate parts of the system, given that no reasonable temperature, pressure, or composition changes satisfy equilibrium with their measured abundances. 2) Methane production is kinetically inhibited, as seen in experiments. 3) Microbial methane oxidation altered the abundance of methane and formate; methane oxidation to formate or carbonate is calculated to be extremely thermodynamically favorable in these fluids.

  18. Solubility Characteristics and Slow-Release Mechanism of Nitrogen from Organic-Inorganic Compound Coated Urea

    Directory of Open Access Journals (Sweden)

    Hongtao Zou


    Full Text Available A soil incubation method was used to investigate the solubility characteristics and slow-release mechanism of organic-inorganic compound coated urea at temperature of 10, 20, and 30°C. The membrane microstructure with and without incubation was tested via scanning electron microscopy (SEM. Slow release of nitrogen (N from different inorganic minerals was analysed by the activation energy from the nutrient solubility system. The rate of nitrogen solubility increased with temperature increasing. The first-order reaction kinetic equation described the solubility process of coated urea. The rate constant k also increased with temperature increasing. Moreover, the SEM images showed that the microstructure of the coating layer changed into a flocculent structure and the number of tiny pores and holes on the membrane surface increased significantly with temperature increasing, which increased N solubility rate. The Arrhenius equation indicated that activation energy was closely related to k during the solubility process; the activation energy was reduced with k rising, which resulted in N solubility rate increasing. Overall, the N solubility rate of coated urea was affected by temperature.

  19. Migration of residual nonvolatile and inorganic compounds from recycled post-consumer PET and HDPE

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Camila; Reyes, Felix G.R., E-mail: [Universidade de Campinas (UNICAMP), SP (Brazil). Escola de Engenharia dos Alimentos. Dept. de Ciencias dos Alimentos; Freire, Maria Teresa de A. [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil). Fac. de Ciencia Animal e Engenharia dos Alimentos. Dept. de Engenharia dos Alimentos; Nerin, Cristina; Bentayeb, Karim; Rodriguez-Lafuente, Angel; Aznar, Margarita [Dept. of Analytical Chemistry, Arago Inst. of Engineering Research, University of Zaragoza (Spain)


    Migration of nonvolatile and inorganic residual compounds from post-consumer recycled polyethylene terephthalate (PET) submitted to cleaning processes for subsequent production of materials intended to food contact, as well as from multilayer packaging material containing post-consumer recycled high-density polyethylene (HDPE) was determined. Tests were carried out using food simulant. Nonvolatile organic contaminants from PET, determined by liquid chromatography-mass spectrometry (UPLC-QqQ/MS), showed significant migration reduction as consequence of the more complex cleaning technologies applied. However, contaminants not allowed by Brazilian and European Union regulations were identified even in deep cleaning samples. Results from multilayer HDPE showed a greater number of contaminants when compared to recycled pellets. Inorganic contaminants, determined by inductively coupled plasma mass spectrometry were below the acceptable levels. Additional studies for identification and quantitation of unknown molecules which were not possible to identify in this study by UPLC-QqQ/MS are required to ascertain the safety of using post-consumer recycled packaging material. (author)

  20. Controlling the release of active compounds from the inorganic carrier halloysite

    Energy Technology Data Exchange (ETDEWEB)

    Tescione, F.; Buonocore, G. G.; Stanzione, M.; Oliviero, M.; Lavorgna, M. [National Research Council - Institute of Composites and Biomedical Materials, P.le E. Fermi, 1 80055 Portici (Naples) (Italy)


    Halloysite (HNTs), a natural material characterized by a nanotube structure, has been used as an inorganic carrier of active compounds in several applications from medicine to anticorrosion coatings. In this present work, vanillin (VAN) used as a antimicrobial model, has been encapsulated within HNTs for exploiting its applicability in the active food packaging sector. The molecule release rate has been controlled by crosslinking at the tube ends the loaded vanillin with copper ions, thus producing a stopper network. The vanillin-loaded HNTs were characterized using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis. The antimicrobial release kinetics from the loaded nanoparticles (VAN/HNTs) in water was investigated using UV-vis spectroscopy. The results show that the vanillin crosslinked with cupper ions is a feasible method to tailor the release rate of antimicrobial model from HTNs nanoparticles.

  1. Controlling the release of active compounds from the inorganic carrier halloysite (United States)

    Tescione, F.; Buonocore, G. G.; Stanzione, M.; Oliviero, M.; Lavorgna, M.


    Halloysite (HNTs), a natural material characterized by a nanotube structure, has been used as an inorganic carrier of active compounds in several applications from medicine to anticorrosion coatings. In this present work, vanillin (VAN) used as a antimicrobial model, has been encapsulated within HNTs for exploiting its applicability in the active food packaging sector. The molecule release rate has been controlled by crosslinking at the tube ends the loaded vanillin with copper ions, thus producing a stopper network. The vanillin-loaded HNTs were characterized using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis. The antimicrobial release kinetics from the loaded nanoparticles (VAN/HNTs) in water was investigated using UV-vis spectroscopy. The results show that the vanillin crosslinked with cupper ions is a feasible method to tailor the release rate of antimicrobial model from HTNs nanoparticles.

  2. Inorganic sulfur-nitrogen compounds: from gunpowder chemistry to the forefront of biological signaling. (United States)

    Cortese-Krott, Miriam M; Butler, Anthony R; Woollins, J Derek; Feelisch, Martin


    The reactions between inorganic sulfur and nitrogen-bearing compounds to form S-N containing species have a long history and, besides assuming importance in industrial synthetic processes, are of relevance to microbial metabolism; waste water treatment; aquatic, soil and atmospheric chemistry; and combustion processes. The recent discovery that hydrogen sulfide and nitric oxide exert often similar, sometimes mutually dependent effects in a variety of biological systems, and that the chemical interaction of these two species leads to formation of S-N compounds brought this chemistry to the attention of physiologists, biochemists and physicians. We here provide a perspective about the potential role of S-N compounds in biological signaling and briefly review their chemical properties and bioactivities in the context of the chronology of their discovery. Studies of the biological role of NO revealed why its chemistry is ideally suited for the tasks Nature has chosen for it; realising how the distinctive properties of sulfur can enrich this bioactivity does much to revive 'die Freude am experimentellen Spiel' of the pioneers in this field.

  3. Modeling the Detection of Organic and Inorganic Compounds Using Iodide-Based Chemical Ionization. (United States)

    Iyer, Siddharth; Lopez-Hilfiker, Felipe; Lee, Ben H; Thornton, Joel A; Kurtén, Theo


    Iodide-based chemical ionization mass spectrometry (CIMS) has been used to detect and measure concentrations of several atmospherically relevant organic and inorganic compounds. The significant electronegativity of iodide and the strong acidity of hydroiodic acid makes electron transfer and proton abstraction essentially negligible, and the soft nature of the adduct formation ionization technique reduces the chances of sample fragmentation. In addition, iodide has a large negative mass defect, which, when combined with the high resolving power of a high resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS), provides good selectivity. In this work, we use quantum chemical methods to calculate the binding energies, enthalpies and free energies for clusters of an iodide ion with a number of atmospherically relevant organic and inorganic compounds. Systematic configurational sampling of the free molecules and clusters was carried out at the B3LYP/6-31G* level, followed by subsequent calculations at the PBE/SDD and DLPNO-CCSD(T)/def2-QZVPP//PBE/aug-cc-pVTZ-PP levels. The binding energies, enthalpies, and free energies thus obtained were then compared to the iodide-based University of Washington HR-ToF-CIMS (UW-CIMS) instrument sensitivities for these molecules. We observed a reasonably linear relationship between the cluster binding enthalpies and logarithmic instrument sensitivities already at the PBE/SDD level, which indicates that relatively simple quantum chemical methods can predict the sensitivity of an iodide-based CIMS instrument toward most molecules. However, higher level calculations were needed to treat some outlier molecules, most notably oxalic acid and methylerythritol. Our calculations also corroborated the recent experimental findings that the molecules that the UW-CIMS detects at maximum sensitivity usually have binding enthalpies to iodide which are higher than about 26 kcal/mol, depending slightly on the level of theory.

  4. Modeling skills of pre-service chemistry teachers in predicting the structure and properties of inorganic chemistry compounds (United States)

    Nursa'adah, Euis; Liliasari, Mudzakir, Ahmad


    The focus of chemistry is learning about the composition, properties, and transformations of matters. Modeling skills are required to comprehend structure and chemical composition in submicroscopic size. Modeling skills are abilities to produce chemical structure and to explain it into the macroscopic phenomenon and submicroscopic representations. Inorganic chemistry is a study of whole elements in the periodic table and their compounds, except carbon compounds and their derivatives. Knowledge about the structure and properties of chemical substances is a basic model for students in studying inorganic chemistry. Furthermore, students can design and produce to utilize materials needed in their life. This research aimed to describes modeling skills of pre-service chemistry teachers. In order, they are able to determine and synthesize useful materials. The results show that students' modeling skills were in a low level and unable connecting skill categories, even the models of inorganic compounds common. These phenomena indicated that students only describe each element when they learn inorganic chemistry. So that it will make modeling skills of students low. Later, another researches are necessary to develop learning design of inorganic chemistry based on good modeling skills of students.


    NARCIS (Netherlands)



    The structure of the inorganic misfit layer compound (LaS)1.14NbS2 is reanalysed in the superspace-group formalism, using the recent single-crystal x-ray diffraction data obtained by Meerschaut, Rabu and Rouxel. Structure refinements make it possible to determine the values of the modulation functio

  6. The Production of Organic-Inorganic Compound Film-Coated Urea and the Characteristics of Its Nutrient Release

    Institute of Scientific and Technical Information of China (English)

    ZOU Hong-tao; WANG Yao-sheng; SONG Hao-wen; HAN Yan-yu; YU Na; ZHANG Yu-ling; DANG Xiu-li; HUANG Yi; ZHANG Yu-long


    The effect of different concentrations of natural macromolecular compound on the characteristics of nutrient release in the membrane materials of organic-inorganic compound film-coated urea was discussed,and the optimal concentrations for better nutrient release was proposed.The characteristics of nutrient release of film-coated urea were evaluated by soil column leaching experiment.Organic-inorganic compound film-coated urea showed good characteristics of nutrient release,which could be well simulated by Logistic curve.The two parameters in this curve,a and r,can be used to present nutrient release of film-coated urea,and followed the order of B > C > A and C < B < A,respectively,indicating that the release was stronger with the increasing concentration of natural maeromolecular compound in the membrane,which implied better controllability of nutrient release.The concentration of 5% of natural macromolecular compound showed better characteristic of nutrient release and can be utilized as a membrane material combined with inorganic mineral powders to develop film-coated slow-release fertilizer.

  7. The storage stability of biogenic volatile organic compounds (BVOCs) in polyester aluminum bags (United States)

    Ahn, Jeong-Hyeon; Deep, Akash; Kim, Ki-Hyun


    In this study, the sorptive loss properties of biogenic volatile organic compounds (BVOCs) in polyester aluminum bags were investigated as a function of storage duration. To this end, the relative recovery of gas phase standards of BVOCs, obtained via vaporization of liquid phase standards, was computed by calibrating their standards (response factors: RF) represnting each phase. Accordingly, the results indicated either slight loss (-5.59% (isoprene), -2.39% (camphene), -1.69% ((R)-(+)-limonene), -0.88% (p-cymene)) or gain (1.47% (γ-terpinene), 2.27% (α-terpinene), 2.63% (α-phellandrene), 2.73% ((+)-3-carene), 3.93% ((+)-β-pinene), and 5.98% ((+)-α-pinene)). Through comparison of the calibration results across storage time, the temporal stability of BVOCs was assessed. Longer BVOC storage time in polyester aluminum (PEA) bags lowered the relative recovery of BVOCs. The relative loss of BVOCs, if calculated in terms of mean bag standard RF ratios (relative to liquid standard) across elapsed time, decreased systematically: 0.99 ± 0.05 (0 h), 0.88 ± 0.06 (24 h), 0.66 ± 0.11 (72 h), and 0.62 ± 0.14 (120 h). It is thus recommended to complete the analysis of BVOC in PEA bags within 24 h of sample acquisition. As such, it is important to apply appropriate sampling approaches with a proper storage plan when measuring ambient BVOCs collected by bag sampling methods.

  8. Atmospheric Deposition of Inorganic Elements and Organic Compounds at the Inlets of the Venice Lagoon

    Directory of Open Access Journals (Sweden)

    E. Morabito


    Full Text Available The Venice Lagoon is subjected to long-range transport of contaminants via aerosol from the near Po Valley. Moreover, it is an area with significant local anthropogenic emissions due to the industrial area of Porto Marghera, the urban centres, and the glass factories and with emissions by ships traffic within the Lagoon. Furthermore, since 2005, the Lagoon has also been affected by the construction of the MOSE (Modulo Sperimentale Elettromeccanico—Electromechanical Experimental Module mobile dams, as a barrier against the high tide. This work presents and discusses the results from chemical analyses of bulk depositions, carried out in different sites of the Venice Lagoon. Fluxes of pollutants were also statistically analysed on PCA with the aim of investigating the spatial variability of depositions and their correlation with precipitations. Fluxes of inorganic pollutants depend differently on precipitations, while organic compounds show a more seasonal trend. The statistical analysis showed that the site in the northern Lagoon has lower and almost homogeneous fluxes of pollutants, while the other sites registered more variable concentrations. The study also provided important information about the annual trend of pollutants and their evolution over a period of about five years, from 2005 to 2010.

  9. Stoichiometric modeling of oxidation of reduced inorganic sulfur compounds (Riscs) in Acidithiobacillus thiooxidans. (United States)

    Bobadilla Fazzini, Roberto A; Cortés, Maria Paz; Padilla, Leandro; Maturana, Daniel; Budinich, Marko; Maass, Alejandro; Parada, Pilar


    The prokaryotic oxidation of reduced inorganic sulfur compounds (RISCs) is a topic of utmost importance from a biogeochemical and industrial perspective. Despite sulfur oxidizing bacterial activity is largely known, no quantitative approaches to biological RISCs oxidation have been made, gathering all the complex abiotic and enzymatic stoichiometry involved. Even though in the case of neutrophilic bacteria such as Paracoccus and Beggiatoa species the RISCs oxidation systems are well described, there is a lack of knowledge for acidophilic microorganisms. Here, we present the first experimentally validated stoichiometric model able to assess RISCs oxidation quantitatively in Acidithiobacillus thiooxidans (strain DSM 17318), the archetype of the sulfur oxidizing acidophilic chemolithoautotrophs. This model was built based on literature and genomic analysis, considering a widespread mix of formerly proposed RISCs oxidation models combined and evaluated experimentally. Thiosulfate partial oxidation by the Sox system (SoxABXYZ) was placed as central step of sulfur oxidation model, along with abiotic reactions. This model was coupled with a detailed stoichiometry of biomass production, providing accurate bacterial growth predictions. In silico deletion/inactivation highlights the role of sulfur dioxygenase as the main catalyzer and a moderate function of tetrathionate hydrolase in elemental sulfur catabolism, demonstrating that this model constitutes an advanced instrument for the optimization of At. thiooxidans biomass production with potential use in biohydrometallurgical and environmental applications.

  10. Simultaneous determination of inorganic mercury and methylmercury compounds in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Logar, Martina; Horvat, Milena [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Akagi, Hirokatsu [National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008 (Japan); Pihlar, Boris [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, 1000 Ljubljana (Slovenia)


    The purpose of the present work was to develop a simple, rapid, sensitive and accurate method for the simultaneous determination of inorganic mercury (Hg{sup 2+}) and monomethylmercury compounds (MeHg) in natural water samples at the pg L{sup -1} level. The method is based on the simultaneous extraction of MeHg and Hg{sup 2+}dithizonates into an organic solvent (toluene) after acidification of about 300 mL of a water sample, followed by back extraction into an aqueous solution of Na {sub 2}S, removal of H {sub 2}S by purging with N {sub 2}, subsequent ethylation with sodium tetraethylborate, room temperature precollection on Tenax, isothermal gas chromatographic separation (GC), pyrolysis and cold vapour atomic fluorescence spectrometric detection (CV AFS) of mercury. The limit of detection calculated on the basis of three times the standard deviation of the blank was about 0.006 ng L {sup -1} for MeHg and 0.06 ng L {sup -1} for Hg {sup 2+}when 300 mL of water was analysed. The repeatability of the results was about 5% for MeHg and 10% for Hg {sup 2+}. Recoveries were 90-110% for both species. (orig.)


    Institute of Scientific and Technical Information of China (English)

    ZHANGWanxi; CHEJitai


    Polymer bound palladium (Pd) complex catalysts with grafting acrylonitrile on inorganic compound(MgO,Y-molecular sieve and SiO2) by pre-radiation method were studies.The palladium-grafting polymers have been investigated by X-ray photoelectron spectrscopy(XPS).It is indicated that peak width of C1s and O1s spectra of MgO-g-PAN-Pd(radiation-induced graft) is wider than that of MgO-PAN-Pd(chemical method) and Peak numbers of former are one more than later.According to the report in reference,this peak is attributed to -O-C group.Thus,the graft acrylonitrile on MgO may complete through oxygen atoms im MgO and β-carbon atoms in acrylonitrile.The polymer catalyst obtained by radiation grafting is a higher active hydrogenation catalyst for olefines and better antioxic than that of one obtained by chemical method,and it has selectivity for hydrogenation catalyst.

  12. A high specific capacity membraneless aluminum-air cell operated with an inorganic/organic hybrid electrolyte (United States)

    Chen, Binbin; Leung, Dennis Y. C.; Xuan, Jin; Wang, Huizhi


    Aluminum-air cells have attracted a lot of interests because they have the highest volumetric capacity density in theory among the different metal-air systems. To overcome the self-discharge issue of aluminum, a microfluidic aluminum-air cell working with KOH methanol-based anolyte was developed in this work. A specific capacity up to 2507 mAh g-1 (that is, 84.1% of the theoretical value) was achieved experimentally. The KOH concentration and water content in the methanol-based anolyte were found to have direct influence on the cell performance. A possible mechanism of the aluminum reactions in KOH methanol-based electrolyte was proposed to explain the observed phenomenon.

  13. Mechanism of oxidation of inorganic sulfur compounds by thiosulfate-grown Thiobacillus thiooxidans. (United States)

    Masau, R J; Oh, J K; Suzuki, I


    Thiobacillus thiooxidans was grown at pH 5 on thiosulfate as an energy source, and the mechanism of oxidation of inorganic sulfur compounds was studied by the effect of inhibitors, stoichiometries of oxygen consumption and sulfur, sulfite, or tetrathionate accumulation, and cytochrome reduction by substrates. Both intact cells and cell-free extracts were used in the study. The results are consistent with the pathway with sulfur and sulfite as the key intermediates. Thiosulfate was oxidized after cleavage to sulfur and sulfite as intermediates at pH 5, the optimal growth pH on thiosulfate, but after initial condensation to tetrathionate at pH 2.3 where the organism failed to grow. N-Ethylmaleimide (NEM) inhibited sulfur oxidation directly and the oxidation of thiosulfate or tetrathionate indirectly. It did not inhibit the sulfite oxidation by cells, but inhibited any reduction of cell cytochromes by sulfur, thiosulfate, tetrathionate, and sulfite. NEM probably binds sulfhydryl groups, which are possibly essential in supplying electrons to initiate sulfur oxidation. 2-Heptyl-4-hydroxy-quinoline N-oxide (HQNO) inhibited the oxidation of sulfite directly and that of sulfur, thiosulfate, and tetrathionate indirectly. Uncouplers, carbonyl cyanide-m-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP), inhibited sulfite oxidation by cells, but not the oxidation by extracts, while HQNO inhibited both. It is proposed that HQNO inhibits the oxidation of sulfite at the cytochrome b site both in cells and extracts, but uncouplers inhibit the oxidation in cells only by collapsing the energized state of cells, delta muH+, required either for electron transfer from cytochrome c to b or for sulfite binding.

  14. Comparison of selenium distribution in mice organs after the supplementation with inorganic and organic selenium compound selenosemicarbazide. (United States)

    Musik, Irena; Kozioł-Montewka, Maria; Toś-Luty, Sabina; Donica, Helena; Pasternak, Kazimierz; Wawrzycki, Sławomir


    Studies on selenium organ content and its function in living organisms just like studies on other elements provide interesting results although their interpretation is not always clear. The aim of our study was to determine the concentration and distribution of selenium in several organs and tissues in mice after supplementation with our newly synthesized organic compound of selenium selenosemicarbazide (4-o-tolyl-selenosemicarbazide of o-chlorobenzoic acid) as compared to the effects of the supplementation with inorganic compounds. SWISS mice were fed with both types of compounds at the dose of 10(-3) g Se per kg for the period of 10 days. The concentrations of selenium in brains of mice treated with selenocarbazide and sodium selenite were higher than in controls (38.04 micrograms g-1 and 32.00 micrograms g-1 vs. 26.18 micrograms g-1). There was a statistically significant increase in the selenium contents in lungs after supplementation with selenosemicarbazide and sodium selenite (11.81 micrograms g-1 and 6.79 micrograms g-1 vs. 1.75 micrograms g-1 in controls). We found a statistically insignificant increase in selenium contents in intercostal muscles after supplementation with inorganic selenium compounds and a statistically significant increase after the supplementation with selenosemicarbazide (10.13 micrograms g-1; 14.21 micrograms g-1 and 28.84 micrograms g-1, respectively). Our investigations lead to a conclusion that 4-o-tolyl-seleno-semicarbazide of o-chlorobenzoic acid, an organic selenium compound may be more easily absorbed than inorganic sodium IV selenite.

  15. Preparation and characteristics of high pH-resistant sol-gel alumina-based hybrid organic-inorganic coating for solid-phase microextraction of polar compounds. (United States)

    Liu, Mingming; Liu, Ying; Zeng, Zhaorui; Peng, Tianyou


    A novel alumina-based hybrid organic-inorganic sol-gel coating was first developed for solid-phase microextraction (SPME) from a highly reactive alkoxide precursor, aluminum sec-butoxide, and a sol-gel-active organic polymer hydroxyl-terminated polydimethylsiloxane (OH-TSO). The underlying mechanism was discussed and confirmed by IR spectra. The porous surface structure of the sol-gel coating was revealed by scanning electron microscopy. A detailed investigation was conducted to evaluate the remarked performance of the newly developed sol-gel alumina-OH-TSO hybrid materials. In stark contrast to the sol-gel silica-based coating, the alumina-based coating demonstrated excellent pH stability. In addition, good thermal resistance and coating preparation reproducibility are also its outstanding performance. As compared to silica-based hybrids material, the ligand exchange ability of alumina makes it structurally superior extraction sorbents for polar compounds, such as fatty acids, phenols, alcohols, aldehydes and amines. Practical applicability of the prepared alumina-OH-TSO fiber was demonstrated through the analysis of volatile alcohols and fatty acids in beer. The recoveries obtained ranged from 85.7 to 104% and the relative standard deviation values for all analytes were below 9%.

  16. The observation of scintillation in a hydrated inorganic compound: CeCl3 6H2O

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, Lynn A [ORNL; Neal, John S [ORNL; Ramey, Joanne Oxendine [ORNL; Chakoumakos, Bryan C [ORNL; Custelcean, Radu [ORNL


    We have recently reported the discovery of a new family of rare-earth metal-organic single-crystal scintillators based on Ce3+ as the activator ion. Starting with the CeCl3(CH3OH)4 prototype, this family of scintillators has recently been extended to include complex metal-organic adducts produced by reacting CeCl3 with heavier organics (e.g., isomers of propanol and butanol). Some of these new rare-earth metal-organic materials incorporated waters of hydration in their structures, and the observation of scintillation in these hydrated compounds was an original finding for any solid scintillator. In the present work, we now report what is apparently the initial observation of gamma-ray-excited scintillation in an inorganic hydrated material, namely single-crystal monoclinic CeCl3 6H2O. This observation shows that the mechanisms of the various scintillation energy-transfer processes are not blocked by the presence of waters of hydration in an inorganic material and that the observation of scintillation in other hydrated inorganic compounds is not precluded.

  17. Development of water-repellent organic–inorganic hybrid sol–gel coatings on aluminum using short chain perfluoro polymer emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Wankhede, Ruchi Grover, E-mail: [IITB-Monash Research Academy, Mumbai 400076 (India); Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Morey, Shantaram [Dow Chemicals (India); Khanna, A.S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Birbilis, N. [Department of Materials Engineering, Monash University, Victoria 3800 (Australia)


    The development of an organic–inorganic sol–gel coating system (thickness ∼ 2 μm) on aluminum is reported. The coating uses glycidoxytrimethoxysilane (GPTMS) and methyltrimethoxysilane (MTMS) as silane precursors, crosslinked with hexamethylmethoxymelamine (HMMM) and followed by hydrophobic modification using a water base short chain per-fluoro emulsion (FE). Such coating resulted in enhanced hydrophobicity with a contact angle of about 120° and sliding angle of 25° for a 20 μL water droplet. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements showed reduced corrosion upon coated substrates than the bare; correlated with both a higher degree of water repellency and formation of low permeable crosslinked sol–gel network. The structure of the coatings deposited was analyzed using Fourier transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopy, revealing replacement of hydrophillic surface hydroxyls groups with low energy per-fluoro groups.

  18. Volatile organic compound gas sensor based on aluminum-doped zinc oxide with nanoparticle. (United States)

    Choi, Nak-Jin; Lee, Hyung-Kun; Moon, Seung Eon; Yang, Woo Seok; Kim, Jongdae


    Thick film semiconductor gas sensors based on aluminum-doped zinc oxide (AZO) with nanoparticle size were fabricated to detect volatile organic compound (VOC) existed in building, especially, formaldehyde (HCHO) gas which was known as the cause of sick building syndrome. The sensing materials for screen printing were prepared using roll milling process with binder. The crystallite sizes of prepared materials were about 15 nm through X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). Gas response characteristics were examined for formaldehyde (HCHO), benzene, carbon monoxide, carbon dioxide gas existing in building. In particular, the sensors showed responses to HCHO gas at sub ppm as a function of operating temperatures and gas concentrations. Also, we investigated sensitivity, repeativity, selectivity, and response time of sensor. The transients were very sharp, taking less than 2 s for 90% response. The sensor has shown very stable response at 350 degrees C and followed a very good behavior and showed 60% response in 50 ppb HCHO concentration at 350 degrees C operating temperatures.

  19. A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-nary Inorganic Polycrystalline Compounds (United States)

    de Jong, Maarten; Chen, Wei; Notestine, Randy; Persson, Kristin; Ceder, Gerbrand; Jain, Anubhav; Asta, Mark; Gamst, Anthony


    Materials scientists increasingly employ machine or statistical learning (SL) techniques to accelerate materials discovery and design. Such pursuits benefit from pooling training data across, and thus being able to generalize predictions over, k-nary compounds of diverse chemistries and structures. This work presents a SL framework that addresses challenges in materials science applications, where datasets are diverse but of modest size, and extreme values are often of interest. Our advances include the application of power or Hölder means to construct descriptors that generalize over chemistry and crystal structure, and the incorporation of multivariate local regression within a gradient boosting framework. The approach is demonstrated by developing SL models to predict bulk and shear moduli (K and G, respectively) for polycrystalline inorganic compounds, using 1,940 compounds from a growing database of calculated elastic moduli for metals, semiconductors and insulators. The usefulness of the models is illustrated by screening for superhard materials.

  20. A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-nary Inorganic Polycrystalline Compounds (United States)

    de Jong, Maarten; Chen, Wei; Notestine, Randy; Persson, Kristin; Ceder, Gerbrand; Jain, Anubhav; Asta, Mark; Gamst, Anthony


    Materials scientists increasingly employ machine or statistical learning (SL) techniques to accelerate materials discovery and design. Such pursuits benefit from pooling training data across, and thus being able to generalize predictions over, k-nary compounds of diverse chemistries and structures. This work presents a SL framework that addresses challenges in materials science applications, where datasets are diverse but of modest size, and extreme values are often of interest. Our advances include the application of power or Hölder means to construct descriptors that generalize over chemistry and crystal structure, and the incorporation of multivariate local regression within a gradient boosting framework. The approach is demonstrated by developing SL models to predict bulk and shear moduli (K and G, respectively) for polycrystalline inorganic compounds, using 1,940 compounds from a growing database of calculated elastic moduli for metals, semiconductors and insulators. The usefulness of the models is illustrated by screening for superhard materials. PMID:27694824

  1. Inorganic compounds and materials as catalysts for oxidations with aqueous hydrogen peroxide

    NARCIS (Netherlands)

    Nardello, veronique; Aubry, Jean-Marie; Vos, De Dirk E.; Neumann, Ronny; Adam, Waldemar; Zhang, Rui; Elshof, ten Johan E.; Witte, Peter T.; Alsters, Paul L.


    This paper reviews our work on oxidations with aqueous hydrogen peroxide catalyzed by inorganic catalysts devoid of organic ligands. In the first part of the review, the use of the [WZn3(ZnW9O34)2]12− “sandwich” polyoxometalate as a multi-purpose oxidation catalyst is described. Attention is paid to

  2. Study on the Built-up Effect of Inorganic Compounds to Flame Retardant Containing Organophosphorus in Suppression of Smoke

    Institute of Scientific and Technical Information of China (English)

    LIN Miao; XIAN Chun-ying; YANG Yong


    The built-up effect of inorganic compounds containing more active metal ions, such as Ca2+ , Al3+ , Cu2+ , and Zn2+ , as additives adding to phosphorus-containing flame retarding systems in suppression of smoke was studied. The data presented herein suggested that the amount of smoke in the burning process can be better suppressed after the cotton fabric finishing with built- up system was burnt. Some general principles were identified, and the likely causes of the observed effects were analyzed according to test data.

  3. A curved multi-component aerosol hygroscopicity model framework: Part 1 – Inorganic compounds

    Directory of Open Access Journals (Sweden)

    D. O. Topping


    Full Text Available A thermodynamic modelling framework to predict the equilibrium behaviour of mixed inorganic salt aerosols is developed, and then coupled with a technique for finding a solution to the Kohler equation in order to create a diameter dependent hygroscopic aerosol model (Aerosol Diameter Dependent Equilibrium Model – ADDEM. The model described here provides a robust and accurate inorganic basis using a mole fraction based activity coefficient model and adjusted energies of formation for treating solid precipitation. The model framework can accommodate organic components, though this added complexity is considered in a companion paper, this paper describes the development of the modelling architecture to be used and predictions of an inorganic model alone. The modelling framework has been developed to flexibly use a combination of mixing rules and other potentially more accurate techniques where available to calculate the water content. Comparisons with other state-of-the-art general equilibrium models and experimental data are presented and show excellent agreement. The Kelvin effect can be considered in this scheme using a variety of surface tension models. Comparison of predicted diameter dependent phenomena, such as the increased relative humidity for onset of deliquescence with decreasing diameter, with another diameter dependent model is very good despite the different approach used. The model is subject to various sensitivities. For the inorganic systems studied here, the model is sensitive to choice of surface tension scheme used, which decreases for larger aerosol. Large sensitivities are found for the value of dry density used. It is thus likely that the history of the aerosol studied in a hygroscopic tandem differential mobility analyser (HTDMA, specifically the nature of the drying process that will influence the final crystalline form, will create systematic uncertainties upon comparisons with theoretical predictions. However, the

  4. Effects of an inorganic and two new organic compounds of selenium on morphologic blood elements and antioxidant status in mice. (United States)

    Musik, Irena; Kozioł-Montewka, Maria; Pasternak, Kazimierz; Toś-Luty, Sabina; Tokarska, Małgorzata


    Two organic compounds, 4-(o-tolilo-)-selenosemicarbazide of p-chlorobenzoic acid and 3-(p-chlorobenzoylamino-)-2-(o-tolylimino-)-4-phenyl-4-selenazoline were compared to the effects of the supplementation with inorganic Na2SeO3. Studies were carried out in four groups consisting of 10 female mice each of SWISS strain. Three of them were supplemented with different selenium formula at the dose of 10(-3) mg Se per g over the period of 10 day. The blood samples were collected to heparinized test tubes; the red blood and white blood count, hematocrit and haemoglobin concentration were studied. The influence of selenium compounds on phagocytosis and NBT test was determined.

  5. Crystal structure of caesium hydrogen (L)-aspartate and an overview of crystalline compounds of aspartic acid with inorganic constituents

    Energy Technology Data Exchange (ETDEWEB)

    Fleck, M. [Universitaet Wien (Austria). Institut fuer Mineralogie und Kristallographie; Emmerich, R.; Bohaty, L. [Universitaet zu Koeln (Austria). Institut fuer Kristallographie


    The crystal structure of the new polar compound caesium hydrogen (L)-aspartate, Cs(C{sub 4}H{sub 6}NO{sub 4}), (abbreviated: Cs(L -AspH)) was determined from single crystal X-ray diffraction data; it comprises two crystallographically different L -AspH anions that are connected via caesium cations to form a three dimensional framework. The Cs ions are irregularly sevenfold[Cs1O{sub 7}] respectively eightfold[Cs2O{sub 8}] coordinated to all {alpha}- and {beta}- carboxylate oxygen atoms. Cs(L -AspH) represents a novel structure type of its own, as do most compounds of (L)-aspartic acid with inorganic constituents. A brief summary of such structurally known aspartates is given. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. A review on how Lanthanide impurity levels change with chemistry and structure of inorganic compounds

    NARCIS (Netherlands)

    Dorenbos, P.


    The energy of the 4f-5d transitions of divalent and trivalent lanthanide impurities in compounds depends strongly on the type of lanthanide, its valence, and the type of compound. Despite this large variability there is much systematic in 4f-5d transition energy. Once it is known for one lanthanide

  7. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr) (United States)

    Lee, Jonathan A.


    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  8. Influence of lead Inorganic Compounds on Combustion Rate of Double Base Rocket Propellants

    Directory of Open Access Journals (Sweden)

    V. B. Pillai


    Full Text Available The influence of lead nitrate, red lead, lead chromate, lead floride and lead carbonate on the combustion behaviour of double base propellants in the pressure range-35-140kg/cm /sup 2/ was studied. While all these compounds increased burning rates in lower pressure range (35-60 kg/cm/sup 2/ and higher pressure range (120-140 kg/cm/sup 2/, only lead chromate and lead fluoride were effective in the intermediate pressure range of 60-105 kg/cm/sup 2/. None of these compounds were effective as platonizer, except lead fluoride, which lowered n value to 0.34 in the lower pressure range. Addition of carbon black along with lead compounds raised burning rates further and reduced n values significantly in the higher pressure regins. A probable mechanism on the role of lead compounds studied has been suggested based on burning rate and DTA results.

  9. Composition and leaching of construction and demolition waste: Inorganic elements and organic compounds

    DEFF Research Database (Denmark)

    Butera, Stefania; Christensen, Thomas Højlund; Astrup, Thomas Fruergaard


    Thirty-three samples of construction and demolition waste collected at 11 recycling facilities in Denmark were characterised in terms of total content and leaching of inorganic elements and presence of the persistent organic pollutants PCBs and PAHs. Samples included (i) "clean" (i.e. unmixed......) concrete waste, (ii) mixed masonry and concrete, (iii) asphalt and (iv) freshly cast concrete cores; both old and newly generated construction and demolition waste was included. PCBs and PAHs were detected in all samples, generally in non-critical concentrations. Overall, PAHs were comparable to background...... for leaching, was observed indicating that the number of analysed samples may be critical in relation to decisions regarding management and utilisation of the materials. Higher leaching of chromium, sulphate and chloride were observed for masonry-containing and partly carbonated samples, indicating that source...

  10. Synthesis and Characterization of Poly(St-co-BA) Latex with an Organic-Inorganic Hybrid Compound as Emulsifier

    Institute of Scientific and Technical Information of China (English)

    袁俊杰; 周树学; 廖建和; 武利民


    A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size analyzer, transmission electron microscope (TEM), optical contact angle measurement (OCA) and dynamic mechanical analyzer (DMA). It was found that the protective agent, sodium polyacrylate (PA),could obviously improve the polymerization stability and the functional monomer, glycidyl methacrylate (GMA), could enhance the store stability of the latex. The particle size of poly(St-co-BA) latex decreased and then leveled off as OIHC content increased. TEM shows that the prepared polymers were a~:tually organic-inorganic nanocomposites, and these films have better waterproof property than those prepared by traditional poly(St-co-BA) latex or organic silicone modified poly(St-co-BA) latex. The nanocomposite polymer has much higher glass transition temperature than organic silicone modified poly(St-co-BA) polymer containing the same organic silicone content.

  11. COSIMA-Rosetta calibration for in-situ characterization of 67P/Churyumov-Gerasimenko cometary inorganic compounds

    CERN Document Server

    Krüger, Harald; Engrand, Cécile; Briois, Christelle; Siljeström, Sandra; Merouane, Sihane; Baklouti, Donia; Fischer, Henning; Fray, Nicolas; Hornung, Klaus; Lehto, Harry; Orthous-Daunay, François-Régis; Rynö, Jouni; Schulz, Rita; Silen, Johan; Thirkell, Laurent; Trieloff, Mario; Hilchenbach, Martin


    COSIMA (COmetary Secondary Ion Mass Analyser) is a time-of-flight secondary ion mass spectrometer (TOF-SIMS) on board the Rosetta space mission. COSIMA has been designed to measure the composition of cometary dust grains. It has a mass resolution m/{\\Delta}m of 1400 at mass 100 u, thus enabling the discrimination of inorganic mass peaks from organic ones in the mass spectra. We have evaluated the identification capabilities of the reference model of COSIMA for inorganic compounds using a suite of terrestrial minerals that are relevant for cometary science. Ground calibration demonstrated that the performances of the flight model were similar to that of the reference model. The list of minerals used in this study was chosen based on the mineralogy of meteorites, interplanetary dust particles and Stardust samples. It contains anhydrous and hydrous ferromagnesian silicates, refractory silicates and oxides (present in meteoritic Ca-Al-rich inclusions), carbonates, and Fe-Ni sulfides. From the analyses of these mi...

  12. Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications (United States)

    Gelman, Danny; Lasman, Itay; Elfimchev, Sergey; Starosvetsky, David; Ein-Eli, Yair


    The severe corrosion accompanied with hydrogen evolution process is the main obstacle preventing the implementation of Al as an anode in alkaline batteries. It impairs the functionality of alkaline battery, due to a drastic capacity loss and a short shelf life. The possibility to reduce Al corrosion rate in alkaline solution with the use of hybrid organic∖inorganic inhibitor based on poly (ethylene glycol) di-acid (PEG di-acid) and zinc oxide (ZnO) was examined in this work. A correlation between an Al corrosion rates and the concentrations of both PEG di-acid and ZnO in alkaline is shown. Selecting 5000 ppm PEG di-acid and 16 gr/l ZnO provides substantial corrosion protection of Al, reducing the corrosion rate in a strong alkaline solution by more than one order of magnitude. Moreover, utilizing the same formulation results in increase in Al-air battery discharge capacity, from 44.5 (for a battery utilizing only KOH in the electrolyte) to 70 mhA/cm2 (for a battery utilizing ZnO/PEG di-acid hybrid inhibitor in the electrolyte). The morphology and composition of the Al electrode surface (studied by SEM, EDS, and XRD) depend on PEG di-acid and ZnO concentrations.

  13. Crystal structure of an organic-inorganic hybrid compound based on morpholinium cations and a β-type Anderson polyanion. (United States)

    Lukianova, Tamara J; Kinzhybalo, Vasyl; Pietraszko, Adam


    A new organic-inorganic hybrid compound, penta-morpholinium hexa-hydrogen hexa-molybdoferrate(III) sulfate 3.5-hydrate, (C4H10NO)5[Fe(III)(OH)6Mo6O18](SO4)·3.5H2O, was obtained from an aqueous solution. The polyoxidomolybdate (POM) anion is of the Anderson β-type with a central Fe(III) ion. Three of five crystallographically independent morpholinium cations are disordered over two sets of sites. An intricate network of inter-molecular N-H⋯O and O-H⋯O inter-actions between cations, POMs, sulfate anions and non-coordinating water mol-ecules creates a three-dimensional network structure.

  14. Bioavailability of magnesium from inorganic and organic compounds is similar in rats fed a high phytic acid diet. (United States)

    Bertinato, Jesse; Plouffe, Louise J; Lavergne, Christopher; Ly, Catherine


    A large section of the North American population is not meeting recommended intakes for magnesium (Mg). Supplementation and consumption of Mg-fortified foods are ways to increase intake. Currently, information on Mg bioavailability from different compounds and their efficacy in improving Mg status is scant. This study compared the relative ability of inorganic and organic Mg compounds to preserve the Mg status of rats when fed at amounts insufficient to retain optimal Mg status. Male Sprague-Dawley rats (n=12/diet group) were fed one of eight test diets supplemented with phytic acid (5 g/kg diet) and low levels of Mg (155 mg elemental Mg/kg diet) from Mg oxide, Mg sulphate, Mg chloride, Mg citrate, Mg gluconate, Mg orotate, Mg malate or ethylenediaminetetraacetic acid disodium Mg salt for five weeks. Rats were also fed three control diets that did not contain added phytic acid but were supplemented with 500 (NMgO, normal), 155 (LMgO, low) or 80 (DMgO, deficient) mg of Mg per kg diet as Mg oxide. Mg concentrations in femur, serum and urine showed a graded decrease in rats fed the control diets with lower Mg. Mg concentrations did not differ (P≥0.05) between rats fed the different test diets. Addition of phytic acid to the diet did not affect the Mg status of the rats. The results indicate that any differences in the Mg bioavailability of the compounds were small and physiologically irrelevant.

  15. Critical review of the chemistry and thermodynamics of technetium and some of its inorganic compounds and aqueous species

    Energy Technology Data Exchange (ETDEWEB)

    Rard, J.A.


    Chemical and thermodynamic data for Technetium (Tc) and some of its inorganic compounds and aqueous species are reviewed here. Major emphasis is given to systems with potential geochemical applications, especially the geochemistry of radioactive waste disposal. Compounds considered include oxides, hydroxides, hydrates oxides, halides, oxyhalides, double halides, and sulfides. The aqueous species considered include those in both noncomplexing media (pertechnetates, technetates, aquo-ions, and hydrolyzed cations) and complexing media (halides, sulfates, and phosphates). Thermodynamic values are recommended for specific compounds and aqueous ions when reliable experimental data are available. Where thermodynamic data are inadequate or unavailable, the chemistry is still discussed to provide information about what needs to be measured, and which chemistry needs to be clarified. A major application of these thermodynamic data will be for chemical equilibrium modeling and for construction of potential-pH diagrams for aqueous solutions. Unfortunately, the present lack of data precludes such calculations for complexing aqueous media. The situation is much better for noncomplexing aqueous media, but the chemistry and thermodynamics of cationic Tc(V) species and hydrolyzed Tc(III) species are poorly understood. 240 references, 6 tables.

  16. High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials (United States)

    Petousis, Ioannis; Mrdjenovich, David; Ballouz, Eric; Liu, Miao; Winston, Donald; Chen, Wei; Graf, Tanja; Schladt, Thomas D.; Persson, Kristin A.; Prinz, Fritz B.


    Dielectrics are an important class of materials that are ubiquitous in modern electronic applications. Even though their properties are important for the performance of devices, the number of compounds with known dielectric constant is on the order of a few hundred. Here, we use Density Functional Perturbation Theory as a way to screen for the dielectric constant and refractive index of materials in a fast and computationally efficient way. Our results constitute the largest dielectric tensors database to date, containing 1,056 compounds. Details regarding the computational methodology and technical validation are presented along with the format of our publicly available data. In addition, we integrate our dataset with the Materials Project allowing users easy access to material properties. Finally, we explain how our dataset and calculation methodology can be used in the search for novel dielectric compounds. PMID:28140408

  17. Sulfur Isotope Exchange between S-35 Labeled Inorganic Sulfur-Compounds in Anoxic Marine-Sediments

    DEFF Research Database (Denmark)



    Isotope exchange reactions between S-35-labeled sulfur compounds were studied in anoxic estuarine sediment slurries at 21-degrees-C and pH 7.4-7.7. Two experiments labeled with radioactive elemental sulfur (S-35-degrees) and one labeled with radioactive sulfate ((SO42-)-S-35) were performed as time...

  18. Comparative evaluation of short-term toxicity of inorganic arsenic compounds on Artemia salina. (United States)

    GuŢu, Claudia Maria; Olaru, Octavian Tudorel; Purdel, Nicoleta Carmen; Ilie, Mihaela; NeamŢu, Marius Cristian; Dănciulescu Miulescu, Rucsandra; Avramescu, Elena Taina; Margină, Denisa Marilena


    The study aimed to assess the short-term effects exerted by two inorganic arsenic species (arsenite and arsenate) on Artemia salina after 24, 48 and 72 h. The dose-lethality curves obtained indicate that the lethality induced by arsenite was higher than by arsenate. The lowest observed effect concentration for arsenite (0.5 μg/mL) is similar with the no observed effect concentration for arsenate, thus indicating that the toxicity of arsenite is higher compared with arsenate. Also, the lethal concentration 50 values confirm that arsenite induced about 1.24-fold higher toxicity than arsenate at 24 h and about three-fold higher toxicity at 48 h and 72 h of exposure. Both LC50 (lethal concentration 50) values are indicating negligible effects exhibited by arsenic at this trophic level after short-term exposure. The predicted no effect concentration in the surface aquatic compartment corresponds to 10.38 μg/L, similar to the limit imposed by Directive 98/83/EC.

  19. [Effects of Organic and Inorganic Slow-Release Compound Fertilizer on Different Soils Microbial Community Structure]. (United States)

    Wang, Fei; Yuan, Ting; Gu, Shou-kuan; Wang, Zheng-yin


    As a new style fertilizer, slow-control release fertilizer had been an important subject in recent years, but few researches were about soil microbial community structure diversity. Phospholipid fatty acid method was used to determined the microbial community structure diversity of acid soil and slight alkaline soil applied with slow-release compound fertilizer (SRF), chemical fertilizer (CF) and common compound fertilizer (CCF) at the 10th, 30th, 60th and 90th day under the constant temperature incubation condition. Results indicated that various bacteria (i. e 13:0, i14:0,14:0, i15:0, a15:0, i16:0, 16:12OH, 16:1w5c,16:0, i17:0, a17:0, cy17:0, 17:02OH, i18:0, 18:0 and cy19:0w8c), two actinomycetes (10Me17:0 and 10Me18:0) and only one fungus (18:1 w9c) were detected in two soils after applying slow-release compound fertilizer and other fertilizers during the whole incubation period. SRF could significantly increase the fungi PLFA content by 8.3% and 6.8% at the early stage (the 10th day and 30th day) compared with CF, as well as significantly increase by 22.7% and 17.1% at the late stage (the 60th day and 90th day) compared with CCF in acid soil. SRF significantly increased bacteria, fungi and gram positive bacteria compared with CF and CCF in incubation period (except at the 30th day) in slight alkaline soil. SRF could significantly improve the ratio of normal saturated fatty acid and monounsaturated fatty acid at the 30th day and 90th days in acid soil compared with no fertilizer (CK), CF and CCF, while as to slight alkaline soil, SRF was significantly greater than that of CK, CF and CCF only at the 60th day. SRF could significantly decrease the ratio of iso PLFA and anteiso PLFA in acid soil (in 30-90 days) and slight alkaline soil (in 10-60 days). For two soils PLFA varieties, contents and ratios of microbial community, slow-release compound fertilizer increased soil microbial PLFA varieties and contents, and decreased the influence to microbial survival

  20. Anomalous luminescence of Eu sup 2 sup + and Yb sup 2 sup + in inorganic compounds

    CERN Document Server

    Dorenbos, P


    In many compounds the broadband emission of Eu sup 2 sup + and Yb sup 2 sup + is subject to a very large (0.6-1.2 eV) Stokes shift and it behaves peculiarly with temperature change. Conduction band states of the host compound are involved in this 'anomalous' emission. Cases of anomalous emission are identified and the conditions for it to occur studied. Clear trends with the size of the lanthanide ion, the size of the site occupied, the size of anions in the compound, and the binding strength of oxygen ligands were found. The trends are interpreted by models involving the Madelung potential and Pauling repulsion at the lanthanide site together with the Coulomb and isotropic exchange interactions within the lanthanide ion. The results provide information on the approximate location of the lowest 4f sup n sup - sup 1 5d level relative to the bottom of the conduction band. The systematic variation with type of lanthanide and host lattice is discussed. Combining the results with information on the systematic vari...

  1. Induction by mercury compounds of metallothioneins in mouse tissues: inorganic mercury accumulation is not a dominant factor for metallothionein induction in the liver. (United States)

    Yasutake, Akira; Nakamura, Masaaki


    Among the naturally occurring three mercury species, metallic mercury (Hg(0)), inorganic mercury (Hg(II)) and methylmercury (MeHg), Hg(II) is well documented to induce metallothionein (MT) in tissues of injected animals. Although Hg(0) and MeHg are considered to be inert in terms of directly inducing MT, MT can be induced by them after in vivo conversion to Hg(II) in an animal body. In the present study we examined accumulations of inorganic mercury and MT inductions in mouse tissues (brain, liver and kidney) up to 72 hr after treatment by one of three mercury compounds of sub-lethal doses. Exposure to mercury compounds caused significant mercury accumulations in mouse tissues examined, except for the Hg(II)-treated mouse brain. Although MeHg caused the highest total mercury accumulation in all tissues among mercury compounds, the rates of inorganic mercury were less than 10% through the experimental period. MT inductions that depended on the inorganic mercury accumulation were observed in kidney and brain. However, MT induction in the liver could not be accounted for by the inorganic mercury accumulation, but by plasma IL6 levels, marked elevation of which was observed in Hg(II) or MeHg-treated mouse. The present study demonstrated that MT was induced in mouse tissues after each of three mercury compounds, Hg(0), Hg(II) and MeHg, but the induction processes were different among tissues. The induction would occur directly through accumulation of inorganic mercury in brain and kidney, whereas the hepatic MT might be induced secondarily through mercury-induced elevation in the plasma cytokines, rather than through mercury accumulation in the tissue.

  2. Interaction Between the Growth and Dissolution of Intermetallic Compounds in the Interfacial Reaction Between Solid Iron and Liquid Aluminum (United States)

    Chen, Shuhai; Yang, Dongdong; Zhang, Mingxin; Huang, Jihua; Zhao, Xingke


    The interfacial reaction between solid steel and liquid aluminum has been widely investigated in past decades; however, some issues, such as the solid/liquid interfacial structure, formation mechanisms of FeAl3 and Fe2Al5, and interaction between the growth and dissolution of intermetallic compounds, are still not fully understood. In this study, a hot-dipping method is designed to investigate the interfacial reaction in the temperature range between 973 K and 1273 K (700 °C 1000 °C) for 10 to 60 seconds. The intensification of the dissolution leads to the transformation of FeAl3/liquid aluminum into Fe2Al5/liquid aluminum in the solid/liquid structure with increasing reaction temperature. The formation of FeAl3 adhered to the interface depends not only on the reaction mechanism but also on precipitation at relatively low temperatures. In contrast, precipitation is the only formation mechanism for FeAl3 at relatively high temperatures. Austenitizing results in the complete transformation of the tongue-like Fe2Al5/Fe interface to a flat shape. The growth of Fe2Al5 with respect to the maximum thickness is governed by the interfacial reaction process, whereas the growth of Fe2Al5 with respect to the average thickness is governed by the diffusion process in the range of 973 K to 1173 K (700 °C to 900 °C) for 10 to 60 seconds. The dissolution of the parent metal is due to the natural dissolution of FeAl3 at low temperatures and Fe2Al5 at high temperatures.

  3. The electronic structure of organic-inorganic hybrid compounds : (NH4)(2)CuCl4, (CH3NH3)(2)CuCl4 and (C2H5NH3)(2)CuCl4

    NARCIS (Netherlands)

    Zolfaghari, P.; de Wijs, G. A.; de Groot, R. A.


    Hybrid organic-inorganic compounds are an intriguing class of materials that have been experimentally studied over the past few years because of a potential broad range of applications. The electronic and magnetic properties of three organic-inorganic hybrid compounds with compositions (NH4)(2)CuCl4

  4. Comparative study on the pharmacokinetics of inorganic and organic iron compounds in broiler chickens

    Directory of Open Access Journals (Sweden)

    Dimitrichka Dimitrova


    Full Text Available The pharmacokinetics of ferrous methionate and ferrous sulphate was investigated in broiler chickens after intravenous injection and crop intubation. The iron compounds were injected intravenously in v. brachialis. After 20-day “wash-out” period the ferrous methionate and ferrous sulphate were administered again by an elastic silicone tube into the crop. The serum concentrations of the iron were determined with bioanalyser. Two pharmacokinetic approaches were used – compartmental and non-compartmental analysis. After i.v. injection we found statistically significantly longer and better distribution of the iron contained in the ferrous methionate compared to the ferrous sulphate. The АUC0→∞ was statistically significantly higher in the ferrous methionate. In the alimentary tract of broiler chickens, ferrous methionate was absorbed more rapidly than ferrous sulfate. It was also distributed at a higher volume as compared to the ferrous sulfate.

  5. The occurrence and representation of three-centre two-electron bonds in covalent inorganic compounds. (United States)

    Green, Jennifer C; Green, Malcolm L H; Parkin, Gerard


    Although compounds that feature 3-centre 2-electron (3c-2e) bonds are well known, there has been no previous effort to classify the interactions according to the number of electrons that each atom contributes to the bond, in a manner analogous to the classification of 2-centre 2-electron (2c-2e) bonds as either normal covalent or dative covalent. This article provides an extension to the Covalent Bond Classification (CBC) method by categorizing 3c-2e interactions according to whether (i) the two electrons are provided by one or by two atoms and (ii) the central bridging atom provides two, one, or zero electrons. Class I 3c-2e bonds are defined as those in which two atoms each contribute one electron to the 3-centre orbital, while Class II 3c-2e bonds are defined as systems in which the pair of electrons are provided by a single atom. Class I and Class II 3c-2e interactions can be denoted by structure-bonding representations that employ the "half-arrow" notation, which also provides a convenient means to determine the electron count at a metal centre. In contrast to other methods of electron counting, this approach provides a means to predict metal-metal bond orders that are in accord with theory. For example, compounds that feature symmetrically bridging carbonyl ligands do not necessarily have to be described as "ketone derivatives" because carbon monoxide can also serve as an electron pair donor to two metal centres. This bonding description also provides a simple means to rationalize the theoretical predictions of the absence of M-M bonds in molecules such as Fe(2)(CO)(9) and [CpFe(CO)(2)](2), which are widely misrepresented in textbooks as possessing M-M bonds.

  6. A Precipitation Phenomenon of Titanium Compounds in Aluminum Melts and the Refinement Fading Mechanism of the Al-5Ti-0.62C Master Alloy

    Directory of Open Access Journals (Sweden)

    Wanwu Ding


    Full Text Available The Al-5Ti-0.62C master alloy was prepared through a method of thermal explosion in molten aluminum. The process of remelting and refining of commercially pure aluminum was conducted, and precipitation samples with different heat-treatment times were obtained. Scanning electron microscopy (SEM, X-ray diffraction (XRD, optical microscopy (OM, and other techniques were used to analyze the microstructure of the precipitates at the bottom of the samples so as to explore the fading mechanism of Al-Ti-C alloy refinement. The results showed that an obvious precipitation phenomenon of titanium compounds existed in the remelted Al-5Ti-0.62C master alloy and that there were both TiC compounds and TiAl3 compounds in the precipitates; in the refined pure aluminum samples, the precipitates were mainly TiC compounds. Precipitation of titanium compounds in aluminum melting is the main cause of fading in the refinement effect of an Al-Ti-C master alloy.

  7. Dissolution and Release of Inorganic Phosphorus from Soil by Ectomycorrhizal Fungi under Aluminum Stress%铝胁迫下外生菌根真菌对土壤无机磷的溶解释放

    Institute of Scientific and Technical Information of China (English)

    夏蓉蓉; 陈梅玲; 张瑞秋; 柯许彬; 张亮


    Objective] To study the dissolution and release of inorganic phosphorus from soil by ectomycorrhizal fungi under aluminum stress. [ Method] Pisolithus tinctorius ( Pt) and Lactarius delicious ( Ld) were cultured in liquid Pachlewsk medium with soil as the source of phos-phorus (P) under aluminum stress to study the fungal growth, and changes of soil inorganic P were measured to study P mobilization from soil by ectomycorrhizal fungi ( ECMF) .[ Result] The fungal growth first increased and then decreased with the increase of aluminum concentra-tion.When aluminum concentration varied from 0 to 2.0 mmol/L, the biomass of Pt was higher than that of Ld, showing that the resistance of Pt to aluminum toxicity was stronger than that of Ld.In addition, the pH of culture mediums decreased significantly, and the soil inorganic P was mobilized by ECMF at different levels.[ Conclusion] The ability of ECMF to resist aluminum and mobilize P is related to hydrogen ions and organic acids secreted by ECMF.%[目的]研究铝胁迫下外生菌根真菌对土壤无机磷的溶解释放。[方法]铝胁迫下,以彩色豆马勃( Pisolithus tinctorius,编号Pt)和松乳菇(Lactarius delicious,编号Ld)为供试菌株,土壤为唯一磷源,采用液体培养试验研究菌丝生长情况,以及对土壤无机磷的活化。[结果]在铝胁迫下,2株外生菌根真菌的生物量随着铝离子浓度的升高,表现为先增高后降低的趋势,其中,在0~2.0 mmol/L铝离子浓度下,Pt的生物量均大于Ld,说明Pt的抗铝毒能力强于Ld。此外,pH在铝离子胁迫下显著下降,2株外生菌根真菌不同程度地活化土壤中无机磷。[结论]外生菌根真菌的抗铝和溶磷能力与其分泌的氢离子和有机酸有关。

  8. Complex Organic and Inorganic Compounds in Shells of Lithium-rich K Giant Stars

    CERN Document Server

    de la Reza, Ramiro; Oliveira, Isa; Rengaswamy, Sridharan


    Hydrocarbon organic material, as found in the interstellar medium, exists in complex mixtures of aromatic and aliphatic forms. It is considered to be originated from carbon enriched giant stars during their final stages of evolution, when very strong mass loss occurs in a few thousand years on their way to become planetary nebulae. We show here that the same organic compounds appear to be formed in previous stages of the evolution of giant stars. More specifically, during the first ascending giant branch K-type stars. According to our model this happens only when these stars are being abruptly enriched with lithium together with the formation of a circumstellar shell with a strong mass loss during just a few thousand years. This sudden mass loss is, on an average, a thousand times larger than that of normal Li-poor K giant stars. This shell would later be detached, specially when the star stops its Li enrichment and a rapid photospheric Li depletion occurs. In order to gain extra carbon-based material to form...

  9. Iridium concentration driving the mechanical properties of iridium–aluminum compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y. [School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500 (China); Wen, M. [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming 650106 (China); Wang, L.; Wang, X. [School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500 (China); Lin, Y.H., E-mail: [School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500 (China); Guan, W.M., E-mail: [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming 650106 (China)


    Using first-principles density functional theory approach, we systematically investigate the formation enthalpy, mechanical stability, elastic modulus, brittle or ductile behavior and electronic structure of Ir–Al compounds with different Ir concentrations. The calculated convex hull indicates that IrAl with CsCl-type structure is more stability than that of other Ir–Al compounds at ground state. We found that the resistance to volume deformation is related to the Ir concentration in Ir–Al compounds, while the bulk modulus of these compounds increases with increasing Ir concentrations. However, the Ir{sub 5}Al{sub 3} has the strongest shear deformation resistance and has the highest elastic stiffness in these Ir–Al compounds. The calculated theoretical hardness of Ir{sub 2}Al{sub 9} is bigger than other Ir–Al compounds. Ir{sub 2}Al{sub 3} and Ir{sub 2}Al{sub 9} exhibit brittle behavior in contrast to other Ir–Al compounds exhibit ductile behavior. This discrepancy is originated from the structural feature and localized hybridization between Ir and Al atoms. Finally, we conclude that alloying can change brittle behavior of metal Ir. - Highlights: • The correlation between Ir concentration and mechanical properties is studied. • The convex hull indicates that IrAl is the most stable structure. • We found that alloying can weaken the brittle behavior of metal Ir. • We found that the bulk modulus of Ir–Al compound is related to Ir concentration. • The theoretical hardness of Ir{sub 2}Al{sub 9} is higher than other Ir–Al compounds.

  10. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Santa Coloma, P., E-mail: [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J. [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Lapeña, N. [Boeing Research & Technology Europe, S.L.U., Avenida Sur del Aeropuerto de Barajas 38, Building 4 – 3rd Floor, E-28042 Madrid (Spain)


    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  11. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys (United States)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu


    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  12. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding

    Directory of Open Access Journals (Sweden)

    Torres López, Edwar A.


    Full Text Available Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 °C. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters.La unión de juntas aluminio-acero, sin la formación de fases deletéreas del tipo FexAly, ha sido, por décadas, un desafío para los procesos de soldadura. La soldadura por fricción-agitación ha sido empleada para intentar reducir el aporte térmico y evitar la formación de compuestos intermetálicos. Usando esta técnica fueron soldadas juntas disimilares de aluminio 6063-T5 y acero AISI-SAE 1020. La soldadura fue acompañada de medidas de temperatura durante su ejecución. La interfase de las juntas soldadas fue caracterizada utilizando microscopía óptica, electrónica de barrido y electrónica de transmisión. Adicionalmente fueron realizadas medidas puntuales X-EDS y DRX. Los resultados experimentales revelan que la temperatura máxima en la junta es inferior a 360 °C. La caracterización microestructural en la interfase aluminio-acero demostró la ausencia de compuestos intermetálicos, condición atribuida al uso de parámetros de soldadura con bajo aporte térmico.

  13. Experimental and theoretical study of AC electrical conduction mechanisms of Organic-inorganic hybrid compound Bis (4-acetylanilinium) tetrachlorocadmiate (II) (United States)

    Jellibi, A.; Chaabane, I.; Guidara, K.


    A new organic-inorganic bis (4-acetylaniline) tetrachlorocadmate [C8H10NO]2[CdCl4] can be obtained by slow evaporation at room temperature and characterized by X-ray powder diffraction. It crystallized in an orthorhombic system (Cmca space group). The material electrical properties were characterized by impedance spectroscopy technique in the frequency range from 209 Hz-5 MHz and temperature 413 to 460 K. Besides, the impedance plots show semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to interpret the impedance results. The circuits consist of the parallel combination of a resistance (R), capacitance (C) and fractal capacitance (CPE). The variation of the exponent s as a function of temperature suggested that the conduction mechanism in Bis (4-acetylanilinium) tetrachlorocadmiate compound is governed by two processes which can be ascribed to a hopping transport mechanism: correlated barrier hopping (CBH) model below 443 K and the small polaron tunneling (SPT) model above 443 K.

  14. Thermal properties study on the ablation materials of inorganic silicon compound from organosilicone in high percent conversion

    Institute of Scientific and Technical Information of China (English)

    CUI MengZhong; WANG WenHua


    The new type of silicone rubber prepared by organosilicon polymer containing special groups presents the tensile strength of 3.92 MPa and the elongation at break of 285%. Compared with Sylgard(r)184 silicone rubber (Dow Corning Corporation), it has better high temperature resistance and almost no weightlessness from room temperature to 430℃. Thermogravimetric analysis was conducted to research the thermal degradation at different temperatures and the heat pyrolysis products were trace determined by FT-IR. The results show that with the increase of temperature, the organic groups of products are gradually decomposed. Organosilicon rubber is gradually changed into the typical inorganic SiCO compounds in the process of pyrolysis. Elemental analysis and X-ray photoelectron spectroscopy results show that the pyrolyzates are mainly composed of Si, C and O elements above 1050℃. X-ray diffraction analysis showes that partial β-SiC crystal structure is brought about gradually from the pyrolysis products at 1050℃ to 1500℃ under nitrogen atmosphere. With the treatment temperature rising, the crystallinity of SiC and cristobalite obviously increases.

  15. A two-dimensional organic–inorganic hybrid compound, poly[(ethylenediaminetri-μ-oxido-oxidocopper(IImolybdenum(VI

    Directory of Open Access Journals (Sweden)

    Mehtap Emirdag-Eanes


    Full Text Available A new organic–inorganic two-dimensional hybrid compound, [CuMoO4(C2H8N2], has been hydrothermally synthesized at 443 K. The unit cell contains layers composed of CuN2O4 octahedra and MoO4 tetrahedra. Corner-sharing MoO4 and CuN2O4 polyhedra form CuMoO4 bimetallic sites that are joined together through O atoms, forming an edge-sharing Cu2Mo2O4 chain along the c axis. The one-dimensional chains are further linked through bridging O atoms that join the Cu and Mo atoms into respective chains along the b axis, thus establishing layers in the bc plane. The ethylenediamine ligand is coordinated to the Cu atom through its two N atoms and is oriented perpendicularly to the two-dimensional –Cu—O—Mo– layers. The average distance between adjacent layers, as calculated by consideration of the closest and furthest distances between two layers, is 8.7 Å. The oxidation states of the Mo and Cu atoms of VI and II, respectively, were confirmed by bond-valence sum calculations.

  16. Ampholine-functionalized hybrid organic-inorganic silica material as sorbent for solid-phase extraction of acidic and basic compounds. (United States)

    Wang, Tingting; Chen, Yihui; Ma, Junfeng; Chen, Mingliang; Nie, Chenggang; Hu, Minjie; Li, Ying; Jia, Zhijian; Fang, Jianghua; Gao, Haoqi


    A novel sorbent for solid-phase extraction (SPE) was synthesized by chemical immobilization of ampholine on hybrid organic-inorganic silica material. The ampholine-functionalized hybrid organic-inorganic silica sorbent is consisted of aliphatic amine groups, carboxyl groups and long carbon chains, allowing for extraction of both acidic and basic compounds. The retention properties of the developed sorbent were evaluated for 1-hydroxy-2-naphthoic acid (HNA), 1-naphthoic acid (NA), 3-hydroxybenzoic acid (HBA), benzoic acid (BA), sorbic acid (SA), vanillic aldehyde (VA), butyl 4-hydroxybenzoate (BHB), propyl 4-hydroxybenzoate (PHB), ethyl 4-hydroxybenzoate (EHB), and methyl 4-hydroxybenzoate (MHB). The results show that such a sorbent has three types of interaction, i.e., electrostatic interaction, hydrophobic interaction, and hydrogen bonding, exhibiting high extraction efficiency towards the compounds tested. The adsorption capacities of the analytes ranged from 0.61 to 6.54μgmg(-1). The reproducibility of the sorbent preparation was evaluated at three spiking concentration levels, with relative standard deviations (RSDs) of 1.0-10.5%. The recoveries of ten acidic and basic compounds spiked in beverage Coca-Cola(®) sample ranged from 82.5% to 98.2% with RSDs less than 5.8%. Under optimum conditions, the ampholine-functionalized hybrid organic-inorganic silica sorbent rendered higher extraction efficiency for acidic compounds than that of the commercially available ampholine-functionalized silica particles, and was comparable to that of the commercial Oasis WAX and Oasis WCX.

  17. Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: inorganic, abiotic formation by shock and thermal metamorphism. (United States)

    Treiman, Allan H


    Purported biogenic features of the ALH84001 Martian meteorite (the carbonate globules, their submicron magnetite grains, and organic matter) have reasonable inorganic origins, and a comprehensive hypothesis is offered here. The carbonate globules were deposited from hydrothermal water, without biological mediation. Thereafter, ALH84001 was affected by an impact shock event, which raised its temperature nearly instantaneously to 500-700K, and induced iron-rich carbonate in the globules to decompose to magnetite and other minerals. The rapidity of the temperature increase caused magnetite grains to nucleate in abundance; hence individual crystals were very small. Nucleation and growth of magnetite crystals were fastest along edges and faces of the precursor carbonate grains, forcing the magnetite grains to be platy or elongated, including the "truncated hexa-octahedra" shape. ALH84001 had formed at some depth within Mars where the lithostatic pressure was significantly above that of Mars' surface. Also, because the rock was at depth, the impact heat dissipated slowly. During this interval, magnetite crystals approached chemical equilibria with surrounding minerals and gas. Their composition, nearly pure Fe(3)O(4), reflects those of equilibria; elements that substitute into magnetite are either absent from iron-rich carbonate (e.g., Ti, Al, Cr), or partitioned into other minerals during magnetite formation (Mg, Mn). Many microstructural imperfections in the magnetite grains would have annealed out as the rock cooled. In this post-shock thermal regime, carbon-bearing gas from the decomposition of iron carbonates reacted with water in the rock (or from its surroundings) to produce organic matter via Fischer-Tropschlike reactions. Formation of such organic compounds like polycyclic aromatic hydrocarbons would have been catalyzed by the magnetite (formation of graphite, the thermochemically stable phase, would be kinetically hindered).

  18. Crystal structure, vibrational studies and optical properties of a new organic-inorganic hybrid compound (C₁₀H₂₈N₄)CuCl₅Cl⋅4H₂O. (United States)

    Kessentini, A; Belhouchet, M; Suñol, J J; Abid, Y; Mhiri, T


    A new organic-inorganic hybrid material, 1,4-bis(3-ammoniumpropyl) piperazinium pentachloridocuprate(II) chloride tetrahydrate [(C₁₀H₂₈N₄)CuCl₅Cl⋅4H₂O], has been synthesized and characterized by X-ray diffraction, UV-visible absorption, Infrared and Raman spectroscopy. The compound crystallizes in the orthorhombic system and Pnma space group with a=8.18 (3)Å, b=10.96 (5)Å, c=21.26 (9)Å, V=2254.3 (15)Å(3). In this structure, the Cu(2+) ion, surrounded by five chlorides, adopts the square pyramidal coordination geometry. The structure of this compound consists of tetraprotonated 1,4-bis(3-ammoniumpropyl) piperazinium cations and the anionic sublattice is built up of isolated, square pyramid [CuCl₅](3)(-) units, chloride ion Cl(-) and water molecules connected with each other by hydrogen bonds. Organic and inorganic entities are interconnected by means of hydrogen bonding contacts [NH⋯O(Cl), O(W)H⋯Cl and O(W)H⋯O]. Furthermore, the room temperature IR and Raman spectra of the title compound were recorded and analyzed on the basis of literature data. The optical study was also investigated by UV-Vis absorption. In fact, the organic-inorganic hybrid crystal thin film can be easily prepared by spin-coating method from the ethanol solution of the (C₁₀H₂₈N₄)CuCl₅Cl⋅4H₂O hybrid compound and it showed absorptions characteristics of CuCl based layered compounds centered at 275 and 374 nm.

  19. Hydrothermal Synthesis and Structural Characterization of a Novel Organic-Inorganic Hybrid Compound {[Cu(2,2'-bpy)2]2-Mo8O26}

    Institute of Scientific and Technical Information of China (English)

    WANG,Yong-Hui(王永慧); CHEN,Li-Dong(陈立东); HU,Chang-Wen(胡长文); WANG,En-Bo(王恩波); JIA,Heng-Qing(贾恒庆); HU,Ning-Hai(胡宁海)


    A novel organic-inorganic hybrid compound { [ Cu (2, 2'-bpy)2 ]2Mo8O26} has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction.The compound crystallizes in the orthorhombic space group,Pna21, with a= 2.4164(5), b = 1.8281(4), c = 1.1877(2)nm, V=5.247(2)nm3, Z=4, andfinal R1=0.0331, wR2 =0.0727. The structure consists of discrete {[Cu(2,2'-bpy)2]2Mo8O26} clusters, constructed from a β-octamolybdate subunit [ Mo8O26]4- covalently bonded to two [ Cu ( 2, 2'-bpy )2]2+ coordination complex rations via bridging oxo groups. In addition, the spectroscopic properties and thermal behavior of this compound have been investigated by spectroscopic techniques (UV-vis, IR, Raman and EPR spectra) and TG analysis.

  20. Process of black sealing with inorganic salts for aluminum alloy after anodic oxidation%铝合金阳极氧化后无机盐黑色封闭工艺

    Institute of Scientific and Technical Information of China (English)



    Considering the disadvantages of black sealing with organic dyes for anodic oxidation film on aluminum alloy, black sealing with inorganic salts based on the principle of A-B blackening process was carried out for anodized aluminum alloy products. Three kinds of inorganic salt black sealing processes were introduced, including Co(CH3COOH)r-Na2S, FeSO4-(NH4)2S, and NiSO4-(NH4)2S. The anodic oxidation films treated by black sealing were examined by heat and moisture test, salt spray test, high temperature test, and solar radiation test according to related standards. It is proved that the three kinds of anodized aluminum alloy samples after black sealing treatment meet the requirement of standard. The inorganic salt black sealing processes eliminate the defects of easily dissolving in organic solvents as well as fall-off and discoloration, and easy discoloration under strong illumination after sealing by using traditional organic dyes.%针对铝合金阳极氧化有机染料染黑封闭的缺点,采用无机盐A-B染黑工艺对铝合金阳极氧化产品进行黑色封闭处理.介绍了Co(CH3COOH)2-Na2S、FeSO4-(NH4)2S、NiSO4-(NH4)2S等3种无机盐黑色封闭处理工艺,根据相关标准对经黑色封闭处理后的铝合金阳极氧化膜进行了湿热、盐雾、高温及太阳辐射试验.结果表明,3种铝合金阳极氧化黑色封闭处理试样均符合标准要求.无机盐黑色封闭工艺消除了传统有机染料封闭后易溶于有机溶剂而脱落变色以及在强光照射下易变色的缺陷.

  1. 铬盐生产工艺中除铝方法的研究进展%Research development of aluminum removal in chromium compound production

    Institute of Scientific and Technical Information of China (English)

    魏广叶; 曲景奎; 齐涛; 郑裕东; 郭强


      The solid phase method and liquid phase method for aluminum removal in the chromium compound production were reviewed. The special emphasis was placed on lime free roasting process. Magnesioferrite (Mg(Fe,Al)2O4), sodium aluminosilicate (NaAlSiO4), silicic acid, aluminum magnesium sodium salt(Na4MgAl2Si3O12) are the major phases of aluminum containing compound. Certain amounts of silica dioxide or aluminum oxide and such additives, depending on the chromium containing material, are added to control the molar ratio of SiO2 and Al2O3 in order to form aluminum containing compound. The liquid phase methods is relative to the alkali concentration. For decomposition of aluminates in low alkali solution, carbonate process benefit for the production of easy filterable aluminum hydroxide with little content of chromate. For decomposition of aluminates in high alkali solution, aluminum hydroxide is obtained by seed composition following by extraction of great amount of alkali metal hydroxide and decrease of alkali/aluminum ratio. Finally, the problems and development of aluminum removal process were pointed out and analyzed.%  主要从固相法和液相法两个方面介绍铬盐生产工艺中铝杂质的脱除方法,固相法重点介绍无钙焙烧法,无钙焙烧熟料中含铝固相产物有铁镁矿(Mg(Fe,Al)2O4)、铝硅酸钠(NaAlSiO4)和铝硅酸镁钠(Na4MgAl2Si3O12)。同时,根据铬矿成分的不同,添加含硅或含铝原料,控制SiO2和Al2O3摩尔比,使铬铁矿中的铝和硅在无钙焙烧过程中转化成为铝硅酸钠和铝硅酸镁钠。铬酸盐熟料浸出过程中,液相中铝化合物主要是铝酸盐。液相法脱除铝杂质与体系的碱浓度密切相关。低碱浓度时,碳分法有利于得到铬酸盐夹带少、易过滤的氢氧化铝;高碱浓度时,首先进行萃取脱碱,降低溶液中碱/铝比例,然后采用种分法得到氢氧化铝沉淀。综述了各种除铝方法的特点,并探

  2. Chromatographic and Spectral Analysis of Two Main Extractable Compounds Present in Aqueous Extracts of Laminated Aluminum Foil Used for Protecting LDPE-Filled Drug Vials

    Directory of Open Access Journals (Sweden)

    Samuel O. Akapo


    Full Text Available Laminated aluminum foils are increasingly being used to protect drug products packaged in semipermeable containers (e.g., low-density polyethylene (LDPE from degradation and/or evaporation. The direct contact of such materials with primary packaging containers may potentially lead to adulteration of the drug product by extractable or leachable compounds present in the closure system. In this paper, we described a simple and reliable HPLC method for analysis of an aqueous extract of laminated aluminum foil overwrap used for packaging LDPE vials filled with aqueous pharmaceutical formulations. By means of combined HPLC-UV, GC/MS, LC/MS/MS, and NMR spectroscopy, the two major compounds detected in the aqueous extracts of the representative commercial overwraps were identified as cyclic oligomers with molecular weights of 452 and 472 and are possibly formed from poly-condensation of the adhesive components, namely, isophthalic acid, adipic acid, and diethylene glycol. Lower molecular weight compounds that might be associated with the “building blocks” of these compounds were not detected in the aqueous extracts.

  3. Concentrations of selected trace inorganic constituents and synthetic organic compounds in the water-table aquifers in the Memphis area, Tennessee (United States)

    McMaster, B.W.; Parks, William Scott


    Water quality samples for analysis of selected trace inorganic constituents and synthetic organic compounds were collected from 29 private or observation wells in alluvium and fluvial deposits of Quaternary and Tertiary Age. The alluvium and fluvial deposits are the water table aquifers in the Memphis area. In addition, nine wells were installed in Memphis Light, Gas and Water Division well fields so that samples could be collected and analyzed to characterize the quality of water in the fluvial deposits at these well fields. Samples from seven of these wells (two were dry) were analyzed for major constituents and properties of water as well as for selected trace inorganic constituents and synthetic organic compounds. Analyses of the water from most of the 36 wells sampled indicated ranges in concentration values for the trace inorganic constituents that agreed with those previously known, although some new maximum values were established. The analysis of water from four wells indicated that the water is or may be contaminated. Concentrations of barium (1,400 micrograms/L -- ug/L), strontium (1,100 ug/L), and arsenic (15 ug/L), along with specific conductance (1,420 microsiemens/centimeter--us/cm) were in water from one well in the alluvium. Low concentrations (0.02 to 0.04 ug/L) of the pesticides aldrin, DDT, endosulfan, and perthane were present in water from two wells in the fluvial deposits. Water from one of these wells also contained 1,1,1 trichloroethane (4.4 ug/L). Analysis of water from another well in the fluvial deposits indicated values for specific conductance (1,100 uS/cm), alkalinity (508 milligrams per liter -- mg/L -- as CaCO3), hardness (550 mg/L as CaCO3), chloride (65 mg/L), and barium (240 ug/L) that are high for water from the fluvial deposits. (USGS)

  4. Inorganic Materials (United States)

    Černý, Radovan

    The separation of compounds by inorganic/organic boundary is of less importance for the structure determination by diffraction methods. More important for the diffraction is how the atoms build up larger building units and the crystal itself. A molecular/non-molecular boundary is therefore relevant for the choice of a structure determination method. Non-molecular compounds - also called extended solids - are constructed by bonds that extend "infinitely" in three dimensions through a crystal. These non-molecular crystals usually crystallize with higher symmetries, and atoms often occupy special Wyckoff positions. A review of actual methodology is given first, and then highlights and pitfalls of structure determination from powder diffraction, its problems and their solutions are shown and discussed using selected examples.

  5. Biosynthetic inorganic chemistry. (United States)

    Lu, Yi


    Inorganic chemistry and biology can benefit greatly from each other. Although synthetic and physical inorganic chemistry have been greatly successful in clarifying the role of metal ions in biological systems, the time may now be right to utilize biological systems to advance coordination chemistry. One such example is the use of small, stable, easy-to-make, and well-characterized proteins as ligands to synthesize novel inorganic compounds. This biosynthetic inorganic chemistry is possible thanks to a number of developments in biology. This review summarizes the progress in the synthesis of close models of complex metalloproteins, followed by a description of recent advances in using the approach for making novel compounds that are unprecedented in either inorganic chemistry or biology. The focus is mainly on synthetic "tricks" learned from biology, as well as novel structures and insights obtained. The advantages and disadvantages of this biosynthetic approach are discussed.

  6. Ambient cure polyimide foams prepared from aromatic polyisocyanates, aromatic polycarboxylic compounds, furfuryl alcohol, and a strong inorganic acid (United States)

    Sawko, Paul M. (Inventor); Riccitiello, Salvatore R. (Inventor); Hamermesh, Charles L. (Inventor)


    Flame and temperature resistant polyimide foams are prepared by the reaction of an aromatic dianhydride, e.g., pyromellitic dianhydride, with an aromatic polyisocyanate, e.g., polymethylene polyphenylisocyanate (PAPI) in the presence of an inorganic acid and a lower molecular weight alcohol, e.g., dilute sulfuric acid or phosphoric acid and furfuryl alcohol. The exothermic reaction between the acid and the alcohol provides the heat necessary for the other reactants to polymerize without the application of any external heat. Such mixtures, therefore, are ideally suited for in situ foam formation, especially where the application of heat is not practical or possible.

  7. Seasonal and diurnal characteristics of water soluble inorganic compounds in the gas and aerosol phase in the Zurich area

    Directory of Open Access Journals (Sweden)

    R. Fisseha


    Full Text Available Gas and aerosol samples were taken using a wet effluent diffusion denuder/aerosol collector (WEDD/AC coupled to ion chromatography (IC in the city of Zurich, Switzerland from August to September 2002 and in March 2003. Major water soluble inorganic ions; nitrate, sulfate, and nitrite were analyzed online with a time resolution of two hours for the gas and aerosol phase. The fraction of water soluble inorganic anions in PM10 varied from 15% in August to about 38% in March. Seasonal and diurnal variations of nitrate in the gas and aerosol phase were observed with more than 50% of the total nitrate in the gas phase during August and more than 80% of nitrate in the aerosol phase during March exceeding the concentration of sulfate by a factor of 2. Aerosol sulfate, on the other hand, did not show significant variability with season. However, in the gas phase, the SO2 concentration was 6.5 times higher in winter than in summer. Nitrous acid (HONO also showed a diurnal variation in both the gas and aerosol phase with the lowest concentration (0.2–0.6 µg/m3 in the afternoon. The primary pollutants, NO, CO and SO2 mixing ratios were often at their highest between 04:00–10:00 local time due to the build up of fresh vehicle emission under a nocturnal inversion.

  8. Organic and inorganic compounds in the water streams of the paper machine; Haitta-ainevirrat ja -tasot paperikoneella - PMST 01

    Energy Technology Data Exchange (ETDEWEB)

    Tervonen, P.; Edelmann, K.; Kaijaluoto, S. [VTT Energy, Jyvaeskylae (Finland)


    The tightening standards for environmental protection set forth in legislation and the green consideration has reduced the environmental load of the paper and pulp industry significantly during recent years. Paper mills have decreased their water consumption by increasing internal circulation and by improving external effluent treatment. The consequence is that the concentrations of organic and inorganic dissolved and colloidal substances in the paper mill waters have risen. The fresh water consumption of paper machine can be decreased by cleaning the different water streams from the wire- and press-section and by lowering the amount of organic and inorganic materials led to paper machine water. In this case also water from mechanical pulping process and pulp itself should be cleaned. In this project the water use of modern paper machine and stream connections are studied. In addition flows, interactions and retention of dissolved and colloidal materials in the wet end of the paper machine are investigated. By utilizing this knowledge accurate simulation models of paper machine wet end can be created. With this model the various methods and technologies for controlling the harmful components in paper machine wet end are analyzed. (orig.)

  9. Elaboration, structural, spectroscopy, DSC investigations and Hirshfeld surface analysis of a one-dimensional self-assembled organic-inorganic hybrid compound (United States)

    Mesbeh, Radhia; Hamdi, Besma; Zouari, Ridha


    The new organic-inorganic hybrid of the formula [H2mela]Cu2Cl6, where mela = 1,3,5-triazine-2,4,6-triamine, has been synthesized by the reaction of 1,3,5-triazine-2,4,6-triamine and copper(II) chloride dihydrate in the presence of hydrochloric acid. This compound has been determined by X-ray diffraction analysis and characterized by FT-IR, Raman, NMR characterization, differential scanning calorimetric (DSC) analysis, dielectric measurements and Hirshfeld surface. 1,3,5-triazinidium-2,4,6-triamine hexachlorodicuprate(II) crystallizes in the monoclinic system with space group P21/c. The final refinement of the structure of the program led to the reliability factors unweighted R1 = 3.53% and weighted WR2 = 8.87%. The observed internal C3sbnd N31sbnd C1 and C3sbnd N23sbnd C2 angle (121.5 and 121.4°) at protanated N-atom are significantly greater the other ring angle C1sbnd N12sbnd C2 (117.1°). The titled compound crystallizes as an organic-inorganic one-dimensional (1D) structure. The crystal structure was stabilized by two types of hydrogen bonding Nsbnd H⋯Cl and Nsbnd H⋯N. The infrared spectra was recorded in the 4000-400 cm-1 frequency region and the Raman spectra was recorded in the external region of the anionic sublattice vibration 4000-50 cm-1 at room temperature. Solid-state 13C and 63Cu MAS-NMR spectroscopies are in agreement with the X-ray structure. The differential scanning calorimetric (DSC) show the presence of a structural phase transition of the title compound at 338 K. Hirshfeld surface analyses for visually analyzing intermolecular interactions in crystal structures employing molecular surface contours and 2D fingerprint plots have been used to examine molecular shapes.

  10. Phase transitions and dielectric properties of a hexagonal ABX3 perovskite-type organic-inorganic hybrid compound: [C3H4NS][CdBr3]. (United States)

    Liao, Wei-Qiang; Ye, Heng-Yun; Zhang, Yi; Xiong, Ren-Gen


    A new organic-inorganic hexagonal perovskite-type compound with the formula ABX3, thiazolium tribromocadmate(ii) (1), in which thiazolium cations are situated in the space between the one-dimensional chains of face-sharing CdBr(6) octahedra, has been successfully synthesized. Systematic characterizations including differential scanning calorimetry measurements, variable-temperature structural analyses, and dielectric measurements reveal that it undergoes two structural phase transitions, at 180 and 146 K. These phase transitions are accompanied by remarkable dielectric relaxation and anisotropy. The thiazolium cations remain orientationally disordered during the two phase transition processes. The origins of the phase transitions at 180 and 146 K are ascribed to the slowing down and reorientation of the molecular motions of the cations, respectively. Moreover, the dielectric relaxation process well described by the Cole-Cole equation and the prominent dielectric anisotropy are also connected with the dynamics of the dipolar thiazolium cations.

  11. Effects of inhibitors and NaCl on the oxidation of reduced inorganic sulfur compounds by a marine acidophilic, sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH. (United States)

    Kamimura, Kazuo; Higashino, Emi; Kanao, Tadayoshi; Sugio, Tsuyoshi


    The effect of NaCl and the pathways of the oxidation of reduced inorganic sulfur compounds were studied using resting cells and cell-free extracts of Acidithiobacillus thiooxidans strain SH. This isolate specifically requires NaCl for growth. The oxidation of sulfur and sulfite by resting cells was strongly inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide. Carbonylcyanide m-chlorophenyl-hydrazone and monensin were also relatively strong inhibitors. Thiosulfate-oxidizing activity was not inhibited by these uncouplers. Valinomycin did not inhibit the oxidation of sulfur compounds. NaCl stimulated the sulfur- and sulfite-oxidizing activities in resting cells but not in cell-free extracts. The tetrathionate-oxidizing activity in resting cells was slightly stimulated by NaCl, whereas it did not influence the thiosulfate-oxidizing activity. Sulfide oxidation was biphasic, suggesting the formation of intermediate sulfur. The initial phase of sulfide oxidation was not affected by NaCl, whereas the subsequent oxidation of sulfur in the second phase was Na+-dependent. A model is proposed for the role of NaCl in the metabolism of reduced sulfur compounds in A. thiooxidans strain SH.

  12. Characterization of organic-inorganic hybrid layered perovskite and intercalated compound (n-C12H25NH3)2ZnCl4 (United States)

    Abdel-Kader, M. M.; Aboud, A. I.; Gamal, W. M.


    We report on some electrical properties and solid-solid phase transitions of organic-inorganic hybrid layered halide perovskite and intercalated compound (n-C12H25NH3)2ZnCl4 which is one member of the long-chain compounds of the series (n-CnH2n+1NH3)2,(n = 8-18). The complex dielectric permittivity ɛ*(ω,T) and the ac conductivity σ (ω,T) were measured as functions of temperature 100 K phase transition at T ≈ (362 ± 2) K, where the compound changes its state from intercalation to non-intercalation with a drastic increase in the c-axis by about 16.4%. The behavior of the frequency-dependent conductivity follows the Jonscher universal power law: σ (ω, T) αῳs(ῳ,T). The mechanism of electrical conduction in the low-temperature phase (phase II) can be described as quantum mechanical tunneling model.

  13. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: volume 1. Inorganic compounds (United States)

    Tang, M. J.; Cox, R. A.; Kalberer, M.


    Diffusion of gas molecules to the surface is the first step for all gas-surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions; however, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. Here we compile and evaluate, for the first time, the diffusivities (pressure-independent diffusion coefficients) of atmospheric inorganic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed. A different version of this compilation/evaluation, which will be updated when new data become available, is uploaded online ("target="_blank">

  14. Preparation a new sorbent based on polymeric ionic liquid for stir cake sorptive extraction of organic compounds and inorganic anions. (United States)

    Huang, Xiaojia; Wang, Yulei; Hong, Qiuyun; Liu, Yi; Yuan, Dongxing


    A new multi-interaction sorbent (MIS) based on polymeric ionic liquid was prepared and used as extractive medium of stir cake sorptive extraction (SCSE). In the presence of dimethyl sulfoxide, an ionic liquid, 1-vinylbenzyl-3-methylimidazolium chloride was used as monomer to copolymerize in situ with divinylbenzene to form the MIS. The influences of the content of monomer and the porogen solvent in the polymerization mixture on the extraction performance were investigated thoroughly. The MIS was characterized by infrared spectroscopy, elemental analysis, scanning electron microscopy and mercury intrusion porosimetry. Parabens and aromatic amines were used to investigate the extraction performance of MIS-SCSE for apolar and strongly polar analytes, respectively. The extraction parameters for parabens and aromatic amines were optimized. At the same time, simple and sensitive analytical methods for parabens and aromatic amines in real samples were developed by the combination of MIS-SCSE and HPLC/DAD. Some inorganic anions, such as F(-), Br(-), NO3(-), PO4(3-) and SO4(2-), were used to test the extraction performance of MIS-SCSE for anions. Results indicated that mechanism involved in the extraction of MIS is the multi-interaction modes including π-π, hydrophobic, hydrogen-bonding, dipole-dipole and anion-exchange interactions.

  15. Vibrational spectroscopic and DFT calculation studies of a new organic-inorganic compound of bis (4-acetylanilinium) tetrachlorocadmiate (II) (United States)

    Jellibi, A.; Chaabane, I.; Guidara, K.


    The FT-IR and Raman vibrational spectra of bis (4-acetylanilinium) tetrachlorocadmiate (II) compound have been measured at room temperature by FT-infrared spectroscopy (4000-400 cm-1) on polycrystalline samples, and by Raman spectroscopy (3600-30 cm-1) on monocrystals. The structure of the [C8H10NO] 2CdCl4 formed by two cations [C8H10NO]+ of same type and one type of anion [CdCl4]2- was optimized by density functional theory (DFT) using the B3LYP method. The theoretical wavenumbers spectra were scaled by multiple scaling factors, yielding a good agreement between the experimentally recorded and the theoretically calculated values. Root mean square (rms) value was calculated and the small difference between experimental and calculated modes has been interpreted by intermolecular interactions in the crystal. The comparison between the [C8H9NO] ligand and the [C8H10NO]2[CdCl4] compound of the Raman spectra showed a decrease in the wavenumber of the bands assigned to the stretching vibration of (NH3) group in the compound due to the effect of the protonation of the nitrogen.

  16. Oxidative treatment of bromide-containing waters: formation of bromine and its reactions with inorganic and organic compounds--a critical review. (United States)

    Heeb, Michèle B; Criquet, Justine; Zimmermann-Steffens, Saskia G; von Gunten, Urs


    Bromide (Br(-)) is present in all water sources at concentrations ranging from ≈ 10 to >1000 μg L(-1) in fresh waters and about 67 mg L(-1) in seawater. During oxidative water treatment bromide is oxidized to hypobromous acid/hypobromite (HOBr/OBr(-)) and other bromine species. A systematic and critical literature review has been conducted on the reactivity of HOBr/OBr(-) and other bromine species with inorganic and organic compounds, including micropollutants. The speciation of bromine in the absence and presence of chloride and chlorine has been calculated and it could be shown that HOBr/OBr(-) are the dominant species in fresh waters. In ocean waters, other bromine species such as Br2, BrCl, and Br2O gain importance and may have to be considered under certain conditions. HOBr reacts fast with many inorganic compounds such as ammonia, iodide, sulfite, nitrite, cyanide and thiocyanide with apparent second-order rate constants in the order of 10(4)-10(9)M(-1)s(-1) at pH 7. No rate constants for the reactions with Fe(II) and As(III) are available. Mn(II) oxidation by bromine is controlled by a Mn(III,IV) oxide-catalyzed process involving Br2O and BrCl. Bromine shows a very high reactivity toward phenolic groups (apparent second-order rate constants kapp ≈ 10(3)-10(5)M(-1)s(-1) at pH 7), amines and sulfamides (kapp ≈ 10(5)-10(6)M(-1)s(-1) at pH 7) and S-containing compounds (kapp ≈ 10(5)-10(7)M(-1)s(-1) at pH 7). For phenolic moieties, it is possible to derive second-order rate constants with a Hammett-σ-based QSAR approach with [Formula in text]. A negative slope is typical for electrophilic substitution reactions. In general, kapp of bromine reactions at pH 7 are up to three orders of magnitude greater than for chlorine. In the case of amines, these rate constants are even higher than for ozone. Model calculations show that depending on the bromide concentration and the pH, the high reactivity of bromine may outweigh the reactions of chlorine during

  17. Crystal structures and spectral properties of two polyoxometalate-based inorganic-organic compounds from silver-azine building blocks with bis-bidentate and tridentate ligands (United States)

    An, Bing; Zhou, Rui-Min; Sun, Li; Bai, Yan; Dang, Dong-Bin


    Two polyoxometalate-based inorganic-organic hybrid compounds constructed from silver(I)-L species and saturated Keggin type polyoxoanion, [Ag2L21]2(SiMo12O40)·1.5DMF·0.5CH3OHṡH2O 1 and [{Ag4L22(DMF)5}(SiMo12O40)] 2 (L1 = phenyl 2-pyridyl ketone azine, L2 = 3-phenyltriazolo[1,5-a]pyridine), have been synthesized and structurally characterized by IR, UV, elemental analysis, XRPD and complete single crystal structure analyses, where the ligands L1 and L2 are bis-bidentate and tridentate azines synthesized with the same materials under different conditions. The structure of 1 exhibits a dinuclear double-helicate with [SiMo12O40]4- anions as counter ions, where all of the Ag centers coordinate to bis-bidentate chelating ligands. Compound 2 displays a two-dimensional sheet formed by the Ag-organic infinite chains and the [SiMo12O40]4- alternately arranged in a “rail-like” fashion. The luminescent properties of 1 and 2 in the solid state were investigated.

  18. Formation of inorganic nanofibers by heat-treatment of poly(vinyl alcohol-zirconium compound hybrid nanofibers

    Directory of Open Access Journals (Sweden)

    Nakane K.


    Full Text Available Poly(vinyl alcohol-zirconium compound hybrid nanofibers (precursors were formed by electrospinning employing water as a solvent for the spinning solution. The precursors were converted into oxide (ZrO2, carbide (ZrC or nitride (ZrN nanofibers by heating them in air, Ar or N2 atmospheres. Monoclinic ZrO2 nanofibers with high-specific surface area were obtained by heat-treatment of the precursors in air. ZrC and ZrN nanofibers could be obtained below theoretical temperatures calculated from thermodynamics data.

  19. Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives. (United States)

    Zachhuber, Bernhard; Ramer, Georg; Hobro, Alison; Chrysostom, Engelene T H; Lendl, Bernhard


    A pulsed stand-off Raman system has been built and optimised for the qualitative and quantitative analysis of inorganic and organic samples including explosives. The system consists of a frequency doubled Q-switched Nd:YAG laser (532 nm, 10 Hz, 4.4 ns pulse length), aligned coaxially with a 6″ Schmidt-Cassegrain telescope for the collection of Raman scattered light. The telescope was coupled via a fibre optic bundle to an Acton standard series SP-2750 spectrograph with a PI-MAX 1024RB intensified CCD camera equipped with a 500-ps gating option for detection. Gating proved to be essential for achieving high signal-to-noise ratios in the recorded stand-off Raman spectra. In some cases, gating also allowed suppression of disturbing fluorescence signals. For the first time, quantitative analysis of stand-off Raman spectra was performed using both univariate and multivariate methods of data analysis. To correct for possible variation in instrumental parameters, the nitrogen band of ambient air was used as an internal standard. For the univariate method, stand-off Raman spectra obtained at a distance of 9 m on sodium chloride pellets containing varying amounts of ammonium nitrate (0-100%) were used. For the multivariate quantification of ternary xylene mixtures (0-100%), stand-off spectra at a distance of 5 m were used. The univariate calibration of ammonium nitrate yielded R (2) values of 0.992, and the multivariate quantitative analysis yielded root mean square errors of prediction of 2.26%, 1.97% and 1.07% for o-, m- and p-xylene, respectively. Stand-off Raman spectra obtained at a distance of 10 m yielded a detection limit of 174 μg for NaClO(3). Furthermore, to assess the applicability of stand-off Raman spectroscopy for explosives detection in "real-world" scenarios, their detection on different background materials (nylon, polyethylene and part of a car body) and in the presence of interferents (motor oil, fuel oil and soap) at a distance of 20 m was also

  20. Seasonal variation and source apportionment of organic and inorganic compounds in PM2.5 and PM10 particulates in Beijing, China

    Institute of Scientific and Technical Information of China (English)

    Xingru Li; Yuesi Wang; Xueqing Guo; Yingfeng Wang


    The distribution and source of the solvent-extractable organic and inorganic components in PM2.5 (aerodynamics equivalent diameter below 2.5 microns),and PM10 (aerodynamics equivalent diameter below 10 microns) fractions of airborne particles were studied weekly from September 2006 to August 2007 in Beijing.The extracted organic and inorganic compounds identified in both particle size ranges consisted of n-alkanes,PAHs (polycyclic aromatic hydrocarbons),fatty acids and water soluble ions.The potential emission sources of these organic compounds were reconciled by combining the values of n-alkane carbon preference index (CPI),%waxCn,selected diagnostic ratios of PAHs and principal component analysis in both size ranges.The mean cumulative concentrations of n-alkanes reached 1128.65 ng/m3 in Beijing,74% of which (i.e.,831.7 ng/m3) was in the PM2.5 fraction,PAHs reached 136.45 ng/m3 (113.44 ng/m3 or 83% in PM2.5),and fatty acids reached 436.99 ng/m3 (324.41 ng/m3 or 74% in PM2.5),which resulted in overall enrichment in the fine particles.The average concentrations of SO42-,NO3-,and NH4+ were 21.3 ± 15.2,6.1 ± 1.8,12.5 ± 6.1 μg/m3 in PM2.5,and 25.8 ± 15.5,8.9 ± 2.6,16.9 ± 9.5 μg/m3 in PM10,respectively.These three secondary ions primarily existed as ammonium sulfate ((NH4)2SO4),ammonium bisulfate (NH4HSO4) and ammonium nitrate (NH4NO3).The characteristic ratios of PAHs revealed that the primary sources of PAHs were coal combustion,followed by gasoline combustion.The ratios of stearic/palmitic acid indicated the major contribution of vehicle emissions to fatty acids in airborne particles.The major alkane sources were biogenic sources and fossil fuel combustion.The major sources of PAHs were vehicular emission and coal combustion.

  1. Trends in air concentration and deposition at background monitoring sites in Sweden - major inorganic compounds, heavy metals and ozone

    Energy Technology Data Exchange (ETDEWEB)

    Kindbom, K.; Svensson, Annika; Sjoeberg, K.; Pihl Karlsson, G.


    This report describes concentrations in air of sulphur compounds, soot, nitrogen compounds and ozone in Sweden between 1985-1998. Time trends of concentration in precipitation and deposition of sulphate, nitrate, ammonium, acidity, base cations and chloride in six different regions covering Sweden are evaluated during the period 1983-1998. Trends of heavy metals in precipitation have been analysed for the period 1983-1998 and the change in heavy metal concentration, 1975-1995, in mosses is described. Data used in the trend analyses originates from measurements performed at six Swedish EMEP stations and from approximately 25 stations within the national Precipitation Chemistry Network. Two different statistical methods, linear regression and the non-parametric Mann Kendall test, have been used to evaluate changes in annual mean values. Time trends of concentration of sulphur dioxide, particulate sulphate, soot, nitrogen dioxide, total nitrate and total ammonium in air show highly significant decreasing trends, except for soot at one station in northern Sweden. Concentrations of ozone have a strong seasonal variation with a peak occurring in spring every year. However, annual ozone concentrations show no obvious trends in spite of decreasing emissions of the precursors NOx and VOC. A slight indication of a decreasing trend in the number of ozone episodes might be seen from 1990 to 1998. Sulphate concentrations in precipitation and deposition show strongly significant decreasing trends in the whole country. Concentrations and deposition of nitrate and ammonium have been decreasing in all areas except for nitrate at stations in south-west and north-west Sweden and ammonium in south-west Sweden. Acidity has decreased in all areas since 1989, resulting in increasing pH values in Sweden. The interannual variations of concentration and deposition of base cations and chloride are large and few general trends can be seen during 1983-1997. Time trends of four heavy metals in

  2. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding; Inhibicion de la formacion de compuestos intermetalicos en juntas aluminio-acero soldadas por friccion-agitacion

    Energy Technology Data Exchange (ETDEWEB)

    Torres Lopez, E. A.; Ramirez, A. J.


    Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW) has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 degree centigrade. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters. (Author)

  3. Inorganic Crystal Structure Database (ICSD) (United States)

    SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

  4. Compound-specific 15N analysis of amino acids in 15N tracer experiments provide an estimate of newly synthesised soil protein from inorganic and organic substrates (United States)

    Charteris, Alice; Michaelides, Katerina; Evershed, Richard


    Organic N concentrations far exceed those of inorganic N in most soils and despite much investigation, the composition and cycling of this complex pool of SOM remains poorly understood. A particular problem has been separating more recalcitrant soil organic N from that actively cycling through the soil system; an important consideration in N cycling studies and for the soil's nutrient supplying capacity. The use of 15N-labelled substrates as stable isotope tracers has contributed much to our understanding of the soil system, but the complexity and heterogeneity of soil organic N prevents thorough compound-specific 15N analyses of organic N compounds and makes it difficult to examine any 15N-labelled organic products in any detail. As a result, a significant proportion of previous work has either simply assumed that since the majority of soil N is organic, all of the 15N retained in the soil is organic N (e.g. Sebilo et al., 2013) or subtracted 15N-labelled inorganic compounds from bulk values (e.g. Pilbeam et al., 1997). While the latter approach is more accurate, these methods only provide an estimate of the bulk 15N value of an extremely complex and non-uniformly labelled organic pool. A more detailed approach has been to use microbial biomass extraction (Brookes et al., 1985) and subsequent N isotopic analysis to determine the 15N value of biomass-N, representing the fraction of 15N assimilated by microbes or the 15N cycling through the 'living' or 'active' portion of soil organic N. However, this extraction method can only generate estimates and some lack of confidence in its validity and reliability remains. Here, we present an alternative technique to obtain a measure of the assimilation of an applied 15N substrate by the soil microbial biomass and an estimate of the newly synthesized soil protein, which is representative of the magnitude of the active soil microbial biomass. The technique uses a stable isotope tracer and compound-specific 15N analysis, but

  5. Increased Survivorship and Altered Cytokine Profile from Treatment of Influenza A H1N1-Infected Mice with Ekybion: A Drug Complex of Natural Extracts and Inorganic Compounds

    Directory of Open Access Journals (Sweden)

    Christopher Lupfer


    Full Text Available Ekybion is a drug complex of 16 natural extracts and inorganic compounds designed to treat a variety of respiratory pathogens of bacterial and viral origin. It is licensed throughout Europe for the treatment of respiratory tract infections from equine parainfluenza type 3 and equine herpes virus type 1 in equine stables. The purpose of this paper was to test the efficacy of Ekybion on a well-developed animal model of influenza A infection and determine a mode of action. Experiments were performed with Balb/c mice infected with a lethal dose of influenza A/PR/8/34 H1N1 virus and treated with nebulized Ekybion every 8 h in a time-dependant or dose-dependant fashion. These experiments showed that mice treated prior to infection with Ekybion had a higher survival rates (~46% compared with untreated animals (~0%. Paradoxically, these mice showed no significant difference in lung virus titer or weight loss. There was, however, a decrease in the level of GM-CSF, IL-6, and G-CSF cytokines in the lungs of Ekybion-treated, infected mice. It is possible that decreases in proinflammatory cytokines may have contributed to increased survivorship in Ekybion-treated influenza-infected mice.

  6. Methods development for separation of inorganic anions, organic acids and bases, and neutral organic compounds by ion chromatography and capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Iowa State Univ., Ames, IA (United States)


    A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several different eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.

  7. Hydrothermal Synthesis and Crystal Structure of Inorganic-organic Hybrid Compound [H3NC2H4NH2]VOPO4

    Institute of Scientific and Technical Information of China (English)


    An inorganic-organic hybrid compound, [H3NC2H4NH2]VOPO4 was synthesized by meansof the hydrothermal method. It was crystallized in a monoclinic system, a space group P21/c,with the crystal cell parameters: a=0. 922 85(11) nm, b=0. 729 94(9) nm, c=0. 984 95(11)nm, β=101. 280(3)°, V=0. 650 67(13) nm3, Mr=223.02 g/mol, Dc=2. 277 g/cm3, Z=4,R= 0. 031 5, ωR= 0. 086 5, GOF = 1. 085. The VO5N octahedra chains are corner-linked byPO4 tetrahedra; the VOsN octahedra are all trans-linked with V-O bonds being alternately short and long. The monoprotonated ethylenediamine was intercalated between the layers with one end coordinating to V and the other end as an H-bond donor interacting with a terminal O atom of PO4 from a neighboring sheet. The elementary analysis, infrared spectrum characters and thermal stability were also given.

  8. Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water—Part 1: Organic compounds and water by consideration of short- and long-range effects using X-UNIFAC.1 (United States)

    Erdakos, Garnet B.; Asher, William E.; Seinfeld, John H.; Pankow, James F.

    The semi-empirical group contribution method (GCM) of Kikic et al. [Chem. Eng. Sci. 46 (1991) 2775-2780] for estimating activity coefficient ( ζ) values of neutral organic compounds and water in solutions composed of organic compounds, dissolved inorganic salts, and water is adapted for application to atmospheric particulate matter (PM). It is assumed that ζ values are determined by a combination of short- and long-range interactions. The ζ expression involves conventional UNIFAC terms and a Debye-Hückel term, with the former computed using group-group interaction parameters. Organic-organic interaction parameters are assigned the values from the UNIFAC-LLE model of Magnussen et al. [Ind. Eng. Chem. Process Design Develop. 20 (1981) 331-339]. Forty interaction parameters (ion-solvent group and anion-cation) were obtained from Kikic et al. [Chem. Eng. Sci. 46 (1991) 2775-2780], Achard et al. [Fluid Phase Equilibria 98 (1994) 71-89], and Ming and Russell [Am. Inst. Chem. Eng. J. 48 (2002) 1331-1348]. Twenty additional interaction parameters (ion-solvent group) are estimated based on 879 UNIQUAC-fitted ζ values for organic compounds and water. The fitted ζ values are based on liquid-liquid equilibrium (LLE) data for a range of ternary and quaternary organic/inorganic salt/water mixtures at 293-308 K. The UNIQUAC fits are analogous to those described by Fredenslund et al. [Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method, Elsevier Scientific Publishing, New York, 1977]. The LLE mixture compositions range from primarily organic solutions to primarily aqueous solutions with maximum ionic strengths of ˜5 mol kg -1. The groups characteristic of organic compounds found in atmospheric PM considered here include: CH 3-, -CH 2-, -CH|-, -C||-, -OH, -CH 2CO-, and -COOH. These are: single bonded carbon with three, two, one, and zero hydrogens, respectively, hydroxyl, -CH 2-carbonyl, and carboxyl, respectively. The inorganic salts represented in the mixture

  9. Structural crystallography of inorganic oxysalts

    CERN Document Server

    Krivovichev, Sergey V


    Inorganic oxysalts are chemical compounds that contain oxygen - the most abundant element in the Earth's core. This book is the first systematic survey of structures of inorganic oxysalts considered from the viewpoint of modern scientific methods of description and visualisation of complex atomic arrangements.

  10. Structure determination of a novel metal-organic compound synthesized from aluminum and 2,5-pyridinedicarboxylic acid

    DEFF Research Database (Denmark)

    Ståhl, Kenny; Brink, Bastian; Andersen, Jonas


    The structure of [Al2(pydc)2(μ2-OH)2(H2O)2]n(pydc=2,5-pyridinedicarboxylate) was successfully determined from powder X-ray diffraction data. The compound crystallizes in the triclinic system (space group P -1) with a=6.7813(1) A° , b=7.4944(1) A°, c=8.5013(1) A° , α=95.256(1)°, β=102.478(1)°, γ=1...

  11. Castor Bean Cereal Based Bio-Organic-Inorganic Compound Fertilizers and Use%蓖麻粕基生物有机无机复混肥及其应用

    Institute of Scientific and Technical Information of China (English)

    陈绍荣; 邵建华; 赵立新; 刘园园


    A brief account is given of the properties and features of castor bean cereal based bio-organic-inorganic compound fertilizers.By field experiment of fertilizer efficiency with corn, rice and peanut , it is proved that castor bean cereal based bio-organic-inorganic compound fertilizers have better effects on increasing production and improving the properities of soil, and can be widely applied to grain and oil crops.%简要介绍了蓖麻粕基生物有机无机复混肥的性能及特点。通过玉米、水稻、花生大田肥效试验,结果证明蓖麻粕基生物有机无机复混肥具有较好的增产改土效果,可在粮油作物上推广应用。

  12. Organic inorganic compound fertilizer application in Wheat Fertilizer Efficiency Experiment of%有机-无机复混肥料在小麦上的应用肥效试验初探

    Institute of Scientific and Technical Information of China (English)



      根据观察:在小麦上应用有机无机-复混肥料对小麦生长有促进作用,且无副作用,对小麦生长是安全的。%  according to the observation in wheat: application of organic-inorganic compound fertilizer on wheat growth, promote, and no negative effects on the growth of wheat, is safe.

  13. Synthesis and Characterization of Two Novel Organic-Inorganic Compounds Based on Tetrahexyl and Tetraheptyl Ammonium Ions and the Preyssler Anion and Their Catalytic Activities in the Synthesis of 4-Aminopyrazolo[3,4-d]- Pyrimidines

    Directory of Open Access Journals (Sweden)

    Fatemeh Farrash Bamoharram


    Full Text Available Two novel organic–inorganic compounds based on tetrahexylammonium (THA and tetraheptylammonium (THPA ions and the Preyssler anion, [NaP5W30O110]14-, were synthesized and formulated as (THA7.7H6.3 [NaP5W30O110] (A and (THPA7.5 H6.5[N aP5W30O110] (B. The synthesized compounds were characterized by IR, UV, and TGA and used for the catalytic synthesis of 4-aminopyrazolo[3,4,-d]pyrimidine derivatives 2a-2d. Our findings showed efficient catalytic activities for A and B.

  14. Investigation of the influence of liquid water films on O3 and PAN deposition on plant leaf surfaces treated with organic / inorganic compounds (United States)

    Sun, Shang; Moravek, Alexander; von der Heyden, Lisa; Held, Andreas; Kesselmeier, Jürgen; Sörgel, Matthias


    Liquid water films on environmental surfaces play an important role in various fields of interest (Burkhardt and Eiden, 1994). For example, the deposition of water soluble trace gases could be increased by surface moisture. Chameides and Stelson (1992) found out that the dissolution of trace gases in airborne particulate matter increases with rising water/solid ratio of the particles. Further, Flechard et al. (1999) concluded that deliquescent salt particles represent a potential sink for trace gases, depending on their chemical property. The formation of surface water films and its influence on the gas deposition was proposed by many previous studies (Fuentes and Gillespie, 1992, Burkhardt and Eiden, 1994, van Hove et al., 1989, Burkhardt et al., 1999, Flechard et al., 1999). In this study we investigate the influence of leaf surface water films on the deposition of O3 and PAN under controlled laboratory conditions. A twin cuvette system described in Sun et al. (2015) was used to control the environmental parameters such as light, temperature, trace gas mixing ratio and humidity. Furthermore, the leaf surface was treated with various organic and inorganic solutions to investigate the influence of deposited compounds on the electrical surface conductance of the leaves and the surface deposition of O3 and PAN at various relative humidities. The result shows that RHcrit, where the electrical surface conductance (G) increases exponentially, was 40 % during the light period and 50 % during the dark period. Furthermore, we observed that the formation of the leaf surface liquid film was depended on the deposited compounds on the leaf cuticles. For the O3 deposition on plants (Quercus ilex) a clear enhancement at rising environmental air humidity under light and dark condition was found. The increase during light conditions can be related partly to increasing stomatal conductance with higher RH. From the non-stomatal deposition measured in dark experiments, we could

  15. Effect of Electrolyte on the Dissolution of Aluminum from Acid Sois and the Distribution of Aluminum Forms in Soil Solution

    Institute of Scientific and Technical Information of China (English)



    KCl,CaCl2,NH4Cl,NaCl,K2SO4 and KF solutions were used for studying the effects of cations and anions on the dissolution of aluminum and the distribution of aluminum forms respectively.Power of exchanging and releasing aluminum of four kinds of cations was in the decreasing order Ca2+>K+>NH4+>Na+,The dissolution of aluminum increased with the cation concentration.The adsorption affinity of various soils fro aluminum was different.The aluminum in the soil with a stronger adsorption affinity was diffcult to be exchanged and released by cations.The Al-F complexes were main species of inorganic aluminum at a low concentration of cations,while Al3+ became major species of inorganic aluminum at a hiht concentration of cations .The results on the effct of anions indicated that the concentrations of total aluminum,three kinds of inorganc aluminum(Al3+,Al-F and Al-OH complexes) and organic aluminum complexes(Al-OM) when SO42- was added into soil suspension were lower than those when Cl- was added.The dissolution of aluminum from soils and the distribution of aluminum forms in solution were affected by the adsorption of F- on the soil.For soils with strong affinity for F-,the concentrations of the three inorganic aluminum species in soil solution after addition of F- were lower than those after addition of Cl-;but for soils with weak affinity for F-,the concentrations of Al3+ and Al-OM were lower and the concentrations of Al-F complexes and total inorganic aluminum after addition of F- were higher than those after addition of Cl- .The increase of F- concentration in soil solution accelerated the dissolution of aluminum from soils.

  16. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.


    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, four domestic wells, two springs, one stock well, three dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituent, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that equaled or exceeded their reporting levels. The ethylbenzene concentration in one water sample exceeded the reporting level.



  18. Synthesis, characterization and electrochemical investigation of a new inorganic-organic hybrid compound constructed by Keggin-type polyoxometalate and cyanoguanidine (United States)

    Zonoz, Farrokhzad Mohammadi; Zonoz, Irandokht Mohammadi; Jamshidi, Ali; Alizadeh, Mohammad Hassan


    An inorganic-organic hybrid complex [HDCD]3[PW12O40]·3H2O (1) (DCD = 2-cyanoguanidine) has been synthesized from the reaction of Keggin polyanion and cyanoguanidine (C2N4H4) under mild condition, and characterized by using elemental analysis, infrared spectrum, thermogravimatric analysis and single crystal X-ray diffraction. X-ray crystallography reveals that 1 displays an inorganic-organic hybrid frameworks constructed by [PW12O40]3- Keggin-type polyoxoanion and three {(HDCD)}+ monocationic hydrogen-bonded units. The electrochemical behavior and electrocatalysis of 1 have been studied in detail.

  19. Immobilization of L-Lysine on Zeolite 4A as an Organic-Inorganic Composite Basic Catalyst for Synthesis of α,β-Unsaturated Carbonyl Compounds under Mild Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Farzad; Rezapour, Mehdi; Kianpour, Sahar [Islamic Azad Univ., Isfahan (Iran, Islamic Republic of)


    Lysine (Lys) immobilized on zeolite 4A was prepared by a simple adsorption method. The physical and chemical properties of Lys/zeolite 4A were investigated by X-ray diffraction (XRD), FT-IR, Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-vis. The obtained organic-inorganic composite was effectively employed as a heterogeneous basic catalyst for synthesis of α,β-unsaturated carbonyl compounds. No by-product formation, high yields, short reaction times, mild reaction conditions, operational simplicity with reusability of the catalyst are the salient features of the present catalyst.

  20. Synthesis and Characterizaion of a New Inorganic-organic Sulfate Compound--Crystal Structure of [Ni(H2O)6][H2N(C2H4)2NH2](SO4)2

    Institute of Scientific and Technical Information of China (English)

    MENG He; XING Yan; FU Yun-long; SHI Zhan; PANG Wen-qin


    [Ni(H2O)6][H2N(C2H4)2NH2](SO4)2 is an inorganic-organic compound with a new open framework synthesized by hydrothermal method, and characterized by means of single-crystal diffraction and spectroscopic data. The compound crystallized in a monoclinic space group P21/n with a=1.29089(2) nm, b=1.06301(3) nm, c=1.33202(4) nm, β=114.0870(10)°, V=1.67127(8) nm3, Z=4, and was solved by using the direct method and the least-squares refinement converged at R=0.0214[I>2σ(I)]. The structure consists of isolated Ni(H2O)6 octahedra and SO4 tetrahedra, with both of them hydrogen-bonded to piperazine cations.

  1. Transfer and transport of aluminum in filtration unit

    Institute of Scientific and Technical Information of China (English)


    Aluminum salt coagulants were used prevalently in various water works. In this article, the effects of filtration on residual aluminum concentration and species distribution were researched by determining the concentration of different Aluminum species before and after single layer filter, double layer filter, and membrane filtration units. In the research, size exclusion chromatography (SEC) was used to separate colloidal and soluble aluminum, ion exchange chromatography (IEC) was used to separate organic and inorganic aluminum, and inductivity coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine the aluminum concentration. The results showed that the rapid filtration process had the ability of removing residual aluminum from coagulant effluent water, and that double layer filtration was more effective in residual aluminum removal than single layer filtration, while Nano filtration was more effective than micro filtration. It was found that when the residual aluminum concentration was below 1mg/L in sediment effluent, the residual aluminum concentration in treated water was above 0.2 mg/L. The direct rapid filtration process mainly removed the suspended aluminum. The removal of soluble and colloidal aluminum was always less than 10% and the natural small particles that adsorbed the amount of soluble or small particles aluminum on their surface were difficult to be removed in this process. Micro filtration and nano filtration were good technologies for removing aluminum; the residual aluminum concentration in the effluent was less than 0.05 mg/L.

  2. 有机-无机复混肥对烤烟生长及产质量的影响%Effect of Organic-inorganic Compound Fertilizer on Growth,Yield and Quality of Flue-cured Tobacco

    Institute of Scientific and Technical Information of China (English)

    光映霞; 曹良波


    The effect of different types of organic-inorganic compound fertilizer on yield and quality of flue-cured tobacco was studied,in order to screen the best fertilizer varieties and the optimum amount of fertilization for tobacco production of Yunnan Zhaotong City.The results showed that: the application of organic-inorganic fertilizer could promote tobacco plant's growth and development,promote the leaves' growth,enter the vigorous growing period fast.The 'Zhenfa' organic-inorganic fertilizer was better in the field performance,yield increased by 0.79%~7.60%,output value increased by 4.48%~10.58% using the organic-inorganic compound fertilizer.Fertilier amount with 50% tobacco special fertilizer and 50% organic-inorganic fertilizer showed good performance in each index.The yield,output value,price and the proportion of high-quality leaves reached respectively 2 989.35 kg/hm2,40 007.85 yuan/hm2,13.39 yuan/kg,44.88% using 'Zhenfa' fertilizer.Application of organic-inorganic compound fertilizer could greatly improve the economic benefit of tobacco.%研究不同类型有机-无机复混肥对烤烟产质量的影响,筛选出适合云南昭通市烤烟生产上施用效果好的肥料品种及最佳施肥量,试验结果表明:施用有机-无机复混肥能促进烟株早生快发,叶片开片好,进入旺长期快,以"珍发"牌有机-无机复混肥田间表现较好,施用有机-无机复混肥烟叶产量提高0.79%~7.60%,产值提高4.48%~10.58%。以50%烟草专用肥+50%有机-无机复混肥施肥处理的各项指标较好,其中以50%烟草专用肥+50%"珍发"牌有机-无机复混肥处理最佳,产量、产值、均价及上等烟比例分别为2 989.35 kg/hm2、40 007.85元/hm2、13.39元/kg、44.88%。施用有机-无机复混肥能大幅提高烟叶的经济效益。

  3. Thermal Decoating of Aerospace Aluminum Alloys for Aircraft Recycling (United States)

    Muñiz Lerma, Jose Alberto; Jung, In-Ho; Brochu, Mathieu


    Recycling of aircraft aluminum alloys can be complex due to the presence of their corrosion protection coating that includes inorganic compounds containing Cr(VI). In this study, the characterization and thermal degradation behavior of the coating on aluminum substrates coming from an aircraft destined for recycling are presented. Elements such as Sr, Cr, Si, Ba, Ti, S, C, and O were found in three different layers by EDS elemental mapping corresponding to SrCrO4, Rutile-TiO2, SiO2, and BaSO4 with an overall particle size D 50 = 1.96 µm. The thermal degradation profile analyzed by TGA showed four different stages. The temperature of complete degradation at the fourth stage occurred at 753.15 K (480 °C) at lower heating rates. At higher heating rates and holding an isotherm at the same temperature, the residence time to fully decompose the aircraft coating has been estimated as 4.0 ± 0.2 minutes. The activation energy calculated by the Flynn-Wall-Ozawa and the modified Coats-Redfern methods for multiple fraction of decomposition showed a non-constant behavior indicating the complexity of the reaction. Finally, the concentration of Cr(VI) released to the environment during thermal decoating was obtained by UV-Vis spectroscopy. It was found that 2.6 ± 0.1 µg of Cr(VI)/mm2 of aluminum substrate could be released unless adequate particle controls are used.

  4. A new paratungstate-A-based organic-inorganic hybrid compound: Synthesis, structure and photocatalytic property of [Co(en)3]2[H2W7O24]·8H2O (United States)

    Yan, Gang; Wang, Xin; Ma, Yuanyuan; Cheng, Xin; Wang, Yonghui; Li, Yangguang


    A new paratungstate-A-based organic-inorganic hybrid compound with the chemical formula of [Co(en)3]2[H2W7O24]·8H2O (en = ethylenediamine) (1) has been hydrothermally synthesized and structurally characterized by the elemental analysis, IR, TG, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic space group P21/c with a = 17.216(3) Å, b = 14.986(3) Å, c = 23.088(8) Å, β = 128.151(2)°, V = 4684.2 Å3, Z = 1, R1 = 0.0484, and wR2 = 0.1087. The structure of 1 consists of the [H2W7O24]4- building blocks and [Co(en)3]2+ metal-organic cationic moieties, which are packed together via the electrostatic forces and extensive hydrogen-bonding interactions to form a three-dimensional supramolecular framework. Interestingly, compound 1 represents the first structurally-defined hybrid compound based on the metastable paratungstate-A polyoxoanions and metal-organic units. The degradation of Rhodamine-B (RhB) under UV irradiation with 1 as the heterogeneous photocatalyst has been investigated, showing a good photocatalytic property of 1 for RhB degradation.

  5. New Inorganic-organic Hybrid Compound Containing One Dimensional Keggin Polyoxometalate[SiW11O39Co]6- Chains:Preparation,Characterization and Application in Chemically Bulk-modified Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-li; LIN Hong-yan; LIU Guo-cheng; CHEN Bao-kuan; BI Yan-feng


    A new inorganic-organic hybrid compound based on polyoxometalate and organic ligand formulated as (H2bpp)3[SiW11O39Co]~2H2O(1)[bpp=1,3-bis(4-pyridyl)propane]was hydrothermally synthesized and structurally characterized by elemental analysis,single-crystal X-ray diffraction,IR,TG,and cyclic voltammetry.Single-crystal X-ray diffraction analysis reveals that compound 1 consists of interesting cobalt-monosubstituted POMs one dimensional chain together with protonated bpp ligands.Additionally,the polyoxoanions combined with the discrete organic substrates by hydrogen bond interactions to afford a supramolecular 3D network structure.The hybrid compound 1 was used as a bulk modifier to fabricate a three-dimensional chemically modified carbon paste electrode(1-CPE)by direct mixing.The electrochemical behavior and electrocatalysis of 1-CPE were studied in detail.The results indicate that 1-CPE has good electrocatalytic activities toward the reduction of nitrite or bromate in 1mol/L H2SO4 aqueous solution.1-CPE shows remarkable stability that can be ascribed to the insolubility of compound 1 and the supramolecular interactions existed between 1D POM anion chains and organic ligand bpp,which is very important for practical applications in electrode modification.

  6. Crystal structure, thermal studies, Hirshfeld surface analysis, vibrational and DFT investigation of organic-inorganic hybrid compound [C9H6NOBr2]2CuBr4·2H2O (United States)

    Mesbeh, Radhia; Hamdi, Besma; Zouari, Ridha


    Single crystals of a hybrid organic/inorganic material with the formula [C9H6NOBr2]2CuBr4·2H2O were studied by X-ray diffraction. The compound crystallizes in the monoclinic system, space group C2/c with the following unit cell parameters: a = 7.8201 (12) Ǻ, b = 18.203 (3) Ǻ, c = 19.486 (3) Ǻ, β = 98.330 (5)°, Z = 4, V = 2744.6 (7) Ǻ3. Crystal structure was solved with a final R = 5.66% for 3483 independent reflections. The atomic arrangement shows an alternation of organic and inorganic layers. Between layers, the cohesion is performed via Osbnd H⋯Br, Csbnd H⋯Br, Nsbnd H⋯Br, Nsbnd H⋯O and Osbnd H⋯O hydrogen bending. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements have been carried out on [C9H6NOBr2]2CuBr4·2H2O crystal in the temperature range between 50 and 500 °C. The assignment of the observed bands in the solid state FTIR and Raman spectra of the compound was assisted by the theoretically predicted frequencies and compared with data previously reported for similar compounds. The theoretical geometrical parameters in the ground state have been investigated by density functional theory (DFT) with the B3LYP/LanL2DZ level of theory. The optical properties were investigated by optical absorption and show two bands at 279, 300 nm. The percentages of hydrogen bonding interactions are analyzed by Fingerprint plots of Hirshfeld surface.

  7. 油桐饼粕有机-无机复混肥的生产工艺%Study on the Producing Technology of Organic-inorganic Compound Fertilizer Using Tung Oil Cake

    Institute of Scientific and Technical Information of China (English)

    郑威; 刘金龙; 罗兴武; 佃国党


    Organic-inorganic compound fertilizer was produced from tung oil cake. The granulation parameters were optimized by orthogonal test based on single factor experiments. And the nutrition compounds in the fertilizer and raw material were tested. The results showed that when the fertilizer formula was tobacco stem 64%+tung oil cake 11%+ NH4H2PO4 25%, the optimum granulation parameters were, fineness of raw material 300 holes, dosage of adhesive 20 g/kg, dosage of water 300 g/kg. The content of N, P, K in organic-inorganic compound fertilizer reached 16.90%. This product had high effectiveness, could improve soil quality and control pests to some extent.%设计产品配方生产油桐饼粕有机-无机复混肥,在单因素试验的基础上进行正交试验,得出最佳造粒参数,并对原料和产品的营养成分进行检测.结果表明,按发酵烟茎、发酵油桐饼柏、磷酸一铵质量比为64∶11∶25的配方生产油桐饼粕有机-无机复混肥,最佳造粒参数为原料粉碎成粒度为300目的粉末,黏合剂用量20 g/kg,加水量300 g/kg,生产的油桐饼粕有机-无机复混肥中氮、磷、钾总含量达16.90%.该产品肥效高,可改良土壤,还能够防治农田害虫,是有机-无机复混肥中的新品种.

  8. Comparison of abundances, compositions and sources of elements, inorganic ions and organic compounds in atmospheric aerosols from Xi'an and New Delhi, two megacities in China and India. (United States)

    Li, Jianjun; Wang, Gehui; Aggarwal, Shankar G; Huang, Yao; Ren, Yanqin; Zhou, Bianhong; Singh, Khem; Gupta, Prabhat K; Cao, Junji; Zhang, Rong


    Wintertime TSP samples collected in the two megacities of Xi'an, China and New Delhi, India were analyzed for elements, inorganic ions, carbonaceous species and organic compounds to investigate the differences in chemical compositions and sources of organic aerosols. The current work is the first time comparing the composition of urban organic aerosols from China and India and discussing their sources in a single study. Our results showed that the concentrations of Ca, Fe, Ti, inorganic ions, EC, PAHs and hopanes in Xi'an are 1.3-2.9 times of those in New Delhi, which is ascribed to the higher emissions of dust and coal burning in Xi'an. In contrast, Cl(-), levoglucosan, n-alkanes, fatty alcohols, fatty acids, phthalates and bisphenol A are 0.4-3.0 times higher in New Delhi than in Xi'an, which is attributed to strong emissions from biomass burning and solid waste incineration. PAHs are carcinogenic while phthalates and bisphenol A are endocrine disrupting. Thus, the significant difference in chemical compositions of the above TSP samples may suggest that residents in Xi'an and New Delhi are exposed to environmental hazards that pose different health risks. Lower mass ratios of octadecenoic acid/octadecanoic acid (C18:1/C18:0) and benzo(a)pyrene/benzo(e)pyrene (BaP/BeP) demonstrate that aerosol particles in New Delhi are photochemically more aged. Mass closure reconstructions of the wintertime TSP indicate that crustal material is the most abundant component of ambient particles in Xi'an and New Delhi, accounting for 52% and 48% of the particle masses, respectively, followed by organic matter (24% and 23% in Xi'an and New Delhi, respectively) and secondary inorganic ions (sulfate, nitrate plus ammonium, 16% and 12% in Xi'an and New Delhi, respectively).

  9. Estimating intestinal absorption of inorganic and organic selenium compounds by in vitro flux and biotransformation studies in Caco-2 cells and ICP-MS detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Rasmussen, Laura Hyrup; Gabel-Jensen, Charlotte


    selenite and MeSeA fluxes correlated to poor in vivo absorption. Speciation analysis of cell lysate and donor and receptor solutions by LC-ICP-MS showed limited transformation of all selenium compounds. Extensive transformation as well as significantly increased absorptive flux was observed when co......SeA, including volatile species, whereas no significant increases in fluxes were observed. In summary, the absorption of selenite selenate and the selenoamino acids is considered complete under physiological conditions, but the absorption mechanisms and metabolism of the compounds are different. © 2011 Springer......The aim of the present work was to compare and estimate absorption and biotransformation of selected selenium compounds by studying their fluxes across Caco-2 cells. Five different selenium compounds, selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), selenate, selenite...

  10. Production of organic-inorganic compound fertilizer by extruding granulation polishing circle process%挤压造粒抛圆工艺生产有机-无机复混肥

    Institute of Scientific and Technical Information of China (English)



    介绍挤压造粒抛圆工艺生产有机肥和有机-无机复混肥的工艺流程和工艺创新点。采用有机废弃物经好氧发酵得到的有机肥原料颗粒大,堆积密度小,宜采用三级组合抛光挤压造粒设备生产,生产的有机-无机复混肥成球率高达90%以上,强度大,成球水分低(w(H2O)不超过20%),且吨肥能耗低。%The extruding granulation polishing circle process for production of organic fertilizer and organic-inorganic compound fertilizer and its innovations are introduced. The organic fertilizer raw material is obtained from organic waste by aerobic fermentation, the particle is big, the stacking density is small, through using three-level combination polishing extruding granulation equipment, the ball rate of organic-inorganic fertilizer is above 90%, the particle strength is high, the w(H2O) is less than 20%, and the energy consumption per ton product is low.

  11. Microstructure of SiC-Si-Al2O3 composites derived from silicone resin - metal aluminum filler compounds by low temperature reduction process (United States)

    Narisawa, M.; Abe, Y.


    Concentrated slurry of a silicone resin with low carbon content, 3 μm aluminum particles and ethanol were prepared. After casting, addition of cross-linking agent and drying, silicone resin-aluminum composite with thick sheet form was obtained. The prepared sheet was heat-treated at 933 or 1073K with various holding times to characterize formed phases during the heat treatments. XRD patterns and FT-IR spectra revealed free Si formation and existence of Si-O-Si bond at 933K. The Si-O-Si bond, however, disappeared and silicon carbide was formed at 1073K. SEM observation indicated formation of cracks bridged with a number of tiny struts at 933K and conversion to wholly porous structure at 1073K.

  12. Compound Treatment of Refining and Modification for Aluminum Alloy%铝合金精炼与变质复合工艺的试验研究

    Institute of Scientific and Technical Information of China (English)

    赵忠兴; 赵慧; 耿德军; 徐兴文


    研究了不同精炼处理工艺对铝液精炼效果的影响,分析了精炼工艺对不同变质剂变质效果的影响.结果表明,氩气旋转喷吹技术与盐类精炼复合的精炼工艺,可提高铝液的精炼效果;氩气旋转喷吹精炼与钠盐变质处理同时进行的复合工艺,可降低钠盐变质处理时的吸气倾向;氩气旋转喷吹精炼能减少铝液中锶的烧损,提高Sr的变质效果.%Effects of different degassing processes on molten aluminum and on the modification efficiency of different modifier with Na and Sr were investigated. The results show that the rotating-injection argon gas degassing technology combining with the salt degassing can improve the molten aluminum degassing efficiency, and the rotating-injection argon gas degassing technology combining with the Na salt refining process can decrease the H2 absorption during refining process. In addition, the rotating-injection argon gas degassing technology can reduce the strontium burning in the molten aluminum, improving the modification efficiency of strontium.

  13. Sequential extraction of inorganic arsenic compounds and methyl arsenate in human urine using mixed-mode monolithic silica spin column coupled with gas chromatography-mass spectrometry. (United States)

    Namera, Akira; Takeuchi, Akito; Saito, Takeshi; Miyazaki, Shota; Oikawa, Hiroshi; Saruwatari, Tatsuro; Nagao, Masataka


    A sequential analytical method was developed for the detection of arsenite, arsenate, and methylarsenate in human urine by gas chromatography-mass spectrometry (GC-MS). The combination of a derivatization of trivalent arsenic compounds by 2,3-dithio-1-propanol (British antilewisite; BAL) and a reduction of pentavalent arsenic compounds (arsenate and methylarsenate) were accomplished to carry out the analysis of arsenic compounds in urine. The arsenic derivatives obtained using BAL were extracted in a stepwise manner using a monolithic spin column and analyzed by GC-MS. A linear curve was observed for concentrations of arsenic compounds of 2.0 to 200 ng/mL, where the correlation coefficients of calibration curves were greater than 0.996 (for a signal-to-noise (S/N) ratio >10). The detection limits were 1 ng/mL (S/N > 3). Recoveries of the targets in urine were in the range 91.9-106.5%, and RSDs of the intra- and interday assay for urine samples containing 5, 50, and 150 ng/mL of arsenic compounds varied between 2.95 and 13.4%. The results from real samples obtained from a patient suspected of having ingested As containing medications using this proposed method were in good agreement with those obtained using high-performance liquid chromatography with inductively coupled plasma mass spectrometry.

  14. Aluminum alloy (United States)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)


    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  15. Science Update: Inorganic Chemistry. (United States)

    Rawls, Rebecca


    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  16. Determination of inorganic compounds in drinking water on the basis of house water heater scale, part 1: Determination of heavy metals and uranium

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.


    Full Text Available The analysis of scale originated from drinking water on the house water heater, showed that scale is basically calcium carbonate that crystallizes hexagonally in the form of calcite. Scale taken as a sample from different spots in Belgrade – upper town of Zemun (sample 1 and Pančevo (sample 2 showed different configuration although it came from the same waterworks. That indicates either that the water flowing through waterworks pipes in different parts of the city is not the same or the waterworks net is not the same (age, maintaining, etc. All the elements which are dominant in drinking water (Ca, Mg, K, and Na, and which could be found in water by natural processes, are by their content far below the values regulated by law. The analysis also showed the presence of many metals: Ti, Pb, Zn, Cu Li, Sr, Cd, and Cr in the first sample, which are not found in the scale taken near Pančevo. The results obtained by calculating the mass concentration in drinking water on the basis of scale content, showed that both waters belonged to the category of low mineral waters. Contents of inorganic substances in these waters (117.85 mg/dm3 for sample 1 or 80.83 mg/dm3 for sample 2 are twice lower than the values predicted by the legislation. Gammaspectrometric analysis indicates the presence of radioactive elements – uranium and strontium which can influence human health.

  17. Welcome to Inorganics: A New Open Access, Inclusive Forum for Inorganic Chemistry

    Directory of Open Access Journals (Sweden)

    Duncan H. Gregory


    Full Text Available One of the beauties of inorganic chemistry is its sheer diversity. Just as chemistry sits at the centre of the sciences, inorganic chemistry sits at the centre of chemistry itself. Inorganic chemists are fortunate in having the entire periodic table at their disposal, providing a palette for the creation of a multitude of rich and diverse compounds and materials from the simplest salts to the most complex of molecular species. It follows that the language of inorganic chemistry can thus be a demanding one, accommodating sub-disciplines with very different perspectives and frames of reference. One could argue that it is the unequivocal breadth of inorganic chemistry that empowers inorganic chemists to work at the interfaces, not just between the traditional Inorganic-Organic-Physical boundaries of the discipline, but in the regions where chemistry borders the other physical and life sciences, engineering and socio-economics. [...

  18. Responses of rice-wheat rotation system in south Jiangsu to organic-inorganic compound fertilizers%苏南地区稻麦轮作系统对不同有机无机复混肥的响应

    Institute of Scientific and Technical Information of China (English)

    田亨达; 张丽; 张坚超; 王秋君; 徐大兵; 哈丽哈什·依巴提; 徐佳乐; 黄启为


    In 2006-2007, a field trial was conducted to study the effects of applying three kinds of organic-inorganic compound fertilizers [ rapeseed cake compost plus inorganic fertilizers ( RCC ) , pig manure compost plus inorganic fertilizers ( PMC ) , and Chinese medicine residues plus inorganic fertilizers (CMC) ] on the crop growth and nitrogen (N) use efficiency of rice-wheat rotation system in South Jiangsu. Grain yield of wheat and rice in the different fertilization treatments was significantly higher than the control (no fertilization). In treatments RCC, PMC and CMC, the wheat yield was 13.1% , 32.2% and 39.3% lower than that of the NPK compound fertilizer (CF, 6760 kg · Hm-2), respectively, but the rice yield (8504-9449 kg · Hm-2) was significantly higher than that (7919 kg · Hm-2 ) of CF, with an increment of 7.4%-19.3%. In wheat season, the aboveground dry mass, N accumulation, and N use efficiency in treatments RCC, PMC, and CMC were lower than those of CF, but in rice season, these parameters were significantly higher than or as the same as CF. In sum, all the test three compound fertilizers had positive effects on the rice yield and its nitrogen use efficiency in the rice-wheat rotation system, being most significant for RCC.%通过田间试验,研究了苏南地区2006-2007年稻麦轮作体系下,施用菜粕堆肥有机无机复混肥(RCC)、猪粪堆肥有机无机复混肥(PMC)、中药渣堆肥有机无机复混肥(CMC)和化肥(CF)对小麦和水稻;产量及氮素利用率的影响.结果表明:各施肥处理的小麦和水稻产量均显著高于对照;RCC、PMC和CMC处理的小麦产量分别比化肥处理(6760 kg·hm-2)减少了13.1%、32.2%和39.3%;而不同有机无机复混肥处理的水稻产量(8504~9449 kg·hm-2)则显著高于化肥处理(7919 kg·hm-2),增产率达7.4%~19.3%.在小麦季,RCC、PMC和CMC处理的地上部干物质量、氮素积累量、氮素利用率普遍低于化肥处理,而水稻季则显

  19. Polybenzimidazole compounds (United States)

    Klaehn, John R.; Peterson, Eric S.; Wertsching, Alan K.; Orme, Christopher J.; Luther, Thomas A.; Jones, Michael G.


    A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2--, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.

  20. Two novel POM-based inorganic-organic hybrid compounds: synthesis, structures, magnetic properties, photodegradation and selective absorption of organic dyes. (United States)

    Dui, Xue-Jing; Yang, Wen-Bin; Wu, Xiao-Yuan; Kuang, Xiaofei; Liao, Jian-Zhen; Yu, Rongmin; Lu, Can-Zhong


    The hydrothermal reactions of a mixture of (NH4)6Mo7O24·4H2O, Cu(Ac)2·H2O and 3-bpo ligands at different temperatures result in the isolation of two novel inorganic-organic hybrid materials containing different but related isopolymolybdate units, [Cu(3-bpo)(H2O)(Mo4O13)]·3H2O () and [Cu2(3-bpo)2(Mo6O20)] (). The {Mo4O13}n chains in and unprecedented [Mo6O20](4-) isopolyhexamolybdate anions in are linked by octahedral Cu(2+) ions into two-dimensional hybrid layers. Interestingly, 3-bpo ligands in both and are located on either side of these hybrid layers and serve as arched footbridges to link Cu(ii) ions in the layer via pyridyl N-donors, and at the same time connect these hybrid layers into 3D supramolecular frameworks via weak MoNoxadiazole bonds. Another important point for is that water clusters are filled in the 1D channels surrounded by isopolytetramolybdate units. In addition, dye adsorption and photocatalytic properties of and magnetic properties of have been investigated. The results indicated that complex is not only a good heterogeneous photocatalyst in the degradation of methyl orange (MO) and methylene blue (MB), but also has high absorption capacity of MB at room temperature and can selectively capture MB molecules from binary mixtures of MB/MO or MB/RhB. All MB molecules absorbed on can be completely released and photodegraded in the presence of adequate peroxide. The temperature dependence of magnetic susceptibility revealed that complex exhibits antiferromagnetic ordering at about 5 K, and a spin-flop transition was observed at about 5.8 T at 2 K, indicating metamagnetic-like behaviour from antiferromagnetic to ferromagnetic phases.

  1. Time-resolved variations in the distributions of inorganic ions, carbonaceous components, dicarboxylic acids and related compounds in atmospheric aerosols from Sapporo, northern Japan during summertime (United States)

    Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Kikuta, Motomi; Tachibana, Eri; Aggarwal, Shankar G.


    To better understand time-resolved variations of water-soluble organic aerosols in the atmosphere, we collected atmospheric particles (TSP) every 3 h during summertime (8-10 August, 2005) in Sapporo, northern Japan. We measured inorganic ions, carbonaceous components, dicarboxylic acids, ketoacids and α-dicarbonyls in TSP. SO42- was found as the most abundant ionic species (57 ± 9% of total ions determined) followed by NH4+ and NO3-. However, none of the ionic species showed any diurnal trend throughout the campaign. Organic carbon (OC) ranged from 2.1 to 12.1 μg m-3 whereas elemental carbon (EC) was negligible in most of the samples (0.31 ± 0.56 μg m-3). Oxalic (C2) acid was the most abundant diacid species, followed by malonic (C3) and succinic (C4) acids. Water-soluble OC (WSOC), water-insoluble OC (WIOC) and OC as well as dominant diacids (C2-C4), total diacids, ketoacids and α-dicarbonyls did not show diurnal trend on 8 August, but they showed clear diurnal distributions during 9-10 August following the changes in ambient temperature (and radiation). Detailed analyses of time-resolved aerosols demonstrate that diurnal variations of organic aerosol compositions are caused by local in situ photochemical production, but are significantly superimposed by long-range atmospheric transport of aerosols, particularly when the air masses are enriched with emissions from higher plants and/or biomass burning, and their photochemical processing during the transport.

  2. First-principles Study on the Magnetic, Half-metal and Thermoelectric Transport Properties of Inorganic-Organic Hybrid Compounds [C4N2H12] [Fe4Ⅱ(HPO3)2(C2O4)3

    Institute of Scientific and Technical Information of China (English)

    LI Yan-Li; ZHANG Dian-Na


    The electronic structure,magnetic and half-metal properties of inorganic-organic hybrid compound [C4N2H12] [F4Ⅱ(HPO3)2(C2O4)3] are investigated by using the full-potential linearized augmented plane wave (FPLAPW)method within density-functional theory (DFT) calculations.The density of states (DOS),the total energy of the cell and the spontaneous magnetic moment of [C4N2H12] [Fe4Ⅱ(HPO3)2(C2O4)3] are calculated.The calculation results reveal that the low-temperature phase of [C4N2H12][Fe4Ⅱ (HPO3)2 (C2O4)3] exhibits a stable ferromagnetic (FM) ground state,and we find that this organic compound is a half-metal in FM state.In addition,we have calculated antiferromagnetically coupled interactions,revealing the existence of antiferromagnetic (AFM),which is in agreement with the experiment.We have also found that [C4N2H12][Fe4Ⅱ (HPO3)2(C2O4)3] is a semiconductor in the AFM state with a band gap of about 0.40 eV.Subsequently,the transport properties for potential thermoelectric applications have been studied in detail based on the Boltzmann transport theory.

  3. Sealed Primary Lithium-Inorganic Electrolyte Cell (United States)


    Battery , Thionyl Chloride , Lithium , Lithium Aluminum Chloride , Hermetic Lithium Battery , D Cell, Voltage-Delay, Shelf Life, High Energy Density Battery ... lithium - thionyl chloride , inorganic electrclyte system is one of the highest energy density systems known to date (1-4). The cells contain an Li anoae, a...However, this is not tne case with te thionyl chloride system. A completely discharged battery , while sitting on

  4. pH-resistant titania hybrid organic-inorganic sol-gel coating for solid-phase microextraction of polar compounds. (United States)

    Li, Xiujuan; Gao, Jie; Zeng, Zhaorui


    A novel titania-hydroxy-terminated silicone oil (titania-OH-TSO) sol-gel coating was developed for solid-phase microextraction of polar compounds. In general, titania-based sol-gel reaction is very fast and need to be decelerated by the use of suitable chelating agents. But in the present work, a judiciously designed sol solution ingredients was used to create the titania-OH-TSO coating without the addition of any chelating agent, which simplified the sol-gel procedure. Thanks to the variety of titania's adsorption sites and their acid-base characteristics, aromatic amines, phenols and polycyclic aromatic hydrocarbons were efficiently extracted and preconcentrated from aqueous samples followed by thermal desorption and GC analysis. The newly developed sol-gel hybrid titania coating demonstrated excellent pH stability, and retained its extraction characteristics intact even after continuous rinsing with a 3 M HCl or NaOH solution for 12 h. Furthermore, it could withstand temperatures as high as 320 degrees C. Practical application was demonstrated through the analysis of six aromatic amines in dye process wastewater. A linearity of four orders of magnitude was obtained with correlation coefficient better than 0.9982. The detection limits ranged from 0.22 to 0.84 microg L(-1) and the repeatability of the measurements was <7.0%. The recoveries of these compounds studied in the wastewater were in the ranges 83.6-101.4%, indicating the method accuracy.

  5. Annual reports in inorganic and general syntheses 1972

    CERN Document Server

    Niedenzu, Kurt


    Annual Reports in Inorganic and General Syntheses-1972 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book discusses alkali and alkaline earth elements, alloys, silver, gold, zinc, cadmium, mercury, boron, aluminum, gallium, indium, thallium, yttrium, scandium, lanthanides, actinides, titanium, zirconium, hafnium, Group V and VI transition elements, manganese, technetium, rhenium, iron, cobalt, nickel, ruthenium, osmium, rhodium, and iridium. The text also describes the chemistry of palladium, platinum, silicon, germanium, tin,

  6. 有机无机复混肥对无核白葡萄产量和果实品质的影响%Effect of Organic -inorganic Compound Fertilizer on the Yield and Quality of Thomson Seedless Grape

    Institute of Scientific and Technical Information of China (English)

    米热吉汗·阿不都热木; 齐曼·尤努斯; 玉山·库尔班; 艾克拜尔·伊拉洪; 谭建川


    [Objective] To study effects of different proportions organic - inorganic compound fertilizer on yield and quality of Turpan Thompson seedless grape, to provide theoretical and technical basis for scientific fertilization on Thompson seedless grape in this area. [Method] The 11 -years old Thompson Seedless grape was used as test materials. Four factors and 16 treatments were set in this experiment, and yield and several quality indexes were measured to determine the best formula of organic - inorganic compound fertilizer. [ Result ] After applying the different proportions of organic - inorganic compound fertilizer, the yield of 8 - 11 mus of proceed treatment was higher than that of the field by other treatments, among which the yields by treatment 10 and 11 were significantly higher than others, and the yields by treatment 1 and 16 were relatively lower; Treatments 9-12 have remarkable improvement effects on quality of Thompson seedless grapes; among them treatments 10 and 11 were the best formulas. After using fertilizer treatments 10 and 11, the 100 - grain weight, grain length and width, Vc content, soluble sugar and sugar - acid ratio of Thompson seedless grape were significantly higher than those by other formulations, and titration acid content was significantly lower than that by other treatments, while the hardness stayed at a high level. [ Conclusion]The organic - inorganiccompound fertilizer formulations 10 and 11 could significantly increase yield and quality of Thompson seedless grape, which have more popularization value in the area.%[目的]研究不同配比的有机无机复混肥对吐鲁番无核白葡萄产量、品质的影响,为该地区无核白葡萄的科学施肥提供理论技术依据.[方法]材料为11年生的无核白葡萄,实验设4个因素,16个处理,测定产量和几项品质指标,确定效果最佳的有机无机复混肥配方.[结果]施用不同配比的有机无机复混肥时,处理8~11的单产

  7. Copper inorganic-organic hybrid coordination compound as a novel L-cysteine electrochemical sensor: Synthesis, characterization, spectroscopy and crystal structure

    Indian Academy of Sciences (India)

    Zohreh Derikvand; Azadeh Azadbakht


    Dinuclear coordination compound of Cu(II), namely, [Cu2(pydc)2(pz)(H2O)2]·2H2O, where pydc = pyridine-2,6-dicarboxylic acid (dipicolinic acid) and pz = pyrazine has been synthesized and characterized by elemental analysis, spectra (IR, UV-Vis), thermal (TG/DTG) analysis, magnetic measurements and single crystal X-ray diffraction. In the dimeric structure, the planar tridentate pyridine-2,6-dicarboxylic acid dianion coordinates to a Cu(II) ion in a meridional fashion and defines the basal plane of the complex. The fourth equatorial coordination site is then occupied by a pyrazine molecule that functions as a linear bidentate ligand bridging two Cu(II) complexes to form a dimer. The axial positions of each Cu(II) complex are occupied by one water molecule to form a distorted square pyramidal geometry. The complicated hydrogen bonding network accompanied with C–O· · · and C–H· · · stacking interactions assemble the crystal structure of 1 into a fascinating supramolecular architecture. Electrochemical behavior of [Cu2(pydc)2(pz)(H2O)2] (Cu-PDAP) on the surface of carbon nanotube (CNTs) glassy carbon electrode (GCE) is described. Oxidation of cysteine on the surface of modified electrode was investigated with cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The results show that the Cu-PDAP/CNTs film displays excellent electrochemical catalytic activities towards L-cysteine oxidation.

  8. Alternative current conduction mechanisms of organic-inorganic compound [N(CH3)3H]2CuCl4 (United States)

    Ben Bechir, M.; Karoui, K.; Tabellout, M.; Guidara, K.; Ben Rhaiem, A.


    The [N(CH3)3H]2CuCl4 single crystal has been analyzed by X-ray powder diffraction patterns, differential scanning calorimetry (DSC), and electrical impedance spectroscopy. [N(CH3)3H]2CuCl4 crystallizes at room temperature in the monoclinic system with P21/C space group. Three phase transitions at T1 = 226 K, T2 = 264 K, and T3 = 297 K have been evidenced by DSC measurements. The electrical technique was measured in the 10-1-107 Hz frequency range and 203-313 K temperature intervals. The frequency dependence of alternative current (AC) conductivity is interpreted in terms of Jonscher's law (developed). The AC electrical conduction in [N(CH3)3H]2CuCl4 compound is studied by two processes which can be attributed to a hopping transport mechanism: the correlated barrier hopping model in phases I, II, and III, the non-overlapping small polaron tunneling model in phase IV. The conduction mechanism is interpreted with the help of Elliot's theory, and the Elliot's parameters are found.

  9. Inorganic materials synthesis in ionic liquids

    Directory of Open Access Journals (Sweden)

    Christoph Janiak


    Full Text Available The field of "inorganic materials from ionic liquids" (ILs is a young and dynamically growing research area for less than 10 years. The ionothermal synthesis in ILs is often connected with the preparation of nanomaterials, the use of microwave heating and in part also ultrasound. Inorganic material synthesis in ILs allows obtaining phases which are not accessible in conventional organic or aqueous solvents or with standard methods of solid-state chemistry or under such mild conditions. Cases at hand include "ligand-free" metal nanoparticles without added stabilizing capping ligands, inorganic or inorganic-organic hybrid solid-state compounds, large polyhedral clusters and exfoliated graphene from low-temperature synthesis. There are great expectations that ILs open routes towards new, possibly unknown, inorganic materials with advantageous properties that cannot (or only with great difficulty be made via conventional processes.

  10. Deposition of aluminum-magnesium alloys from electrolytes containing organo-aluminum complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lehmkuhl, H.; Mehler, K.; Bongard, H.; Tesche, B. [Max-Planck-Inst. fuer Kohlenforschung, Muelheim an der Ruhr (Germany); Reinhold, B. [Audi AG Technische Entwicklung, Ingolstadt (Germany)


    Organo-aluminum compounds have been used for many years as electrolytes in the coating industry. In this communication the development of a galvanic process for generating aluminum-magnesium coatings from organometallic electrolyte systems is reported as well as results on physical properties like adhesion, ductility and corrosion resistance. (orig.)

  11. Synthesis, crystal structures and characterization of two novel organic-inorganic hybrid compounds (C5NH6)6Bi4Br18 and [C(NH2)3]3BiI6 (United States)

    Li, S. G.; Chen, L.; Xiang, Y.


    Two novel organic-inorganic compounds (C5NH6)6Bi4Br18 (1) and [C(NH2)3]3BiI6 (2) have been synthesized and characterized by elemental analysis, measured by DSC and single-crystal X-ray diffraction at room temperature. The crystal structure of (1) crystallizes in the monoclinic space group C2/m, with a = 17.12 (3), b = 15.3939 (1), c = 13.412 (2) Å, β = 123.702 (7)°, V = 3042.2 (8) Å3 and Z = 2. The crystal structure consists of discrete quad-core [Bi4Br18]6- anions and [C5NH6]+ cations. 2 crystallizes in triclinic space group P-1, with the following unit cell parameters: a = 9.3435 (2), b = 15.583 (4), c = 17.200 (4) Å, α = 86.383 (1), β = 75.689 (1), γ = 89.918 (6)°, V = 2421.5 (10) Å3 and Z = 4. The crystal lattice is composed of discrete [BiI6]3- anions surrounded by [C(NH2)3]+ cations. The DSC experiment of 1 clearly displays that a phase transition occurred at 124.7 K, while 2 undergoes a phase transition at 192.5 K.

  12. Inorganic Nanoparticles Conjugated with Biofunctional Molecules

    Institute of Scientific and Technical Information of China (English)



    1 Results We have attempted to conjugate inorganic nanoparticles with biofunctional molecules.Recently we were quite successful in demonstrating that a two-dimensional inorganic compound like layered double hydroxide (LDH),and natural and synthetic clays can be used as gene or drug delivery carriers1-4.To the best of our knowledge,such inorganic vectors are completely new and different from conventionally developed ones such as viruses and cationic liposomes,those which are limited in certain cases of ap...

  13. Inorganic nanoparticles for transfection of mammalian cells and removal of viruses from aqueous solutions. (United States)

    Link, Nils; Brunner, Tobias J; Dreesen, Imke A J; Stark, Wendelin J; Fussenegger, Martin


    Owing to their small size, synthetic nanoparticles show unprecedented biophysical and biochemical properties which may foster novel advances in life-science research. Using flame-spray synthesis technology we have produced non-coated aluminum-, calcium-, cerium-, and zirconium-derived inorganic metal oxide nanoparticles which not only exhibit high affinity for nucleic acids, but can sequester such compounds from aqueous solution. This non-covalent DNA-binding capacity was successfully used to transiently transfect a variety of mammalian cells including human, reaching transfection efficiencies which compared favorably with classic calcium phosphate precipitation (CaP) procedures and lipofection. In this straightforward protocol, transfection was enabled by simply mixing nanoparticles with DNA in solution prior to addition to the target cell population. Transiently transfected cells showed higher production levels of the human secreted glycoprotein SEAP compared to isogenic populations transfected with established technologies. Inorganic metal oxide nanoparticles also showed a high binding capacity to human-pathogenic viruses including adenovirus, adeno-associated virus and human immunodeficiency virus type 1 and were able to clear these pathogens from aqueous solutions. The DNA transfection and viral clearance capacities of inorganic metal oxide nanoparticles may provide cost-effective biopharmaceutical manufacturing and water treatment in developing countries.

  14. 废刻蚀液与低品位磷矿为原料磷复肥的制备%Preparation of phosphate and compound fertilizer by phosphorite and waste aluminum etching liquid

    Institute of Scientific and Technical Information of China (English)

    毕亚凡; 牟林琳; 徐俊虎; 李亮


    为了实现电子行业废酸液资源化和低品位磷矿的高效利用,以废铝刻蚀液和品位为18.34%磷矿为研究对象,制备磷复肥.采用电感耦合等离子原子发射光谱法测定了铝刻蚀液中主要阳离子组成及浓度,X射线荧光光谱法分析了实验磷矿的化学组成及浓度.通过分析产品的有效磷、游离酸以及磷矿石的分解率,研究了分解反应温度、液固比和熟化时间等工艺参数对制备磷复肥过程的影响.结果表明,废铝刻蚀液中有害离子浓度均达到肥料生产用酸的标准,该废铝刻蚀液可作为农用化肥生产的混酸原料;废铝刻蚀液与低品位磷矿粉生产磷复肥是可行的,制得的磷复肥产品中五氧化二磷含量为22.42%,氮含量为0.43%;废铝刻蚀液中的醋酸也参与了反应,但对制备的产品质量无明显的影响;初步确定最佳工艺条件是:反应温度85℃、液固比0.71、熟化时间为14天.利用废铝刻蚀液直接作为磷复肥生产原料,不仅废物得以资源化利用,也降低废渣的产生量,同时也为中低品位磷矿资源利用途径提供了参考.%To realize the recycling use of waste acid fluid and high effective utilization of low-grade phosphorite,phosphate and compound fertilizer were prepared by waste aluminum etching liquid and phosphorite with content of 18.34%.Composition and concentration of main cations of the waste aluminum etching liquid were tested by inductively coupled plasma optical emission spectrometer.Chemical composition and concentration of the experimental phosphorite were analyzed by X-ray fluorescence spectrometer.Reaction temperature,liquid-solid ratio,and curing time were studied during the productive process of the phosphate and compound fertilizer by analyzing available phosphorous and free acid of the prepared fertilizer and decomposition rate of phosphorite.The experimental results show that concentration of harmful ions of the waste

  15. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)


    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  16. Assessment of ethylene dibromide, dibromochloropropane, other volatile organic compounds, radium isotopes, radon, and inorganic compounds in groundwater and spring water from the Crouch Branch and McQueen Branch aquifers near McBee, South Carolina, 2010-2012 (United States)

    Landmeyer, James E.; Campbell, Bruce G.


    Public-supply wells near the rural town of McBee, in southwestern Chesterfield County, South Carolina, have provided potable water to more than 35,000 residents throughout Chesterfield County since the early 1990s. Groundwater samples collected between 2002 and 2008 in the McBee area by South Carolina Department of Health and Environmental Control (DHEC) officials indicated that groundwater from two public-supply wells was characterized by the anthropogenic compounds ethylene dibromide (EDB) and dibromochloropropane (DBCP) at concentrations that exceeded their respective maximum contaminant levels (MCLs) established by the U.S. Environmental Protection Agency’s (EPA) National Primary Drinking Water Regulations (NPDWR). Groundwater samples from all public-supply wells in the McBee area were characterized by the naturally occurring isotopes of radium-226 and radium-228 at concentrations that approached, and in one well exceeded, the MCL for the combined isotopes. The local water utility installed granulated activated carbon filtration units at the two EDB- and DBCP-contaminated wells and has, since 2011, shut down these two wells. Groundwater pumped by the remaining public-supply wells is currently (2014) centrally treated at a water-filtration plant.

  17. Technical Study on Manufacturing Organic-inorganic Compound Fertilizer by Activating Humic Acid%活化腐植酸制备有机-无机复混肥的工艺研究

    Institute of Scientific and Technical Information of China (English)

    王家盛; 张伟; 石学勇; 苏州; 程颖


    Abstract: There are much humic acid in weathered coal and brown coal, but most of them are solidified by Ca2+ and Mg2+ in the nature, only be quite little water-soluble humic acid which can be directly absorbed by plants. Thus, it is necessary to make an activation to the hurnic acid. This paper study on how to use sodium bicarbonate and ammonia activate humic acid in order to receive a high biologic-active humic ammonia, which could as the organic material to blend with abio nutrient and producing granular organic-inorganic compound fertilizer. It is proved that the activate fer- tilizer sample obviously excelled than the unactivate one in chemical and phical parameters.%风化煤、褐煤等物质中含有大量的腐植酸,但在自然界中多数被钙、镁离子固定,能被作物直接吸收利用的水溶性腐植酸普遍含量甚微。因此,生产腐植酸肥料时,有必要进行腐植酸活化处理。本文研究了碳铵与氨水联合对褐煤进行活化处理,得到了生物活性较高的腐植酸铵,并以腐植酸铵作为有机原料与无机养分复混造粒制备了25-5-10有机-无机复混肥样品,经过性能指标和外观效果等方面的评价,明显优于未经活化的褐煤制得的样品。

  18. Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water—Part 2: Consideration of phase separation effects by an X-UNIFAC model (United States)

    Chang, Elsa I.; Pankow, James F.

    A thermodynamic model is presented for predicting the formation of particulate matter (PM) within an aerosol that contains organic compounds, inorganic salts, and water. Neutral components are allowed to partition from the gas phase to the PM, with the latter potentially composed of both a primarily aqueous ( α) liquid phase and a primarily organic ( β) liquid phase. Partitioning is allowed to occur without any artificial restraints: when both α and β PM phases are present, ionic constituents are allowed to partition to both. X-UNIFAC.2, an extended UNIFAC method based on Yan et al. (1999. Prediction of vapor-liquid equilibria in mixed-solvent electrolyte systems using the group contribution concept. Fluid Phase Equilibria 162, 97-113), was developed for activity coefficient estimation. X-UNIFAC.2 utilizes the standard UNIFAC terms, a Debye-Hückel term, and a virial equation term that represents the middle-range (MR) contribution to activity coefficient effects. A large number (234) of MR parameters are already available from Yan et al. (1999). Six additional MR parameters were optimized here to enable X-UNIFAC.2 to account for interactions between the carboxylic acid group and Na +, Cl -, and Ca 2+. Predictions of PM formation were made for a hypothetical sabinene/O 3 system with varying amounts of NaCl in the PM. Predictions were also made for the chamber experiments with α-pinene/O 3 (and CaCl 2 seed) carried out by Cocker et al. (2001. The effect of water on gas-particle partitioning of secondary organic aerosol. Part I. α-pinene/ozone system. Atmospheric Environment 35, 6049-6072); good agreement between the predicted and chamber-measured PM mass concentrations was achieved.

  19. Stereochemistry of organometallic and inorganic compounds

    CERN Document Server


    The authors of this fourth volume in the series have reviewed the making and breaking of chemical bonds in a sophisticated manner. In particular, new pressures brought about by environmental concerns, larger demands for the medical and pharmaceutical sectors and economics of the market place are forcing us into demanding greater stereochemical control and better product yields for chemical reactions capable of producing useful products. The chapters are written by leading experts in this area and give excellent overviews of the strengths and weaknesses of the various methodologies.In C

  20. On new ternary equiatomic scandium transition metal aluminum compounds ScTAl with T = Cr, Ru, Ag, Re, Pt, and Au

    Energy Technology Data Exchange (ETDEWEB)

    Radzieowski, Mathis; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Benndorf, Christopher [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Haverkamp, Sandra [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; University of Sao Paulo, Sao Carlos, SP (Brazil). Inst. of Physics


    The new equiatomic scandium transition metal aluminides ScTAl for T = Cr, Ru, Ag, Re, Pt, and Au were obtained by arc-melting of the elements followed by subsequent annealing for crystal growth. The samples were studied by powder and single crystal X-ray diffraction. The structures of three compounds were refined from single crystal X-ray diffractometer data: ScCrAl, MgZn{sub 2} type, P6{sub 3}/mmc, a = 525.77(3), c = 858.68(5) pm, R{sub 1} = 0.0188, wR{sub 2} = 0.0485, 204 F{sup 2} values, 13 variables, ScPtAl, TiNiSi type, Pnma, a = 642.83(4), b = 428.96(2), c = 754.54(5) pm, R{sub 1} = 0.0326, wR{sub 2} = 0.0458, 448 F{sup 2} values, 20 variables and ScAuAl, HfRhSn type, P anti 62c, a = 722.88(4), c = 724.15(4) pm, R{sub 1} = 0.0316, wR{sub 2} = 0.0653, 512 F{sup 2} values, 18 variables. Phase pure samples of all compounds were furthermore investigated by magnetic susceptibility measurements, and Pauli-paramagnetism but no superconductivity was observed down to 2.1 K for all of them. The local structural features and disordering phenomena have been characterized by {sup 27}Al and {sup 45}Sc magic angle spinning (MAS) and static NMR spectroscopic investigations.

  1. Process optimization of rare earth and aluminum leaching from weathered crust elution-deposited rare earth ore with compound ammonium salts

    Institute of Scientific and Technical Information of China (English)

    何正艳; 张臻悦; 余军霞; 徐志高; 池汝安


    In order to intensify the leaching process of rare earth (RE) and reduce the impurities in the leachate, ammonium chloride (NH4Cl) and ammonium nitrate (NH4NO3) were mixed as a compound leaching agent to treat the weathered crust elution-deposited RE ore. Effects of molar ratio of NH4Cl and NH4NO3, ammonium (NH4+) concentration, leaching agent pH and flow rate on the leaching process of RE were studied and evaluated by the chromatographic plate theory. Leaching process of the main impurity alu-minium (Al) was also discussed in detail. Results showed that a higher initial ammonium concentration in a certain range could en-hance the mass transfer process of RE and Al by providing a driving force to overcome the resistance of diffusion. pH almost had no effects on the mass transfer efficiency of RE and Al in the range of 4 to 8. The relationship between the flow rate and height equiva-lent to a theoretical plate (HETP) could fit well with the Van Deemter equation, and the flow rate at the lowest HETP was determined. The optimum conditions of column leaching for RE and Al were 1:1 (molar ratio) of NH4Cl and NH4NO3, 0.2 mol/L of ammonium concentration, pH 4–8 of leaching agent and 0.5 mL/min of flow rate. Under this condition, the mass transfer efficiency of RE was improved, but no change was observed for Al compared with the most widely used ammonium sulfate. Moreover, the significant dif-ference value (around 20 mL) of retention volume at the peak concentration between RE and Al provided a possibility for their sepa-ration. It suggested the potential application of the novel compound leaching agent (NH4Cl/NH4NO3). It was found that the relative concentration of RE in the leachate could be easily obtained by monitoring the pH of leachate.

  2. Effect of polyhydroxy compound on titanium-zirconium conversion film on 6063 aluminum alloy surface%多羟基化合物对6063铝合金表面钛锆转化膜的影响

    Institute of Scientific and Technical Information of China (English)

    吴小松; 贾玉玉; 钟辛; 刘娅莉; 蒙文坚; 袁兴; 李蔚虹


    An organic-inorganic composite conversion system based on a conventional Ti-Zr conversion bath with a polyhydroxy compound was studied using 6063 Al alloy as substrate. The weight, boiling-water adhesion, and HNO3 dropping corrosion resistance of the composite coating as well as the resistance of a subsequent powder coating prepared on it to cupping, boiling water, and salt water were tested and compared with those of the conventional Ti-Zr conversion coating and chromate conversion coating. The effect of the polyhydroxy compound on Ti-Zr conversion coating on 6063 Al alloy surface was examined by polarization curve measurement and electrochemical impedance spectroscopy (EIS) in 3.5wt% NaCl solution. The surface morphology and elemental composition of the organic-inorganic composite coating were characterized by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The results showed that the addition of the polyhydroxy compound changes the Ti-Zr conversion coating from a loose, granular, and porous microstructure with colorless appearance to a compact and laminar micro-structure with pale yellow appearance, results in increased coating weight and remarkably enhanced the adhesion strength in boiling water, corrosion resistance, as well as anti-cupping performance and salt water resistance of the subsequent powder coating. The Cr-free composite conversion coating is mainly composed of C, O, Mg, Al, Ti, Si and Zr.%以6063铝合金为基材,研究了一种基于多羟基化合物的钛锆体系有机-无机复合转化处理体系.考察了该复合膜的膜重、沸水附着力、耐硝酸点滴腐蚀性能及其后续粉末涂料膜层的抗杯突、耐沸水和耐盐水性能,并与单纯钛锆转化膜及传统铬酸盐转化膜进行了比较.在质量分数为3.5%的NaCl溶液中通过极化曲线和电化学阻抗谱(EIS)分析了多羟基化合物的加入对6063铝合金表面钛锆转化膜耐蚀性的影响.采用扫描电镜(SEM)

  3. Synthesis, characterization, single crystal X-ray structure, EPR and theoretical studies of a new hybrid inorganic-organic compound [Cu(Hdien)2(H2O)2](pnb)4·4H2O and its structural comparison with related [Cu(en)2(H2O)2](pnb)2 (United States)

    Kumar, Santosh; Sharma, Raj Pal; Venugopalan, Paloth; Witwicki, Maciej; Ferretti, Valeria


    A new hybrid inorganic-organic compound [Cu(Hdien)2(H2O)2](pnb)4·4H2O (1) (where pnb = p-nitrobenzoate), in which the tridentate ligand diethylenetriamine (dien) shows an unusual coordination behavior acting as a bidentate ligand when present in its monoprotonated form (Hdien+) has been synthesized by the reaction of copper(II) p-nitrobenzoate and slight excess of dien in methanol-water mixture (4:1v/v). Re-crystallization of the violet precipitated product from hot water gave single crystals suitable for X-ray diffraction studies. The newly synthesized compound 1 has been characterized by spectroscopic techniques (UV-Vis, FT-IR, EPR), and theoretical methods (DFT and MRCI/SORCI). Single crystal X-ray structure determination revealed the existence of the cationic species [Cu(Hdien)2(H2O)2]4+, four p-nitrobenzoate as counter anions and four water molecules are present as solvent of crystallization. Packing analyses of title compound as well as of the structurally similar [Cu(en)2(H2O)2](pnb)2,2 has shown similarities in the crystalline architecture that both hybrid inorganic-organic compounds is stabilized by various non-covalent interactions such as N-H⋯O, C-H⋯O, O-H⋯O etc.

  4. Inorganic nanolayers: structure, preparation, and biomedical applications (United States)

    Saifullah, Bullo; Hussein, Mohd Zobir B


    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging. PMID:26366081

  5. Inorganic nanolayers: structure, preparation, and biomedical applications. (United States)

    Saifullah, Bullo; Hussein, Mohd Zobir B


    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.

  6. 有机无机杂化物作乳化剂的苯丙乳液制备及其性能表征%Synthesis and Characterization of Poly(St-co-BA) Latex with an Organic-Inorganic Hybrid Compound as Emulsifier

    Institute of Scientific and Technical Information of China (English)

    袁俊杰; 周树学; 廖建和; 武利民


    A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound(OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particlesize analyzer, transmission electron microscope (TEM), optical contact angle measurement (OCA) and dynamicmechanical analyzer (DMA). It was found that the protective agent, sodium polyacrylate (PA),could obviouslyimprove the polymerization stability and the functional monomer, glycidyl methacrylate (GMA), could enhancethe store stability of the latex. The particle size of poly(St-co-BA) latex decreased and then leveled off as OIHCcontent increased. TEM shows that the prepared polymers were actually organic-inorganic nanocomposites, andthese films have better waterproof property than those prepared by traditional poly(St-co-BA) latex or organicsilicone modified poly(St-co-BA) latex. The nanocomposite polymer has much higher glass transition temperaturethan organic silicone modified poly(St-co-BA) polymer containing the same organic silicone content.


    Directory of Open Access Journals (Sweden)



    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  8. In situ formation of ZrB2 particulates and their influence on microstructure and tensile behavior of AA7075 aluminum matrix composites

    Directory of Open Access Journals (Sweden)

    J. David Raja Selvam


    Full Text Available In situ synthesis of aluminum matrix composites (AMCs has become a popular method due to several advantages over conventional stir casting method. In the present study, AA7075/ZrB2 AMCs reinforced with various content of ZrB2 particulates (0, 3, 6, 9 and 12 wt.% were synthesized by the in situ reaction of molten aluminum with inorganic salts K2ZrF6 and KBF4. The composites were characterized using XRD, OM, SEM, EBSD and TEM. The XRD patterns revealed the formation of ZrB2 particulates without the presence of any other compounds. The formation of ZrB2 particulates refined the grains of aluminum matrix extensively. Most of the ZrB2 particulates were located near the grain boundaries. The ZrB2 particulates exhibited various morphologies including spherical, cylindrical and hexagonal shapes. The size of the ZrB2 particulates was in the order of nano, sub micron and micron level. A good interfacial bonding was observed between the aluminum matrix and the ZrB2 particulates. The in situ formed ZrB2 particulates enhanced the mechanical properties such as microhardness and the ultimate tensile strength. Various strengthening mechanisms were identified.

  9. Water soluble inorganic trace gases and related aerosol compounds in the tropical boundary layer. An analysis based on real time measurements at a pasture site in the Amazon Basin

    NARCIS (Netherlands)

    Trebs, I.


    This dissertation investigates the behavior of water-soluble inorganic trace gases and related aerosol species in the tropical boundary layer. Mixing ratios of ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), hydrochloric acid (HCl), sulfur dioxide (SO;,) and the corresponding water-soluble a

  10. Chemical Species of Aluminum Lons in Acid Soils

    Institute of Scientific and Technical Information of China (English)



    Soil samples collected from several acid soils in Guangdong,Fujian,Zhejiang and Anhui provinces of the southern China were employded to characterize the chemical species of aluminum ions in the soils.The proportion or monoeric inorganic Al to total Al in soil solution was in the range of 19% to 70%,that of monomeric organlic Al (Al-OM) to total Al ranged from 7.7% to 69%,and that of the acid-soluble Al to total Al was generally smaller and was lower than 20% in most of the acid soils studied ,The Al-OM concentration in soil solution was postively correlated with the content of dissolved organic carbon(DOC) and aslo affected by the concentration of Al3+,The complexes of aluminum with fluoride(Al-F) were the predominant forms of inorganic Al,and the proportion of Al-F compexes to total inorganic Al increased with pH.Under strongly acid ondition,Al3+ was also a mjaor form of inorganic Al,and the proportio of Al3+ to total inorganic Al decreased with increasing pH.The,proportions of Al-OH and Al-SO4 complexes to total inorganic Al were small and were not larger than 10% in the most acid soils.The concentration of inorganic Al in solution depended largely on pH and the concentration of total F in soil solution,The concentrations of Al-OM,Al3+,Al-F and Al-OH complexes in topsoil were higher than those in subsoil and decreased with the increase in soil depth,The chemical species of aluminum ions were influenced by pH,The concentrations of Al-OM, Al3+,Al-F complexes and Al-OH complexes decreased with the increase in pH.

  11. Science Update: Inorganic Chemistry (United States)

    Rawls, Rebecca


    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  12. Inorganic Coatings Laboratory (United States)

    Federal Laboratory Consortium — The inorganic Coatings Lab provides expertise to Navy and Joint Service platforms acquisition IPTs to aid in materials and processing choices which balance up-front...

  13. Aspects of aluminum toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, C.D.; Savory, J.; Wills, M.R. (Univ. of Virginia Health Sciences Center, Charlottesville (USA))


    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  14. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.


    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  15. Sequential Extraction of Aluminum and Iron from Acidic Soils by Chemical Selective Dissolution Methods

    Institute of Scientific and Technical Information of China (English)



    Potassium chloride, Na-pyrophosphate,CuCl2,NH4-oxalate,dithionit-citrate-bicarbonate(DCB) and Na-citrate solutions were employed to etract aluminum(Al) and iron(Fe) sequentially and separately from 15 acidic soils located at the Mangshan Mountains,Hunan Province,China,Many evidences showed that separate pyrophosphate extracted mainly KCl-extractable Al,organo-Al complexes and some inorganic Al compounds,whereas separate CuCl2 extracted KCl-extractable Al and some organo-Al complexes,CuCl2 extracted much less amounts of Al than pyrophosphate did from the soils .Separate oxalate did not extract all KCl-pyrophosphate-CuCl2-oxalate seuentially extractable Al and Fe ,Also,separate DCB did not extract all KCl-pyrophosphate-CuCl2-oxalate-DCB sequentially extractable Al. The forms of Al extacted by oxalate and DCB from the soils were majorly noncrystalline.The interlayered materials of 1.4-nm intergrade minerals of the soils were attributed mainly to hydroxy Al polymers.

  16. Next Generation Energetic Materials: New Cluster Hydrides and Metastable Alloys of Aluminum in Very Low Oxidation States (United States)


    Zavalij, P; Bowen, K.; Schnöckel, H.; Eichhorn, B. Inorganic Chemistry , submitted Jan 2016. 2. “Growth of metalloid aluminum clusters on graphene...organometallic chemistry . ■ REFERENCES (1) (a) Holleman-Wiberg, Inorganic Chemistry ; Academic Press: San Diego, London, 2001. (b)Holleman-Wiberg, Lehrbuch... Chemistry , Johns Hopkins University, Baltimore, Maryland 21218, USA 2Institute of Inorganic Chemistry , Karlsruhe Institute of Technology, 76128 Karlsruhe

  17. Inorganic Halogen Oxidizer Research (United States)


    TiCl. which are converted to C102*SbF6~, (C102 KSnF ~~, and (CICL )2TiF ~", respectively. Aluminum trichloride is coverted to A1F_ (99, 255...H0S02F. The addition of HF-BF, increases the FC10, yield to 85%, but requires elevated pressure. Zinc, aluminum , silver, and lead fluorides were found...Sprengel liquid CL - carbon powder combinations (106), and as a deodorant in aerosol sprays (170). However, the latter application appears very doubtful in

  18. Microfluidics in inorganic chemistry. (United States)

    Abou-Hassan, Ali; Sandre, Olivier; Cabuil, Valérie


    The application of microfluidics in chemistry has gained significant importance in the recent years. Miniaturized chemistry platforms provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. The advantages of microfluidics have been clearly established in the field of analytical and bioanalytical sciences and in the field of organic synthesis. It is less true in the field of inorganic chemistry and materials science; however in inorganic chemistry it has mostly been used for the separation and selective extraction of metal ions. Microfluidics has been used in materials science mainly for the improvement of nanoparticle synthesis, namely metal, metal oxide, and semiconductor nanoparticles. Microfluidic devices can also be used for the formulation of more advanced and sophisticated inorganic materials or hybrids.

  19. Is the Aluminum Hypothesis Dead?


    Lidsky, Theodore I.


    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed w...

  20. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan


    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  1. Is the Aluminum Hypothesis dead? (United States)

    Lidsky, Theodore I


    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust.

  2. Anodizing Aluminum with Frills. (United States)

    Doeltz, Anne E.; And Others


    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…

  3. The aluminum smelting process. (United States)

    Kvande, Halvor


    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  4. Geological and Inorganic Materials. (United States)

    Jackson, L. L.; And Others


    Presents a review focusing on techniques and their application to the analysis of geological and inorganic materials that offer significant changes to research and routine work. Covers geostandards, spectroscopy, plasmas, microbeam techniques, synchrotron X-ray methods, nuclear activation methods, chromatography, and electroanalytical methods.…

  5. Heterogeneous Catalysis of Polyoxometalate Based Organic–Inorganic Hybrids

    Directory of Open Access Journals (Sweden)

    Yuanhang Ren


    Full Text Available Organic–inorganic hybrid polyoxometalate (POM compounds are a subset of materials with unique structures and physical/chemical properties. The combination of metal-organic coordination complexes with classical POMs not only provides a powerful way to gain multifarious new compounds but also affords a new method to modify and functionalize POMs. In parallel with the many reports on the synthesis and structure of new hybrid POM compounds, the application of these compounds for heterogeneous catalysis has also attracted considerable attention. The hybrid POM compounds show noteworthy catalytic performance in acid, oxidation, and even in asymmetric catalytic reactions. This review summarizes the design and synthesis of organic–inorganic hybrid POM compounds and particularly highlights their recent progress in heterogeneous catalysis.

  6. Clinical biochemistry of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    King, S.W.; Savory, J.; Wills, M.R.


    Aluminum toxicity has been implicated in the pathogenesis of a number of clinical disorders in patients with chronic renal failure on long-term intermittent hemodialysis treatment. The predominant disorders have been those involving either bone (osteomalacic dialysis osteodystrophy) or brain (dialysis encephalopathy). In nonuremic patients, an increased brain aluminum concentration has been implicated as a neurotoxic agent in the pathogenesis of Alzheimer's disease and was associated with experimental neurofibrillary degeneration in animals. The brain aluminum concentrations of patients dying with the syndrome of dialysis encephalopathy (dialysis dementia) are significantly higher than in dialyzed patients without the syndrome and in nondialyzed patients. Two potential sources for the increased tissue content of aluminum in patients on hemodialysis have been proposed: (1) intestinal absorption from aluminum containing phosphate-binding gels, and (2) transfer across the dialysis membrane from aluminum in the water used to prepare the dialysate. These findings, coupled with our everyday exposure to the ubiquitous occurrence of aluminum in nature, have created concerns over the potential toxicity of this metal.

  7. Advances in aluminum pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Sudour, Michel; Maintier, Philippe [PPG Industries France, 3 Z.A.E. Les Dix Muids, B.P. 89, F-59583 Marly (France); Simpson, Mark [PPG Industries Inc., 1200 Piedmont Troy, Michigan 48083 (United States); Quaglia, Paolo [PPG Industries Italia, Via Garavelli 21, I-15028 Quattordio (Italy)


    As automotive manufacturers continue to look for ways to reduce vehicle weight, aluminum is finding more utility as a body panel component. The substitution of cold-rolled steel and zinc-coated substrates with aluminum has led to new challenges in vehicle pretreatment. As a result, changes to traditional pretreatment chemistries and operating practices are necessary in order to produce an acceptable coating on aluminum body panels. These changes result in increased sludging and other undesirable characteristics. In addition to the chemistry changes, there are also process-related problems to consider. Many existing automotive pretreatment lines simply were not designed to handle aluminum and its increased demands on filtration and circulation equipment. To retrofit such a system is capital intensive and in addition to requiring a significant amount of downtime, may not be totally effective. Thus, the complexities of pre-treating aluminum body panels have actually had a negative effect on efforts to introduce more aluminum into new vehicle design programs. Recent research into ways of reducing the negative effects has led to a new understanding of the nature of zinc phosphate bath -aluminum interactions. Many of the issues associated with the pretreatment of aluminum have been identified and can be mitigated with only minor changes to the zinc phosphate bath chemistry. The use of low levels of soluble Fe ions, together with free fluoride, has been shown to dramatically improve the efficiency of a zinc phosphate system processing aluminum. Appearance of zinc phosphate coatings, coating weights and sludge are all benefited by this chemistry change. (authors)

  8. Chronic aluminum intake causes Alzheimer's disease: applying Sir Austin Bradford Hill's causality criteria. (United States)

    Walton, J R


    Industrialized societies produce many convenience foods with aluminum additives that enhance various food properties and use alum (aluminum sulfate or aluminum potassium sulfate) in water treatment to enable delivery of large volumes of drinking water to millions of urban consumers. The present causality analysis evaluates the extent to which the routine, life-long intake, and metabolism of aluminum compounds can account for Alzheimer's disease (AD), using Austin Bradford Hill's nine epidemiological and experimental causality criteria, including strength of the relationship, consistency, specificity, temporality, dose-dependent response, biological rationale, coherence with existing knowledge, experimental evidence, and analogy. Mechanisms that underlie the risk of low concentrations of aluminum relate to (1) aluminum's absorption rates, allowing the impression that aluminum is safe to ingest and as an additive in food and drinking water treatment, (2) aluminum's slow progressive uptake into the brain over a long prodromal phase, and (3) aluminum's similarity to iron, in terms of ionic size, allows aluminum to use iron-evolved mechanisms to enter the highly-active, iron-dependent cells responsible for memory processing. Aluminum particularly accumulates in these iron-dependent cells to toxic levels, dysregulating iron homeostasis and causing microtubule depletion, eventually producing changes that result in disconnection of neuronal afferents and efferents, loss of function and regional atrophy consistent with MRI findings in AD brains. AD is a human form of chronic aluminum neurotoxicity. The causality analysis demonstrates that chronic aluminum intake causes AD.


    Directory of Open Access Journals (Sweden)



    Full Text Available Hybrid materials "organic-inorganic" are the subject of immense interest, allowing both to combine some properties of an inorganic material and a polymer. In this work we have carried out a study on conductive polymers, in general, emphasizing the polyaniline. On the other hand, we have presented the inorganic compounds (NbSe2, and ternary compound Nn3Sn SnNb5Se9. From the chemical method, we had to synthesize the following mixtures: PANI/NbSe2, PANI /, Nn3Sn PANI / SnNb5Se9. The structural study of these new compounds are produced by X-ray diffraction and infrared. The morphology of the resulting mixtures to be studied by scanning electron microscopy.

  10. ARC welding method for bonding steel with aluminum

    Institute of Scientific and Technical Information of China (English)

    Zhenyang LU; Pengfei HUANG; Wenning GAO; Yan LI; Hanpeng ZHANG; Shuyan YIN


    When welding steel with aluminum, the appearance of intermetallic compounds of Fe and A1 will decrease tenacity and increase rigidity, which leads to bad joint performance. A new type of low energy input (LEI) welding technology is introduced which can be used to weld steel with aluminum. Using the technology, brazing was located on the steel side and arc fusion welding on the aluminum side. The less heat input reduces the thickness of intermetallic compounds to 3-4 μm. Tensile strength tests prove that the joint breaks at the heat-affected zone and the strength is higher than 70% of the aluminum's. Thus, the method can lead to a good performance joint.

  11. Structure and properties of porous ceramics obtained from aluminum hydroxide (United States)

    Levkov, R.; Kulkov, S.


    In this paper the study of porous ceramics obtained from aluminum hydroxide with gibbsite modification is presented. The dependence of porosity and mechanical characteristics of the material sintered at different temperatures was studied. It was shown that compressive strength of alumina ceramics increases by 40 times with decreasing the pore volume from 65 to 15%. It was shown that aluminum hydroxide may be used for pore formation and pore volume in the sintered ceramics can be controlled by varying the aluminum hydroxide concentration and sintering temperature. Based on these results one can conclude that the obtained structure is very close to inorganic bone matrix and can be used as promising material for bone implants production.

  12. Inorganic Analytical Chemistry

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    The book is a treatise on inorganic analytical reactions in aqueous solution. It covers about half of the elements in the periodic table, i.e. the most important ones : H, Li, B, C, N, O, Na, Mg, Al, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, I, Ba, W,...

  13. Corrosion Inhibitors for Aluminum. (United States)

    Muller, Bodo


    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  14. Advances in aluminum anodizing (United States)

    Dale, K. H.


    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.


    Dalrymple, R.S.; Nelson, W.B.


    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  16. Magnesium Aluminum Borides as Explosive Materials (United States)


    Figure 1). Hsia argued that compounds that do not undergo decomposition reactions are better choices for rocket propellants since the endothermic ...decomposition reaction is undesired. The endotherm for AlB2 decomposition, however, is small[13], especially when compared to the heat of combustion... exotherms for the boron carbide materials are comparable to those of Al + 2B and AlB2. 40 Figure 23. TGA of silicon borides vs . aluminum borides

  17. Inorganic nanolayers: structure, preparation, and biomedical applications

    Directory of Open Access Journals (Sweden)

    Saifullah B


    Full Text Available Bullo Saifullah, Mohd Zobir B HusseinMaterials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Serdang, MalaysiaAbstract: Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes, high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.Keywords: inorganic nanolayers, layered double hydroxides, layered hydroxy salts, drug delivery, biosensors, bioimaging

  18. Interaction of catechins with aluminum in vitro

    Institute of Scientific and Technical Information of China (English)

    唐德松; 沈生荣; 陈勋; 张玉艳; 许重阳


    Tea is one of the most popular beverages, consumed by over two thirds of the world's population; but the aluminum accumulation property of tea plant is becoming the focus of many researches because of aluminum's known adverse effect on human health. Investigation of the interactions of catechins with A13+ showed that during the interaction of catechins with A13+, the UV-vis spectrum of catechins was changed. Absorption of EGCG at 274 nm decreased and increased at 322 nm; EC and C's at 278 nm changed little. The ratio of A13+ to EGCG was 1:1 in pH 5.0 buffer solution; in pH 6.2 buffer solution, the ratio in the A1-EGCG complex was 1:1. Interestingly, while the ratio reached to over 2, after the complex of A1-EGCG started polymerization, the ratio in the polymer was 2:1. In pH 6.2 buffer solution, the complex behavior of C with A13+ was the same as that of EGCG, with a little difference for EC. When the ratio of A13+ to EC was1. It was found that the ratio of A13+ to EC in the polymer was 1:1. Polymerization of A1-catechin complexes might reduce aluminum absorption in the intestine. Kow value was also employed to study the properties of aluminum species in tea infusion (at gastric and intestine pH condition) and the effect of catechins and tea polyphenols on Kow in buffer solution. Results showed that Kow value rose much higher at the intestine pH than at the gastric pH. Tea polyphenols and catechins could greatly reduce aluminum Kow value in acetic buffer,indicating that these compounds may reduce aluminum absorption during tea intake.

  19. Interaction of catechins with aluminum in vitro

    Institute of Scientific and Technical Information of China (English)

    唐德松; 沈生荣; 陈勋; 张玉艳; 许重阳


    Tea is one of the most popular beverages, consumed by over two thirds of the world's population; but the aluminum accumulation property of tea plant is becoming the focus of many researches because of aluminum's known adverse effect on human health. Investigation of the interactions of catechins with Al3+ showed that during the interaction of catechins with Al3+, the UV-vis spectrum of catechins was changed. Absorption of EGCG at 274 nm decreased and increased at 322 nm; EC and C's at 278 nm changed little. The ratio of Al3+ to EGCG was 1:1 in pH 5.0 buffer solution; in pH 6.2 buffer solution, the ratio in the Al-EGCG complex was 1:1. Interestingly, while the ratio reached to over 2, after the complex of Al-EGCG started polymerization, the ratio in the polymer was 2:1. In pH 6.2 buffer solution, the complex behavior of C with Al3+ was the same as that of EGCG, with a little difference for EC. When the ratio of Al3+ to EC was 1. It was found that the ratio of Al3+ to EC in the polymer was 1:1. Polymerization of Al-catechin complexes might reduce aluminum absorption in the intestine. Kow value was also employed to study the properties of aluminum species in tea infusion (at gastric and intestine pH condition) and the effect of catechins and tea polyphenols on Kow in buffer solution. Results showed that Kow value rose much higher at the intestine pH than at the gastric pH. Tea polyphenols and catechins could greatly reduce aluminum Kow value in acetic buffer, indicating that these compounds may reduce aluminum absorption during tea intake.

  20. USAF Inorganic Coating Successes (United States)


    in2 (Marginal Fail) 7 or more pits were seen in a total of 30 in2 (Fail) Aluminum CFCC Screening Test Results Conversion Coating Alloy OC-ALC... 6061 168+ Hours 7075 168+ Hours 2024 48 Hours 5052 48-72 Hours 72-168+ Hours (5 pits on one panel at 48 hours, but then no more ) 6061 72...Dichromate Sealer Test Results Sealer Substrate Quality Thickness Corrosion Primer Dry Tape Adhesion Wet Tape Adhesion Baseline 1 Al 2024-T3 PASS

  1. Aluminum, parathyroid hormone, and osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.


    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  2. Inorganic-organic hybrid framework solids

    Indian Academy of Sciences (India)

    Srinivasan Natarajan


    Recent developments in the area of hybrid structures are overviewed with special emphasis on iron phosphate-oxalate materials. The structure of the iron phosphate-oxalates consists of iron phosphate chains or layers that are connected by oxalate moieties completing the architecture. The compounds exhibit interesting magnetic properties originating from the super-exchange interactions that are predominantly anti-ferromagnetic, involving the iron phosphates and the oxalate moieties. One of the materials, IV, also exhibits interesting adsorptive properties reminiscent of aluminosilicate zeolites. The aluminum phosphate-oxalate, VII, indicates that hybrid structures can be formed with zeolite architecture.

  3. Tin compounds and insect fauna

    Energy Technology Data Exchange (ETDEWEB)

    Butovskiy, R.O.


    A review of the literature of tin compounds serving as pesticides has resulted in the identification of 11 widely used compounds, both organic and inorganic, with largely fungicidal activity. Organotin compounds seem to be limited in use to the control of insect pests, with the majority of the compounds consisting of Sn(IV) and falling into the following four categories: R/sub 4/Sn, R/sub 3/SNX, R/sub 2/SnX/sub 2/, and RSnX/sub 3/, where R = aliphatic or aromatic hydrocarbon radicals, and X = organic or inorganic substituent. The insecticidal activity of these compounds appears to rest on inhibition of ATPase and uncoupling of oxidative phosphorylation. As a result, these compounds act as larvicides, ovicides and imagocides. 77 references.

  4. Effect of Rare Earth Element Ce on Microstructure and Properties of Aluminum Rod for Electrical Purpose

    Institute of Scientific and Technical Information of China (English)

    Li Pengfei; Wang Yunli; Gao Xizhu; Wang Zaiyun


    The effect of rare earth element Ce on microstructure, electrical conductivity and mechanical properties was studied.Using optical microscope, scanning electron microscope, transmission electron microscope and X-ray diffractometer, the microstructure and phase composition of aluminum rod for electrical purpose were measured and analyzed.The results indicate that rare earth element Ce can considerably refine grain size of aluminum rod for electrical purpose,improve the regular distribution pattern of the impurity, such as silicon and iron which present in the aluminum matrix,form stable metal compound with pernicious impurity.This metal compound precipitates on the crystal boundary.As a result, the solid solubility of impurity in aluminum reduce, and the electrical conductivity of aluminum rod for electrical purpose is improved.It is found that the mechanical properties of aluminum rod for electrical purpose are improved by rare earth element in certain range of RE addition.

  5. Fabrication of aluminum foam from aluminum scrap Hamza

    Directory of Open Access Journals (Sweden)

    O. A. Osman1 ,


    Full Text Available In this study the optimum parameters affecting the preparation of aluminum foam from recycled aluminum were studied, these parameters are: temperature, CaCO3 to aluminum scrap wt. ratio as foaming agent, Al2O3 to aluminum scrap wt. ratio as thickening agent, and stirring time. The results show that, the optimum parameters are the temperature ranged from 800 to 850oC, CaCO3 to aluminum scrap wt. ratio was 5%, Al2O3 to aluminum scrap wt. ratio was 3% and stirring time was 45 second with stirring speed 1200 rpm. The produced foam apparent densities ranged from 0.40-0.60 g/cm3. The microstructure of aluminum foam was examined by using SEM, EDX and XRD, the results show that, the aluminum pores were uniformly distributed along the all matrices and the cell walls covered by thin oxide film.

  6. Semiconducting III-V compounds

    CERN Document Server

    Hilsum, C; Henisch, Heinz R


    Semiconducting III-V Compounds deals with the properties of III-V compounds as a family of semiconducting crystals and relates these compounds to the monatomic semiconductors silicon and germanium. Emphasis is placed on physical processes that are peculiar to III-V compounds, particularly those that combine boron, aluminum, gallium, and indium with phosphorus, arsenic, and antimony (for example, indium antimonide, indium arsenide, gallium antimonide, and gallium arsenide).Comprised of eight chapters, this book begins with an assessment of the crystal structure and binding of III-V compounds, f

  7. Filmogen organic-inorganic hybrids obtained by sol-gel in the presence of cationic polymer

    NARCIS (Netherlands)

    Donescu, Dan; Serban, Sever; Uricanu, Violeta; Duits, Michel; Perichaud, Alain; Olteanu, Mihaela; Spiroiu, Manuela; Vasilescu, Marilena


    Self-standing and coated-on-glass films were prepared from polymer-inorganic ormosils, using the cationic polymer poly(methacrylamide propyl quaternarydimethyldodecyl bromide). The inorganic compound was grown in sol-gel reactions based on methyltriethoxysilane (MeTES), with or without addition of t


    Energy Technology Data Exchange (ETDEWEB)

    McCabe, D; Jeff Pike, J; Bill Wilmarth, B


    A workshop was held on January 23-24, 2007 to discuss the status of processes to leach constituents from High Level Waste (HLW) sludges at the Hanford and Savannah River Sites. The objective of the workshop was to examine the needs and requirements for the HLW flowsheet for each site, discuss the status of knowledge of the leaching processes, communicate the research plans, and identify opportunities for synergy to address knowledge gaps. The purpose of leaching of non-radioactive constituents from the sludge waste is to reduce the burden of material that must be vitrified in the HLW melter systems, resulting in reduced HLW glass waste volume, reduced disposal costs, shorter process schedules, and higher facility throughput rates. The leaching process is estimated to reduce the operating life cycle of SRS by seven years and decrease the number of HLW canisters to be disposed in the Repository by 1000 [Gillam et al., 2006]. Comparably at Hanford, the aluminum and chromium leaching processes are estimated to reduce the operating life cycle of the Waste Treatment Plant by 20 years and decrease the number of canisters to the Repository by 15,000-30,000 [Gilbert, 2007]. These leaching processes will save the Department of Energy (DOE) billions of dollars in clean up and disposal costs. The primary constituents targeted for removal by leaching are aluminum and chromium. It is desirable to have some aluminum in glass to improve its durability; however, too much aluminum can increase the sludge viscosity, glass viscosity, and reduce overall process throughput. Chromium leaching is necessary to prevent formation of crystalline compounds in the glass, but is only needed at Hanford because of differences in the sludge waste chemistry at the two sites. Improving glass formulations to increase tolerance of aluminum and chromium is another approach to decrease HLW glass volume. It is likely that an optimum condition can be found by both performing leaching and improving

  9. (EDT-TTF-CONH2)6[Re6Se8(CN)6], a metallic Kagome-type organic-inorganic hybrid compound: electronic instability, molecular motion, and charge localization. (United States)

    Baudron, Stéphane A; Batail, Patrick; Coulon, Claude; Clérac, Rodolphe; Canadell, Enric; Laukhin, Vladimir; Melzi, Roberto; Wzietek, Pawel; Jérome, Denis; Auban-Senzier, Pascale; Ravy, Sylvain


    (EDT-TTF-CONH2)6[Re6Se8(CN)6], space group R, was prepared by electrocrystallization from the primary amide-functionalized ethylenedithiotetrathiafulvalene, EDT-TTF-CONH2 (E(1/2)1 = 0.49 V vs SCE in CH3CN), and the molecular cluster tetraanion, [Re6Se8(CN)6]4- (E(1/2) = 0.33 V vs SCE in CH3CN), equipped with hydrogen bond donor and hydrogen bond acceptor functionalities, respectively. Its Kagome topology is unprecedented for any TTF-based materials. The metallic state observed at room temperature has a strong two-dimensional character, in coherence with the Kagome lattice symmetry, and the presence of minute amounts of [Re6Se8(CN)6](3-)* identified by electron spin spectroscopy. A structural instability toward a distorted form of the Kagome topology of lesser symmetry is observed at ca. 180 K. The low-temperature structure is associated with a localized, electrically insulating electronic ground state and its magnetic susceptibility accounted for by a model of uniform chains of localized S = 1/2 spins in agreement with the 100 K triclinic crystal structure and band structure calculations. A sliding motion, within one out of the three (EDT-TTF-CONH2)2 dimers coupled to the [Re6Se8(CN6)(3-)*]/[Re6Se8(CN6)4-] proportion at any temperature, and the electronic ground state of the organic-inorganic hybrid material are analyzed on the basis of ESR, dc conductivity, 1H spin-lattice relaxation, and static susceptibility data which qualify a Mott localization in [EDT-TTF-CONH2]6[Re6Se8(CN)6]. The coupling between the metal-insulator transition and a structural transition allows for the lifting of a degeneracy due to the ternary axis in the high temperature, strongly correlated metallic phase which, in turn, leads to Heisenberg chains at low temperature.

  10. 耐高温耐腐蚀无机聚合物胶凝材料的性能研究%Properties of Corrosion Resistant and High Temperature Resistant Inorganic Polymer Materials

    Institute of Scientific and Technical Information of China (English)

    曹海琳; 李国学; 翁履谦; 杨海峰


    采用高炉矿渣微粉制备了无机聚合物胶凝材料,并从其化学组成、微观物相结构、细观结构的表征分析入手,结合胶砂试样力学性能、耐腐蚀性能和耐高温性能的测试分析,阐明该材料体系耐腐蚀和耐高温性能方面的特性.研究结果表明,无机聚合物为具有快凝高强特性的铝硅酸盐类化合物,主要是以-Si-O-Si-键或Si-O-Al-O键构成的具有链状、层状和三维架状结构特征的非晶态结构,其细观结构均匀致密,孔洞多为封闭孔洞.致密的结构和稳定的-Si-O-Si-键或Si-O-Al-O键赋予无机聚合物优异的耐酸腐蚀性能和耐高温性能.%The inorganic polymer, using ground granulated blast furnace slag (GGBS) as raw mateiral, were prepared by adding a composite activator. The chemical composition and microstructure of the inorganic polymer were examined. The characteristics of corrosion resistance and high temperature resistance were investigated comparing with Portland cement samples. The mechanism was also discussed. The results show that inorganic polymer has amorphous-SK>Si- and Si-OAl-O structure, and its microstructure appears denser than Portland cement. The corrosion resistant and high temperature resistant properties of inorganic polymer are much better than those of Portlant cement due to compactive microstructure and stable aluminum silicate compound of the inorganic polymer.

  11. Electrically conductive anodized aluminum coatings (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)


    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  12. China’s Aluminum Resources

    Institute of Scientific and Technical Information of China (English)


    <正> The aluminum industry makes one of the keyindustries in China’s industrial and agriculturalmodernization and features a high degree ofrelevance with all industries.Of all the 124existing industries in China,113 use aluminum,representing an industrial relevance rate of91%.The consumption of aluminum is also ofhigh relevance with China’s GDP.

  13. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others


    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  14. Brazing process provides high-strength bond between aluminum and stainless steel (United States)

    Huschke, E. G., Jr.; Nord, D. B.


    Brazing process uses vapor-deposited titanium and an aluminum-zirconium-silicon alloy to prevent formation of brittle intermetallic compounds in stainless steel and aluminum bonding. Joints formed by this process maintain their high strength, corrosion resistance, and hermetic sealing properties.

  15. Molecularly designed lipid microdomains for solid dispersions using a polymer/inorganic carrier matrix produced by hot-melt extrusion. (United States)

    Adler, Camille; Schönenberger, Monica; Teleki, Alexandra; Kuentz, Martin


    Amorphous solid dispersions have for many years been a focus in oral formulations, especially in combination with a hot-melt extrusion process. The present work targets a novel approach with a system based on a fatty acid, a polymer and an inorganic carrier. It was intended to adsorb the acidic lipid by specific molecular interactions onto the solid carrier to design disorder in the alkyl chains of the lipid. Such designed lipid microdomains (DLM) were created as a new microstructure to accommodate a compound in a solid dispersion. Vibrational spectroscopy, X-ray powder diffraction, atomic force microscopy as well as electron microscopic imaging were employed to study a system of stearic acid, hydroxypropylcellulose and aluminum magnesium silicate. β-carotene was used as a poorly water-soluble model substance that is difficult to formulate with conventional solid dispersion formulations. The results indicated that the targeted molecular excipient interactions indeed led to DLMs for specific compositions. The different methods provided complementary aspects and important insights into the created microstructure. The novel delivery system appeared to be especially promising for the formulation of oral compounds that exhibit both high crystal energy and lipophilicity.

  16. Aluminum for Plasmonics (United States)


    in plasmon-enhanced light harvesting,14 photocatalysis ,511 surface- enhanced spectroscopies,1216 optics-based sensing,1722 nonlinear optics,2326...optical response of Al nanoparticles has appeared inconsistent relative to calculated spectra, even forwell-characterized geometries. Some studies have...model- ing their optical response. These results pro- vide a method for estimating the metallic purity of aluminum nanoparticles directly from their

  17. Computer-Assisted Inverse Design of Inorganic Electrides (United States)

    Zhang, Yunwei; Wang, Hui; Wang, Yanchao; Zhang, Lijun; Ma, Yanming


    Electrides are intrinsic electron-rich materials enabling applications as excellent electron emitters, superior catalysts, and strong reducing agents. There are a number of organic electrides; however, their instability at room temperature and sensitivity to moisture are bottlenecks for their practical uses. Known inorganic electrides are rare, but they appear to have greater thermal stability at ambient conditions and are thus better characterized for application. Here, we develop a computer-assisted inverse-design method for searching for a large variety of inorganic electrides unbiased by any known electride structures. It uses the intrinsic property of interstitial electron localization of electrides as the global variable function for swarm intelligence structure searches. We construct two rules of thumb on the design of inorganic electrides pointing to electron-rich ionic systems and low electronegativity of the cationic elements involved. By screening 99 such binary compounds through large-scale computer simulations, we identify 24 stable and 65 metastable new inorganic electrides that show distinct three-, two-, and zero-dimensional conductive properties, among which 18 are existing compounds that have not been pointed to as electrides. Our work reveals the rich abundance of inorganic electrides by providing 33 hitherto unexpected structure prototypes of electrides, of which 19 are not in the known structure databases.

  18. Pharmacokinetic study on compound aluminum sulfate injection after i.v. and in situ administration in rabbits%复方硫酸铝注射液新西兰兔静脉注射和局部注射药代动力学研究

    Institute of Scientific and Technical Information of China (English)

    徐风华; 陈宜鸿; 方翼; 高秀云


    目的:研究复方硫酸铝注射液静脉注射后的药代动力学以及肌肉和皮下注射后的全身吸收.方法:兔耳静脉、股四头肌和背部皮下注射,耳静脉采血,采用等离子体质谱法测定血铝浓度,DAS药代动力学程序处理血药浓度数据.结果:静脉注射复方硫酸铝注射液1 mg·kg-1 (剂量均以无水硫酸铝计),硫酸铝体内药代动力学过程符合二房室模型,t1/2β为 1.08±0.46 h,AUC0-12h为 1.52±0.92 mg·h·L-1(n=5).股四头肌注射复方硫酸铝注射液80 mg·kg-1,血铝浓度略有升高,但不明显,采用梯形法计算曲线下面积,平均AUC0-24h为 2.93±1.82 mg·h·L-1(n=5),相对生物利用度约为 2.41%.皮下注射160 mg·kg-1,血铝浓度没有明显的峰值,平均AUC0-24h为 0.88±1.14 mg·h·L-1(n=5),相对生物利用度约为 0.36%.结论:复方硫酸铝注射液静脉注射后血液中清除速率快,局部注射后全身吸收量很低,是一种安全的新制剂.%AIM: To study the pharmacokinetics of compound aluminum sulfate injection after i.v. administration and aluminum absorption after i.m. and s.c. administration in New Zealand rabbits. METHODS: Compound aluminum sulfate injection was administrated i.v. to the left-ear at the dose of 1 mg·kg-1, i.m. in quadriceps at the dose of 80 mg·kg-1 or s.c. under back skin at the dose of 160 mg·kg-1 (anhydrous aluminum sulfate/body weight). Blood samples were collected at different time after injection from the right-ear vein. ICP-MS assay was used to determine the aluminum (Al) concentration. Pharmacokinetic parameters were calculated with DAS program. RESULTS: The blood Al concentration-time profiles after i.v. injection fitted to a two-compartment model, with t1/2β 1.08±0.46 h and AUC0-12h 1.52±0.92 mg·h·L-1 (n=5). There was no obvious increase in Al concentration after i.m. injection of 80 mg·kg-1 or s.c. injection of 160 mg·kg-1 aluminum sulfate. The average AUC0-24h of i.m. injection was 2.93±1.82 mg·h·L-1

  19. Inorganic Materials Database for Exploring the Nature of Material (United States)

    Xu, Yibin; Yamazaki, Masayoshi; Villars, Pierre


    An inorganic materials database system, AtomWork, has been developed and released on the Internet. It includes the phase diagram, crystal structure, X-ray powder diffraction, and property data of more than 80,000 inorganic materials extracted from scientific literature. The feature of this database is that the information of the synthesis, identification, and property of materials is organically linked, which enables the data reported in different papers to be grouped and compared at four different levels: chemical system, compound, substance, and material. The database can provide users with a comprehensive overview of substances and necessary information to understand the relationships among chemical component, structure, and property.

  20. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States)


    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  1. Aluminum microstructures on anodic alumina for aluminum wiring boards. (United States)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki


    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices.

  2. Inorganic materials in industrial processes


    Demadis, Konstantinos


    Although inorganic materials represent a small number to the extreme number of the organic ones, they play a number of crucial roles in several processes of industrial interest. Two significant technologically processes have been selected as “case studies” for this presentation: metallic corrosion and its control, and mitigation of inorganic deposits, both related to industrial water systems. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.

  3. Essentials of inorganic materials synthesis

    CERN Document Server

    Rao, C N R


    This compact handbook describes all the important methods of synthesis employed today for synthesizing inorganic materials. Some features: Focuses on modern inorganic materials with applications in nanotechnology, energy materials, and sustainability Synthesis is a crucial component of materials science and technology; this book provides a simple introduction as well as an updated description of methods Written in a very simple style, providing references to the literature to get details of the methods of preparation when required

  4. Aluminum Carbothermic Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Marshall J.


    This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry

  5. Environmental dust effects on aluminum surfaces in humid air ambient (United States)

    Yilbas, Bekir Sami; Hassan, Ghassan; Ali, Haider; Al-Aqeeli, Nasser


    Environmental dusts settle on surfaces and influence the performance of concentrated solar energy harvesting devices, such as aluminum troughs. The characteristics of environmental dust and the effects of mud formed from the dust particles as a result of water condensing in humid air conditions on an aluminum wafer surface are examined. The dissolution of alkaline and alkaline earth compounds in water condensate form a chemically active mud liquid with pH 8.2. Due to gravity, the mud liquid settles at the interface of the mud and the aluminum surface while forming locally scattered patches of liquid films. Once the mud liquid dries, adhesion work to remove the dry mud increases significantly. The mud liquid gives rise to the formation of pinholes and local pit sites on the aluminum surface. Morphological changes due to pit sites and residues of the dry mud on the aluminum surface lower the surface reflection after the removal of the dry mud from the surface. The characteristics of the aluminum surface can address the dust/mud-related limitations of reflective surfaces and may have implications for the reductions in the efficiencies of solar concentrated power systems. PMID:28378798

  6. Fabrication of Corrosion Resistance Micro-Nanostructured Superhydrophobic Anodized Aluminum in a One-Step Electrodeposition Process

    Directory of Open Access Journals (Sweden)

    Ying Huang


    Full Text Available The formation of low surface energy hybrid organic-inorganic micro-nanostructured zinc stearate electrodeposit transformed the anodic aluminum oxide (AAO surface to superhydrophobic, having a water contact angle of 160°. The corrosion current densities of the anodized and aluminum alloy surfaces are found to be 200 and 400 nA/cm2, respectively. In comparison, superhydrophobic anodic aluminum oxide (SHAAO shows a much lower value of 88 nA/cm2. Similarly, the charge transfer resistance, Rct, measured by electrochemical impedance spectroscopy shows that the SHAAO substrate was found to be 200-times larger than the as-received aluminum alloy substrate. These results proved that the superhydrophobic surfaces created on the anodized surface significantly improved the corrosion resistance property of the aluminum alloy.

  7. Laser assisted foaming of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kathuria, Y.P. [Laser X Co. Ltd., Aichi (Japan)


    Recently aluminum foams have evoked considerable interest as an alternative material owing to their wide range of applications ranging from microelectronics, through automobiles to aerospace industries. The manufacturing techniques and characterization methods for aluminum foams require further development to achieve effective and economical use of this material. In this communication the authors demonstrate the feasibility of unidirectional and localized expansion of the aluminum foam using the Nd-YAG/CO{sub 2} laser and powder metallurgy. (orig.)

  8. Inorganic Halogen Oxidizer Research. (United States)


    pyrolysis . Attempts to synthesize other uF 5X type compounds, which involved a number of different synthetic approaches, were unsuccessful. + The...I (01.1o it6 (tlie titss tittetrit.i I olefii perfltisroprops et ., mii tire FAperimental Sectioin I twio iiimtie it wafoundv (azition’ lifi,liiili Ii...established by rapid pyrolysis at 150 0 C in a dynamic vacuum. Th main decomposition products, condensible at -210 0 C, were NF3, UF6, and a small amount of OF

  9. Applications of Raman Spectroscopy to Inorganic Chemistry

    Institute of Scientific and Technical Information of China (English)



    The renaissance in Raman spectroscopy some 25-30 years ago had particular and immediate impact on Inorganic Chemistry,viz in areas such as the study of deeply coloued compounds,structural changes on change of state,equilibria,vapour phase band contour analysis,Raman band intensities and the nature of the chemical bond,metal-metal bonding,species in melts,identification of species in solution and of radicals by time-resolved techniques,in bioinorganic chemistry,and of linear-chain semiconductors.More recently,much attention has been directed at the quantitative level at the evaluation of geometric changes in molecules on excitation by resonance Raman spectroscopy.At the qualitative level Raman microscopy is now recognised to be the most effective technique for the identification of pigments-particularly the inorganic ones-on medieval manuscripts and especially of the components(down to grain sizes of -1 um)of pigment mixtures,It is thus a very important technique at the Arts/Science borderling in conservation science.

  10. Aluminum and aluminum/silicon coatings on ferritic steels by CVD-FBR technology

    Energy Technology Data Exchange (ETDEWEB)

    Perez, F.J. [Grupo de Investigacion de Ingenieria de Superficies, Departamento de Ciencia de los Materiales, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)]. E-mail:; Hierro, M.P. [Grupo de Investigacion de Ingenieria de Superficies, Departamento de Ciencia de los Materiales, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Trilleros, J.A. [Grupo de Investigacion de Ingenieria de Superficies, Departamento de Ciencia de los Materiales, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Carpintero, M.C. [Grupo de Investigacion de Ingenieria de Superficies, Departamento de Ciencia de los Materiales, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Sanchez, L. [Grupo de Investigacion de Ingenieria de Superficies, Departamento de Ciencia de los Materiales, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Bolivar, F.J. [Grupo de Investigacion de Ingenieria de Superficies, Departamento de Ciencia de los Materiales, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)


    The use of chemical vapor deposition by fluidized bed reactors (CVD-FBR) offers some advantages in comparison to other coating techniques such as pack cementation, because it allows coating deposition at lower temperatures than pack cementation and at atmospheric pressure without affecting the mechanical properties of material due to heat treatments of the bulk during coating process. Aluminum and aluminum/silicon coatings have been obtained on two different ferritics steels (P-91 and P-92). The coatings were analyzed using several techniques like SEM/EDX and XRD. The results indicated that both coatings were form by Fe{sub 2}Al{sub 5} intermetallic compound, and in the co-deposition the Si was incorporated to the Fe{sub 2}Al{sub 5} structure in small amounts.

  11. Purification of scrap aluminum foil and aluminum melt covering and protecting & atomic purification theory

    Institute of Scientific and Technical Information of China (English)

    倪红军; 孙宝德; 刘满平; 丁文江


    A new flux, JDN-I, including rare earth compounds, for purification of the scraps of 99.99% aluminum foil was introduced. The experimental results indicate that its function of degassing and deoxidizing is excellent. The hydrogen content of the scrap aluminum foil melt purified by JDN-I flux decreases greatly from 4.5 mL/kg to 1.2 mL/kg at 720 ℃. The tensile strength of the samples refined with JDN-I flux increases by 19.2% and the elongation increases by 38.3% in comparison with those without flux. The purification mechanism of JDN-I was discussed and a theory of covering, protecting & atomic purification was also put forward.

  12. 长期摄入不同钙化合物对大鼠铝、铅吸收及大脑、骨骼蓄积的影响%Effects of long-term ingestion of different calcium compounds on the absorption of aluminum and lead and their accumulation in rat brain and bone

    Institute of Scientific and Technical Information of China (English)

    王劲; 柳启沛; 黄宗枝


    目的:探讨不同钙化合物对大鼠铝、铅代谢的影响. 方法:将幼年 Sprague-Dawley大鼠 30只(雌雄性各半),分成柠檬酸钙+铝+铅组、醋酸钙+铝+铅组和碳酸钙+铝+铅组等 3组.各组动物分别用不同形式的钙化合物通过灌胃给予等剂量钙元素,共 4周.实验结束后,用电感耦合等离子体原子发射光谱法( ICP-AES)分别测定全血、肝、肾、股骨和大脑中铝和铅的含量. 结果:醋酸钙组、柠檬酸钙组和碳酸钙组铅的表观吸收率分别为(- 29.97± 28.85)%,(- 86.20± 87.60)%和(- 163.56± 93.77)%;大脑中铝浓度分别为( 3.84± 1.49),( 3.67± 1.31)和( 0.83± 1.61) μ g/g.大鼠摄入醋酸钙和柠檬酸钙后对铅的表观吸收率要高于碳酸钙组的大鼠( F=- 23.744,7.802,P< 0.05).摄入柠檬酸钙和醋酸钙的大鼠的大脑和骨骼组织中铝和铅水平高于摄入碳酸钙的大鼠 (F=12.411~ 38.333,P< 0.05). 结论:长期摄入柠檬酸钙和醋酸钙有增加铅吸收的危险,并可使铅和铝蓄积在骨骼和大脑.%AIM: To explore the effects of different calcium compounds on aluminum(Al) and lead(Pb) metabolism in rats. METHODS: Thirty young rats(15 male and 15 female),were divided into three groups: Ca-citrate+ Al+ Pb group,Ca-acetate+ Al+ Pb group,and Ca-carbonate+ Al+ Pb group.The rats of each group were given calcium element of the same dosage by gavage of various calcium compounds for four weeks.After the experiment,Al and Pb levels in whole blood,liver,kidney, femur and cerebrum were measured by ICP-AES. RESULTS:In the Ca-acetate+ Al+ Pb group,Ca-citrate+ Al+ Pb group and Ca-carbonate+ Al+ Pb group,the apparent absorptivity of Pb(- 29.97± 28.85)% ,(- 86.20± 87.60)% and(- 163.56± 93.77)%; concentration of Al in cerebrum: (3.84± 1.49),(3.67± 1.31) and (0.83± 1.61)μ g/g.The absorptivities of Pb in the rats treated with calcium citrate and calcium acetate were higher than those treated with calcium carbonate.The aluminum and lead

  13. Neurofibrillary pathology and aluminum in Alzheimer's disease


    Shin, R. W.; Lee, V.M.Y.; Trojanowski, J.Q.


    Since the first reports of aluminum-induced neurofibrillary degeneration in experimental animals, extensive studies have been performed to clarify the role played by aluminum in the pathogenesis of Alzheimer's disease (AD). Additional evidence implicating aluminum in AD includes elevated levels of aluminum in the AD brain, epidemiological data linking aluminum exposure to AD, and interactions between aluminum and protein components in the pathological lesions o...

  14. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi


    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  15. Mechanisms of inorganic and organometallic reactions

    CERN Document Server

    The purpose of this series is to provide a continuing critical review of the literature concerned with mechanistic aspects of inorganic and organo­ metallic reactions in solution, with coverage being complete in each volume. The papers discussed are selected on the basis of relevance to the elucidation of reaction mechanisms and many include results of a nonkinetic nature when useful mechanistic information can be deduced. The period of literature covered by this volume is July 1982 through December 1983, and in some instances papers not available for inclusion in the previous volume are also included. Numerical results are usually reported in the units used by the original authors, except where data from different papers are com­ pared and conversion to common units is necessary. As in previous volumes material included covers the major areas of redox processes, reactions of the nonmetallic elements, reaction of inert and labile metal complexes and the reactions of organometallic compounds. While m...

  16. Aluminum Nanoholes for Optical Biosensing

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios


    Full Text Available Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (biosensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (biosensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  17. Ballistic Evaluation of 2060 Aluminum (United States)


    experiments in Experimental Facilities (EFs) 108 and 106, as well as John Hogan of ARL/AMB, Hugh Walter of Bowhead Science and Technology, and David aluminum (Al)-based monocoque armored-vehicle hulls such as those of the M2 Bradley Infantry Fighting Vehicles. Also in 2012 the Aluminum

  18. 有机无机专用复合肥对葡萄产量、品质和养分利用的影响%Effects of organic-inorganic special compound fertilizer on yield, quality and nutrient uptake of grape (Vitis labrus-cana Kyoho)

    Institute of Scientific and Technical Information of China (English)

    周媛; 谭启玲; 胡承孝; 郑苍松; 李路; 刘清荣; 胥剑雯


    Field experiment was conducted to study the effects of organic-inorganic special compound fertilizer ( OISCF) on fruit yield, quality, and nutrient uptake of grape. Four treatments were set:CK ( no fertilizer) , XG ( traditional fertiliza-tion) , DL ( equal total of N, P2 O5 , K2 O amount of OISCF was used instead of normal fertilizers) and TJ ( recommend a-mount of OISCF) . The results showed that the grape yield of TJ was increased by 25. 8% and 5. 1% comparing with CK and XG respectively. Compared to CK, XG and DL treatments, the TJ grape fruits titratable acid decreased significantly by 10. 7% ~42. 9%, total soluble solid increased by 1. 8% ~8. 2%, Vitamin C increased by 6. 4% ~77. 7%, and TA/TSS increased by 10. 2% ~60. 4%. However, the total amount of N, P2 O5 and K2 O fertilization of TJ treatment was 42. 5%less than the treatments of XG and DL, while grape leaf Fe, Cu contents and fruit Fe absorption were increased significantly by organic-inorganic special compound fertilizer. In conclusion, recommended fertilization of OISCF kept grape fruit yield and improved fruit quality but declined the N, P2 O5 and K2 O application rate considerably.%通过田间小区试验,研究了有机无机专用复合肥对葡萄产量、品质、养分吸收及累积量的影响。结果表明:施用推荐量专用肥,葡萄产量比不施肥和习惯施肥分别增加了25.8%和5.1%;葡萄果实可滴定酸比不施肥、习惯施肥和等量专用肥显著降低,减幅为10.7%~42.9%;施用推荐量专用肥提高了葡萄果实可溶性固形物1.8%~8.2%、 Vc 6.4%~77.7%以及固酸比10.2%~60.4%;施用专用肥显著提高葡萄叶片Fe、 Cu及果实Fe含量;而施用推荐量专用肥比习惯施肥、等量专用肥处理减少氮磷钾施用总量42.5%。因此,施用推荐量有机无机专用复合肥,既保证葡萄产量、改善果实品质,又减少氮磷钾施用总量,节约成本。

  19. Wettability of Aluminum on Alumina (United States)

    Bao, Sarina; Tang, Kai; Kvithyld, Anne; Tangstad, Merete; Engh, Thorvald Abel


    The wettability of molten aluminum on solid alumina substrate has been investigated by the sessile drop technique in a 10-8 bar vacuum or under argon atmosphere in the temperature range from 1273 K to 1673 K (1000 °C to 1400 °C). It is shown that the reduction of oxide skin on molten aluminum is slow under normal pressures even with ultralow oxygen potential, but it is enhanced in high vacuum. To describe the wetting behavior of the Al-Al2O3 system at lower temperatures, a semiempirical calculation was employed. The calculated contact angle at 973 K (700 °C) is approximately 97 deg, which indicates that aluminum does not wet alumina at aluminum casting temperatures. Thus, a priming height is required for aluminum to infiltrate a filter. Wetting in the Al-Al2O3 system increases with temperature.

  20. Chlorobenzene outputs from combustion of chlorinated organic and inorganic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Green, A.E.S.; Vitali, J.A.; Miller, T.L. [Univ. of Florida, Gainesville, FL (United States)


    The authors consider the gas phase formation of chlorinated benzenes and phenols as precursors of chlorinated dioxins and furans from the combustion of solid fuels containing organically bound chlorine. The model investigated is intended to apply to the combustion of medical waste, municipal waste and coals containing chlorine. Assuming a temperature-time profile drawn from incinerator experiments, the authors use kinetic modeling with known reaction rates to further investigate four models of chlorinated benzene formation. Since reaction rates for most chlorination processes are now known, the authors choose simple systems of reaction rates that yield outputs that can be made approximately compatible with results of the Pittsfield-Vicon incinerator and Clean Combustion Technology Laboratory experiments. The authors also consider recent measurements of HCI emissions from crematoria and the implication of this work with respect to the benefits of material substitution in medical and municipal waste incineration. These benefits should also accompany the dechlorination of coals. The authors note the disparity between the prevailing USA position and the emerging position of Germany on the issue of halogenated plastics. The authors also note that Europe and Asia are beginning to address solid fuel issues as a consolidated discipline. This pattern should be helpful in broadening the understanding of solid fuels combustion processes and in ferreting out erroneous data and conclusions. This is important in view of the recent concern about the role of low dioxin exposure levels on fetal development and the immune system.

  1. Recent developments in Inorganic polymers: A Review with focus on Si-Al based inorganic polymers

    Directory of Open Access Journals (Sweden)

    Shrray Srivastava


    Full Text Available Inorganic polymers are a unique classification of polymers. They contain inorganic atoms in the main chain. Hybrids with organic polymers as well as those chains that contain metals as pendant groups are considered in a special sub-classification as organo-metallic polymers. The networks containing only inorganic elements in main chain are called inorganic polymers. The silicone rubber is the most commercial inorganic polymer. The organo-metallic and inorganic polymers have a different set of applications. The current paper is a review of current applications of polymers with inorganic back-bone networks, especially focusing on Si and Al based inorganic polymeric materials.

  2. Hualu Aluminum Will Construct Large Coal-Power-Aluminum Aluminum Processing Industrial Chain

    Institute of Scientific and Technical Information of China (English)


    The reporter learned from relevant departments of Baiyin City that in order to further push forward industrial upgrading,fulfill expansion and consolidation of the enterprise,Gansu Hualu Aluminum Co.,Ltd(Hualu Aluminum)will implement Out-Of-City-Into-Park project,

  3. Determination of organic compounds in medicinal plants, commercialized in capsulated forms and 'in natura' by wavelength dispersive X-ray fluorescence spectrometry (WDXRF). Determination of quantitative inorganic profiles; Determinacao de componentes organicos em plantas medicinais, comercializadas em forma de po (capsulas) e 'in natura', utilizando a tecnica de fluorescencia de raios X por dispersao de comprimento de onda (WDXRF). Determinacao de perfis inorganicos quantitativos

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Manuel Octavio M.; Sato, Ivone Mulako; Salvador, Vera Lucia R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente]. E-mail:


    X-ray fluorescence technique was used to determine major and trace elements for five Brazilian commercial medicinal plants. The bromobutane (Barbatimao), Ginkgo folium (Ginkgo biloba), Echinodorus macrophyllus (Chapeu de couro), Valeriana officinalis (Valeriana), Cordia salicifolia (Porangaba) samples were collected from three to six different commercial suppliers. The species were collected 'in natura' (leaves, flowers, barks and roots) and capsulated forms. The samples were grinded in liquid N{sub 2} atmosphere and double layer pressed pellet were prepared. The elements Na, Mg, P, S, Cl, K, Ca, Mn, Fe, Ni, Cu, Zn, Rb e Sr concentrations were determined by individual calibration curves. The precision and accuracy of method were evaluated by certified reference material, NIST 1547 - Peach Leaves and the Chauvenet, Cochrane, ANOVA and Z-score statistical tests were applied. Each specimen presented a distinct inorganic profile and a great variation in its composition was observed. The inorganic profile will contribute for the elaboration of a quality and security guide to assure the phytotherapics commercialization. Moreover, these profiles could be used as complementary data to active farmaco compounds profiles for specimen's ratification. (author)

  4. Inorganic Nanotubes and Fullerene-Like Nanoparticles:. from the Lab to the Market Place (United States)

    Tenne, R.


    Layered compounds, like MoS2 were shown by the author to be unstable in the nano-regime. Using new chemical strategies, closed-cage hollow nanostructures in the form of inorganic fullerene-like nanoparticles and inorganic nanotubes were synthesized. These nanostructures exhibit numerous interesting physico-chemical properties and are employed as superior solid lubricants, with numerous other applications currently being developed.

  5. Predictors of Poor Prognosis in Aluminum Phosphide Intoxication

    Directory of Open Access Journals (Sweden)

    Fakhredin Taghaddosi Nejad


    Full Text Available Background: Aluminum phosphide as a fumigant is extensively used for wheat preservation from rodents and bugs especially in silos worldwide. There is increasing number of acute intoxication with this potentially lethal compound because of its easy availability. We have tried to locate predictors of poor prognosis in patients with aluminum phosphide intoxication in order to find patients who need more strict medical cares. Methods: All cases of aluminum phosphide intoxication that had been referred to our hospital during April 2008 to March 2010 were studied by their medical dossiers. Pertinent data including vital signs, demographic features, clinical and lab findings, and incidence of any complication were collected and analyzed by the relevant statistical methods. Results: Sixty seven cases of aluminum phosphide intoxication were included in the study. 44.8% of them were male. 97% of cases were suicidal. Mean amount of ingestion was 1.23+/- 0.71 tablets. Mortality rate was 41.8%. ECG abnormality and need for mechanical ventilation had negative relation with outcome. Conclusion: Correlation between some findings and complications with outcome in aluminum phosphide intoxication can be used as guidance for risk assessment and treatment planning in the patients.

  6. Spray Rolling Aluminum Strip

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.


    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  7. Aluminum phosphate coatings (United States)

    Sambasivan, Sankar; Steiner, Kimberly A.; Rangan, Krishnaswamy K.


    Aluminophosphate compounds and compositions as can be used for substrate or composite films and coating to provide or enhance, without limitation, planarization, anti-biofouling and/or anti-microbial properties.

  8. Inorganic nanomedicine--part 1. (United States)

    Sekhon, Bhupinder S; Kamboj, Seema R


    Inorganic nanomedicine refers to the use of inorganic or hybrid nanomaterials and nanosized objects to achieve innovative medical breakthroughs for drug and gene discovery and delivery, discovery of biomarkers, and molecular diagnostics. Potential uses for fluorescent quantum dots include cell labeling, biosensing, in vivo imaging, bimodal magnetic-luminescent imaging, and diagnostics. Biocompatible quantum dot conjugates have been used successfully for sentinel lymph node mapping, tumor targeting, tumor angiogenesis imaging, and metastatic cell tracking. Magnetic nanowires applications include biosensing and construction of nucleic acids sensors. Magnetic cell therapy is used for the repair of blood vessels. Magnetic nanoparticles (MNPs) are important for magnetic resonance imaging, drug delivery, cell labeling, and tracking. Superparamagnetic iron oxide nanoparticles are used for hyperthermic treatment of tumors. Multifunctional MNPs applications include drug and gene delivery, medical imaging, and targeted drug delivery. MNPs could have a vital role in developing techniques to simultaneously diagnose, monitor, and treat a wide range of common diseases and injuries. From the clinical editor: This review serves as an update about the current state of inorganic nanomedicine. The use of inorganic/hybrid nanomaterials and nanosized objects has already resulted in innovative medical breakthroughs for drug/gene discovery and delivery, discovery of biomarkers and molecular diagnostics, and is likely to remain one of the most prolific fields of nanomedicine.

  9. Inorganic Reaction Mechanisms. Part I (United States)

    Cooke, D. O.


    Provides a collection of data on the mechanistic aspects of inorganic chemical reactions. Wherever possible includes procedures for classroom demonstration or student project work. The material covered includes gas phase reactions, reactions in solution, mechanisms of electron transfer, the reaction between iron III and iodine, and hydrolysis. (GS)

  10. Subsurface Aluminum Nitride Formation in Iron-Aluminum Alloys (United States)

    Bott, June H.

    Transformation-induced plasticity (TRIP) steels containing higher amounts of aluminum than conventional steels are ideal for structural automotive parts due to their mechanical properties. However, the aluminum tends to react with any processing environment at high temperatures and therefore presents significant challenges during manufacturing. One such challenge occurs during secondary cooling, reheating, and hot-rolling and is caused by a reaction with nitrogen-rich atmospheres wherein subsurface aluminum nitride forms in addition to internal and external oxides. The nitrides are detrimental to mechanical properties and cause surface cracks. It is important to understand how these nitrides and oxides form and their consequences for the quality of steel products. This study looks at model iron-aluminum (up to 8 wt.% aluminum) alloys and uses confocal laser scanning microscopy, x-ray diffraction, scanning electron microscopy with energy dispersive x-ray spectrometry, and transmission electron microscopy to study the effect of various conditions on the growth and development of these precipitates in a subsurface oxygen-depleted region. By using model alloys and controlling the experimental atmosphere, this study is able to understand some of the more fundamental materials science behind aluminum nitride formation in aluminum-rich iron alloys and the relationship between internal nitride and oxide precipitation and external oxide scale morphology and composition. The iron-aluminum alloys were heated in N2 atmospheres containing oxygen impurities. It was found that nitrides formed when bulk aluminum content was below 8 wt.% when oxygen was sufficiently depleted due to the internal oxidation. In the samples containing 1 wt.% aluminum, the depth of the internal oxide and nitride zones were in agreement with a diffusion-based model. Increasing aluminum content to 3 and 5 wt% had the effects of modifying the surface-oxide scale composition and increasing its continuity

  11. New preparation of benzylic aluminum and zinc organometallics by direct insertion of aluminum powder. (United States)

    Blümke, Tobias D; Groll, Klaus; Karaghiosoff, Konstantin; Knochel, Paul


    The reaction of commercial Al-powder (3 equiv) and InCl(3) (1-5 mol %) with benzylic chlorides provides various functionalized benzylic aluminum sesquichlorides under mild conditions (THF, 20 °C, 3-24 h) without homocoupling (organometallics reacted smoothly with various electrophiles (Pd-catalyzed cross-couplings, or Cu-mediated acylations, allylations, or 1,4-addition reactions). Electron-poor benzylic chlorides or substrates prone to Wurtz coupling can be converted to benzylic zinc compounds by the reaction of Al-powder in the presence of ZnCl(2).


    Institute of Scientific and Technical Information of China (English)


    To improve roll system stability of aluminum foil mills, roll system stability of 2200 high-speed aluminum foil mill is analyzed with energy stable method.Two different restrictive conditions which gaps between chock of work roll and window of stand whether exist or not, are studied respectively.A new concept of roll system with open /closed compound pair comes up with as well for renewably synthesizing restrictive mechanism of aluminum foil mills' chock.Through these studies, the conflict, whether reserving the gap for the roller replacement or eliminating the gap for roller's normal work, is successfully settled.This concept and analyzed result give the actual mechanism with open/closed compound restriction and the method of realizing high-speed rolling and prolonging longevity of end thrust bearing on work roll.It has important theoretical meaning and engineering value for modern technical reform of aluminum foil mills and plate strip mills.

  13. Inorganic ion exchangers for nuclear waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E. [Texas A& M Univ., College Station, TX (United States)


    The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.

  14. Organic/inorganic nanocomposite polymer electrolyte

    Institute of Scientific and Technical Information of China (English)

    Li Qi; Shao Jun Dong


    The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocom posites membrane materials and their lithium salt complexes have been found thermally stable below 200 ℃. The conductivity of the organic/inorganic nanocomposites polymer electrolytes prepared at room temperature was at magnitude range of 10-6 S/cm.

  15. Radioluminescence of rare-earth doped aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, M.; Molina, P. [Universidad Nacional del Centro de la Provincia de Buenos Aires, Instituto de Fisica Arroyo Seco, Pinto 399, 7000 Tandil (Argentina); Barros, V. S.; Khoury, H. J.; Elihimas, D. R., E-mail: [Universidade Federal de Pernambuco, Departamento de Energia Nuclear, Av. Prof. Luiz Freire 1000, Recife, PE 50740-540 (Brazil)


    Carbon-doped aluminum oxide (Al{sub 2}O{sub 3}:C) is one of the most used radioluminescence (Rl) materials for fiberoptic dosimetry due to its high efficiency and commercial availability. However, this compound presents the drawback of emitting in the spectral region, where the spurious radioluminescence of fibers is also important. In this work, the radioluminescence response of rare-earth doped Al{sub 2}O{sub 3} samples has been evaluated. The samples were prepared by mixing stoichiometric amounts of aluminum nitrate, urea and dopants with different amounts of terbium, samarium, cerium and thulium nitrates varying from 0 to 0.15 mo 1%. The influence of the different activators on the Rl spectra has been investigated in order to determine the feasibility of using these compounds for Rl fiberoptic dosimetry. (Author)

  16. Inorganic ion composition in Tardigrada

    DEFF Research Database (Denmark)

    Halberg, Kenneth Agerlin; Larsen, Kristine Wulff; Jørgensen, Aslak;


    Many species of tardigrades are known to tolerate extreme environmental stress, yet detailed knowledge of the mechanisms underlying the remarkable adaptations of tardigrades is still lacking, as are answers to many questions regarding their basic biology. Here, we present data on the inorganic ion...... indicates that Na(+) and Cl(-) are the principle inorganic ions in tardigrade fluids, albeit other ions, i.e. K(+), NH(4)(+), Ca(2+), Mg(2+), F(-), SO(4)(2-) and PO(4)(3-) were also detected. In limno-terrestrial tardigrades, the respective ions are concentrated by a large factor compared......+) and F(-) are only slightly concentrated (×2-10). An anion deficit of ~120 mEq 1(-1) in M. tardigradum and H. crispae indicates the presence of unidentified ionic components in these species. Body fluid osmolality ranges from 361±49 mOsm kg(-1) in R. coronifer to 961±43 mOsm kg(-1) in H. crispae...

  17. Problems in structural inorganic chemistry

    CERN Document Server

    Li, Wai-Kee; Mak, Thomas Chung Wai; Mak, Kendrew Kin Wah


    This book consists of over 300 problems (and their solutions) in structural inorganic chemistry at the senior undergraduate and beginning graduate level. The topics covered comprise Atomic and Molecular Electronic States, Atomic Orbitals, Hybrid Orbitals, Molecular Symmetry, Molecular Geometry and Bonding, Crystal Field Theory, Molecular Orbital Theory, Vibrational Spectroscopy, and Crystal Structure. The central theme running through these topics is symmetry, molecular or crystalline. The problems collected in this volume originate in examination papers and take-home assignments that have been part of the teaching of the book's two senior authors' at The Chinese University of Hong Kong over the past four decades. The authors' courses include Chemical Bonding, Elementary Quantum Chemistry, Advanced Inorganic Chemistry, X-Ray Crystallography, etc. The problems have been tested by generations of students taking these courses.

  18. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen


    Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish for an integ...... be obtained by shining light from the backside of the workpiece. When there is no light from the backside, the front surface seems totally untouched. This was achieved by laser ablation with ultra-short pulses.......Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish...... for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  19. Anodized aluminum on LDEF (United States)

    Golden, Johnny L.


    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  20. Gas evolution behavior of aluminum in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs.

  1. Impacts of inorganic fluorides on terrestrial ecosystems: An ecological risk assessment case study

    Energy Technology Data Exchange (ETDEWEB)

    Kent, R.A.; Schneider, U.A.; Pawlisz, A.V. [Environment Canada, Hull, Quebec (Canada). Evaluation and Interpretation Branch


    In 1994, the national environmental assessment under the Canadian Environmental Protection Act concluded that concentrations of inorganic fluorides near industrial sources in Canada may cause long-term adverse effects in sensitive terrestrial plant and wildlife species. This case study examines the accumulation of inorganic fluorides in vegetation and subsequent effects on a sensitive herbivore species, the white tail deer (Odocoileus virginianus) on Cornwall Island, Ontario, near an aluminum smelting facility, Using environmental concentration data for air, water and food (vegetation), a Monte Carlo simulation was used to estimate the probability that multimedia exposure of inorganic fluorides exceeded known effects thresholds of skeletal and dental fluorosis in deer, and in turn quantify the magnitude of that risk. With daily intakes ranging from 2--324 {micro}g/deer/day, it was estimated that exposure to fluorides exceeds the daily intake threshold for fluorosis (55 {micro}g/deer/day) in 12% of the deer population. Seasonal differences in exposure and subsequent risk were noted. These results are also supported by additional field data on domestic cattle from the Cornwall Island area where effects (e.g., excessive teeth wear, delayed eruption of permanent teeth, osteosclerosis, osteonecrosis) have been reported and linked to high levels of fluorides in air, water, and forage. It is estimated that at least 10% of the deer from the Cornwall Island area may be subject to debilitating skeletal and dental fluorosis as a result of fluoride emissions from the adjacent aluminum smelter.

  2. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others


    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  3. A novel lattice energy calculation technique for simple inorganic crystals (United States)

    Kaya, Cemal; Kaya, Savaş; Banerjee, Priyabrata


    In this pure theoretical study, a hitherto unexplored equation based on Shannon radii of the ions forming that crystal and chemical hardness of any crystal to calculate the lattice energies of simple inorganic ionic crystals has been presented. To prove the credibility of this equation, the results of the equation have been compared with experimental outcome obtained from Born-Fajans-Haber- cycle which is fundamentally enthalpy-based thermochemical cycle and prevalent theoretical approaches proposed for the calculation of lattice energies of ionic compounds. The results obtained and the comparisons made have demonstrated that the new equation is more useful compared to other theoretical approaches and allows to exceptionally accurate calculation of lattice energies of inorganic ionic crystals without doing any complex calculations.

  4. High abrasion resistance coating materials from organic/inorganic hybrid materials produced by the sol-gel method



    A series of new high abrasion resistance coating materials have been prepared utilizing organic/inorganic hybrid materials formed by cohydrolyzing a metal alkoxide sol (e.g. silicon, aluminum, titanium, or zirconium metal alkoxide sol) with one or more bis(trialkoxysilane-containing) organic components or related functionalized species. These hybrid materials show optical clarity and improve the abrasion resistance of polymer substrates when applied as coatings and cured on such substrates.

  5. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)


    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  6. Tuning aluminum spatial distribution in ZSM-5 membranes: a new strategy to fabricate high performance and stable zeolite membranes for dehydration of acetic acid. (United States)

    Yang, Jianhua; Li, Liangqing; Li, Wanze; Wang, Jinqu; Chen, Zan; Yin, Dehong; Lu, Jinming; Zhang, Yan; Guo, Hongchen


    A novel ZSM-5 membrane with a low Si/Al ratio and homogeneous aluminum spatial distribution was achieved from an organic template-free inorganic gel in the presence of both OH(-) and F(-) ions and the obtained ZSM-5 membrane exhibited excellent selectivity and high flux and stability for dehydration of acetic acid in a wide AcOH content range.

  7. Behavior of Aluminum Based Coagulants in Treatment of Surface Water–Assessment of Chemical and Microbiological Properties of Treated Water

    Directory of Open Access Journals (Sweden)

    Spînu (Gologan Daniela


    Full Text Available Pre-polymerized inorganic aluminum coagulants have high efficiency in reducing turbidity, total, dissolved, biodegradable organic carbon and microbiological content of surface waters used for drinking, while obtaining low concentrations of residual aluminum after the coagulation phase. Correlation between turbidity raw water and coagulant dose is logarithmic being influenced by temperature and organic content of surface waters. The coagulant’s effect on the organic content of the raw water is closely related to the microbiological concentration and can thus determine the mathematical correlations between the two types of parameters after the coagulation-flocculation stage that can be used to assess the water biostability coagulant action.

  8. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodi Huang; J.Y. Hwang


    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550°C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  9. Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters. (United States)

    Sjöstedt, Carin S; Gustafsson, Jon Petter; Köhler, Stephan J


    A consistent chemical equilibrium model that calculates pH from charge balance constraints and aluminum and iron speciation in the presence of natural organic matter is presented. The model requires input data for total aluminum, iron, organic carbon, fluoride, sulfate, and charge balance ANC. The model is calibrated to pH measurements (n = 322) by adjusting the fraction of active organic matter only, which results in an error of pH prediction on average below 0.2 pH units. The small systematic discrepancy between the analytical results for the monomeric aluminum fractionation and the model results is corrected for separately for two different fractionation techniques (n = 499) and validated on a large number (n = 3419) of geographically widely spread samples all over Sweden. The resulting average error for inorganic monomeric aluminum is around 1 µM. In its present form the model is the first internally consistent modeling approach for Sweden and may now be used as a tool for environmental quality management. Soil gibbsite with a log *Ks of 8.29 at 25°C together with a pH dependent loading function that uses molar Al/C ratios describes the amount of aluminum in solution in the presence of organic matter if the pH is roughly above 6.0.

  10. Plasma chemistry for inorganic materials (United States)

    Matsumoto, O.


    Practical application of plasma chemistry to the development of inorganic materials using both low temperature and warm plasmas are summarized. Topics cover: the surface nitrification and oxidation of metals; chemical vapor deposition; formation of minute oxide particles; the composition of oxides from chloride vapor; the composition of carbides and nitrides; freezing high temperature phases by plasma arc welding and plasma jet; use of plasma in the development of a substitute for petroleum; the production of silicon for use in solar cell batteries; and insulating the inner surface of nuclear fusion reactor walls.

  11. The inorganic constituents of echinoderms (United States)

    Clarke, F.W.; Wheeler, W.C.


    In a recent paper on the composition of crinoid skeletons we showed that crinoids contain large quantities of magnesia, and that its proportion varies with the temperature of the water in which the creatures live. This result was so novel and surprising that it seemed desirable to examine other echinoderms and to ascertain whether they showed the same characteristics and regularity. A number of sea urchins and starfishes were therefore studied, their inorganic constituents being analyzed in the same manner as those of the crinoids

  12. Decreasing residual aluminum level in drinking water

    Institute of Scientific and Technical Information of China (English)

    王志红; 崔福义


    The relativity of coagulant dosage, residual turbidity, temperature, pH etc. with residual aluminum concentration were investigated, and several important conclusions were achieved. Firstly, dosage of alum-coagulant or PAC1 influences residual aluminum concentration greatly. There is an optimal-dosage-to-aluminum, a bit less than the optimal-dosage-to-turbidity. Secondly, it proposes that decreasing residual aluminum concentration can be theoretically divided into two methods, either decreasing (even removing) the concentration of particulate aluminum component, or decreasing dissolved aluminum. In these tests there is an optimal value of residual turbidity of postprecipitation at 7.0 NTU. Thirdly, residual aluminum level will increase while water temperature goes higher. At the last, optimal pH value corresponds a minimum dissolved aluminum at a given turbidity. Data shows the optimal pH value decreases with water temperature's increasing.

  13. 21 CFR 172.310 - Aluminum nicotinate. (United States)


    ... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely... additive, expressed as niacin, shall appear on the label of the food additive container or on that of...

  14. Environmental Control over the Primary Aluminum Industry

    Institute of Scientific and Technical Information of China (English)


    <正> To strengthen environmental control over theprimary aluminum industry,the State Environ-mental Protection Administration of China hasrecently issued a notice addressing the follow-ing points:Strengthening environmental control over theexisting primary aluminum companies


    Directory of Open Access Journals (Sweden)

    Mohammed Ali Hajeeh


    Full Text Available Minimizing the amount of scrap generated in an aluminum extrusion process. An optimizing model is constructed in order to select the best cutting patterns of aluminum logs and billets of various sizes and shapes. The model applied to real data obtained from an existing extrusion factory in Kuwait. Results from using the suggested model provided substantial reductions in the amount of scrap generated. Using sound mathematical approaches contribute significantly in reducing waste and savings when compared to the existing non scientific techniques.

  16. The effect of zinc on the aluminum anode of the aluminum-air battery (United States)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  17. Electrochemical Behavior of Aluminum in Nitric Acid

    Institute of Scientific and Technical Information of China (English)

    CHEN; Hui; ZHU; Li-yang; LIN; Ru-shan; TAN; Hong-bin; HE; Hui


    Aluminum is one of cladding materials for nuclear fuel,it is important to investigate the electrolytic dissolution of aluminum in nitric acid.The electrochemical impedance spectroscopy,polarization curve and cyclic voltammetry cure of anodic aluminum electrode in nitric acid under various conditions were collected(Fig.1).It turns out,under steady state,the thickness of the passivated film of aluminum

  18. Influence of inorganic filler content on the radiopacity of dental resin cements. (United States)

    Furtos, Gabriel; Baldea, Bogdan; Silaghi-Dumitrescu, Laura; Moldovan, Marioara; Prejmerean, Cristina; Nica, Luminita


    Digital radiography was used to measure the radiopacity of 18 resin cements to determine the influence of inorganic filler content on radiopacity. Four disk specimens (n=4) of each light-curing cement were digitally radiographed alongside an aluminum step wedge using an intraoral sensor (XIOS Plus, Sirona, Germany), and their mean gray value measured. Percentage of filler by weight was determined using an analytical combustion furnace. Data were statistically analyzed using one-way ANOVA and Tukey's test (α=0.05). All materials were more radiopaque than dentin and 12 materials were more radiopaque than enamel. Filler percentage ranged between 17.36 to 53.56 vol% and radiopacity between 1.02 to 3.40 mm Al. There were no statistically significant differences in inorganic filler percentage and radiopacity among the different shades of the same material (p>0.05), but the highest radiopacity was measured for the material which contained a higher percentage of filler.

  19. Optical devices combining an organic semiconductor crystal with a two-dimensional inorganic diffraction grating

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, Takenori; Yamao, Takeshi, E-mail:; Hotta, Shu [Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Kyoto 606-8585 (Japan)


    We have fabricated optical devices using an organic semiconductor crystal as an emission layer in combination with a two-dimensional (2D) inorganic diffraction grating used as an optical cavity. We formed the inorganic diffraction grating by wet etching of aluminum-doped zinc oxide (AZO) under a 2D cyclic olefin copolymer (COC) diffraction grating used as a mask. The COC diffraction grating was fabricated by nanoimprint lithography. The AZO diffraction grating was composed of convex prominences arranged in a triangular lattice. The organic crystal placed on the AZO diffraction grating indicated narrowed peaks in its emission spectrum under ultraviolet light excitation. These are detected parallel to the crystal plane. The peaks were shifted by rotating the optical devices around the normal to the crystal plane, which reflected the rotational symmetries of the triangular lattice through 60°.

  20. Infrared Spectra of Simple Inorganic Ion Pairs in Solid Solution: A Physical Inorganic Chemistry Experiment. (United States)

    Miller, Philip J.; Tong, William G.


    Presents a physical inorganic experiment in which large single crystals of the alkali halides doped with divalent ion impurities are prepared easily. Demonstrates the ion pairing of inorganic ions in solid solution. (CS)

  1. Hydrogen storage in sodium aluminum hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.


    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  2. A Simple Method for the Calculation of Lattice Energies of Inorganic Ionic Crystals Based on the Chemical Hardness. (United States)

    Kaya, Savaş; Kaya, Cemal


    This paper presents a new technique for estimation of lattice energies of inorganic ionic compounds using a simple formula. This new method demonstrates the relationship between chemical hardness and lattice energies of ionic compounds. Here chemical hardness values of ionic compounds are calculated via our molecular hardness equation. The results obtained using the present method and comparisons made by considering experimental data and the results from other theoretical methods in the literature showed that the new method allows easy evaluation of lattice energies of inorganic ionic crystals without the need for ab initio calculations and complex calculations.

  3. Solid-state 27Al nuclear magnetic resonance investigation of three aluminum-centered dyes

    KAUST Repository

    Mroué, Kamal H.


    We report the first solid-state 27Al NMR study of three aluminum phthalocyanine dyes: aluminum phthalocyanine chloride, AlPcCl (1); aluminum-1,8,15,22-tetrakis(phenylthio)-29H,31H-phthalocyanine chloride, AlPc(SPh)4Cl (2); and aluminum-2,3-naphthalocyanine chloride, AlNcCl (3). Each of these compounds contains Al3+ ions coordinating to four nitrogen atoms and a chlorine atom. Solid-state 27Al NMR spectra, including multiple-quantum magic-angle spinning (MQMAS) spectra and quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) spectra of stationary powdered samples have been acquired at multiple high magnetic field strengths (11.7, 14.1, and 21.1 T) to determine their composition and number of aluminum sites, which were analyzed to extract detailed information on the aluminum electric field gradient (EFG) and nuclear magnetic shielding tensors. The quadrupolar parameters for each 27Al site were determined from spectral simulations, with quadrupolar coupling constants (CQ) ranging from 5.40 to 10.0 MHz and asymmetry parameters (η) ranging from 0.10 to 0.50, and compared well with the results of quantum chemical calculations of these tensors. We also report the largest 27Al chemical shielding anisotropy (CSA), with a span of 120 ± 10 ppm, observed directly in a solid material. The combination of MQMAS and computational predictions are used to interpret the presence of multiple aluminum sites in two of the three samples.

  4. 76 FR 23490 - Aluminum tris (O (United States)


    ... AGENCY 40 CFR Part 180 Aluminum tris (O-ethylphosphonate), Butylate, Chlorethoxyfos, Clethodim, et al..., fosthiazate, propetamphos, and tebufenozide; the fungicide aluminum tris (O-ethylphosphonate); the herbicides.... Also, EPA is revoking the tolerances for aluminum tris (O-ethylphosphonate) on pineapple fodder...

  5. Guangxi Aluminum Giant Made Investment in Changfeng

    Institute of Scientific and Technical Information of China (English)


    <正>A aluminum processing and supporting project (450,000 tons) of Hefei Guangyin Aluminum Company kicked off in Xiatang Town of Changfeng County recently. It is a project jointly invested by Guangxi Investment Group and Guangxi Baise Guangyin Aluminum in Xiatang Town of Changfeng County.

  6. Targeting Platinum Compounds: synthesis and biological activity


    VAN ZUTPHEN, Steven


    Inspired by cisplatin, the inorganic drug discovered by Barnett Rosenberg in 1965, the research described in this thesis uses targeting ligands, or ligands varied in a combinatorial fashion, to find platinum complexes with more specific modes of action. These studies have lead to the development of novel (solid-phase) synthetic methods and to the discovery of several compounds with promising biological properties.

  7. Inorganic and hybrid inorganic-organic systems for conservative treatments of stone and wood materials


    Bergamonti, Laura


    Inorganic and hybrid inorganic-organic systems for conservative treatments of stone and wood materials The research has focused on the synthesis, characterization and application of inorganic and hybrid inorganic-organic systems for conservative treatments of stone and wood. The wood preservatives synthesized and tested for biocidal activity are polyamidoamines functionalized with hydroxyl and siloxane groups, while the coatings applied on the stones are water based TiO2 nanosols with ...

  8. Development and mean life of aluminum first-surface mirrors for solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Almanza, Rafael; Hernandez, Perla; Martinez, Ivan [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico DF, 04510 (Mexico); Mazari, Marcos [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico DF, 04510 (Mexico)


    Aluminum solar mirrors are an alternative for solar concentrators. This paper presents the first aluminum-surface solar mirrors, which, after 12 years of exposure to the aggressive weather conditions of Mexico City, have a reflectance decrease of only 3% (from 0.85 to 0.82), with only small scratches on the SiO{sub 2} layer. Furthermore, two alternatives are presented for solar aluminum mirrors: mirrors with integrated first and second surfaces and first-surface compound mirrors. Each mirror and its fabrication are described, along with their weather tests. The aluminum first-surface solar mirror lasts for at least 12 years, and is a good alternative material for parabolic troughs, heliostats, CPC, Fresnel technology and dish concentrators. (author)

  9. Comparative effects of macro-sized aluminum oxide and aluminum oxide nanoparticles on erythrocyte hemolysis: influence of cell source, temperature, and size

    Energy Technology Data Exchange (ETDEWEB)

    Vinardell, M. P., E-mail:; Sordé, A. [Universitat de Barcelona, Departament de Fisiologia, Facultat de Farmàcia (Spain); Díaz, J. [Universitat de Barcelona CCiT, Scientific and Technological Centers (Spain); Baccarin, T.; Mitjans, M. [Universitat de Barcelona, Departament de Fisiologia, Facultat de Farmàcia (Spain)


    Al{sub 2}O{sub 3} is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military, and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm, and nanowire 2–6 × 200–400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats, and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50 % hemolysis (HC{sub 50}) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al{sub 2}O{sub 3}, but not on Al{sub 2}O{sub 3}. The drop in HC{sub 50} correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation. Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.

  10. Fluorescent Properties of Manganese Halide Benzothiazole Inorganic-Organic Hybrids. (United States)

    Yu, Hui; Mei, YingXuan; Wei, ZhenHong; Mei, GuangQuan; Cai, Hu


    The reaction of manganese (II) halides MnX2 and benzothiazole (btz) in the concentrated acids HX (X = Cl, Br) at 80 °C resulted in the formation of two inorganic-organic hybrid complexes: [(btz)2(MnX4)]·2H2O (X = Cl, 1; X = Br, 2). Both compounds showed green luminescence and exhibited moderate quantum yields of 43.17 % for 1 and 26.18 % for 2, which were directly originated from the tetrahedral coordination of Mn(2+) ion. Two organic - inorganic hybrids [(btz)2(MnX4)]·2H2O based on MnCl2, benzothiazole and halide acids emitted green light with the moderate quantum efficiencies when excited by 365 nm light. Graphical abstract Two organic-inorganic hybrids [(btz)2(MnX4)]·2H2O based on MnCl2, benzothiazole and halide acids emitted green light with the moderate quantum efficiencies when excited by 365 nm light.

  11. Spontaneous Aerosol Ejection: Origin of Inorganic Particles in Biomass Pyrolysis. (United States)

    Teixeira, Andrew R; Gantt, Rachel; Joseph, Kristeen E; Maduskar, Saurabh; Paulsen, Alex D; Krumm, Christoph; Zhu, Cheng; Dauenhauer, Paul J


    At high thermal flux and temperatures of approximately 500 °C, lignocellulosic biomass transforms to a reactive liquid intermediate before evaporating to condensable bio-oil for downstream upgrading to renewable fuels and chemicals. However, the existence of a fraction of nonvolatile compounds in condensed bio-oil diminishes the product quality and, in the case of inorganic materials, catalyzes undesirable aging reactions within bio-oil. In this study, ablative pyrolysis of crystalline cellulose was evaluated, with and without doped calcium, for the generation of inorganic-transporting aerosols by reactive boiling ejection from liquid intermediate cellulose. Aerosols were characterized by laser diffraction light scattering, inductively coupled plasma spectroscopy, and high-speed photography. Pyrolysis product fractionation revealed that approximately 3 % of the initial feed (both organic and inorganic) was transported to the gas phase as aerosols. Large bubble-to-aerosol size ratios and visualization of significant late-time ejections in the pyrolyzing cellulose suggest the formation of film bubbles in addition to the previously discovered jet formation mechanism.

  12. HPLC inorganic arsenic speciation analysis of samples containing high sulfuric acid and iron levels

    NARCIS (Netherlands)

    Gonzalez-Contreras, P.A.; Gerrits, I.P.A.M.; Weijma, J.; Buisman, C.J.N.


    To monitor the oxidation of arsenite to arsenate in oxidizing and bioleaching reactors, speciation analysis of the inorganic arsenic compounds is required. Existing arsenic speciation analysis techniques are based on the use of liquid chromatography columns coupled to detector equipment such as indu

  13. Metal nanoparticle deposited inorganic nanostructure hybrids, uses thereof and processes for their preparation (United States)

    Tenne, Reshef; Tsverin, Yulia; Burghaus, Uwe; Komarneni, Mallikharjuna Rao


    This invention relates to a hybrid component comprising at least one nanoparticle of inorganic layered compound (in the form of fullerene-like structure or nanotube), and at least one metal nanoparticle, uses thereof as a catalyst, (e.g. photocatalysis) and processes for its preparation.

  14. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)


    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  15. Aluminum break-point contacts

    NARCIS (Netherlands)

    Heinemann, Martina; Groot, R.A. de


    Ab initio molecular dynamics is used to study the contribution of a single Al atom to an aluminum breakpoint contact during the final stages of breaking and the initial stages of the formation of such a contact. A hysteresis effect is found in excellent agreement with experiment and the form of the

  16. An investigation of the transmethylation reaction of the methyltin chlorides with inorganic mercury


    Brennan, Deirdre Anne


    This work explores the consequences of the reaction between methyltin compounds and inorganic mercury which is thought to occur in the environment. This reaction has considerable environmental importance. The introduction of organotin compounds into the environment may occur as a result of their use in various commercial products, including agricultural biocides. In this case the organotin species is applied directly into the environment. Once they have entered the environment their persi...

  17. Synthesis, Crystal Structure, and Characterization of a New Organic-Inorganic Hybrid Material:


    Hela Ferjani; Habib Boughzala; Ahmed Driss


    The title compound is an organic-inorganic hybrid material. The single crystal X-ray diffraction investigation reveals that the studied compound crystallizes in the orthorhombic system, space group Pbca with the following lattice parameters:  (4) Å,  (3) Å,  (6) Å, and . The crystal lattice is composed of a discrete anion surrounded by piperazinium cations, chlorine anions, and water molecules. Complex hydrogen bonding interactions between , , organic cations, and water molecules form a thre...

  18. Inorganic bromine in the marine boundary layer: a critical review

    Directory of Open Access Journals (Sweden)

    R. Sander


    Full Text Available The cycling of inorganic bromine in the marine boundary layer (mbl has received increased attention in recent years. Bromide, a constituent of sea water, is injected into the atmosphere in association with sea-salt aerosol by breaking waves on the ocean surface. Measurements reveal that supermicrometer sea-salt aerosol is depleted in bromine by about 50% relative to conservative tracers, whereas marine submicrometer aerosol is often enriched in bromine. Model calculations, laboratory studies, and field observations strongly suggest that these depletions reflect the chemical transformation of particulate bromide to reactive inorganic gases that influence the processing of ozone and other important constituents of marine air. However, currently available techniques cannot reliably quantify many chem{Br}-containing compounds at ambient concentrations and, consequently, our understanding of inorganic Br cycling over the oceans and its global significance are uncertain. To provide a more coherent framework for future research, we have reviewed measurements in marine aerosol, the gas phase, and in rain. We also summarize sources and sinks, as well as model and laboratory studies of chemical transformations. The focus is on inorganic bromine over the open oceans, excluding the polar regions. The generation of sea-salt aerosol at the ocean surface is the major tropospheric source producing about 6.2 Tg/a of bromide. The transport of  Br from continents (as mineral aerosol, and as products from biomass-burning and fossil-fuel combustion can be of local importance. Transport of degradation products of long-lived Br-containing compounds from the stratosphere and other sources contribute lesser amounts. Available evidence suggests that, following aerosol acidification, sea-salt bromide reacts to form Br2 and BrCl that volatilize to the gas phase and photolyze in daylight to produce atomic Br and Cl. Subsequent transformations can destroy

  19. 29 CFR 1926.1118 - Inorganic arsenic. (United States)


    ... 29 Labor 8 2010-07-01 2010-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  20. 29 CFR 1915.1018 - Inorganic arsenic. (United States)


    ... 29 Labor 7 2010-07-01 2010-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  1. Attachment of inorganic moieties onto aliphatic polyurethanes

    Directory of Open Access Journals (Sweden)

    Eliane Ayres


    Full Text Available Polyurethanes have been used in a series of applications due basically to their versatility in terms of controlling the behavior by altering basically the type of reagents used. However, for more specific and advanced applications, such as in membranes, biomaterials and sensors, well-organized and defined chemical functionalities are necessary. In this work, inorganic functionalities were incorporated into aliphatic polyurethanes (PU having different macromolecular architectures. Polyurethanes were synthesized using a polyether diol and dicyclohexylmethane 4,4' diisocyanate (H12-MDI. Polyurethanes having carboxylic acid groups were also produced by introducing 2,2- bis (hydroxymethyl propionic acid in the polymerization process. Inorganic functionalities were inserted into polyurethanes by reacting isocyanate end capped chains with aminopropyltriethoxysilane followed by tetraethoxysilane. PU having carboxylic acid groups yielded transparent samples after the incorporation of inorganic entities, as an evidence of smaller and better dispersed inorganic entities in the polymer network. FTIR and swelling measurements showed that polyurethanes having carboxylic acid groups had inorganic domains less packed, condensed and cross-linked when compared to polyurethanes with no carboxylic acid groups. Results also suggested that the progressive incorporation of inorganic moieties in both types of polyurethanes occurred in regions previously activated with inorganic functionalities, instead of by the creation of new domains. The temperatures of thermal decomposition and glass transition were also shifted to higher temperatures when inorganic functionalities were incorporated into polyurethanes.

  2. Sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides

    Directory of Open Access Journals (Sweden)

    R.V. Smotraiev


    Full Text Available The actual problem of water supply in the world and in Ukraine, in particular, is a high level of pollution in water resources and an insufficient level of drinking water purification. With industrial wastewater, a significant amount of pollutants falls into water bodies, including suspended particles, sulfates, iron compounds, heavy metals, etc. Aim: The aim of this work is to determine the impact of aluminum and manganese ions additives on surface and sorption properties of zirconium oxyhydroxide based sorbents during their production process. Materials and Methods: The sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were prepared by sol-gel method during the hydrolysis of metal chlorides (zirconium oxychloride ZrOCl2, aluminum chloride AlCl3 and manganese chloride MnCl2 with carbamide. Results: The surface and sorption properties of sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were investigated. X-ray amorphous structure and evolved hydroxyl-hydrate cover mainly characterize the obtained xerogels. The composite sorbents based on xerogels of zirconium oxyhydroxide doped with aluminum oxyhydroxide (aS = 537 m2/g and manganese oxyhydroxide (aS = 356 m2/g have more developed specific surface area than single-component xerogels of zirconium oxyhydroxide (aS = 236 m2/g and aluminum oxyhydroxide (aS = 327 m2/g. The sorbent based on the xerogel of zirconium and manganese oxyhydroxides have the maximum SO42--ions sorption capacity. It absorbs 1.5 times more SO42–-ions than the industrial anion exchanger AN-221. The sorbents based on xerogels of zirconium oxyhydroxide has the sorption capacity of Fe3+-ions that is 1.5…2 times greater than the capacity of the industrial cation exchanger KU-2-8. The Na+-ions absorption capacity is 1.47…1.56 mmol/g for each sorbent. Conclusions: Based on these data it can be concluded that the proposed method is effective for sorbents production based on

  3. On some problems of inorganic supramolecular chemistry. (United States)

    Pervov, Vladislav S; Zotova, Anna E


    In this study, some features that distinguish inorganic supramolecular host-guest objects from traditional architectures are considered. Crystalline inorganic supramolecular structures are the basis for the development of new functional materials. Here, the possible changes in the mechanism of crystalline inorganic supramolecular structure self-organization at high interaction potentials are discussed. The cases of changes in the host structures and corresponding changes in the charge states under guest intercalation, as well as their impact on phase stability and stoichiometry are considered. It was demonstrated that the deviation from the geometrical and topological complementarity conditions may be due to the additional energy gain from forming inorganic supramolecular structures. It has been assumed that molecular recognition principles can be employed for the development of physicochemical analysis and interpretation of metastable states in inorganic crystalline alloys.

  4. Inorganic Reactive Sulfur-Nitrogen Species: Intricate Release Mechanisms or Cacophony in Yellow, Blue and Red? (United States)

    Grman, Marian; Nasim, Muhammad Jawad; Leontiev, Roman; Misak, Anton; Jakusova, Veronika; Ondrias, Karol; Jacob, Claus


    Since the heydays of Reactive Sulfur Species (RSS) research during the first decade of the Millennium, numerous sulfur species involved in cellular regulation and signalling have been discovered. Yet despite the general predominance of organic species in organisms, recent years have also seen the emergence of inorganic reactive sulfur species, ranging from inorganic polysulfides (HSx(-)/Sx(2-)) to thionitrous acid (HSNO) and nitrosopersulfide (SSNO(-)). These inorganic species engage in a complex interplay of reactions in vitro and possibly also in vivo. Employing a combination of spectrophotometry and sulfide assays, we have investigated the role of polysulfanes from garlic during the release of nitric oxide ((•)NO) from S-nitrosoglutathione (GSNO) in the absence and presence of thiol reducing agents. Our studies reveal a distinct enhancement of GSNO decomposition by compounds such as diallyltrisulfane, which is most pronounced in the presence of cysteine and glutathione and presumably proceeds via the initial release of an inorganic mono- or polysulfides, i.e., hydrogen sulfide (H₂S) or HSx(-), from the organic polysulfane. Albeit being of a preliminary nature, our spectrophotometric data also reveals a complicated underlying mechanism which appears to involve transient species such as SSNO(-). Eventually, more in depth studies are required to further explore the underlying chemistry and wider biological and nutritional implications of this interplay between edible garlic compounds, reductive activation, inorganic polysulfides and their interplay with (•)NO storage and release.

  5. Inorganic Reactive Sulfur-Nitrogen Species: Intricate Release Mechanisms or Cacophony in Yellow, Blue and Red?

    Directory of Open Access Journals (Sweden)

    Marian Grman


    Full Text Available Since the heydays of Reactive Sulfur Species (RSS research during the first decade of the Millennium, numerous sulfur species involved in cellular regulation and signalling have been discovered. Yet despite the general predominance of organic species in organisms, recent years have also seen the emergence of inorganic reactive sulfur species, ranging from inorganic polysulfides (HSx−/Sx2− to thionitrous acid (HSNO and nitrosopersulfide (SSNO−. These inorganic species engage in a complex interplay of reactions in vitro and possibly also in vivo. Employing a combination of spectrophotometry and sulfide assays, we have investigated the role of polysulfanes from garlic during the release of nitric oxide (•NO from S-nitrosoglutathione (GSNO in the absence and presence of thiol reducing agents. Our studies reveal a distinct enhancement of GSNO decomposition by compounds such as diallyltrisulfane, which is most pronounced in the presence of cysteine and glutathione and presumably proceeds via the initial release of an inorganic mono- or polysulfides, i.e., hydrogen sulfide (H2S or HSx−, from the organic polysulfane. Albeit being of a preliminary nature, our spectrophotometric data also reveals a complicated underlying mechanism which appears to involve transient species such as SSNO−. Eventually, more in depth studies are required to further explore the underlying chemistry and wider biological and nutritional implications of this interplay between edible garlic compounds, reductive activation, inorganic polysulfides and their interplay with •NO storage and release.

  6. A novel speciation alternative for the determination of inorganic arsenic in marine samples

    DEFF Research Database (Denmark)

    Rasmussen, Rie Romme; Hedegaard, Rikke Susanne Vingborg; Herbst, M. Birgitte Koch

    Arsenic (As) is bioaccumulated from seawater to concentrations in the mg/kg range in marine animals. More than 50 naturally-occurring arsenic containing species, both inorganic and organic forms, have been identified in marine animals. The organic forms are mainly considered to be non-toxic, wher......Arsenic (As) is bioaccumulated from seawater to concentrations in the mg/kg range in marine animals. More than 50 naturally-occurring arsenic containing species, both inorganic and organic forms, have been identified in marine animals. The organic forms are mainly considered to be non...... of inorganic arsenic in marine based food is based on microwave extraction, species separation by strong anion solid phase extraction (SPE) and hydride generation atomic absorption spectrometry (HG-AAS) detection. Separation organic arsenic compounds (e.g. MA, DMA and AB) and inorganic arsenic in the form...... conditions. In brief: The sample is heated with a hydrochloric acid and hydrogen peroxide solution (20 minutes at 90 °C with 0.06 M HCl, 3 % H2O2). Hereby the sample is solubilised and As(III) is oxidised to As(V). Inorganic arsenic is selectively separated from other arsenic compounds using strong anion...

  7. Comparison of Bioavailability and Biotransformation of Inorganic and Organic Arsenic to Two Marine Fish. (United States)

    Zhang, Wei; Wang, Wen-Xiong; Zhang, Li


    Dietary uptake could be the primary route of arsenic (As) bioaccumulation in marine fish, but the bioavailability of inorganic and organic As remains elusive. In this study, we investigated the trophic transfer and bioavailability of As in herbivorous rabbitfish Siganus fuscescens and carnivorous seabass Lateolabrax japonicus. Rabbitfish were fed with one artificial diet or three macroalgae, whereas seabass were fed with one artificial diet, one polychaete, or two bivalves for 28 days. The six spiked fresh prey diets contained different proportions of inorganic As [As(III) and As(V)] and organic As compounds [methylarsenate (MMA), dimethylarsenate (DMA), and arsenobetaine (AsB)], and the spiked artificial diet mainly contained As(III) or As(V). We demonstrated that the trophic transfer factors (TTF) of As in both fish were negatively correlated with the concentrations of inorganic As in the diets, while there was no relationship between TTF and the AsB concentrations in the diets. Positive correlation was observed between the accumulated As concentrations and the AsB concentrations in both fish, suggesting that organic As compounds (AsB) were more trophically available than inorganic As. Furthermore, the biotransformation ability of seabass was higher than that in rabbitfish, which resulted in higher As accumulation in seabass than in rabbitfish. Our study demonstrated that different prey with different inorganic/organic As proportions resulted in diverse bioaccumulation of total As in different marine fish.

  8. Multilayer Clad Plate of Stainless Steel/Aluminum/Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    YUAN Jiawei; PANG Yuhua; LI Ting


    The 3, 5, 20 layer clad plate from austenitic stainless steel, pure aluminum and aluminum alloy sheets were fabricated in different ways. The stretch and interface properties were measured. The result shows that 20 layer clad plate is better than the others. Well-bonded clad plate was successfully obtained in the following procedure: Basic clad sheet from 18 layer A11060/A13003sheets was firstly obtained with an initial rolling reduction of 44% at 450 ℃, followed by annealing at 300 ℃, and then with reduction of 50% at 550 ℃ from STS304 on each side. The best 20 layer clad plate was of 129 MPa bonding strength and 225 MPa stretch strength.

  9. Electrodeposition of aluminum on aluminum surface from molten salt

    Institute of Scientific and Technical Information of China (English)

    Wenmao HUANG; Xiangyu XIA; Bin LIU; Yu LIU; Haowei WANG; Naiheng MA


    The surface morphology,microstructure and composition of the aluminum coating of the electrodeposition plates in AlC13-NaC1-KC1 molten salt with a mass ratio of 8:1:1 were investigated by SEM and EDS.The binding force was measured by splat-cooling method and bending method.The results indicate that the coatings with average thicknesses of 12 and 9 μm for both plates treated by simple grinding and phosphating are compacted,continuous and well adhered respectively. Tetramethylammonium chloride (TMAC) can effectively prevent the growth of dendritic crystal,and the anode activation may improve the adhesion of the coating. Binding force analysis shows that both aluminum coatings are strongly adhered to the substrates.

  10. Thin Film Solar Cells: Organic, Inorganic and Hybrid (United States)

    Dankovich, John


    Thin film solar cells are an important developing resource for hundreds of applications including space travel. In addition to being more cost effective than traditional single crystal silicon cells, thin film multi-crystaline cells are plastic and light weight. The plasticity of the cells allows for whole solar panels to be rolled out from reams. Organic layers are being investigated in order to increase the efficiency of the cells to create an organic / inorganic hybrid cell. The main focus of the group is a thin film inorganic cell made with the absorber CuInS2. So far the group has been successful in creating the layer from a single-source precursor. They also use a unique method of film deposition called chemical vapor deposition for this. The general makeup of the cell is a molybdenum back contact with the CuInS2 layer, then CdS, ZnO and aluminum top contacts. While working cells have been produced, the efficiency so far has been low. Along with quantum dot fabrication the side project of this that is currently being studied is adding a polymer layer to increase efficiency. The polymer that we are using is P3OT (Poly(3-octylthiopene-2,5-diyll), retroregular). Before (and if) it is added to the cell, it must be understood in itself. To do this simple diodes are being constructed to begin to look at its behavior. The P3OT is spin coated onto indium tin oxide and silver or aluminum contacts are added. This method is being studied in order to find the optimal thickness of the layer as well as other important considerations that may later affect the composition of the finished solar cell. Because the sun is the most abundant renewable, energy source that we have, it is important to learn how to harness that energy and begin to move away from our other depleted non-renewable energy sources. While traditional silicon cells currently create electricity at relatively high efficiencies, they have drawbacks such as weight and rigidness that make them unattractive

  11. Modeling the Thermodynamics of Mixed Organic-Inorganic Aerosols to Predict Water Activities and Phase Equilibria (United States)

    Zuend, A.; Marcolli, C.; Luo, B.; Peter, T.


    Tropospheric aerosol particles contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. Interactions between these substances in liquid mixtures lead to discrepancies from ideal thermodynamic behavior. While the thermodynamics of aqueous inorganic systems at atmospheric temperatures are well established, little is known about the physicochemistry of mixed organic-inorganic particles. Salting-out and salting-in effects result from organic-inorganic interactions and are used to improve industrial separation processes. In the atmosphere, they may influence the aerosol phases. Liquid-liquid phase separations into a mainly polar (aqueous) and a less polar organic phase may considerably influence the gas/particle partitioning of semi-volatile substances compared to a single phase estimation. Moreover, the phases present in the aerosol define the reaction medium for heterogeneous and multiphase chemistry occurring in aerosol particles. A correct description of these phases is needed when gas- or cloud-phase reaction schemes are adapted to aerosols. Non-ideal thermodynamic behavior in mixtures is usually described by an expression for the excess Gibbs energy. We present the group-contribution model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients), which explicitly accounts for molecular interactions between solution constituents, both organic and inorganic, to calculate activities, chemical potentials and the total Gibbs energy of mixed systems. This model allows to compute vapor-liquid (VLE), liquid-liquid (LLE) and solid-liquid (SLE) equilibria within one framework. Focusing on atmospheric applications we considered eight different cations, five anions and a wide range of alcohols/polyols as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are very well represented up to high ionic strength. We show that the semiempirical middle

  12. Modeling dissolution in aluminum alloys (United States)

    Durbin, Tracie Lee


    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum

  13. Similar effects in vivo of two aluminum salts on the liver, kidney, bone, and brain of Rattus norvegicus

    Energy Technology Data Exchange (ETDEWEB)

    Roy, A.K.; Talukder, G.; Sharma, A. (Univ. of Calcutta (India))


    The widespread distribution of aluminum (Al) compounds in nature and their use have stimulated considerable interest in the toxicity of this metal. Aluminum accumulation has been suggested to be an associated phenomenon in various human diseases such as renal dialysis dementia, senile dementia, dialysis osteomalacia, microcytic hypochromic anaemia, gastrointestinal toxicity and Alzheimer's disease. The present work was undertaken to observe the effects of different concentrations of aluminum following oral ingestion for various durations on various organs of rats and also to compare two different Al salts at doses having the same amount of Al. The findings can be of relevance owing to the widespread use of aluminum compounds by oral route either as medicines or unintentionally through utensils and cookwares.

  14. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints (United States)

    Patterson, Erin E.; Hovanski, Yuri; Field, David P.


    This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld

  15. Diffusion-bonded beryllium aluminum optical structures (United States)

    Grapes, Thomas F.


    Beryllium aluminum material can present significant advantages for optical support structures. A likely advantage of beryllium aluminum compared to aluminum or titanium for such structures is its higher specific stiffness. However, beryllium aluminum material is significantly more expensive than most competing materials. The cost problem with beryllium aluminum is exacerbated if fabrication methods that result in near net shape parts are not used. Near net shape methods result in the least amount of material "thrown away" in the fabrication process. Casting is a primary example of near net shape manufacturing that is appropriate for some optical support structures. Casting aluminum, and other materials as well, is common. Casting of beryllium aluminum is very difficult, however, and has not had significant success. Diffusion bonding - a different approach for achieving near net shape beryllium aluminum optical support structures, was pursued and accomplished. Diffusion bonding is a term used to describe the joining of solid metal pieces under high temperature and pressure, but without melting. Three different optical support structures were designed and built of beryllium aluminum using diffusion bonding. Relatively small solid beryllium aluminum pieces were arranged together and then joined under hot isostatic pressure conditions. The resulting relatively large pressure bonded part was then machined to achieve the final product. Significant cost savings as compared to machining the part from a solid block were realized. Difficulties achieving diffusion bonds in complex joints were experienced and addressed.

  16. Aluminum/air electrochemical cells


    Wang, Lei; 王雷


    Aluminum (Al) is a very promising energy carrier given its high capacity and energy density, low cost, earth abundance and environmental benignity. The Al/air battery as a kind of metal/air electrochemical cell attracts tremendous attention. Traditional Al/air batteries suffer from the self-corrosion and related safety problems. In this work, three new approaches were investigated to tackle these challenges and to develop high-performance Al/air cells: (1) incorporate an additional hydrogen/a...

  17. Electrically Conductive Anodized Aluminum Surfaces (United States)

    Nguyen, Trung Hung


    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  18. Purification technology of molten aluminum

    Institute of Scientific and Technical Information of China (English)

    孙宝德; 丁文江; 疏达; 周尧和


    Various purification methods were explored to eliminate the dissolved hydrogen and nonmetallic inclusions from molten aluminum alloys. A novel rotating impeller head with self-oscillation nozzles or an electromagnetic valve in the gas circuit was used to produce pulse gas currents for the rotary impeller degassing method. Water simulation results show that the size of gas bubbles can be decreased by 10%-20% as compared with the constant gas current mode. By coating ceramic filters or particles with active flux or enamels, composite filters were used to filter the scrap A356 alloy and pure aluminum. Experimental results demonstrate that better filtration efficiency and operation performance can be obtained. Based on numerical calculations, the separation efficiency of inclusions by high frequency magnetic field can be significantly improved by using a hollow cylinder-like separator or utilizing the effects of secondary flow of the melt in a square separator. A multi-stage and multi-media purification platform based on these methods was designed and applied in on-line processing of molten aluminum alloys. Mechanical properties of the processed scrap A356 alloy are greatly improved by the composite purification.

  19. Nanocomposites Derived from Polymers and Inorganic Nanoparticles

    Directory of Open Access Journals (Sweden)

    In-Yup Jeon


    Full Text Available Polymers are considered to be good hosting matrices for composite materials because they can easily be tailored to yield a variety of bulk physical properties. Moreover, organic polymers generally have long-term stability and good processability. Inorganic nanoparticles possess outstanding optical, catalytic, electronic and magnetic properties, which are significantly different their bulk states. By combining the attractive functionalities of both components, nanocomposites derived from organic polymers and inorganic nanoparticles are expected to display synergistically improved properties. The potential applications of the resultant nanocomposites are various, e.g. automotive, aerospace, opto-electronics, etc. Here, we review recent progress in polymer-based inorganic nanoparticle composites.

  20. Inorganic biomaterials structure, properties and applications

    CERN Document Server

    Zhang, Xiang C


    This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a n

  1. Thickness Measurement Methods for Physical Vapor Deposited Aluminum Coatings in Packaging Applications: A Review

    Directory of Open Access Journals (Sweden)

    Martina Lindner


    Full Text Available The production of barrier packaging materials, e.g., for food, by physical vapor deposition (PVD of inorganic coatings such as aluminum on polymer substrates is an established and well understood functionalization technique today. In order to achieve a sufficient barrier against gases, a coating thickness of approximately 40 nm aluminum is necessary. This review provides a holistic overview of relevant methods commonly used in the packaging industry as well as in packaging research for determining the aluminum coating thickness. The theoretical background, explanation of methods, analysis and effects on measured values, limitations, and resolutions are provided. In industrial applications, quartz micro balances (QCM and optical density (OD are commonly used for monitoring thickness homogeneity. Additionally, AFM (atomic force microscopy, electrical conductivity, eddy current measurement, interference, and mass spectrometry (ICP-MS are presented as more packaging research related methods. This work aims to be used as a guiding handbook regarding the thickness measurement of aluminum coatings for packaging technologists working in the field of metallization.

  2. Inorganic chemically active adsorbents (ICAAs)

    Energy Technology Data Exchange (ETDEWEB)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.


    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  3. The quest for inorganic fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Ganteför, Gerd, E-mail:, E-mail: [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Park, Eun Ji; Kim, Young Dok, E-mail:, E-mail: [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Seo, Hyun Ook [Center for Free-Electron Laser Science/DESY, D-22607 Hamburg (Germany); Idrobo, Juan-Carlos [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117575 (Singapore)


    Experimental results of the search for inorganic fullerenes are presented. Mo{sub n}S{sub m}{sup −} and W{sub n}S{sub m}{sup −} clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  4. P. brasiliensis virulence is affected by SconC, the negative regulator of inorganic sulfur assimilation.

    Directory of Open Access Journals (Sweden)

    João Filipe Menino

    Full Text Available Conidia/mycelium-to-yeast transition of Paracoccidioidesbrasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37 °C and the availability of organic sulfur compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast phase of Paracoccidioides, with special attention to P. brasiliensis species. For this, we addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-regulated transformants triggered an increase of the inorganic sulfur metabolism, which culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism with cellular energy and redox imbalances. Furthermore, the data herein presented reveal SconCp as a novel virulence determinant of P. brasiliensis.

  5. P. brasiliensis Virulence Is Affected by SconC, the Negative Regulator of Inorganic Sulfur Assimilation (United States)

    Menino, João Filipe; Saraiva, Margarida; Gomes-Rezende, Jéssica; Sturme, Mark; Pedrosa, Jorge; Castro, António Gil; Ludovico, Paula; Goldman, Gustavo H.; Rodrigues, Fernando


    Conidia/mycelium-to-yeast transition of Paracoccidioidesbrasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37°C and the availability of organic sulfur compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast phase of Paracoccidioides, with special attention to P. brasiliensis species. For this, we addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-regulated transformants triggered an increase of the inorganic sulfur metabolism, which culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism with cellular energy and redox imbalances. Furthermore, the data herein presented reveal SconCp as a novel virulence determinant of P. brasiliensis. PMID:24066151


    Directory of Open Access Journals (Sweden)

    Josip Peko


    Full Text Available This study examined steel and aluminum variants of modern exhibition structures in which the main design requirements include low weight (increased span/depth ratio, transportation, and construction and durability (resistance to corrosion. This included a design situation in which the structural application of aluminum alloys provided an extremely convenient and practical solution. Viability of an aluminum structure depends on several factors and requires a detailed analysis. The overall conclusion of the study indicated that aluminum can be used as a structural material and as a viable alternative to steel for Croatian snow and wind load values and evidently in cases in which positive properties of aluminum are required for structural design. Furthermore, a structural fire analysis was conducted for an aluminum variant structure by using a zone model for realistic fire analysis. The results suggested that passive fire protection for the main structural members was not required in the event of areal fire with duration of 60 min.

  7. [Link between aluminum neurotoxicity and neurodegenerative disorders]. (United States)

    Kawahara, Masahiro


    Aluminum is an old element that has been known for a long time, but some of its properties are only now being discovered. Although environmentally abundant, aluminum is not essential for life; in fact, because of its specific chemical properties, aluminum inhibits more than 200 biologically important functions and exerts various adverse effects in plants, animals, and humans. Aluminum is a widely recognized neurotoxin. It has been suggested that there is a relationship between exposure to aluminum and neurodegenerative diseases, including dialysis encephalopathy, amyotrophic lateral sclerosis and parkinsonism dementia in the Kii Peninsula and Guam, as well as Alzheimer' s disease: however, this claim remains to be verified. In this chapter, we review the detailed characteristics of aluminum neurotoxicity and the link between Alzheimer' s disease and other neurodegenerative diseases, based on recent findings on metal-metal interactions and the functions of metalloproteins in synapses.

  8. Optical Transmittance of Anodically Oxidized Aluminum Alloy (United States)

    Saito, Mitsunori; Shiga, Yasunori; Miyagi, Mitsunobu; Wada, Kenji; Ono, Sachiko


    Optical transmittance and anisotropy of anodic oxide films that were made from pure aluminum and an aluminum alloy (A5052) were studied. The alloy oxide film exhibits an enhanced polarization function, particularly when anodization is carried out at a large current density. It was revealed by chemical analysis that the alloy oxide film contains a larger amount of unoxidized aluminum than the pure-aluminum oxide film. The polarization function can be elucidated by considering unoxidized aluminum particles that are arranged in the columnar structure of the alumina film. Electron microscope observation showed that many holes exist in the alloy oxide film, around which columnar cells are arranged irregularly. Such holes and irregular cell arrangement cause the increase in the amount of unoxidized aluminum, and consequently induces scattering loss.

  9. Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites (United States)

    Apperson, S.; Shende, R. V.; Subramanian, S.; Tappmeyer, D.; Gangopadhyay, S.; Chen, Z.; Gangopadhyay, K.; Redner, P.; Nicholich, S.; Kapoor, D.


    Nanothermite composites containing metallic fuel and inorganic oxidizer are gaining importance due to their outstanding combustion characteristics. In this paper, the combustion behaviors of copper oxide/aluminum nanothermites are discussed. CuO nanorods were synthesized using the surfactant-templating method, then mixed or self-assembled with Al nanoparticles. This nanoscale mixing resulted in a large interfacial contact area between fuel and oxidizer. As a result, the reaction of the low density nanothermite composite leads to a fast propagating combustion, generating shock waves with Mach numbers up to 3.

  10. Dynamic wetting of ro1ling oil on aluminum surfaces

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ya-jun; ZHOU Hong-hui


    Static and dynamic contact angles of stock oil and its solutions with additives(fatty acid, fatty alcohol, fatty methyl ester usually used in rolling aluminum) were measured on aluminum surface (Alloy 1145) by sessile drop technique on an OCA35 dynamic contact angle tester. The effect of additive on the drop spreading was investigated as well. It is shown that the drop spreads very quickly in the first 500 ms after the lubricant contacts with the aluminum surface, and then does slowly later. The dynamic contact angle decreases exponentially with time. In contrast to the stock oil, although addition of polarity additive of long chain alkyl into stock oil is able to decrease the surface tension of solutions, it weakens the wetting dynamic, which results from the adsorption at the expanding solid/liquid interface. Among the same long chain polarity organic compounds used, dynamic wetting decreases in the order of fatty acid, fatty alcohol and fatty ester. The blend of fatty alcohol and fatty methyl ester can improve the oil wetting dynamics and promote the lubricant spreading.

  11. Structure of Liquid Aluminum and Hydrogen Absorption

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; DAI Yongbing; WANG Jun; SHU Da; SUN Baode


    The hydrogen content in aluminum melts at different temperature was detected. The structure in aluminum melts was investigated by molecular dynamics simulation. The first peak position of pair correlation function, atomic coordination number and viscosity of aluminum melts were calculated and they changed abnormally in the same temperature range. The mechanism of hydrogen absorption has been discussed. From molecular dynamics calculations, the interdependence between melt structural properties and hydrogen absorption were obtained.

  12. Inorganic nanoparticles for cancer imaging and therapy. (United States)

    Huang, Huang-Chiao; Barua, Sutapa; Sharma, Gaurav; Dey, Sandwip K; Rege, Kaushal


    Inorganic nanoparticles have received increased attention in the recent past as potential diagnostic and therapeutic systems in the field of oncology. Inorganic nanoparticles have demonstrated successes in imaging and treatment of tumors both ex vivo and in vivo, with some promise towards clinical trials. This review primarily discusses progress in applications of inorganic nanoparticles for cancer imaging and treatment, with an emphasis on in vivo studies. Advances in the use of semiconductor fluorescent quantum dots, carbon nanotubes, gold nanoparticles (spheres, shells, rods, cages), iron oxide magnetic nanoparticles and ceramic nanoparticles in tumor targeting, imaging, photothermal therapy and drug delivery applications are discussed. Limitations and toxicity issues associated with inorganic nanoparticles in living organisms are also discussed.

  13. Inorganic arsenic poisoning in pastured feeder lambs

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, H.A.; Crane, M.R.; Tomson, K.


    Clinical signs and necropsy findings in a group of feeder lambs were suggestive of inorganic arsenic poisoning. Source of exposure was established and toxic concentrations of arsenic were detected in the tissues. 13 references, 1 table.

  14. Aluminum-stabilized NB3SN superconductor (United States)

    Scanlan, Ronald M.


    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  15. Casting Characteristics of Aluminum Die Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian


    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  16. Structure and properties of layered inorganic materials

    Institute of Scientific and Technical Information of China (English)

    Xue Duan


    @@ Inorganic layered materials are a class of advanced functional materials that have attracted considerable attention by virtue of their practical applications in a wide variety of fields. Sys-tematic studies of structure, design, synthesis, and fabrication processing may extend the range of practical utility of inor-ganic layered functional materials, in areas such as food industry,chemical industry, energy engineering, environmental engineer-ing, drug and gene delivery, electronics technology, and materials protection.

  17. Inorganic particle analysis of dental impression elastomers


    Carlo,Hugo Lemes; FONSECA, Rodrigo Borges; Soares, Carlos José; Correr,Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti,Mário Alexandre Coelho


    The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously de...

  18. Silicon reduces aluminum accumulation in rats: relevance to the aluminum hypothesis of Alzheimer disease. (United States)

    Bellés, M; Sánchez, D J; Gómez, M; Corbella, J; Domingo, J L


    In recent years, a possible relation between the aluminum and silicon levels in drinking water and the risk of Alzheimer disease (AD) has been established. It has been suggested that silicon may have a protective effect in limiting oral aluminum absorption. The present study was undertaken to examine the influence of supplementing silicon in the diet to prevent tissue aluminum retention in rats exposed to oral aluminum. Three groups of adult male rats were given by gavage 450 mg/kg/day of aluminum nitrate nonahydrate 5 days a week for 5 weeks. Concurrently, animals received silicon in the drinking water at 0 (positive control), 59, and 118 mg Si/L. A fourth group (-Al, - Si) was designated as a negative control group. At the end of the period of aluminum and silicon administration, urines were collected for 4 consecutive days, and the urinary aluminum levels were determined. The aluminum concentrations in the brain (various regions), liver, bone, spleen, and kidney were also measured. For all tissues, aluminum levels were significantly lower in the groups exposed to 59 and 118 mg Si/L than in the positive control group; significant reductions in the urinary aluminum levels of the same groups were also found. The current results corroborate that silicon effectively prevents gastrointestinal aluminum absorption, which may be of concern in protecting against the neurotoxic effects of aluminum.

  19. The Aluminum Deep Processing Project of North United Aluminum Landed in Qijiang

    Institute of Scientific and Technical Information of China (English)


    <正>On April 10,North United Aluminum Company respectively signed investment cooperation agreements with Qijiang Industrial Park and Qineng Electricity&Aluminum Co.,Ltd,signifying the landing of North United Aluminum’s aluminum deep processing project in Qijiang.

  20. Adsorption behavior of condensed phosphate on aluminum hydroxide

    Institute of Scientific and Technical Information of China (English)

    GUAN Xiao-hong; CHEN Guang-hao; SHANG Chii


    Sodium pyrophosphate(pyro-P,Na4P207),sodium tripolyphosphate(tripoly-P,NasP3010),and sodium hexametaphosphate(metaP,(NaP03)6)were selected as the model compounds of condensed phosphate to investigate the adsorption behavior of condensed phosphate on aluminum hydroxide.The adsorption was found to be endothermic and divisible into two stages:(1)fast adsorption within 1 h:and(2)slow adsorption between 1 and 24 h.The modified Freundlich model simulated the fast adsorption stage well;the slow adsorption stage was described well by the first-order kinetics.The activation energies of pyro-P,tripoly-P,and meta-P adsorption on aluminum hydroxide were determined to be 20.2,22.8 and 10.9 kJ/mol P adsorbed,respectively,in the fast adsorption stage and to be and 72.5 kJ/tool P adsorbed,respectively,in the slow adsorption stage.The adsorption increased the negative charge of the aluminum hydroxide surface.Transmission electron microscopy and energy dispersive X-ray analysis analyses provided evidence that the adsorption was not uniform on the surface and that the small crystals contfibuted more to the fast adsorption than the normal sites did.The results from X-ray fluorescence spectrometry and X-ray photoelectron spectroscopy tests also revealed the uneven adsorption of condensed phosphate as a function of the penetration depth.More condensed phosphates were adsorbed on the outer surface of aluminum hydroxide than in its inner parts.

  1. 21 CFR 862.1580 - Phosphorus (inorganic) test system. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  2. Organic-inorganic nano-composite films for photonic applications made by multi-beam multi-target pulsed laser deposition with remote control of the plume directions (United States)

    Darwish, Abdalla M.; Moore, Shaelynn; Mohammed, Aziz; Alexander, Deonte'; Bastian, Tyler; Dorlus, Wydglif; Sarkisov, Sergey S.; Patel, Darayas N.; Mele, Paolo; Koplitz, Brent


    the components of different nature, organic polymers and inorganic dopants, in the same target at a certain proportion and exposing them to the same laser beam not necessarily brings good quality nano-composite films. The laser pulse energy and wavelength cannot be optimized for each component individually. Also, the mixing proportion in the composite film is dictated by the initial proportion of the target and thus cannot be changed in the process. These limitations were removed in the recently proposed method of multi-beam and multi-target deposition (in its doublebeam/ dual-target variation) using a MAPLE polymer target and one inorganic target, each being concurrently exposed to laser beams of different wavelengths.5-14 Using the method, nano-composite films of polymer poly(methyl methacrylate) known as PMMA doped with a rare earth (RE) inorganic upconversion phosphor compounds were prepared. Also, a nano-composite film of thermoelectric film of inorganic aluminum-doped ZnO known as AZO was impregnated with PMMA nano-fillers with the purpose of improving electrical conductivity and thermoelectric performance.10, 14 The polymer target was a frozen (to a temperature of liquid nitrogen) PMMA solution in chlorobenzene exposed to a 1064- nm laser beam from a Q-switched Nd:YAG pulsed laser. The inorganic targets were the pellets made of the compressed micro-powders of highly efficient RE-doped NaYF4 or the sintered powder of AZO concurrently ablated with the

  3. Corrosion Preventive Compounds Lifetime Testing (United States)

    Hale, Stephanie M.; Kammerer, Catherine C.; Copp, Tracy L.


    Lifetime Testing of Corrosion Preventive Compounds (CPCs) was performed to quantify performance in the various environments to which the Space Shuttle Orbiter is exposed during a flight cycle. Three CPCs are approved for use on the Orbiter: RD Calcium Grease, Dinitrol AV-30, and Braycote 601 EF. These CPCs have been rigorously tested to prove that they mitigate corrosion in typical environments, but little information is available on how they perform in the unique combination of the coastal environment at the launch pad, the vacuum of low-earth orbit, and the extreme heat of reentry. Currently, there is no lifetime or reapplication schedule established for these compounds that is based on this combination of environmental conditions. Aluminum 2024 coupons were coated with the three CPCs and exposed to conditions that simulate the environments to which the Orbiter is exposed. Uncoated Aluminum 2024 coupons were exposed to the environmental conditions as a control. Visual inspection and Electro- Impedance Spectroscopy (EIS) were performed on the samples in order to determine the effectiveness of the CPCs. The samples were processed through five mission life cycles or until the visual inspection revealed the initiation of corrosion and EIS indicated severe degradation of the coating.

  4. Plant uptake of dual-labeled organic N biased by inorganic C uptake

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Sauheitl, Leopold; Eriksen, Jørgen;


    Direct plant uptake of organic nitrogen (N) is often studied using the dual-labeling approach (15N + 13C or 15N + 14C). However, the method might be hampered by uptake of labeled inorganic carbon (C) produced by mineralization of labeled organic compounds. Here we report the results from a triple...... glycine or CO2-3 , but found no differences in uptake rates between these C-sources. The uptake of inorganic C to the shoot tissue was higher for maize grown in full light compared to shading, which indicates a passive uptake of inorganic C with water. We conclude that uptake of inorganic C produced...... labeling experiment (15N + 13C + 14C) investigating whether root uptake of labeled inorganic C can bias the results obtained in studies of organic N uptake using dual-labeled amino acids (15N, 13C). In a rhizosphere tube experiment we investigated 13C and 14C uptake by maize either supplied with labeled...

  5. Removal of primary iron rich phase from aluminum-silicon melt by centrifugal separation

    Directory of Open Access Journals (Sweden)

    Seong Woo Kim


    Full Text Available Recycling is a major consideration in continued aluminum use due to the enormous demand for high quality products. Some impurity elements gradually accumulate through the repetitive reuse of aluminum alloy scrap. Of them, the iron content should be suppressed under the allowed limit. In the present research, a novel separation method was introduced to remove primary iron-rich intermetallic compounds by centrifugation during solidification of Al-Si-Fe alloys. This method does not use the density difference between two phases as in other centrifugal methods, but uses the order of solidification in Al-Si-Fe alloys, because iron promotes the formation of intermetallic compounds with other alloying elements as a primary phase. Two Al-Si-Fe alloys which have different iron contents were chosen as the starting materials. The iron-rich phase could be efficiently removed by centrifuging under a centrifugal force of 40 g. Coarse intermetallic compounds were found in the sample inside the crucible, while rather fine intermetallic compounds were found in the sample outside the crucible. Primary intermetallic compounds were linked to each other via aluminum-rich matrix, and formed like a network. The highest iron removal fraction is 67% and the lowest one is 7% for Al-12Si-1.7Fe alloy. And they are 82% and 18% for Al-12Si-3.4Fe alloy, respectively.

  6. 有机无机复混钾肥钾素表观释放特征及对烤烟产质量的影响%The K Apparent Release Characteristics of Organic-inorganic Compound Potash Fertilizers and Its Effect on Yield and Quality of Flue-cured Tobacco

    Institute of Scientific and Technical Information of China (English)

    余垚颖; 蒋长春; 顾会战; 王勇; 郭应菊; 喻晓; 王明富


    In order to solve the supply of K at 75 days after transplanting and increase the content of K in tobacco leaves, pot and field experiments were carried out to study the effects of the organic inorganic mixed fertilizers on the K apparent release characteristics and the effects of different application methods on yield and quality of tobacco leaves, as well as the content of total K and sensory quality. The results showed that 4 kinds of organic inorganic mixed potassium fertilizers of different organic matter content could slow down the apparent release rate of K, with the treatment group of organic matter content 18%, K2O content 24% had the best effect. Field experiments were carried out in 3 regions to verify the 30% organic inorganic mixed potassium fertilizer and screened method. The results showed that: the treatment group was significantly better than control in K content of tobacco leaf, yield, output value and sensory quality. K content of tobacco increased by 11.43%-25.87% in the three locations. The 30% organic inorganic mixed fertilizer could effectively slow down K release, significantly increase K content and improve inherent quality of tobacco Leaf.%为改善烟株移栽75 d后的钾素供应,提高中上部烟叶的含钾量,采用盆栽和大田相结合的方式,研究有机无机复混钾肥的钾素表观释放特征及不同施用方式对烟叶产质量、钾素含量及感观质量的影响.结果表明,4种不同有机质含量的有机无机复混钾肥均能改善钾素释放动态,提高烟株生育后期的钾素供应,其中以有机质含量18%,K2O含量24%处理最为理想;对研制的30%有机无机复混钾肥及筛选的施肥方法在3个地区进行同田对比试验表明,处理组在烟叶含钾量、产量、产值及感观质量上均要显著好于对照组,3个地区烟叶含钾量增幅为11.43%~25.87%.30%有机无机复混钾肥能有效减缓钾素释放,显著提高烟叶含钾量,明显改善内在品质.

  7. Inhibition of acidic corrosion of aluminum by triazoline derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Khamis, E. (Alexandria Univ., Ibrahimia (Egypt). Dept. of Chemistry); Atea, M. (Alexandria Univ., Ibrahimia (Egypt). Dept. of Materials Science)


    Inhibition of the corrosion of aluminum (Al) in hydrochloric acid (HCl) by some triazoline derivatives was studied in relation to the concentration of the inhibitors using gasometry, the weight-loss method, and the potentiodynamic technique. All compounds investigated were found to be inhibitors of the mixed type. The inhibitory character of the additives depended upon the +R (resonance) and +I (inductive) powers of alkyl or aryl groups of the triazoline derivatives. Inhibition was ascribed to the adsorption of the inhibitor onto the metal oxide surface following the Flory-Huggins isotherm. The compounds were adsorbed on the metal surface. Each molecule of the inhibitors occupied an average of 3.8 active sites on the metal surface. The values of activation free energies varied between [minus]30 kJ/mol and [minus]45 kJ/mol.

  8. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients (United States)

    Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, T.


    Tropospheric aerosols contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. Interactions between these substances in liquid mixtures lead to discrepancies from ideal thermodynamic behaviour. By means of activity coefficients, non-ideal behaviour can be taken into account. We present here a thermodynamic model named AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) that is able to calculate activity coefficients covering inorganic, organic, and organic-inorganic interactions in aqueous solutions over a wide concentration range. This model is based on the activity coefficient model LIFAC by Yan et al. (1999) that we modified and reparametrised to better describe atmospherically relevant conditions and mixture compositions. Focusing on atmospheric applications we considered H+, Li+, Na+, K+, NH+4, Mg2+, Ca2+, Cl-, Br-, NO-3, HSO-4, and SO2-4 as cations and anions and a wide range of alcohols/polyols composed of the functional groups CHn and OH as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are well represented up to high ionic strength. Most notably, a semi-empirical middle-range parametrisation of direct organic-inorganic interactions in alcohol+water+salt solutions strongly improves the agreement between experimental and modelled activity coefficients. At room temperature, this novel thermodynamic model offers the possibility to compute equilibrium relative humidities, gas/particle partitioning and liquid-liquid phase separations with high accuracy. In further studies, other organic functional groups will be introduced. The model framework is not restricted to specific ions or organic compounds and is therefore also applicable for other research topics.

  9. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients

    Directory of Open Access Journals (Sweden)

    A. Zuend


    Full Text Available Tropospheric aerosols contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. Interactions between these substances in liquid mixtures lead to discrepancies from ideal thermodynamic behaviour. By means of activity coefficients, non-ideal behaviour can be taken into account. We present here a thermodynamic model named AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients that is able to calculate activity coefficients covering inorganic, organic, and organic-inorganic interactions in aqueous solutions over a wide concentration range. This model is based on the activity coefficient model LIFAC by Yan et al. (1999 that we modified and reparametrised to better describe atmospherically relevant conditions and mixture compositions. Focusing on atmospheric applications we considered H+, Li+, Na+, K+, NH+4, Mg2+, Ca2+, Cl, Br, NO3, HSO4, and SO2−4 as cations and anions and a wide range of alcohols/polyols composed of the functional groups CHn and OH as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are well represented up to high ionic strength. Most notably, a semi-empirical middle-range parametrisation of direct organic-inorganic interactions in alcohol+water+salt solutions strongly improves the agreement between experimental and modelled activity coefficients. At room temperature, this novel thermodynamic model offers the possibility to compute equilibrium relative humidities, gas/particle partitioning and liquid-liquid phase separations with high accuracy. In further studies, other organic functional groups will be introduced. The model framework is not restricted to specific ions or organic compounds and is therefore also

  10. Materials Chemistry and Performance of Silicone-Based Replicating Compounds.

    Energy Technology Data Exchange (ETDEWEB)

    Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael; Trujillo, Ana B; Hale, Kevin


    Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could remove some residue.

  11. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet (United States)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.


    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  12. Sanmenxia strives to create aluminum industrial base

    Institute of Scientific and Technical Information of China (English)


    <正>Contradiction between rich alumina resource and relatively weak electrolytic aluminum production capacity is the "bottleneck" inhibiting development of aluminum industry in San-menxia. During the period of "11th Five-Year Development", Sanmenxia will relay on its

  13. Wilson's disease; increased aluminum in liver. (United States)

    Yasui, M; Yoshimasu, F; Yase, Y; Uebayashi, Y


    Interaction of trace metal metabolism was studied in a patient with Wilson's dease. Atomic absorption analysis showed markedly increased urinary excretion of copper and aluminum and an increased aluminum content was found in the biopsied liver by neutron activation analysis. These findings suggest a complicated pathogenetic mechanism involving other metals besides copper in the Wilson's disease.

  14. Soil Inorganic Nitrogen Cycling during Successional Change in a Northern Temperate Forest (United States)

    Nave, L. E.; Sparks, J. P.; Le Moine, J.; Hardiman, B. S.; Nadelhoffer, K. J.; Strahm, B. D.; Curtis, P.


    Transformations and fluxes of inorganic nitrogen (N) compounds in forest soils are the basis for major biogeochemical functions. Inorganic N fluxes contribute significantly to plant and microbial N nutrition, mediate the exchange of reactive, gas-phase N between the biosphere and atmosphere, and are coupled via hydrologic linkages to N cycling in surface and groundwater. However, soil inorganic N cycling may change during forest succession due to shifts in tree species composition, ecosystem N capital and distribution, or other drivers. Within the framework of a paired-ecosystem, experimentally accelerated successional advancement, we synthesized comprehensive measurements of soil and soil surface inorganic N fluxes to: a) quantify changes in, and interactions between, the component processes of the N cycle that mediate forest biogeochemical functions, and b) understand how these processes and associated biogeochemical functions change during forest succession. We hypothesized that a sudden decline in plant N uptake during the mortality event that accelerated ongoing succession would significantly increase NH4+ availability, prompting fundamental changes to the N cycle including the initiation of significant nitrification and increased exports of NO3- derived compounds in gas phase and soil solution. We found that in surface soils (top 20 cm), levels of seasonally integrated, ion-exchange NH4+ and NO3- availability increased with decreasing fine root biomass (regression, Pstructural drivers of N cycling that are undergoing incipient successional changes, and b) recent and continued successional advancement has shifted the N cycling economy of this ecosystem towards greater importance of NO3-.

  15. Spot brazing of aluminum to copper with a cover plate (United States)

    Hayashi, Junya; Miyazawa, Yasuyuki


    It is difficult to join dissimilar metals when an intermetallic compound is formed at the joining interface. Spot brazing can be accomplished in a short time by resistance heating. Therefore, it is said that the formation of a intermetallic compound can be prevented. In this study, aluminum and copper were joined by spot brazing with a cover plate. The cover plate was used to supply heat to base metals and prevent heat dissipation from the base metals. The ability to braze Al and Cu was investigated by observation and analysis. Pure aluminum (A1050) plate and oxygen-free copper (C1020) plate were used as base metals. Cu-Ni-Sn-P brazing filler was used as the brazing filler metal. SPCC was employed as cover plate. Brazing was done with a micro spot welder under an argon gas atmosphere. Brazing ability was estimated by tensile shear strength and cross sectional microstructure observation. Al and Cu can be joined by spot brazing with Cu-Ni-Sn-P brazing filler and cover plate.

  16. Recrystallization in Commercially Pure Aluminum

    DEFF Research Database (Denmark)

    Bay, Bent; Hansen, Niels


    Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree of defor......Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree...... (FeAl3), which start to become operative when the degree of deformation is raised from 15 to 30 pct. The temperature of nucleation and of recrystallization decreases when the degree of deformation is increased and the initial grain size is decreased. The recrystallized grain size follows the same...... trend and it is observed that the refinement of the recrystallized grain size caused by an increasing degree of deformation and decreasing initial grain size is enhanced by the FeAl3 particles (when the degree of deformation is raised from 15 to 30 pct). Finally, the structural and kinetic observations...

  17. Aluminum honeycomb impact limiter study

    Energy Technology Data Exchange (ETDEWEB)

    Yaksh, M.C.; Thompson, T.C. (Nuclear Assurance Corp., Norcross, GA (United States)); Nickell, R.E. (Applied Science and Technology, Inc., Poway, CA (United States))


    Design requirements for a cask transporting radioactive materials must include the condition of the 30-foot free fall of the cask onto an unyielding surface. To reduce the deceleration loads to a tolerable level for all the components of the cask, a component (impact limiter) is designed to absorb the kinetic energy. The material, shape, and method of attachment of the impact limiter to the cask body comprises the design of the impact limiter. The impact limiter material of interest is honeycomb aluminum, and the particular design examined was for the NAC Legal Weight Truck cask (NAC-LWT) for spent fuel from light water reactors. The NAC-LWT has a design weight of 52,000 pounds, and it has a nominal length of 200 inches. The report describes the numerical calculations embodied in the FADE program to determine the accelerations and crush strain resulting from an arbitrary height and angle of orientation. Since the program serves as a design tool, static tests are performed to assess the effect of the shell containing the honeycomb aluminum. The static tests and their results are contained in the study. The static tests are used to demonstrate for licensing purposes the level of accelerations imposed on the cask during a 30-foot drop. 3 refs., 41 figs., 15 tabs.

  18. Aluminum corrosion product release kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Matt, E-mail:; Semmler, Jaleh; Guzonas, Dave; Chen, Hui Qun; Toor, Arshad; Hoendermis, Seanna


    Highlights: • Release of Al corrosion product was measured in simulated post-LOCA sump solutions. • Increased boron was found to enhance Al release kinetics at similar pH. • Models of Al release as functions of time, temperature, and pH were developed. - Abstract: The kinetics of aluminum corrosion product release was examined in solutions representative of post-LOCA sump water for both pressurized water and pressurized heavy-water reactors. Coupons of AA 6061 T6 were exposed to solutions in the pH 7–11 range at 40, 60, 90 and 130 °C. Solution samples were analyzed by inductively coupled plasma atomic emission spectroscopy, and coupon samples were analyzed by secondary ion mass spectrometry. The results show a distinct “boron effect” on the release kinetics, expected to be caused by an increase in the solubility of the aluminum corrosion products. New models were developed to describe both sets of data as functions of temperature, time, and pH (where applicable)

  19. The ACS Inorganic Exam and Its Influence (?) on the Inorganic Curriculum. (United States)

    Sienko, M. J.


    Summarizes results of a questionnaire asking if the ASC standarized test influences what is taught in inorganic chemistry courses. Chief controlling factors are indicated to be: (1) instructor's preference and (2) textbook content. Suggestions are given to enhance amount of inorganic chemistry in undergraduate curricula. (Author/JN)

  20. Foundation Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty (United States)

    Raker, Jeffrey R.; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Crane, Johanna L.; Pesterfield, Les; Sobel, Sabrina G.


    A national survey of inorganic chemists explored the self-reported topics covered in foundation-level courses in inorganic chemistry at the postsecondary level; the American Chemical Society's Committee on Professional Training defines a foundation course as one at the conclusion of which, "a student should have mastered the vocabulary,…

  1. Gating of Permanent Molds for ALuminum Casting

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang


    This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

  2. Gelling nature of aluminum soaps in oils. (United States)

    Wang, Xiaorong; Rackaitis, Mindaugas


    Aluminum soaps are notable for their ability to form soap-hydrocarbon gels of high viscosity. For more than half a century, it has been believed that the gelling mechanism is due to a formation of polymeric chains of aluminum molecules with the aluminum atoms linking along the axis and with the fatty acid chain extended sideways. Here we report results from an investigation using high-resolution electron microscopy and rheology measurements that clearly resolve the ambiguity. Our results reveal that the gelling mechanism stems from the formation of spherical nano-sized micelles from aluminum soap molecules, and those colloidal micelle particles then aggregate into networks of highly fractal and jammed structures. The earlier proposed polymer chain-like structure is definitely incorrect. The discovery of aluminum soap particles could expand application of these materials to new technologies.

  3. Aluminum-based metal-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Martinez, Jose Antonio Bautista


    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  4. Proposal of recycling system for waste aluminum

    Directory of Open Access Journals (Sweden)

    Š. Valenčík


    Full Text Available Introduced work is focused on waste aluminum recycling process with objective to propose complex production system for recovering of aluminum and some aluminum alloys. Solution is supported by extended analysis concerning purpose, basis and system sequences for recyclation. Based on that, sources, possibilities and conditions for recycling are formed. This has been used in proposal of manufacturing system. The principle is the structural proposal of manufacturing system, which does not only differentiate the stage of aluminum melting process, but also related stages as gross separation, sizing, containerisation and batching, palletisation, stacking and some related operations. Production system respects technological specifications, requirements for rationalisation of manufacturing systems, technical and economical feasibility conditions and is considered in lower automation level. However production system solves complex problem of recycling of some types of aluminum, it improves flexibility, production, quality (melting by high enforcements and in protective atmosphere and extention of production (final products production.

  5. Trends in the global aluminum fabrication industry (United States)

    Das, Subodh; Yin, Weimin


    The aluminum fabrication industry has become more vital to the global economy as international aluminum consumption has grown steadily in the past decades. Using innovation, value, and sustainability, the aluminum industry is strengthening its position not only in traditional packaging and construction applications but also in the automotive and aerospace markets to become more competitive and to face challenges from other industries and higher industrial standards. The aluminum fabrication industry has experienced a significant geographical shift caused by rapid growth in emerging markets in countries such as Brazil, Russia, India, and China. Market growth and distribution will vary with different patterns of geography and social development; the aluminum industry must be part of the transformation and keep pace with market developments to benefit.


    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; Cj Bannochie, C; Michael Hay, M; Daniel McCabe, D


    The SRS sludge that was to become a major fraction of Sludge Batch 5 (SB5) for the Defense Waste Processing Facility (DWPF) contained a large fraction of H-Modified PUREX (HM) sludge, containing a large fraction of aluminum compounds that could adversely impact the processing and increase the vitrified waste volume. It is beneficial to reduce the non-radioactive fraction of the sludge to minimize the number of glass waste canisters that must be sent to a Federal Repository. Removal of aluminum compounds, such as boehmite and gibbsite, from sludge can be performed with the addition of NaOH solution and heating the sludge for several days. Preparation of SB5 involved adding sodium hydroxide directly to the waste tank and heating the contents to a moderate temperature through slurry pump operation to remove a fraction of this aluminum. The Savannah River National Laboratory (SRNL) was tasked with demonstrating this process on actual tank waste sludge in our Shielded Cells Facility. This paper evaluates some of the impacts of aluminum dissolution on sludge washing and DWPF processing by comparing sludge processing with and without aluminum dissolution. It was necessary to demonstrate these steps to ensure that the aluminum removal process would not adversely impact the chemical and physical properties of the sludge which could result in slower processing or process upsets in the DWPF.

  7. Multipurpose Compound (United States)


    Specially formulated derivatives of an unusual basic compound known as Alcide may be the answer to effective treatment and prevention of the disease bovine mastitis, a bacterial inflammation of a cow's mammary gland that results in loss of milk production and in extreme cases, death. Manufactured by Alcide Corporation the Alcide compound has killed all tested bacteria, virus and fungi, shortly after contact, with minimal toxic effects on humans or animals. Alcide Corporation credits the existence of the mastitis treatment/prevention products to assistance provided the company by NERAC, Inc.

  8. Characterization of aluminum surfaces: Sorption and etching (United States)

    Polkinghorne, Jeannette Clera

    Aluminum, due to its low density and low cost, is a key material for future lightweight applications. However, like other structural materials, aluminum is subject to various forms of corrosion damage that annually costs the United States approximately 5% of its GNP [1]. The main goal is to investigate the effects of various solution anions on aluminum surfaces, and specifically probe pit initiation and inhibition. Using surface analysis techniques including X-ray photoelectron spectroscopy, Auger electron spectroscopy, and scanning electron microscopy, results have been correlated with those obtained from electrochemical methods and a radiolabeling technique developed in the Wieckowski laboratory. Analysis of data has indicated that important variables include type of anion, solution pH, and applied electrode potential. While aggressive anions such as chloride are usually studied to elucidate corrosion processes to work ultimately toward inhibition, its corrosive properties can be successfully utilized in the drive for higher energy and smaller-scale storage devices. Fundamental information gained regarding anion interaction with the aluminum surface can be applied to tailor etch processes. Standard electrochemical techniques and SEM are respectively used to etch and analyze the aluminum substrate. Aluminum electrolytic capacitors are comprised of aluminum anode foil covered by an anodically grown aluminum oxide dielectric film, electrolytic paper impregnated with electrolyte, and aluminum cathode foil. Two main processes are involved in the fabrication of aluminum electrolytic capacitors, namely etching and anodic oxide formation. Etching of the anode foil results in a higher surface area (up to 20 times area enlargement compared to unetched foil) that translates into a higher capacitance gain, permitting more compact and lighter capacitor manufacture. Anodic oxide formation on the anode, creates the required dielectric to withstand high voltage operation. A


    Institute of Scientific and Technical Information of China (English)

    YAO Guan-rong; GAO Quan-zhou


    Inorganic carbon, the great part of the riverine carbon exported to the ocean, plays an important role in the global carbon cycle and ultimately impacts the coupled carbon-climate system. An overview was made on both methods and results of the riverine inorganic carbon researches. In addition to routine in situ survey, measurement and calculation,the direct precipitation method and the gas evolution technique were commonly used to analyze dissolved inorganic carbon in natural water samples. Soil CO2, carbonate minerals and atmospheric CO2 incorporated into riverine inorganic carbon pool via different means, with bicarbonate ion being the dominant component. The concentration of inorganic carbon, the composition of carbon isotopes (δ13C and △14C), and their temporal or spatial variations in the streams were controlled by carbon input, output and changes of carbon biogeochemistry within the riverine system. More accurate flux estimation, better understanding of different influential processes, and quantitative determination of various inputs or outputs need to be well researched in future.

  10. XRD and TEM analysis of the microstructure in the brazing joint of 3003 cladding aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Tao Feng; Songnian Lou; Luhai Wu; Yajiang Li


    The material used in this experiment was 3003 cladding aluminum alloy, the cladding metal was 4004 aluminum alloy.The aluminum plate was brazed by means of vacuum brazing. The microstructure in the brazing joint was studied by means of X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The test result indicates that the suitable brazing technique parameters are brazing temperature, 628℃; keeping time, 10 min; vacuum degree, 6.5×10-4 Pa. XRD test indicates that there are new intermetallic compounds different from the base metal. TEM analysis indicates that Cu2Mg and Cu3Mn2Mg are formed in the brazing joint. The shape of Cu2Mg is irregular and the shape of Cu3Mn2Mg is circle, and there are tiny particles in it.

  11. Photocatalytic oxidation of organic compounds on Mars (United States)

    Chun, S. F. S.; Pang, K. D.; Cutts, J. A.; Ajello, J. M.


    Ultraviolet-stimulated catalytic oxidation is proposed as a mechanism for the destruction of organic compounds on Mars. The process involves the presence of gaseous oxygen, UV radiation, and a catalyst (titanium dioxide), and all three of these have been found to be present in the Martian environment. Therefore it seems plausible that UV-stimulated oxidation of organics is responsible for degrading organic molecules into inorganic end products.


    Institute of Scientific and Technical Information of China (English)

    Yen Wei; Kun-yuan Qiu


    We describe the sol-gel synthesis of a new family of organic-inorganic hybrid materials, in which various vinyl polymers are covalently bonded to and uniformly distributed in inorganic oxide matrices. The materials can be tailored to have both good toughness and hardness while maintaining excellent optical transparency. Doping the sol-gel metal oxides with optically active compounds such as D-glucose results in new optical rotatory composite materials. Removal of the dopant compounds from the composites affords mesoporous oxide materials, which represents a new, nonsurfactant-templated route to mesoporous molecular sieves. We have successfully immobilized a series of enzymes and other bioactive agents in mesoporous materials. Catalytical activities of the enzyme encapsulated in mesoporous materials were found to be much higher than those encapsulated in microporous materials.

  13. The Surface Morphology and Optical Properties of Refined Glasses with Inorganic Nano-molecules (United States)

    Drajewicz, Marcin; Pytel, Maciej; Rokicki, Paweł; Góral, Marek


    New refining technology of soda-calcium-silicon glass surfaces with inorganic compounds nano-molecules has been presented in the study. In order to determine modification of the glass surface SEM observation and EDX analysis have been carried out. The UV-VIS, photo-elasticity and ellipsometry examinations were carried out on glass samples. The results of investigations that have been conducted show that refining process of the glass surface by use of nanopowder inorganic compounds deposited electrostatically on glass surface provides forming of very thin (about 50 nm) surface layers [1]. This method of surface modification improves physical and chemical glass properties. In this paper results of microhardness test of refined glass were also presented.

  14. Inorganic Nanoparticles for Multimodal Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Magdalena Swierczewska


    Full Text Available Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles.

  15. Microporous Inorganic Membranes as Proton Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Vichi, F.M. Tejedor-Tejedor, M.I. Anderson, Marc A


    Porous oxide electrolyte membranes provide an alternative approach to fabricating proton exchange membrane fuel cells based on inorganic materials. This study focused on elucidating the properties of these inorganic membranes that make them good electrolyte materials in membrane electrode assemblies; in particular, we investigated several properties that affect the nature of proton conductivity in these membranes. This report discusses our findings on the effect of variables such as site density, amount of surface protonation and surface modification on the proton conductivity of membranes with a fixed pore structure under selected conditions. Proton conductivities of these inorganic membranes are similar to conductivities of nafion, the polymeric membrane most commonly used in low temperature fuel cells.

  16. Inorganic nanocarriers for platinum drug delivery

    Directory of Open Access Journals (Sweden)

    Ping’an Ma


    Full Text Available Nowadays platinum drugs take up almost 50% of all the clinically used anticancer drugs. Besides cisplatin, novel platinum agents including sterically hindered platinum (II drugs, chemically reductive platinum (IV drugs, photosensitive platinum (IV drugs, and multinuclear platinum drugs have been developed recently, with a few entering clinic trials. Rapid development of nanobiotechnology makes targeted delivery of anticancer platinum agents to the tumor site possible, while simultaneously minimizing toxicity and maximizing the drug efficacy. Being versatile drug carriers to deliver platinum drugs, inorganic nanovehicles such as gold nanoparticles, iron oxide nanomaterials, carbon nanotubes, mesoporous nanosilica, metal-organic frameworks (MOFs, have been extensively studied over the past decades. In contrast to conventional polymeric and lipid nanoparticles, inorganic nanoparticles based drug carriers are peculiar as they have shown excellent theranostic effects, revealing themselves an indispensable part of future nanomedicine. Here, we will elaborate recent research advances on fabrication of inorganic nanoparticles for platinum drug delivery.

  17. Partition of biocides between water and inorganic phases of renders with organic binder

    DEFF Research Database (Denmark)

    Urbanczyk, Michal M; Bollmann, Ulla E; Bester, Kai


    , the partition of biocides between water and inorganic phases of render with organic binder was investigated. The partition constants of carbendazim, diuron, iodocarb, isoproturon, cybutryn (irgarol), octylisothiazolinone, terbutryn, and tebuconazole towards minerals typically used in renders, e.g. barite...... with render-water distribution constants of two artificially made renders showed that the distribution constants can be estimated based on partition constants of compounds for individual components of the render....

  18. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles


    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.


    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analy...

  19. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles


    B. J. Williams; Y. Zhang; X. Zuo; R. E. Martinez; Walker, M. J.; N. M. Kreisberg; Goldstein, A. H.; K. S. Docherty; Jimenez, J.L.


    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality, and often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analy...

  20. Engineered inorganic core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mélinon, Patrice, E-mail: [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)


    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.

  1. Dissimilar metals TIG welding-brazing of aluminum alloy to galvanized steel

    Institute of Scientific and Technical Information of China (English)

    San-bao LIN; Jian-ling SONG; Guang-chao MA; Chun-li YANG


    Dissimilar metals TIG welding-brazing of aluminum alloy to galvanized steel was investigated, and the wettability and spreadability of aluminum filler metal on the steel surface were analyzed. The resultant joint was characterized in order to determine the brittle intermetallic compound (IMC) in the interfacial layer, and the mechan-ical property of the joint was tested. The results show that the zinc coated layer can improve the wettability and spreadability of liquid aluminum filler metal on the surface of the steel, and the wetting angle can reach less than 20°. The lap joint has a dual characteristic and can be divided into a welding part on the aluminum side and a brazing part on the steel side. The interfacial IMC layer in the steel side is about 9.0 μm in thickness, which transfers from (α-Al + FeAl3) in the welded seam side to (Fe2Al5+ FeAl2) and (FeAl2+ FeAl) in the steel side. The crystal grain of the welded seam is obviously larger in size in the aluminum side. The local incomplete brazing is found at the root of the lap joint, which weakens the property of the joint. The fracture of the joint occurs at the root and the average tensile strength reaches 90 MPa.

  2. Potential of laser ablation and laser desorption mass spectrometry to characterize organic and inorganic environmental pollutants on dust particles.

    NARCIS (Netherlands)

    Carre, V.; Aubriet, F.; Scheepers, P.T.J.; Krier, G.; Muller, J.F.


    Stainless steel factories are known to release particles into the atmosphere. Such particulate matter contains significant amounts of heavy metals or toxic inorganic compounds and organic pollutants such as, for example, Cr(VI) and polycyclic aromatic hydrocarbons (PAHs). The investigation of Cr(VI)

  3. Development of Alcoa aluminum foam products

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, J.D.; Crowley, M.D.; Wang, W.; Wilhelmy, D.M.; Hunter, D.E. [Alcoa Technical Center, Alcoa Center, PA (United States)


    A new lightweight aluminum foam product was described. The foam was made through the controlled decomposition of carbonate powders within molten aluminum and was able to resist both coalescence and drainage. The fine-celled aluminum foam derived its physical and mechanical properties from the properties of the aluminum alloy matrix from which they were produced. The rheology of the molten aluminum was modified to provide a superior mesostructure. Stabilization was achieved by creating a solid-gas-liquid suspension initiated by the addition of carbonates into an aluminum alloy melt. A cascade of chemical reactions then occurred within the melt to create a foamable suspension. Carbon monoxide (CO) was generated to initiate an additional sequence of chemical reactions which resulted in the formation of solid particles within the liquid metal. CO reacted with liquid Al to form graphite. The graphite then reacted with Al to form aluminum carbide (Al{sub 4}C{sub 3}). The microstructural, mesostructural, and mechanical character of the foams produced under different processing conditions were examined. Details of experimental test procedures were also described. It was concluded that the specific crush energy absorption was as high as 20 kJ/kg. The foam exhibited a bending stiffness that was approximately 20 to 30 times higher than balsa and polymer foams. 14 refs., 2 tabs., 7 figs.

  4. Lead exposure from aluminum cookware in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Kuepouo, Gilbert [Research and Education Centre for Development (CREPD), Yaounde (Cameroon); Corbin, Rebecca W. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Gottesfeld, Perry, E-mail: [Occupational Knowledge International, San Francisco, CA (United States)


    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  5. Survey of inorganic arsenic in marine animals and marine certified reference materials by anion exchange high-performance liquid chromatography-inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Sloth, Jens Jørgen; Larsen, Erik Huusfeldt; Julshamn, Kåre


    A method for the determination of inorganic arsenic in seafood samples using high-performance liquid chromatography-inductively coupled plasma mass spectrometry is described. The principle of the method relied on microwave-assisted alkaline dissolution of the sample, which at the same time oxidized...... arsenite [As(Ill)] to arsenate [As(V)], whereby inorganic arsenic could be determined as the single species As(V). Anion exchange chromatography using isocratic elution with aqueous ammonium carbonate as the mobile phase was used for the separation of As(V) from other coextracted organoarsenic compounds......, including arsenobetaine. The stability of organoarsenic compounds during the sample pretreatment was investigated, and no degradation/conversion to inorganic arsenic was detected. The method was employed for the determination of inorganic arsenic in a variety of seafood samples including fish, crustaceans...

  6. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido


    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  7. Nanshan Aluminum Reached Strategic Cooperation with CSR Corporation Limited

    Institute of Scientific and Technical Information of China (English)


    As a key supplier of aluminum profiles and aluminum plate,sheet and trip products for CSR Corporation Limited,Nanshan Aluminum will join hands with CSR Corporation Limited to reach strategic cooperation.On January 5,Nanshan Aluminum signed strategic cooperation agreement with CSR Sifang Locomotive&Rolling; Stock Co.,Ltd,both

  8. Changes in porosity of foamed aluminum during solidification

    Institute of Scientific and Technical Information of China (English)


    In order to control the porosity of foamed aluminum, the changes in the porosity of foamed aluminum melt in the processes of foaming and solidification, the distribution of the porosity of foamed aluminum, and the relationship between them were studied. The results indicated that the porosity of foamed aluminum coincides well with the foaming time.

  9. Intermetallic Compounds (United States)

    Takagiwa, Y.; Matsuura, Y.; Kimura, K.


    We have focused on the binary narrow-bandgap intermetallic compounds FeGa3 and RuGa3 as thermoelectric materials. Their crystal structure is FeGa3-type (tetragonal, P42/ mnm) with 16 atoms per unit cell. Despite their simple crystal structure, their room temperature thermal conductivity is in the range 4-5-W-m-1-K-1. Both compounds have narrow-bandgaps of approximately 0.3-eV near the Fermi level. Because their Seebeck coefficients are quite large negative values in the range 350-FeGa3 and RuGa3 as n and p-type materials. The dimensionless figure of merit, ZT, was significantly improved by substitution of Sn for Ga in FeGa3 (electron-doping) and by substitution of Zn for Ga in RuGa3 (hole-doping), mainly as a result of optimization of the electronic part, S 2 σ.

  10. Electronic structures and thermodynamic stabilities of aluminum-based deuterides from first principles calculations

    Institute of Scientific and Technical Information of China (English)

    Ye Xiao-Qiu; Luo De-Li; Sang Ge; Ao Bing-Yun


    The alanates (complex aluminohydrides) have relatively high gravimetric hydrogen densities and are among the most promising solid-state hydrogen-storage materials. In this work, the electronic structures and the formation enthalpies of seven typical aluminum-based deuterides have been calculated by the plane-wave pseudopotential method,these being AID3, LiAID4, Li3AID6, BaAID5, Ba2AID7, LiMg(AID4)3 and LiMgAID6. The results show that all these compounds are large band gap insulators at 0 K with estimated band gaps from 2.31 eV in AID3 to 4.96 eV in LiMg(AID4)3. The band gaps are reduced when the coordination of Al varies from 4 to 6. Two peaks present in the valence bands are the common characteristics of aluminum-based deuterides containing AID4 subunits while three peaks are the common characteristics of those containing AID6 subunits. The electronic structures of these compounds are determined mainly by aluminum deuteride complexes (AID4 or AID6) and their mutual interactions. The predicted formation enthalpies are presented for the studied aluminum-based deuterides.

  11. Compound odontoma

    Directory of Open Access Journals (Sweden)

    Monica Yadav


    Full Text Available Odontomas have been extensively reported in the dental literature, and the term refers to tumors of odontogenic origin. Though the exact etiology is still unknown, the postulated causes include: local trauma, infection, inheritance and genetic mutation. The majority of the lesions are asymptomatic; however, may be accompanied with pain and swelling as secondary complaints in some cases. Here, we report a case of a compound odontome in a 14 year old patient.

  12. Organic Compounds (United States)

    Shankland, Kenneth

    For many years, powder X-ray diffraction was used primarily as a fingerprinting method for phase identification in the context of molecular organic materials. In the early 1990s, with only a few notable exceptions, structures of even moderate complexity were not solvable from PXRD data alone. Global optimisation methods and highly-modified direct methods have transformed this situation by specifically exploiting some well-known properties of molecular compounds. This chapter will consider some of these properties.

  13. Study on Properties and Synthesize of a new Polymeric Aluminum Sulfate-silicate

    Institute of Scientific and Technical Information of China (English)

    Yu Shu-rong; Wang Qing-ning; Zhang Fei-long; Ye Qi-zhi


    The polymeric basic aluminum silicate-sulfate can be made from three substances, such as aluminum sulfate, sodium silicate and sodium aluminates. Adoption sort neote ric one synthesis,under high shear mixing condition to produce polymeric Aluminum Sulfate-silicate--inorganic macromolecule flocculants, that is liquid, PH is 3.0, molecular formula: AlA (OH) B (SO4) C (SiOx)Because inorganic macromolecule have capability of electricity neutralized, bigger molecular mass,strong capability of adsorption, and products are relative stabilize, more economical than organic macromolecule flocculants, innocuity and high effect compared with tradition flocculants.We can use the flocculants to make sewages purified .The sewages contain sulfur, oiliness, which are treated sewages of oil refining to organism treatment sump in parturition course of oil refining,and the sewages of dark and white in parturition course of paper mill. We study the properties of the flocculants, change of CODCr and effect of sewerage decolouring and so on.Thus fig. Can be seen to add the flocculants(0.1ml) to the sewages of the oil refining and the paper mill that effect is not distinctly. Yet increase of quantity to remove turbidity and floccules effect is distinctness. When the flocculants (0.5mi) be added to the dark sewage of, the penetrate light rate attain 90~98%, the sewage of the oil refining is about 90%, but when we make floccules experiment, the color of dark green and auras of the sewages of oil refining and the paper mill are all disappear, the PASS that add to the sewage will have certainly time to flocculate. When use pay attention to quantity and horary the connection.As a result in the sewages purified, those products form quickly, granule density is big, and subsided velocity is quickly, Floccules effect and capability of removing turbidity, removing CODCr are ascendancy than tradition flocculants - aluminates, and the remained aluminum of water treatment is little. It has

  14. Measured and modeled humidification factors of fresh smoke particles from biomass burning: role of inorganic constituents

    Directory of Open Access Journals (Sweden)

    J. L. Hand


    Full Text Available During the 2006 FLAME study (Fire Laboratory at Missoula Experiment, laboratory burns of biomass fuels were performed to investigate the physico-chemical, optical, and hygroscopic properties of fresh biomass smoke. As part of the experiment, two nephelometers simultaneously measured dry and humidified light scattering coefficients (bsp(dry and bsp(RH, respectively in order to explore the role of relative humidity (RH on the optical properties of biomass smoke aerosols. Results from burns of several biomass fuels from the west and southeast United States showed large variability in the humidification factor (f(RH=bsp(RH/bsp(dry. Values of f(RH at RH=80–85% ranged from 0.99 to 1.81 depending on fuel type. We incorporated measured chemical composition and size distribution data to model the smoke hygroscopic growth to investigate the role of inorganic compounds on water uptake for these aerosols. By assuming only inorganic constituents were hygroscopic, we were able to model the water uptake within experimental uncertainty, suggesting that inorganic species were responsible for most of the hygroscopic growth. In addition, humidification factors at 80–85% RH increased for smoke with increasing inorganic salt to carbon ratios. Particle morphology as observed from scanning electron microscopy revealed that samples of hygroscopic particles contained soot chains either internally or externally mixed with inorganic potassium salts, while samples of weak to non-hygroscopic particles were dominated by soot and organic constituents. This study provides further understanding of the compounds responsible for water uptake by young biomass smoke, and is important for accurately assessing the role of smoke in climate change studies and visibility regulatory efforts.

  15. Measured and modeled humidification factors of fresh smoke particles from biomass burning: role of inorganic constituents

    Directory of Open Access Journals (Sweden)

    J. L. Hand


    Full Text Available During the 2006 FLAME study (Fire Laboratory at Missoula Experiment, laboratory burns of biomass fuels were performed to investigate the physico-chemical, optical, and hygroscopic properties of fresh biomass smoke. As part of the experiment, two nephelometers simultaneously measured dry and humidified light scattering coefficients (bsp(dry and bsp(RH, respectively in order to explore the role of relative humidity (RH on the optical properties of biomass smoke aerosols. Results from burns of several biomass fuels showed large variability in the humidification factor (f(RH=bsp(RH/bsp(dry. Values of f(RH at RH=85–90% ranged from 1.02 to 2.15 depending on fuel type. We incorporated measured chemical composition and size distribution data to model the smoke hygroscopic growth to investigate the role of inorganic and organic compounds on water uptake for these aerosols. By assuming only inorganic constituents were hygroscopic, we were able to model the water uptake within experimental uncertainty, suggesting that inorganic species were responsible for most of the hygroscopic growth. In addition, humidification factors at 85–90% RH increased for smoke with increasing inorganic salt to carbon ratios. Particle morphology as observed from scanning electron microscopy revealed that samples of hygroscopic particles contained soot chains either internally or externally mixed with inorganic potassium salts, while samples of weak to non-hygroscopic particles were dominated by soot and organic constituents. This study provides further understanding of the compounds responsible for water uptake by young biomass smoke, and is important for accurately assessing the role of smoke in climate change studies and visibility regulatory efforts.

  16. Solid-liquid state pressure bonding of Si3N4 ceramics with aluminum based alloys and its mechanism

    Institute of Scientific and Technical Information of China (English)


    Solid-liquid state pressure bonding of Si3N4 ceramics with aluminum based alloys, which contain a small amount of intermetallic compounds Al3Ti or Al3Zr, was investigated. With this new method, the heat resistant properties of the bonding zone metal are improved, and the joints' strengths at high temperature is increased. The joints' shear strength at room temperature and at 600  ℃ reach 126~133  MPa and 32~34  MPa, respectively, with suitable bonding pressure. The reaction between aluminum and Si3N4 ceramics, which produces Al-Si-N-O type compounds is the dominant interfacial reaction, while the reactions between the second active element Ti or Zr in the aluminum based alloys and Si3N4 ceramics also occur to some extend.

  17. Coordination Structure of Aluminum in Magnesium Aluminum Hydroxide Studied by 27Al NMR

    Institute of Scientific and Technical Information of China (English)


    The coordination structure of aluminum in magnesium aluminum hydroxide was studiedby 27Al NMR. The result showed that tetrahedral aluminum (AlⅣ) existed in magnesiumaluminum hydroxide, and the contents of AlⅣ increased with the increase of the ratio of Al/Mg andwith the peptizing temperature. AlⅣ originated from the so-called Al13 polymer with the structureof one Al tetrahedron surrounded by twelve Al octahedrons.

  18. 29 CFR 1910.1018 - Inorganic arsenic. (United States)


    ...) Engineering plans and studies used to determine methods selected for controlling exposure to inorganic arsenic... such exposures. The following three sections quoted from “Occupational Diseases: A Guide to Their.... Arsenic; chronic human intoxication. J. Occup. Med. 2:137. Elkins, H. B. 1959. The Chemistry of...

  19. South West Aluminum: Next year The Capacity of Auto-use Aluminum Sheet will Reach 5000 Tonnes

    Institute of Scientific and Technical Information of China (English)


    Following supplying supporting aluminum products for"Shenzhou"spacecraft,"Long March"rocket,Boeing and Airbus,South West Aluminum again tapped new economic growth points,i.e.automobile-use aluminum products.According to what the reporter has learned from South West Aluminum Group recently,this group has finished early stage

  20. Electrode reactions and electroanalysis of organomercury compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kurmaz, Vladimir A [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation); Gul' tyai, Vadim P [N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)


    Characteristic features of mechanisms and kinetics of electrode reactions of organomercury compounds (symmetrical, non-symmetrical) and organomercury salts on a mercury electrode are analyzed. Attention is focused on the effect of coordination, adsorption and the nature and properties of intermediates on these processes as well as on the formation of organomercury derivatives in the adsorption of organic and hetero-organic compounds on a mercury electrode. The kinetics of heterogeneous chemical equilibrium {sup o}rganic calomel{sup -}symmetrical organomercury compound in the adsorption layer and the relative stability of intermediates in the one-electron reduction of organomercury salts are discussed as well as the electrolytic hydrogen evolution catalyzed by organomercury intermediates. The problems of combined and separate electrochemical quantitation of organic and inorganic mercury compounds in natural objects are considered.

  1. Aluminum recovery as a product with high added value using aluminum hazardous waste. (United States)

    David, E; Kopac, J


    The samples of hazardous aluminum solid waste such as dross were physically and chemically characterized. A relationship between density, porosity and metal content of dross was established. The paper also examines the chemical reactions involving aluminum dross in landfill and the negative consequences. To avoid environmental problems and to recovery the aluminum, a processing method was developed and aluminum was recovered as an added value product such as alumina. This method refers to a process at low temperature, in more stages: acid leaching, purification, precipitation and calcination. At the end of this process aluminum was extracted, first as Al(3+) soluble ions and final as alumina product. The composition of the aluminum dross and alumina powder obtained were measured by applying the leaching tests, using atomic absorption spectrometry (AAS) and chemical analysis. The mineralogical composition of aluminum dross samples and alumina product were determined by X-ray diffraction (XRD) and the morphological characterization was performed by scanning electron microscopy (SEM). The method presented in this work allows the use of hazardous aluminum solid waste as raw material to recover an important fraction from soluble aluminum content as an added value product, alumina, with high grade purity (99.28%).

  2. Preliminary Study on Aluminum Content of Foods and Aluminum Intake of Residents in Tianjin

    Institute of Scientific and Technical Information of China (English)

    XUGe-Sheng; JINRng-Pei; 等


    Aluminum contents of 64 kinds of foods in Tianjin were detrmined.The results showed that the aluminum levels in diffeent kinds of foods varied greatly,and most foodstuffs from natural sources(including contamination from food processing)contained less than 10mg/kg,Aluminum contents were higher in foodstuffs of plant origin,especiallydry beans containing large amounts of aluminum naturally.Lower concentration of aluminum seemed to be present in foodstuffs of animal origin.It was estimated that the potential daily intake of aluminum per person from natural dietary sources in Tianjin was about 3.79 mg.This estimated figure of dietary aluminum intake was very close to the measured data from 24 daily diets of college students.which was 4.86±1.72mg.Considering all the potential sources of natural aluminum in foods.water and the individual habitual food,it would apear that most residents in Tianjin would consume 3-10mg aluminum daily from natural dietary sources.

  3. Southwest Aluminum Increase Two Production Lines and May Become the Largest Aluminum Fabricator In the World

    Institute of Scientific and Technical Information of China (English)


    <正>Recently,Wu Bing,Director of Chongqing Economic Committee,announced at the"Industrial Economy Meeting"that the city will"facilitate the technical upgrade and capacity expansion of the existing production lines at Southwest Aluminum with great efforts on the construction of one additional hot continuous rolling line and one cold continuous rolling line so as to have a comprehensive production ca- pacity of 1.2 million tons on aluminum processing profiles for the achievement of building Southwest Aluminum into the world largest aluminum processing enterprise".

  4. Over-heated Investment in Aluminum Hub Industry

    Institute of Scientific and Technical Information of China (English)


    <正>Aluminum hub is one of typical products with the comparative advantages.China’s aluminum hub industry is very competitive.In recent years,the value of export for the aluminum hub soared,increasing from USD130 millions in 1999 up to nearly USD1 billion in 2004.The main exporter are Wanfeng Auto Holding Group,Shanghai Fervent Alloy Wheel MFG Co.,Ltd.,Nanhai Zhongnan Aluminum Co., Ltd.,Taian Huatai Aluminum Hub Co.,Ltd.

  5. Aluminum-CNF Lightweight Radiator Components Project (United States)

    National Aeronautics and Space Administration — This proposal relates to a new materials concept for an aluminum-carbon nanofiber composite, high thermal conductivity ultra lightweight material that will form the...

  6. Profit of Aluminum Industry Dropped Sharply

    Institute of Scientific and Technical Information of China (English)


    <正>On August 2nd,the Ministry of Industry and Information Technology published the performance of nonferrous metal industry in the first half of 2011.Relevant data showed that due to cost increase,aluminum smelting enter

  7. Inhibition of aluminum corrosion using Opuntia extract

    Energy Technology Data Exchange (ETDEWEB)

    El-Etre, A.Y


    The inhibitive action of the mucilage extracted from the modified stems of prickly pears, toward acid corrosion of aluminum, is tested using weight loss, thermometry, hydrogen evolution and polarization techniques. It was found that the extract acts as a good corrosion inhibitor for aluminum corrosion in 2.0 M HCl solution. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm. It was found that the adsorption of the extract on aluminum surface is a spontaneous process. The inhibition efficiency (IE) increases as the extract concentration is increased. The effect of temperature on the IE was studied. It was found that the presence of extract increases the activation energy of the corrosion reaction. Moreover, the thermodynamic parameters of the adsorption process were calculated. It was found also that the Opuntia extract provides a good protection to aluminum against pitting corrosion in chloride ion containing solutions.

  8. Aluminum plasmonic multicolor meta-hologram. (United States)

    Huang, Yao-Wei; Chen, Wei Ting; Tsai, Wei-Yi; Wu, Pin Chieh; Wang, Chih-Ming; Sun, Greg; Tsai, Din Ping


    We report a phase-modulated multicolor meta-hologram (MCMH) that is polarization-dependent and capable of producing images in three primary colors. The MCMH structure is made of aluminum nanorods that are arranged in a two-dimensional array of pixels with surface plasmon resonances in red, green, and blue. The aluminum nanorod array is patterned on a 30 nm thick SiO2 spacer layer sputtered on top of a 130 nm thick aluminum mirror. With proper design of the structure, we obtain resonances of narrow bandwidths to allow for implementation of the multicolor scheme. Taking into account of the wavelength dependence of the diffraction angle, we can project images to specific locations with predetermined size and order. With tuning of aluminum nanorod size, we demonstrate that the image color can be continuously varied across the visible spectrum.

  9. Masking of aluminum surface against anodizing (United States)

    Crawford, G. B.; Thompson, R. E.


    Masking material and a thickening agent preserve limited unanodized areas when aluminum surfaces are anodized with chromic acid. For protection of large areas it combines well with a certain self-adhesive plastic tape.

  10. Shock wave compression behavior of aluminum foam

    Institute of Scientific and Technical Information of China (English)

    程和法; 黄笑梅; 薛国宪; 韩福生


    The shock wave compression behavior of the open cell aluminum foam with relative density of 0. 396 was studied through planar impact experiments. Using polyvinylidene fluoride(PVDF) piezoelectric gauge technique, the stress histories and propagation velocities of shock wave in the aluminum foam were measured and analyzed. The results show that the amplitude of shock wave attenuates rapidly with increasing the propagation distance in the aluminum foam, and an exponential equation of the normalized peak stress vs propagation distance of shock wave is established, the attenuation factor in the equation is 0. 286. Furthermore, the Hugoniot relation, νs = 516.85+ 1.27νp,for the aluminum foam is determined by empirical fit to the experimental Hugoniot data.

  11. China Aluminum Processing Industry Development Report 2011

    Institute of Scientific and Technical Information of China (English)


    <正>In 2011,China’s aluminum processing industry maintained a high growth rate,with the aluminum output reaching 23,456,000tons,up 20.6% y-o-y.Overshadowed by complicated situation both at home and abroad,China’seconomy slowed down and declined by2.2% y-o-y.In 2011,China’s aluminum processing industry showed a downward tendency,that is,it grew at a high speed before the3rd quarter,but suffered from a shortage of orders in the remaining time of the year and the growth rate fell increasingly.Between January and August,China’s aluminum output rose by 26% y-o-y;

  12. Thermoplastic Polymer Nanocomposites Based on Inorganic Fullerene-like Nanoparticles and Inorganic Nanotubes

    Directory of Open Access Journals (Sweden)

    Mohammed Naffakh


    Full Text Available Using inorganic fullerene-like (IF nanoparticles and inorganic nanotubes (INT in organic-inorganic hybrid composite, materials provide the potential for improving thermal, mechanical, and tribological properties of conventional composites. The processing of such high-performance hybrid thermoplastic polymer nanocomposites is achieved via melt-blending without the aid of any modifier or compatibilizing agent. The incorporation of small quantities (0.1–4 wt.% of IF/INTs (tungsten disulfide, IF-WS2 or molybdenum disulfide, MoS2 generates notable performance enhancements through reinforcement effects and excellent lubricating ability in comparison with promising carbon nanotubes or other inorganic nanoscale fillers. It was shown that these IF/INT nanocomposites can provide an effective balance between performance, cost effectiveness, and processability, which is of significant importance for extending the practical applications of diverse hierarchical thermoplastic-based composites.

  13. Preparation, Properties and Application of Polymeric Organic-Inorganic Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    任杰; 刘艳; 唐小真


    Six preparation methods for polymeric organic-inorganic nanocomposites and their respective mechanisms and features are reviewed. The extraordinary properties of polymeric organic-inorganic nanocomposites are discussed,and their potential applications are evaluated.

  14. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1984 (United States)

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1984. The estimates were derived from inorganic nitrogen...

  15. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1962 (United States)

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1962. The estimates were derived from inorganic nitrogen...

  16. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1983 (United States)

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1983. The estimates were derived from inorganic nitrogen...

  17. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1964 (United States)

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1964. The estimates were derived from inorganic nitrogen...

  18. Striking a Balance: Experiment and Concept in Undergraduate Inorganic Chemistry. (United States)

    Frey, John E.


    Described is an inorganic chemistry course based on the premise that a balanced understanding of inorganic chemistry requires knowledge of the experimental, theoretical, and technological aspects of the subject. A detailed description of lectures and laboratories is included. (KR)

  19. Interface properties and phase formation between surface coated SKD61 and aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Se-Weon CHOI; Young-Chan KIM; Se-Hun CHANG; Ik-Hyun OH; Joon-Sik PARK; Chang-Seog KANG


    The intermediate phase formation and surface protection effects between SKD61 die mold alloys and aluminum alloys were investigated during a simulated die-casting process. The surface coatings of SKD61 alloy were carried out via Si pack cementation coatings at 900 ℃ for 10 h and the e-FeSi phase formed. When the coated SKD61 alloy was dipped in the liquid aluminum alloy (ALDC12), the surface coated SKD61 alloys showed better surface properties compared with uncoated SKD61 alloys, i.e., the intermediate phases (FeSiAl compound) were not produced for the coated SKD61 alloy. The coating layer of e-FeSi served as a diffusion barrier for the formation of FeSiAl compounds.

  20. Advanced powder metallurgy aluminum alloys and composites (United States)

    Lisagor, W. B.; Stein, B. A.


    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  1. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.


    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  2. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.


    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  3. Studies of aluminum in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.


    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  4. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients

    Directory of Open Access Journals (Sweden)

    A. Zuend


    Full Text Available Tropospheric aerosols contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. Interactions between these substances in liquid mixtures lead to discrepancies from ideal thermodynamic behaviour. By means of activity coefficients, non-ideal behaviour can be taken into account. We present here a thermodynamic model named AIOMFAC (Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients that is able to calculate activity coefficients covering inorganic, organic, and organic–inorganic interactions in aqueous solutions over a wide concentration range. This model is based on the activity coefficient model LIFAC by Yan et al. (1999 that we modified and reparametrised to better describe atmospherically relevant conditions and mixture compositions. Focusing on atmospheric applications we considered H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl, Br, NO3, HSO4, and SO42− as cations and anions and a wide range of alcohols/polyols composed of the functional groups CHn and OH as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are well represented up to high ionic strength. Most notably, a semi-empirical middle-range parametrisation of direct organic–inorganic interactions in alcohol + water + salt solutions strongly improves the agreement between experimental and modelled activity coefficients. At room temperature, this novel thermodynamic model offers the possibility to compute equilibrium relative humidities, gas/particle partitioning and liquid–liquid phase separations with high accuracy. In further studies, other organic functional groups will be introduced. The model framework is not restricted to specific ions or organic compounds and is therefore

  5. Syntheses, structures, properties and DFT study of hybrid inorganic-organic architectures constructed from trinuclear lanthanide frameworks and Keggin-type polyoxometalates. (United States)

    Mirzaei, Masoud; Eshtiagh-Hosseini, Hossein; Lotfian, Nahid; Salimi, Alireza; Bauzá, Antonio; Van Deun, Rik; Decadt, Roel; Barceló-Oliver, Miquel; Frontera, Antonio


    In this paper we report the synthesis and X-ray characterization of four novel hybrid inorganic-organic assemblies generated from H4SiW12O40 as Keggin-type polyoxometalates (POM) and, in three of them, a trinuclear lanthanide cluster of type {Na(H2O)3[Ln(HCAM)(H2O)3]3}(4+) is formed, where Ln metal is La in compound 1, Ce in compound 2, and Eu in compound 3 (H3CAM = chelidamic acid or 2,6-dicarboxy-4-hydroxypyridine). These compounds represent the first POM-based inorganic-organic assemblies using chelidamic acid as an organic ligand. The thermal stability of the organic ligand is crucial, since pyridine-2,6-bis(monothiocarboxylate) instead of chelidamic acid is used (compound 4) under the same synthesis conditions, the decomposition of the ligand to pyridine was observed leading to the formation of colorless crystals of a pseudo hybrid inorganic-organic assembly. In compound 4 the hybrid inorganic-organic assembly is not formed and the organic part simply consists of four molecules of protonated pyridine acting as counterions of the [SiW12O40](4-) counterpart. The luminescent properties of compounds and have been investigated and their solid state architectures have been analyzed. Whereas compound only shows ligand emission, the Eu(3+) emission in compound 3 is discussed in detail. We have found that unprecedented anion-π interactions between the POM, which is a tetra-anion, and the aromatic rings play a crucial role in the crystal packing formation. To the best of our knowledge, this is the first report that describes and analyzes this interaction in Keggin-type POM based inorganic-organic frameworks. The energetic features of these interactions in the solid state have been analyzed using DFT calculations in some model systems predicted by us.

  6. Multidrug efflux transporters limit accumulation of inorganic, but not organic, mercury in sea urchin embryos. (United States)

    Bosnjak, Ivana; Uhlinger, Kevin R; Heim, Wesley; Smital, Tvrtko; Franekić-Colić, Jasna; Coale, Kenneth; Epel, David; Hamdoun, Amro


    Mercuric compounds are persistent global pollutants that accumulate in marine organisms and in humans who consume them. While the chemical cycles and speciation of mercury in the oceans are relatively well described, the cellular mechanisms that govern which forms of mercury accumulate in cells and why they persist are less understood. In this study we examined the role of multidrug efflux transport in the differential accumulation of inorganic (HgCl(2)) and organic (CH(3)HgCl) mercury in sea urchin (Strongylocentrotus purpuratus) embryos. We found that inhibition of MRP/ABCC-type transporters increases intracellular accumulation of inorganic mercury but had no effect on accumulation of organic mercury. Similarly, pharmacological inhibition of metal conjugating enzymes by ligands GST/GSH significantly increases this antimitotic potency of inorganic mercury, but had no effect on the potency of organic mercury. Our results point to MRP-mediated elimination of inorganic mercury conjugates as a cellular basis for differences in the accumulation and potency of the two major forms of mercury found in marine environments.

  7. Stability of Sunscreens Containing CePO4: Proposal for a New Inorganic UV Filter

    Directory of Open Access Journals (Sweden)

    Vitor C. Seixas


    Full Text Available Inorganic UV filters have become attractive because of their role in protecting the skin from the damage caused by continuous exposure to the sun. However, their large refractive index and high photocatalytic activity have led to the development of alternative inorganic materials such as CePO4 for application as UV filters. This compound leaves a low amount of white residue on the skin and is highly stable. The aim of this study was to evaluate the physical and chemical stability of a cosmetic formulation containing ordinary organic UV filters combined with 5% CePO4, and, to compare it with other formulations containing the same vehicle with 5% TiO2 or ZnO as inorganic materials. The rheological behavior and chemical stability of the formulations containing these different UV filters were investigated. Results showed that the formulation containing CePO4 is a promising innovative UV filter due to its low interaction with organic filters, which culminates in longer shelf life when compared with traditional formulations containing ZnO or TiO2 filters. Moreover, the recognized ability of CePO4 to leave a low amount of white residue on the skin combined with great stability, suggests that CePO4 can be used as inorganic filter in high concentrations, affording formulations with high SPF values.

  8. Microstructure of organic–inorganic composite coatings studied by TEM and XANES

    Directory of Open Access Journals (Sweden)

    Etsuo Hamada, Masayasu Nagoshi, Kaoru Sato, Akira Matsuzaki, Takafumi Yamaji and Kotaro Kuroda


    Full Text Available Chromate coatings on Zn or Zn alloy coated steel sheets often include silica for the aim to improve corrosion resistance. In the case of dry-in-place chromate coatings containing acrylic resin (hereafter referred to as an organic–inorganic composite coating, an addition of silica, however, did not show an improvement in corrosion resistance. The microstructures of the organic–inorganic composite coatings were observed by transmission electron microscopy (TEM and the chemical states of Cr were investigated by the total electron yield X-ray absorption near edge structure (TEY-XANES method. TEM samples were successfully prepared by dry ultramicrotomy preventing water-soluble components in the coatings from dissolving out. TEY-XANES revealed the chemical states of components even in the organic matrix. Using these methods, it was found that the addition of silica changed just the morphology of the chromium compound in the organic–inorganic composite coating but not the chemical state of Cr. This is a reason for the addition of silica being not effective at improving corrosion resistance. The combination of dry ultramicrotomy-TEM and TEY-XANES spectroscopy was proven to be a powerful tool for characterizing organic–inorganic composite coatings.

  9. Nanostructures Using Anodic Aluminum Oxide (United States)

    Valmianski, Ilya; Monton, Carlos M.; Pereiro, Juan; Basaran, Ali C.; Schuller, Ivan K.


    We present two fabrication methods for asymmetric mesoscopic dot arrays over macroscopic areas using anodic aluminum oxide templates. In the first approach, metal is deposited at 45o to the template axis to partially close the pores and produce an elliptical shadow-mask. In the second approach, now underway, nanoimprint lithography on a polymer intermediary layer is followed by reactive ion etching to generate asymmetric pore seeds. Both these techniques are quantified by an analysis of the lateral morphology and lattice of the pores or dots using scanning electron microscopy and a newly developed MATLAB based code (available for free download at The code automatically provides a segmentation of the measured area and the statistics of morphological properties such as area, diameter, and eccentricity, as well as the lattice properties such as number of nearest neighbors, and unbiased angular and radial two point correlation functions. Furthermore, novel user defined statistics can be easily obtained. We will additionally present several applications of these methods to superconducting, ferromagnetic, and organic nanostructures. This work is supported by AFOSR FA9550-10-1-0409

  10. Thermodynamic Modeling of Organic-Inorganic Aerosols with the Group-Contribution Model AIOMFAC (United States)

    Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, T.


    Liquid aerosol particles are - from a physicochemical viewpoint - mixtures of inorganic salts, acids, water and a large variety of organic compounds (Rogge et al., 1993; Zhang et al., 2007). Molecular interactions between these aerosol components lead to deviations from ideal thermodynamic behavior. Strong non-ideality between organics and dissolved ions may influence the aerosol phases at equilibrium by means of liquid-liquid phase separations into a mainly polar (aqueous) and a less polar (organic) phase. A number of activity models exists to successfully describe the thermodynamic equilibrium of aqueous electrolyte solutions. However, the large number of different, often multi-functional, organic compounds in mixed organic-inorganic particles is a challenging problem for the development of thermodynamic models. The group-contribution concept as introduced in the UNIFAC model by Fredenslund et al. (1975), is a practical method to handle this difficulty and to add a certain predictability for unknown organic substances. We present the group-contribution model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients), which explicitly accounts for molecular interactions between solution constituents, both organic and inorganic, to calculate activities, chemical potentials and the total Gibbs energy of mixed systems (Zuend et al., 2008). This model enables the computation of vapor-liquid (VLE), liquid-liquid (LLE) and solid-liquid (SLE) equilibria within one framework. Focusing on atmospheric applications we considered eight different cations, five anions and a wide range of alcohols/polyols as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are very well represented up to high ionic strength. We show that the semi-empirical middle-range parametrization of direct organic-inorganic interactions in alcohol-water-salt solutions enables accurate computations of vapor-liquid and liquid

  11. Investigation of Coating Performance of UV-Curable Hybrid Polymers Containing 1H,1H,2H,2H-Perfluorooctyltriethoxysilane Coated on Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    Mustafa Çakır


    Full Text Available This study describes preparation and characterization of fluorine-containing organic-inorganic hybrid coatings. The organic part consists of bisphenol-A glycerolate (1 glycerol/phenol diacrylate resin and 1,6-hexanediol diacrylate reactive diluent. The inorganically rich part comprises trimethoxysilane-terminated urethane, 1H,1H,2H,2H-perfluorooctyltriethoxysilane, 3-(trimethoxysilyl propyl methacrylate and sol–gel precursors that are products of hydrolysis and condensation reactions. Bisphenol-A glycerolate (1 glycerol/phenol diacrylate resin was added to the inorganic part in predetermined amounts. The resultant mixture was utilized in the preparation of free films as well as coatings on aluminum substrates. Thermal and mechanical tests such as DSC, thermo-gravimetric analysis (TGA, and tensile and shore D hardness tests were performed on free films. Water contact angle, gloss, Taber abrasion test, cross-cut and tubular impact tests were conducted on the coated samples. SEM examination and EDS analysis was performed on the fractured surfaces of free films. The hybrid coatings on the aluminum sheets gave rise to properties such as moderately glossed surface; low wear rate and hydrophobicity. Tensile strength of free films increased with up to 10% inorganic content in the hybrid structure and this increase was approximately three times that of the control sample. As expected; the % strain value decreased by 17.3 with the increase in inorganic content and elastic modulus values increased by a factor of approximately 6. Resistance to ketone-based solvents was proven and an increase in hardness was observed as the ratio of the inorganic part increased. Samples which contain 10% sol–gel content were observed to provide optimal properties.

  12. Organic and inorganic inputs and losses in an irrigated corn field after inorganic fertilizer or manure application (United States)

    Little is known about inorganic fertilizer or manure effects on organic carbon (OC) and inorganic C (IC) losses from a furrow irrigated field, particularly in the context of other system C gains or losses. In 2003 and 2004, we measured dissolved organic and inorganic C (DOC, DIC), particulate OC an...

  13. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum (United States)

    Golden, Johnny L.


    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  14. Fabrication of LaAlO3 film by sol-gel process with corresponding inorganic

    Institute of Scientific and Technical Information of China (English)

    殷明志; 汪敏强; 姚熹


    Well-cubic perovskite lanthanum aluminate (LaAlO3) film on (110) silicon substrate was fabricated by sol-gel method with corresponding inorganic salts. Lanthanum acetate and aluminum acetate glacial acetic acid solutions were prepared via ligand exchange starting from lanthanum nitrate hexahydrate and aluminum nitrate hexahydrate after being refluxed. (CH3CO)2O removed nitrates and the crystallized H2O completely, acetylacetone (AcAc) was partially bidentated with metallic ion of the metallic acetates and formed La(OAc)3(x(AcAc)x, which were hydrolyzed into La(AcAc)3(x(OH)x by adding 10 ml 0.4% methyl cellulose (MCL) solution. The La(AcAc)3(x(OH)x, polymerizing and combining with MCL, formed the LaAlO3 sol precursor with heteropolymeric structure and formed film easily. The epitaxial LaAlO3 film on Si(110) substrate was crystallized after being annealed in thermal annealing furnace for 650(750 (C/30 min. The morphologies and microstructures were characterized. The refractive index of the LAO film was 1.942 to 2.007; the dielectric constant and the dissipation factors were estimated to be 23(26 and 2.1(10(4 ( 2.4(10(4 respectively.

  15. Fabrication of LaAlO3 film by sol-gel process with corresponding inorganic

    Institute of Scientific and Technical Information of China (English)

    殷明志; 汪敏强; 姚熹


    Well-cubic perovskite lanthanum aluminate (LaAl03) film on (110) silicon substrate was fabricated by sol-gel method with corresponding inorganic salts. Lanthanum acetate and aluminum acetate glacial acetic acid solutions were prepared via ligand exchange starting from lanthanum nitrate hexahydrate and aluminum nitrate hexahydrate after being refluxed. (CH3CO)2O removed nitrates and the crystallized H2O completely, acetylacetone (AcAc) was partially bidentated with metallic ion of the metallic acetates and formed La(OAc)3-x(AcAc)x, which were hydrolyzed into La(AcAc)3-x(OH)x by adding 10 ml 0.4% methyl cellulose (MCL) solution. The La(AcAc)3-x(OH)x, polymerizing and combining with MCL,formed the LaA1O3 sol precursor with heteropolymeric structure and formed film easily. The epitaxial LaA1O3 film on Si(110) substrate was crystallized after being annealed in thermal annealing furnace for 650-750 ℃/30 min. The morphologies and microstructures were characterized. The refractive index of the LAO film was 1.942 to 2.007; the dielectric constant and the dissipation factors were estimated to be 23-26 and 2.1×10-4-2.4x10-4 respectively.

  16. Magnesium compounds (United States)

    Kramer, D.A.


    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  17. The Inorganic Illustrator: A 3-D Graphical Supplement for Inorganic and Bioinorganic Chemistry Courses Distributed on CD-ROM (United States)

    Childs, Scott L.; Hagen, Karl S.


    The visualization of molecular and solid state chemical structures in three dimensions is a particularly difficult problem for students to overcome when the primary means of communication is the two-dimensional world of textbooks, blackboards, and overhead projector screens. Recent editions of popular textbooks in organic, inorganic, and biochemistry have included stereoviews of molecules to aid the student, and stereoviews of crystal structures have been used in inorganic chemistry publications for many years. These are powerful aids for visualizing complex molecules, but with the exception of the biochemistry text mentioned above, they are limited to single, static images generally in black and white. Molecular model kits are routinely used very effectively in organic chemistry but their utility in inorganic chemistry is limited to all but the most simple molecules encountered. Now that personal computers are generally accessible and multimedia tools are starting to make an appearance in chemistry lecture halls (1), we can make our inorganic and bioinorganic chemistry and crystallography lectures come alive with the aid of the computer-based resources, which are the essence of this project. As part of this project we are accumulating a database of representative crystal structures of main group molecules, coordination complexes, organometallic compounds, small metalloproteins, bioinorganic model complexes, clusters, and solid state materials in Chem3D Plus format to be viewed with Chem3D Viewer, which is free software from Cambridge Scientific Computing. We are also generating a library of high-quality graphic images of these same molecules and structures using Cerius2 package from Molecular Simulations. These include polyhedral representations of clusters and solid state structures (see Fig. 1). Figure 1. Representation of the user interface: the title page and an example of polyhedral and ball-and-stick representation of an octanuclear iron-oxo cluster. The

  18. The crystal chemistry of inorganic metal borohydrides and their relation to metal oxides. (United States)

    Černý, Radovan; Schouwink, Pascal


    The crystal structures of inorganic homoleptic metal borohydrides are analysed with respect to their structural prototypes found amongst metal oxides in the inorganic databases such as Pearson's Crystal Data [Villars & Cenzual (2015). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2014/2015, ASM International, Materials Park, Ohio, USA]. The coordination polyhedra around the cations and the borohydride anion are determined, and constitute the basis of the structural systematics underlying metal borohydride chemistry in various frameworks and variants of ionic packing, including complex anions and the packing of neutral molecules in the crystal. Underlying nets are determined by topology analysis using the program TOPOS [Blatov (2006). IUCr CompComm. Newsl. 7, 4-38]. It is found that the Pauling rules for ionic crystals apply to all non-molecular borohydride crystal structures, and that the latter can often be derived by simple deformation of the close-packed anionic lattices c.c.p. and h.c.p., by partially removing anions and filling tetrahedral or octahedral sites. The deviation from an ideal close packing is facilitated in metal borohydrides with respect to the oxide due to geometrical and electronic considerations of the BH4(-) anion (tetrahedral shape, polarizability). This review on crystal chemistry of borohydrides and their similarity to oxides is a contribution which should serve materials engineers as a roadmap to design new materials, synthetic chemists in their search for promising compounds to be prepared, and materials scientists in understanding the properties of novel materials.

  19. Polarization properties of real aluminum mirrors; I. Influence of the aluminum oxide layer

    CERN Document Server

    van Harten, G; Keller, C U


    In polarimetry it is important to characterize the polarization properties of the instrument itself to disentangle real astrophysical signals from instrumental effects. This article deals with the accurate measurement and modeling of the polarization properties of real aluminum mirrors, as used in astronomical telescopes. Main goals are the characterization of the aluminum oxide layer thickness at different times after evaporation and its influence on the polarization properties of the mirror. The full polarization properties of an aluminum mirror are measured with Mueller matrix ellipsometry at different incidence angles and wavelengths. The best fit of theoretical Mueller matrices to all measurements simultaneously is obtained by taking into account a model of bulk aluminum with a thin aluminum oxide film on top of it. Full Mueller matrix measurements of a mirror are obtained with an absolute accuracy of ~1% after calibration. The determined layer thicknesses indicate logarithmic growth in the first few hou...

  20. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant (United States)

    Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong


    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

  1. Methods for both coating a substrate with aluminum oxide and infusing the substrate with elemental aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Pyung; Weil, Kenneth Scott


    Methods of aluminizing the surface of a metal substrate. The methods of the present invention do not require establishment of a vacuum or a reducing atmosphere, as is typically necessary. Accordingly, aluminization can occur in the presence of oxygen, which greatly simplifies and reduces processing costs by allowing deposition of the aluminum coating to be performed, for example, in air. Embodiments of the present invention can be characterized by applying a slurry that includes a binder and powder granules containing aluminum to the metal substrate surface. Then, in a combined step, a portion of the aluminum is diffused into the substrate and a portion of the aluminum is oxidized by heating the slurry to a temperature greater than the melting point of the aluminum in an oxygen-containing atmosphere.

  2. [Nervous system disorders induced by occupational exposure to aluminium compounds: a literature review]. (United States)

    Sińczuk-Walczak, H


    This is a review of the literature on the effect of aluminum (Al) and its compounds on the nervous system. The role of aluminum in etiology of some degenerative diseases of the nervous system, e.g. Alzheimer disease, amyotrophic lateral sclerosis or dementia, is presented. The special attention was turned to the effects of aluminum on the nervous system functions in persons occupationally exposed to metal-containing dusts and fumes, manifested mostly by neurobehavioral disorders and changes in the brain bioelectric functions and less frequently pronounced by clinical neurological symptoms.

  3. Microwave chemistry for inorganic nanomaterials synthesis. (United States)

    Bilecka, Idalia; Niederberger, Markus


    This Feature Article gives an overview of microwave-assisted liquid phase routes to inorganic nanomaterials. Whereas microwave chemistry is a well-established technique in organic synthesis, its use in inorganic nanomaterials' synthesis is still at the beginning and far away from having reached its full potential. However, the rapidly growing number of publications in this field suggests that microwave chemistry will play an outstanding role in the broad field of Nanoscience and Nanotechnology. This article is not meant to give an exhaustive overview of all nanomaterials synthesized by the microwave technique, but to discuss the new opportunities that arise as a result of the unique features of microwave chemistry. Principles, advantages and limitations of microwave chemistry are introduced, its application in the synthesis of different classes of functional nanomaterials is discussed, and finally expected benefits for nanomaterials' synthesis are elaborated.

  4. Applications of inorganic nanoparticles in diabetes (United States)

    Elhabush, Nada Atiya Omar

    Diabetes Mellitus (DM) is an endocrine and metabolic disease that has become a global emergency because of the rapid rise in morbidity and mortality rates worldwide. Since the direct delivery of biomolecules, such as insulin, to treat DM is inefficient and subjected to enzymatic degradation, nanotechnology and nanomedicine research have been devoted to the development of more effective methods to treat DM. Nanoparticles (NP), organic, inorganic, or hybrid, have served as potential carrier for safe and efficient transport for insulin. Additionally, several NP have biological activities that help treat and/or prevent DM and diabetes complications, such as antioxidant, anti-apoptotic, or insulin-mimetic activities. Moreover, physicochemical properties of some NP allow them to be used in diagnostic tools for potential diagnosis or monitoring purposes. This work highlights the applications of inorganic NP such as, gold, selenium, silver, calcium phosphate, zinc oxide, cerium oxide, and iron oxide and in the treatment or diagnosis of DM.

  5. QM/MM methods in inorganic chemistry. (United States)

    Bo, Carles; Maseras, Feliu


    Quantum mechanics/molecular mechanics (QM/MM) methods are a useful tool for the computational study of inorganic systems. They allow a quantitative description of systems larger than those treatable with pure QM methods, in principle with a comparable quality. QM/MM calculations are being currently applied to the research in a variety of topics, including structural effects of ligand bulk, selectivity in homogeneous catalysis and mechanical embedding in heterogeneous catalysis. The QM/MM approach is also useful for the separation of steric and electronic contributions, and as an auxiliary tool for geometry optimization when full QM methods are mandatory. The power of QM/MM methods in inorganic chemistry is illustrated in this Perspective with a summary of recent representative applications.

  6. Photochromic organic-inorganic hybrid materials. (United States)

    Pardo, Rosario; Zayat, Marcos; Levy, David


    Photochromic organic-inorganic hybrid materials have attracted considerable attention owing to their potential application in photoactive devices, such as optical memories, windows, photochromic decorations, optical switches, filters or non-linear optics materials. The growing interest in this field has largely expanded the use of photochromic materials for the purpose of improving existing materials and exploring new photochromic hybrid systems. This tutorial review summarizes the design and preparation of photochromic hybrid materials, and particularly those based on the incorporation of organic molecules in organic-inorganic matrices by the sol-gel method. This is the most commonly used method for the preparation of these materials as it allows vitreous hybrid materials to be obtained at low temperatures, and controls the interaction between the organic molecule and its embedding matrix, and hence allows tailoring of the performance of the resulting devices.

  7. Electrostatically gated membrane permeability in inorganic protocells (United States)

    Li, Mei; Harbron, Rachel L.; Weaver, Jonathan V. M.; Binks, Bernard P.; Mann, Stephen


    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization.

  8. Response of Inorganic Scintillators to Neutrons of 3 and 15 MeV Energy

    CERN Document Server

    Lucchini, M; Pizzichemi, M; Chipaux, R; Jacquot, F; Mazue, H; Wolff, H; Lecoq, P; Auffray, E


    In the perspective of the development of future high energy physics experiments, homogeneous calorimeters based on inorganic scintillators can be considered for the detection of hadrons (e.g., calorimeter based on dual-readout technique). Although of high importance in the high energy physics framework as well as for homeland security applications, the response of these inorganic scintillators to neutrons has been only scarcely investigated. This paper presents results obtained using five common scintillating crystals (of size around 2x2x2 cm 3), namely lead tungstate (PbWO4), bismuth germanate (BGO), cerium fluoride (CeF3), Ce-doped lutetium-yttrium orthosilicate (LYSO:Ce) and lutetium aluminum garnet (LuAG:Ce) in a pulsed flux of almost mono-energetic (similar to 3 MeV and similar to 15 MeV) neutrons provided by the Van de Graff accelerator SAMES of CEA Valduc. Energy spectra have been recorded, calibrated and compared with Geant4 simulations computed with different physics models. The neutron detection eff...

  9. Ion-Conducting Organic/Inorganic Polymers (United States)

    Kinder, James D.; Meador, Mary Ann B.


    Ion-conducting polymers that are hybrids of organic and inorganic moieties and that are suitable for forming into solid-electrolyte membranes have been invented in an effort to improve upon the polymeric materials that have been used previously for such membranes. Examples of the prior materials include perfluorosulfonic acid-based formulations, polybenzimidazoles, sulfonated polyetherketone, sulfonated naphthalenic polyimides, and polyethylene oxide (PEO)-based formulations. Relative to the prior materials, the polymers of the present invention offer greater dimensional stability, greater ease of formation into mechanically resilient films, and acceptably high ionic conductivities over wider temperature ranges. Devices in which films made of these ion-conducting organic/inorganic polymers could be used include fuel cells, lithium batteries, chemical sensors, electrochemical capacitors, electrochromic windows and display devices, and analog memory devices. The synthesis of a polymer of this type (see Figure 1) starts with a reaction between an epoxide-functionalized alkoxysilane and a diamine. The product of this reaction is polymerized by hydrolysis and condensation of the alkoxysilane group, producing a molecular network that contains both organic and inorganic (silica) links. The silica in the network contributes to the ionic conductivity and to the desired thermal and mechanical properties. Examples of other diamines that have been used in the reaction sequence of Figure 1 are shown in Figure 2. One can use any of these diamines or any combination of them in proportions chosen to impart desired properties to the finished product. Alternatively or in addition, one could similarly vary the functionality of the alkoxysilane to obtain desired properties. The variety of available alkoxysilanes and diamines thus affords flexibility to optimize the organic/inorganic polymer for a given application.

  10. Attachment of inorganic moieties onto aliphatic polyurethanes


    Eliane Ayres; Wander Luiz Vasconcelos; Rodrigo Lambert Oréfice


    Polyurethanes have been used in a series of applications due basically to their versatility in terms of controlling the behavior by altering basically the type of reagents used. However, for more specific and advanced applications, such as in membranes, biomaterials and sensors, well-organized and defined chemical functionalities are necessary. In this work, inorganic functionalities were incorporated into aliphatic polyurethanes (PU) having different macromolecular architectures. Polyurethan...

  11. Oxidation kinetics of aluminum diboride

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, Michael L., E-mail: [Department of Materials Science and Engineering, University of Utah, 122S. Central Campus Drive, Salt Lake City, UT 84112 (United States); Sohn, H.Y. [Department of Metallurgical Engineering, University of Utah, 135S 1460 E, Rm 00412, Salt Lake City, UT 84112 (United States); Cutler, Raymond A. [Ceramatec, Inc., 2425S. 900W., Salt Lake City, UT 84119 (United States)


    The oxidation characteristics of aluminum diboride (AlB{sub 2}) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB{sub 2} in the onset of oxidation and final conversion fraction, with AlB{sub 2} beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB{sub 2} and Al+2B in both air and oxygen. AlB{sub 2} exhibited O{sub 2}-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O{sub 2} than in air. Differences in the composition and morphology between oxidized Al+2B and AlB{sub 2} suggested that Al{sub 2}O{sub 3}–B{sub 2}O{sub 3} interactions slowed Al+2B oxidation by converting Al{sub 2}O{sub 3} on aluminum particles into a Al{sub 4}B{sub 2}O{sub 9} shell, while the same Al{sub 4}B{sub 2}O{sub 9} developed a needle-like morphology in AlB{sub 2} that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB{sub 2}, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB{sub 2} in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Time

  12. Synthesis, crystal structure and properties of inorganic-organic hybrid polymers based on 8-hydroxylquinoline-5-sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; XUE Ming; XU JiaNing; ZHU GuangShan; QIU ShiLun


    Two new inorganic-organic hybrid polymers, Mn(QS)(H_2O) (1) and Co(QS)(H_2O)2 (2) (H2QS=8-hydroxylquinoline-5-sulfonic acid), based on 8-hydroxylquinoline-5-sulfonate ligand, have been synthesized under solvothermal conditions and their structures were solved by single-crystal X-ray diffraction analysis. Compound 1 is a three-dimensional open framework with rutile topology structure, and compound 2 is a three-dimensional supramolecular structure. These compounds were characterized by powder XRD, infrared spectroscopy, thermogravimetric analysis, fluorescence properties and magnetism properties.

  13. Synthesis,crystal structure and properties of inorganic-organic hybrid polymers based on 8-hydroxylquinoline-5-sulfonic acid

    Institute of Scientific and Technical Information of China (English)


    Two new inorganic-organic hybrid polymers, Mn(QS)(H2O) (1) and Co(QS)(H2O)2 (2) (H2QS=8-hydroxyl-quinoline-5-sulfonic acid), based on 8-hydroxylquinoline-5-sulfonate ligand, have been synthesized under solvothermal conditions and their structures were solved by single-crystal X-ray diffraction analysis. Compound 1 is a three-dimensional open framework with rutile topology structure, and compound 2 is a three-dimensional supramolecular structure. These compounds were characterized by powder XRD, infrared spectroscopy, thermogravimetric analysis, fluorescence properties and magnetism properties.

  14. Different Forms Aluminum Contents in the Soil of the 1st and 2nd Generation Pinus massoniana Plantations%1,2代马尾松林土壤不同形态铝含量

    Institute of Scientific and Technical Information of China (English)

    仝雅娜; 丁贵杰


    pH and aluminum content in different forms in the soil of the 1st and 2nd generation Pinus massoniana plantations were investigated. The results showed that pH decreased with the stand age and successive rotation increase. Both the exchangeable aluminum and the soluble aluminum content increased with the stand age and successive rotation increase. Humic acid aluminum and organic complexation state aluminum decreased with the increase of successive rotation. Hydroxy monomer aluminum and acid soluble inorganic aluminum had no significant change, and had little effect on soil acidification.%分析1,2代马尾松林地土壤pH值和不同形态铝含量.结果表明:土壤pH值随林龄增加和连栽而下降;交换性铝和可溶性铝含量均随林龄增加和连栽而增加;腐殖酸铝和有机络合态铝含量随连栽而降低;单聚体羟基铝和酸溶无机铝含量无明显变化规律,且对土壤酸化影响不大.

  15. Wastewater sludge dewaterability enhancement using hydroxyl aluminum conditioning: Role of aluminum speciation. (United States)

    Cao, Bingdi; Zhang, Weijun; Wang, Qiandi; Huang, Yangrui; Meng, Chenrui; Wang, Dongsheng


    Chemical conditioning is one of the most important processes for improve the performance of sludge dewatering device. Aluminum salt coagulant has been widely used in wastewater and sludge treatment. It is generally accepted that pre-formed speciation of aluminum salt coagulants (ASC) has an important influence on coagulation/flocculation performance. In this study, the interaction mechanisms between sludge particles and aluminum salt coagulants with different speciation of hydroxy aluminum were investigated by characterizing the changes in morphological and EPS properties. It was found that middle polymer state aluminum (Alb) and high polymer state aluminum (Alc) performed better than monomer aluminum and oligomeric state aluminum (Ala) in reduction of specific resistance to filtration (SRF) and compressibility of wastewater sludge due to their higher charge neutralization and formed more compact flocs. Sludge was significantly acidified after addition Ala, while pH was much more stable under Alb and Alc conditioning due to their hydrolysis stability. The size of sludge flocs conditioned with Alb and Alc was small but flocs structure was denser and more compact, and floc strength is higher, while that formed from Ala is relatively large, but floc structure was loose, floc strength is relatively lower. Scanning environmental microscope analysis revealed that sludge flocs conditioned by Alb and Alc (especially PAC2.5 and Al13) exhibited obvious botryoidal structure, this is because sludge flocs formed by Alb and Alc were more compact and floc strength is high, it was easy generated plentiful tiny channels for water release. In addition, polymeric aluminum salt coagulant (Alb, Alc) had better performance in compressing extracellular polymeric substances (EPS) structure and removing sticky protein-like substances from soluble EPS fraction, contributing to improvement of sludge filtration performance. Therefore, this study provides a novel solution for improving sludge

  16. Kinetics of aluminum lithium alloys (United States)

    Pletcher, Ben A.


    Aluminum lithium alloys are increasingly used in aerospace for their high strength-to-weight ratio. Additions of lithium, up to 4.2 wt% decrease the alloy density while increasing the modulus and yield strength. The metastable, second phase Al3Li or delta' is intriguing, as it remains spherical and coherent with the matrix phase, alpha, well into the overaged condition. Small interfacial strain energy allows these precipitates to remain spherical for volume fractions (VV ) of delta' less than 0.3, making this alloy system ideal for investigation of late-stage coarsening phenomena. Experimental characterization of three binary Al-Li alloys are presented as a critical test of diffusion screening theory and multi-particle diffusion simulations. Quantitative transmission electron microscopy is used to image the precipitates directly using the centered dark-field technique. Images are analyzed autonomously within a novel Matlab function that determines the center and size of each precipitate. Particle size distribution, particle growth kinetics, and maximum particle size are used to track the precipitate growth and correlate with the predictions of screening theory and multi-particle diffusion simulations. This project is the first extensive study of Al-Li alloys, in over 25 years, applying modern transmission electron microscopy and image analysis techniques. Previous studies sampled but a single alloy composition, and measured far fewer precipitates. This study investigates 3 alloys with volume fractions of the delta precipitates, VV =0.1-0.27, aged at 225C for 1 to 10 days. More than 1000 precipitates were sampled per aging time, creating more statistically significant data. Experimental results are used to test the predictions based on diffusion screening theory and multi-particle aging simulations. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check

  17. Stable colloids in molten inorganic salts (United States)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.


    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute–solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute–solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  18. Flexible Hybrid Organic-Inorganic Perovskite Memory. (United States)

    Gu, Chungwan; Lee, Jang-Sik


    Active research has been done on hybrid organic-inorganic perovskite materials for application to solar cells with high power conversion efficiency. However, this material often shows hysteresis, which is undesirable, shift in the current-voltage curve. The hysteresis may come from formation of defects and their movement in perovskite materials. Here, we utilize the defects in perovskite materials to be used in memory operations. We demonstrate flexible nonvolatile memory devices based on hybrid organic-inorganic perovskite as the resistive switching layer on a plastic substrate. A uniform perovskite layer is formed on a transparent electrode-coated plastic substrate by solvent engineering. Flexible nonvolatile memory based on the perovskite layer shows reproducible and reliable memory characteristics in terms of program/erase operations, data retention, and endurance properties. The memory devices also show good mechanical flexibility. It is suggested that resistive switching is done by migration of vacancy defects and formation of conducting filaments under the electric field in the perovskite layer. It is believed that organic-inorganic perovskite materials have great potential to be used in high-performance, flexible memory devices.

  19. Inorganic particle analysis of dental impression elastomers. (United States)

    Carlo, Hugo Lemes; Fonseca, Rodrigo Borges; Soares, Carlos José; Correr, Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho


    The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously determined mass of each material in water before and after burning samples at 600 ºC, during 3 h. Unsettled material samples were soaked in acetone and chloroform for removal of the organic portion. The remaining filler particles were sputter-coated with gold evaluation of their morphology and size, under scanning electron microscopy (SEM). Flexitime Easy Putty was the material with the highest results for volumetric particle fraction, while Impregum Soft had the lowest values. Silon 2 APS Fluid presented the lowest mean filler size values, while Clonage Putty had the highest values. SEM micrographs of the inorganic particles showed several morphologies - lathe-cut, spherical, spherical-like, sticks, and sticks mixed to lathe-cut powder. The results of this study revealed differences in particle characteristics among the elastometic materials that could lead to different results when testing mechanical properties.

  20. Fabricating porous materials using interpenetrating inorganic-organic composite gels (United States)

    Seo, Dong-Kyun; Volosin, Alex


    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  1. Crust Formation in Aluminum Cells (United States)

    Oedegard, R.; Roenning, S.; Rolseth, S.; Thonstad, J.


    This paper examines the catalytic effects offlourides on the ϒ→α-Al2O3 phase transformation by heat treating commercial alumina samples with 2wt% additions of different flouride compounds. The various additives were ranked according to their effect on transformation temperature. Experiments were conducted to explain the high temperature coherence of crusts. The findings indicate that an alumina network is formed during ϒ→α phase transformation, which reinforces the crust on top of the cryolite bath.

  2. Optical Spectroscopy on the Spin-Peierls Compound CuGeO3

    NARCIS (Netherlands)

    van Loosdrecht, P.H.M.


    An overview is given of Raman and infrared spectroscopic studies of the inorganic spin-Peierls compound CuGeO3, with an emphasis on the magnetic fluctuations in the uniform, dimerized, and high field phases of this quasi one dimensional magneto-elastic compound.

  3. Formation and properties of stabilized aluminum nanoparticles. (United States)

    Meziani, Mohammed J; Bunker, Christopher E; Lu, Fushen; Li, Heting; Wang, Wei; Guliants, Elena A; Quinn, Robert A; Sun, Ya-Ping


    The wet-chemical synthesis of aluminum nanoparticles was investigated systematically by using dimethylethylamine alane and 1-methylpyrrolidine alane as precursors and molecules with one or a pair of carboxylic acid groups as surface passivation agents. Dimethylethylamine alane was more reactive, capable of yielding well-defined and dispersed aluminum nanoparticles. 1-Methylpyrrolidine alane was less reactive and more complex in the catalytic decomposition reaction, for which various experimental parameters and conditions were used and evaluated. The results suggested that the passivation agent played dual roles of trapping aluminum particles to keep them nanoscale during the alane decomposition and protecting the aluminum nanoparticles postproduction from surface oxidation and that an appropriate balance between the rate of alane decomposition (depending more sensitively on the reaction temperature) and the timing in the introduction of the passivation agent into the reaction mixture was critical to the desired product mixes and/or morphologies. Some fundamental and technical issues on the alane decomposition and the protection of the resulting aluminum nanoparticles are discussed.

  4. Evaluation of Aluminum in Iranian Consumed Tea

    Directory of Open Access Journals (Sweden)

    Alireza Asgari


    Full Text Available Introduction: Black tea leaf is one of the most important sources of Aluminum in dietary. Therefore this research was conducted to assess the amount of Aluminum in Iranian tea infusion. Methods: To assess Aluminum in Iranian consumed tea, 27 tea samples were analyzed for Al concentration for 10 and 60 min infusion, aluminum concentration was measured with atomic absorption and the results were analyzed by SPSS.13 version. Results: The results showed that minimum and maximum concentration of Al in tea infusion for 10 min infusion was 1.59 and 18.60 mg.L-1 respectively in this regard Baroti and Bamdad tea show the highest and lowest concentration respectively in term of Al, Also Statistical analysis with pair T-test showed that infusion time doesn,t significantly effects on aluminum leaching into infusion (P>0.05. Calculation of percentage "available" Al to the human system showed that 1 L of tea can provide 17.68 % of the daily dietary intake of Al, the percentage "available" for absorption in the intestine is only 8.49 % for overall mean Al concentration. Conclusion: Therefore based on our results, tea consumption in medium values cannot cause toxic effects on human. Although it is necessary to note that tea consumption might be toxic because of effects on people with absorption or secretion problems

  5. Nickel-coated Steel Stud to Aluminum Alloy Joints Made by High Frequency Induction Brazing

    Institute of Scientific and Technical Information of China (English)

    GE Jiaqi; WANG Kehong; ZHANG Deku; WANG Jian


    Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 Al alloy foil asfi ller metal were joined by using high frequency induction brazing. The microstructure of Fe/Al brazed joint was studied by means of optical microscopy (OM), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD). Results showed that 45 steel stud and 6061 aluminum alloy could be successfully joined by high frequency induction brazing with proper processing parameters. The bonding strength of the joint was of the order of 88 MPa. Ni coating on steel stud successfully avoided the generation of Fe-Al intermetallic compound which is brittle by blocking the contact between Al and Fe. Intermetallic compounds, i e,Al3Ni2, Al1.1Ni0.9 and Al0.3Fe3Si0.7 presented in Al side, FeNi and Fe-Al-Ni ternary eutectic structure were formed in Fe side. The micro-hardness in intermetallic compound layer was 313 HV. The joint was brittle fractured in the intermetallic compounds layer of Al side, where plenty of Al3Ni2 intermetallic compounds were distributed continuously.

  6. Inorganic arsenic - SPE HG-AAS method for RICE tested in-house and collaboratively

    DEFF Research Database (Denmark)

    Rasmussen, Rie Romme; Qian, Yiting; Sloth, Jens Jørgen

    and DMA) was done by off-line solidphase extraction (SPE) followed by hydride generation atomic absorption spectrometry (HG-AAS) detection. Water bath heating (90 °C, 60 min) of samples with dilute nitric acid and hydrogen peroxide solubilised and oxidized all iAs to arsenate (AsV). Loading of buffered......Arsenic (As) is a trace element present in the environment and consequently in various food items, e.g. rice, which may contain relatively high concentration of arsenic compared to other foodstuffs of plant origin. Rice contains most often three forms of arsenic; inorganic arsenic (i...... and is one of the major contributors to the iAs exposure in many countries. The work presented here describes the development, validation and application of a simple and inexpensive method for inorganic arsenic (iAs) determination in rice samples. The separation of iAs from organoarsenic compounds (MA...

  7. Composite block copolymer stabilized nanoparticles: simultaneous encapsulation of organic actives and inorganic nanostructures. (United States)

    Gindy, Marian E; Panagiotopoulos, Athanassios Z; Prud'homme, Robert K


    We describe the preparation and characterization of hybrid block copolymer nanoparticles (NPs) for use as multimodal carriers for drugs and imaging agents. Stable, water-soluble, biocompatible poly(ethylene glycol)-block-poly(epsilon-caprolactone) NPs simultaneously co-encapsulating hydrophobic organic actives (beta-carotene) and inorganic imaging nanostructures (Au) are prepared using the flash nanoprecipitation process in a multi-inlet vortex mixer. These composite nanoparticles (CNPs) are produced with tunable sizes between 75 nm and 275 nm, narrow particle size distributions, high encapsulation efficiencies, specified component compositions, and long-term stability. The process is tunable and flexible because it relies on the control of mixing and aggregation timescales. It is anticipated that the technique can be applied to a variety of hydrophobic active compounds, fluorescent dyes, and inorganic nanostructures, yielding CNPs for combined therapy and multimodal imaging applications.

  8. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends (United States)

    Miikkulainen, Ville; Leskelä, Markku; Ritala, Mikko; Puurunen, Riikka L.


    Atomic layer deposition (ALD) is gaining attention as a thin film deposition method, uniquely suitable for depositing uniform and conformal films on complex three-dimensional topographies. The deposition of a film of a given material by ALD relies on the successive, separated, and self-terminating gas-solid reactions of typically two gaseous reactants. Hundreds of ALD chemistries have been found for depositing a variety of materials during the past decades, mostly for inorganic materials but lately also for organic and inorganic-organic hybrid compounds. One factor that often dictates the properties of ALD films in actual applications is the crystallinity of the grown film: Is the material amorphous or, if it is crystalline, which phase(s) is (are) present. In this thematic review, we first describe the basics of ALD, summarize the two-reactant ALD processes to grow inorganic materials developed to-date, updating the information of an earlier review on ALD [R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005)], and give an overview of the status of processing ternary compounds by ALD. We then proceed to analyze the published experimental data for information on the crystallinity and phase of inorganic materials deposited by ALD from different reactants at different temperatures. The data are collected for films in their as-deposited state and tabulated for easy reference. Case studies are presented to illustrate the effect of different process parameters on crystallinity for representative materials: aluminium oxide, zirconium oxide, zinc oxide, titanium nitride, zinc zulfide, and ruthenium. Finally, we discuss the general trends in the development of film crystallinity as function of ALD process parameters. The authors hope that this review will help newcomers to ALD to familiarize themselves with the complex world of crystalline ALD films and, at the same time, serve for the expert as a handbook-type reference source on ALD processes and film crystallinity.

  9. Aluminum phosphate ceramics for waste storage (United States)

    Wagh, Arun; Maloney, Martin D


    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  10. NASA-427: A New Aluminum Alloy (United States)

    Nabors, Sammy A.


    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  11. Dynamic recrystallization behavior of commercial pure aluminum

    Institute of Scientific and Technical Information of China (English)

    LI Hui-zhong; ZHANG Xin-ming; CHEN Ming-an; LIU Zi-juan


    The flow stress feature and microstructure evolvement of a commercial pure aluminum were investigated by compression on Gleeble-1500 dynamic materials test machine. Optical microscopy (OM) and transmission electron microscopy (TEM) were applied to analyze the deformation microstructure of the commercial pure aluminum.The results show that the flow stress tends to be constant after a peak value and the dynamic recovery occurs when the deformation temperatures is 220 ℃ with the strain rate of 0.01 s-1; while the dynamic recrystallization occurs when the deformation temperature is higher than 380 ℃, and the flow stress exhibits a single peak at 460 ℃ with different strain rates from 0.001 s-1 to 1 s-1, and continuous dynamic recrystallization and geometric dynamic recrystallization occur during the hot compression of the commercial pure aluminum.

  12. Lithium-aluminum-magnesium electrode composition (United States)

    Melendres, Carlos A.; Siegel, Stanley


    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  13. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum. (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan


    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  14. The Effect of Anodic Oxide Films on the Nickel-Aluminum Reaction in Aluminum Braze Sheet (United States)

    Tadgell, Colin A.; Wells, Mary A.; Corbin, Stephen F.; Colley, Leo; Cheadle, Brian; Winkler, Sooky


    The influence of an anodic oxide surface film on the nickel-aluminum reaction at the surface of aluminum brazing sheet has been investigated. Samples were anodized in a barrier-type solution and subsequently sputtered with nickel. Differential scanning calorimetry (DSC) and metallography were used as the main investigative techniques. The thickness of the anodic film was found to control the reaction between the aluminum substrate and nickel coating. Solid-state formation of nickel-aluminum intermetallic phases occurred readily when a relatively thin oxide film (13 to 25 nm) was present, whereas intermetallic formation was suppressed in the presence of thicker oxides ( 60 nm). At an intermediate oxide film thickness of 35 nm, the Al3Ni phase formed shortly after the initiation of melting in the aluminum substrate. Analysis of DSC traces showed that formation of nickel-aluminum intermetallic phases changed the melting characteristics of the aluminum substrate, and that the extent of this change can be used as an indirect measure of the amount of nickel incorporated into the intermetallic phases.

  15. Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation. (United States)

    Myers, Timothy J


    Metal powders or dusts can represent significant dust explosion hazards in industry, due to their relatively low ignition energy and high explosivity. The hazard is well known in industries that produce or use aluminum powders, but is sometimes not recognized by facilities that produce aluminum dust as a byproduct of bulk aluminum processing. As demonstrated by the 2003 dust explosion at aluminum wheel manufacturer Hayes Lemmerz, facilities that process bulk metals are at risk due to dust generated during machining and finishing operations [U.S. Chemical Safety and Hazard Investigation Board, Investigation Report, Aluminum Dust Explosion Hayes Lemmerz International, Inc., Huntington, Indiana, Report No. 2004-01-I-IN, September 2005]. Previous studies have shown that aluminum dust explosions are more difficult to suppress with flame retardants or inerting agents than dust explosions fueled by other materials such as coal [A.G. Dastidar, P.R. Amyotte, J. Going, K. Chatrathi, Flammability limits of dust-minimum inerting concentrations, Proc. Saf. Progr., 18-1 (1999) 56-63]. In this paper, an inerting method is discussed to reduce the dust explosion hazard of residue created in an aluminum buffing operation as the residue is generated. This technique reduces the dust explosion hazard throughout the buffing process and within the dust collector systems making the process inherently safer. Dust explosion testing results are presented for process dusts produced during trials with varying amounts of flame retardant additives.

  16. Comparison of histological and ultrastructural changes in mice organs after supplementation with inorganic and organic selenium. (United States)

    Tos-Luty, Sabina; Obuchowska-Przebirowska, Daniela; Latuszynska, Jadwiga; Musik, Irena; Tokarska-Rodak, Malgorzata


    Two organic compounds of selenium, 4-o-totyl-selenosemicarbazide p-chlorobenzoic acid (chain compound) produced at the Chemistry Department of the University Medical School in Lublin, and one inorganic compound of sodium IV selenite (Na(2)SeO(3)) were used. The preparations were used per os in doses of 1 mg/kg body weight and 0.5 mg/kg body weight. The studies were conducted on female Swiss mice, covering seven groups of animals, i.e. 6 experimental and 1 control. Histopathologic changes were observed in liver, kidney, lung and heart. Ultrastructural changes were observed in liver and kidney. Our studies indicate a dose-dependent effect of selenium on histopathologic and ultrastructural changes. It is possible therefore, that the extent of excess of selenium exerts a greater influence on a cell than the form of supplemented selenium.

  17. Synthesis, Crystal Structure, and Characterization of a New Organic-Inorganic Hybrid Material:

    Directory of Open Access Journals (Sweden)

    Hela Ferjani


    Full Text Available The title compound is an organic-inorganic hybrid material. The single crystal X-ray diffraction investigation reveals that the studied compound crystallizes in the orthorhombic system, space group Pbca with the following lattice parameters:  (4 Å,  (3 Å,  (6 Å, and . The crystal lattice is composed of a discrete anion surrounded by piperazinium cations, chlorine anions, and water molecules. Complex hydrogen bonding interactions between , , organic cations, and water molecules form a three-dimensional network. Room temperature IR, Raman spectroscopy, and optical absorption of the title compound were recorded and analysed. The observed crystal morphology was compared to the simulated one using the Bravais-Friedel, Donnay-Harker model.

  18. Organic materials as templates for the formation of mesoporous inorganic materials and ordered inorganic nanocomposites (United States)

    Ziegler, Christopher R.

    Hierarchically structured inorganic materials are everywhere in nature. From unicellular aquatic algae such as diatoms to the bones and/or cartilage that comprise the skeletal systems of vertebrates. Complex mechanisms involving site-specific chemistries and precision kinetics are responsible for the formation of such structures. In the synthetic realm, reproduction of even the most basic hierarchical structure effortlessly produced in nature is difficult. However, through the utilization of self-assembling structures or "templates", such as polymers or amphiphilic surfactants, combined with some favorable interaction between a chosen inorganic, the potential exists to imprint an inorganic material with a morphology dictated via synthetic molecular self-assembly. In doing so, a very basic hierarchical structure is formed on the angstrom and nanometer scales. The work presented herein utilizes the self-assembly of either surfactants or block copolymers with the desired inorganic or inorganic precursor to form templated inorganic structures. Specifically, mesoporous silica spheres and copolymer directed calcium phosphate-polymer composites were formed through the co-assembly of an organic template and a precursor to form the desired mesostructured inorganic. For the case of the mesoporous silica spheres, a silica precursor was mixed with cetyltrimethylammonium bromide and cysteamine, a highly effective biomimetic catalyst for the conversion of alkoxysilanes to silica. Through charge-based interactions between anionic silica species and the micelle-forming cationic surfactant, ordered silica structures resulted. The incorporation of a novel, effective catalyst was found to form highly condensed silica spheres for potential application as catalyst supports or an encapsulation media. Ordered calcium phosphate-polymer composites were formed using two routes. Both routes take advantage of hydrogen bonding and ionic interactions between the calcium and phosphate precursors

  19. Composite purification technology and mechanism of recycled aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    房文斌; 耿耀宏; 安阁英; 叶荣茂


    Iron-rich inclusions in aluminum alloys can be effectively removed by composite purification of sedimentation and filtration technology.The results show that the purposed method has no negative effects on aluminum alloys and obviously improve their mechanical properties.

  20. Understanding Aspects of Aluminum Exposure in Alzheimer's Disease Development. (United States)

    Kandimalla, Ramesh; Vallamkondu, Jayalakshmi; Corgiat, Edwin B; Gill, Kiran Dip


    Aluminum is a ubiquitously abundant nonessential element. Aluminum has been associated with neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis, and dialysis encephalopathy. Many continue to regard aluminum as controversial although increasing evidence supports the implications of aluminum in the pathogenesis of AD. Aluminum causes the accumulation of tau protein and Aβ protein in the brain of experimental animals. Aluminum induces neuronal apoptosis in vivo and in vitro, either by endoplasmic stress from the unfolded protein response, by mitochondrial dysfunction, or a combination of them. Some, people who are exposed chronically to aluminum, either from through water and/or food, have not shown any AD pathology, apparently because their gastrointestinal barrier is more effective. This article is written keeping in mind mechanisms of action of aluminum neurotoxicity with respect to AD.