WorldWideScience

Sample records for aluminum hydroxide injections

  1. Aluminum Hydroxide

    Science.gov (United States)

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  2. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  3. Aluminum hydroxide issue closure package

    International Nuclear Information System (INIS)

    Bergman, T.B.

    1998-01-01

    Aluminum hydroxide coatings on fuel elements stored in aluminum canisters in K West Basin were measured in July and August 1998. Good quality data was produced that enabled statistical analysis to determine a bounding value for aluminum hydroxide at a 99% confidence level. The updated bounding value is 10.6 kg per Multi-Canister Overpack (MCO), compared to the previously estimated bounding value of 8 kg/MCO. Thermal analysis using the updated bounding value, shows that the MCO generates oxygen concentrate that are below the lower flammability limits during the 40-year interim storage period and are, therefore, acceptable

  4. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless...

  5. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  6. A Case of Recurrent Renal Aluminum Hydroxide Stone

    Directory of Open Access Journals (Sweden)

    Basri Cakıroglu

    2014-01-01

    Full Text Available Renal stone disease is characterized by the differences depending on the age, gender, and the geographic location of the patients. Seventy-five percent of the renal stone components is the calcium (Ca. The most common type of the stones is the Ca oxalate stones, while Ca phosphate, uric acid, struvite, and sistine stones are more rarely reported. Other than these types, triamterene, adenosine, silica, indinavir, and ephedrine stones are also reported in the literature as case reports. However, to the best of our knowledge, aluminum hydroxide stones was not reported reported before. Herein we will report a 38-years-old woman with the history of recurrent renal colic disease whose renal stone was determined as aluminum hydroxide stone in type. Aluminum mineral may be considered in the formation of kidney stones as it is widely used in the field of healthcare and cosmetics.

  7. Mechanistic study of inhibition of levofloxacin absorption by aluminum hydroxide.

    Science.gov (United States)

    Tanaka, M; Kurata, T; Fujisawa, C; Ohshima, Y; Aoki, H; Okazaki, O; Hakusui, H

    1993-01-01

    The mechanisms of reduction in absorption of levofloxacin (LVFX) by coadministration of aluminum hydroxide were studied. The partition coefficient of LVFX (0.1 mM) between chloroform and phosphate buffer (pH 5.0) was reduced by 60 to 70% with the addition of metal ions such as Cu2+, Al3+, and Fe2+ (0.8 mM), which indicated the formation of LVFX-metal ion chelates. However, there was no significant difference in absorption from rat intestine between the synthetic LVFX-Al3+ (1:1) chelate (6.75 mM) and LVFX (6.75 mM) in an in situ recirculation experiment. On the other hand, Al(NO3)3 (1.5 mM) significantly inhibited the absorption of LVFX (1.5 mM) by 20% of the control in the in situ ligated loop experiment, in which partial precipitation of aluminum hydroxide was observed in the dosing solution. Data for adsorption of LVFX and ofloxacin (OFLX) from aqueous solution by aluminum hydroxide were shown to fit Langmuir plots, and the adsorptive capacities (rmax) and the K values were 7.0 mg/g and 1.77 x 10(4) M-1 for LVFX and 7.4 mg/g and 1.42 x 10(4) M-1 for OFLX, respectively. The rate of adsorption of several quinolones (50 microM) onto aluminum hydroxide (2.5 mg/ml) followed the order norfloxacin (NFLX) (72.0%) > enoxacin (ENX) (61.0%) > OFLX (47.2%) approximately LVFX (48.1%). The elution rate of adsorbed quinolones with water followed the rank order LVFX (17.9%) approximately OFLX (20.9%) approximately ENX (18.3%) > NFLX (11.9%). These results strongly suggest that adsorption of quinolones by aluminum hydroxide reprecipitated in the small intestine would play an important role in the reduced bioavailability of quinolones after coadministration with aluminum-containing antacids. Images PMID:8257141

  8. Characterization of alumina obtained from the synthesis of gelatinous precipitates of aluminum hydroxide obtained from the reaction of aluminum sulfate and ammonium hydroxide in different temperatures

    International Nuclear Information System (INIS)

    Mercury, Jose Manuel Rivas; Freitas Neves, R. de

    1996-01-01

    Aluminum hydroxide was obtained by synthesis through neutralization of solutions aluminum sulphate solutions with ammonium hydroxide at different level of temperatures of synthesis (30, 60, 90 deg C) on the molar [OH]/[Al +3 ] of 6,5. All products was burned at 950 deg C during two hours of dried aluminum hydroxide powder. Alumina obtained and A-16SG, APC-2011, produced by Alcoa Co. was characterized by Bulk Density, Tap density, Real Density, Particle Size Distribution, X-Ray Diffractions and Chemical Analysis and both compared. (author)

  9. Lithium adsorption on amorphous aluminum hydroxides and gibbsite

    OpenAIRE

    Prodromou, Konstantinos P.

    2016-01-01

    Lithium (Li) adsorption on both amorphous aluminum hydroxides and gibbsite was studied. For the amorphous Al(OH)3 the adsorption was found to be pH dependent. Generally, 1.6 times more Li was adsorbed at initial pH value 8.0 compared with pH value 6.50. Gibbsite adsorbed 11.6 to 45.5 times less Li quantities compared with amorphous Al(OH)3. Lithium adsorption was not depended on equilibrium times. It remained stable for all equilibrium times used. Lithium quantities extracted with 1N CH3COONH...

  10. Silicate Removal in Aluminum Hydroxide Co-Precipitation Process

    Directory of Open Access Journals (Sweden)

    Chiharu Tokoro

    2014-02-01

    Full Text Available The removal mechanisms of silicate using an aluminum hydroxide co-precipitation process was investigated and compared with an adsorption process, in order to establish an effective and validated method for silicate removal from wastewater. Adsorption isotherms, XRD and FT-IR analyses showed that silicate uptake occurred by adsorption to boehmite for initial Si/Al molar ratios smaller than two, but by precipitation of poorly crystalline kaolinite for the ratios larger than two, in both co-precipitation and adsorption processes. Silicate was removed by two steps: (i an initial rapid uptake in a few seconds; and (ii a slow uptake over several hours in both processes. The uptake rate in the first step was higher in the co-precipitation process than in adsorption process, presumably due to increased silicate adsorption to boehmite and rapid precipitation of kaolinite. These results suggest that silicate removal using aluminum salts could be effectively achieved if the pH adjustment and aluminum concentration are strictly controlled.

  11. Safety Assessment of Alumina and Aluminum Hydroxide as Used in Cosmetics.

    Science.gov (United States)

    Becker, Lillian C; Boyer, Ivan; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-11-01

    This is a safety assessment of alumina and aluminum hydroxide as used in cosmetics. Alumina functions as an abrasive, absorbent, anticaking agent, bulking agent, and opacifying agent. Aluminum hydroxide functions as a buffering agent, corrosion inhibitor, and pH adjuster. The Food and Drug Administration (FDA) evaluated the safe use of alumina in several medical devices and aluminum hydroxide in over-the-counter drugs, which included a review of human and animal safety data. The Cosmetic Ingredient Review (CIR) Expert Panel considered the FDA evaluations as part of the basis for determining the safety of these ingredients as used in cosmetics. Alumina used in cosmetics is essentially the same as that used in medical devices. This safety assessment does not include metallic or elemental aluminum as a cosmetic ingredient. The CIR Expert Panel concluded that alumina and aluminum hydroxide are safe in the present practices of use and concentration described in this safety assessment. © The Author(s) 2016.

  12. Superovulation with a single administration of FSH in aluminum hydroxide gel: a novel superovulation method for cattle

    OpenAIRE

    KIMURA, Koji

    2016-01-01

    Superovulation (SOV) is a necessary technique to produce large numbers of embryos for embryo transfer. In the conventional methods, follicular stimulating hormone (FSH) is administered to donor cattle twice daily for 3 to 4 days. As this method is labor intensive and stresses cattle, improving this method has been desired. We previously developed a novel and simple SOV method, in which the intramuscular injection of a single dose of FSH in aluminum hydroxide gel (AH-gel) induced the growth of...

  13. Aluminum hydroxide nanoparticles show strong activity to stimulate Th-1 immune response against tuberculosis.

    Science.gov (United States)

    Amini, Yousef; Moradi, Bagher; Fasihi-Ramandi, Mahdi

    2017-11-01

    Many materials such as aluminum hydroxide have been tried as adjuvants to compensate low inherent immunogenicity of subunit vaccines. The aim of this study was to evaluate the specific immune response following the administration of aluminum hydroxide nanoparticles with EsxV antigen. The physiochemical properties of the nanoparticle were characterized in vitro. After subcutaneous immunization, cytokine secretion patterns including IFN-gama,IL-4, and TGF-beta levels were measured by indirect enzyme linked immunosorbent assay (ELISA). Aluminum hydroxide-NPs were demonstrated excellent effects to raise of IFN-γ secretion in compare to EsxV alone. Administration of aluminum hydroxide nanoparticles stimulates strong cellular immune response and could be considered as appropriate adjuvant against TB infection.

  14. Lithium adsorption on amorphous aluminum hydroxides and gibbsite

    Directory of Open Access Journals (Sweden)

    Konstantinos P. Prodromou

    2016-01-01

    Full Text Available Lithium (Li adsorption on both amorphous aluminum hydroxides and gibbsite was studied. For the amorphous Al(OH3 the adsorption was found to be pH dependent. Generally, 1.6 times more Li was adsorbed at initial pH value 8.0 compared with pH value 6.50. Gibbsite adsorbed 11.6 to 45.5 times less Li quantities compared with amorphous Al(OH3. Lithium adsorption was not depended on equilibrium times. It remained stable for all equilibrium times used. Lithium quantities extracted with 1N CH3COONH4 pH 7 , represent the physical adsorption, while the remaining Li that was adsorbed on Al(OH3, represents the chemical adsorption. During the desorption process 19% of Li extracted with NH4+, represents the physical adsorption, while the remaining 81% of Li, which was adsorbed represents the chemical adsorption. In gibbsite, 9.6% of Li represents the physical adsorption and 90.4% the chemical one. The experimental data conformed well to Freundlich isotherm equation.

  15. Synthesis of beta alumina from aluminum hydroxide and oxyhydroxide precursors

    CSIR Research Space (South Africa)

    Van Zyl, A

    1993-02-01

    Full Text Available Two aluminium oxyhydroxides, boehmite and pseudoboehmite, and two aluminium hydroxides, bayerite and gibbsite, have been investigated as precursors for the synthesis of the solid electrolyte, beta alumina. Reaction pathways and products have been...

  16. Application of nanodimensional particles and aluminum hydroxide nanostructures for cancer diagnosis and therapy

    Science.gov (United States)

    Korovin, M. S.; Fomenko, A. N.

    2017-09-01

    Nanoparticles and nanostructured materials are one of the most promising developments for cancer therapy. Gold nanoparticles, magnetic nanoparticles based on iron and its oxides and other metal oxides have been widely used in diagnosis and treatment of cancer. Much less researchers' attention has been paid to nanoparticles and nanostructures based on aluminum oxides and hydroxides as materials for cancer diagnosis and treatment. However, recent investigations have shown promising results regarding these objects. Here, we review the antitumor results obtained with different aluminum oxide/hydroxide nanoparticles and nanostructures.

  17. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina

    International Nuclear Information System (INIS)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2008-01-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method

  18. Determination of adsorbed protein concentration in aluminum hydroxide suspensions by near-infrared transmittance Spectroscopy

    DEFF Research Database (Denmark)

    Lai, Xuxin; Zheng, Yiwu; Jacobsen, Susanne

    2008-01-01

    ) transmittance spectroscopy is proposed here. A simple adsorption system using albumin from bovine serum (BSA) and aluminum hydroxide as a model system is employed. The results show that the NIR absorbance at 700-1300 nm is correlated to the adsorbed BSA concentration, measured by the ultraviolet (UV) method...

  19. THE DIGESTION OPERATION IN THE ALKALI ALUMINAT SOLUTIONS OF ALUMINUM HYDROXIDES IN THE BOEHMITIC BAUXITES

    Directory of Open Access Journals (Sweden)

    Sami ŞAHİN

    1999-01-01

    Full Text Available At present more than 90 per cent of the world's alumina is produced by the Bayer process, a simple technology providing high purity final product. A part from some exceptional local conditions, bauxite is processed almost solely by this technology. As a benefication process, alumina production releases the aluminum oxide content of bauxite from other accompanying oxides thus providing alumina suitable for electrolysis in a cryolite melt. The basic theory of the Bayer process was elaborated by K.J. Bayer and described in his patents in 1887 and 1892. The first patent refers to the aid of seed crystals of aluminum hydroxide or of carbonic acid, that is, to the precipitation and carbonation processes. The second patent formulates the concept that the aluminum oxide content of bauxites can be dissolved in sodium hydroxide solutions, with the formulation of sodium aluminate, a process called digestion nowadays. The most important operations of the Bayer technology are bauxite preparation, crushing, grinding, digestion, red mud separation, thickening, washing, filtration, precipitation, calcination and evaporation. In spite of its great significance as regards the complete Bayer technology, the structure of sodium aluminate solutions has not been cleared up definitely yet. Boehmite is the most important aluminum mineral of karstic bauxites. Some experimental results showing the various effects on aluminum hydroxides by alkali process from boehmitic bauxites and the factors gowerning the digestion operation of aluminate solutions were investigated.

  20. removal of excess fluoride from water by aluminum hydroxide

    African Journals Online (AJOL)

    The efficiency of untreated hydrated alumina (UHA) and thermally treated hydrated alumina (THA) obtained from hydrolysis of locally manufactured aluminum sulfate to remove fluoride from aqueous solution has been investigated in batch and continuous operation. The parameters considered were contact time and ...

  1. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys

    Science.gov (United States)

    Guo, Lian; Zhang, Fen; Lu, Jun-Cai; Zeng, Rong-Chang; Li, Shuo-Qi; Song, Liang; Zeng, Jian-Min

    2018-04-01

    The magnesium aluminum and zinc aluminum layered double hydroxides intercalated with NO3 -(MgAl-NO3-LDH and ZnAl-NO3-LDH) were prepared by the coprecipitation method, and the magnesium aluminum and the zinc aluminum layered double hydroxides intercalated with VO x -(MgAl-VO x -LDH and ZnAl-VO x -LDH) were prepared by the anion-exchange method. Morphologies, microstructures and chemical compositions of LDHs were investigated by SEM, EDS, XRD, FTIR, Raman and TG analyses. The immersion tests were carried to determine the corrosion inhibition properties of MgAl-VO x -LDH and ZnAl-VO x -LDH on AZ31 Mg alloys. The results showed that ZnAl-VO x -LDH possesses the best anion-exchange and inhibition abilities. The influence of treatment parameters on microstructures of LDHs were discussed. Additionally, an inhibition mechanism for ZnAl-VO x -LDH on the AZ31 magnesium alloy was proposed and discussed.

  2. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2Reduction

    KAUST Repository

    Saliba, Daniel

    2016-03-30

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Compressive properties of aluminum foams by gas injection method

    OpenAIRE

    Zhang Huiming; Chen Xiang; Fan Xueliu

    2012-01-01

    The compressive properties of aluminum foams by gas injection method are investigated under both quasi-static and dynamic compressive loads in this paper. The experimental results indicate that the deformation of the aluminum foams goes through three stages: elastic deforming, plastic deforming and densification stage, during both the quasi-static and dynamic compressions. The aluminum foams with small average cell size or low porosity have high yield strength. An increase in strain rate can ...

  4. Superovulation with a single administration of FSH in aluminum hydroxide gel: a novel superovulation method for cattle.

    Science.gov (United States)

    Kimura, Koji

    2016-10-18

    Superovulation (SOV) is a necessary technique to produce large numbers of embryos for embryo transfer. In the conventional methods, follicular stimulating hormone (FSH) is administered to donor cattle twice daily for 3 to 4 days. As this method is labor intensive and stresses cattle, improving this method has been desired. We previously developed a novel and simple SOV method, in which the intramuscular injection of a single dose of FSH in aluminum hydroxide gel (AH-gel) induced the growth of multiple follicles, ovulation and the production of multiple embryos. Here we show that AH-gel can efficiently adsorb FSH and release it effectively in the presence of BSA, a major interstitial protein. When a single intramuscular administration of the FSH and AH-gel mixture was performed to cattle, multiple follicular growth, ovulation and embryo production were induced. However, the treatments caused indurations at the administration sites in the muscle. To reduce the muscle damage, we investigated alternative administration routes and different amounts of aluminum in the gel. By administering the FSH in AH-gel subcutaneously rather than intramuscularly, the amount of aluminum in the gel could be reduced, thus reducing the size of the induration. Moreover, repeated administrations of FSH with AH-gel did not affect the superovulatory response. These results indicate that a single administration of FSH with AH-gel is an effective, novel and practical method for SOV treatment.

  5. Stress Corrosion Cracking of Steel and Aluminum in Sodium Hydroxide: Field Failure and Laboratory Test

    Directory of Open Access Journals (Sweden)

    Y. Prawoto

    2012-01-01

    Full Text Available Through an investigation of the field failure analysis and laboratory experiment, a study on (stress corrosion cracking SCC behavior of steel and aluminum was performed. All samples were extracted from known operating conditions from the field failures. Similar but accelerated laboratory test was subsequently conducted in such a way as to mimic the field failures. The crack depth and behavior of the SCC were then analyzed after the laboratory test and the mechanism of stress corrosion cracking was studied. The results show that for the same given stress relative to ultimate tensile strength, the susceptibility to SCC is greatly influenced by heat treatment. Furthermore, it was also concluded that when expressed relative to the (ultimate tensile strength UTS, aluminum has similar level of SCC susceptibility to that of steel, although with respect to the same absolute value of applied stress, aluminum is more susceptible to SCC in sodium hydroxide environment than steel.

  6. Fabrication and Corrosion Resistance of Superhydrophobic Hydroxide Zinc Carbonate Film on Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    Jin Liang

    2013-01-01

    Full Text Available Superhydrophobic hydroxide zinc carbonate (HZC films were fabricated on aluminum substrate through a convenient in situ deposition process. Firstly, HZC films with different morphologies were deposited on aluminum substrates through immersing the aluminum substrates perpendicularly into aqueous solution containing zinc nitrate hexahydrate and urea. Secondly, the films were then modified with fluoroalkylsilane (FAS: CH3(CF26(CH23Si(OCH33 molecules by immersing in absolute ethanol solution containing FAS. The morphologies, hydrophobicity, chemical compositions, and bonding states of the films were analyzed by scanning electron microscopy (SEM, water contact angle measurement (CA, Fourier transform infrared spectrometer (FTIR, and X-ray photoelectron spectroscopy (XPS, respectively. It was shown by surface morphological observation that HZC films displayed different microstructures such as microporous structure, rose petal-like structure, block-shaped structure, and pinecone-like structure by altering the deposition condition. A highest water contact angle of 156.2° was obtained after FAS modification. Moreover, the corrosion resistance of the superhydrophobic surface on aluminum substrate was investigated using electrochemical impedance spectroscopy (EIS measurements. The EIS measurements’ results revealed that the superhydrophobic surface considerably improved the corrosion resistance of aluminum.

  7. Influence of elemental impurities in aluminum hydroxide adjuvant on the stability of inactivated Japanese Encephalitis vaccine, IXIARO®.

    Science.gov (United States)

    Schlegl, Robert; Weber, Michael; Wruss, Jürgen; Low, Donald; Queen, Kirsten; Stilwell, Shaun; Lindblad, Erik B; Möhlen, Michael

    2015-11-04

    Aluminum hydroxide is a critical raw material in the production of many vaccines. It is used as an adjuvant in the formulation of the final bulk vaccine, and for this it must meet the specifications of the European Pharmacopeia Monograph. We investigated whether vaccine stability was affected by the presence of trace amounts of elemental impurities in commercially available aluminum hydroxide. The content of residual elemental impurities in commercially available aluminum hydroxide was determined by selective and sensitive inductively coupled-plasma mass spectrometry and inductively coupled plasma atomic emission spectroscopy. We found significant differences between different suppliers, but also between different lots from the same supplier. Inactivated Japanese encephalitis vaccine, IXIARO(®), was used to study the effect of residual metals in aluminum hydroxide on antigen stability. We propose that antigen degradation occurred via a pathway involving the metal-catalyzed, auto-oxidation of a process-related impurity (sulfite). Thus, sulfite auto-oxidation resulted in antigen degradation when residual Cu was present at elevated concentrations in aluminum hydroxide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Stability of FDTS monolayer coating on aluminum injection molding tools

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    The injection molding industry often employs prototype molds and mold inserts from melt spun (rapid solidification processing [1,2]) aluminum, especially for applications in optics [3,4], photonics [5] and microfludics. Prototypes are also used for verification of mold filling. The use of aluminum...... trichloro-silane based coating deposited on aluminum or its alloys by molecular vapor deposition. We have tested the stability of this coating in challenging conditions of injection molding, an environment with high shear stress from the molten polymer, pressures up to 200 MPa, temperatures up to 250 ◦C...... tools has reduced lead time (days instead of weeks) and manufacturing cost (30% of conventional mold). Moreover, for aluminum, a surface roughness (RMS) below 5 nm can be obtained with diamond machining [3,4,6]. Conventional mold coatings add cost and complexity, and coatings with thicknesses of a few...

  9. Compressive properties of aluminum foams by gas injection method

    Directory of Open Access Journals (Sweden)

    Zhang Huiming

    2012-08-01

    Full Text Available The compressive properties of aluminum foams by gas injection method are investigated under both quasi-static and dynamic compressive loads in this paper. The experimental results indicate that the deformation of the aluminum foams goes through three stages: elastic deforming, plastic deforming and densification stage, during both the quasi-static and dynamic compressions. The aluminum foams with small average cell size or low porosity have high yield strength. An increase in strain rate can lead to an increase of yield strength. The yield strength of the aluminum foams under the dynamic loading condition is much greater than that under the quasi-static loading condition. Dynamic compressive tests show that a higher strain rate can give rise to a higher energy absorption capacity, which demonstrates that the aluminum foams have remarkable strain rate sensitivity on the loading rate.

  10. Stability of FDTS monolayer coating on aluminum injection molding tools

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    The injection molding industry often employs prototype molds and mold inserts from melt spun (rapid solidification processing [1,2]) aluminum, especially for applications in optics [3,4], photonics [5] and microfludics. Prototypes are also used for verification of mold filling. The use of aluminum...... tools has reduced lead time (days instead of weeks) and manufacturing cost (30% of conventional mold). Moreover, for aluminum, a surface roughness (RMS) below 5 nm can be obtained with diamond machining [3,4,6]. Conventional mold coatings add cost and complexity, and coatings with thicknesses of a few...

  11. How the Method of Synthesis Governs the Local and Global Structure of Zinc Aluminum Layered Double Hydroxides

    DEFF Research Database (Denmark)

    Puschparaj, Suraj S. C.; Forano, Claude; Prevot, Vanessa

    2015-01-01

    Seven zinc aluminum layered double hydroxides (ZnAl LDHs), [Zn1-xAlx (OH)2Ax,nH2O] A = NO3-, Cl- or CO32-, prepared by the urea and co-precipitation synthesis methods were investigated to determine how synthesis parameters (pH, metal ion concentration and post synthesis treatment) affect the local...

  12. Evaluation of preservative effectiveness of gallic acid derivatives in aluminum hydroxide gel-USP

    Directory of Open Access Journals (Sweden)

    Anurag Khatkar

    2013-01-01

    Full Text Available Background: Preservatives are added to most of the pharmaceutical preparations to prevent them from deterioration throughout their shelf life. Literature reveals that the common synthetic preservatives have many limitations, such as development of microbial resistance (in due course of time and several serious side-effects. Aim: The aim of this study is to find out new preservatives synthesized from natural sources, which may have better efficiency than the existing synthetic preservatives. The derivatives of naturally occurring gallic acid were subjected for their preservative efficacy study. Their preservative efficiency was evaluated and compared with the standard parabens. Materials and Methods: The selected amide, anilide and ester derivatives of gallic acid were subjected to preservative efficacy testing in an official antacid preparation, {aluminum hydroxide gel-USP (United States Pharmacopoeia} against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Candida albicans, and Aspergillus niger as representative challenging microorganisms as per USP 2004 guidelines. Results: The selected derivatives were found to be effective against all selected strains and showed preservative efficacy comparable to that of standard and even better in case E. coli, C. albicans and A. niger. The 8-hydroxy quinoline ester derivative showed better preservative efficacy than standard as well as other derivatives. Conclusion: The newly synthesized gallic acid preservatives were found to be effective in the proposed pharmaceutical preparation (Aluminium Hydroxide Gel - USP. Also, the synthesized preservatives have shown comparative and even better efficacy than the existing parabens and hence they have potential for use in pharmaceutical preparations.

  13. The preparation and physico-chemical characterization of aluminum hydroxide/TLR7a, a novel vaccine adjuvant comprising a small molecule adsorbed to aluminum hydroxide.

    Science.gov (United States)

    Malyala, Padma; Laera, Donatello; Cianetti, Simona; Bufali, Simone; Aggravi, Marianna; Ianni, Elvira; Judge, Casey; Otten, Gillis; Singh, Manmohan; O' Hagan, Derek T

    2018-02-05

    Adjuvants are necessary to enable vaccine development against a significant number of challenging pathogens for which effective vaccines are not available [1]. We engineered a novel small-molecule immune potentiator (SMIP), a benzonaphthyridine agonist targeting toll-like receptor 7 (TLR7), as a vaccine adjuvant. TLR7 agonist (TLR7a) was engineered to be adsorbed onto aluminum hydroxide (AlOH), and the resulting AlOH/TLR7a was evaluated as a vaccine adjuvant [2-6]. AlOH/TLR7a exploits the flexibility of AlOH formulations, has an application in many vaccine candidates, and induced good efficacy and safety profiles against all tested antigens (bacterial- and viral-derived protein antigens, toxoids, glycoconjugates, etc.) in many animal models, including non-human primates [7]. In this paper, we describe the outcome of the physico-chemical characterization of AlOH/TLR7a. Reverse phase ultra-performance liquid chromatography (RP-UPLC), confocal microscopy, flow cytometry (FC), zeta potential (ZP) and phosphophilicity assays were used as tools to demonstrate the association of TLR7a to AlOH and to characterize this novel formulation. Raman spectroscopy, nuclear magnetic resonance and mass spectroscopy were also used to investigate the interaction between TLR7a and AlOH (data not shown). This pivotal work paved the way for AlOH/TLR7a to progress into the clinic for evaluation as an adjuvant platform for vaccines against challenging preventable diseases. Copyright © 2018. Published by Elsevier Inc.

  14. New proteoliposome vaccine formulation from N. meningitidis serogroup B, without aluminum hydroxide, retains its antimeningococcal protectogenic potential as well as Th-1 adjuvant capacity.

    Science.gov (United States)

    Tamargo, Beatriz; Márquez, Yanet; Ramírez, Wendy; Cedré, Bárbara; Fresno, Manuel; Sierra, Gustavo

    2013-01-01

    Proteoliposomes purified from the Outer Membrane of Neisseria meningitidis B, have been successfully used as core for adjuvants and vaccine formulations. We have tried to increase their structural definition and to conserve their efficacy and stability avoiding the addition of the aluminum hydroxide to the final formulation. Liposomal particle systems were prepared from components of defined molecular structure, such as a Neisseria meningitidis B protein complex, extracted and purified without forming vesicle structures. Liposomes were prepared from a mixture of dioleoyl phosphatidyl serine and cholesterol, using the classical dehydration-rehydration method. Transmission Electron Microscopy (TEM) was used to characterize the liposomes. BALB/c mice were used for animal testing procedures. Analysis of specific IgG response, serum bactericidal activity as well as DTH reaction was carried out. Isolation and purification of mRNA and real-time PCR, was performed to determine the dominating Th lymphokine pattern. The new antimeningococcal formulation without aluminum hydroxide prepared with components of defined molecular structure assembled itself into Neoproteoliposomes (NPL) ranging from 50 to 70 nm in diameter. The extraction and purification of selected membrane proteins to provide the antigen for this new formulation (PD-Tp), as well as the NPL-formulation favors a Th1 response pattern, suggested by the higher percentages of DTH, increased expression of proinflamatory lymphokine mRNAs when administered by intramuscular and intranasal routes. It stimulates a systemic bactericidal antibody response against Neisseria meningitidis B and immunologic memory similar to the Cuban VA-MENGOC-BC vaccine, even at lower dosages and is less reactogenic at the injection site in comparison with the formulation with aluminum hydroxide. This new adjuvant formulation could be applicable to the development of new and improved vaccines against meningococcal disease, and eventually as

  15. Comparison of the adjuvant activity of aluminum hydroxide and calcium phosphate on the antibody response towards Bothrops asper snake venom.

    Science.gov (United States)

    Olmedo, Hidekel; Herrera, María; Rojas, Leonardo; Villalta, Mauren; Vargas, Mariángela; Leiguez, Elbio; Teixeira, Catarina; Estrada, Ricardo; Gutiérrez, José María; León, Guillermo; Montero, Mavis L

    2014-01-01

    The adjuvanticity of aluminum hydroxide and calcium phosphate on the antibody response in mice towards the venom of the snake Bothrops asper was studied. It was found that, in vitro, most of the venom proteins are similarly adsorbed by both mineral salts, with the exception of some basic phospholipases A2, which are better adsorbed by calcium phosphate. After injection, the adjuvants promoted a slow release of the venom, as judged by the lack of acute toxicity when lethal doses of venom were administered to mice. Leukocyte recruitment induced by the venom was enhanced when it was adsorbed on both mineral salts; however, venom adsorbed on calcium phosphate induced a higher antibody response towards all tested HPLC fractions of the venom. On the other hand, co-precipitation of venom with calcium phosphate was the best strategy for increasing: (1) the capacity of the salt to couple venom proteins in vitro; (2) the venom ability to induce leukocyte recruitment; (3) phagocytosis by macrophages; and (4) a host antibody response. These findings suggest that the chemical nature is not the only one determining factor of the adjuvant activity of mineral salts.

  16. Microstructural transformation with heat-treatment of aluminum hydroxide with gibbsite structure

    International Nuclear Information System (INIS)

    Mitsui, Tomohiro; Matsui, Toshiaki; Eguchi, Koichi; Kikuchi, Ryuji

    2009-01-01

    Aluminum hydroxide with gibbsite structure was prepared, and the microstructural transformation of the sample heat-treated at various temperatures was investigated. The sample was characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), thermogravimetry and differential thermal analysis (TG-DTA), and BET surface area. The shape of the grains in the prepared sample was hexagonal prism-like morphology. The prepared sample kept a metastable state of alumina phase at higher temperatures than the commercially available gibbsite powders. The prepared gibbsite grains underwent characteristic structural change depending on the calcination temperature. The transformation of the surface morphology was initiated at 400degC, leading to the formation of cracks with the direction parallel to the basal plane. After calcination at 1200degC, a large number of grooves were formed on the surface of the lateral planes. The specific structural change of gibbsite induced by the heat treatment was strongly related to the topotactic dehydration from gibbsite and subsequent phase transition to aluminum oxides. (author)

  17. Safety and immunogenicity of a primary series of Sabin-IPV with and without aluminum hydroxide in infants.

    Science.gov (United States)

    Verdijk, Pauline; Rots, Nynke Y; van Oijen, Monique G C T; Weldon, William C; Oberste, M Steven; Okayasu, Hiromasa; Sutter, Roland W; Bakker, Wilfried A M

    2014-09-03

    An inactivated poliovirus vaccine (IPV) based on attenuated poliovirus strains (Sabin-1, -2 and -3) was developed for technology transfer to manufacturers in low- and middle-income countries in the context of the global polio eradication initiative. Safety and immunogenicity of Sabin-IPV (sIPV) was evaluated in a double-blind, randomized, controlled, dose-escalation trial in the target population. Healthy infants (n=20/group) aged 56-63 days, received a primary series of three intramuscular injections with low-, middle- or high-dose sIPV with or without aluminum hydroxide or with the conventional IPV based on wild poliovirus strains (wIPV). Virus-neutralizing titers against both Sabin and wild poliovirus strains were determined before and 28 days after three vaccinations. The incidence of local and systemic reactions was comparable with the wIPV. Seroconversion rates after three vaccinations were 100% for type 2 and type 3 polioviruses (both Sabin and wild strains) and 95-100% for type 1 polioviruses. Median titers were high in all groups. Titers were well above the log2(titer) correlated with protection (=3) for all groups. Median titers for Sabin-2 were 9.3 (range 6.8-11.5) in the low-dose sIPV group, 9.2 (range 6.8-10.2) in the low-dose adjuvanted sIPV group and 9.8 (range 5.5-15.0) in the wIPV group, Median titers against MEF-1 (wild poliovirus type 2) were 8.2 (range 4.8-10.8) in the low-dose sIPV group, 7.3 (range 4.5-10.2) in the low-dose adjuvanted Sabin-IPV group and 10.3 (range 8.5-17.0) in the wIPV group. For all poliovirus types the median titers increased with increasing dose levels. sIPV and sIPV adjuvanted with aluminum hydroxide were immunogenic and safe at all dose levels, and comparable with the wIPV. EudraCTnr: 2011-003792-11, NCT01709071. Copyright © 2014. Published by Elsevier Ltd.

  18. Safety and immunogenicity of inactivated poliovirus vaccine based on Sabin strains with and without aluminum hydroxide: a phase I trial in healthy adults.

    Science.gov (United States)

    Verdijk, Pauline; Rots, Nynke Y; van Oijen, Monique G C T; Oberste, M Steven; Boog, Claire J; Okayasu, Hiromasa; Sutter, Roland W; Bakker, Wilfried A M

    2013-11-12

    An inactivated poliovirus vaccine (IPV) based on attenuated poliovirus strains (Sabin-1, -2 and -3) was developed for technology transfer to manufacturers in low- and middle income countries in the context of the Global Polio Eradication Initiative. Safety and immunogenicity of the Sabin-IPV was evaluated in a double-blind, randomized, controlled, phase I 'proof-of-concept' trial. Healthy male adults received a single intramuscular injection with Sabin-IPV, Sabin-IPV adjuvanted with aluminum hydroxide or conventional IPV. Virus-neutralizing titers against both Sabin and wild poliovirus strains were determined before and 28 days after vaccination. No vaccine-related serious adverse events were observed, and all local and systemic reactions were mild or moderate and transient. In all subjects, an increase in antibody titer for all types of poliovirus (both Sabin and wild strains) was observed 28 days after vaccination. Sabin-IPV and Sabin-IPV adjuvanted with aluminum hydroxide administered as a booster dose were equally immunogenic and safe as conventional IPV. EudraCTnr: 2010-024581-22, NCT01708720. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Protective efficacy of recombinant urease B and aluminum hydroxide against Helicobacter pylori infection in a mouse model.

    Science.gov (United States)

    Bégué, Rodolfo E; Sadowska-Krowicka, Halina

    2010-11-01

    Efforts are underway for the development of an effective vaccine against Helicobacter pylori infection. We prepared recombinant full-length (568 aa) H. pylori recombinant urease B (rUreB) protein and tested it for immunogenicity and protection. BALB/c mice received either rUreB (40 μg) plus CpG (10 μg) intranasally, rUreB (50 μg) plus 3% aluminum hydroxide (50 μL) intramuscularly or rUreB (25 μg) plus Freund's adjuvant (25 μL) subcutaneously, three times (weeks 0, 2 and 6). Intranasal rUreB plus CpG was neither immunogenic nor protective; intramuscular rUreB plus aluminum hydroxide was immunogenic and modestly protective, and subcutaneous rUreB plus Freund's adjuvant was immunogenic and highly protective. The fact that protection was improved with Freund's adjuvant indicates that rUreB is a good antigen for a vaccine but that it needs a stronger adjuvant than aluminum hydroxide. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Glassy-state stabilization of a dominant negative inhibitor anthrax vaccine containing aluminum hydroxide and glycopyranoside lipid A adjuvants.

    Science.gov (United States)

    Hassett, Kimberly J; Vance, David J; Jain, Nishant K; Sahni, Neha; Rabia, Lilia A; Cousins, Megan C; Joshi, Sangeeta; Volkin, David B; Middaugh, C Russell; Mantis, Nicholas J; Carpenter, John F; Randolph, Theodore W

    2015-02-01

    During transport and storage, vaccines may be exposed to temperatures outside of the range recommended for storage, potentially causing efficacy losses. To better understand and prevent such losses, dominant negative inhibitor (DNI), a recombinant protein antigen for a candidate vaccine against anthrax, was formulated as a liquid and as a glassy lyophilized powder with the adjuvants aluminum hydroxide and glycopyranoside lipid A (GLA). Freeze-thawing of the liquid vaccine caused the adjuvants to aggregate and decreased its immunogenicity in mice. Immunogenicity of liquid vaccines also decreased when stored at 40°C for 8 weeks, as measured by decreases in neutralizing antibody titers in vaccinated mice. Concomitant with efficacy losses at elevated temperatures, changes in DNI structure were detected by fluorescence spectroscopy and increased deamidation was observed by capillary isoelectric focusing (cIEF) after only 1 week of storage of the liquid formulation at 40°C. In contrast, upon lyophilization, no additional deamidation after 4 weeks at 40°C and no detectable changes in DNI structure or reduction in immunogenicity after 16 weeks at 40°C were observed. Vaccines containing aluminum hydroxide and GLA elicited higher immune responses than vaccines adjuvanted with only aluminum hydroxide, with more mice responding to a single dose. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Adsorption performance of magnesium/aluminum layered double hydroxide nanoparticles for metronidazole from aqueous s

    Directory of Open Access Journals (Sweden)

    Mohammad Noori Sepehr

    2017-07-01

    Full Text Available Magnesium/aluminum layered double hydroxide (LDH nanoparticles were synthesized by hydrolyzing urea and used to remove metronidazole (MN from aqueous solution. The surface morphology images of the LDH nanoparticles showed that the adsorbent surface consisted of hexagonal nanosheets with a diameter of 200–1000 nm. The MN removal efficiency was strongly dependent on the solution pH ranging from 3 to 9. The addition of nitrate, sulfate, and carbonate did not remarkably affect MN adsorption, while hardness slightly improved MN removal efficiency. The adsorption isotherm data could be well described using the Sips equation. The analysis of kinetic data showed that the adsorption of MN onto LDH closely followed the Avrami model and that several kinetic processes may control the rate of sorption. The adsorption process was non-spontaneous and exothermic in nature. The maximum Langmuir adsorption capacity was 62.804 mg/g, demonstrating that LDH is an efficient adsorbent that can be used for the removal of MN compounds.

  2. Heavy metal ion removal by thiol functionalized aluminum oxide hydroxide nanowhiskers

    Science.gov (United States)

    Xia, Zhiyong; Baird, Lance; Zimmerman, Natasha; Yeager, Matthew

    2017-09-01

    In this study, we developed a cost effective method of using thiol functionalized γ-aluminum oxide hydroxide (γ-AlOOH) filters for removing three key heavy metals from water: mercury, lead, and cadmium under non-concomitant conditions. Compared to non-thiol treated γ-AlOOH filters, the introduction of thiol functional groups greatly improved the heavy metal removal efficiency under both static and dynamic filtration conditions. The adsorption kinetics of thiol functionalized γ-AlOOH were investigated using the Lagergren first order and pseudo-second order kinetics models; whereas the isothermal adsorption behavior of these membranes was revealed through the Langmuir and Freundlich models. Heavy metal concentration was quantified by Inductively Coupled Plasma-Mass Spectroscopy, and the thiol level on γ-AlOOH surface was measured by a colorimetric assay using Ellman's reagent. X-ray photoelectron spectroscopy was used to further address the surface sulfur state on the membranes after heavy metal exposure. Mechanisms for heavy metal adsorption were also discussed.

  3. Recovery of Lithium from Geothermal Brine with Lithium-Aluminum Layered Double Hydroxide Chloride Sorbents.

    Science.gov (United States)

    Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi; Hoke, Thomas; Ucar, Huseyin; Moyer, Bruce A; Harrison, Stephen

    2017-11-21

    We report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloride from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ∼91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. The present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.

  4. Ionic elastomers based on carboxylated nitrile rubber (XNBR and magnesium aluminum layered double hydroxide (hydrotalcite

    Directory of Open Access Journals (Sweden)

    A. Laskowska

    2014-06-01

    Full Text Available The presence of carboxyl groups in carboxylated nitrile butadiene rubber (XNBR allows it to be cured with different agents. This study considers the effect of crosslinking of XNBR by magnesium aluminum layered double hydroxide (MgAl-LDH, known also as hydrotalcite (HT, on rheometric, mechano-dynamical and barrier properties. Results of XNBR/HT composites containing various HT loadings without conventional curatives are compared with XNBR compound crosslinked with commonly used zinc oxide. Hydrotalcite acts as an effective crosslinking agent for XNBR, as is particularly evident from rheometric and Fourier transform infrared spectroscopy (FTIR studies. The existence of ionic crosslinks was also detected by dynamic mechanical analysis (DMA of the resulting composites. DMA studies revealed that the XNBR/HT composites exhibited two transitions – one occurring at low temperature is associated to the Tg of elastomer and the second at high temperature corresponds to the ionic transition temperature Ti. Simultaneous application of HT as a curing agent and a filler may deliver not only environmentally friendly, zinc oxide-free rubber product but also ionic elastomer composite with excellent mechanical, barrier and transparent properties.

  5. Characterization of alumina obtained from the synthesis of gelatinous precipitates of aluminum hydroxide obtained from the reaction of aluminum sulfate and ammonium hydroxide in different temperatures; Caracterizacao de aluminas obtidas a partir da sintese de precipitados gelatinosos de hidroxido de aluminio obtidos pela reacao de sulfato de aluminio e hidroxido de amonio em diferentes temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Mercury, Jose Manuel Rivas [Centro Federal de Educacao Tecnologica do Maranhao (CEFET), Sao Luiz, MA (Brazil); Freitas Neves, R. de [Para Univ., Belem, Pa (Brazil). Dept. de Engenharia Quimica

    1996-07-01

    Aluminum hydroxide was obtained by synthesis through neutralization of solutions aluminum sulphate solutions with ammonium hydroxide at different level of temperatures of synthesis (30, 60, 90 deg C) on the molar [OH]/[Al{sup +3}] of 6,5. All products was burned at 950 deg C during two hours of dried aluminum hydroxide powder. Alumina obtained and A-16SG, APC-2011, produced by Alcoa Co. was characterized by Bulk Density, Tap density, Real Density, Particle Size Distribution, X-Ray Diffractions and Chemical Analysis and both compared. (author) 11 refs., 3 figs., 3 tabs.

  6. Interfacial engineering of renewable metal organic framework derived honeycomb-like nanoporous aluminum hydroxide with tunable porosity.

    Science.gov (United States)

    Pan, Ye-Tang; Zhang, Lu; Zhao, Xiaomin; Wang, De-Yi

    2017-05-01

    Novel honeycomb-like mesoporous aluminum hydroxide (pATH) was synthesized via a facile one-step reaction by employing ZIF-8 as a template. This self-decomposing template was removed automatically under acidic conditions without the need for any tedious or hazardous procedures. Meanwhile, the pore size of pATH was easily modulated by tuning the dimensions of the ZIF-8 polyhedrons. Of paramount importance was the fact that the dissolved ZIF-8 in solution was regenerated upon deprotonation of the ligand under mild alkali conditions, and was reused in the preparation of pATH, thus forming a delicate synthesis cycle. The renewable template conferred cost-effective and sustainable features to the as-synthesized product. As a proof-of-concept application, the fascinating nanoporous structure enabled pATH to load more phosphorous-containing flame retardant and endowed better interaction with epoxy resin over that of commercial aluminum hydroxide. The limiting oxygen index, UL-94 vertical burning test and cone calorimeter test showed that the results of epoxy with the modified pATH rivalled those of epoxy with two times the loading amount of the commercial counterpart, while the former presented better mechanical properties. The proposed "amorphous replica method" used in this work will advance the potential for launching a vast area of research and technology development for the preparation of porous metal hydroxides for use in practical applications.

  7. Impacts of Surface Site Coordination on Arsenate Adsorption: Macroscopic Uptake and Binding Mechanisms on Aluminum Hydroxide Surfaces.

    Science.gov (United States)

    Xu, Tingying; Catalano, Jeffrey G

    2016-12-13

    Aluminum hydroxides play important roles in regulating the fate and transport of contaminants and nutrients in soils and aquatic systems. Like many metal oxides, these minerals display surface functional groups in a series of coordination states, each of which may differ in its affinity for adsorbates. The distribution of functional group types varies among distinct surfaces of aluminum hydroxides, and we thus hypothesize that the adsorption behavior and mechanisms will show a dependence on particle morphology. To test this hypothesis, we investigate arsenate adsorption on two aluminum hydroxide polymorphs with distinct particle morphologies, gibbsite [γ-Al(OH) 3 ] and bayerite [α-Al(OH) 3 ], at pH 4 and 7. Synthetic gibbsite platelets expose large (001) basal surfaces predicted to be terminated by doubly coordinated functional groups (>Al 2 OH). In contrast, synthetic bayerite microrods display mainly edge surfaces (parallel to the c axis) containing abundant singly coordinated functional groups (>AlOH 2 ). Macroscopic adsorption studies show that gibbsite adsorbs less arsenate per unit surface area than bayerite at both pH values and suggest that two surface complexes form on each material. Similar electrokinetic behavior is displayed at the same relative coverages of arsenate, suggesting that similar reactive surface groups (>AlOH 2 ) control the surface charging on both particles. EXAFS spectroscopy shows that there is no variation in arsenate surface speciation on a given mineral with surface coverage or pH. Whereas bidentate binuclear inner-sphere species are the dominant complexes present, the EXAFS result suggest that outer-sphere species also occur on both minerals, with a greater abundance on gibbsite. This binding mode likely involves adsorption to >Al 2 OH sites, which have a slow ligand exchange rate that inhibits inner-sphere binding. These results demonstrate that adsorption mechanisms and capacity, even when normalized for specific surface area

  8. Protective efficacy of recombinant urease B and aluminum hydroxide against Helicobacter pylori infection in a mouse model

    OpenAIRE

    Bégué, Rodolfo E; Sadowska-Krowicka, Halina

    2010-01-01

    Efforts are underway for the development of an effective vaccine against Helicobacter pylori infection. We prepared recombinant full length (568 aa) Helicobacter pylori urease B protein (rUreB) and tested it for immunogenicity and protection. BALB/c mice received either rUreB (40 μg) plus CpG (10 μg) intranasally, rUreB (50 μg) plus 3% aluminum hydroxide (50 μL) intramuscularly or rUreB (25 μg) plus Freund’s adjuvant (25 μL) subcutaneously, three times (week 0, 2 and 6). Intranasal rUreB plus...

  9. Crystallization of aluminum hydroxide in the aluminum-air battery: Literature review, crystallizer design and results of integrated system tests

    Science.gov (United States)

    Maimoni, A.

    1988-03-01

    The literature on aluminum trihydroxide crystallization is reviewed and the implications of crystallization on the design and performance of the aluminum-air battery are illustrated. Results of research on hydrargillite crystallization under battery operating conditions at Alcoa Laboratories, Alcan Kingston Laboratories, and Lawrence Livermore National Laboratory are summarized and are applied to the design of an electrolyte management system using lamella settlers for clarification of the electrolyte and product separation. The design principles were validated in a series of experiments that, for the first time in the aluminum-air program, demonstrated continuous operation of an integrated system consisting of cells, crystallizer, and a product-removal system.

  10. Surface modification of magnesium aluminum hydroxide nanoparticles with poly(methyl methacrylate) via one-pot in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaojun, E-mail: guoxj6906@163.com [College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070 (China); Zhao Leihua; Zhang Li; Li Jing [College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070 (China)

    2012-01-15

    Hydrophobic magnesium aluminum hydroxide composite particles (PMMA-MAH) were obtained by means of grafting poly(methyl methacrylate) (PMMA) onto the surface of magnesium aluminum hydroxide(MAH) nanoparticles after a novel type of phosphate coupling agent (DN-27) modification. The introduction of functional double bonds was firstly conducted on the surface of nanoparticles by DN-27 modification, followed by one-pot in situ polymerization on the particles surface using methyl methacrylate (MMA) as monomer, azoisobutyronitrile (AIBN) as initiator and sodium dodecyl sulfate (SDS) as stabilizer to graft PMMA on the surface of DN-27-modified MAH particles. The obtained composite particles were characterized by field-emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD). The results show that the organic macromolecule PMMA could be successfully grafted on the surface of DN-27-modified MAH nanoparticles and the thermal stability of the PMMA-MAH composite particles had been improved. Compared with unmodified blank MAH sample, the product obtained with this method possesses better hydrophobic properties such as a higher water contact angle of 108 Degree-Sign and a well dispersion.

  11. Acceptance testing of the eddy current probes for measurement of aluminum hydroxide coating thickness on K West Basin fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Pitner, A.L.

    1998-08-21

    During a recent visual inspection campaign of fuel elements stored in the K West Basin, it was noted that fuel elements contained in sealed aluminum canisters had a heavy translucent type coating on their surfaces (Pitner 1997a). Subsequent sampling of this coating in a hot cell (Pitner 1997b) and analysis of the material identified it as aluminum hydroxide. Because of the relatively high water content of this material, safety related concerns are raised with respect to long term storage of this fuel in Multi-Canister Overpacks (MCOs). A campaign in the basin is planned to demonstrate whether this coating can be removed by mechanical brushing (Bridges 1998). Part of this campaign involves before-and-after measurements of the coating thickness to determine the effectiveness of coating removal by the brushing machine. Measurements of the as-deposited coating thickness on multiple fuel elements are also expected to provide total coating inventory information needed for MCO safety evaluations. The measurement technique must be capable of measuring coating thicknesses on the order of several mils, with a measurement accuracy of 0.5 mil. Several different methods for quantitatively measuring these thin coatings were considered in selecting the most promising approach. Ultrasonic measurement was investigated, but it was determined that due to the thin coating depth and the high water content of the material, the signal would likely pass directly through to the cladding without ever sensing the coating surface. X-ray fluorescence was also identified as a candidate technique, but would not work because the high gamma background from the irradiated fuel would swamp out the low energy aluminum signal. Laser interferometry could possibly be applied, but considerable development would be required and it was considered to be high risk on a short term basis. The consensus reached was that standard eddy current techniques for coating thickness measurement had the best chance for

  12. Technology Readiness Evaluation For Aluminum Removal And Sodium Hydroxide Regenration From Hanford Tank Waste By Lithium Hydrotalcite Precipitation

    International Nuclear Information System (INIS)

    Sams, T.L.; Massie, H.L.

    2011-01-01

    A Technology Readiness Evaluation (TRE) performed by AREV A Federal Services, LLC (AFS) for Washington River Protection Solutions, LLC (WRPS) shows the lithium hydrotalcite (LiHT) process invented and patented (pending) by AFS has reached an overall Technology Readiness Level (TRL) of 3. The LiHT process removes aluminum and regenerates sodium hydroxide. The evaluation used test results obtained with a 2-L laboratory-scale system to validate the process and its critical technology elements (CTEs) on Hanford tank waste simulants. The testing included detailed definition and evaluation for parameters of interest and validation by comparison to analytical predictions and data quality objectives for critical subsystems. The results of the TRE would support the development of strategies to further mature the design and implementation of the LiHT process as a supplemental pretreatment option for Hanford tank waste.

  13. Direct growth of cobalt aluminum double hydroxides on graphene nanosheets and the capacitive properties of the resulting composites

    International Nuclear Information System (INIS)

    Kim, Yuna; Kim, Seok

    2015-01-01

    We synthesized graphene nanosheets (GNs)/cobalt aluminum (CoAl) double hydroxide composites through a layer-by-layer deposition process while varying the concentration of the graphene precursor used. The CoAl layered double hydroxide particles were uniformly distributed on the surfaces of the graphene layers and effectively prevented the agglomeration of the GNs, resulting in a higher reactive surface area and easier ion transport. We employed X-ray diffraction analysis, energy-dispersive X-ray spectroscopy, field-emission scanning electron microscopy, and field-emission transmission electron microscopy to investigate the microstructures and morphologies of the composites. In addition, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge measurements were performed to analyze the electrochemical behaviors of the composites. The as-prepared composites showed desirable electrochemical characteristics, including high specific capacitances, low resistances, and high cycling stabilities. In particular, the composite formed by optimizing the GNs/CoAl ratio (the electrolyte used was a 6 M aqueous KOH solution) exhibited the maximum specific capacitance, which was 974 F g −1

  14. Structural Investigation of Zn(II) Insertion in Bayerite an Aluminum Hydroxide

    DEFF Research Database (Denmark)

    Puschparaj, Suraj S. C.; Jensen, Nicholai Daugaard; Forano, Claude

    2016-01-01

    Bayerite was treated under hydrothermal conditions (120, 130, 140, and 150 °C) in order to prepare a series of layered double hydroxides (LDHs) with an ideal composition of ZnAl4(OH)12(SO4)0.5nH2O (ZnAl4-LDHs). These products were investigated by both bulk techniques (PXRD, TEM, and elemental an...

  15. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    International Nuclear Information System (INIS)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-01-01

    Graphical abstract: - Highlights: • Flaky aluminum pigments were modified with cerium nitrate salt. • pH value of 3.0 was chosen as the optimized pH for the cerium solution. • Corrosion resistance of the pigment significantly increased after modification. • Alkaline pre-treatment prior to modification affected the cerium layer performance. - Abstract: The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce 2 O 3 and CeO 2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  16. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Niroumandrad, S. [Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Rostami, M. [Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir [Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of)

    2015-12-01

    Graphical abstract: - Highlights: • Flaky aluminum pigments were modified with cerium nitrate salt. • pH value of 3.0 was chosen as the optimized pH for the cerium solution. • Corrosion resistance of the pigment significantly increased after modification. • Alkaline pre-treatment prior to modification affected the cerium layer performance. - Abstract: The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce{sub 2}O{sub 3} and CeO{sub 2} was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  17. Evaluation of Hydroxyl Ion Diffusion in Dentin and Injectable Forms and a Simple Powder-Water Calcium Hydroxide Paste: An in Vitro Study

    OpenAIRE

    Eftekhar, Behrooz; Moghimipour, Eskandar; Eini, Ebrahim; Jafarzadeh, Mansour; Behrooz, Narges

    2014-01-01

    Background: Intra canal medicaments are used to reduce the number of bacteria and reinfection in endodontic procedures. Calcium Hydroxide was introduced to endodontics by Herman as an intracanal antimicrobial agent. Objectives: The aim of this study was to present an injectable formulation of calcium hydroxide then compare the final pH of this new formulation with Metapaste and evaluate the effect of a mixture of Calcium Hydroxide powder with water on human extracted teeth. Patients and Metho...

  18. Kinetics of the inflammatory response following intramuscular injection of aluminum adjuvant.

    Science.gov (United States)

    Lu, Fangjia; Hogenesch, Harm

    2013-08-20

    Aluminum-containing adjuvants are widely used in human and veterinary vaccines, but their mechanism of action is not well understood. Recent evidence suggests an important role for inflammation in the immune response to aluminum-adjuvanted vaccines. To better understand this process, vaccines with aluminum adjuvant were injected into naïve or previously immunized mice and the injection sites were characterized for the corresponding primary and secondary inflammatory response at different time points after immunization. Inflammatory cells appeared at the injection site between 2h and 6h after vaccination, dominated by neutrophils at first, followed by macrophages, and later eosinophils and MHCII(+) cells. The number of cells at the injection site increased over time, except neutrophils, which decreased in number after day 2. There was extensive phagocytosis of aluminum adjuvant particles by macrophages. In secondary immunized mice, a faster and more robust recruitment of eosinophils, macrophages, and antigen presenting cells was observed at the injection site. The enhanced recruitment of inflammatory cells in previously immunized mice coincided with increased expression of relevant chemokines at the injection site. Since neutrophils accumulated first in response to aluminum-adjuvanted vaccines, their role was evaluated by depleting them prior to vaccination. Neutrophil depletion transiently reduced the recruitment of macrophages but it did not change the recruitment of eosinophils and MHCII(+) cells or the quality and magnitude of the antibody response. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Structural Characterization of Aluminum (Oxy)hydroxide Films at the Muscovite (001)-Water Interface.

    Science.gov (United States)

    Lee, Sang Soo; Schmidt, Moritz; Fister, Timothy T; Nagy, Kathryn L; Sturchio, Neil C; Fenter, Paul

    2016-01-19

    The formation of Al (oxy)hydroxide on the basal surface of muscovite mica was investigated to understand how the structure of the substrate controls the nucleation and growth of secondary phases. Atomic force microscopy images showed that solid phases nucleated on the surface initially as two-dimensional islands that were ≤10 Å in height and ≤200 Å in diameter after 16-50 h of reaction in a 100 μM AlCl3 solution at pH 4.2 at room temperature. High-resolution X-ray reflectivity data indicated that these islands were gibbsite layers whose basic unit is composed of a plane of Al ions octahedrally coordinated to oxygen or hydroxyl groups. The formation of gibbsite layers is likely favored because of the structural similarity between its basal plane and the underlying mica surface. After 700-2000 h of reaction, a thicker and continuous film had formed on top of the initial gibbsite layers. X-ray diffraction data showed that this film was composed of diaspore that grew predominantly with its [040] and [140] crystallographic directions oriented along the muscovite [001] direction. These results show the structural characteristics of the muscovite (001) and Al (oxy)hydroxide film interface where presumed epitaxy had facilitated nucleation of metastable gibbsite layers which acted as a structural anchor for the subsequent growth of thermodynamically stable diaspore grown from a mildly acidic and Al-rich solution.

  20. Aluminum Removal And Sodium Hydroxide Regeneration From Hanford Tank Waste By Lithium Hydrotalcite Precipitation Summary Of Prior Lab-Scale Testing

    International Nuclear Information System (INIS)

    Sams, T.L.; Guillot, S.

    2011-01-01

    Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

  1. Inorganic particulates in removal of toxic heavy metal ions: Part-X. removal behaviour of aluminum hydroxide for Hg(II) - a radiotracer study

    International Nuclear Information System (INIS)

    Mishra, S.P.; Tiwari, Diwakar; Prasad, S.K.; Dubey, R.S.; Mishra, Manisha

    2006-01-01

    The present paper deals with a study on the removal behaviour of amorphous-type aluminum hydroxide for Hg(II) at micro to tracer level concentrations from aqueous solutions by employing the radiotracer technique. The solid/solution interface study was carried out for various physico-chemical parameters, e.g., effect of concentration, temperature and pH. The effect of the presence of several added cations/anions towards its removal behaviour was also assessed

  2. New proteoliposome vaccine formulation from N. meningitidis serogroup B, without aluminum hydroxide, retains its antimeningococcal protectogenic potential as well as Th-1 adjuvant capacity

    OpenAIRE

    Tamargo, Beatriz; Márquez, Yanet; Ramírez, Wendy; Cedré, Bárbara; Fresno, Manuel; Sierra, Gustavo

    2013-01-01

    Proteoliposomes purified from the Outer Membrane of Neisseria meningitidis B, have been successfully used as core for adjuvants and vaccine formulations. We have tried to increase their structural definition and to conserve their efficacy and stability avoiding the addition of the aluminum hydroxide to the final formulation. Liposomal particle systems were prepared from components of defined molecular structure, such as a Neisseria meningitidis B protein complex, extracted and purified withou...

  3. Inorganic particulates in removal of toxic heavy metal ions. Part 10. Removal behavior of aluminum hydroxide for Hg(II). A radiotracer study

    International Nuclear Information System (INIS)

    Mishra, S.P.; Tiwari, D.; Prasad, S.K.; Dubey, R.S.; Manisha Mishra

    2007-01-01

    The removal behavior of amorphous aluminum hydroxide for Hg(II) ions from aqueous solutions was investigated by employing a radiotracer technique at micro down to trace level concentrations. The batch type experiments were performed to obtain various physico-chemical parameters, viz., effect of sorptive concentration, temperature and pH. It was observed that the increase in sorptive concentration (from 1 x 10 -8 to 1 x 10 -2 mol x dm -3 ), temperature (from 303 to 333 K) and pH (from 3.4 to 10.3) apparently favored the uptake of Hg(II) by this solid. Similarly, the presence of anions (six fold) viz., oxalate, phosphate, glycine and EDTA also enhanced the uptake behavior of aluminum hydroxide for Hg(II). Whereas, the added cations viz., Na + , K + , Ba 2+ , Sr 2+ , Mg 2+ , Cd 2+ and Fe 3+ more or less suppressed the removal behavior of the adsorbent. Further, the adsorption process followed the classical Freundlich adsorption isotherm and deductions of various thermodynamic data revealed that the uptake of Hg(II) on aluminum hydroxide followed the ion-exchange type mechanism and thermodynamically it was found to be endothermic in nature. (author)

  4. Removal of fluoride from drinking water using aluminum hydroxide coated activated carbon prepared from bark of Morinda tinctoria

    Science.gov (United States)

    Amalraj, Augustine; Pius, Anitha

    2017-10-01

    The aim of this study is to design and develop a novel cost effective method for fluoride removal, applicable to rural areas of developing countries. Adsorption is widely considered as one of the appropriate technologies for water defluoridation. This study investigates the feasibility of using low-cost biomass based activated carbon from the bark of Morinda tinctoria coated with aluminum hydroxide (AHAC) for water defluoridation, at neutral pH range. Characterization of AHAC was done through IR, SEM with EDAX studies before and after fluoride treatment. The fluoride adsorption capacity of AHAC as a function of contact time, pH and initial fluoride concentration was investigated. The role of co-existing interfering ions also was studied. The isotherm and kinetic models were used to understand the nature of the fluoride adsorption onto AHAC. Freundlich isotherm and intra-particle diffusion were the best-fitting models for the adsorption of fluoride on AHAC. Fluoride adsorption kinetics well fitted with pseudo-second order model. The results showed excellent fluoride adsorption capacity was found to be 26.03 mg g-1 at neutral pH.

  5. Effect of Ammonium Polyphosphate to Aluminum Hydroxide Mass Ratio on the Properties of Wood-Flour/Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2017-11-01

    Full Text Available Two halogen-free inorganic flame retardants, ammonium polyphosphate (APP and aluminum hydroxide (ATH were added to wood-flour/polypropylene composites (WPCs at different APP to ATH mass ratios (APP/ATH ratios, with a constant total loading of 30 wt % (30% by mass. Water soaking tests indicated a low hygroscopicity and/or solubility of ATH as compared to APP. Mechanical property tests showed that the flexural properties were not significantly affected by the APP/ATH ratio, while the impact strength appeared to increase with the increasing ATH/APP ratio. Cone calorimetry indicated that APP appeared to be more effective than ATH in reducing the peak of heat release rate (PHRR. However, when compared to the neat WPCs, total smoke release decreased with the addition of ATH but increased with the addition of APP. Noticeably, WPCs containing the combination of 20 wt % APP and 10 wt % ATH (WPC/APP-20/ATH-10 showed the lowest PHRR and total heat release in all of the formulations. WPCs combustion residues were analyzed by scanning electron microscopy, laser Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR. Thermogravimetric analysis coupled with FTIR spectroscopy was used to identify the organic volatiles that were produced during the thermal decomposition of WPCs. WPC/APP-20/ATH-10 showed the most compact carbonaceous residue with the highest degree of graphitization.

  6. Effects of Ni(2+) on aluminum hydroxide scale formation and transformation on a simulated drinking water distribution system.

    Science.gov (United States)

    Wang, Wendong; Song, Shan; Zhang, Xiaoni; Mitchell Spear, J; Wang, Xiaochang; Wang, Wen; Ding, Zhenzhen; Qiao, Zixia

    2014-07-01

    Observations of aluminum containing sediments/scales formed within the distribution pipes have been reported for several decades. In this study, the effect of Ni(2+) on the formation and transformation processes of aluminum hydroxide sediment in a simulated drinking water distribution system were investigated using X-ray diffraction spectrum (XRD), Fourier transform infrared spectrum (FT-IR), scanning electron microscope (SEM), and thermodynamic calculation methods. It was determined that the existence of Ni(2+) had notable effects on the formation of bayerite. In the system without Ni(2+) addition, there was no X-ray diffraction signal observed after 400 d of aging. The presence of Ni(2+), however, even when present in small amounts (Ni/Al=1:100) the formation of bayerite would occur in as little as 3d at pH 8.5. As the molar ratio of Ni/Al increase from 1:100 to 1:10, the amount of bayerite formed on the pipeline increased further; meanwhile, the specific area of the pipe scale decreased from 160 to 122 m(2)g(-1). In the system with Ni/Al molar ratio at 1:3, the diffraction spectrum strength of bayerite became weaker, and disappeared when Ni/Al molar ratios increased above 1:1. At these highs Ni/Al molar ratios, Ni5Al4O11⋅18H2O was determined to be the major component of the pipe scale. Further study indicated that the presence of Ni(2+) promoted the formation of bayerite and Ni5Al4O11⋅18H2O under basic conditions. At lower pH (6.5) however, the existence of Ni(2+) had little effect on the formation of bayerite and Ni5Al4O11⋅18H2O, rather the adsorption of amorphous Al(OH)3 for Ni(2+) promoted the formation of crystal Ni(OH)2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts

    Science.gov (United States)

    Willhite, Calvin C.; Karyakina, Nataliya A.; Yokel, Robert A.; Yenugadhati, Nagarajkumar; Wisniewski, Thomas M.; Arnold, Ian M. F.; Momoli, Franco; Krewski, Daniel

    2016-01-01

    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al” assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+2 and Al(H2O)6+3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2•− and OH•. Thus, it is the Al+3-induced formation of oxygen radicals that accounts for the oxidative damage that

  8. Evaluation of precipitates used in strainer head loss testing: Part III. Long-term aluminum hydroxide precipitation tests in borated water

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Kasza, Ken E.; Shack, William J.; Natesan, Ken; Klein, Paul

    2011-01-01

    Research highlights: → Aluminum hydroxide precipitation boundary is similar to that for amorphous phase. → Various precipitation tests are combined into one map in temperature-'pH + p[Al] T '. → Flocculation tendency of precipitates depend on pH and total Al concentration. → DLVO theory explains qualitatively the dependency of flocculation tendency on pH. - Abstract: Long-term aluminum (Al) hydroxide precipitation tests were conducted in slightly alkaline solutions containing 2500 ppm boron. The solution temperature was cycled to obtain a temperature history more representative of emergency core cooling system temperatures after a loss-of-coolant accident. The observed Al precipitation boundary was close to predicted results for amorphous precipitates, which are higher than the solubility expected for crystalline forms. Bench-scale and loop head loss test results under various conditions were successfully combined into single map in a temperature - 'pH + p[Al] T ' domain, which yielded two bounding lines for Al hydroxide solubility in borated alkaline water that depend on whether or not loop head loss tests with Al alloy coupons are included. Precipitates were observed to form either as fine, cloudy suspensions, which showed very little tendency to settle, or as flocculated precipitates. The flocculation tendency of the precipitates can be qualitatively explained by a colloid stability theory or a phase diagram for protein solutions.

  9. In-situ injection of potassium hydroxide into briquetted wheat straw and meadow grass - Effect on biomethane production.

    Science.gov (United States)

    Feng, Lu; Moset, Veronica; Li, Wanwu; Chen, Chang; Møller, Henrik Bjarne

    2017-09-01

    Alkaline pretreatment of lignocellulosic biomass has been intensively investigated but heavy water usage and environmental pollution from wastewater limits its industrial application. This study presents a pretreatment technique by in-situ injection of potassium hydroxide concentrations ranging from 0.8% to 10% (w/w) into the briquetting process of wheat straw and meadow grass. Results show that the biomethane yield and hydrolysis rate was improved significantly with a higher impact on wheat straw compared to meadow grass. The highest biomethane yield from wheat straw briquettes of 353mL.g -1 VS was obtained with 6.27% (w/w) potassium hydroxide injection, which was 14% higher than from untreated wheat straw. The hydrolysis rates of wheat straw and meadow grass increased from 4.27×10 -2 to 5.32×10 -2 d -1 and 4.19×10 -2 to 6.00×10 -2 d -1 , respectively. The low water usage and no wastewater production make this a promising technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The desorption of Phosphorous (32 P) fixed on iron and aluminum oxy-hydroxide surfaces by the soil microbial biomass

    International Nuclear Information System (INIS)

    Araujo, Lilian Maria Cesar de.

    1995-02-01

    This work determines whether the soil microbial biomass, with an ample supply of available C, can utilize P adsorber in the surfaces of oxy-hydroxides of Fe or Al of soil-P deficient soils. To simulate the surfaces of the natural Fe and Al compounds, synthetic oxy-hydroxides of Fe and Al, impregnated in strips of filter paper, and containing P tagged with 32 P, were used. (author). 60 refs., 7 figs., 7 tabs

  11. Bubble Formation at a Submerged Orifice for Aluminum Foams Produced by Gas Injection Method

    Science.gov (United States)

    Fan, Xueliu; Chen, Xiang; Liu, Xingnan; Zhang, Huiming; Li, Yanxiang

    2013-02-01

    The bubble formation at a submerged orifice in the process of aluminum foams produced by gas injection method is investigated. The experimental results show that the increase of the gas flow rate and the orifice diameter can lead to increasing of the bubble size. The large orifice can make the frequency of bubble formation decrease by slowing down the increase of the gas chamber pressure when the gas flow rate increases. The effect of the gas chamber volume on the bubble size can be ignored in the experiment when it expands from 1 to 125 cm3. A theoretical model of bubble formation, expansion, and detachment under constant flow conditions is established to predict the bubble size. The theoretical predictions for air-aluminum melt systems are consistent with the experimental results.

  12. Morphological Investigation of Foamed Aluminum Parts Produced by Melt Gas Injection

    Directory of Open Access Journals (Sweden)

    R. Surace

    2009-01-01

    Full Text Available Porous metal materials are a new class of materials with low densities, large specific surface, and novel physical and mechanical properties. Their applications are extremely varied: for light weight structural components, for filters and electrodes, and for shock or sound absorbing products. Recently, interesting foaming technology developments have proposed metallic foams as a valid commercial chance; foam manufacturing techniques include solid, liquid, or vapor state methods. The foams presented in this study are produced by Melt Gas Injection (MGI process starting from melt aluminum. The aim of this investigation is to obtain complex foamed aluminum parts in order to make the MGI more flexible. This new method, called MGI-mould process, makes possible to produce 3D-shaped parts with complicated shape or configuration using some moulds obtained by traditional investment casting process.

  13. Aluminum coprecipitates with Fe (hydr)oxides: Does isomorphous substitution of Al 3+ for Fe 3+ in goethite occur?

    Science.gov (United States)

    Bazilevskaya, Ekaterina; Archibald, Douglas D.; Aryanpour, Masoud; Kubicki, James D.; Martínez, Carmen Enid

    2011-08-01

    Iron (hydr)oxides are common in natural environments and typically contain large amounts of impurities, presumably the result of coprecipitation processes. Coprecipitation of Al with Fe (hydr)oxides occurs, for example, during alternating reduction-oxidation cycles that promote dissolution of Fe from Fe-containing phases and its re-precipitation as Fe-Al (hydr)oxides. We used chemical and spectroscopic analyses to study the formation and transformation of Al coprecipitates with Fe (hydr)oxides. In addition, periodic density functional theory (DFT) computations were performed to assess the structural and energetic effects of isolated or clustered Al atoms at 8 and 25 mol% Al substitution in the goethite structure. Coprecipitates were synthesized by raising the pH of dilute homogeneous solutions containing a range of Fe and Al concentrations (100% Fe to 100% Al) to 5. The formation of ferrihydrite in initial suspensions with ⩽20 mol% Al, and of ferrihydrite and gibbsite in initial suspensions with ⩾25 mol% Al was confirmed by infrared spectroscopic and synchrotron-based X-ray diffraction analyses. While base titrations showed a buffer region that corresponded to the hydrolysis of Fe in initial solutions with ⩽25 mol% Al, all of the Al present in these solutions was retained by the solid phases at pH 5, thus indicating Al coprecipitation with the primary Fe hydroxide precipitate. In contrast, two buffer regions were observed in solutions with ⩾30 mol% Al (at pH ˜2.25 for Fe 3+ and at pH ˜4 for Al 3+), suggesting the formation of Fe and Al (hydr)oxides as two separate phases. The Al content of initial coprecipitates influenced the extent of ferrihydrite transformation and of its transformation products as indicated by the presence of goethite, hematite and/or ferrihydrite in aged suspensions. DFT experiments showed that: (i) optimized unit cell parameters for Al-substituted goethites (8 and 25 mol% Al) in clustered arrangement (i.e., the formation of diaspore

  14. Effect of single flame retardant aluminum tri-hydroxide and boric acid against inflammability and biodegradability of recycled PP/KF composites

    Science.gov (United States)

    Suharty, Neng Sri; Dihardjo, Kuncoro; Handayani, Desi Suci; Firdaus, Maulidan

    2016-03-01

    Composites rPP/DVB/AA/KF had been reactively synthesized in melt using starting material: recycled polypropylene (rPP), kenaf fiber (KF), multifunctional compound acrylic acid (AA), compatibilizer divinyl benzene (DVB). To improve the inflammability of composites, single flame retardant aluminum tri-hydroxide (ATH) and boric acid (BA) as an additive was added. The inflammability of the composites was tested according to ASTM D635. By using 20% ATH and 5% BA additive in the composites it is effectively inhibiting its time to ignition (TTI). Its burning rate (BR) can be reduced and its heat realease (%HR) decreases. The biodegradability of composites was quantified by its losing weight (LW) of composites after buried for 4 months in the media with rich cellulolytic bacteria. The result shows that the LW of composites in the presence 20% ATH and 5% BA is 6.3%.

  15. Surface topographic characterization for polyamide composite injection molds made of aluminum and copper alloys.

    Science.gov (United States)

    Pereira, A; Hernández, P; Martinez, J; Pérez, J A; Mathia, T G

    2014-01-01

    In order to ensure flexibility and rapid new product development, the mold industry made use of soft materials for cavity inserts in injection molds. However, materials of this kind are prone to wear. This article analyzes the topographic characterization of the surface and wear processes in injection molds cavities. Two materials have been used to produce the cavities: aluminum alloy EN AW‐6082 T4 and copper alloy Cu Zn39 Pb3. The surface topography was measured with the use of optical interferometry profiling technology; roughness and surface parameters were determined according to ISO 4287, ISO 25178, and EUR 15178N. In order to complete this research, an experimental part with different thicknesses and shapes was designed, and cavity inserts of aluminum and copper were made. Polyamide PA6, with 30% fiberglass reinforcement, was employed in the experimental procedure. Measurements of cavity mold surfaces were performed after 9,200 cycles on each mold and at different locations on the mold. The surface measurement was made with a white light vertical scanning interferometry, also known as coherence scanning interferometry (ISO DIS 25178‐604). The results are analyzed and differences between the two types of cavity inserts materials are discussed. © Wiley Periodicals, Inc.

  16. Highly delayed systemic translocation of aluminum-based adjuvant in CD1 mice following intramuscular injections.

    Science.gov (United States)

    Crépeaux, Guillemette; Eidi, Housam; David, Marie-Odile; Tzavara, Eleni; Giros, Bruno; Exley, Christopher; Curmi, Patrick A; Shaw, Christopher A; Gherardi, Romain K; Cadusseau, Josette

    2015-11-01

    Concerns regarding vaccine safety have emerged following reports of potential adverse events in both humans and animals. In the present study, alum, alum-containing vaccine and alum adjuvant tagged with fluorescent nanodiamonds were used to evaluate i) the persistence time at the injection site, ii) the translocation of alum from the injection site to lymphoid organs, and iii) the behavior of adult CD1 mice following intramuscular injection of alum (400 μg Al/kg). Results showed for the first time a strikingly delayed systemic translocation of adjuvant particles. Alum-induced granuloma remained for a very long time in the injected muscle despite progressive shrinkage from day 45 to day 270. Concomitantly, a markedly delayed translocation of alum to the draining lymph nodes, major at day 270 endpoint, was observed. Translocation to the spleen was similarly delayed (highest number of particles at day 270). In contrast to C57BL/6J mice, no brain translocation of alum was observed by day 270 in CD1 mice. Consistently neither increase of Al cerebral content, nor behavioral changes were observed. On the basis of previous reports showing alum neurotoxic effects in CD1 mice, an additional experiment was done, and showed early brain translocation at day 45 of alum injected subcutaneously at 200 μg Al/kg. This study confirms the striking biopersistence of alum. It points out an unexpectedly delayed diffusion of the adjuvant in lymph nodes and spleen of CD1 mice, and suggests the importance of mouse strain, route of administration, and doses, for future studies focusing on the potential toxic effects of aluminum-based adjuvants. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Atomic layer deposition as pore diameter adjustment tool for nanoporous aluminum oxide injection molding masks.

    Science.gov (United States)

    Miikkulainen, Ville; Rasilainen, Tiina; Puukilainen, Esa; Suvanto, Mika; Pakkanen, Tapani A

    2008-05-06

    The wetting properties of polypropylene (PP) surfaces were modified by adjusting the dimensions of the surface nanostructure. The nanostructures were generated by injection molding with nanoporous anodized aluminum oxide (AAO) as the mold insert. Atomic layer deposition (ALD) of molybdenum nitride film was used to control the pore diameters of the AAO inserts. The original 50-nm pore diameter of AAO was adjusted by depositing films of thickness 5, 10, and 15 nm on AAO. Bis(tert-butylimido)-bis(dimethylamido)molybdenum and ammonia were used as precursors in deposition. The resulting pore diameters in the nitride-coated AAO inserts were 40, 30, and 20 nm, respectively. Injection molding of PP was conducted with the coated inserts, as well as with the non-coated insert. Besides the pore diameter, the injection mold temperature was varied with temperatures of 50, 70, and 90 degrees C tested. Water contact angles of PP casts were measured and compared with theoretical contact angles calculated from Wenzel and Cassie-Baxter theories. The highest contact angle, 140 degrees , was observed for PP molded with the AAO mold insert with 30-nm pore diameter. The Cassie-Baxter theory showed better fit than the Wenzel theory to the experimental values. With the optimal AAO mask, the nanofeatures in the molded PP pieces were 100 nm high. In explanation of this finding, it is suggested that some sticking and stretching of the nanofeatures occurs during the molding. Increase in the mold temperature increased the contact angle.

  18. Evaluation of Hydroxyl Ion Diffusion in Dentin and Injectable Forms and a Simple Powder-Water Calcium Hydroxide Paste: An in Vitro Study

    Science.gov (United States)

    Eftekhar, Behrooz; Moghimipour, Eskandar; Eini, Ebrahim; Jafarzadeh, Mansour; Behrooz, Narges

    2014-01-01

    Background: Intra canal medicaments are used to reduce the number of bacteria and reinfection in endodontic procedures. Calcium Hydroxide was introduced to endodontics by Herman as an intracanal antimicrobial agent. Objectives: The aim of this study was to present an injectable formulation of calcium hydroxide then compare the final pH of this new formulation with Metapaste and evaluate the effect of a mixture of Calcium Hydroxide powder with water on human extracted teeth. Patients and Methods: A total of 49 extracted human single-canal roots without caries and visible microcracks were included in this study. The teeth were decoronated and length of teeth was measured 1 mm anatomic apex. The canals were prepared using step-back technique. A cavity was created in the middle third of the buccal surface of all roots. The teeth were randomly divided into five groups: Group A (n = 15): In this group the root canals were filled with a mixture of calcium hydroxide powder and distilled water. Group B (n = 15): Included roots that were filled with Metapaste. Group C (n = 15): Root canals of this group were filled with new formulation of calcium hydroxide paste. Group D (negative control, n = 2): Included roots that were filled with a mixture of calcium hydroxide powder and distilled water. Group E (positive control, n = 2): Root canals of this group were filled with a mixture of calcium hydroxide powder and distilled water. Each tooth was immersed in a separate closed container with 4 mL saline for 2 weeks, pH of liquids were measured with an electrical pH meter after 7 and 14 days. The SPSS software (version 13) was used for data analysis. Analysis of variance (ANOVA) and Tukey tests were used for the statistical evaluation of results. Results: There was no significant difference at 7th day between the groups (P = 0.17) but at 14th day, a significant difference was observed between the groups (P = 0.04). Conclusions: The new formulation of calcium hydroxide with

  19. REPORT ON QUALITATIVE VALIDATION EXPERIMENTS USING LITHIUM-ALUMINUM LAYERED DOUBLE-HYDROXIDES FOR THE REDUCTION OF ALUMINUM FROM THE WASTE TREATMENT PLANT FEEDSTOCK

    International Nuclear Information System (INIS)

    Huber, H.J.; Duncan, J.B.; Cooke, G.A.

    2010-01-01

    A process for removing aluminum from tank waste simulants by adding lithium and precipitating Li-Al-dihydroxide (Lithiumhydrotalcite, (LiAl 2 (OH) 6 ) + X - ) has been verified. The tests involved a double-shell tank (DST) simulant and a single-shell tank (SST) simulant. In the case of the DST simulant, the product was the anticipated Li-hydrotalcite. For the SST simulant, the product formed was primarily Li-phosphate. However, adding excess Li to the solution did result in the formation of traces of Li-hydrotalcite. The Li-hydrotalcite from the DST supernate was an easily filterable solid. After four water washes the filter cake was a fluffy white material made of < 100 (micro)m particles made of smaller spheres. These spheres are agglomerates of ∼ 5 (micro)m diameter platelets with < 1 (micro)m thickness. Chemical and mineralogical analyses of the filtrate, filter cake, and wash waters indicate a removal of 90+ wt% of the dissolved Al for the DST simulant. For the SST simulant, the main competing reaction to the formation of lithium hydrotalcite appears to be the formation of lithium phosphate. In case of the DST simulant, phosphorus co-precipitated with the hydrotalcite. This would imply the added benefit of the removal of phosphorus along with aluminum in the pre-treatment part of the waste treatment and immobilization plant (WTP). For this endeavor to be successful, a serious effort toward process parameter optimization is necessary. Among the major issues to be addressed are the dependency of the reaction yield on the solution chemistry, as well as residence times, temperatures, and an understanding of particle growth.

  20. Effect of Alumina Nanoparticles on the Rheological Behavior of Aluminum-Binder Mixtures for Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Hassan Abdoos

    2014-10-01

    Full Text Available Preparation of appropriate powder-binder mixtures is the crucial step of powder injection molding process. Hence, the rheological properties of powder-binder mixture are important factors in production of sound parts using powder injection molding. Nowadays, the use of nanoparticles in powder injection molding is increasing due to the improved properties and dimensional precision of the final parts. On the other hand, nanoparticles can initiate problems such as agglomeration and loss of rheological properties and homogeneity. In the present study, the rheological behavior of aluminum mixtures containing nanoalumina particles was investigated. Two powder loadings of aluminum powder (54 vol% and 60 vol%, in which 0, 3, 6 and 9 wt% of aluminum was replaced with nanoalumina, were used. The powder systems were blended with the molten binder system in a banbury internal mixer and the rheological properties of the resulting mixtures were evaluated. All feedstocks showed pseudo-plastic behavior. The presence of nanoparticles increased the viscosity of feedstocks. Due to overwhelming particles cohesion by hydrodynamic forces, the viscosity of the mixtures decreased at high shear rates. Tap density results confirmed an improvement in packing compressibility of the mentioned powders. Shear rate sensitivity decreased with incorporation of nanoparticles into the mixtures. This phenomenon improved the injection capability through further reduction in viscosity.

  1. Measurements of Powder-Polymer Mixture Properties and Their Use in Powder Injection Molding Simulations for Aluminum Nitride

    Science.gov (United States)

    Kate, Kunal H.; Onbattuvelli, Valmikanathan P.; Enneti, Ravi K.; Lee, Shi W.; Park, Seong-Jin; Atre, Sundar V.

    2012-09-01

    Aluminum nitride has been favored for applications in manufacturing substrates for heat sinks due to its elevated temperature operability, high thermal conductivity, and low thermal expansion coefficient. Powder injection molding is a high-volume manufacturing technique that can translate these useful material properties into complex shapes. In order to design and fabricate components from aluminum nitride, it is important to know the injection-molding behavior at different powder-binder compositions. However, the lack of a materials database for design and simulation at different powder-polymer compositions is a significant barrier. In this paper, a database of rheological and thermal properties for aluminum nitride-polymer mixtures at various volume fractions of powder was compiled from experimental measurements. This database was used to carry out mold-filling simulations to understand the effects of powder content on the process parameters and defect evolution during the injection-molding process. The experimental techniques and simulation tools can be used to design new materials, select component geometry attributes, and optimize process parameters while eliminating expensive and time-consuming trial-and-error practices prevalent in the area of powder injection molding.

  2. Antituberculosis nanodelivery system with controlled-release properties based on para-amino salicylate–zinc aluminum-layered double-hydroxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2013-11-01

    Full Text Available Bullo Saifullah,1 Mohd Zobir Hussein,1 Samer Hasan Hussein-Al-Ali,2 Palanisamy Arulselvan,3 Sharida Fakurazi3,41Materials Synthesis and Characterization Laboratory, 2Laboratory of Molecular Biomedicine, 3Laboratory of Vaccines and Immunotherapeutics, 4Department of Human Anatomy, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaAbstract: We report the intercalation and characterization of para-amino salicylic acid (PASA into zinc/aluminum-layered double hydroxides (ZLDHs by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D and PASA nanocomposite prepared by an indirect method (PASA-I. Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours.Keywords: drug-delivery system, slow-release nanocarrier, tuberculosis, biocompatible nanocomposites

  3. Magnesium Hydroxide

    Science.gov (United States)

    Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...

  4. Characterization of injected aluminum oxide nanoparticle clouds in an rf discharge

    Science.gov (United States)

    Krüger, Harald; Killer, Carsten; Schütt, Stefan; Melzer, André

    2018-02-01

    An experimental setup to deagglomerate and insert nanoparticles into a radio frequency discharge has been developed to confine defined aluminum oxide nanoparticles in a dusty plasma. For the confined particle clouds we have measured the spatially resolved in situ size and density distributions. Implementing the whole plasma chamber into the sample volume of an FTIR spectrometer the infrared spectrum of the confined aluminum oxide nanoparticles has been obtained. We have investigated the dependency of the absorbance of the nanoparticles in terms of plasma power, pressure and cloud shape. The particles’ infrared phonon resonance has been identified.

  5. 229 nm UV LEDs on aluminum nitride single crystal substrates using p-type silicon for increased hole injection

    Science.gov (United States)

    Liu, Dong; Cho, Sang June; Park, Jeongpil; Seo, Jung-Hun; Dalmau, Rafael; Zhao, Deyin; Kim, Kwangeun; Gong, Jiarui; Kim, Munho; Lee, In-Kyu; Albrecht, John D.; Zhou, Weidong; Moody, Baxter; Ma, Zhenqiang

    2018-02-01

    AlGaN based 229 nm light emitting diodes (LEDs), employing p-type Si to significantly increase hole injection, were fabricated on single crystal bulk aluminum nitride (AlN) substrates. Nitride heterostructures were epitaxially deposited by organometallic vapor phase epitaxy and inherit the low dislocation density of the native substrate. Following epitaxy, a p-Si layer is bonded to the heterostructure. LEDs were characterized both electrically and optically. Owing to the low defect density films, large concentration of holes from p-Si, and efficient hole injection, no efficiency droop was observed up to a current density of 76 A/cm2 under continuous wave operation and without external thermal management. An optical output power of 160 μW was obtained with the corresponding external quantum efficiency of 0.03%. This study demonstrates that by adopting p-type Si nanomembrane contacts as a hole injector, practical levels of hole injection can be realized in UV light-emitting diodes with very high Al composition AlGaN quantum wells, enabling emission wavelengths and power levels that were previously inaccessible using traditional p-i-n structures with poor hole injection efficiency.

  6. Modeling of Macro-deformation Behavior of Thin-Walled Aluminum Foam by Gas Injection Method

    Science.gov (United States)

    Xiang, Chen; Ningzhen, Wang; Jianyu, Yuan; Yanxiang, Li; Huawei, Zhang; Yuan, Liu

    2017-07-01

    The favorable energy absorption characteristics of foam structures originate from their layer-by-layer deformation behavior. In this paper, the effects of cell morphology on the compressive performance of thin-walled aluminum foams were studied by a finite element method using a three-dimensional, thin-shell Kelvin tetrakaidecahedron model. Models with varying cell structure parameters were established so that the effects of relative density, cell size, cell wall thickness, and cell anisotropy on the plateau stress and energy absorption capacity of the foams could be investigated. Both the numerical deformation behavior and stress-strain curves of aluminum foams are found to have good agreement with the experimental results under quasi-static compressive loading. Moreover, the deformation behaviors of those foams with a certain anisotropy ratio are compared for different loading directions. The cell shape is a key factor affecting the plateau stress as well as the relative density.

  7. Aluminum Coprecipitates with Fe (hydr)oxides: Does Isomorphous Substitution of Al3plus for Fe3plus in Goethite Occur

    Energy Technology Data Exchange (ETDEWEB)

    E Bazilevskaya; D Archibald; M Aryanpour; J Kubicki; C Martinez

    2011-12-31

    Iron (hydr)oxides are common in natural environments and typically contain large amounts of impurities, presumably the result of coprecipitation processes. Coprecipitation of Al with Fe (hydr)oxides occurs, for example, during alternating reduction-oxidation cycles that promote dissolution of Fe from Fe-containing phases and its re-precipitation as Fe-Al (hydr)oxides. We used chemical and spectroscopic analyses to study the formation and transformation of Al coprecipitates with Fe (hydr)oxides. In addition, periodic density functional theory (DFT) computations were performed to assess the structural and energetic effects of isolated or clustered Al atoms at 8 and 25 mol% Al substitution in the goethite structure. Coprecipitates were synthesized by raising the pH of dilute homogeneous solutions containing a range of Fe and Al concentrations (100% Fe to 100% Al) to 5. The formation of ferrihydrite in initial suspensions with {<=}20 mol% Al, and of ferrihydrite and gibbsite in initial suspensions with {>=}25 mol% Al was confirmed by infrared spectroscopic and synchrotron-based X-ray diffraction analyses. While base titrations showed a buffer region that corresponded to the hydrolysis of Fe in initial solutions with {<=}25 mol% Al, all of the Al present in these solutions was retained by the solid phases at pH 5, thus indicating Al coprecipitation with the primary Fe hydroxide precipitate. In contrast, two buffer regions were observed in solutions with 30 mol% Al (at pH {approx}2.25 for Fe{sup 3+} and at pH {approx}4 for Al{sup 3+}), suggesting the formation of Fe and Al (hydr)oxides as two separate phases. The Al content of initial coprecipitates influenced the extent of ferrihydrite transformation and of its transformation products as indicated by the presence of goethite, hematite and/or ferrihydrite in aged suspensions. DFT experiments showed that: (i) optimized unit cell parameters for Al-substituted goethites (8 and 25 Mol% Al) in clustered arrangement (i.e., the

  8. Aluminum-26 as a biological tracer using accelerator mass spectrometry

    Science.gov (United States)

    Flarend, Richard Edward

    1997-06-01

    The development of accelerator mass spectrometry (AMS) has provided a practical method of detection for the only isotope of aluminum suitable as a tracer, 26Al. The use of 26Al as a tracer for aluminum has made possible the study of aluminum metabolism and the pharmacokinetics of aluminum-containing drugs at physiological levels. An overview of the various advantages of using 26Al as a tracer for aluminum and a general description of the AMS technique as applied to bio-medical applications is given. To illustrate the versatility of 26Al as a tracer for aluminum, 26Al studies of the past several years are discussed briefly. In addition, Two novel investigations dealing with 26Al-labeled drugs will be presented in more detail. In one of these studies, it was found that 26Al from aluminum hydroxide and aluminum phosphate vaccine adjuvants appeared in the blood just one hour after intramuscular injection. This is a surprising result since the currently held theory of how adjuvants work assumes that adjuvants remain insoluble and hold the antigen at the injection site for a long period of time. In another project, 26Al-labeled antiperspirants are being characterized by combining AMS with traditional analytical and chromatographic techniques. Future directions for this and other possible studies are discussed.

  9. Injection sclerotherapy using aluminum potassium sulfate and tannic acid in the treatment of symptomatic rectocele: A prospective case series.

    Science.gov (United States)

    Abe, Tatsuya; Kunimoto, Masao; Hachiro, Yoshikazu; Ebisawa, Yoshiaki

    2016-06-01

    Although various surgical techniques have been described for the treatment of rectocele, there is currently no method exhibiting overall superiority because of the different types of complications and varying rate of recurrence. The aim of this study was to evaluate the outcomes of injection sclerotherapy using aluminum potassium sulfate and tannic acid in the management of symptomatic rectocele. Twelve patients were recruited and treated using injection sclerotherapy. Efficacy measures included changes in the Constipation Scoring System value and rectocele size. The median operative duration was 7.5 min (range, 3-16 min). Three months after treatment, the mean Constipation Scoring System value decreased significantly in comparison with the baseline value (8.9 ± 4.1 vs. 4.9 ± 2.8, P = 0.0014) and the mean rectocele size reduced significantly in comparison with the baseline size (3.8 ± 0.5 vs. 1.7 ± 0.9, P < 0.001). Regarding complications, a patient showed temporary fecal impaction after treatment. The recurrence rate at 4 years was 29% (95% confidence interval, 10%-66%). Injection sclerotherapy is quick, easy to perform, and offers reasonable mid-term outcomes; furthermore, it is associated with a low rate of complications. Therefore, it appears to be a reasonable alternative for patients with symptomatic rectocele. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  10. Elimination of aluminum adjuvants.

    Science.gov (United States)

    Hem, Stanley L

    2002-05-31

    In vitro dissolution experiments although perhaps not at typical body concentrations and temperatures demonstrated that the alpha-hydroxycarboxylic acids present in interstitial fluid (citric acid, lactic acid, and malic acid) are capable of dissolving aluminum-containing adjuvants. Amorphous aluminum phosphate adjuvant dissolved more rapidly than crystalline aluminum hydroxide adjuvant. Intramuscular administration in New Zealand White rabbits of aluminum phosphate and aluminum hydroxide adjuvants, which were labelled with 26Al, revealed that 26Al was present in the first blood sample (1 h) for both adjuvants. The area under the blood level curve for 28 days indicated that three times more aluminum was absorbed from aluminum phosphate adjuvant than aluminum hydroxide adjuvant. In vivo studies using 26Al-labelled adjuvants are relatively safe because accelerator mass spectrometry (AMS) can quantify quantities of 26Al as small as 10(-17) g. A similar study in humans would require a whole-body exposure of 0.7 microSv per year compared to the natural background exposure of 3000 microSv per year. The in vitro dissolution and in vivo absorption studies indicate that aluminum-containing adjuvants which are administered intramuscularly are dissolved by alpha-hydroxycarboxylic acids in interstitial fluid, absorbed into the blood, distributed to tissues, and eliminated in the urine.

  11. Effect of Orifice Diameter on Bubble Generation Process in Melt Gas Injection to Prepare Aluminum Foams

    Science.gov (United States)

    Yuan, Jianyu; Li, Yanxiang; Wang, Ningzhen; Cheng, Ying; Chen, Xiang

    2016-06-01

    The bubble generation process in conditioned A356 alloy melt through submerged spiry orifices with a wide diameter range (from 0.07 to 1.0 mm) is investigated in order to prepare aluminum foams with fine pores. The gas flow rate and chamber pressure relationship for each orifice is first determined when blowing gas in atmospheric environment. The effects of chamber pressure ( P c) and orifice diameter ( D o) on bubble size are then analyzed separately when blowing gas in melt. A three-dimensional fitting curve is obtained illustrating both the influences of orifice diameter and chamber pressure on bubble size based on the experimental data. It is found that the bubble size has a V-shaped relationship with orifice diameter and chamber pressure neighboring the optimized parameter ( D o = 0.25 mm, P c = 0.4 MPa). The bubble generation mechanism is proposed based on the Rayleigh-Plesset equation. It is found that the bubbles will not be generated until a threshold pressure difference is reached. The threshold pressure difference is dependent on the orifice diameter, which determines the time span of pre-formation stage and bubble growth stage.

  12. Wear properties of 10 vol.% silicon carbide particulate-reinforced aluminum composite fabricated by powder injection molding

    Science.gov (United States)

    Patcharawit, T.; Ngeekoh, A.; Chuankrekkul, N.

    2017-09-01

    Wear properties of aluminum matrix composites reinforced with silicon carbide particulate of 10 vol.% addition was investigated in as-sintered and heat-treated conditions under varying loads at -5, -25, -45 and -65N using a ball on flat type of wear test. The composite was fabricated by powder injection molding and sintering at 650 °C for 3 hours. Solution treatment was carried out at 550 °C for 2 hours followed by age-hardening at 160 °C for 6 hours. SEM and XRD results indicated Al and SiCp are present as matrix and reinforcement, while AlN, Al2Cu and Mg2Si were also detected. Further precipitation of Al2Cu and Mg2Si in heat-treated samples promoted maximum macro and micro Vickers hardness values, which were achieved at 161 and 157 Hv respectively. Wear weight loss increased with increasing minus load level. The coefficient of friction was found in the range of 0.042-0.048. Wear mechanisms were determined as the combination of abrasive, adhesion and oxidation.

  13. Loading Effect of Aluminum Hydroxide onto the Mechanical, Thermal Conductivity, Acoustical and Burning Properties of the Palm-based Polyurethane Composites

    International Nuclear Information System (INIS)

    Nor Rabbiatul Adawiyah Norzali; Khairiah Badri; Khairiah Badri; Mohd Zaki Nuawi

    2011-01-01

    Effects of aluminium hydroxide (ATH) addition on the properties of palm-based polyurethane composites were investigated. The hybrid composites were prepared by mixing 10 wt % of oil palm empty fruit bunch fiber (EFB) with ATH at varying amount of 2, 4 and 6 wt % of the overall mass of the resin. The compression stress and modulus gave the highest values of 575 and 2301 kPa, respectively at 2 wt % loading of ATH. The compression stress and modulus decreased drastically at 4 wt % (431 kPa and 1659 kPa, respectively) and further decreased at 6 wt % ATH (339 and 1468 kPa, respectively). However, the burning rate is inversely proportional to the loading percentage where the highest burning rate was observed at 2 wt % ATH. Sound absorption analysis indicated a large absorption coefficient at high frequency (4000 Hz) for all samples. The highest absorption coefficient was obtained from PU-EFB/ ATH with 4 wt % ATH. (author)

  14. Engineering one-dimensional and two-dimensional birnessite manganese dioxides on nickel foam-supported cobalt–aluminum layered double hydroxides for advanced binder-free supercapacitors

    KAUST Repository

    Hao, Xiaodong

    2014-11-19

    © The Royal Society of Chemistry. We report a facile decoration of the hierarchical nickel foam-supported CoAl layered double hydroxides (CoAl LDHs) with MnO2 nanowires and nanosheets by a chemical bath method and a hydrothermal approach for high-performance supercapacitors. We demonstrate that owing to the sophisticated configuration of binder-free LDH@MnO2 on the conductive Ni foam (NF), the designed NF/LDH@MnO2 nanowire composites exhibit a highly boosted specific capacitance of 1837.8 F g-1 at a current density of 1 A g-1, a good rate capability, and an excellent cycling stability (91.8% retention after 5000 cycles). By applying the hierarchical NF/LDH@MnO2 nanowires as the positive electrode and activated microwave exfoliated graphite oxide activated graphene as the negative electrode, the fabricated asymmetric supercapacitor produces an energy density of 34.2 Wh kg-1 with a maximum power density of 9 kW kg-1. Such strategies with controllable assembly capability could open up a new and facile avenue in fabricating advanced binder-free energy storage electrodes. This journal is

  15. A Method of Lyophilizing Vaccines Containing Aluminum Salts into a Dry Powder Without Causing Particle Aggregation or Decreasing the Immunogenicity Following Reconstitution

    Science.gov (United States)

    Li, Xinran; Thakkar, Sachin G.; Ruwona, Tinashe B.; Williams, Robert O.; Cui, Zhengrong

    2015-01-01

    Many currently licensed and commercially available human vaccines contain aluminum salts as vaccine adjuvants. A major limitation with these vaccines is that they must not be exposed to freezing temperatures during transport or storage such that the liquid vaccine freezes, because freezing causes irreversible coagulation that damages the vaccines (e.g., loss of efficacy). Therefore, vaccines that contain aluminum salts as adjuvants are formulated as liquid suspensions and are required to be kept in cold chain (2–8°C) during transport and storage. Formulating vaccines adjuvanted with aluminum salts into dry powder that can be readily reconstituted before injection may address the limitation. Spray freeze-drying of vaccines with low concentrations of aluminum salts and high concentrations of trehalose alone, or a mixture of sugars and amino acids, as excipients can convert vaccines containing aluminum salts into dry powder, but fails to preserve the particle size and/or immunogenicity of the vaccines. In the present study, using ovalbumin as a model antigen adsorbed onto aluminum hydroxide or aluminum phosphate, a commercially available tetanus toxoid vaccine adjuvanted with potassium alum, a human hepatitis B vaccine adjuvanted with aluminum hydroxide, and a human papillomavirus vaccine adjuvanted with aluminum hydroxyphosphate sulfate, it was shown that vaccines containing a relatively high concentration of aluminum salts (i.e., up to ~1%, w/v, of aluminum hydroxide) can be converted into a dry powder by thin-film freezing followed by removal of the frozen solvent by lyophilization while using low levels of trehalose (i.e., as low as 2% w/v) as an excipient. Importantly, the thin-film freeze-drying process did not cause particle aggregation, nor decreased the immunogenicity of the vaccines. Moreover, repeated freezing-and-thawing of the dry vaccine powder did not cause aggregation. Thin-film freeze-drying is a viable platform technology to produce dry powders of

  16. Determination of Ultra-trace Amounts of Arsenic(III) by Flow Injection Hydride Generation Atomic Absorption Spectrometry with On-line Preconcentration by Coprecipitation with Lanthanum Hydroxide or Hafnium Hydroxide

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Sloth, Jens Jørgen; Hansen, Elo Harald

    1996-01-01

    A time-based flow-injection (FI) procedure for the determination of ultra-trace amounts of inorganic arsenic(III) is described, which combines hydride generation atomic absorption spectrometry (HG-AAS) with on-line preconcentration of the analyte by inorganic coprecipitation-dissolution in a filt......A time-based flow-injection (FI) procedure for the determination of ultra-trace amounts of inorganic arsenic(III) is described, which combines hydride generation atomic absorption spectrometry (HG-AAS) with on-line preconcentration of the analyte by inorganic coprecipitation...

  17. Electrostatic-Induced Assembly of Graphene-Encapsulated Carbon@Nickel-Aluminum Layered Double Hydroxide Core-Shell Spheres Hybrid Structure for High-Energy and High-Power-Density Asymmetric Supercapacitor.

    Science.gov (United States)

    Wu, Shuxing; Hui, Kwan San; Hui, Kwun Nam; Kim, Kwang Ho

    2017-01-18

    Achieving high energy density while retaining high power density is difficult in electrical double-layer capacitors and in pseudocapacitors considering the origin of different charge storage mechanisms. Rational structural design became an appealing strategy in circumventing these trade-offs between energy and power densities. A hybrid structure consists of chemically converted graphene-encapsulated carbon@nickel-aluminum layered double hydroxide core-shell spheres as spacers among graphene layers (G-CLS) used as an advanced electrode to achieve high energy density while retaining high power density for high-performance supercapacitors. The merits of the proposed architecture are as follows: (1) CLS act as spacers to avoid the close restacking of graphene; (2) highly conductive carbon sphere and graphene preserve the mechanical integrity and improve the electrical conductivity of LDHs hybrid. Thus, the proposed hybrid structure can simultaneously achieve high electrical double-layer capacitance and pseudocapacitance resulting in the overall highly active electrode. The G-CLS electrode exhibited high specific capacitance (1710.5 F g -1 at 1 A g -1 ) under three-electrode tests. An ASC fabricated using the G-CLS as positive electrode and reduced graphite oxide as negative electrode demonstrated remarkable electrochemical performance. The ASC device operated at 1.4 V and delivered a high energy density of 35.5 Wh kg -1 at a 670.7 W kg -1 power density at 1 A g -1 with an excellent rate capability as well as a robust long-term cycling stability of up to 10 000 cycles.

  18. Sodium hydroxide poisoning

    Science.gov (United States)

    Sodium hydroxide is a very strong chemical. It is also known as lye and caustic soda. This ... poisoning from touching, breathing in (inhaling), or swallowing sodium hydroxide. This article is for information only. Do ...

  19. Optimization of powder injection molding of feedstock based on aluminum oxide and multicomponent water-soluble polymer binder

    Czech Academy of Sciences Publication Activity Database

    Hausnerová, B.; Marcaníková, L.; Filip, Petr; Sáha, P.

    2011-01-01

    Roč. 51, č. 7 (2011), s. 1376-1382 ISSN 0032-3888 R&D Projects: GA ČR GA103/08/1307 Institutional research plan: CEZ:AV0Z20600510 Keywords : powder injection molding * viscosity * thermogravimetric analysis Subject RIV: BK - Fluid Dynamics Impact factor: 1.302, year: 2011

  20. Optimization of powder injection molding of feedstock based on aluminum oxide and multicomponent water-soluble polymer binder

    Czech Academy of Sciences Publication Activity Database

    Hausnerová, B.; Marcaníková, L.; Filip, Petr; Sáha, P.

    2011-01-01

    Roč. 51, č. 7 (2011), s. 1376-1382 ISSN 0032-3888 R&D Projects: GA ČR GA103/08/1307 Institutional research plan: CEZ:AV0Z20600510 Keywords : powder injection mold ing * viscosity * thermogravimetric analysis Subject RIV: BK - Fluid Dynamics Impact factor: 1.302, year: 2011

  1. Aluminium hydroxide-induced granulomas in pigs

    DEFF Research Database (Denmark)

    Valtulini, S; Macchi, C; Ballanti, P

    2005-01-01

    The effect of intramuscular injection of 40 mg/2 ml aluminium hydroxide in the neck of pigs was examined in a number of ways. The investigation followed repeated slaughterhouse reports, according to which 64.8% of pigs from one particular farm were found at slaughter to have one or more nodules i...

  2. Immunogenicity of booster vaccination with a virosomal hepatitis A vaccine after primary immunization with an aluminum-adsorbed hepatitis A vaccine.

    Science.gov (United States)

    Beck, Bernard R; Hatz, Christoph F R; Loutan, Louis; Steffen, Robert

    2004-01-01

    Increasing numbers of individuals are traveling to areas of high hepatitis A endemicity and require immunization against the hepatitis A virus (HAV). The option of using a virosomal, aluminum-free, HAV vaccine (Epaxal) for booster immunization following primary vaccination with an aluminum-adsorbed vaccine has been assessed. In total, 142 healthy subjects, 79 men and 63 women, aged 12 to 72 years, were injected intramuscularly with a booster dose of Epaxal (0.5 mL containing aluminum hydroxide). Anti-HAV antibody titers were measured on days 0 and 28 by an enzyme immunoassay. Adverse events were recorded for 1 month postinjection. Overall, 98/118 subjects (83%) with no serologic evidence of past HAV infection were still seroprotected at enrolment (anti-HAV antibody titer aluminum-adsorbed vaccine, and is well tolerated.

  3. Accessing the biocompatibility of layered double hydroxide by intramuscular implantation: histological and microcirculation evaluation

    OpenAIRE

    Cunha, Vanessa Roberta Rodrigues; de Souza, Rodrigo Barbosa; da Fonseca Martins, Ana Maria Cristina Rebello Pinto; Koh, Ivan Hong Jun; Constantino, Vera Regina Leopoldo

    2016-01-01

    Biocompatibility of layered double hydroxides (LDHs), also known as hydrotalcite-like materials or double metal hydroxides, was investigated by in vivo assays via intramuscular tablets implantation in rat abdominal wall. The tablets were composed by chloride ions intercalated into LDH of magnesium/aluminum (Mg2Al-Cl) and zinc/aluminum (Zn2Al-Cl). The antigenicity and tissue integration capacity of LDHs were assessed histologically after 7 and 28 days post-implantation. No fibrous capsule near...

  4. Coordination nature of aluminum (oxy)hydroxides formed under the influence of low molecular weight organic acids and a soil humic acid studied by X-ray absorption spectroscopy

    Science.gov (United States)

    Xu, R. K.; Hu, Y. F.; Dynes, J. J.; Zhao, A. Z.; Blyth, R. I. R.; Kozak, L. M.; Huang, P. M.

    2010-11-01

    Organic ligands in the environment hinder the formation of crystalline Al precipitation products by perturbing the hydrolytic and polymeric reactions of Al resulting in the formation of short-range ordered (SRO) mineral colloids with varying degrees of crystallinity. However, the effect of these ligands on the mechanisms of their formation and nature of the transformation products of Al (oxy)hydroxides at the atomic and molecular levels is not well understood. In this study, the coordination structure of Al in Al (oxy)hydroxides formed under the influence of varying concentrations of low molecular weight (LMW) organic acids such as citric, malic, salicylic and acetic acids and a humic acid (HA) was investigated with X-ray absorption near edge structure (XANES) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction analysis. The Al K- and L-edge XANES spectra showed that with increasing LMW organic acid concentration the coordination number of Al changed from 6-fold to a mixture of 4- and 6-fold, except for acetate as acetate was unable to perturb the formation of Al (oxy)hydroxides at the acetate/Al molar ratio (MR) = 0.1. The proportion of 4-fold to 6-fold coordinated Al in the Al precipitation products depended on the structure and functionality of the LMW organic acids. The incorporation of the LMW organic acid into the network structure of Al (oxy)hydroxides prevented the formation of sheets/inter-layer H-bonding that was required for the formation of crystalline Al (oxy)hydroxides. The HA used in this study only slightly perturbed the crystallization of the Al (oxy)hydroxides at the concentrations used. The Al K-edge data showed that Al coordination number had not been altered in the presence of HA. The findings obtained in the present study are of fundamental significance in understanding the physicochemical behavior of soils and sediments, and their relation to the accumulation and transport of nutrients and pollutants in the

  5. Technology for High Pure Aluminum Oxide Production from Aluminum Scrap

    Science.gov (United States)

    Ambaryan, G. N.; Vlaskin, M. S.; Shkolnikov, E. I.; Zhuk, A. Z.

    2017-10-01

    In this study a simple ecologically benign technology of high purity alumina production is presented. The synthesis process consists of three steps) oxidation of aluminum in water at temperature of 90 °C) calcinations of Al hydroxide in atmosphere at 1100 °C) high temperature vacuum processing of aluminum alpha oxide at 1750 °C. Oxidation of aluminum scrap was carried out under intensive mixing in water with small addition of KOH as a catalyst. It was shown that under implemented experimental conditions alkali was continuously regenerated during oxidation reaction and synergistic effect of low content alkali aqueous solution and intensive mixing worked. The product of oxidation of aluminum scrap is the powder of Al(OH)3. Then it can be preliminary granulated or directly subjected to thermal treatment deleting the impurities from the product (aluminum oxide). It was shown the possibility to produce the high-purity aluminum oxide of 5N grade (99.999 %). Aluminum oxide, synthesized by means of the proposed method, meets the requirements of industrial manufacturers of synthetic sapphire (aluminum oxide monocrystals). Obtained high pure aluminum oxide can be also used for the manufacture of implants, artificial joints, microscalpels, high-purity ceramics and other refractory shapes for manufacture of ultra-pure products.

  6. Application of magnesium hydroxide and barium hydroxide for the ...

    African Journals Online (AJOL)

    Application of magnesium hydroxide and barium hydroxide for the removal of metals and sulphate from mine water. ... equivalent to the Ba(OH)2 dosage. During CO2-dosing, CaCO3 is precipitated to the saturation level of CaCO3. Keywords: Magnesium hydroxide; barium hydroxide; sulphate removal; water treatment ...

  7. Mg/Al Ordering in Layered Double Hydroxides Revealed by Multinuclear NMR Spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Grey, Clare P.; Sideris, Paul J.

    2008-01-01

    The anion- exchange ability of layered double hydroxides ( LDHs) has been exploited to create materials for use in catalysis, drug delivery, and environmental remediation. The specific cation arrangements in the hydroxide layers of hydrotalcite- like LDHs, of general formula Mg1-x2+Alx3+OH2(Anion...... and aluminum distribution. These data, in combination with H-1-Al-27 double- resonance and Mg-25 triple- quantum MAS NMR data, show that the cations are fully ordered for magnesium: aluminum ratios of 2:1 and that at lower aluminum content, a nonrandom distribution of cations persists, with no Al3+-Al3+ close...

  8. Sodium Hydroxide and Calcium Hydroxide Hybrid Oxygen Bleaching with System

    Science.gov (United States)

    Doelle, K.; Bajrami, B.

    2018-01-01

    This study investigates the replacement of sodium hydroxide in the oxygen bleaching stage using a hybrid system consisting of sodium hydroxide calcium hydroxide. Commercial Kraft pulping was studied using yellow pine Kraft pulp obtained from a company in the US. The impact of sodium hydroxide, calcium hydroxide hybrid system in regard to concentration, reaction time and temperature for Kraft pulp was evaluated. The sodium hydroxide and calcium hydroxide dosage was varied between 0% and 15% based on oven dry fiber content. The bleaching reaction time was varied between 0 and 180 minutes whereas the bleaching temperature ranged between 70 °C and 110 °C. The ability to bleach pulp was measured by determining the Kappa number. Optimum bleaching results for the hybrid system were achieved with 4% sodium hydroxide and 2% calcium hydroxide content. Beyond this, the ability to bleach pulp decreased.

  9. Orbital fabrication of aluminum foam and apparatus therefore

    Science.gov (United States)

    Tucker, Dennis S. (Inventor)

    2010-01-01

    A process for producing foamed aluminum in space comprising the steps of: heating aluminum until it is molten; applying the force of gravity to the molten aluminum; injecting gas into the molten aluminum to produce molten foamed aluminum; and allowing the molten foamed aluminum to cool to below melting temperature. The apparatus for carrying out this invention comprises: a furnace which rotates to simulate the force of gravity and heats the aluminum until it is molten; a door on the furnace, which is opened for charging the aluminum into the furnace, closed for processing and opened again for removal of the foamed aluminum; a gas injection apparatus for injecting gas into the molten aluminum within the furnace; and an extraction apparatus adjacent the door for removing the foamed aluminum from the furnace.

  10. Aluminum-air battery crystallizer

    Science.gov (United States)

    Maimoni, A.

    1987-01-01

    A prototype crystallizer system for the aluminum-air battery operated reliably through simulated startup and shutdown cycles and met its design objectives. The crystallizer system allows for crystallization and removal of the aluminium hydroxide reaction product; it is required to allow steady-state and long-term operation of the aluminum-air battery. The system has to minimize volume and maintain low turbulence and shear to minimize secondary nucleation and energy consumption while enhancing agglomeration. A lamella crystallizer satisfies system constraints.

  11. Aluminum: Reflective Aluminum Chips

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    This fact sheet reveals how the use of reflective aluminum chips on rooftops cuts down significantly on heat absorption, thus decreasing the need for air conditioning. The benefits, including energy savings that could reach the equivalent of 1.3 million barrels of oil annually for approximately 100,000 warehouses, are substantial.

  12. Production of anhydrous aluminum chloride composition

    Science.gov (United States)

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  13. Validación de un método analítico para la determinación cuantitativa de parabenos en el gel de hidróxido de aluminio Validation of an analytical method for the quantitative determination of parabens in aluminum hydroxide gel

    Directory of Open Access Journals (Sweden)

    Ernesto Benítez Hechavarría

    2006-08-01

    Full Text Available Se realizó la valoración prospectiva de un método desarrollado para la cuantificación de metil y de propil parabeno en el gel de hidróxido de aluminio mediante cromatografía líquida de alta resolución en fase reversa, con columna RP18 (25* 0,4 cm y detector UV-Visible a 254 nm. Se evaluaron los parámetros especificidad, linealidad, precisión, exactitud, y adecuación cromatográfica. Los resultados obtenidos mostraron que el método cumple con las especificaciones establecidas para cada parámetro evaluado, lo cual indicó que es un método rápido, seguro y confiable para la determinación cuantitativa de los parabenos en este gelThe prospective assessment of a method developed for the quantification of methyl/propyl paraben in aluminum hydroxide gel by reverse-stage high resolution liquid chromatography on RP18 column (25*0.4 cm, and with UV detector visible at 254 nm, was made. The specificity, lineality, accuracy, exactness and chromatographic adequacy were evaluated The results obtained showed that the method meets the specifications established for each evaluated parameter, which indicates that it is a rapid, safe and reliable method for the quantitative determination of the parabens in this gel

  14. Layered double hydroxides

    DEFF Research Database (Denmark)

    López Rayo, Sandra; Imran, Ahmad; Hansen, Hans Chr. Bruun

    2017-01-01

    A novel zinc (Zn) fertilizer concept based on Zn doped layered double hydroxides (Zn-doped Mg-Fe-LDHs) has been investigated. Zn-doped Mg-Fe-LDHs were synthetized, their chemical composition was analyzed and their nutrient release was studied in buffered solutions with different pH values. Uptake...

  15. Aluminum-containing vaccine associated adverse events: role of route of administration and gender.

    Science.gov (United States)

    Pittman, Phillip R

    2002-05-31

    Anthrax vaccine, adsorbed (AVA) is a vaccine containing aluminum hydroxide that is administered as six subcutaneous (s.q.) doses over 18 months. It is the only aluminum hydroxide licensed for s.q. administration. To optimize the vaccination schedule and route of administration, a prospective pilot study comparing the use of fewer doses administered intramuscularly (i.m.) as well as s.q. with the licensed schedule and route was performed. Data from that study on injection site reactions were extracted for this report. Erythema and induration occurred more commonly when the vaccine was administered s.q. compared to i.m. (P < 0.0001, P = 0.002, respectively). S.q. nodules were found only among the s.q. group (P < 0.0001). Erythema, induration and s.q. nodules were more common in women compared with men (P < 0.001) after the first s.q. dose of AVA dose. Reaction rates decreased when the interval between the first two doses of AVA was increased from 2 to 4 weeks.

  16. pH dependent dissolution of sediment aluminum in six Danish lakes treated with aluminum

    DEFF Research Database (Denmark)

    Reitzel, Kasper; Jensen, Henning S.; Egemose, Sara

    2013-01-01

    The possible pH dependent dissolution of aluminum hydroxides (Al(OH)(3)) from lake sediments was studied in six lakes previously treated with Al to bind excess phosphorus (P). Surface sediment was suspended for 2 h in lake water of pH 7.5, 8.5, or 9.5 with resulting stepwise increments in dissolv...

  17. Mechanism of Corrosion of Activated Aluminum Particles by Hot Water

    International Nuclear Information System (INIS)

    Razavi-Tousi, S.S.; Szpunar, J.A.

    2014-01-01

    Mechanism of corrosion in aluminum particles by hot water treatment for hydrogen generation is evaluated. The aluminum powder was activated by ball milling for different durations, which modified size and microstructure of the particles. Open circuit potential test was carried out to elucidate different stages of the reaction. Tafel test was used to explain the effect of ball milling and growth of hydroxide layer on corrosion of the particles. Surface, cross section and thickness of the grown hydroxide on the aluminum particles were studied in a scanning electron microscope. The corrosion potential of the aluminum powders depends on microstructure of the aluminum particles, growth of the hydroxide layer and a change in pH because of cathodic reactions. The hydrogen production test showed that a deformed microstructure and smaller particle size accelerates the corrosion rate of aluminum by hot water, the effect of the deformed microstructure being more significant at the beginning of the reaction. Effect of growth of the hydroxide layer on corrosion mechanism is discussed

  18. Aluminum Target Dissolution in Support of the Pu-238 Program

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Benker, Dennis [ORNL; DePaoli, David W [ORNL; Felker, Leslie Kevin [ORNL; Mattus, Catherine H [ORNL

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  19. Comparative study of the influence of the gas injection system on the Nd:yttrium-aluminum-garnet laser cutting of advanced oxide ceramics

    International Nuclear Information System (INIS)

    Quintero, F.; Pou, J.; Lusquinos, F.; Boutinguiza, M.; Soto, R.; Perez-Amor, M.

    2003-01-01

    Cutting of advanced oxide ceramics is still a difficult task. In this work, the possibility to effectively cut them using a Nd:YAG laser guided by an optical fiber is demonstrated. The key points are the aerodynamic interactions of the assist gas jet in the fusion laser cutting of ceramics. A comprehensive study of the influence of these aerodynamic interactions on the laser cutting of advanced oxide ceramics has been carried out. The characteristics of the heat affected zone (HAZ) were studied related to the efficiency of the assist gas to eject the molten material. It has been demonstrated that the HAZ can be avoided with a suitable design of the gas injection system combined with an appropriate selection of the values of the processing parameters. With the aim of improving the efficiency of the assist gas injection system, a new cutting head with an off-axis supersonic nozzle was developed. Furthermore, a comparison between the utilization of a conventional coaxial conical nozzle to inject the assist gas and the new system is presented. The results obtained give clear proof that the use of the new gas injection system leads to a great improvement on the cut quality by means of a more efficient removing of the molten material out of the cutting front. This result is of special interest in the laser fusion cutting of thick ceramic plates at high processing rates

  20. Preclinical safety study of a recombinant Streptococcus pyogenes vaccine formulated with aluminum adjuvant.

    Science.gov (United States)

    HogenEsch, Harm; Dunham, Anisa; Burlet, Elodie; Lu, Fangjia; Mosley, Yung-Yi C; Morefield, Garry

    2017-02-01

    A recombinant vaccine composed of a fusion protein formulated with aluminum hydroxide adjuvant is under development for protection against diseases caused by Streptococcus pyogenes. The safety and local reactogenicity of the vaccine was assessed by a comprehensive series of clinical, pathologic and immunologic tests in preclinical experiments. Outbred mice received three intramuscular injections of 1/5th of the human dose (0.1 ml) and rabbits received two injections of the full human dose. Control groups received adjuvant or protein antigen. The vaccine did not cause clinical evidence of systemic toxicity in mice or rabbits. There was a transient increase of peripheral blood neutrophils after the third vaccination of mice. In addition, the concentration of acute phase proteins serum amyloid A and haptoglobin was significantly increased 1 day after injection of the vaccine in mice. There was mild transient swelling and erythema of the injection site in both mice and rabbits. Treatment-related pathology was limited to inflammation at the injection site and accumulation of adjuvant-containing macrophages in the draining lymph nodes. In conclusion, the absence of clinical toxicity in two animal species suggest that the vaccine is safe for use in a phase I human clinical trial. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Aluminum Analysis.

    Science.gov (United States)

    Sumrall, William J.

    1998-01-01

    Presents three problems based on the price of aluminum designed to encourage students to be cooperative and to use an investigative approach to learning. Students collect and synthesize information, analyze results, and draw conclusions. (AIM)

  2. Determination of aluminum by four analytical methods

    International Nuclear Information System (INIS)

    Hanson, T.J.; Smetana, K.M.

    1975-11-01

    Four procedures have been developed for determining the aluminum concentration in basic matrices. Atomic Absorption Spectroscopy (AAS) was the routine method of analysis. Citrate was required to complex the aluminum and eliminate matrix effects. AAS was the least accurate of the four methods studied and was adversely affected by high aluminum concentrations. The Fluoride Electrode Method was the most accurate and precise of the four methods. A Gran's Plot determination was used to determine the end point and average standard recovery was 100% +- 2%. The Thermometric Titration Method was the fastest method for determining aluminum and could also determine hydroxide concentration at the same time. Standard recoveries were 100% +- 5%. The pH Electrode Method also measures aluminum and hydroxide content simultaneously, but is less accurate and more time consuming that the thermal titration. Samples were analyzed using all four methods and results were compared to determine the strengths and weaknesses of each. On the basis of these comparisons, conclusions were drawn concerning the application of each method to our laboratory needs

  3. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    Energy Technology Data Exchange (ETDEWEB)

    Harumoto, Takashi; Tamura, Yohei; Ishiguro, Takashi, E-mail: ishiguro@rs.noda.tus.ac.jp [Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo, 125-8585 (Japan)

    2015-01-15

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly.

  4. Effects of adhesions of amorphous Fe and Al hydroxides on surface charge and adsorption of K+ and Cd2+ on rice roots.

    Science.gov (United States)

    Liu, Zhao-Dong; Wang, Hai-Cui; Zhou, Qin; Xu, Ren-Kou

    2017-11-01

    Iron (Fe) and aluminum (Al) hydroxides in variable charge soils attached to rice roots may affect surface-charge properties and subsequently the adsorption and uptake of nutrients and toxic metals by the roots. Adhesion of amorphous Fe and Al hydroxides onto rice roots and their effects on zeta potential of roots and adsorption of potassium (K + ) and cadmium (Cd 2+ ) by roots were investigated. Rice roots adsorbed more Al hydroxide than Fe hydroxide because of the greater positive charge on Al hydroxide. Adhesion of Fe and Al hydroxides decreased the negative charge on rice roots, and a greater effect of the Al hydroxide. Consequently, adhesion of Fe and Al hydroxides reduced the K + and Cd 2+ adsorption by rice roots. The results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and desorption of K + and Cd 2+ from rice roots indicated that physical masking by Fe and Al hydroxides and diffuse-layer overlapping between the positively-charged hydroxides and negatively-charged roots were responsible for the reduction of negative charge on roots induced by adhesion of the hydroxides. Therefore, the interaction between Fe and Al hydroxides and rice roots reduced negative charge on roots and thus inhibited their adsorption of nutrient and toxic cations. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Aluminum recovery from water treatment sludges

    OpenAIRE

    Boaventura, Rui A. Rocha; Duarte, António A. L. Sampaio; Almeida, Manuel F.

    2000-01-01

    Aluminum sulfate and polyaluminum chloride are widely used as coagulants in water treatment plants. A chemical sludge containing aluminium hydroxide, adsorbed organic matter and other water insoluble impurities is obtained after the flocculation-clarification process. In Portugal, an estimated amount of 66 000 ton/yr. (wet wt.) water treatment sludge is being disposed of on land or at municipal solid waste (MSW) landfills. Government restrictions to this practice as well as increasing deposit...

  6. 21 CFR 184.1631 - Potassium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium hydroxide. 184.1631 Section 184.1631 Food... Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg... pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from the...

  7. Hydroxide catalysts for lignin depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  8. Hydroxide catalysts for lignin depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  9. Fabrication of Lotus-Type Porous Aluminum through Thermal Decomposition Method

    Science.gov (United States)

    Kim, S. Y.; Park, J. S.; Nakajima, H.

    2009-04-01

    Lotus-type porous aluminum with cylindrical pores was fabricated by unidirectional solidification through thermal decomposition of calcium hydroxide, sodium bicarbonate, or titanium hydride. The pore-forming gas decomposed from calcium hydroxide, sodium bicarbonate, and titanium hydride is identified as hydrogen. The elongated pores are evolved due to the solubility gap between liquid and solid when the melt dissolving hydrogen is solidified unidirectionally. The porosity of lotus aluminum is as high as 20 pct despite the type of the compounds. The pore size decreases and the pore density increases with increasing amount of calcium hydroxide, which is explained by an increase in the number of pore nucleation sites. The porosity and pore size in lotus aluminum fabricated using calcium hydroxide decrease with increasing argon pressure, which is explained by Boyle’s law. It is suggested that this fabrication method is simple and safe, which makes it superior to the conventional technique using high-pressure hydrogen gas.

  10. Effects of omeprazole and aluminum hydroxide/magnesium hydroxide on riociguat absorption.

    Science.gov (United States)

    Becker, Corina; Frey, Reiner; Unger, Sigrun; Artmeier-Brandt, Ulrike; Weimann, Gerrit; Mück, Wolfgang

    2016-03-01

    Riociguat, a soluble guanylate cyclase stimulator, is a novel therapy for the treatment of pulmonary hypertension. Riociguat bioavailability is reduced in neutral versus acidic conditions and therefore may be affected by concomitant use of medications that increase gastric pH. The effect of coadministration of the proton pump inhibitor omeprazole or the antacid AlOH/MgOH on the pharmacokinetics, safety, and tolerability of riociguat 2.5 mg was characterized in two open-label, randomized, crossover studies in healthy males. In study 1, subjects pretreated for 4 days with omeprazole 40 mg received cotreatment with omeprazole plus riociguat or riociguat alone (no pretreatment) on day 5 (n = 12). In study 2, subjects received cotreatment with 10 mL AlOH/MgOH plus riociguat or riociguat alone (n = 12). Pre- and cotreatment with omeprazole decreased riociguat bioavailability (mean decreases in area under the plasma concentration-time curve [AUC] and maximum concentration in plasma [C max] were 26% and 35%, respectively). Cotreatment with AlOH/MgOH resulted in greater decreases in riociguat bioavailability (mean decreases in AUC and C max were 34% and 56%, respectively). In both studies, most adverse events (AEs) were of mild intensity, and no serious AEs were reported. No additional safety signals were identified. Treatment with riociguat, with or without omeprazole or AlOH/MgOH, was well tolerated, with a good safety profile. Owing to the resulting increase of gastric pH, riociguat bioavailability is reduced by coadministration with AlOH/MgOH and, to a lesser extent, by coadministration with omeprazole. Thus, antacids should not be administered within an hour of receiving riociguat, but no dose adjustment is required for coadministration of proton pump inhibitors.

  11. Nanostructures based on alumina hydroxides inhibit tumor growth

    Science.gov (United States)

    Fomenko, A. N.; Korovin, M. S.

    2017-09-01

    Nanoparticles and nanostructured materials are one of the most promising developments for cancer therapy. Gold nanoparticles, magnetic nanoparticles based on iron and its oxides and other metal oxides have been widely used in diagnosis and treatment of cancer. Much less research attention has been payed to nanoparticles and nanostructures based on aluminum oxides and hydroxides as materials for cancer diagnosis and treatment. However recent investigations have shown promising results regarding these objects. Here, we review the antitumor results obtained with AlOOH nanoparticles.

  12. Kinetics of sorption of oil products by hydroxide precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, N.A.; Dubrovskaya, G.E.; Berezyuk, V.G.; Pushkarev, V.V.

    1976-01-01

    Study of the kinetics of sorption of oils (palm and coriander oils, Genrex-26, Emulsol E-2(B)) under static conditions by aluminum and iron hydroxide precipitates (with FeSO/sub 4/, FeCl/sub 3/, and AlCl/sub 3/ as coagulants) showed that an increase of temperature to 40 to 50/sup 0/C raises the sorption rate substantially. The kinetic relations can be represented by equations for first-order reactions. The calculated rate constants and the values of the empirical activation energies are evidence of physical sorption with diffusion as the controlling step.

  13. Determination of Ultra-Trace Amounts of Selenium(IV) by Flow Injection Hydride Generation Atomic Absorption Spectrometry with On-line Preconcentration by Co-precipitation with Lanthanium Hydroxide. Part II. On-line Addition of Coprecipating Agent

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Sloth, Jens Jørgen; Hansen, Elo Harald

    1996-01-01

    A flow injection procedure for the determination of ultra-trace amounts of selenium(IV) is described, which combines hydride generation atomic absorption spectrometry (HGAAS) with on-line preconcentration of the analyte by co-precipitation-dissolution in a filterless knotted Microline reactor...... with hydrochloric acid, allowing an ensuing determination via hydride generation. At different sample flow rates, i.e., 4.8, 6.4 and 8.8 ml/min, enrichment factors of 30, 40 and 46, respectively, were obtained at a sampling frequency of 33 samples/h. The detection limit (3s) was 0.005 µg/l at a sample flow rate...

  14. Aluminum metabolism studied by 26Al tracer using AMS technique

    International Nuclear Information System (INIS)

    Kobayashi, Koichi; Yumoto, Sakae; Nagai, Hisao; Hosoyama, Yoshiyuki; Imamura, Mineo; Hotta, Masayoshi; Ohashi, Hideo.

    1992-01-01

    By accelerator mass spectrometry (AMS), we studied aluminum metabolism using 26 Al as a tracer. To investigate the role of aluminum toxicity in the etiology of amyotrophic lateral sclerosis (ALS) and Alzheimer's disease, aluminum incorporation into the rat cerebrum was studied. When healthy rats were injected intraperitoneally with 26 Al, a considerable amount of the tracer was incorporated into the brain within only 5 days after the injection. This 26 Al accumulation was apparently irreversible, since it persisted even after 75 days. (author)

  15. Recycling of aluminum and caustic soda solution from waste effluents generated during the cleaning of the extruder matrixes of the aluminum industry

    International Nuclear Information System (INIS)

    Tansens, Pieter; Rodal, Alberto T.; Machado, Carina M.M.; Soares, Helena M.V.M.

    2011-01-01

    Anodising industries use a concentrated caustic soda solution to remove aluminum from extruder matrixes. This procedure produces very alkaline effluents containing high amounts of aluminum. The work reported here was focussed on recycling aluminum, as aluminum hydroxide, from these effluents and regenerating an alkaline sodium hydroxide solution. Briefly, the method comprises a dilution step (necessary for reducing the viscosity of the effluent and allowing the subsequent filtration) followed by a filtration to eliminate a substantial amount of the insoluble iron. Then, sulphuric acid was added to neutralize the waste solution down to pH 12 and induce aluminum precipitation. The purity of the aluminum salt was improved after washing the precipitate with deionised water. The characterization of the solid recovered, performed by thermogravimetric analysis, Fourier transform infrared spectroscopy and X-ray diffraction, indicated characteristics typical of bayerite. The proposal method allowed recovering 82% of the aluminum present in the wastewater with high purity (99.5%). Additionally, a sufficiently concentrated caustic soda solution was also recovered, which can be reused in the anodising industries. This procedure can be easily implemented and ensures economy by recycling reagents (concentrated caustic soda solution) and by recovering commercial by-products (aluminum hydroxide), while avoiding environmental pollution.

  16. Recycling of aluminum and caustic soda solution from waste effluents generated during the cleaning of the extruder matrixes of the aluminum industry.

    Science.gov (United States)

    Tansens, Pieter; Rodal, Alberto T; Machado, Carina M M; Soares, Helena M V M

    2011-03-15

    Anodising industries use a concentrated caustic soda solution to remove aluminum from extruder matrixes. This procedure produces very alkaline effluents containing high amounts of aluminum. The work reported here was focussed on recycling aluminum, as aluminum hydroxide, from these effluents and regenerating an alkaline sodium hydroxide solution. Briefly, the method comprises a dilution step (necessary for reducing the viscosity of the effluent and allowing the subsequent filtration) followed by a filtration to eliminate a substantial amount of the insoluble iron. Then, sulphuric acid was added to neutralize the waste solution down to pH 12 and induce aluminum precipitation. The purity of the aluminum salt was improved after washing the precipitate with deionised water. The characterization of the solid recovered, performed by thermogravimetric analysis, Fourier transform infrared spectroscopy and X-ray diffraction, indicated characteristics typical of bayerite. The proposal method allowed recovering 82% of the aluminum present in the wastewater with high purity (99.5%). Additionally, a sufficiently concentrated caustic soda solution was also recovered, which can be reused in the anodising industries. This procedure can be easily implemented and ensures economy by recycling reagents (concentrated caustic soda solution) and by recovering commercial by-products (aluminum hydroxide), while avoiding environmental pollution. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Degradation of l-polylactide during melt processing with layered double hydroxides

    DEFF Research Database (Denmark)

    Gerds, Nathalie; Katiyar, Vimal; Koch, Christian Bender

    2012-01-01

    PLA was melt compounded in small-scale batches with two forms of laurate-modified magnesium–aluminum layered double hydroxide (Mg-Al-LDH-C12), the corresponding carbonate form (Mg-Al-LDH-CO3) and a series of other additives. Various methods were then adopted to characterize the resulting compounds...... in an effort to gain greater insights into PLA degradation during melt processing. PLA molecular weight reduction was found to vary according to the type of LDH additive. It is considered that the degree of particle dispersion and LDH exfoliation, and hence the accessibility of the hydroxide layer surfaces...

  18. Coupling a PEM fuel cell and the hydrogen generation from aluminum waste cans

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Albanil Sanchez, Loyda; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. CP 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad, UPCH, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    High purity hydrogen was generated from the chemical reaction of aluminum and sodium hydroxide. The aluminum used in this study was obtained from empty soft drink cans and treated with concentrated sulfuric acid to remove the paint and plastic film. One gram of aluminum was reacted with a solution of 2moldm{sup -3} of sodium hydroxide to produce hydrogen. The hydrogen produced from aluminum cans and oxygen obtained from a proton exchange membrane electrolyzer or air, was fed to a proton exchange membrane (PEM) fuel cell to produce electricity. Yields of 44 mmol of hydrogen contained in a volume of 1.760dm{sup 3} were produced from one gram of aluminum in a time period of 20 min. (author)

  19. 21 CFR 582.1631 - Potassium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  20. Drug intercalation in layered double hydroxide clay: Application in the development of a nanocomposite film for guided tissue regeneration

    DEFF Research Database (Denmark)

    Chakraborti, M.; Jackson, J.K.; Plackett, David

    2011-01-01

    of release by intercalation of alendronate anions in magnesium/aluminum layered double hydroxide (LDH) clay nanoparticles and dispersed in the PLGA film matrix. Tetracycline, loaded as free drug into the film together with alendronate–LDH clay complex released more rapidly than alendronate, but showed...

  1. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    International Nuclear Information System (INIS)

    Pike, J.; Gillam, J.

    2008-01-01

    aluminum will be stored in Tank 8 and 21,000 kg will be stored in saltcake via evaporation. Up to 77% of the total aluminum planned for SB6 may be removed via aluminum dissolution. Storage of the aluminum-laden supernate in Tank 8 will require routine evaluation of the free hydroxide concentration in order to maintain aluminum in solution. Periodic evaluation will be established on concurrent frequency with corrosion program samples as previously established for aluminum-laden supernate from SB5 that is stored in Tank 11

  2. Layered double hydroxides based ion exchange extraction for high sensitive analysis of non-steroidal anti-inflammatory drugs.

    Science.gov (United States)

    Zhou, Wei; Wang, Chenlu; Liu, Yikun; Zhang, Wenpeng; Chen, Zilin

    2017-09-15

    Layered double hydroxides (LDHs) are ideal sorbents for solid phase extraction (SPE) because of the excellent ion exchange capacity and high specific surface area. However, difficult elution of the analytes from the LDHs is a problem due to the strong ionic interaction between anions and LDHs. High concentrated NaOH solution is employed to elute the sample, but it not suitable for analyzing by HPLC. To solve this problem, a simple acid-base neutralization method was proposed after elution, and then the neutral samples were directly injected to HPLC for analysis. Nickel-aluminum layered double hydroxides (NiAl-LDHs) were synthesized by co-precipitation method and packed into a micro pipette tip for the extraction of three non-steroidal anti-inflammatory drugs (NSAIDs) including ketoprofen, naproxen and flurbiprofen from aqueous samples. After optimization of the experimental parameters such as the concentration of the NaOH, sample pH, sampling rate and sample volume, excellent extraction efficiency towards three NSAIDs was obtained with high enrichment factors of 28-32. A NiAl-LDHs based SPE-HPLC method was developed for quantitative analysis of NSAIDs, and the method showed low limits of detection (0.002-0.1ng/mL), good linearity (R 2 ≥0.9995) and good reproducibility (intraday RSD≤4.37%). The developed method was also applied to the analysis of three NSAIDs in spiked human plasma and rat plasma after oral administration, which demonstrated the practicality of the proposed method. Copyright © 2017. Published by Elsevier B.V.

  3. Hydrolysis of aluminum dross material to achieve zero hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    David, E., E-mail: david@icsi.ro [National Institute for Research and Development for Cryogenic and Isotopic Technologies, P.O Raureni, P.O. Box 7, 240050 Rm. Valcea (Romania); Kopac, J., E-mail: Janez.Kopac@fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Askerceva 6, P.O. Box 394, 1000 Ljubljana (Slovenia)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The hydrolysis of aluminum dross in tap water generates pure hydrogen. Black-Right-Pointing-Pointer Aluminum particles from dross are activated by mechanically milling technique. Black-Right-Pointing-Pointer The process is completely greenhouse gases free and is cleanly to environment. Black-Right-Pointing-Pointer Hydrolysis process leads to recycling of waste aluminum by hydrogen production. - Abstract: A simple method with high efficiency for generating high pure hydrogen by hydrolysis in tap water of highly activated aluminum dross is established. Aluminum dross is activated by mechanically milling to particles of about 45 {mu}m. This leads to removal of surface layer of the aluminum particles and creation of a fresh chemically active metal surface. In contact with water the hydrolysis reaction takes place and hydrogen is released. In this process a Zero Waste concept is achieved because the other product of reaction is aluminum oxide hydroxide (AlOOH), which is nature-friendly and can be used to make high quality refractory or calcium aluminate cement. For comparison we also used pure aluminum powder and alkaline tap water solution (NaOH, KOH) at a ratio similar to that of aluminum dross content. The rates of hydrogen generated in hydrolysis reaction of pure aluminum and aluminum dross have been found to be similar. As a result of the experimental setup, a hydrogen generator was designed and assembled. Hydrogen volume generated by hydrolysis reaction was measured. The experimental results obtained reveal that aluminum dross could be economically recycled by hydrolysis process with achieving zero hazardous aluminum dross waste and hydrogen generation.

  4. Hydrolysis of aluminum dross material to achieve zero hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2012-01-01

    Highlights: ► The hydrolysis of aluminum dross in tap water generates pure hydrogen. ► Aluminum particles from dross are activated by mechanically milling technique. ► The process is completely greenhouse gases free and is cleanly to environment. ► Hydrolysis process leads to recycling of waste aluminum by hydrogen production. - Abstract: A simple method with high efficiency for generating high pure hydrogen by hydrolysis in tap water of highly activated aluminum dross is established. Aluminum dross is activated by mechanically milling to particles of about 45 μm. This leads to removal of surface layer of the aluminum particles and creation of a fresh chemically active metal surface. In contact with water the hydrolysis reaction takes place and hydrogen is released. In this process a Zero Waste concept is achieved because the other product of reaction is aluminum oxide hydroxide (AlOOH), which is nature-friendly and can be used to make high quality refractory or calcium aluminate cement. For comparison we also used pure aluminum powder and alkaline tap water solution (NaOH, KOH) at a ratio similar to that of aluminum dross content. The rates of hydrogen generated in hydrolysis reaction of pure aluminum and aluminum dross have been found to be similar. As a result of the experimental setup, a hydrogen generator was designed and assembled. Hydrogen volume generated by hydrolysis reaction was measured. The experimental results obtained reveal that aluminum dross could be economically recycled by hydrolysis process with achieving zero hazardous aluminum dross waste and hydrogen generation.

  5. Analysis of barium hydroxide and calcium hydroxide slurry carbonation reactors

    International Nuclear Information System (INIS)

    Patch, K.D.; Hart, R.P.; Schumacher, W.A.

    1980-05-01

    The removal of CO 2 from air was investigated by using a continuous-agitated-slurry carbonation reactor containing either barium hydroxide [Ba(OH) 2 ] or calcium hydroxide [Ca(OH) 2 ]. Such a process would be applied to scrub 14 CO 2 from stack gases at nuclear-fuel reprocessing plants. Decontamination factors were characterized for reactor conditions which could alter hydrodynamic behavior. An attempt was made to characterize reactor performance with models assuming both plug flow and various degrees of backmixing in the gas phase. The Ba(OH) 2 slurry enabled increased conversion, but apparently the process was controlled under some conditions by phenomena differing from those observed for carbonation by Ca(OH) 2 . Overall reaction mechanisms are postulated

  6. Recycling of automotive aluminum

    OpenAIRE

    Cui, Jirang; Roven, Hans Jørgen

    2010-01-01

    With the global warming of concern, the secondary aluminum stream is becoming an even more important component of aluminum production and is attractive because of its economic and environmental benefits. In this work, recycling of automotive aluminum is reviewed to highlight environmental benefits of aluminum recycling, use of aluminum alloys in automotive applications, automotive recycling process, and new technologies in aluminum scrap process. Literature survey shows that newly developed t...

  7. Production of the Lax Ca1-x Cry Al1-y O3 compound through hydroxide precipitation

    International Nuclear Information System (INIS)

    Martins, L.C.; Machado, A.J.S.

    1996-01-01

    Purposing to reduce the cost of preparation of the lanthanum chromite doped with calcium and aluminum, it was made a study of the condition of hydroxide precipitation, using calcium, chromium and aluminum nitrates and lanthanum oxide, as precursors and as precipitate agent was used potassium hydroxide. In this study are showed results about the reaction kinetic, x-ray diffraction and yield as function of the pH. These results suggest a high yield for also elements studied. The phase of stoichiometry, La 0.8 Ca 0.2 Cr 0.75 Al 0.25 O 3 was obtained in low temperature. In fact, this process is viable to produce of lanthanum chromite doped with calcium and aluminum. (author)

  8. Synthesis of Morphology Controlled Aluminum Oxide by Hydrothermal Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L; Yin, S; Sato, T, E-mail: tsusato@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2011-10-29

    Plate-like and wire-like aluminum oxides were successfully synthesized by hydrothermal method without any template additives. Al(NO{sub 3}){sub 3{center_dot}}9H{sub 2}O aqueous solution and precipitator were mixed and introduced to a Teflon lined autoclave, followed by heat treatment at 200deg. C for 24 h. By controlling the concentration of starting material and precipitator, the products with different morphologies were selectively obtained, i.e., the 2-dimensional platelike particles with a diameter of about 8{mu}m were synthesized at low aluminum concentration (0.1 mol/L), while 1-dimensional wire-like products of about 10{mu}m in length were synthesized at high aluminum concentration (0.2 mol/L). The plate-like particles and wire-like particles consisted of single phase of aluminum oxide hydroxide (boehmite, AlOOH) and the sodium aluminate, respectively.

  9. Aluminum neurotoxicity in the rat brain

    International Nuclear Information System (INIS)

    Yumoto, S.; Ohashi, H.; Nagai, H.; Kakimi, S.; Ogawa, Y.; Iwata, Y.; Ishii, K.

    1992-01-01

    To investigate the etiology of Alzheimer's disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer's disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer's disease patients. Our results indicate that Alzheimer's disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author)

  10. Role of iron and aluminum coagulant metal residuals and lead release from drinking water pipe materials.

    Science.gov (United States)

    Knowles, Alisha D; Nguyen, Caroline K; Edwards, Marc A; Stoddart, Amina; McIlwain, Brad; Gagnon, Graham A

    2015-01-01

    Bench-scale experiments investigated the role of iron and aluminum residuals in lead release in a low alkalinity and high (> 0.5) chloride-to-sulfate mass ratio (CSMR) in water. Lead leaching was examined for two lead-bearing plumbing materials, including harvested lead pipe and new lead: tin solder, after exposure to water with simulated aluminum sulfate, polyaluminum chloride and ferric sulfate coagulation treatments with 1-25-μM levels of iron or aluminum residuals in the water. The release of lead from systems with harvested lead pipe was highly correlated with levels of residual aluminum or iron present in samples (R(2) = 0.66-0.88), consistent with sorption of lead onto the aluminum and iron hydroxides during stagnation. The results indicate that aluminum and iron coagulant residuals, at levels complying with recommended guidelines, can sometimes play a significant role in lead mobilization from premise plumbing.

  11. Characterization of aluminum nanopowders after long-term storage

    International Nuclear Information System (INIS)

    Nazarenko, O.B.; Amelkovich, Yu.A.; Sechin, A.I.

    2014-01-01

    Highlights: • The aluminum nanopowders produced by electrical explosion of wires after long-term storage (27 and 10 years) under natural conditions are characterized. • The phase composition and thermal stability of aluminum nanopowders after long-term storage are determined. • The surface chemical changes in the aged aluminum nanopowders are examined. • The high reactivity of aluminum nanopowder is due to the presence of the protective oxide–hydroxide layer on the particles surface. - Abstract: The characteristics of aluminum nanopowders obtained by electrical explosion of wires, passivated by air and stored for a long time under natural conditions are analyzed. The aluminum nanopowder produced in hydrogen had been stored for 27 years; the nanopowders produced in argon and nitrogen had been stored for 10 years. The powders were studied using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetry (TG) and Fourier transform infrared spectrometry (FTIR). The influence of the obtaining conditions and storage period of nanopowders on their thermal stability under heating in air is shown. The aluminum nanopowders after long-term storage in air under ambient conditions are found to be extremely active

  12. Serum aluminum levels in dialysis patients after sclerotherapy of internal hemorrhoids with aluminum potassium sulfate and tannic acid.

    Science.gov (United States)

    Tsunoda, Akira; Nakagi, Masafumi; Kano, Nobuyasu; Mizutani, Masahiko; Yamaguchi, Kenji

    2014-12-01

    Aluminum potassium sulfate and tannic acid (ALTA) is an effective sclerosing agent for internal hemorrhoids. However, it is contraindicated for patients with chronic renal failure on dialysis, because the aluminum in ALTA can cause aluminum encephalopathy when it is not excreted effectively. We conducted this study to measure the serum aluminum concentrations and observe for symptoms relating to aluminum encephalopathy in dialysis patients after ALTA therapy. Ten dialysis patients underwent ALTA therapy for hemorrhoids. We measured their serum aluminum concentrations and observed them for possible symptoms of aluminum encephalopathy. The total injection volume of ALTA solution was 31 mL (24-37). The median serum aluminum concentration before ALTA therapy was 9 μg/L, which increased to 741, 377, and 103 μg/L, respectively, 1 h, 1 day, and 1 week after ALTA therapy. These levels decreased rapidly, to 33 μg/L by 1 month and 11 μg/L by 3 months after ALTA therapy. No patient suffered symptoms related to aluminum encephalopathy. Although the aluminum concentrations increased temporarily after ALTA therapy, dialysis patients with levels below 150 μg/L by 1 week and thereafter are considered to be at low risk of the development of aluminum encephalopathy.

  13. Fine Grain Aluminum Superplasticity

    Science.gov (United States)

    1980-02-01

    Continua on ravaraa sida H nacaaaary and identify by block numbar) Superplastic aluminum, Superplasticity, Superplastic forming. High strength aluminum...size. The presence of precipitate particles also acts to impede grain boundary migration during recrystallization, further aiding in maintaining a

  14. Effectiveness of Arsenic Co-Precipitation with Fe-Al Hydroxides for Treatment of Contaminated Water

    Directory of Open Access Journals (Sweden)

    Jaime Wilson Vargas de Mello

    2018-03-01

    Full Text Available ABSTRACT Wastewater treatment is a challenging problem faced by the mining industry, especially when mine effluents include acid mine drainage with elevated arsenic levels. Iron (hydroxides are known to be effective in removal of As from wastewater, and although the resulting compounds are relatively unstable, the presence of structural Al enhances their stability, particularly under reducing conditions. The purpose of this study was to assess the effectiveness of Al-Fe (hydroxide co-precipitates for the removal of As from wastewater and to assess the chemical stability of the products. Different Al-Fe (hydroxides were synthesized at room temperature from ferrous and aluminum salts using three different Fe:Al molar ratios (1:0.0, 1:0.3, and 1:0.7 and aged for 90 days (sulfate experiments or 120 days (chloride experiments in the presence of arsenic. At the end of the aging periods, the precipitated sludges were dried and characterized in order to evaluate their stability and therefore potential As mobility. All treatments were effective in reducing As levels in the water to below 10 µg L-1, but the presence of Al impaired the effectiveness of the treatment. Aluminum decreased the chemical stability of the precipitated sludge and hence its ability to retain As under natural environmental conditions.

  15. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  16. Aluminum reference electrode

    Science.gov (United States)

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  17. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy.

    Science.gov (United States)

    Sideris, Paul J; Nielsen, Ulla Gro; Gan, Zhehong; Grey, Clare P

    2008-07-04

    The anion-exchange ability of layered double hydroxides (LDHs) has been exploited to create materials for use in catalysis, drug delivery, and environmental remediation. The specific cation arrangements in the hydroxide layers of hydrotalcite-like LDHs, of general formula Mg2+(1-x)Al3+(x)OH2(Anion(n-)(x/n)).yH2O, have, however, remained elusive, and their elucidation could enhance the functional optimization of these materials. We applied rapid (60 kilohertz) magic angle spinning (MAS) to obtain high-resolution hydrogen-1 nuclear magnetic resonance (1H NMR) spectra and characterize the magnesium and aluminum distribution. These data, in combination with 1H-27Al double-resonance and 25Mg triple-quantum MAS NMR data, show that the cations are fully ordered for magnesium:aluminum ratios of 2:1 and that at lower aluminum content, a nonrandom distribution of cations persists, with no Al3+-Al3+ close contacts. The application of rapid MAS NMR methods to investigate proton distributions in a wide range of materials is readily envisaged.

  18. Behavioral abnormalities in female mice following administration of aluminum adjuvants and the human papillomavirus (HPV) vaccine Gardasil.

    Science.gov (United States)

    Inbar, Rotem; Weiss, Ronen; Tomljenovic, Lucija; Arango, Maria-Teresa; Deri, Yael; Shaw, Christopher A; Chapman, Joab; Blank, Miri; Shoenfeld, Yehuda

    2017-02-01

    Vaccine adjuvants and vaccines may induce autoimmune and inflammatory manifestations in susceptible individuals. To date most human vaccine trials utilize aluminum (Al) adjuvants as placebos despite much evidence showing that Al in vaccine-relevant exposures can be toxic to humans and animals. We sought to evaluate the effects of Al adjuvant and the HPV vaccine Gardasil versus the true placebo on behavioral and inflammatory parameters in female mice. Six-week-old C57BL/6 female mice were injected with either, Gardasil, Gardasil + pertussis toxin (Pt), Al hydroxide, or, vehicle control in amounts equivalent to human exposure. At 7.5 months of age, Gardasil and Al-injected mice spent significantly more time floating in the forced swimming test (FST) in comparison with vehicle-injected mice (Al, p = 0.009; Gardasil, p = 0.025; Gardasil + Pt, p = 0.005). The increase in floating time was already highly significant at 4.5 months of age for the Gardasil and Gardasil + Pt group (p ≤ 0.0001). No significant differences were observed in the number of stairs climbed in the staircase test which measures locomotor activity. These results indicate that differences observed in the FST were unlikely due to locomotor dysfunction, but rather due to depression. Moreover, anti-HPV antibodies from the sera of Gardasil and Gardasil + Pt-injected mice showed cross-reactivity with the mouse brain protein extract. Immunohistochemistry analysis revealed microglial activation in the CA1 area of the hippocampus of Gardasil-injected mice. It appears that Gardasil via its Al adjuvant and HPV antigens has the ability to trigger neuroinflammation and autoimmune reactions, further leading to behavioral changes.

  19. The aluminum-air battery for electric vehicles - An update

    Science.gov (United States)

    1980-11-01

    The development of aluminum-air batteries as mechanically rechargeable power sources to be used in electric vehicles is discussed. The chemistry of the aluminum-air battery, which has a potential for providing the range, acceleration and rapid refueling capability of contemporary automobiles and is based on the reaction of aluminum metal with atmospheric oxygen in the presence of an aqueous sodium hydroxide/sodium aluminate electrolyte, is examined, and it is pointed out that the electric vehicle would be practically emissionless. The battery development program at the Lawrence Livermore National Laboratory, which includes evaluations of electrochemical and chemical phenomena, studies of the economics and energy balance of a transportation system based on aluminum, and power cell design and performance analysis, is presented. It is concluded that although difficult problems must be overcome before the technical and economic feasibility of aluminum-air batteries for electric vehicles can be established, projections indicate that the aluminum-air vehicle is potentially competitive with internal combustion vehicles powered by synthetic liquid fuels.

  20. Mechanism of immunopotentiation and safety of aluminum adjuvants

    Directory of Open Access Journals (Sweden)

    Harm eHogenEsch

    2013-01-01

    Full Text Available Aluminum-containing adjuvants are widely used in preventive vaccines against infectious diseases and in preparations for allergy immunotherapy. The mechanism by which they enhance the immune response remains poorly understood. Aluminum adjuvants selectively stimulate a Th2 immune response upon injection of mice and a mixed response in human beings. They support activation of CD8 T cells, but these cells do not undergo terminal differentiation to cytotoxic T cells. Adsorption of antigens to aluminum adjuvants enhances the immune response by facilitating phagocytosis and slowing the diffusion of antigens from the injection site which allows time for inflammatory cells to accumulate. The adsorptive strength is important as high affinity interactions interfere with the immune response. Adsorption can also affect the physical and chemical stability of antigens. Aluminum adjuvants activate dendritic cells via direct and indirect mechanisms. Phagocytosis of aluminum adjuvants followed by disruption of the phagolysosome activates NLRP3-inflammasomes resulting in the release of active IL-1β and IL-18. Aluminum adjuvants also activate dendritic cells by binding to membrane lipid rafts. Injection of aluminum-adjuvanted vaccines causes the release of uric acid, DNA and ATP from damaged cells which in turn activate dendritic cells. The use of aluminum adjuvant is limited by weak stimulation of cell-mediated immunity. This can be enhanced by addition of other immunomodulatory molecules. Adsorption of these molecules is determined by the same mechanisms that control adsorption of antigens and can affect the efficacy of such combination adjuvants. The widespread use of aluminum adjuvants can be attributed in part to the excellent safety record based on a 70-year history of use. They cause local inflammation at the injection site, but also reduce the severity of systemic and local reactions by binding biologically active molecules in vaccines.

  1. Formulation of a killed whole cell pneumococcus vaccine - effect of aluminum adjuvants on the antibody and IL-17 response.

    Science.gov (United States)

    Hogenesch, Harm; Dunham, Anisa; Hansen, Bethany; Anderson, Kathleen; Maisonneuve, Jean-Francois; Hem, Stanley L

    2011-07-29

    Streptococcus pneumoniae causes widespread morbidity and mortality. Current vaccines contain free polysaccharides or protein-polysaccharide conjugates, and do not induce protection against serotypes that are not included in the vaccines. An affordable and broadly protective vaccine is very desirable. The goal of this study was to determine the optimal formulation of a killed whole cell pneumococcal vaccine with aluminum-containing adjuvants for intramuscular injection. Four aluminium-containing adjuvants were prepared with different levels of surface phosphate groups resulting in different adsorptive capacities and affinities for the vaccine antigens. Mice were immunized three times and the antigen-specific antibody titers and IL-17 responses in blood were analyzed. Although all adjuvants induced significantly higher antibody titers than antigen without adjuvant, the vaccine containing aluminum phosphate adjuvant (AP) produced the highest antibody response when low doses of antigen were used. Aluminum hydroxide adjuvant (AH) induced an equal or better antibody response at high doses compared with AP. Vaccines formulated with AH, but not with AP, induced an IL-17 response. The vaccine formulated with AH was stable and retained full immunogenicity when stored at 4°C for 4 months. Antibodies are important for protection against systemic streptococcal disease and IL-17 is critical in the prevention of nasopharyngeal colonization by S. pneumoniae in the mouse model. The formulation of the whole killed bacterial cells with AH resulted in a stable vaccine that induced both antibodies and an IL-17 response. These experiments underscore the importance of formulation studies with aluminium containing adjuvants for the development of stable and effective vaccines.

  2. Testosterone Injection

    Science.gov (United States)

    ... typical male characteristics. Testosterone injection works by supplying synthetic testosterone to replace the testosterone that is normally ... as a pellet to be injected under the skin.Testosterone injection may control your symptoms but will ...

  3. Hydrolysis-precipitation studies of aluminum (III) solutions. I. Titration of acidified aluminum nitrate solutions

    NARCIS (Netherlands)

    Vermeulen, A.C.; Geus, John W.; Stol, R.J.; Bruyn, P.L. de

    Acidified aluminum nitrate solutions were titrated with alkali (NaOH or KOH) over a temperature range of 24°C to 90°C. A homogeneous distribution of added base was achieved by: (i) in situ decomposition of urea (90°C); and (ii) a novel method involving injection through a capillary submerged in the

  4. Convenient method of simultaneously analyzing aluminum and magnesium in pharmaceutical dosage forms using californium-252 thermal neutron activation

    International Nuclear Information System (INIS)

    Landolt, R.R.; Hem, S.L.

    1983-01-01

    A commercial antacid suspension containing aluminum hydroxide and magnesium hydroxide products was used as a model sample to study the use of a californium-252 thermal neutron activation as a method for quantifying aluminum content as well as for the simultaneous assay of aluminum and magnesium. A 3.5-micrograms californium-252 source was used for the activation, and the induced aluminum-28 and magnesium-27 activity was simultaneously measured by sodium iodide crystal gamma-ray spectrometry using dual single-channel analyzers and scalers. The antacid suspension was contained in a chamber designed with the unique capability of serving as the container for counting the induced radioactivity in addition to being the irradiation chamber itself. This pilot study demonstrated that use of more intense californium-252 sources, which are commonly available, would provide a method that is competitive with the ethylenediaminetetraacetic acid titration method in precision and in other aspects as well

  5. Thermal behaviour of hydroxides, hydroxysalts and hydrotalcites

    Indian Academy of Sciences (India)

    Unknown

    In hydrotalcite-like layered double hydroxides, a fra- ction, x, of the M2+ ions of the brucite layers are iso- morphously substituted by M′3+ ions to give the layer composition [M1. I I. –xM′x. III(OH)2]x+. Anions and water mole- cules are incorporated in the interlayer region (Cavani et al 1991). These hydroxide materials are ...

  6. Single sheet metal oxides and hydroxides

    DEFF Research Database (Denmark)

    Huang, Lizhi

    The synthesis of layered double hydroxides (LDHs) provides a relatively easy and traditional way to build versatile chemical compounds with a rough control of the bulk structure. The delamination of LDHs to form their single host layers (2D nanosheets) and the capability to reassemble them offer ......) Delamination of the LDHs structure (oxGRC12) with the formation of single sheet iron (hydr)oxide (SSI). (3) Assembly of the new 2D nanosheets layer by layer to achieve desired functionalities....

  7. Dynamics of Intercalation/De-Intercalation of Rhodamine B during the Polymorphic Transformation of CdAl Layered Double Hydroxide to the Brucite-Like Cadmium Hydroxide

    KAUST Repository

    Saliba, Daniel

    2016-06-23

    Cadmium-Aluminum layered double hydroxide (CdAl LDH) is thermodynamically unstable and transforms to Cd(OH)2 and Al(OH)3 in a short period of time. We present a reaction-diffusion framework that enables us to use in situ steady-state fluorescence spectroscopy to study the kinetics of intercalation of a fluorescent probe (Rhodamine B (RhB)) during the formation of the CdAl LDH and its de-intercalation upon the conversion of the LDH phase to the β phase (Cd(OH)2). The method involves the diffusion of sodium hydroxide into a hydrogel gel matrix containing the aluminum and cadmium ions as well as the species we wish to incorporate in the interlayers of the LDH. The existence of RhB between the LDH layers and its expel during the transition into the β phase are proved via fluorescence microscopy, XRD and ssNMR. The activation energies of intercalation and de-intercalation of RhB are computed and show dependence on the cationic ratio of the corresponding LDH. We find that the energies of de- intercalation are systematically higher than those of intercalation proving that the dyes are stabilized due to the probe-brucite sheets interactions.

  8. Influência do desempenho térmico de moldes fabricados com compósito epóxi/alumínio nas propriedades de pp moldado por injeção Thermal behavior of epoxy/aluminum rapid tooling composite during injection molding of polypropylene

    Directory of Open Access Journals (Sweden)

    Gean V. Salmoria

    2008-09-01

    Full Text Available O surgimento das tecnologias de prototipagem rápida (RP e de ferramental rápido (RT tem despertado interesse da indústria de moldes de injeção. O vazamento de termofixos com cargas metálicas possibilita a construção de moldes usando materiais compósitos, os quais apresentam maior resistência que os utilizados por outras técnicas RT. Neste trabalho foi estudado o comportamento térmico de moldes fabricados em epóxi/alumínio durante a injeção de polipropileno através de avaliações da estrutura e de propriedades mecânicas utilizando difração de raio X e ensaios de dureza e de tração. Os corpos-de-prova injetados no molde em compósito epóxi/alumínio apresentaram pequenas diferenças no grau de cristalinidade das superfícies analisadas e propriedades mecânicas semelhantes aos corpos-de-prova injetados em molde de aço. O estudo mostrou um razoável desempenho térmico do molde compósito durante a injeção de polipropileno evidenciando a viabilidade de utilização destes moldes na produção de pequenas séries de protótipos e de produtos neste termoplástico.rapid prototyping (RP and rapid tooling (RT technologies are gaining increasing importance in the injection molding industry. Casting of resin/metal composites allows the construction of molds with greater resistance than those manufactured by other RT techniques such as Stereolithography. In this work, the thermal behavior of molds manufactured in epoxy/aluminum during the injection molding of polypropylene specimens was investigated. Structural and mechanical characterization of the molded specimens included X ray analysis, hardness and tensile testing. The samples presented small differences in the degree of crystallinity and similar mechanical properties in comparison with samples injected into steel molds. This study showed a reasonable thermal performance of the epoxy/aluminum mold during the injection molding of polypropylene, thus demonstrating the

  9. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  10. Radioisotopic synovectomy using ferric hydroxide macroaggregated for chronic arthritis treatment

    International Nuclear Information System (INIS)

    Lima, Carla Flavia; Campos, Tarcisio P.R.

    2002-01-01

    Synovectomy radioisotopic is an arthritis treatment used in specific clinical conditions whose main goal is to sterilized the synovia. This treatment has specific and precise indications and it is considered to have an adequate response. The present work presents a modeling of an articulation (joint) based on its real geometric anatomy and chemical constitution. The internal dosimetry is evaluated by the Monte Carlo Code. The majority of the radionuclides were considered in the simulations. The syntheses of the ferric hydroxide macroaggregates with dysprosium and samarium have been prepared (Dy 165 -MHF and Sm 153 -MHF). Obtaining the cintilographic images of rabbits in which Dy 165 -MHF is injected is in progress. Biodistribution studies in addition with the internal dosimetry will certify the dose in the membrane of the synovia. (author)

  11. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 1 – Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Kerry J., E-mail: howe@unm.edu [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Mitchell, Lana, E-mail: lmitchell@alionscience.com [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Kim, Seung-Jun, E-mail: skim@lanl.gov [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Blandford, Edward D., E-mail: edb@unm.edu [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Kee, Ernest J., E-mail: erniekee@gmail.com [South Texas Project Nuclear Operating Company, P.O. Box 270, Wadsworth, TX 77483 (United States)

    2015-10-15

    Highlights: • Trisodium phosphate (TSP) causes aluminum corrosion to cease after 24 h of exposure. • Chloride, iron, and copper have a minimal effect on the rate of aluminum corrosion when TSP is present. • Zinc can reduce the rate of aluminum corrosion when TSP is present. • Aluminum occasionally precipitates at concentrations lower than the calculated solubility for Al(OH){sub 3}. • Corrosion and solubility equations can be used to calculate the solids generated during a LOCA. - Abstract: Bench experiments were conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of aluminum from metallic aluminum surfaces under conditions representative of the containment pool following a postulated loss of coolant accident at a nuclear power generating facility. The experiments showed that TSP is capable of passivating the aluminum surface and preventing continued corrosion after about 24 h at the conditions tested. A correlation that describes the rate of corrosion including the passivation effect was developed from the bench experiments and validated with a separate set of experiments from a different test system. The saturation concentration of aluminum was shown to be well described by the solubility of amorphous aluminum hydroxide for the majority of cases, but instances have been observed when aluminum precipitates at concentrations lower than the calculated aluminum hydroxide solubility. Based on the experimental data and previous literature, an equation was developed to calculate the saturation concentration of aluminum as a function of pH and temperature under conditions representative of a loss of coolant accident (LOCA) in a TSP-buffered pressurized water reactor (PWR) containment. The corrosion equation and precipitation equation can be used in concert with each other to calculate the quantity of solids that would form as a function of time during a LOCA if the temperature and pH profiles were known.

  12. Reaction of aluminum clusters with water

    Science.gov (United States)

    Ohmura, Satoshi; Shimojo, Fuyuki; Kalia, Rajiv K.; Kunaseth, Manaschai; Nakano, Aiichiro; Vashishta, Priya

    2011-06-01

    The atomistic mechanism of rapid hydrogen production from water by an aluminum cluster is investigated by ab initio molecular dynamics simulations on a parallel computer. A low activation-barrier mechanism of hydrogen production is found, in which a pair of Lewis acid and base sites on the cluster surface plays a crucial role. Hydrogen production is assisted by rapid proton transport in water via a chain of hydrogen-bond switching events similar to the Grotthuss mechanism, where hydroxide ions are converted to water molecules at the Lewis-acid sites and hydrogen atoms are supplied at the Lewis-base sites. The activation free energy is estimated along various reaction paths associated with hydrogen production, and the corresponding reaction rates are discussed based on the transition state theory.

  13. Is the Aluminum Hypothesis Dead?

    Science.gov (United States)

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  14. Fluoride removal by Al, Ti, and Fe hydroxides and coexisting ion effect.

    Science.gov (United States)

    Zhang, Jianfeng; Brutus, Timothy E; Cheng, Jiemin; Meng, Xiaoguang

    2017-07-01

    Batch experiments were conducted to evaluate fluoride removal by Al, Fe, and Ti-based coagulants and adsorbents, as well as the effects of coexisting ions and formation of aluminum-fluoride complexes on fluoride removal by co-precipitation with alum (Al 2 (SO 4 ) 3 ·18H 2 O). Aluminum sulfate was more efficient than the other coagulants for fluoride removal in the pH range between 6 and 8. Nano-crystalline TiO 2 was more effective for fluoride removal than Al and Fe hydroxides in a pH range of 3-5. Coexisting anions in water decreased the removal of fluoride in the order: phosphate (2.5mg/L)>arsenate (0.1mg/L)>bicarbonate (200mg/L)>sulfate (100mg/L)=nitrate (100mg/L)>silicate (10mg/L) at a pH of 6.0. The effect of silicate became more significant at pH>7.0. Calcium and magnesium improved the removal of fluoride. Zeta-potential measurements determined that the adsorption of fluoride shifted the PZC of Al(OH) 3 precipitates from 8.9 to 8.4, indicating the chemical adsorption of fluoride at the surface. The presence of fluoride in solution significantly increased the soluble aluminum concentration at pHfluoride during co-precipitation with aluminum sulfate. Copyright © 2017. Published by Elsevier B.V.

  15. Iodine Sequestration Using Delafossites and Layered Hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Pless; J.B. Chwirka; J.L. Krumhansl

    2006-03-28

    The objective of this document is to report on early success for sequestering {sup 129}I. Sorption coefficients (K{sub d}) for I{sup -} and IO{sub 3}{sup -} onto delafossites, spinels and layered metal hydroxides were measured in order to compare their applicability for sequestering {sup 129}I. The studies were performed using a dilute fluid composition representative of groundwater indigenous to the Yucca mountain area. Delafossites generally exhibited relatively poor sorption coefficients (< 10{sup 1.7} mL/g). In contrast, the composition of the layered hydroxides significantly affects their ability to sorb I. Cu/Al and Cu/Cr layered hydroxide samples exhibit K{sub d}'s greater than 10{sup 3} mL/g for both I{sup -} and IO{sub 3}{sup -}.

  16. Cefoxitin Injection

    Science.gov (United States)

    ... injection is used to treat infections caused by bacteria including pneumonia and other lower respiratory tract (lung) infections; and urinary tract, abdominal (stomach area), female reproductive organs, blood, ... by killing bacteria.Antibiotics such as cefoxitin injection will not work ...

  17. Golimumab Injection

    Science.gov (United States)

    ... damaged, and do not use an auto-injection device if the security seal is broken. Look through the viewing window on the prefilled syringe or auto-injection device. The liquid inside should be clear and colorless ...

  18. Doxycycline Injection

    Science.gov (United States)

    ... may have been exposed to anthrax in the air. Doxycycline injection is in a class of medications ... decrease the effectiveness of hormonal contraceptives (birth control pills, patches, rings, or injections). Talk to your doctor ...

  19. Abaloparatide Injection

    Science.gov (United States)

    ... injection may cause osteosarcoma (bone cancer) in laboratory rats. It is not known whether abaloparatide injection increases ... too have too much calcium in the blood, hyperparathyroidism (condition in which the body produces too much ...

  20. Paliperidone Injection

    Science.gov (United States)

    Paliperidone extended-release injections (Invega Sustenna, Invega Trinza) are used to treat schizophrenia (a mental illness that ... interest in life, and strong or inappropriate emotions). Paliperidone extended-release injection (Invega Sustenna) is also used ...

  1. Doripenem Injection

    Science.gov (United States)

    ... injection is in a class of medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such ... if you are allergic to doripenem injection; other carbapenem antibiotics such as imipenem/cilastatin (Primaxin) or meropenem ( ...

  2. Ceftriaxone Injection

    Science.gov (United States)

    Ceftriaxone injection is used to treat certain infections caused by bacteria such as gonorrhea (a sexually transmitted ... skin, urinary tract, blood, bones, joints, and abdomen. Ceftriaxone injection is also sometimes given before certain types ...

  3. Nalbuphine Injection

    Science.gov (United States)

    ... injection is in a class of medications called opioid agonist-antagonists. It works by changing the way ... suddenly stop using nalbuphine injection, you may experience withdrawal symptoms including restlessness; teary eyes; runny nose; yawning; ...

  4. Naltrexone Injection

    Science.gov (United States)

    ... Videos & Tools Español You Are Here: Home → Drugs, Herbs and Supplements → Naltrexone Injection URL of this page: ... become depressed and sometimes try to harm or kill themselves. Receiving naltrexone injection does not decrease the ...

  5. Accessing the biocompatibility of layered double hydroxide by intramuscular implantation: histological and microcirculation evaluation.

    Science.gov (United States)

    Cunha, Vanessa Roberta Rodrigues; de Souza, Rodrigo Barbosa; da Fonseca Martins, Ana Maria Cristina Rebello Pinto; Koh, Ivan Hong Jun; Constantino, Vera Regina Leopoldo

    2016-08-02

    Biocompatibility of layered double hydroxides (LDHs), also known as hydrotalcite-like materials or double metal hydroxides, was investigated by in vivo assays via intramuscular tablets implantation in rat abdominal wall. The tablets were composed by chloride ions intercalated into LDH of magnesium/aluminum (Mg2Al-Cl) and zinc/aluminum (Zn2Al-Cl). The antigenicity and tissue integration capacity of LDHs were assessed histologically after 7 and 28 days post-implantation. No fibrous capsule nearby the LDH was noticed for both materials as well any sign of inflammatory reactions. Sidestream Dark Field imaging, used to monitor in real time the microcirculation in tissues, revealed overall integrity of the microcirculatory network neighboring the tablets, with no blood flow obstruction, bleeding and/or increasing of leukocyte endothelial adhesion. After 28 days Mg2Al-Cl promoted multiple collagen invaginations (mostly collagen type-I) among its fragments while Zn2Al-Cl induced predominantly collagen type-III. This work supports previous results in the literature about LDHs compatibility with living matter, endorsing them as functional materials for biomedical applications.

  6. Radiopacity evaluation of root canal sealers containing calcium hydroxide and MTA

    Directory of Open Access Journals (Sweden)

    Juliane Maria Guerreiro- Tanomaru

    2009-06-01

    Full Text Available The purpose of this study was to evaluate the radiopacity of root canal sealers containing calcium hydroxide and MTA (Acroseal, Sealer 26, Sealapex, Endo CPM Sealer, Epiphany and Intrafill. Five disc-shaped specimens (10 x 1 mm were fabricated from each material, according to the ISO 6876/2001 standard. After setting of the materials, radiographs were taken using occlusal film and a graduated aluminum stepwedge varying from 2 to 16 mm in thickness. The dental X-ray unit (GE1000 was set at 50 kVp, 10 mA, 18 pulses/s and distance of 33.5 cm. The radiographs were digitized and the radiopacity compared to that of the aluminum stepwedge using VIXWIN-2000 software (Gendex. The data (mmAl were analyzed statistically by ANOVA and Tukey's test at the 5% significance level. Epiphany and Intrafill presented the highest radiopacity values (8.3 mmAl and 7.5 mmAl respectively, p < 0.05 followed by Sealer 26 (6.3 mmAl, Sealapex (6.1 mmAl and Endo CPM Sealer (6 mmAl. Acroseal was the least radiopaque material (4 mmAl, p < 0.05. In conclusion, the calcium hydroxide- and MTA-containing root canal sealers had different radiopacities. However, all materials presented radiopacity values above the minimum recommended by the ISO standard.

  7. Advances in aluminum pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Sudour, Michel; Maintier, Philippe [PPG Industries France, 3 Z.A.E. Les Dix Muids, B.P. 89, F-59583 Marly (France); Simpson, Mark [PPG Industries Inc., 1200 Piedmont Troy, Michigan 48083 (United States); Quaglia, Paolo [PPG Industries Italia, Via Garavelli 21, I-15028 Quattordio (Italy)

    2004-07-01

    As automotive manufacturers continue to look for ways to reduce vehicle weight, aluminum is finding more utility as a body panel component. The substitution of cold-rolled steel and zinc-coated substrates with aluminum has led to new challenges in vehicle pretreatment. As a result, changes to traditional pretreatment chemistries and operating practices are necessary in order to produce an acceptable coating on aluminum body panels. These changes result in increased sludging and other undesirable characteristics. In addition to the chemistry changes, there are also process-related problems to consider. Many existing automotive pretreatment lines simply were not designed to handle aluminum and its increased demands on filtration and circulation equipment. To retrofit such a system is capital intensive and in addition to requiring a significant amount of downtime, may not be totally effective. Thus, the complexities of pre-treating aluminum body panels have actually had a negative effect on efforts to introduce more aluminum into new vehicle design programs. Recent research into ways of reducing the negative effects has led to a new understanding of the nature of zinc phosphate bath -aluminum interactions. Many of the issues associated with the pretreatment of aluminum have been identified and can be mitigated with only minor changes to the zinc phosphate bath chemistry. The use of low levels of soluble Fe ions, together with free fluoride, has been shown to dramatically improve the efficiency of a zinc phosphate system processing aluminum. Appearance of zinc phosphate coatings, coating weights and sludge are all benefited by this chemistry change. (authors)

  8. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Robert W. [Univ. of California, Berkeley, CA (United States); Muller, Rolf H. [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 - 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  9. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  10. Thermal formation of corundum from aluminium hydroxides ...

    Indian Academy of Sciences (India)

    Abstract. Aluminium hydroxides have been precipitated from various aluminium salts and the differences in their thermal behaviour have been investigated. Pseudoboehmite derived from the nitrate, sulfate and chloride all form γ-Al2O3 at ~ 400°C but the formation of α-Al2O3 at 1200°C occurs more readily in the material ...

  11. Thermal formation of corundum from aluminium hydroxides ...

    Indian Academy of Sciences (India)

    Aluminium hydroxides have been precipitated from various aluminium salts and the differences in their thermal behaviour have been investigated. Pseudoboehmite derived from the nitrate, sulfate and chloride all form -Al2O3 at ∼ 400°C but the formation of -Al2O3 at 1200°C occurs more readily in the material derived ...

  12. molecules in a functionalized layered double hydroxide

    Indian Academy of Sciences (India)

    Unknown

    included within the functionalized Mg–Al layered double hydroxide solid are similar to that of dilute so- lutions of the PAH in non-polar ... thermally stable over a wide temperature range with their emission properties practically unaltered. Keywords. Layered double ..... deformation, C–C skeletal stretch. 1020. 1024. 1024. –.

  13. Synthesis and structure refinement of layered double hydroxides of ...

    Indian Academy of Sciences (India)

    Administrator

    )-oxygen bond in this compound as opposed to the Co–Ga hydroxide. These observations are supported by IR spectra. Keywords. Layered double hydroxide; Rietveld refinement; urea hydrolysis. 1. Introduction. The synthesis, structure and properties of layered double hydroxides (LDHs) have been widely studied in recent.

  14. 21 CFR 73.1326 - Chromium hydroxide green.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium hydroxide green. 73.1326 Section 73.1326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1) The color additive chromium hydroxide green is principally hydrated chromic sesquioxide (Cr2O3·XH2O...

  15. 21 CFR 73.2326 - Chromium hydroxide green.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium hydroxide green. 73.2326 Section 73.2326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2326 Chromium hydroxide green. (a) Identity and specifications.The color additive chromium hydroxide green shall conform in identity and specifications to the...

  16. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...

  17. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides

    International Nuclear Information System (INIS)

    Braga, Tiago P.; Vasconcelos, Igor F.; Sasaki, Jose M.; Fabris, J.D.; Oliveira, Diana Q.L. de; Valentini, Antoninho

    2010-01-01

    Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Moessbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Moessbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.

  18. Research on the removal of radium from uranium effluent by air-aeration hydrated manganese hydroxide adsorption

    International Nuclear Information System (INIS)

    Zhang Jianguo; Chen Shaoqing; Qi Jing

    2002-01-01

    In the acidic leaching uranium process, pyrolusite or manganese oxide (MnO 2 ) powder is often used as an oxidizer. In the processed effluent, manganese ion present as a contaminant in addition to U, Ra, Th, As, Zn, Cu, F, SO 4 2- , etc. Manganese ion content is about 100∼200 mg/1 in effluent. In this case, a new process technique can be developed to treat the effluent using the Mn 2+ present in the effluent. The approach is as follows: The effluent is neutralized by lime milk to pH about 11. As a result, most contaminants are precipitated to meet the uranium effluent discharge standards (U, Th, Mn, SO 4 2- etc.), but radium is still present in the effluent. In this process, manganese ion forms manganese hydroxide Mn(OH) 2 . The manganese hydroxide is easily to oxide to form MnO(OH) 2 by air aeration. This hydrated manganese hydroxide complex can then be used to adsorb radium in effluent. The experiments show: (1) Effluent pH, manganese concentration in effluent, and aeration strength and time etc. influence the radium removal efficiency. Under the test conditions, when manganese in effluent is between 100∼300 mg/l, and pH is over 10.5, radium can be reduced to lower 1.11 Bq/1 in the processed effluent. Higher contents of impurity elements such as aluminum, silicon and magnesium in the effluent affect the removal efficiency; (2) Under the experimental conditions, the lime precipitation air-aeration formed hydrated manganese hydroxide complex sludge is stable. There is no obvious release of radium from the adsorbed hydrated manganese hydroxide complex sludge; (3) The current experiments show that hydrated manganese hydroxide complex sludge has a very good re-adsorption ability for removal of radium from uranium effluent. Some experimental parameters have been measured. (author)

  19. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  20. Corrosion Protection of Aluminum

    Science.gov (United States)

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  1. Removal efficiency of calcium hydroxide intracanal medicament with RinsEndo system in comparison with passive ultrasonic irrigation, an in vitro study

    Directory of Open Access Journals (Sweden)

    Abbass Ali Khademi

    2015-01-01

    Full Text Available Background: Different techniques have been introduced to improve removing the calcium hydroxide intra-canal dressing. The purpose of this study was to compare the efficiency of passive ultrasonic irrigation (PUI and RinsEndo system in the removal of calcium hydroxide from root canal system. Materials and Methods: Access cavities were prepared in 50 single-rooted anterior teeth. Cleaning and shaping were done using the Flexmaster rotary system up to size no. 30, 6%. The canals were filled with injectable calcium hydroxide (calcipex. After 7 days, the calcium hydroxide were retrieved using RinsEndo system in Group 1 (n = 20, with PUI system in Group 2 (n = 20. In positive control group (n = 5, no irrigation was performed. In negative control group (n = 5, root canals were not filled with any medicament. Following the removal of the calcium hydroxide with these two systems, teeth were split buccolingually into two sections and every third of the root canals was evaluated under stereomicroscope (×30 to analyze the residual medicament in each segment. Data were analyzed using the Kruskal-Wallis and Mann-Whitney tests (P < 0.05. Results: There was no significant difference in the removal of calcium hydroxide between RinsEndo and PUI at cervical (P = 0.67, middle (P = 0.51 and apical (P = 0.75 part of the root canals. Conclusion: None of the irrigation techniques was able to completely remove calcium hydroxide from the root canal system.

  2. Process for recycling waste aluminum with generation of high-pressure hydrogen.

    Science.gov (United States)

    Hiraki, Takehito; Yamauchi, Satoru; Iida, Masayasu; Uesugi, Hiroshi; Akiyama, Tomohiro

    2007-06-15

    An innovative environmently friendly hydrolysis process for recycling waste aluminum with the generation of high-pressure hydrogen has been proposed and experimentally validated. The effect of the concentration of sodium hydroxide solution on hydrogen generation rate was the main focus of the study. In the experiments, distilled water and aluminum powder were placed in the pressure-resistance reactor made of Hastelloy, and was compressed to a desired constant water pressure using a liquid pump. The sodium hydroxide solution was supplied by liquid pump with different concentrations (from 1.0 to 5.0 mol/dm3) at a constant flow rate into the reactor by replacing the distilled water, and the rate of hydrogen generated was measured simultaneously. The liquid temperature in the reactor increased due to the exothermic reaction given by Al + OH(-) + 3H2O = 1.5H2 + Al(OH)4(-) + 415.6 kJ. Therefore, a high-pressure hydrogen was generated at room temperature by mixing waste aluminum and sodium hydroxide solution. As the hydrogen compressor used in this process consumes less energy than the conventional one, the generation of hydrogen having a pressure of almost 30 MPa was experimentally validated together with Al(OH)3, a useful byproduct.

  3. Aluminum industry options paper

    International Nuclear Information System (INIS)

    1999-10-01

    In 1990, Canada's producers of aluminum (third largest in the world) emitted 10 million tonnes of carbon dioxide and equivalent, corresponding to 6.4 tonnes of greenhouse gas intensity per tonne of aluminum. In 2000, the projection is that on a business-as-usual (BAU) basis Canadian producers now producing 60 per cent more aluminum than in 1990, will emit 10.7 million tonnes of carbon dioxide and equivalent, corresponding to a GHG intensity of 4.2 tonnes per tonne of aluminum. This improvement is due to production being based largely on hydro-electricity, and partly because in general, Canadian plants are modern, with technology that is relatively GHG-friendly. The Aluminum Association of Canada estimates that based on anticipated production, and under a BAU scenario, GHG emissions from aluminum production will rise by 18 per cent by 2010 and by 30 per cent by 2020. GHG emissions could be reduced below the BAU forecast first, by new control and monitoring systems at some operations at a cost of $4.5 to 7.5 million per smelter. These systems could reduce carbon dioxide equivalent emissions by 0.8 million tonnes per year. A second alternative would require installation of breaker feeders which would further reduce perfluorocarbon (PFC) emissions by 0.9 million tonnes of carbon dioxide equivalent. Cost of the breakers feeders would be in the order of $200 million per smelter. The third option calls for the the shutting down of some of the smelters with older technology by 2015. In this scenario GHG emissions would be reduced by 2010 by 0.8 million tonnes per year of carbon dioxide equivalent. However, the cost in this case would be about $1.36 billion. The industry would support measures that would encourage the first two sets of actions, which would produce GHG emissions from aluminum production in Canada of about 10.2 million tonnes per year of carbon dioxide equivalent, or about two per cent above 1990 levels with double the aluminum production of 1990. Credit for

  4. THE CELLULAR TRANSFORMATION OF INJECTED COLLOIDAL IRON COMPLEXES INTO FERRITIN AND HEMOSIDERIN IN EXPERIMENTAL ANIMALS

    Science.gov (United States)

    Richter, Goetz W.

    1959-01-01

    As revealed by electron microscopy and electron diffraction, the physical state of ferric hydroxide micelles contained in iron-dextran, saccharated iron oxide, and hydrous ferric oxide ("ferric hydroxide") differs notably from the state of the ferric hydroxide in ferritin or hemosiderin. By virtue of this difference one can trace the intracellular transformation of colloidal iron, administered parenterally, into ferritin and hemosiderin. One hour after intraperitoneal injection of iron-dextran or saccharated iron oxide into mice, characteristic deposits were present in splenic macrophages, in sinusoidal endothelial cells of spleen and liver, and in vascular endothelial cells of various renal capillaries. Four hours after injection, small numbers of ferritin molecules were identifiable about intracellular aggregates of injected iron compounds; and by the 6th day, ferritin was abundant in close proximity to deposits of injected iron compounds. The latter were frequently situated in cytoplasmic vesicles delimited by single membranes. These vesicles were most frequently found in tissue obtained during the first 6 days after injection; and in certain of the vesicles ferritin molecules surrounded closely packed aggregates of injected material. Much unchanged ferric hydroxide was still present in macrophages and vascular endothelial cells 3 to 4 weeks after injection. While electron microscopy left no doubt about the identity of injected ferric hydroxide on the one hand, and of ferritin or hemosiderin on the other, histochemical tests for iron failed in this respect. Precipitation of ferric hydroxide (hydrous ferric oxide) from stabilized colloidal dispersions of iron-dextran was brought about in vitro by incubation with minced mouse tissue (e.g. liver), but not by incubation with mouse serum or blood. Subcutaneous injections of hydrous gel of ferric oxide into mice initially produced localized extracellular precipitates. Most of the material was still extracellular 16

  5. Nickel hydroxide modified electrodes for urea determination

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available Nickel hydroxide films were prepared by electrodeposition from a solution Ni(NO32 0,05 mol L ?¹ on ITO electrodes (Tin oxide doped with Indium on PET-like plastic film, applying a current of - 0,1 A cm ?² during different time intervals between 1800 and 7200 s. The electrochemical behavior of the nickel hydroxide electrode was investigated through a cyclic voltammogram, in NaOH 1,0 mol L ?¹, where it was observed two peaks in the profile in 0,410 and 0,280 V, corresponding to redox couple Ni(II/Ni(III. A sensor for urea presenting a satisfactory answer can be obtained when, after the deposit of the film of Ni(OH2 on the electrode of nickel, it is immersed in a solution of NaOH 1,0 mol L ?¹ and applying a potential of + 0,435 V, where the maximum of the anodic current occurs in the cyclic voltammogram. Analyzing the results it can be observed that, for a range of analite concentration between 5 to 50 m mol L ?¹, the behavior is linear and the sensibility found was of 20,3 mA cm?² (mol L?¹?¹, presenting reproducibility confirming the nickel hydroxide electrodes utilization for the determination of urea.

  6. Microemulsion-assisted synthesis of mesoporous aluminum oxyhydroxide nanoflakes for efficient removal of gaseous formaldehyde.

    Science.gov (United States)

    Xu, Zhihua; Yu, Jiaguo; Low, Jingxiang; Jaroniec, Mietek

    2014-02-12

    Mesoporous aluminum oxyhydroxides composed of nanoflakes were prepared via a water-in-oil microemulsion-assisted hydrothermal process at 50 °C using aluminum salts as precursors and ammonium hydroxide as a precipitating agent. The microstructure, morphology, and textural properties of the as-prepared materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption, and X-ray photoelectron spectroscopy (XPS) techniques. It is shown that the aluminum oxyhydroxide nanostructures studied are effective adsorbents for removal of formaldehyde (HCHO) at ambient temperature, due to the abundance of surface hydroxyl groups, large specific surface area, and suitable pore size. Also, the type of aluminum precursor was essential for the microstructure formation and adsorption performance of the resulting materials. Namely, the sample prepared from aluminum sulfate (Al-s) exhibited a relatively high HCHO adsorption capacity in the first run, while the samples obtained from aluminum nitrate (Al-n) and chloride (Al-c) exhibited high adsorption capacity and relatively stable recyclability. A combination of high surface area and strong surface affinity of the prepared aluminum oxyhydroxide make this material a promising HCHO adsorbent for indoor air purification.

  7. Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties.

    Science.gov (United States)

    Schneiderová, Barbora; Demel, Jan; Zhigunov, Alexander; Bohuslav, Jan; Tarábková, Hana; Janda, Pavel; Lang, Kamil

    2017-08-01

    This paper reports the synthesis, characterization, and electrochemical performance of nickel-cobalt hydroxide nanosheets. The hydroxide nanosheets of approximately 0.7nm thickness were prepared by delamination of layered nickel-cobalt hydroxide lactate in water and formed transparent colloids that were stable for months. The nanosheets were deposited on highly oriented pyrolytic graphite by spin coating, and their electrochemical behavior was investigated by cyclic voltammetry in potassium hydroxide electrolyte. Our method of electrode preparation allows for studying the electrochemistry of nanosheets where the majority of the active centers can participate in the charge transfer reaction. The observed electrochemical response was ascribed to mutual compensation of the cobalt and nickel response via electron sharing between these metals in the hydroxide nanosheets, a process that differentiates the behavior of nickel-cobalt hydroxide nanosheets from single nickel hydroxide or cobalt hydroxide nanosheets or their physical mixture. The presence of cobalt in the nickel-cobalt hydroxide nanosheets apparently decreases the time of electrochemical activation of the nanosheet layer, which for the nickel hydroxide nanosheets alone requires more potential sweeps. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Fluoride ions sorption of the water using natural and modified hematite with aluminium hydroxide

    International Nuclear Information System (INIS)

    Teutli S, E. A.

    2011-01-01

    Fluorine is a mineral known for its dental benefits, but fluoride ions can cause fluoro sis in excessive quantities. There are many epidemiological studies on possible adverse effects resulting from prolonged ingestion of fluoride through drinking water. These studies demonstrate that fluoride mainly affects the bone tissue (bones and teeth), may produce an adverse effect on tooth enamel and can cause mild dental fluoro sis at concentrations from 0.9 to 1.2 mg/L in drinking water. In several states of Mexico, water contaminated with fluoride ions can be found, such as Aguascalientes, Chihuahua, Coahuila, Durango, Guanajuato, Sonora, Zacatecas, San Luis Potosi and Jalisco, where the fluoride ions levels are higher than 1.5 mg/L, established by the Mexican Official Standard (NOM-127-Ssa-2000) which sets the permissible limits of water for human use and consumption. Currently, several technologies have been proposed to remove fluoride ions from water such as precipitation methods which are based on the addition of chemicals to water and sorption methods to removed fluoride ions by sorption or ion exchange reactions by some suitable substrate capable of regenerate and reuse. In this work, the sorption of fluoride ions using unmodified and modified hematite with aluminum hydroxide to remove fluoride ions from water by bath experiments was studied. The hematite was modified by treating it with aluminum hydroxide, NaOH and Al 2 (SO 4 ) 3 solutions. The characterization of hematite before and after modification with aluminum hydroxide was studied by X-ray diffraction, scanning electron microscopy, EDS and Bet. The effect of ph, contact time, concentration of fluoride ions, and the dose of sorbent on the sorption of fluoride ions by the modified hematite were studied. Equilibrium was reached within 48 hours of contact time and the maximum sorption of fluoride ions were in the range pH eq between 2.3 and 6.2. Sorption capacities of fluoride ions as a function of dose of

  9. Aluminum for plasmonics.

    Science.gov (United States)

    Knight, Mark W; King, Nicholas S; Liu, Lifei; Everitt, Henry O; Nordlander, Peter; Halas, Naomi J

    2014-01-28

    Unlike silver and gold, aluminum has material properties that enable strong plasmon resonances spanning much of the visible region of the spectrum and into the ultraviolet. This extended response, combined with its natural abundance, low cost, and amenability to manufacturing processes, makes aluminum a highly promising material for commercial applications. Fabricating Al-based nanostructures whose optical properties correspond with theoretical predictions, however, can be a challenge. In this work, the Al plasmon resonance is observed to be remarkably sensitive to the presence of oxide within the metal. For Al nanodisks, we observe that the energy of the plasmon resonance is determined by, and serves as an optical reporter of, the percentage of oxide present within the Al. This understanding paves the way toward the use of aluminum as a low-cost plasmonic material with properties and potential applications similar to those of the coinage metals.

  10. Regeneration of aluminum hydride

    Science.gov (United States)

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  11. Regeneration of aluminum hydride

    Science.gov (United States)

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  12. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions.

    Science.gov (United States)

    Choi, Tae Hoon; Liang, Ruibin; Maupin, C Mark; Voth, Gregory A

    2013-05-02

    The self-consistent charge density functional tight binding (SCC-DFTB) method has been applied to hydroxide water clusters and a hydroxide ion in bulk water. To determine the impact of various implementations of SCC-DFTB on the energetics and dynamics of a hydroxide ion in gas phase and condensed phase, the DFTB2, DFTB2-γ(h), DFTB2-γ(h)+gaus, DFTB3-diag, DFTB3-diag+gaus, DFTB3-Full+gaus, and DFTB3-3OB implementations have been tested. Energetic stabilities for small hydroxide clusters, OH(-)(H2O)n, where n = 4-7, are inconsistent with the results calculated with the B3LYP and second order Møller-Plesset (MP2) levels of ab initio theory. The condensed phase simulations, OH(-)(H2O)127, using the DFTB2, DFTB2-γ(h), DFTB2-γ(h)+gaus, DFTB3-diag, DFTB3-diag+gaus, DFTB3-Full+gaus and DFTB3-3OB methods are compared to Car-Parrinello molecular dynamics (CPMD) simulations using the BLYP functional. The SCC-DFTB method including a modified O-H repulsive potential and the third order correction (DFTB3-diag/Full+gaus) is shown to poorly reproduce the CPMD computational results, while the DFTB2 and DFTB2-γ(h) method somewhat more closely describe the structural and dynamical nature of the hydroxide ion in condensed phase. The DFTB3-3OB outperforms the MIO parameter set but is no more accurate than DFTB2. It is also shown that the overcoordinated water molecules lead to an incorrect bulk water density and result in unphysical water void formation. The results presented in this paper point to serious drawbacks for various DFTB extensions and corrections for a hydroxide ion in aqueous environments.

  13. Nucleation and growth kinetics of zirconium hydroxide by precipitation with ammonium hydroxide

    International Nuclear Information System (INIS)

    Carleson, T.E.; Chipman, N.A.

    1987-01-01

    The results of a study of the nucleation and growth kinetics of the precipitation of zirconium hydroxide from the reaction of hexafluorozirconate solution with ammonium hydroxide are reported. The McCabe linear growth rate model was used to correlate the results. The growth rate decreased with residence time and supersaturation for studies with 7 residence times (3.5 - 90 minutes and two supersaturation ratios (0.03 - 0.04, and 0.4). The nucleation rate increased with residence time and supersaturation. A negative kinetic order of nucleation was observed that may be due to the inhibition of particle growth by adsorption of reacting species on the crystal surfaces

  14. Cefazolin Injection

    Science.gov (United States)

    ... is used to treat certain infections caused by bacteria including skin, bone, joint, genital, blood, heart valve, respiratory tract (including pneumonia), biliary tract, and urinary tract infections. Cefazolin injection ...

  15. Atezolizumab Injection

    Science.gov (United States)

    ... is in a class of medications called monoclonal antibodies. It works by blocking the action of a ... infection breath that smells fruity slowed, fast or irregular heartbeat Atezolizumab injection may cause other side effects. ...

  16. Cidofovir Injection

    Science.gov (United States)

    Cidofovir injection is used along with another medication (probenecid) to treat cytomegaloviral retinitis (CMV retinitis) in people ... body's response to the medication.You must take probenecid tablets by mouth with each dose of cidofovir. ...

  17. Acyclovir Injection

    Science.gov (United States)

    ... It is also used to treat first-time genital herpes outbreaks (a herpes virus infection that causes sores ... in the body. Acyclovir injection will not cure genital herpes and may not stop the spread of genital ...

  18. Alirocumab Injection

    Science.gov (United States)

    ... further decrease the amount of low-density lipoprotein (LDL) cholesterol ('bad cholesterol') in the blood. Alirocumab injection is ... antibodies. It works by blocking the production of LDL cholesterol in the body to decrease the amount of ...

  19. Pegloticase Injection

    Science.gov (United States)

    ... doctor if you have glucose-6-phosphate dehydrogenase (G6PD) deficiency (an inherited blood disease). Your doctor may test you for G6PD deficiency before you start to receive pegloticase injection. If ...

  20. Risperidone Injection

    Science.gov (United States)

    ... of interest in life, and strong or inappropriate emotions). Risperidone extended-release injection is used alone or ... during your treatment: extreme thirst, frequent urination, extreme hunger, blurred vision, or weakness. It is very important ...

  1. Olanzapine Injection

    Science.gov (United States)

    ... of interest in life, and strong or inappropriate emotions). Olanzapine injection is used to treat episodes of ... during your treatment: extreme thirst, frequent urination, extreme hunger, blurred vision, or weakness. It is very important ...

  2. Tacrolimus Injection

    Science.gov (United States)

    ... in people who have received kidney, liver, or heart transplants. Tacrolimus injection should only be used by people ... or nurse will watch you closely during the first 30 minutes of your treatment and then will ...

  3. Omalizumab Injection

    Science.gov (United States)

    ... injection is used to decrease the number of asthma attacks (sudden episodes of wheezing, shortness of breath, and ... about how to treat symptoms of a sudden asthma attack. If your asthma symptoms get worse or if ...

  4. Daclizumab Injection

    Science.gov (United States)

    ... neck, armpits, or groin; diarrhea; bloody stools; stomach pain; or any new, unexplained symptom affecting any part of your body.Because of the risks with this medication, daclizumab injection is available only through a special ...

  5. Temozolomide Injection

    Science.gov (United States)

    ... balance or coordination fainting dizziness hair loss insomnia memory problems pain, itching, swelling, or redness in the place where the medication was injected changes in vision Some side effects can be serious. If you ...

  6. Moxifloxacin Injection

    Science.gov (United States)

    ... tendon area, or inability to move or to bear weight on an affected area.Using moxifloxacin injection ... muscle weakness) and cause severe difficulty breathing or death. Tell your doctor if you have myasthenia gravis. ...

  7. Delafloxacin Injection

    Science.gov (United States)

    ... a tendon area, or inability to move or bear weight on an affected area.Using delafloxacin injection ... muscle weakness) and cause severe difficulty breathing or death. Tell your doctor if you have myasthenia gravis. ...

  8. Levofloxacin Injection

    Science.gov (United States)

    ... tendon area, or inability to move or to bear weight on an affected area.Using levofloxacin injection ... muscle weakness) and cause severe difficulty breathing or death. Tell your doctor if you have myasthenia gravis. ...

  9. Ciprofloxacin Injection

    Science.gov (United States)

    ... a tendon area, or inability to move or bear weight on an affected area.Using ciprofloxacin injection ... muscle weakness) and cause severe difficulty breathing or death. Tell your doctor if you have myasthenia gravis. ...

  10. Butorphanol Injection

    Science.gov (United States)

    ... Butorphanol is in a class of medications called opioid agonist-antagonists. It works by changing the way ... suddenly stop using butorphanol injection, you may experience withdrawal symptoms such as nervousness, agitation, shakiness, diarrhea, chills, ...

  11. Haloperidol Injection

    Science.gov (United States)

    ... of interest in life, and strong or inappropriate emotions). Haloperidol injection is also used to control motor ... and the laboratory. Your doctor may order certain lab tests to check your body's response to haloperidol ...

  12. Ketorolac Injection

    Science.gov (United States)

    ... of ketorolac by intravenous (into a vein) or intramuscular (into a muscle) injection in a hospital or ... You can also visit the Food and Drug Administration (FDA) website (http://www.fda.gov/Drugs/DrugSafety/ ...

  13. Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity.

    Science.gov (United States)

    Shaw, C A; Tomljenovic, L

    2013-07-01

    We have examined the neurotoxicity of aluminum in humans and animals under various conditions, following different routes of administration, and provide an overview of the various associated disease states. The literature demonstrates clearly negative impacts of aluminum on the nervous system across the age span. In adults, aluminum exposure can lead to apparently age-related neurological deficits resembling Alzheimer's and has been linked to this disease and to the Guamanian variant, ALS-PDC. Similar outcomes have been found in animal models. In addition, injection of aluminum adjuvants in an attempt to model Gulf War syndrome and associated neurological deficits leads to an ALS phenotype in young male mice. In young children, a highly significant correlation exists between the number of pediatric aluminum-adjuvanted vaccines administered and the rate of autism spectrum disorders. Many of the features of aluminum-induced neurotoxicity may arise, in part, from autoimmune reactions, as part of the ASIA syndrome.

  14. Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review

    Science.gov (United States)

    Shalavi, S; Yazdizadeh, M

    2012-01-01

    The purpose of endodontic therapy is to preserve the patient's natural teeth without compromising the patient's local or systemic health. Calcium hydroxide has been included in several materials and antimicrobial formulations that are used in several treatment modalities in endodontics, such as inter-appointment intracanal medicaments. The purpose of this article was to review the antimicrobial properties of calcium hydroxide in endodontics. Calcium hydroxide has a high pH (approximately 12.5-12.8) and is classified chemically as a strong base. The lethal effects of calcium hydroxide on bacterial cells are probably due to protein denaturation and damage to DNA and cytoplasmic membranes. Calcium hydroxide has a wide range of antimicrobial activity against common endodontic pathogens but is less effective against Enterococcus faecalis and Candida albicans. Calcium hydroxide is also a valuable anti-endotoxin agent. However, its effect on microbial biofilms is controversial. PMID:23323217

  15. Antimicrobial activity of calcium hydroxide in endodontics: a review.

    Science.gov (United States)

    Mohammadi, Z; Shalavi, S; Yazdizadeh, M

    2012-12-01

    The purpose of endodontic therapy is to preserve the patient's natural teeth without compromising the patient's local or systemic health. Calcium hydroxide has been included in several materials and antimicrobial formulations that are used in several treatment modalities in endodontics, such as inter-appointment intracanal medicaments. The purpose of this article was to review the antimicrobial properties of calcium hydroxide in endodontics. Calcium hydroxide has a high pH (approximately 12.5-12.8) and is classified chemically as a strong base. The lethal effects of calcium hydroxide on bacterial cells are probably due to protein denaturation and damage to DNA and cytoplasmic membranes. Calcium hydroxide has a wide range of antimicrobial activity against common endodontic pathogens but is less effective against Enterococcus faecalis and Candida albicans. Calcium hydroxide is also a valuable anti-endotoxin agent. However, its effect on microbial biofilms is controversial.

  16. Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties

    Czech Academy of Sciences Publication Activity Database

    Schneiderová, Barbora; Demel, Jan; Zhigunov, Alexander; Bohuslav, Jan; Tarábková, Hana; Janda, Pavel; Lang, Kamil

    2017-01-01

    Roč. 499, AUG (2017), s. 138-144 ISSN 0021-9797 Institutional support: RVO:61388980 ; RVO:61389013 ; RVO:61388955 Keywords : Hydroxide nanosheets * Delamination * Exfoliation * Layered nickel hydroxide * Layered cobalt hydroxide * Electrode material Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W); CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Inorganic and nuclear chemistry; Physical chemistry (UFCH-W); Polymer science (UMCH-V) Impact factor: 4.233, year: 2016

  17. Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review

    OpenAIRE

    Mohammadi, Z; Shalavi, S; Yazdizadeh, M

    2012-01-01

    The purpose of endodontic therapy is to preserve the patient's natural teeth without compromising the patient's local or systemic health. Calcium hydroxide has been included in several materials and antimicrobial formulations that are used in several treatment modalities in endodontics, such as inter-appointment intracanal medicaments. The purpose of this article was to review the antimicrobial properties of calcium hydroxide in endodontics. Calcium hydroxide has a high pH (approximately 12.5...

  18. Aluminum Sulfate 18 Hydrate

    Science.gov (United States)

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  19. Applied Electrochemistry of Aluminum

    DEFF Research Database (Denmark)

    Li, Qingfeng; Qiu, Zhuxian

    Electrochemistry of aluminum is of special importance from both theoretical and technological point of view. It covers a wide range of electrolyte systems from molten fluoride melts at around 1000oC to room temperature molten salts, from aqueous to various organic media and from liquid to solid...

  20. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  1. Aluminum for Plasmonics

    Science.gov (United States)

    2014-01-01

    mini - mize the deleterious effects of the bulk metal oxide. Conversely, the optical scattering spectrum of an Al nanodisk can serve as a reporter of Al...Nanoparticles. J. Phys. Chem. C 2008, 112, 13958–13963. 22. Chowdhury, M. H.; Ray, K.; Gray, S. K.; Pond , J.; Lakowicz, J. R. Aluminum Nanoparticles as

  2. Aluminum battery alloys

    Science.gov (United States)

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  3. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  4. In vivo toxicity studies of europium hydroxide nanorods in mice

    International Nuclear Information System (INIS)

    Patra, Chitta Ranjan; Abdel Moneim, Soha S.; Wang, Enfeng; Dutta, Shamit; Patra, Sujata; Eshed, Michal; Mukherjee, Priyabrata; Gedanken, Aharon; Shah, Vijay H.; Mukhopadhyay, Debabrata

    2009-01-01

    Lanthanide nanoparticles and nanorods have been widely used for diagnostic and therapeutic applications in biomedical nanotechnology due to their fluorescence and pro-angiogenic properties to endothelial cells, respectively. Recently, we have demonstrated that europium (III) hydroxide [Eu III (OH) 3 ] nanorods, synthesized by the microwave technique and characterized by several physico-chemical techniques, can be used as pro-angiogenic agents which introduce future therapeutic treatment strategies for severe ischemic heart/limb disease, and peripheral ischemic disease. The toxicity of these inorganic nanorods to endothelial cells was supported by several in vitro assays. To determine the in vivo toxicity, these nanorods were administered to mice through intraperitoneal injection (IP) everyday over a period of seven days in a dose dependent (1.25 to 125 mg kg -1 day -1 ) and time dependent manner (8-60 days). Bio-distribution of europium elements in different organs was analyzed by inductively coupled plasma mass spectrometry (ICPMS). Short-term (S-T) and long-term (L-T) toxicity studies (mice euthanized on days 8 and 60 for S-T and L-T, respectively) show normal blood hematology and serum clinical chemistry with the exception of a slight elevation of liver enzymes. Histological examination of nanorod-treated vital organs (liver, kidney, spleen and lungs) showed no or only mild histological changes that indicate mild toxicity at the higher dose of nanorods.

  5. Sound velocity in potassium hydroxide aqueous solution

    International Nuclear Information System (INIS)

    Tsapuryan, Kh.D.; Aleksandrov, A.A.; Kochetkov, A.I.

    1992-01-01

    Measurements of ultrasonic velocities in potassium hydroxide aqueous solutions are carried out within the frames of studies on improvement of water chemistry in NPP cooling systems. Method of echo pulses superposition with acoustic path length of 41.447 mm is used for measurements. The measurements are performed at 2.6 MHz frequency. Complex temperature dependence of ultrasonic velocity is determined. Ultrasonic velocity dependence on pressure is close to linear one. The formula for calculation of thermodynamic properties of the studied solutions on the basis of experimental data obtained is proposed

  6. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    Science.gov (United States)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Namour, Philippe; Ben Haj Amara, Abdesslem; Jaffrezic-Renault, Nicole

    2016-11-01

    Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However, MgAl LDH shows better performance than ZnAl LDH, due to the presence of magnesium cations in the layers. Following the structural, morphological and electrochemical behavior studies of both synthesized LDHs, the prepared LDH modified electrodes were tested through microbial fuel cell configuration, revealing a remarkable, potential new pathway for high-performance and cost-effective electrode use in electrochemical power devices.

  7. Amorphous Aluminum Hydroxide Control on Sulfate and Phosphate in Sediment-Solution Systems

    Czech Academy of Sciences Publication Activity Database

    Navrátil, T.; Rohovec, Jan; Amirbahman, A.; Norton, S. A.; Fernandez, I. J.

    2009-01-01

    Roč. 201, 1-4 (2009), s. 87-98 ISSN 0049-6979 Institutional research plan: CEZ:AV0Z30130516 Keywords : adsorption * oligotrophy * Al precipitates * anions * acidification * alkalization Subject RIV: DD - Geochemistry Impact factor: 1.676, year: 2009

  8. Different approaches to the analysis of small angle scattering experiments on porous aluminum-hydroxide

    DEFF Research Database (Denmark)

    Rasmussen, F.B.

    2001-01-01

    are able to describe the data and provide specific surface areas in agreement with BET values obtained by nitrogen adsorption data. Clear evidence for a model involving anisotropic particles was obtained by combining the scattering data with transmission electron microscopy and nitrogen adsorption...

  9. Aluminum hydroxide adjuvant differentially activates the three complement pathways with major involvement of the alternative pathway

    DEFF Research Database (Denmark)

    Güven, Esin; Duus, Karen; Laursen, Inga

    2013-01-01

    Al(OH)3 is the most common adjuvant in human vaccines, but its mode of action remains poorly understood. Complement involvement in the adjuvant properties of Al(OH)3 has been suggested in several reports together with a depot effect. It is here confirmed that Al(OH)3 treatment of serum depletes c...

  10. Competitive reactions during synthesis of zinc aluminum layered double hydroxides by thermal hydrolysis of urea

    DEFF Research Database (Denmark)

    Boisen Staal, Line; Puschparaj, Suraj S. C.; Forano, Claude

    2017-01-01

    at four different reaction times (7, 12, 16, and 24 h) and characterized by bulk (PXRD, TEM, and elemental analysis) and local techniques (27Al SSNMR, FT-IR, and Raman spectroscopies) in combination with a time-resolved synchrotron PXRD study of the reaction mixture. The products obtained are a mixture...

  11. Spontaneous formation of complex structures made from elastic membranes in an aluminum-hydroxide-carbonate system

    Science.gov (United States)

    Kiehl, Micah; Kaminker, Vitaliy; Pantaleone, James; Nowak, Piotr; Dyonizy, Agnieszka; Maselko, Jerzy

    2015-06-01

    A popular playground for studying chemo-hydrodynamic patterns and instabilities is chemical gardens, also known as silicate gardens. In these systems, complex structures spontaneously form, driven by buoyant forces and either osmotic or mechanical pumps. Here, we report on systems that differ somewhat from classical chemical gardens in that the membranes are much more deformable and soluble. These properties lead to structures that self-construct and evolve in new ways. For example, they exhibit the formation of chemical balloons, a new growth mechanism for tubes, and also the homologous shrinking of these tubes. The stretching mechanism for the membranes is probably different than for other systems by involving membrane "self-healing." Other unusual properties are osmosis that sometimes occurs out of the structure and also small plumes that flow away from the structure, sometimes upwards, and sometimes downwards. Mathematical models are given that explain some of the observed phenomena.

  12. Mechanochemical synthesis of Cu-Al and methyl orange intercalated Cu-Al layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun, E-mail: forsjun@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); He, Xiaoman; Chen, Min; Hu, Huimin [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); Zhang, Qiwu, E-mail: zhangqw@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); Liu, Xinzhong [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118 China (China)

    2017-04-15

    In this study, a mechanochemical route to synthesize a Cu-Al layered double hydroxide (LDH) and a methyl orange (MO) intercalated one (MO-LDH) was introduced, in which basic cupric carbonate (Cu{sub 2}(OH){sub 2}CO{sub 3}) and aluminum hydroxide (Al(OH){sub 3}) with Cu/Al molar ratio at 2/1 was first dry ground for 2 h and then agitated in water or methyl orange solution for another 4 h to obtain the LDH and MO-LDH products without any heating operation. The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry (TG), Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM). The products showed high crystallinity phase of Cu-Al and MO intercalated Cu-Al LDH with no evident impurities, proving that the craft introduced here was facile and effective. The new idea can be applied in other fields to produce organic-inorganic composites. - Highlights: • A facile mechanochemical route to synthesize Cu-Al and MO intercalated Cu-Al LDH. • The products possesses high crystalline of LDH phase with no impure phases. • The dry milling process induces the element substitution between the raw materials. • The agitation operation helps the grain growth of LDH.

  13. Mechanochemical synthesis of dodecyl sulfate anion (DS-) intercalated Cu-Al layered double hydroxide

    Science.gov (United States)

    Qu, Jun; He, Xiaoman; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-12-01

    Dodecyl sulfate anion (DS-) was successfully intercalated into the gallery space of Cu-Al layered double hydroxides (LDH) by a non-heating mechanochemical route, in which basic cupric carbonate (Cu2(OH)2CO3) and aluminum hydroxide (Al(OH)3) were first dry ground and then agitated in SDS solution under ambient environment. The organics modified Cu-Al LDH showed good adsorption ability toward 2,4-dichlorophenoxyacetic acid (2, 4-D). The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), CHS elemental analysis and Scanning electron microscopy (SEM). The LDH precursor prepared by ball-milling could directly react with SDS molecules forming a pure phase of DS- pillared Cu-Al LDH, which was not observed with the LDH product through the ion-exchange of DS- at room temperature. The process introduced here may be applied to manufacture other types of organic modified composites for pollutants removal and other applications.

  14. The role of oleate-functionalized layered double hydroxide in the melt compounding of polypropylene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Donato, Ricardo K., E-mail: ricardokeitel@iq.ufrgs.br [Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Luza, Leandro, E-mail: leandro.luza@ufrgs.br [Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Silva, Renato F. da, E-mail: renato.figueira@ufrgs.br [Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Moro, Celso C., E-mail: celso@iq.ufrgs.br [Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Guzatto, Rafael, E-mail: guzatto@gmail.com [Laboratory of Instrumentation and Molecular Dynamics, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Samios, Dimitrios, E-mail: dsamios@iq.ufrgs.br [Laboratory of Instrumentation and Molecular Dynamics, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Matejka, Libor, E-mail: matejka@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, Prague 6, 162 06 (Czech Republic); Dimzoski, Bojan, E-mail: dimzoski@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, Prague 6, 162 06 (Czech Republic); and others

    2012-12-01

    In this research, the oleate-functionalized magnesium and aluminum layered double hydroxide (LDH; Mg:Al = 3:1) o-LDH was applied as nanofiller in the melt blending of polypropylene (PP) nanocomposites, in order to understand its role in this process. o-LDH was prepared using the memory effect of the calcined carbonated LDH. Blending of PP and low o-LDH filler contents of 0.45 and 0.90 wt.% afforded the nanocomposites PP0.45 and PP0.90, respectively, which were characterized by transmission electron microscopy, X-ray diffraction, small angle X-ray scattering, thermo-gravimetric analysis, differential scanning calorimetry and dynamic mechanical analysis. The oleate LDH surface functionalization enhanced the system compatibility as a relative regular dispersion of o-LDH tactoids was observed within the matrix, together with partial PP intercalation. This o-LDH incorporation increased the PP relative crystallinity, induced crystalline orientation and decreased the glass transition temperature. Furthermore, the nanocomposites showed improved initial resistance to decomposition and stiffness. These results showed that the o-LDH acted as both nucleating agent and plasticizer, and that the presented approach can be used for the development of PP nanocomposites with distinguished properties. Highlights: Black-Right-Pointing-Pointer Nanofiller induced orientation of the crystalline polypropylene phase. Black-Right-Pointing-Pointer Renewable feedstock as compatibilizer in the preparation of nanocomposites Black-Right-Pointing-Pointer Layered double hydroxide as nucleating agent and plasticizer.

  15. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    Science.gov (United States)

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  16. Particle size and shape of calcium hydroxide.

    Science.gov (United States)

    Komabayashi, Takashi; D'souza, Rena N; Dechow, Paul C; Safavi, Kamran E; Spångberg, Larz S W

    2009-02-01

    The aim of this study was to examine the particle length, width, perimeter, and aspect ratio of calcium hydroxide powder using a flow particle image analyzer (FPIA). Five sample groups each with 10 mg of calcium hydroxide were mixed with 15 mL of alcohol and sonicated. Digital images of the particle samples were taken using the FPIA and analyzed with a one-way analysis of variance. The overall averages +/- standard deviation among the five groups for particle length (microm), width (microm), perimeter (microm), and aspect ratio were 2.255 +/- 1.994, 1.620 +/- 1.464, 6.699 +/- 5.598, and 0.737 +/- 0.149, respectively. No statistical significance was observed among the groups for all parameters. When the total of 46,818 particles from all five groups were classified into the five length categories of 0.5-microm increments, there were significant differences in width, perimeter, and aspect ratio (all p values particles have a size and shape that may allow direct penetration into open dentin tubules.

  17. Molten aluminum alloy fuel fragmentation experiments

    International Nuclear Information System (INIS)

    Gabor, J.D.; Purviance, R.T.; Cassulo, J.C.; Spencer, B.W.

    1992-01-01

    Experiments were conducted in which molten aluminum alloys were injected into a 1.2 m deep pool of water. The parameters varied were (i) injectant material (8001 aluminum alloy and 12.3 wt% U-87.7 wt% Al), (ii) melt superheat (O to 50 K), (iii) water temperature (313, 343 and 373 K) and (iv) size and geometry of the pour stream (5, 10 and 20 mm diameter circular and 57 mm annular). The pour stream fragmentation was dominated by surface tension with large particles (∼30 mm) being formed from varicose wave breakup of the 10-mm circular pours and from the annular flow off a 57 mm diameter tube. The fragments produced by the 5 mm circular et were smaller (∼ mm), and the 20 mm jet which underwent sinuous wave breakup produced ∼100 mm fragments. The fragments froze to form solid particles in 313 K water, and when the water was ≥343 K, the melt fragments did not freeze during their transit through 1.2 m of water

  18. Abundance of interstellar aluminum

    Science.gov (United States)

    Barker, E. S.; Lugger, P. M.; Weiler, E. J.; York, D. G.

    1984-01-01

    New observations of Al II 1670 A, the only line of the dominant ionization stage of interstellar aluminum detected to date, are presented. Observations of ionized silicon are used to define an empirical curve of growth from which aluminum depletions can be derived. The depletion ranges from a factor of 10 in alpha Vir, with E(B-V) of about 0.04, to a factor of 1000 in omicron Per. The depletion is similar to that of iron, but a factor of 2-10 lower than that for silicon in the same stars. The observations of near-UV lines using the Copernicus V1 tubes with removal of a high cosmic-ray-induced fluorescent background are described.

  19. Behavior of aluminum in aluminum welders and manufacturers of aluminum sulfate--impact on biological monitoring.

    Science.gov (United States)

    Riihimäki, Vesa; Valkonen, Sinikka; Engström, Bernt; Tossavainen, Antti; Mutanen, Pertti; Aitio, Antero

    2008-12-01

    The suitability of determining aluminum in serum or urine as a form of biological monitoring was critically assessed. Airborne and internal aluminum exposure was assessed for 12 aluminum welders in a shipyard and 5 manufacturers of aluminum sulfate. Particles were characterized with X-ray diffraction and scanning electron microscopy. Aluminum in air and biological samples was analyzed using electrothermal atomic absorption spectrometry. Basic toxicokinetic features were inferred from the data. The mean 8-hour time-weighted average concentration of aluminum was 1.1 (range 0.008-6.1) mg/m(3) for the shipyard and 0.13 (range 0.02-0.5) mg/m(3) for the aluminum sulfate plant. Welding fume contained aluminum oxide particles aluminum sulfate particles ranged from 1 to 10 microm in diameter. The shipyard welders' mean postshift serum and urinary concentrations of aluminum (S-Al and U-Al, respectively) were 0.22 and 3.4 micromol/l, respectively, and the aluminum sulfate workers' corresponding values were 0.13 and 0.58 micromol/l. Between two shifts, the welders' S-Al concentration decreased by about 50% (Paluminum sulfate workers. After aluminum welding at the shipyard had ceased, the median S-Al concentration decreased by about 50% (P=0.007) within a year, but there was no change (P=0.75) in the corresponding U-Al concentration. About 1% of aluminum in welding fume appears to be rapidly absorbed from the lungs, whereas an undetermined fraction is retained and forms a lung burden. A higher fractional absorption of aluminum seems possible for aluminum sulfate workers without evidence of a lung burden. After rapid absorption, aluminum is slowly mobilized from the lung burden and dominates the S-Al and U-Al concentrations of aluminum welders. For kinetic reasons, S-Al or U-Al concentrations cannot be used to estimate the accumulation of aluminum in the target organs of toxicity. However, using U-Al analysis to monitor aluminum welders' lung burden seems practical.

  20. Thermochemical properties of the alkali hydroxides: A review

    International Nuclear Information System (INIS)

    Konings, R.J.M.; Cordfunke, E.H.P.

    1989-01-01

    The formation of volatile alkali hydroxides as a result of high-temperature steam corrosion plays an important role in nuclear technology. For the modeling of the volatilization processes, reliable thermodynamic data are required. In the present paper recent physico-chemical experiments by the authors will be discussed and the thermochemical properties of the alkali hydroxide series will be evaluated. (orig.)

  1. Line broadening in the PXRD patterns of layered hydroxides: The ...

    Indian Academy of Sciences (India)

    Unknown

    valent hydroxides are replete with structural disorder, and that the excessive and non-uniform broadening of lines in the PXRD patterns is on account of struc- tural disorder rather than due to crystallite size effects. We now extend these studies to another class of layered compounds, the layered double hydroxides. (LDHs).6 ...

  2. Lead ion adsorption on montmorillonite-Al hydroxide polymer systems

    NARCIS (Netherlands)

    Janssen, R.P.T.; Bruggenwert, M.G.M.; Dijk, van G.; Riemsdijk, van W.H.

    2007-01-01

    Clay¿Al hydroxide polymer systems (CAlHO) can bind heavy metals effectively. Their adsorption behaviour depends on the type of metal. We studied the dependence of Al-loading and pH on the adsorption of Pb to Na-saturated montmorillonite¿Al hydroxide polymer systems. The available binding sites on

  3. Zinc ion adsorption on montmorillonite-Al hydroxide polymer systems

    NARCIS (Netherlands)

    Janssen, R.P.T.; Bruggenwert, M.G.M.; Riemsdijk, van W.H.

    2003-01-01

    Clay¿Al hydroxide polymers (CAlHO) can bind heavy metals effectively and may play an important role in the adsorption behaviour and metal binding capacity of soils. We studied the dependence of Al loading and pH on the adsorption of Zn on Na-saturated montmorillonite¿Al hydroxide polymer systems.

  4. Acid mine water neutralisation with ammonium hydroxide and ...

    African Journals Online (AJOL)

    This study showed that NH4OH can be used for treatment of acid mine drainage rich in sulphates and NH4OH can be recycled in the process. Hydrated lime treatment resulted in removal of the remaining ammonia using a rotary evaporator. Keywords: acid mine water, ammonium hydroxide, barium hydroxide, sulphate ...

  5. Convenient method of simultaneously analyzing aluminum and magnesium in pharmaceutical dosage forms using californium-252 thermal neutron activation.

    Science.gov (United States)

    Landolt, R R; Hem, S L

    1983-05-01

    A commercial antacid suspension containing aluminum hydroxide and magnesium hydroxide products was used as a model sample to study the use of a californium-252 thermal neutron activation as a method for quantifying aluminum content as well as for the simultaneous assay of aluminum and magnesium. A 3.5-micrograms californium-252 source was used for the activation, and the induced aluminum-28 and magnesium-27 activity was simultaneously measured by sodium iodide crystal gamma-ray spectrometry using dual single-channel analyzers and scalers. The antacid suspension was contained in a chamber designed with the unique capability of serving as the container for counting the induced radioactivity in addition to being the irradiation chamber itself. Ten replicate irradiations were performed, and the precision was compared with 10 replicate analyses of the antacid suspension using the official ethylenediaminetetraacetic acid titration method. For aluminum the precision was 1.4 versus 0.62% for the titration method. For the magnesium the precision was 5.3 versus 0.79% for the titration method. This pilot study demonstrated that use of more intense californium-252 sources, which are commonly available, would provide a method that is competitive with the ethylenediaminetetraacetic acid titration method in precision and in other aspects as well.

  6. Ceftazidime Injection

    Science.gov (United States)

    ... is used to treat certain infections caused by bacteria including pneumonia and other lower respiratory tract (lung) infections; meningitis (infection of the membranes that surround the brain and spinal cord) and ... killing bacteria.Antibiotics such as ceftazidime injection will not work ...

  7. Teduglutide Injection

    Science.gov (United States)

    ... who need additional nutrition or fluids from intravenous (IV) therapy. Teduglutide injection is in a class of medications ... of the ingredients.tell your doctor and pharmacist what other prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking ...

  8. Dexrazoxane Injection

    Science.gov (United States)

    ... are used to treat or prevent certain side effects that may be caused by chemotherapy medications. Dexrazoxane injection (Zinecard) is used to prevent or decrease heart damage caused by doxorubicin in women who are taking the medication to treat breast cancer that has spread to other parts of the ...

  9. Dulaglutide Injection

    Science.gov (United States)

    ... thyroid carcinoma (MTC; a type of thyroid cancer). Laboratory animals who were given dulaglutide developed tumors, but it ... your doctor will probably tell you not to use dulaglutide injection. If you ... doctor and the laboratory. Your doctor may order certain tests to check ...

  10. Albiglutide Injection

    Science.gov (United States)

    ... thyroid carcinoma (MTC; a type of thyroid cancer). Laboratory animals who were given medications similar to albiglutide developed ... your doctor will probably tell you not to use albiglutide injection. If you ... doctor and the laboratory. Your doctor may order certain tests to check ...

  11. Semaglutide Injection

    Science.gov (United States)

    ... thyroid carcinoma (MTC; a type of thyroid cancer). Laboratory animals who were given semaglutide developed tumors, but it ... your doctor will probably tell you not to use semaglutide injection. If you ... doctor and the laboratory. Your doctor may order certain tests to check ...

  12. Liraglutide Injection

    Science.gov (United States)

    ... thyroid carcinoma (MTC; a type of thyroid cancer). Laboratory animals who were given liraglutide developed tumors, but it ... your doctor will probably tell you not to use liraglutide injection. If you ... doctor and the laboratory. Your doctor may order certain tests to check ...

  13. Exenatide Injection

    Science.gov (United States)

    ... thyroid carcinoma (MTC; a type of thyroid cancer). Laboratory animals who were given exenatide developed tumors, but it ... your doctor will probably tell you not to use exenatide injection. If you ... doctor and the laboratory. Your doctor may order certain tests to check ...

  14. Etoposide Injection

    Science.gov (United States)

    ... used in combination with other medications to treat cancer of the testicles that has not improved or that has worsened after treatment with other medications or radiation therapy. Etoposide injection ... type of lung cancer (small cell lung cancer; SCLC). Etoposide is in ...

  15. Cefepime Injection

    Science.gov (United States)

    ... infection because they have a low number of white blood cells. Cefepime injection is in a class ... In case of overdose, call the poison control helpline at 1-800-222-1222. Information is also available online at https://www.poisonhelp.org/help. If the victim has ...

  16. Triptorelin Injection

    Science.gov (United States)

    ... puberty too soon, resulting in faster than normal bone growth and development of sexual characteristics) in children 2 years and older. Triptorelin injection is in a class of medications called gonadotropin-releasing hormone (GnRH) agonists. It works by decreasing the amount ...

  17. Toxicity and Metabolism of Layered Double Hydroxide Intercalated with Levodopa in a Parkinson’s Disease Model

    Directory of Open Access Journals (Sweden)

    Aminu Umar Kura

    2014-04-01

    Full Text Available Layered hydroxide nanoparticles are generally biocompatible, and less toxic than most inorganic nanoparticles, making them an acceptable alternative drug delivery system. Due to growing concern over animal welfare and the expense of in vivo experiments both the public and the government are interested to find alternatives to animal testing. The toxicity potential of zinc aluminum layered hydroxide (ZAL nanocomposite containing anti-Parkinsonian agent may be determined using a PC 12 cell model. ZAL nanocomposite demonstrated a decreased cytotoxic effect when compared to levodopa on PC12 cells with more than 80% cell viability at 100 µg/mL compared to less than 20% cell viability in a direct levodopa exposure. Neither levodopa-loaded nanocomposite nor the un-intercalated nanocomposite disturbed the cytoskeletal structure of the neurogenic cells at their IC50 concentration. Levodopa metabolite (HVA released from the nanocomposite demonstrated the slow sustained and controlled release character of layered hydroxide nanoparticles unlike the burst uptake and release system shown with pure levodopa treatment.

  18. Discharge Characteristics of the Nickel Hydroxide Electrode in 30% KOH

    International Nuclear Information System (INIS)

    Kim, Young Jin

    1989-01-01

    The discharge behavior of the nickel hydroxide electrode has been investigated in 30% KOH at 25 .deg. C. Two voltage plateaus are displayed on the discharge curve of C/20. It is shown that the impedance of the nickel hydroxide electrode increases with decrease of the discharge potential. The discharge behavior of the nickel hydroxide electrode has been investigated in 30% KOH indicating the reduction of the β-NiOOH to the β-Ni(OH) 2 by proton diffusion process and hence the electronic conductivity change of the nickel hydroxide electrode. Furthermore, the γ-NiOOH, produced by prolonged oxidation of the β-NiOOH in 30% KOH, discharges at a slightly lower potential than the β-Ni(OH) 2 that could result in the life-limiting factor of several alkaline electrolyte storage batteries using the nickel hydroxide electrode as the positive plate

  19. Aluminum Carbothermic Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Marshall J.

    2005-03-31

    This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry

  20. 21 CFR 73.1645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum. It...

  1. Thermodynamic Properties of Alkali Metal Hydroxides. Part II. Potassium, Rubidium, and Cesium Hydroxides

    International Nuclear Information System (INIS)

    Gurvich, L.V.; Bergman, G.A.; Gorokhov, L.N.; Iorish, V.S.; Leonidov, V.Y.; Yungman, V.S.

    1997-01-01

    The data on thermodynamic and molecular properties of the potassium, rubidium and cesium hydroxides have been collected, critically reviewed, analyzed, and evaluated. Tables of the thermodynamic properties [C p circ , Φ=-(G -H(0)/T, S, H -H(0), Δ f H, Δ f G)] of these hydroxides in the condensed and gaseous states have been calculated using the results of the analysis and some estimated values. The recommendations are compared with earlier evaluations given in the JANAF Thermochemical Tables and Thermodynamic Properties of Individual Substances. The properties considered are: the temperature and enthalpy of phase transitions and fusion, heat capacities, spectroscopic data, structures, bond energies, and enthalpies of formation at 298.15 K. The thermodynamic functions in solid, liquid, and gaseous states are calculated from T=0 to 2000 K for substances in condensed phase and up to 6000 K for gases. copyright 1997 American Institute of Physics and American Chemical Society

  2. Fundamental Studies on Aluminum Soaps

    Science.gov (United States)

    1944-06-01

    loosely bound lauric acid in aluminum dilaurate giving results accurate probably to 0.1 - 0.2# and reproducible to ubdtit ,𔃺.05^, The method...proceeds at the steady rate quoted above» Therefore the lauric acid is not hold in the form of solid solution which would give a constantly...both from lauric acid and aluminum dilaurate. It is extremely unlikely that aluminum trilaurate, AIL3, would rapidly yield dilaurate with dry acetone

  3. Production of aluminum metal by electrolysis of aluminum sulfide

    Science.gov (United States)

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  4. The study of processes of iron hydroxide coagulation and sedimentation

    Science.gov (United States)

    Fedorova, A. S.; Nedobukh, T. A.; Mashkovtsev, M. A.; Semenishchev, V. S.

    2017-09-01

    Migration behavior of radionuclides forming pseudoradiocolloids with iron hydroxide depends on physicochemical behavior of iron hydroxide. It was determined that pH of the solution and iron concentration are the main parameters affecting processes coagulation and sedimentation of iron hydroxide. Time dependences of iron hydroxide coagulation and sedimentation being obtained using ultrafiltration and turbidimetry methods were analyzed. Integral and differential curves of size distribution of iron hydroxide particles were obtained using the method of laser diffraction. At the whole pH range studied, monomodal size distribution was observed in the solution containing 25 mg L-1 of iron; whereas in the solution containing 100 mg L-1 of iron bimodal size distribution was observed. This difference indicates different mechanisms of coagulation that was additionally confirmed by analysis of kinetic curves. It was found that the best conditions for formation and further sedimentation of iron hydroxide were pH 6-8 and iron concentration of at least 50 mg L-1. At these conditions, the time of half-precipitation of the iron hydroxide precipitate did not exceed five minutes.

  5. Aluminum nitride grating couplers.

    Science.gov (United States)

    Ghosh, Siddhartha; Doerr, Christopher R; Piazza, Gianluca

    2012-06-10

    Grating couplers in sputtered aluminum nitride, a piezoelectric material with low loss in the C band, are demonstrated. Gratings and a waveguide micromachined on a silicon wafer with 600 nm minimum feature size were defined in a single lithography step without partial etching. Silicon dioxide (SiO(2)) was used for cladding layers. Peak coupling efficiency of -6.6 dB and a 1 dB bandwidth of 60 nm have been measured. This demonstration of wire waveguides and wideband grating couplers in a material that also has piezoelectric and elasto-optic properties will enable new functions for integrated photonics and optomechanics.

  6. Dynamic Property of Aluminum Foam

    Directory of Open Access Journals (Sweden)

    S Irie

    2016-09-01

    Full Text Available Aluminum in the foam of metallic foam is in the early stage of industrialization. It has various beneficial characteristics such as being lightweight, heat resistance, and an electromagnetic radiation shield. Therefore, the use of aluminum foam is expected to reduce the weight of equipment for transportation such as the car, trains, and aircraft. The use as energy absorption material is examined. Moreover aluminum foam can absorb the shock wave, and decrease the shock of the blast. Many researchers have reported about aluminum foam, but only a little information is available for high strain rates (103 s-1 or more. Therefore, the aluminum foam at high strain rates hasn't been not characterized yet. The purpose in this research is to evaluate the behavior of the aluminum form in the high-strain rate. In this paper, the collision test on high strain rate of the aluminum foam is investigated. After experiment, the numerical analysis model will be made. In this experiment, a powder gun was used to generate the high strain rate in aluminum foam. In-situ PVDF gauges were used for measuring pressure and the length of effectiveness that acts on the aluminum foam. The aluminum foam was accelerated to about 400 m/s from deflagration of single component powder and the foam were made to collide with the PVDF gauge. The high strain rate deformation of the aluminum form was measured at two collision speeds. As for the result, pressure was observed to go up rapidly when about 70% was compressed. From this result, it is understood that complete crush of the cell is caused when the relative volume is about 70%. In the next stage, this data will be compared with the numerical analysis.

  7. Aspects of Solvent Chemistry for Calcium Hydroxide Medicaments

    Directory of Open Access Journals (Sweden)

    Basil Athanassiadis

    2017-10-01

    Full Text Available Calcium hydroxide pastes have been used in endodontics since 1947. Most current calcium hydroxide endodontic pastes use water as the vehicle, which limits the dissolution of calcium hydroxide that can be achieved and, thereby, the maximum pH that can be achieved within the root canal system. Using polyethylene glycol as a solvent, rather than water, can achieve an increase in hydroxyl ions release compared to water or saline. By adopting non-aqueous solvents such as the polyethylene glycols (PEG, greater dissolution and faster hydroxyl ion release can be achieved, leading to enhanced antimicrobial actions, and other improvements in performance and biocompatibility.

  8. Aluminum Nanoholes for Optical Biosensing

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2015-07-01

    Full Text Available Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (biosensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (biosensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  9. Aluminum Nanoholes for Optical Biosensing.

    Science.gov (United States)

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-07-09

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation--which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports--the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  10. Aluminum Nanoholes for Optical Biosensing

    Science.gov (United States)

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-01-01

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs. PMID:26184330

  11. EVALUATION OF LOW TEMPERATURE ALUMINUM DISSOLUTION IN TANK 51

    International Nuclear Information System (INIS)

    Pike, J

    2008-01-01

    loss from a quiescent tank; and an evaluation of the aluminum dissolution rate model and actual dissolution rate. LTAD was successfully completed in Tank 51 with minimal waste tank changes. The following general conclusions may be drawn about the LTAD process: (1) Dissolution at about 60 C for 46 days dissolved 64% of the aluminum from the sludge slurry. (2) The aluminum-laden leach solution decanted to Tank 11 can be blended with a wide variety of supernates without risk of precipitating the dissolved aluminum based on thermodynamic chemical equilibrium models. (3) Uranium and plutonium leached into solution without corresponding leaching of iron or metal other than aluminum, but the total mass leached was a small fraction of the total uranium and plutonium in the sludge. (4) The concentration of uranium and plutonium in the leach solution was indistinguishable from other tank farm supernates, thus, the leach solutions can be managed relative to the risk of criticality like any other supernate. (5) A small amount of mercury leached into solution from the sludge causing the liquid phase concentration to increase 6 to 10 fold, which is consistent with the 4 to 14 fold increase observed during the 1982 aluminum dissolution demonstration. (6) Chromium did not dissolve during LTAD. (7) Chloride concentration increased in the liquid phase during LTAD due to chloride contamination in the 50% sodium hydroxide solution. (8) The rate of heat loss from Tank 51 at temperatures above 45 C appeared linear and predictable at 8E+7 cal/hr. (9) The rate of heat transfer from Tank 51 did not follow a simplified bulk heat transfer model. (10) Prediction of the aluminum dissolution rate was prone to error due to a lack of active specific surface area data of sludge particles. (11) The higher than expected dissolution rate during LTAD was likely due to smaller than expected particle sizes of most of the sludge particles. While evaluating the LTAD process, the dissolved salt solution from

  12. Homogeneous Precipitation of Nickel Hydroxide Powders

    Energy Technology Data Exchange (ETDEWEB)

    Mavis, Bora [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Precipitation and characterization of nickel hydroxide powders were investigated. A comprehensive precipitation model incorporating the metal ion hydrolysis, complexation and precipitation reactions was developed for the production of the powders with urea precipitation method. Model predictions on Ni2+ precipitation rate were confirmed with precipitation experiments carried out at 90 C. Experimental data and model predictions were in remarkable agreement. Uncertainty in the solubility product data of nickel hydroxides was found to be the large contributor to the error. There were demonstrable compositional variations across the particle cross-sections and the growth mechanism was determined to be the aggregation of primary crystallites. This implied that there is a change in the intercalate chemistry of the primary crystallites with digestion time. Predicted changes in the concentrations of simple and complex ions in the solution support the proposed mechanism. The comprehensive set of hydrolysis reactions used in the model described above allows the investigation of other systems provided that accurate reaction constants are available. the fact that transition metal ions like Ni2+ form strong complexes with ammonia presents a challenge in the full recovery of the Ni2+. On the other hand, presence of Al3+ facilitates the complete precipitation of Ni2+ in about 3 hours of digestion. A challenge in their predictive modeling studies had been the fact that simultaneous incorporation of more than one metal ion necessitates a different approach than just using the equilibrium constants of hydrolysis, complexation and precipitation reactions. Another limitation of using equilibrium constants is that the nucleation stage of digestion, which is controlled mainly by kinetics, is not fully justified. A new program released by IBM Almaden Research Center (Chemical Kinetics Simulator™, Version 1.01) lets the user change

  13. Behavior of hydroxide at the water/vapor interface

    Science.gov (United States)

    Winter, Bernd; Faubel, Manfred; Vácha, Robert; Jungwirth, Pavel

    2009-06-01

    Hydroxide and hydronium, which represent the ionic products of water autolysis, exhibit a peculiar surface behavior. While consensus has been established that the concentration of hydronium cations is enhanced at the surface with respect to the bulk, the affinity of hydroxide anions for the water/vapor interface has been a subject of an ongoing controversy. On the one hand, electrophoretic and titration measurements of air bubbles or oil droplets in water have been interpreted in terms of a dramatic interfacial accumulation of OH -. On the other hand, surface-selective non-linear spectroscopies, surface tension measurements, and molecular simulations show no or at most a weak surface affinity of hydroxide ions. Here, we summarize the current situation and provide new evidence for the lack of appreciable surface enhancement of OH -, based on photoelectron spectroscopy from a liquid jet and on molecular dynamics simulations with polarizable potentials at varying hydroxide concentrations.

  14. comparative effectiveness of water, calgon and sodium hydroxide in ...

    African Journals Online (AJOL)

    Distilled water, 5% calgon and sodium hydroxide were used as dispersion agents in the particle size analysis of surface and subsurface soils of five Nigerian soils. Sampling depths were 0 – 15, 15 – 30 and 30 – 45cm and concentrations of sodium hydroxide were 0.2N, 0.4N and 0.6N respectively. Agitation methods were ...

  15. Ageing behaviour of unary hydroxides in trivalent metal salt solutions

    Indian Academy of Sciences (India)

    Unknown

    Figure 2. Powder X-ray diffractogram of CuO (a) compared with those of CuO aged in aluminium nitrate for 2 days (b) and 4 days (c). Feature marked by asterisk is due to impurities. Table 2. Powder X-ray diffraction data of layered double hydroxides obtained by the ageing of unary hydroxides in Al (or Cr) salt solutions. d/Å.

  16. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    Science.gov (United States)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  17. [Preparation and characterization of zirconium hydroxide powder for fluoride adsorption].

    Science.gov (United States)

    Yang, Shuo; Dou, Xiao-min; Liang, Wen-yan; Wang, Yi-li; Lin, Wei

    2010-07-01

    The method co-precipitation was applied to preparation the zirconium hydroxide as a type drinking-water defluoridation adsorbent. The effect of the preparation conditions on the adsorptive capacity was studied. The optimization of preparation condition for zirconium hydroxide concludes that co-precipitation time is 10 h, pH value is 7.0, drying time is 72 h, calcination temperature is below 100 degrees C. Also, the adsorbent samples were characterized. SEM measurements reveal that zirconium hydroxide powder are constructed by several small particles, with a diameter about 20-30 microm. XRD and TG/DTA measurements show that the zirconium hydroxide samples have amorphous phase and converse to tetragonal phase when calcined at 600 degrees C. Nitrogen adsorption/desorption measurements show that samples have large surface areas of 138.4 m2/g and a 2 nm average pore size distribution in the mesopore region. The performance of zirconium hydroxide regeneration process was investigated. The results show that the regeneration techniques are very suitable to restore the fluorine-removal ability for zirconium hydroxide.

  18. Aluminum plasmonic photocatalysis

    Science.gov (United States)

    Hao, Qi; Wang, Chenxi; Huang, Hao; Li, Wan; Du, Deyang; Han, Di; Qiu, Teng; Chu, Paul K.

    2015-01-01

    The effectiveness of photocatalytic processes is dictated largely by plasmonic materials with the capability to enhance light absorption as well as the energy conversion efficiency. Herein, we demonstrate how to improve the plasmonic photocatalytic properties of TiO2/Al nano-void arrays by overlapping the localized surface plasmon resonance (LSPR) modes with the TiO2 band gap. The plasmonic TiO2/Al arrays exhibit superior photocatalytic activity boasting an enhancement of 7.2 folds. The underlying mechanisms concerning the radiative energy transfer and interface energy transfer processes are discussed. Both processes occur at the TiO2/Al interface and their contributions to photocatalysis are evaluated. The results are important to the optimization of aluminum plasmonic materials in photocatalytic applications. PMID:26497411

  19. Determination of Sandoz Black Aluminum Coloring Dye Olive Aluminum Coloring Dye and Sodium Dichromate Aluminum Sealing Solutions by UV-Visible Spectrophotometry

    National Research Council Canada - National Science Library

    Sopok, Samuel

    1992-01-01

    The chemical literature lacks an acceptable method to determine and adequately control Sandoz black aluminum coloring dye, olive aluminum coloring dye, and sodium dichromate aluminum sealing solutions...

  20. Spray Rolling Aluminum Strip

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  1. Layered zinc hydroxide salts: Delamination, preferred orientation of hydroxide lamellae, and formation of ZnO nanodiscs

    Czech Academy of Sciences Publication Activity Database

    Demel, Jan; Pleštil, Josef; Bezdička, Petr; Janda, Pavel; Klementová, Mariana; Lang, Kamil

    2011-01-01

    Roč. 360, č. 2 (2011), s. 532-539 ISSN 0021-9797 R&D Projects: GA MŠk ME09058; GA ČR GAP207/10/1447 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505; CEZ:AV0Z40400503 Keywords : layered zinc hydroxide * delamination * exfoliation * hydroxide layer * ZnO Subject RIV: CA - Inorganic Chemistry Impact factor: 3.070, year: 2011

  2. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    Science.gov (United States)

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  3. The Effects of Aluminium Hydroxide and Magnesium Hydroxide on the Mechanical Properties of Thermoplastic Polyurethane Materials

    Directory of Open Access Journals (Sweden)

    Erkin Akdoğan

    2015-12-01

    Full Text Available Thermoplastic polyurethane materials are widely used in automotive, clothing, electrical and electronics, medical, construction, machine industry due to excellent physical and chemical properties. Thermoplastic polyurethane materials combustion and resistance to high temperature characteristics are poor. Additives and fillers are added into the polyurethane matrix to improve those properties. Particularly adding these agents as a flame retardant are affect mechanical properties of polyurethane materials. Therefore, it is important to determinate the mechanical properties of these materials. In this study, 5% by weight of the thermoplastic polyurethane material, aluminium tri hydroxide (ATH, (Al2O3 3H2O and magnesium hydroxide (MgOH, (Mg(OH2 were added. Ammonium polyphosphate (APP as an intumescent flame retardant with inorganic flame retardants were added to increase the flame resistance of produced composite structure. Tensile test, tear test, hardness and Izod impact tests were made and compared of those produced composites. As a result of experiments the addition of ATH has lowered the tensile strength and tear strength contrast to this the addition of MgOH has improved those properties. Hardness and Izod impact test results were showed that both of the additives have no negative effect.

  4. Asymmetric partitioning of metals among cluster anions and cations generated via laser ablation of mixed aluminum/Group 6 transition metal targets.

    Science.gov (United States)

    Waller, Sarah E; Mann, Jennifer E; Jarrold, Caroline Chick

    2013-02-28

    While high-power laser ablation of metal alloys indiscriminately produces gas-phase atomic ions in proportion to the abundance of the various metals in the alloy, gas-phase ions produced by moderate-power laser ablation sources coupled with molecular beams are formed by more complicated mechanisms. A mass spectrometric study that directly compares the mass distributions of cluster anions and cations generated from laser ablation of pure aluminum, an aluminum/molybdenum mixed target, and an aluminum/tungsten mixed target is detailed. Mass spectra of anionic species generated from the mixed targets showed that both tungsten and molybdenum were in higher abundance in the negatively charged species than in the target material. Mass spectra of the cationic species showed primarily Al(+) and aluminum oxide and hydroxide cluster cations. No molybdenum- or tungsten-containing cluster cations were definitively assigned. The asymmetric distribution of aluminum and Group 6 transition metals in cation and anion cluster composition is attributed to the low ionization energy of atomic aluminum and aluminum suboxide clusters. In addition, the propensity of both molybdenum and tungsten to form metal oxide cluster anions under the same conditions that favor metallic aluminum cluster anions is attributed to differences in the optical properties of the surface oxide that is present in the metal powders used to prepare the ablation targets. Mechanisms of mixed metal oxide clusters are considered.

  5. Interactions and Supramolecular Organization of Sulfonated Indigo and Thioindigo Dyes in Layered Hydroxide Hosts.

    Science.gov (United States)

    Costa, Ana L; Gomes, Ana C; Pereira, Ricardo C; Pillinger, Martyn; Gonçalves, Isabel S; Pineiro, Marta; Seixas de Melo, J Sérgio

    2018-01-09

    Supramolecularly organized host-guest systems have been synthesized by intercalating water-soluble forms of indigo (indigo carmine, IC) and thioindigo (thioindigo-5,5'-disulfonate, TIS) in zinc-aluminum-layered double hydroxides (LDHs) and zinc-layered hydroxide salts (LHSs) by coprecipitation routes. The colors of the isolated powders were dark blue for hybrids containing only IC, purplish blue or dark lilac for cointercalated samples containing both dyes, and ruby/wine for hybrids containing only TIS. The as-synthesized and thermally treated materials were characterized by Fourier transform infrared, Fourier transform Raman, and nuclear magnetic resonance spectroscopies, powder X-ray diffraction, scanning electron microscopy, and elemental and thermogravimetric analyses. The basal spacings found for IC-LDH, TIS-LDH, IC-LHS, and TIS-LHS materials were 21.9, 21.05, 18.95, and 21.00 Å, respectively, with intermediate spacings being observed for the cointercalated samples that either decreased (LDHs) or increased (LHSs) with increasing TIS content. UV-visible and fluorescence spectroscopies (steady-state and time-resolved) were used to probe the molecular distribution of the immobilized dyes. The presence of aggregates together with the monomer units is suggested for IC-LDH, whereas for TIS-LDH, IC-LHS, and TIS-LHS, the dyes are closer to the isolated situation. Accordingly, while emission from the powder H 2 TIS is strongly quenched, an increment in the emission of about 1 order of magnitude was observed for the TIS-LDH/LHS hybrids. Double-exponential fluorescence decays were obtained and associated with two monomer species interacting differently with cointercalated water molecules. The incorporation of both TIS and IC in the LDH and LHS hosts leads to an almost complete quenching of the fluorescence, pointing to a very efficient energy transfer process from (fluorescent) TIS to (nonfluorescent) IC.

  6. Enhanced electrochemical performance of CoAl-layered double hydroxide nanosheet arrays coated by platinum films

    International Nuclear Information System (INIS)

    Cheng, J.P.; Fang, J.H.; Li, M.; Zhang, W.F.; Liu, F.; Zhang, X.B.

    2013-01-01

    Graphical abstract: Schematic illustration for the electron transport between the current collector and the active CoAl LDH arrays, where the yellow arrows indicate the high resistance of CoAl LDH, while the green arrows present the high conductivity of Pt films on LDH. -- Highlights: •CoAl layered double hydroxide nanosheet arrays are synthesized by hydrothermal method. •Pt films coated on surface of CoAl nanosheets facilitate fast electron transport. •CoAl LDH nanosheets coated with Pt film for 5 min have an excellent performance. -- Abstract: Three-dimensional network of cobalt and aluminum layered double hydroxide (LDH) nanosheets was synthesized on nickel foam by a simple hydrothermal method. The CoAl-LDH nonosheets were subsequently coated by ion sputtering with thin layers of Pt films to facilitate fast electron transport between current collector and the CoAl-LDH active materials. The optimal thickness of the Pt film acquiring the best performance was identified by applying various sputtering time in controlled experiments. The supercapacitor built by the CoAl-LDH nanosheets coated with Pt film sputtered for 5 min has a high specific capacitance (734.4 F g −1 at 3 A g −1 ), excellent rate capability as well as cycling stability. Moreover, it showed a long life of 77% retention after 6000 cycles and its general morphology was preserved after the test. The synergetic affect of conductive layer of Pt films and CoAl-LDH on the improvement of electrochemical properties was discussed and this would provide a useful clue in designing novel and effective electrode materials for supercapacitors

  7. Hydrothermal synthesis of hexagonal magnesium hydroxide nanoflakes

    International Nuclear Information System (INIS)

    Wang, Qiang; Li, Chunhong; Guo, Ming; Sun, Lingna; Hu, Changwen

    2014-01-01

    Graphical abstract: Hexagonal Mg(OH) 2 nanoflakes were synthesized via hydrothermal method in the presence of PEG-20,000. Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The SAED patterns taken from the different positions on a single hexagonal Mg(OH) 2 nanoflake yielded different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH) 2 nanoflakes is discussed. - Highlights: • Hexagonal Mg(OH) 2 nanoflakes were synthesized via hydrothermal method. • PEG-20,000 plays an important role in the formation of hexagonal nanostructure. • Mg(OH) 2 nanoflakes show different crystalline structures at different positions. • The probable formation mechanism of hexagonal Mg(OH) 2 nanoflakes was reported. - Abstract: Hexagonal magnesium hydroxide (Mg(OH) 2 ) nanoflakes were successfully synthesized via hydrothermal method in the presence of the surfactant polyethylene glycol 20,000 (PEG-20,000). Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The composition, morphologies and structure of the Mg(OH) 2 nanoflakes were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SAED patterns taken from the different positions on a single hexagonal Mg(OH) 2 nanoflake show different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH) 2 nanoflakes is discussed. Brunauer–Emmett–Teller (BET) analysis were performed to investigate the porous structure and surface area of the as-obtained nanoflakes

  8. DOWNSTREAM IMPACTS OF SLUDGE MASS REDUCTION VIA ALUMINUM DISSOLUTION ON DWPF PROCESSING OF SAVANNAH RIVER SITE HIGH LEVEL WASTE - 9382

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; Cj Bannochie, C; Michael Hay, M; Daniel McCabe, D

    2009-01-14

    The SRS sludge that was to become a major fraction of Sludge Batch 5 (SB5) for the Defense Waste Processing Facility (DWPF) contained a large fraction of H-Modified PUREX (HM) sludge, containing a large fraction of aluminum compounds that could adversely impact the processing and increase the vitrified waste volume. It is beneficial to reduce the non-radioactive fraction of the sludge to minimize the number of glass waste canisters that must be sent to a Federal Repository. Removal of aluminum compounds, such as boehmite and gibbsite, from sludge can be performed with the addition of NaOH solution and heating the sludge for several days. Preparation of SB5 involved adding sodium hydroxide directly to the waste tank and heating the contents to a moderate temperature through slurry pump operation to remove a fraction of this aluminum. The Savannah River National Laboratory (SRNL) was tasked with demonstrating this process on actual tank waste sludge in our Shielded Cells Facility. This paper evaluates some of the impacts of aluminum dissolution on sludge washing and DWPF processing by comparing sludge processing with and without aluminum dissolution. It was necessary to demonstrate these steps to ensure that the aluminum removal process would not adversely impact the chemical and physical properties of the sludge which could result in slower processing or process upsets in the DWPF.

  9. Optimization of Injection Moulding Process Parameters in the ...

    African Journals Online (AJOL)

    ADOWIE PERE

    an industrial designer or an engineer, moulds are made by a mould maker (or toolmaker) from metal, usually either steel or aluminum, and precision- machined to form the features of the desired part. Injection moulding is widely used for manufacturing a variety of parts, from the smallest components to entire body panels of ...

  10. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    International Nuclear Information System (INIS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Namour, Philippe; Ben Haj Amara, Abdesslem; Jaffrezic-Renault, Nicole

    2016-01-01

    Highlights: • MgAl and ZnAl LDH nanosheets were chemically synthesized and deposited over carbon electrode materials. • Catalytic performance of both LDHs was investigated for Fe(II) reduction reaction. • Satisfactory results have been achieved with the MgAl LDH material. • MgAl and ZnAl LDH modified carbon felt were applied in MFC as an efficient anode catalyst. • The LDH-modified anode significantly increased power performance of MFC. - Abstract: Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However

  11. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    Energy Technology Data Exchange (ETDEWEB)

    Djebbi, Mohamed Amine, E-mail: mohamed.djebbi@etu.univ-lyon1.fr [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Braiek, Mohamed [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Namour, Philippe [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Irstea, 5 rue de la Doua, 69100 Villeurbanne (France); Ben Haj Amara, Abdesslem [Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Jaffrezic-Renault, Nicole [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France)

    2016-11-15

    Highlights: • MgAl and ZnAl LDH nanosheets were chemically synthesized and deposited over carbon electrode materials. • Catalytic performance of both LDHs was investigated for Fe(II) reduction reaction. • Satisfactory results have been achieved with the MgAl LDH material. • MgAl and ZnAl LDH modified carbon felt were applied in MFC as an efficient anode catalyst. • The LDH-modified anode significantly increased power performance of MFC. - Abstract: Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However

  12. Chrome - Free Aluminum Coating System

    Science.gov (United States)

    Bailey, John H.; Gugel, Jeffrey D.

    2010-01-01

    This slide presentation concerns the program to qualify a chrome free coating for aluminum. The program was required due to findings by OSHA and EPA, that hexavalent chromium, used to mitigate corrosion in aerospace aluminum alloys, poses hazards for personnel. This qualification consisted of over 4,000 tests. The tests revealed that a move away from Cr+6, required a system rather than individual components and that the maximum corrosion protection required pretreatment, primer and topcoat.

  13. Optomechanics of Single Aluminum Nanodisks.

    Science.gov (United States)

    Su, Man-Nung; Dongare, Pratiksha D; Chakraborty, Debadi; Zhang, Yue; Yi, Chongyue; Wen, Fangfang; Chang, Wei-Shun; Nordlander, Peter; Sader, John E; Halas, Naomi J; Link, Stephan

    2017-04-12

    Aluminum nanostructures support tunable surface plasmon resonances and have become an alternative to gold nanoparticles. Whereas gold is the most-studied plasmonic material, aluminum has the advantage of high earth abundance and hence low cost. In addition to understanding the size and shape tunability of the plasmon resonance, the fundamental relaxation processes in aluminum nanostructures after photoexcitation must be understood to take full advantage of applications such as photocatalysis and photodetection. In this work, we investigate the relaxation following ultrafast pulsed excitation and the launching of acoustic vibrations in individual aluminum nanodisks, using single-particle transient extinction spectroscopy. We find that the transient extinction signal can be assigned to a thermal relaxation of the photoexcited electrons and phonons. The ultrafast heating-induced launching of in-plane acoustic vibrations reveals moderate binding to the glass substrate and is affected by the native aluminum oxide layer. Finally, we compare the behavior of aluminum nanodisks to that of similarly prepared and sized gold nanodisks.

  14. Two-dimensional Al hydroxide interaction with cancerous cell membrane building units: Complexed free energy and orientation analysis

    Science.gov (United States)

    Tsukanov, A. A.; Psakhie, S. G.

    2017-09-01

    The application of hierarchical nanoparticles based on metal hydroxides in biomedicine, including anticancer therapy and medical imaging, is a rapidly developing field. Low-dimensional aluminum oxyhydroxide nanomaterials (AlOOH-NM) are quite promising base to develop hybrid theranostic nano-agents with core-shell architecture, which is determined by AlOOH-NMs physicochemical properties such as: large specific surface area, pH-dependent charge, amphoteric behavior, high surface density of polar groups capable to form non-covalent bonds, low or null cytotoxicity and biocompatibility. Characterization of the system behavior within interface between NM and plasmatic membrane is crucial for the understanding of nano-agent—cell interaction. In the present work the complex in silico study including the free energy estimation and orientation analysis of phosphatidylcholine (POPC) and phosphatidylethanolamine (POPE) lipids interacting with AlOOH nanosheet was conducted to understand the effect of such nanomaterial on cancerous cell plasmatic membrane.

  15. Aluminum and Alzheimer's Disease.

    Science.gov (United States)

    Colomina, Maria Teresa; Peris-Sampedro, Fiona

    2017-01-01

    Aluminum (Al) is one of the most extended metals in the Earth's crust. Its abundance, together with the widespread use by humans, makes Al-related toxicity particularly relevant for human health.Despite some factors influence individual bioavailability to this metal after oral, dermal, or inhalation exposures, humans are considered to be protected against Al toxicity because of its low absorption and efficient renal excretion. However, several factors can modify Al absorption and distribution through the body, which may in turn progressively contribute to the development of silent chronic exposures that may lately trigger undesirable consequences to health. For instance, Al has been recurrently shown to cause encephalopathy, anemia, and bone disease in dialyzed patients. On the other hand, it remains controversial whether low doses of this metal may contribute to developing Alzheimer's disease (AD), probably because of the multifactorial and highly variable presentation of the disease.This chapter primarily focuses on two key aspects related to Al neurotoxicity and AD, which are metabolic impairment and iron (Fe) alterations. We discuss sex and genetic differences as a plausible source of bias to assess risk assessment in human populations.

  16. Managing aluminum phosphide poisonings

    Science.gov (United States)

    Gurjar, Mohan; Baronia, Arvind K; Azim, Afzal; Sharma, Kalpana

    2011-01-01

    Aluminum phosphide (AlP) is a cheap, effective and commonly used pesticide. However, unfortunately, it is now one of the most common causes of poisoning among agricultural pesticides. It liberates lethal phosphine gas when it comes in contact either with atmospheric moisture or with hydrochloric acid in the stomach. The mechanism of toxicity includes cellular hypoxia due to the effect on mitochondria, inhibition of cytochrome C oxidase and formation of highly reactive hydroxyl radicals. The signs and symptoms are nonspecific and instantaneous. The toxicity of AlP particularly affects the cardiac and vascular tissues, which manifest as profound and refractory hypotension, congestive heart failure and electrocardiographic abnormalities. The diagnosis of AlP usually depends on clinical suspicion or history, but can be made easily by the simple silver nitrate test on gastric content or on breath. Due to no known specific antidote, management remains primarily supportive care. Early arrival, resuscitation, diagnosis, decrease the exposure of poison (by gastric lavage with KMnO4, coconut oil), intensive monitoring and supportive therapy may result in good outcome. Prompt and adequate cardiovascular support is important and core in the management to attain adequate tissue perfusion, oxygenation and physiologic metabolic milieu compatible with life until the tissue poison levels are reduced and spontaneous circulation is restored. In most of the studies, poor prognostic factors were presence of acidosis and shock. The overall outcome improved in the last decade due to better and advanced intensive care management. PMID:21887030

  17. The citotoxicity of calcium hydroxide intracanal dressing by MTT assay

    Directory of Open Access Journals (Sweden)

    Nanik Zubaidah

    2007-12-01

    Full Text Available Calcium hydroxide had been used as the intracanal dressing in endodontic treatment due to its high alkaline and high antimicrobial capacity. It also be able to dissolve the necrotic tissue, prevent the root resorbtion and regenerate a new hard tissue. The aim of this study is to identify the concentration of calcium hydroxide that has the lowest citotoxicity. There are 5 groups, each group had 8 samples with different concentration of calcium hydroxide. Group I: 50%, Group II: 55%, Group III: 60%, Group IV: 65% and Group V: 70%. The citotoxicity test by using enzymatic assay of MTT [3-(4.5- dimethylthiazol-2yl ]-2.5 diphenyl tetrazolium bromide, against fibroblast cell (BHK-21. The result of susceptibility test was showed by the citotoxicity detection of the survive cell of fibroblast that was measured spectrophotometrically using 595 nm beam. The data was analyzed using One-Way ANOVA test with significant difference α = 0.05 and subsequently LSD test. The result showed that in concentration 50%, 55%, 60%, 65%, and 70% calcium hydroxide had low toxicity, but calcium hydroxide 60%, had the lowest toxicity.

  18. The Resource-Saving Technology of Aluminum Nitride Obtaining During Combustion of Aluminum Nanopowder in Air

    OpenAIRE

    Ilyin, Aleksandr Petrovich; Mostovshchikov, Andrey Vladimirovich; Root, Lyudmila Olegovna

    2016-01-01

    The resource-saving technology of aluminum nitride obtaining during the combustion of aluminum nanopowder in air has been analyzed in the article. The investigation of the crystal phases of aluminum nanopowder combustion products obtained under the magnetic field exposure has been made. The experimental results showed the increase of aluminum nitride content up to 86 wt. % in comparison with the aluminum nitride content in combustion products without any exposure. The mechanism of aluminum ni...

  19. Role of adsorbed arsenic and structural aluminum on Fe(II) retention and transformation of ferrihydrite (Invited)

    Science.gov (United States)

    Sharma, R.; Masue-Slowey, Y.; Fendorf, S. E.

    2009-12-01

    Arsenic is a wide-spread toxin contaminating water from both natural (as in the case of South and Southeast Asia) and anthropogenic sources. Its high affinity for soil solids helps to regulate the deleterious impacts of this toxic element on ecosystem and human health. Iron (hydr)oxides are of particular importance in controlling dissolved concentrations of arsenic, making the behavior of these substrates crucial to understanding the transport and ultimate fate of arsenic. Ferrihydrite is one of the most active forms of Fe (hydr)oxides, and aluminum-substituted ferrihydrite is a common form of this phase in soils and sediment. Sorption of Fe(II) catalyzes the transformation of the thermodynamically unstable ferrihydrite to more thermodynamically stable Fe (hydr)oxides. Although the process of ferrihydrite transformation has been extensively studied, the role of structural aluminum and adsorbed arsenic on the Fe(II)-catalyzed transformation of ferrihydrite is unknown. Hence, the objective of this study was to compare how ferrihydrite and aluminum-substituted ferrihydrite differ in their retention of Fe(II) and the resulting transformation rates and products in the presence and absence of arsenic. Sand coated with ferrihydrite and aluminum-ferrihydrite (with and without adsorbed arsenic) was packed into columns and flow of circumneutral groundwater solution containing 0.2 to 4 mM Fe(II) was initiated. Breakthrough of Fe(II) was monitored using the ferrozine colorimetric assay to determine Fe(II) retention in the solid phase. The solid phase was characterized using Fe K-edge X-ray absorption spectroscopy and scanning electron microscopy. Structural aluminum limits Fe(II) sorption, and, as a consequence, the extent of the aluminum-substituted ferrihydrite transformation is much less than that of ferrihydrite. Adsorbed As further decreases Fe(II) retention on aluminum-ferrihydrite. In contrast, Fe(II) retention on ferrihydrite is enhanced in the presence of arsenic due

  20. The effects of calcium hydroxide on hydrogen chloride emission characteristics during a simulated densified refuse-derived fuel combustion process.

    Science.gov (United States)

    Chiang, Kung-Yuh; Jih, Jer-Chyuan; Lin, Kae-Long

    2008-08-30

    This study investigated the effects of different calcium hydroxide (Ca(OH)(2)) addition methods on the potential for hydrogen chloride (HCl) formation in a simulated densified refuse-derived fuel (RDF-5) with single metal combustion system. These experiments were conducted at 850 degrees C with the Ca(OH)(2) spiked in the RDF-5 production or injection in the flue gas treatment system. The results indicated that the potential for HCl formation was decreased significantly by Ca(OH)(2) spiked in the RDF-5 production or injection in the flue gas treatment system. However, the Ca(OH)(2) injection method in the flue gas for HCl emission reduction was better than other method. According to the relationship between the HCl emission and amount of Ca(OH)(2) injected or spiked, it is interesting to find that when the Ca(OH)(2) injected or spiked ranged from 0% to 5%, the potential for HCl formation in the single metal combustion system decreases significantly with increasing Ca(OH)(2) injected or spiked ratio. A corresponding increase in the amount of CaCl(2) partitioned to the fly ash was observed. However, with the ratio of Ca(OH)(2) higher than 5%, the amount of HCl formation showed that no further significant variation occurred with increasing Ca(OH)(2) spiked ratio.

  1. Gas evolution behavior of aluminum in mortar

    International Nuclear Information System (INIS)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs

  2. Gas evolution behavior of aluminum in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs.

  3. Comparison of four methods for determining aluminum in highly radioactive solutions

    International Nuclear Information System (INIS)

    Hanson, T.J.

    1976-06-01

    Four methods for the accurate determination of aluminum in highly alkaline nuclear waste solutions were developed and the results were compared to determine the strengths and weaknesses of each. The solutions of interest contain aluminum in concentrations of 0.5 to 3.5 M and the hydroxide (OH - ) concentrations were greater than 1.0 M. The normal atomic absorption determination was highly inaccurate for these samples so citrate was used as a complexant to improve the results. A fluoride titration was carried out in an ethanol-water matrix using a fluoride ion-selective electrode. A thermometric titration proved successful in determining both the OH - and aluminum concentrations of the samples. Finally, a titrimetric method using a pH electrode to determine OH - d aluminum was checked and compared with the other methods. Samples were analyzed using all four methods and the agreement of the results was very good. For all four methods the accuracy was around 100 percent and the precision varied from approximately +-2 percent for the fluoride electrode determination to approximately +-10 percent for the atomic absorption determination. On the basis of the work performed, conclusions were drawn about the strengths and weaknesses of each method and whether or not the method was suitable for routine use in analytical laboratories

  4. Safe injection procedures, injection practices, and needlestick ...

    African Journals Online (AJOL)

    Safe injection procedures, injection practices, and needlestick injuries among health care workers in operating rooms. Nermine Mohamed Tawfik Foda, Noha Selim Mohamed Elshaer, Yasmine Hussein Mohamed Sultan ...

  5. Aluminum and Phthalates in Calcium Gluconate: Contribution From Glass and Plastic Packaging.

    Science.gov (United States)

    Yokel, Robert A; Unrine, Jason M

    2017-01-01

    Aluminum contamination of parenteral nutrition solutions has been documented for 3 decades. It can result in elevated blood, bone, and whole body aluminum levels associated with neurotoxicity, reduced bone mass and mineral content, and perhaps hepatotoxicity. The primary aluminum source among parenteral nutrition components is glass-packaged calcium gluconate, in which aluminum concentration in the past 3 decades has averaged approximately 4000 μg/L, compared with nutrition solutions; 2 packaged in glass (from France and the United States) and 1 in plastic (from Germany); in a recently released plastic-packaged solution (from the United States); and in the 2 glass containers. Phthalate concentration was determined in selected samples of each product and leachate of the plastic containers. The initial aluminum concentration was approximately 5000 μg/L in the 2 glass-packaged products and approximately 20 μg/L in the plastic-packaged product, and increased approximately 30%, 50%, and 100% in 2 years, respectively. The aluminum concentration in a recently released Calcium Gluconate Injection USP was approximately 320 μg/L. Phthalates were not detected in any calcium gluconate solutions or leachates. Plastic packaging greatly reduces the contribution of aluminum to parenteral nutrition solutions from calcium gluconate compared with the glass-packaged product.

  6. Interaction of natural borates with potassium hydroxide solution

    International Nuclear Information System (INIS)

    Azarova, L.A.; Vinogradov, E.E.; Kudinov, I.B.; Panasyuk, G.P.; Danilov, V.P.

    2000-01-01

    Interaction of natural borates - inyoite, ulexite and hydroboracite MgCa[B 3 O 4 (OH) 3 ] 2 ·3H 2 O with KOH solution is studied at 50 Deg C by the methods of chemical, x- ray phase, differential thermal analyses and IR spectroscopy. IR spectra points out on island character of forming borates and confirms the data of x-ray phase and chemical analyses about presence of asharite and calcium hydrous borate in resulting products. Hydroboracite (chain structure) under the action of potassium hydroxide passes into borates of magnesium and calcium with island structure and in this case boron transforms partially into liquid phase. When potassium hydroxide interacts with inyoite and ulexite calcium hydroxide and roentgenoamorphous boron-containing product precipitate [ru

  7. Surface magnetism of exfoliated α-Co hydroxide nanosheets

    Science.gov (United States)

    Honda, Zentaro; Anai, Katsuki; Hagiwara, Masayuki; Kida, Takanori; Okutani, Akira; Sakai, Masamichi; Fukuda, Takeshi; Kamata, Norihiko

    2017-08-01

    α-Co hydroxide nanosheets have been synthesized and their magnetic properties were investigated. By using a soft chemical exfoliation technique, exfoliated α-Co hydroxide nanosheets, typically with lateral dimensions of few 100 nm, were obtained in a colloidal suspension. The magnetic responses of a sample consisting of a colloidal suspension of the nanosheets indicates a ferromagnetic phase transition occurs at TC=37.8 K. The magnetization possesses a linear temperature dependence at low temperatures below TC. In addition to this observation, the magnetization is proportional to (1-T/TC)β with β=0.8±0.1 near TC, which imply that the surface magnetism dominates in the exfoliated α-Co hydroxide nanosheets.

  8. Intercalation of ethylene glycol into yttrium hydroxide layered materials.

    Science.gov (United States)

    Xi, Yuanzhou; Davis, Robert J

    2010-04-19

    Intercalation of ethylene glycol into layered yttrium hydroxide containing nitrate counterions was accomplished by heating the reagents in a methanol solution of sodium methoxide under autogenous pressure at 413 K for 20 h. The resulting crystalline material had an expanded interlayer distance of 10.96 A, confirming the intercalation of an ethylene glycol derived species. Characterization of the material by FT-IR spectroscopy, thermogravimetric analysis, and the catalytic transesterification of tributyrin with methanol was consistent with direct bonding of ethylene glycolate anions (O(2)C(2)H(5)(-)) to the yttrium hydroxide layers, forming Y-O-C bonds. The layers of the material are proposed to be held together by H-bonding between the hydroxyls of grafted ethylene glycol molecules attached to adjacent layers. Glycerol can also be intercalated into yttrium hydroxide layered materials by a similar method.

  9. Safe injection procedures, injection practices, and needlestick ...

    African Journals Online (AJOL)

    Nermine Mohamed Tawfik Foda

    2017-01-10

    Jan 10, 2017 ... tionnaire was administered to HCWs (n = 318) at the Alexandria Main University Hospital. Results: Safe injection procedures regarding final waste disposal were sufficiently adopted, while mea- sures regarding disposable injection equipment, waste containers, hand hygiene, as well as injection practices ...

  10. Preparation and characterization of iron oxide and hydroxide based nanomaterials

    Science.gov (United States)

    Carbajal Franco, Guillermo

    Iron (Fe) oxides and hydroxides are common and abundant materials. They exhibit diverse crystal structures, properties and phenomena by virtue of which they find a wide range of scientific and technological applications. Controlled growth and manipulation of the specific structure and electronic behavior to meet the requirements of a given application is a challenging problem in view of many possible phases and composition of the resulting materials. The preparation method and experimental conditions will, therefore, significantly affect the properties and performance of Fe oxides and hydroxides. The goal of the project is to obtain Fe-based oxide/hydroxide catalytic materials and to derive a comprehensive understanding of the microstructure and electronic properties. The obvious relevance of the work it to optimize conditions to produce high quality Fe- based nanomaterials capable of dissociating the water molecules and produce hydrogen. The present approach to synthesize Fe oxides and hydroxides is based on a chemical route involving Fe-containing compounds. First step involved is the precipitation of Fe hydroxide/oxide particles from iron salts in an aqueous and non-aqueous media. The resultant precipitates consist of agglomerated nanoparticles. The size of the resulting Fe oxide and hydroxide nanoparticle depends on the concentration of the original solutions. After precipitation, a weak organic acid is added to obtain different concentrations. The samples were obtained at different intervals of time. Structure modification and dispersion of nanoparticles have been achieved and correlated with the concentration of the organic acid. It is demonstrated that the microstructure can be controlled in order to tune the materials' electronic behavior. In addition, the incorporation of various metal ions into the host matrix is explored in order to control the structure and electronic properties. The results are presented and discussed in detail in this dissertation.

  11. Penicillin G Procaine Injection

    Science.gov (United States)

    Penicillin G procaine injection is used to treat certain infections caused by bacteria. Penicillin G procaine injection should not be used to treat ... in the treatment of certain serious infections. Penicillin G procaine injection is in a class of medications ...

  12. Characteristics of Cement Solidification of Metal Hydroxide Waste

    Directory of Open Access Journals (Sweden)

    Dae-Seo Koo

    2017-02-01

    Full Text Available To perform the permanent disposal of metal hydroxide waste from electro-kinetic decontamination, it is necessary to secure the technology for its solidification. The integrity tests on the fabricated solidification should also meet the criteria of the Korea Radioactive Waste Agency. We carried out the solidification of metal hydroxide waste using cement solidification. The integrity tests such as the compressive strength, immersion, leach, and irradiation tests on the fabricated cement solidifications were performed. It was also confirmed that these requirements of the criteria of Korea Radioactive Waste Agency on these cement solidifications were met. The microstructures of all the cement solidifications were analyzed and discussed.

  13. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  14. Chemical synthesis of aluminum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ghanta, Sekher Reddy; Muralidharan, Krishnamurthi, E-mail: kmsc@uohyd.ernet.in [Advanced Center of Research in High Energy Materials (ACRHEM), University of Hyderabad (India)

    2013-06-15

    An alternate synthetic route has been described for the production of aluminum nanoparticles (Al-NPs). These Al-NPs were obtained through a reduction of aluminum acetylacetonate [Al(acac){sub 3}] by lithium aluminum hydride (LiAlH{sub 4}) in mestitylene at 165 Degree-Sign C. The side products were removed by repeated washing with dry, ice cold methanol and the reaction mixture was filtered to obtain gray-colored Al-NPs. The synthesized nanoparticles were characterized by Powder X-ray diffraction pattern and {sup 27}Al-MAS-NMR spectrum. The X-ray diffraction pattern confirmed the formation of face-centered cubic (fcc) form of aluminum. The size and morphology were investigated by scanning electron microscope and transmission electron microscope which showed particle of varying shapes with size ranging from 50 to 250 nm. The weight loss from the nanoparticles was studied by thermo gravimetric analysis which indicated that the nanoparticles were tightly bound with an unknown amorphous organic residue which cannot be removed by simple washing. The carbonaceous residue might be outcome of the decomposition of acac ligand which was responsible in stabilizing aluminum nanoparticles.

  15. Thermophysical Properties of Liquid Aluminum

    Science.gov (United States)

    Leitner, Matthias; Leitner, Thomas; Schmon, Alexander; Aziz, Kirmanj; Pottlacher, Gernot

    2017-06-01

    Ohmic pulse-heating with sub-microsecond time resolution is used to obtain thermophysical properties for aluminum in the liquid phase. Measurement of current through the sample, voltage drop across the sample, surface radiation, and volume expansion allow the calculation of specific heat capacity and the temperature dependencies of electrical resistivity, enthalpy, and density of the sample at melting and in the liquid phase. Thermal conductivity and thermal diffusivity as a function of temperature are estimated from resistivity data using the Wiedemann-Franz law. Data for liquid aluminum obtained by pulse-heating are quite rare because of the low melting temperature of aluminum with 933.47 K (660.32 °C), as the fast operating pyrometers used for the pulse-heating technique with rise times of about 100 ns generally might not be able to resolve the melting plateau of aluminum because they are not sensitive enough for such low temperature ranges. To overcome this obstacle, we constructed a new, fast pyrometer sensitive in this temperature region. Electromagnetic levitation, as the second experimental approach used, delivers data for surface tension (this quantity is not available by means of the pulse-heating technique) and for density of aluminum as a function of temperature. Data obtained will be extensively compared to existing literature data.

  16. Behavior of Uranium(VI) during HEDPA Leaching for Aluminum Dissolution in Tank Waste Sludges

    International Nuclear Information System (INIS)

    Powell, Brian A.; Rao, Linfeng; Nash, Kenneth L.; Martin, Leigh

    2006-01-01

    Batch adsorption/dissolution experiments were conducted to examine the interactions between 233U(VI) and a synthetic aluminumoxy hydroxide (boehmite, g-AlOOH) in 1.0M NaCl suspensions containing 1-hydroxyethane-1,1-diphosphonic acid (HEDPA). In the pH range 4 to 9, complexation of Al(III) by HEDPA significantly enhanced dissolution of boehmite. This phenomenon was especially pronounced in the neutral pH region where the solubility of aluminum, in the absence of complexants, is limited by the formation of sparsely soluble aluminum hydroxides. At high pH levels, dissolution of synthetic boehmite was inhibited by HEDPA, likely due to sorption of Al(III)/HEDPA complexes. Addition of HEDPA to equilibrated U(VI)-synthetic boehmite suspensions yielded an increase in the aqueous phase uranium concentration. The concentration of uranium continually increased over 59 days. Partitioning of uranium between the solid and aqueous phase was found to correlate well with HEDPA partitioning

  17. Microarc Oxidation of the High-Silicon Aluminum AK12D Alloy

    Directory of Open Access Journals (Sweden)

    S. K. Kiseleva

    2015-01-01

    Full Text Available The aim of work is to study how the high-silicon aluminum AK12D alloy microstructure and MAO-process modes influence on characteristics (microhardness, porosity and thickness of the oxide layer of formed surface layer.Experimental methods of study:1 MAO processing of AK12D alloy disc-shaped samples. MAO modes features are concentration of electrolyte components – soluble water glass Na2SiO3 and potassium hydroxide (KOH. The content of two components both the soluble water glass and the potassium hydroxide was changed at once, with their concentration ratio remaining constant;2 metallographic analysis of AK12D alloy structure using an optical microscope «Olympus GX51»;3 image analysis of the system "alloy AK12D - MAO - layer" using a scanning electron microscope «JEOL JSM 6490LV»;4 hardness evaluation of the MAO-layers using a micro-hardness tester «Struers Duramin».The porosity, microhardness and thickness of MAO-layer formed on samples with different initial structures are analyzed in detail. Attention is paid to the influence of MAO process modes on the quality layer.It has been proved that the MAO processing allows reaching quality coverage with high microhardness values of 1200-1300HV and thickness up to 114 μm on high-silicon aluminum alloy. It has been found that the initial microstructure of alloy greatly affects the thickness of the MAO - layer. The paper explains the observed effect using the physical principles of MAO process and the nature of silicon particles distribution in the billet volume.It has been shown that increasing concentration of sodium silicate and potassium hydroxide in the electrolyte results in thicker coating and high microhardness.It has been revealed that high microhardness is observed in the thicker MAO-layers.Conclusions:1 The microstructure of aluminum AK12D alloy and concentration of electrolyte components - liquid glass Na2SiO3 and potassium hydroxide affect the quality of coating resulted from MAO

  18. Evaluation of precipitates used in strainer head loss testing: Part II. Precipitates by in situ aluminum alloy corrosion

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Kasza, Ken E.; Shack, William J.; Natesan, Ken; Klein, Paul

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → Sump strainer head loss testing to evaluate chemical effects. → Aluminum hydroxide precipitates by in situ Al alloy corrosion caused head loss. → Intermetallic particles released from Al alloy can also cause significant head loss. → When evaluating Al effect on head loss, intermetallics should be considered. - Abstract: Vertical loop head loss tests were performed with 6061 and 1100 aluminum (Al) alloy plates immersed in borated solution at pH = 9.3 at room temperature and 60 o C. The results suggest that the potential for corrosion of an Al alloy to result in increased head loss across a glass fiber bed may depend on its microstructure, i.e., the size distribution and number density of intermetallic particles that are present in Al matrix and FeSiAl ternary compounds, as well as its Al release rate. Per unit mass of Al removed from solution, the WCAP-16530 aluminum hydroxide (Al(OH) 3 ) surrogate was more effective in increasing head loss than the Al(OH) 3 precipitates formed in situ by corrosion of Al alloy. However, in choosing a representative amount of surrogate for plant specific testing, consideration should be given to the potential for additional head losses due to intermetallic particles and the apparent reduction in the effective solubility of Al(OH) 3 when intermetallic particles are present.

  19. Aluminum nitride insulating films for MOSFET devices

    Science.gov (United States)

    Lewicki, G. W.; Maserjian, J.

    1972-01-01

    Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.

  20. Aluminum--Industry of the Future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-23

    This 8-page brochure describes the Office of Industrial Technologies' Aluminum Industry of the Future; a partnership between the Department of Energy and the aluminum industry established to increase industrial energy and cost efficiency.

  1. Aluminum-carbon composite electrode

    Science.gov (United States)

    Farahmandi, C.J.; Dispennette, J.M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg. 3 figs.

  2. Aluminum-carbon composite electrode

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  3. The effect of zinc on the aluminum anode of the aluminum-air battery

    Science.gov (United States)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  4. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Science.gov (United States)

    2010-11-18

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,376] Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood Forge Division; Currently Known As Contech Forgings, LLC..., applicable to workers of Kaiser Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division...

  5. Beryllium. Evaluation of beryllium hydroxide industrial processes. Pt. 3

    International Nuclear Information System (INIS)

    Lires, O.A.; Delfino, C.A.; Botbol, J.

    1991-01-01

    This work continues the 'Beryllium' series. It is a historical review of different industrial processes of beryllium hydroxide obtention from beryllium ores. Flowsheats and operative parameters of five plants are provided. These plants (Degussa, Brush Beryllium Co., Beryllium Corp., Murex Ltd., SAPPI) were selected as representative samples of diverse commercial processes in different countries. (Author) [es

  6. Synthesis of glycoluril catalyzed by potassium hydroxide under ultrasound irradiation.

    Science.gov (United States)

    Li, Ji-Tai; Liu, Xiao-Ru; Sun, Ming-Xuan

    2010-01-01

    Synthesis of the glycolurils catalyzed by potassium hydroxide was carried out in 17-75% yield at 40 degrees C in EtOH under ultrasound irradiation. Compared to the method using stirring, the main advantage of the present procedure is milder conditions and shorter reaction time.

  7. Oxidative leaching of chromium from layered double hydroxides ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The layered double hydroxide (LDH) of Zn with Cr on treatment with a hypochlorite solution releases chromate ions as a result of oxidative leaching by a dissolution–reprecipitation mechanism. The resi- due is found to be ε-Zn(OH)2. The LDH of Mg with Cr on the other hand is resistant to oxidative leaching. In.

  8. Oxidative leaching of chromium from layered double hydroxides ...

    Indian Academy of Sciences (India)

    The layered double hydroxide (LDH) of Zn with Cr on treatment with a hypochlorite solution releases chromate ions as a result of oxidative leaching by a dissolution–reprecipitation mechanism. The residue is found to be -Zn(OH)2. The LDH of Mg with Cr on the other hand is resistant to oxidative leaching. In contrast, a ...

  9. Line broadening in the PXRD patterns of layered hydroxides: The ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Layered hydroxides crystallize in a hexagonal structure and incorporate a number of different types of structural disorders as an exigency of anisotropic bonding. Structural disorder contributes to the non-uniform broadening of lines in the powder X-ray diffraction pattern. Common among the disorders are stacking ...

  10. Sodium hydroxide treated wheat straw for sheep | Pienaar | South ...

    African Journals Online (AJOL)

    South African Journal of Animal Science. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 10, No 2 (1980) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Sodium hydroxide treated wheat straw for sheep.

  11. Electronic spectra of anions intercalated in layered double hydroxides

    Indian Academy of Sciences (India)

    Transition metal complexes intercalated in layered double hydroxides have a different electronic structure as compared to their free state owing to their confinement within the interlayer gallery. UV–Vis absorptions of the intercalated complex anions show a significant shift as compared to their free state. The ligand to metal ...

  12. Interaction of pristine hydrotalcite-like layered double hydroxides ...

    Indian Academy of Sciences (India)

    Metal oxides in general have surface acidic sites, but for exceptional circumstances, are not expected to mineralize CO2. Given their intrinsic basicity and an expandable interlayer gallery, the hydrotalcite-like layered double hydroxides (LDHs) are expected to be superior candidate materials for CO2 mineralization.

  13. Combined aluminium sulfate/hydroxide process for fluoride removal ...

    African Journals Online (AJOL)

    Combined aluminium sulfate/hydroxide process for fluoride removal from drinking water. ... The reported removal efficiency of Nalgonda Technique is 70% at alum dose of 150-170 mg alum/mg F. Besides, sludge production is also minimized. Therefore, this process is highly efficient and could be applied in areas where the ...

  14. Thermal decomposition of Co–Al layered double hydroxide ...

    Indian Academy of Sciences (India)

    Administrator

    In this, paper, we study the thermal decomposition of the Co–Al–. CO. 2. 3. –. LDH by in situ variable temperature powder X-ray diffraction (VTPXRD), and follow the structural changes taking place in the LDH prior to the decomposition reac- tion. We report the formation of a precursor hydroxide phase having a topochemical ...

  15. Line broadening in the PXRD patterns of layered hydroxides: The ...

    Indian Academy of Sciences (India)

    Layered hydroxides crystallize in a hexagonal structure and incorporate a number of different types of structural disorders as an exigency of anisotropic bonding. Structural disorder contributes to the non-uniform broadening of lines in the powder X-ray diffraction pattern. Common among the disorders are stacking faults, ...

  16. Kinetics of thermal dehydration of zirconium and thorium hydroxide hydrogels

    International Nuclear Information System (INIS)

    Mitra, N.K.; Sinhamahapatra, S.

    1983-01-01

    Kinetics of thermal dehydration of synthetic zirconium and thorium hydroxide hydrogels have been studied by thermogravimetric method. Dehydration followed first order kinetics upto a certain stage. The rate constants for the initial and final stages of dehydration were related to the water content of the gels. Textural change on heat treatment also contributes to it. (author)

  17. Antimicrobial effectiveness of different preparations of calcium hydroxide

    Directory of Open Access Journals (Sweden)

    Anshul Gangwar

    2011-01-01

    Results and Conclusions: It was seen that calcium hydroxide and CMCP combination showed the maximum zone of inhibition, and maximum inhibitory effect was seen at 24 hours. The bacteria most susceptible was found to be S. aureus and the least susceptible was E. faecalis. Further clinical studies are required to substantiate these results.

  18. Interaction of pristine hydrotalcite-like layered double hydroxides ...

    Indian Academy of Sciences (India)

    -like layered double hydroxides (LDHs) are expected to be superior candidate materials for CO2 mineralization. However, the ... of the [Mg–Al–CO3] LDH is only marginally delayed in flowing CO2 in comparison with flowing N2, showing only.

  19. NO and SCN -intercalated layered double hydroxides: structure and ...

    Indian Academy of Sciences (India)

    2018-02-05

    Feb 5, 2018 ... Nitrite ion; thiocyanate ion; layered double hydroxide; structure refinement. 1. Introduction. The layered .... the synthesis. The [Zn−Al−NO2] and [Zn–Al–SCN] LDHs were synthe- sized by coprecipitation at constant pH = 8 and temperature of 60 ... were obtained by the difference Fourier method embedded in.

  20. DOUBLE-SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    International Nuclear Information System (INIS)

    OGDEN DM; KIRCH NW

    2007-01-01

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed

  1. Potassium hydroxide: an alternative reagent to perform the modified apt test.

    Science.gov (United States)

    Chicaiza, Henry; Hellstrand, Karl; Lerer, Trudy; Smith, Sharon; Sylvester, Francisco

    2014-09-01

    We tested the performance of potassium hydroxide (KOH) in the modified Apt test under different experimental conditions using sodium hydroxide as a positive control. Like sodium hydroxide, KOH differentiated fresh fetal and adult blood stains on a cloth but not dried blood. KOH may be used to perform the Apt test at the bedside. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    OGDEN DM; KIRCH NW

    2007-10-31

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

  3. Aging of trivalent metal hydroxide/oxide gels in divalent metal salt ...

    Indian Academy of Sciences (India)

    Unknown

    Aging of trivalent metal hydroxide/oxide gels in divalent metal salt solutions: Mechanism of formation of layered double hydroxides (LDHs). A V RADHA and P ..... This situation promotes coprecipitation of the two metal hydroxides, by virtue of which the titrations yield the. Zn–Al LDH. The LDHs isolated before and after ...

  4. Clinical and radiographic outcomes of calcium hydroxide and formocresol pulpotomies performed by dental students.

    Science.gov (United States)

    Alaçam, Alev; Odabaş, Mesut E; Tüzüner, Tamer; Sillelioğlu, Hilal; Baygin, Ozgül

    2009-11-01

    The aim of this study was to compare the clinical and radiographic success rates of 3 pulpotomy techniques: formocresol, calcium hydroxide, and calcium hydroxide/iodoform. The pulpotomies were performed by fifth-year undergraduate dental students. Members of senior staff at the clinics supervised all of the procedures. Informed consent was obtained from each child's parents. The teeth were randomly assigned to the experimental (calcium hydroxide and calcium hydroxide/iodoform) or control (formocresol) groups. After coronal pulp removal and hemostasis, remaining pulp tissue was covered with calcium hydroxide or calcium hydroxide/iodoform paste in the experimental groups. In the control group, formocresol was placed with a cotton pellet over the pulp tissue for 5 minutes and removed; the pulp tissue was then covered with zinc oxide-eugenol. All teeth were restored with stainless-steel crowns. Clinical and radiographic successes and failures were recorded at 1-, 3-, 6-, and 12-month follow-ups by the authors. Data were statistically analyzed using chi-squared tests. The follow-up evaluations revealed that the clinical success rates were 89.7% for formocresol, 33.3% for calcium hydroxide, and 17.2% for calcium hydroxide/iodoform. The radiographic success rates were 89.7% for formocresol, 33.3% for calcium hydroxide, and 13.8% for calcium hydroxide/iodoform. Formocresol was superior to calcium hydroxide and calcium hydroxide/iodoform pastes for primary molar pulpotomies. Internal resorption was the most common radiographic failure in all 3 pulpotomy techniques.

  5. Synthesis and Processing of Nanocrystalline Aluminum Nitride

    OpenAIRE

    Duarte, Matthew Albert

    2016-01-01

    Synthesis, processing and characterization of nanocrystalline aluminum nitride has been systematically studied. Non-carbon based gas nitridation was used to reduce nanocrystalline γ-alumina, having a grain size of ~80 nm. Single phase aluminum nitride powder was obtained at firing temperatures of 1200°C. Further processing of AlN powders was performed by CAPAD (Current Activated Pressure Assisted Densification) to obtain dense single phase aluminum nitride. Dense bulk aluminum nitride was ob...

  6. Mineral resource of the month: aluminum

    Science.gov (United States)

    Bray, E. Lee

    2012-01-01

    The article offers information on aluminum, a mineral resource which is described as the third-most abundant element in Earth's crust. According to the article, aluminum is the second-most used metal. Hans Christian Oersted, a Danish chemist, was the first to isolate aluminum in the laboratory. Aluminum is described as lightweight, corrosion-resistant and an excellent conductor of electricity and heat.

  7. New Approaches to Aluminum Integral Foam Production with Casting Methods

    Directory of Open Access Journals (Sweden)

    Ahmet Güner

    2015-08-01

    Full Text Available Integral foam has been used in the production of polymer materials for a long time. Metal integral foam casting systems are obtained by transferring and adapting polymer injection technology. Metal integral foam produced by casting has a solid skin at the surface and a foam core. Producing near-net shape reduces production expenses. Insurance companies nowadays want the automotive industry to use metallic foam parts because of their higher impact energy absorption properties. In this paper, manufacturing processes of aluminum integral foam with casting methods will be discussed.

  8. Recycling of Aluminum from Fibre Metal Laminates

    NARCIS (Netherlands)

    Zhu, G.; Xiao, Y.; Yang, Y.; Wang, J.; Sun, B.; Boom, R.

    2012-01-01

    Recycling of aluminum alloy scrap obtained from delaminated fibre metal laminates (FMLs) was studied through high temperature refining in the presence of a salt flux. The aluminum alloy scrap contains approximately mass fraction w(Cu) = 4.4%, w(Mg) = 1.1% and w(Mn) = 0.6% (2024 aluminum alloy). The

  9. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  10. 75 FR 80527 - Aluminum Extrusions From China

    Science.gov (United States)

    2010-12-22

    ...)] Aluminum Extrusions From China AGENCY: United States International Trade Commission. ACTION: Scheduling of... of subsidized and less-than-fair-value imports from China of aluminum extrusions, primarily provided... contained in Aluminum Extrusions From the People's Republic of China: Notice of Preliminary Determination of...

  11. 21 CFR 73.2645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.2645 Section 73.2645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications. The color additive aluminum powder shall conform in identity and specifications to the requirements of...

  12. 21 CFR 582.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  13. 21 CFR 172.310 - Aluminum nicotinate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum nicotinate. 172.310 Section 172.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely...

  14. Characterization of ultrafine aluminum nanoparticles

    International Nuclear Information System (INIS)

    Sandstrom, Mary M.; Jorgensen, Betty S.; Mang, Joseph T.; Smith, Bettina L.; Son, Steven F.

    2004-01-01

    Aluminum nanopowders with particle sizes ranging from ∼25 nm to 80 nm were characterized by a variety of methods. We present and compare the results from common powder characterization techniques including transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), BET gas adsorption surface area analysis, thermogravimetric analysis (TGA), photon correlation spectroscopy (PCS), and low angle laser light scattering (LALLS). Aluminum nanoparticles consist of an aluminum core with an aluminum oxide coating. HRTEM measurements of both the particle diameter and oxide layer thickness tend to be larger than those obtained from BET and TGA. LALLS measurements show a large degree of particle agglomeration in solution; therefore, primary particle sizes could not be determined. Furthermore, results from small-angle scattering techniques (SAS), including small-angle neutron (SANS) and x-ray (SAXS) scattering are presented and show excellent agreement with the BET, TGA, and HRTEM. The suite of analytical techniques presented in this paper can be used as a powerful tool in the characterization of many types of nanosized powders.

  15. Aluminum: The Next Twenty Years

    Science.gov (United States)

    Fitzgerald, M. Desmond; Pollio, Gerald

    1982-12-01

    This report concludes that the outlook for the world aluminum industry is quite favorable. Demand is expected to expand at a more rapid rate than for other basic metals, but not sufficiently to put undue strain on productive capacity. Capital requirements of the world aluminum industry are projected at 95.5 billion in 1980 prices — more than 200 billion in current prices—over the balance of the century. Given the aluminum industry's past success in generating internal funds, this level of capital expanditure should not cause undue financing problems. Finally, we expect changes to occur in the structure of the industry over the forecast period, with virtually all new alumina capacity being installed in proximity to bauxite production, and—with the exception of Australia—a major shift in smelting capacity away from other industrialized economies. While the large multinational companies will still play a dominant role in the world aluminum market, their share of production and ownership is likely to decline progressively during the period.

  16. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: mstislavd@gmail.com [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)

    2015-10-15

    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  17. Recrystallization in Commercially Pure Aluminum

    DEFF Research Database (Denmark)

    Bay, Bent; Hansen, Niels

    1984-01-01

    Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree of defor...

  18. Aluminum break-point contacts

    NARCIS (Netherlands)

    Heinemann, Martina; Groot, R.A. de

    1997-01-01

    Ab initio molecular dynamics is used to study the contribution of a single Al atom to an aluminum breakpoint contact during the final stages of breaking and the initial stages of the formation of such a contact. A hysteresis effect is found in excellent agreement with experiment and the form of the

  19. Directly polished lightweight aluminum mirror

    Science.gov (United States)

    ter Horst, Rik; Tromp, Niels; de Haan, Menno; Navarro, Ramon; Venema, Lars; Pragt, Johan

    2017-11-01

    During the last ten years, Astron has been a major contractor for the design and manufacturing of astronomical instruments for Space- and Earth based observatories, such as VISIR, MIDI, SPIFFI, X-Shooter and MIRI. Driven by the need to reduce the weight of optically ultra-stiff structures, two promising techniques have been developed in the last years: ASTRON Extreme Lightweighting [1][2] for mechanical structures and an improved Polishing Technique for Aluminum Mirrors. Using one single material for both optical components and mechanical structure simplifies the design of a cryogenic instrument significantly, it is very beneficial during instrument test and verification, and makes the instrument insensitive to temperature changes. Aluminum has been the main material used for cryogenic optical instruments, and optical aluminum mirrors are generally diamond turned. The application of a polishable hard top coating like nickel removes excess stray light caused by the groove pattern, but limits the degree of lightweighting of the mirrors due to the bi-metal effect. By directly polishing the aluminum mirror surface, the recent developments at Astron allow for using a non-exotic material for light weighted yet accurate optical mirrors, with a lower surface roughness ( 1nm RMS), higher surface accuracy and reduced light scattering. This paper presents the techniques, obtained results and a global comparison with alternative lightweight mirror solutions. Recent discussions indicate possible extensions of the extreme light weight technology to alternative materials such as Zerodur or Silicon Carbide.

  20. Decarbonization process for carbothermically produced aluminum

    Science.gov (United States)

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  1. Effects of Aluminum Chloride on the some ‎Blood Parameters and Histological Spleen in ‎White Male Rats

    Directory of Open Access Journals (Sweden)

    Shaymaa Abdul Hadi Kadhum

    2017-12-01

    Full Text Available Aluminum exists in numerous produced foods, medicines and likewise added to drinking water for refining purpose. Its existence has so heavily contaminated with the surroundings that exposed to, it is almost inescapable. This survey was aimed at evaluating the possible effects that Aluminum chloride could exposure have in the blood parameters and histopathology of spleen twenty four rats were used and  divided into four groups; “first group  was the control injected with normal saline, group II injected into subcutaneous with (240 ppm from Aluminum chloride (AlCl3,  group III injected with (320 ppm from (AlCl3, group IV injected with (400 ppm from (AlCl3 for 45 days. This study  showed a significant decrease (P<0.05 in red blood cell count, hemoglobin concentration, packed cell volume, mean corpuscular volume and mean corpuscular hemoglobin when compared to control group, while there was a significant increase (P<0.05 in total leucocyte count (TLC and Differential leucocytes count (DLC especially in lymphocyte. The results showed a significant elevated (P<0.05 in ESR value. Changes increased with increase in concentration of Aluminum chloride injected. Observation of blood parameters allows the most rapid detection of changes in wistar rats after the exposure of poisonous(AlCl3”

  2. Production and characterization of cast aluminum sponges

    International Nuclear Information System (INIS)

    Rivarola, M.E; Marmo Lupano, J.M; Malachevsky, M.T

    2004-01-01

    Cellular materials have unique physical features that make them particularly appropriate for applications that require high mechanical resistance and low weight. They can be produced in different ways: by powder metallurgy, by infiltration over plastic foams, adding a releasing agent of gas to a fused metal or simply injecting gas into it. Cellular structures can also be formed by casting onto a pore forming material. This work proposes a method that is basically similar to the last one mentioned but that allows the resulting material's porosity and topology to be controlled. Thus, the mechanical or thermal features of the material that is being manufactured can be predicted and/or designed. First the three dimensional print of a mold is made in a 3D printer, which is the negative of the piece that will be produced. Then a vacuum assisted aluminum cast is made. A preliminary study is presented for the applicability of this method and the mechanical properties of the resulting sponges (CW)

  3. Improvement to a production process of rare earth hydroxide by treatment of ores containing rare earth phosphates

    International Nuclear Information System (INIS)

    Fabre, F.; Lambert, A.; Tognet, J.P.

    1987-01-01

    Ore is treated by an aqueous solution of alkaline metal hydroxide and solid rare earth hydroxides are separated. For recycling the alkaline hydroxide after concentration the alkaline metal phosphate is crystallized and then alkaline earth metal hydroxide is added to avoid silicates concentration in the recycled solution [fr

  4. Leaching kinetics of gibbsitic bauxite with sodium hydroxide

    Directory of Open Access Journals (Sweden)

    Abdel-Aal El-Sayed A.

    2016-01-01

    Full Text Available In this paper the results of a leaching kinetics study of bauxite ore with sodium hydroxide are presented. The effect of ore particle size, sodium hydroxide concentration and reaction temperature on the Al2O3 extraction rate was determined. The results obtained showed that 99% of Al2O3 was leached out using −200+270 mesh ore particle size at a reaction temperature of 105 °C for 60 min reaction time with 250 g/L NaOH. The solid-to-liquid ratio was maintained constant at 1:20. The results indicated that leaching of bauxite is the rate controlling process. The activation energy was determined to be 46.04 kJ/mole, which was characteristic for a chemically controlled process.

  5. Potassium hydroxide 5% for the treatment of molluscum contagiosum.

    Science.gov (United States)

    2014-10-01

    Molluscum contagiosum is a common reason for consultation in primary care. The condition is normally benign and self-limiting1 and the standard advice is to wait for the lesions to resolve spontaneously.2 Recently, potassium hydroxide 5% (MolluDab-Alliance Pharmaceuticals Limited) has been marketed in the UK for the treatment of the condition.3 It is sold as a medical device rather than a licensed medicinal product. Here we consider the evidence for potassium hydroxide 5% in the management of molluscum contagiosum. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Nickel hydroxide positive electrode for alkaline rechargeable battery

    Energy Technology Data Exchange (ETDEWEB)

    Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean

    2018-04-03

    Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.

  7. Nickel hydroxide positive electrode for alkaline rechargeable battery

    Energy Technology Data Exchange (ETDEWEB)

    Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean

    2018-02-20

    Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.

  8. Production of calcium hydroxide from the waste of Cariri stone

    International Nuclear Information System (INIS)

    Alves, T.M.E.; Santos, A.M.M.; Brasileiro, M.I.; Pinheiro, S.F.L.; Prado, A.C.A.

    2016-01-01

    The extraction of Cariri stone in the northeast is a frequent activity because of its ornamental application as well as for the construction sector. However, by this extraction, untapped waste formation grows and becomes a problem for the environment. The objective of this work is to produce calcium hydroxide, from this limestone residue, with controlled porosity, solubility and particle size. The waste was characterized with X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF) and thermal analysis (TGA). The limestone was calcined at 850°C and 950°C for 45 minutes and three hours, being characterized by XRD, XRF and TGA. Once calcined, it was hydrated with 17,5g and 22g oxide to 100mL water and manually mixed for 15 and 25 minutes. The calcium hydroxides have been submitted for tests in vivo in rats and will be characterized by XRD, Scanning Electron Microscopy (SEM) and Infrared. (author)

  9. The corrosion of steels in molten sodium hydroxide

    International Nuclear Information System (INIS)

    Newman, R.N.; Smith, C.A.; Smith, R.J.

    1976-09-01

    The role of sodium hydroxide corrosion is discussed in relation to the wastage of materials observed in fast reactor boilers under fault conditions in the vicinity of a water leak into sodium. An experimental technique to study the corrosion under varying conditions is described. The results presented are for 2 1/4Cr 1Mo obtained in static sodium hydroxide in a closed volume over the temperature range 1033K to 1273K. It is found that the corrosion rate can be followed by monitoring the hydrogen produced by the reaction, which can be written as: Fe + 2NaOH = NaFeO 2 + NaH + 1/2H 2 . After an initial acceleration period the rate law is parabolic. The effect on the corrosion rate of melt and cover gas composition has been in part investigated, and the relevance of mass flow of reactants is discussed. (author)

  10. CALCIUM HYDROXIDE IN ENDODONTIC TREATMENT OF PERIAPICALLY INFECTED TEETH

    Directory of Open Access Journals (Sweden)

    Rahmi Alma Farah Adang

    2006-04-01

    Full Text Available An inadequate endodontic treatment may affect the root canal system and spread beyond its apical foramina that elicit periodontal tissue developing into abscess, granuloma and radicular cyst. Periodical lesions can be treated with non surgical endodontic treatment using calcium hydroxide dressing. This case study is reporting teeth 11 with periodical lesions and infection. Evidence of a clinical healing and radiographic assessments were followed by a non surgical endodontic therapy. Successful treatment outcome is related to the elimination of infection agents from the root canal. This can activate a stimulation zone to promote regeneration. Calcium hydroxide used as a root canal dressing may promote alkalinity at the adjacent tissue , create favourable environmental condition in which hard tissue formation can occur, interfere the bactericidal activity, increase mineralization, and induce healing.

  11. Surface Properties of Metal Hydroxide Microparticles in the Ambient Air

    Directory of Open Access Journals (Sweden)

    Zakharenko Valery

    2017-01-01

    Full Text Available The adsorption and photoadsorption properties of Mg(OH2 and Ca(OH2 microparticles in the ambient air were investigated. The compositional analysis of an adsorption layer of microparticles was carried out. The kinetics of photodesorption of molecules from microcrystal surfaces and the interaction of HCFC-22 (CHF2Cl in the dark and under light were studied. Quantum yields and their spectral dependencies were determined for CO2 photodesorption, O2 and CO photoadsorption. The effect of weakly bound CO displacement from the surface of microparticles was revealed during dark adsorption of HCFC-22. It is supposed that adsorbed CO is formed as a result of atmospheric CO2 reduction after the break of Mg—OH bonds. In case of calcium hydroxide, CO is generated during the interaction of calcium hydroxide with carbon dioxide in the presence of water.

  12. Long term immersion test of aluminum alloy AA 6061 used for fuel cladding in MTR type reactors

    International Nuclear Information System (INIS)

    Linardi, Evelina M.; Rodriguez, Sebastian; Haddad, Roberto; Lanzani, Liliana

    2009-01-01

    In this work we present the results of long term immersion tests performed in the aluminum alloy AA 6061, used for fuel cladding in MTR type reactors. The tests were performed at open circuit potential in high purity water (ρ = 18.2 MΩ.cm) and in 10 -3 M NaCl solution. Two kinds of assemblies were studied: simple sheets and artificial crevices, immersed during 6, 12 and 18 months at room temperature. In both media and both assemblies, the aluminum hydroxide phases crystalline bayerite and bohemite were identified. It was found that a kind of localized attack named alkaline attack occurs around the iron-rich intermetallics. These particles were confirmed to control the corrosion of the AA 6061 alloy in an aerated medium. Immersion times for up to 18 months did not increase the oxide growth or the alkaline attack on the AA 6061 alloy. (author)

  13. Synthesis, Characterization and Hexavalent Chromium Adsorption Characteristics of Aluminum- and Sucrose-Incorporated Tobermorite

    Directory of Open Access Journals (Sweden)

    Zhiguang Zhao

    2017-05-01

    Full Text Available Tobermorites were synthesized from the lime-quartz slurries with incorporations of aluminum and sucrose under hydrothermal conditions, and then used for adsorption of Cr(VI. The chemical components, and structural and morphological properties of tobermorite were characterized by X-ray diffraction (XRD, thermogravimetric-differential scanning calorimetry (TG-DSC, Fourier transform infrared spectroscopy (FT-IR, nuclear magnetic resonance (NMR, scanning electron microscopy (SEM, X-ray photoelectron spectroscopic (XPS and N2 adsorption–desorption measurements. The formation and crystallinity of tobermorite could be largely enhanced by adding 2.3 wt.% aluminum hydroxide or 13.3 wt.% sucrose. Sucrose also played a significantly positive role in increasing the surface area. The adsorption performances for Cr(VI were tested using a batch method taking into account the effects of pH, the adsorption kinetics, and the adsorption isotherms. The adsorption capacities of the aluminum- and sucrose-incorporated tobermorites reached up to 31.65 mg/g and 28.92 mg/g, respectively. Thus, the synthesized tobermorites showed good adsorption properties for removal of Cr(VI, making this material a promising candidate for efficient bulk wastewater treatment.

  14. The Resource-Saving Technology of Aluminum Nitride Obtaining During Combustion of Aluminum Nanopowder in Air

    Directory of Open Access Journals (Sweden)

    Ilyin Alexander

    2016-01-01

    Full Text Available The resource-saving technology of aluminum nitride obtaining during the combustion of aluminum nanopowder in air has been analyzed in the article. The investigation of the crystal phases of aluminum nanopowder combustion products obtained under the magnetic field exposure has been made. The experimental results showed the increase of aluminum nitride content up to 86 wt. % in comparison with the aluminum nitride content in combustion products without any exposure. The mechanism of aluminum nitride formation and stabilization in air was due to the oxygen molecules deactivation by light emission during combustion.

  15. Borax counteracts genotoxicity of aluminum in rat liver.

    Science.gov (United States)

    Turkez, Hasan; Geyikoğlu, Fatime; Tatar, Abdulgani

    2013-10-01

    This study was carried out to evaluate the protective role of borax (BX) on genotoxicity induced by aluminum (Al) in rat liver, using liver micronucleus assay as an indicator of genotoxicity. Sprague-Dawley rats were randomly separated into six groups and each group had four animals. Aluminum chloride (AlCl₃; 5 mg/kg b.w.) and BX (3.25 and 13 mg/kg b.w.) were injected intraperitoneally to rats. Besides, animals were also treated with Al for 4 consecutive days followed by BX for 10 days. Rats were anesthetized after Al and BX injections and the hepatocytes were isolated for counting the number of micronucleated hepatocytes (MNHEPs). AlCl₃ was found to significantly (p < 0.05) increase the number of MNHEPs. Rats treated with BX, however, showed no increase in MNHEPs. Moreover, simultaneous treatments with BX significantly modulated the genotoxic effects of AlCl₃ in rats. It can be concluded that BX has beneficial influences and has the ability to antagonize Al toxicity.

  16. Successive potassium hydroxide testing for improved diagnosis of tinea pedis.

    Science.gov (United States)

    Karaman, Bilge F; Topal, Suhan G; Aksungur, Varol L; Ünal, İlker; İlkit, Macit

    2017-08-01

    In this study, we investigated the role of successive potassium hydroxide (KOH) tests for the diagnosis of tinea pedis with different clinical presentations. The study included 135 patients with 200 lesions that were clinically suspicious for tinea pedis. Three samples of skin scrapings were taken from each lesion in the same session and were examined using a KOH test. This study offers an inexpensive, rapid, and useful technique for the daily practice of clinicians and mycologists managing patients with clinically suspected tinea pedis.

  17. Surface modification of magnesium hydroxide using vinyltriethoxysilane by dry process

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Shengjie [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining 810008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Lijuan, E-mail: lilj@isl.ac.cn [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining 810008 (China); Xu, Defang; Zhu, Donghai; Liu, Zhiqi; Nie, Feng [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining 810008 (China)

    2016-09-30

    Highlights: • A modification mechanism for magnesium hydroxide using silane by dry process was proposed. • Si−O−Mg bonds were formed directly by the reaction between Si-OC{sub 2}H{sub 5} and hydroxyl groups of magnesium hydroxide. • Dispersibility and compatibility of modified magnesium hydroxide improved in organic phase. - Abstract: In order to improve the compatibility between magnesium hydroxide (MH) and polymer matrix, the surface of MH was modified using vinyltriethoxysilane (VTES) by dry process and the interfacial interaction between MH and VTES was also studied. Zeta potential measurements implied that the MH particles had better dispersion and less aggregation after modification. Sedimentation tests showed that the surface of MH was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MH particles significantly improved in the organic phase. Scanning electronic microscopy (SEM), Transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that a thin layer had formed on the surface of the modified MH, but did not alter the material’s crystalline phase. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectra (XPS) and Thermogravimetric analysis (TGA) showed that the VTES molecules bound strongly to the surface of MH after modification. Chemical bonds (Si−O−Mg) formed by the reaction between Si-OC{sub 2}H{sub 5} and hydroxyl group of MH, also there have physical adsorption effect in the interface simultaneously. A modification mechanism of VTES on the MH surface by dry process was proposed, which different from the modification mechanism by wet process.

  18. Effect of hydroxide polymenrs on cation exchange of montmorillonite

    NARCIS (Netherlands)

    Janssen, R.P.T.; Bruggenwert, M.G.M.; Riemsdijk, van W.H.

    2003-01-01

    Al hydroxide polymers (AlHO) can significantly influence the cation exchange behaviour of clays. We have determined the effect of synthesized AlHO on Ca¿Na, Zn¿Na and Pb¿Na exchange for a series of exchanger compositions and two Al loadings at pH 6.0 and an ionic strength of 0.01 m. The preference

  19. Cluster beam injection

    International Nuclear Information System (INIS)

    Bottiglioni, F.; Coutant, J.; Fois, M.

    1977-11-01

    Areas of possible applications of cluster injection are discussed. The deposition inside the plasma of molecules, issued from the dissociation of the injected clusters, has been computed. Some empirical scaling laws for the penetration are given

  20. Cluster beam injection

    International Nuclear Information System (INIS)

    Bottiglioni, F.; Coutant, J.; Fois, M.

    1978-01-01

    Areas of possible applications of cluster injection are discussed. The deposition inside the plasma of molecules, issued from the dissociation of the injected clusters, has been computed. Some empirical scaling laws for the penetration are given

  1. Sodium Ferric Gluconate Injection

    Science.gov (United States)

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  2. Aminocaproic Acid Injection

    Science.gov (United States)

    Aminocaproic acid injection is used to control bleeding that occurs when blood clots are broken down too quickly. This ... the baby is ready to be born). Aminocaproic acid injection is also used to control bleeding in ...

  3. Deoxycholic Acid Injection

    Science.gov (United States)

    Deoxycholic acid injection is used to improve the appearance and profile of moderate to severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a class of medications called ...

  4. Corticotropin, Repository Injection

    Science.gov (United States)

    ... injection is used to treat the following conditions:infantile spasms (seizures that usually begin during the first year ... tell how corticotropin repository injection works to treat infantile spasms.

  5. Superconductivity and magnetism in iron sulfides intercalated by metal hydroxides.

    Science.gov (United States)

    Zhou, Xiuquan; Eckberg, Christopher; Wilfong, Brandon; Liou, Sz-Chian; Vivanco, Hector K; Paglione, Johnpierre; Rodriguez, Efrain E

    2017-05-01

    Inspired by naturally occurring sulfide minerals, we present a new family of iron-based superconductors. A metastable form of FeS known as the mineral mackinawite forms two-dimensional sheets that can be readily intercalated by various cationic guest species. Under hydrothermal conditions using alkali metal hydroxides, we prepare three different cation and metal hydroxide-intercalated FeS phases including (Li 1- x Fe x OH)FeS, [(Na 1- x Fe x )(OH) 2 ]FeS, and K x Fe 2- y S 2 . Upon successful intercalation of the FeS layer, the superconducting critical temperature T c of mackinawite is enhanced from 5 K to 8 K for the (Li 1- x Fe x OH) δ + intercalate. Layered heterostructures of [(Na 1- x Fe x )(OH) 2 ]FeS resemble the natural mineral tochilinite, which contains an iron square lattice interleaved with a hexagonal hydroxide lattice. Whilst heterostructured [(Na 1- x Fe x )(OH) 2 ]FeS displays long-range magnetic ordering near 15 K, K x Fe 2- y S 2 displays short range antiferromagnetism.

  6. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  7. Ultrasonic dissimilar joining of aluminum alloy and polymer with the composite material of ABS polymer doping carbonized rice husk

    Directory of Open Access Journals (Sweden)

    Cheng Chin-Pao

    2017-01-01

    Full Text Available The metal housing is typically jointed with plastic fittings by conventional gluing method or embedding injection molding to produce this type of devices. We propose to improve this new technique with more practical approach. In plastic-aluminum substrate dissimilar joining, the 5052 aluminum plate coarsening process was performed to increase the porosity of the permeable dissimilar phase. The ABS polymer plus carbonized rice husk powder was later induced or deposited on the microstructure to improve the bonding effect. The plastic -aluminum substrate dissimilar joining is completed by the final step of ultrasonic welding. The finished substrate will be tested on the properties of tensile strength to ensure its quality. According to the simulation analysis and measuring results, the maximum temperature between the interface of ABS polymer and 5052 aluminum alloy is about 400~450 °C during ultrasonic welding, which can make the surface of ABS polymer to be melted. Furthermore, after drilling micro-hole array and covering ABS plus carbonized rice husk powder, the 5052 aluminum alloy shows better joining effect with ABS polymer sheet by ultrasonic welding. This improved approach does not require mold or injection molding machinery to produce the high quality plastic -aluminum bonding parts.

  8. Aluminum nanostructures for ultraviolet plasmonics

    Science.gov (United States)

    Martin, Jérôme; Khlopin, Dmitry; Zhang, Feifei; Schuermans, Silvère; Proust, Julien; Maurer, Thomas; Gérard, Davy; Plain, Jérôme

    2017-08-01

    An electromagnetic field is able to produce a collective oscillation of free electrons at a metal surface. This allows light to be concentrated in volumes smaller than its wavelength. The resulting waves, called surface plasmons can be applied in various technological applications such as ultra-sensitive sensing, Surface Enhanced Raman Spectroscopy, or metal-enhanced fluorescence, to name a few. For several decades plasmonics has been almost exclusively studied in the visible region by using nanoparticles made of gold or silver as these noble metals support plasmonic resonances in the visible and near-infrared range. Nevertheless, emerging applications will require the extension of nano-plasmonics toward higher energies, in the ultraviolet range. Aluminum is one of the most appealing metal for pushing plasmonics up to ultraviolet energies. The subsequent applications in the field of nano-optics are various. This metal is therefore a highly promising material for commercial applications in the field of ultraviolet nano-optics. As a consequence, aluminum (or ultraviolet, UV) plasmonics has emerged quite recently. Aluminium plasmonics has been demonstrated efficient for numerous potential applications including non-linear optics, enhanced fluorescence, UV-Surface Enhanced Raman Spectroscopy, optoelectronics, plasmonic assisted solid-state lasing, photocatalysis, structural colors and data storage. In this article, different preparation methods developed in the laboratory to obtain aluminum nanostructures with different geometries are presented. Their optical and morphological characterizations of the nanostructures are given and some proof of principle applications such as fluorescence enhancement are discussed.

  9. Geothermal injection monitoring project

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.

    1981-04-01

    Background information is provided on the geothermal brine injection problem and each of the project tasks is outlined in detail. These tasks are: evaluation of methods of monitoring the movement of injected fluid, preparation for an eventual field experiment, and a review of groundwater regulations and injection programs. (MHR)

  10. Injection moulding antireflective nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger

    2014-01-01

    in an injection moulding process, to fabricate the antireflective surfaces. The cycle-time was 35 s. The injection moulded structures had a height of 125 nm, and the visible spectrum reflectance of injection moulded black polypropylene surfaces was reduced from 4.5±0.5% to 2.5±0.5%. The gradient of the refractive...

  11. Injection moulding antireflective nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger

    in an injection moulding process, to fabricate the antireflective surfaces. The cycle-time was 35 s. The injection moulded structures had a height of 125 nm, and the visible spectrum reflectance of injection moulded black polypropylene surfaces was reduced from 4.5±0.5% to 2.5±0.5%. The gradient of the refractive...

  12. Comparison of sodium hydroxide and calcium hydroxide pretreatments on the enzymatic hydrolysis and lignin recovery of sugarcane bagasse.

    Science.gov (United States)

    Chang, Menglei; Li, Denian; Wang, Wen; Chen, Dongchu; Zhang, Yuyuan; Hu, Huawen; Ye, Xiufang

    2017-11-01

    Sodium hydroxide (NaOH) and calcium hydroxide (Ca(OH) 2 ) respectively dissolved in water and 70% glycerol were applied to treat sugarcane bagasse (SCB) under the condition of 80°C for 2h. NaOH solutions could remove more lignin and obtain higher enzymatic hydrolysis efficiency of SCB than Ca(OH) 2 solutions. Compared with the alkali-water solutions, the enzymatic hydrolysis of SCB treated in NaOH-glycerol solution decreased, while that in Ca(OH) 2 -glycerol solution increased. The lignin in NaOH-water pretreatment liquor could be easily recovered by calcium chloride (CaCl 2 ) at room temperature, but that in Ca(OH) 2 -water pretreatment liquor couldn't. NaOH pretreatment is more suitable for facilitating enzymatic hydrolysis and lignin recovery of SCB than Ca(OH) 2 pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Environmental hazards of aluminum to plants, invertebrates, fish, and wildlife

    Science.gov (United States)

    Sparling, D.W.; Lowe, T.P.

    1996-01-01

    Aluminum is extremely common throughout the world and is innocuous under circumneutral or alkaline conditions. However, in acidic environments, it can be a maJor limiting factor to many plants and aquatic organisms. The greatest concern for toxicity in North America occurs in areas that are affected by wet and dry acid deposition, such as eastern Canada and the northeastern U.S. Acid mine drainage, logging, and water treatment plant effluents containing alum can be other maJor sources of Al. In solution, the metal can combine with several different agents to affect toxicity. In general, Al hydroxides and monomeric Al are the most toxic forms. Dissolved organic carbons, F, PO(3)3- and SO(4)2- ameliorate toxicity by reducing bioavailability. Elevated metal levels in water and soil can cause serious problems for some plants. Algae tend to be both acid- and Al tolerant and, although some species may disappear with reduced pH, overall algae productivity and biomass are seldom affected if pH is above 3.0. Aluminum and acid toxicity tend to be additive to some algae when pH is less than 4.5. Because the metal binds with inorganic P, it may reduce P availability and reduce productivity. Forest die-backs in North America involving red spruce, Fraser fir, balsam fir, loblolly pine, slash pine, and sugar maples have been ascribed to Al toxicity, and extensive areas of European forests have died because of the combination of high soil Al and low pH. Extensive research on crops has produced Al-resistant cultivars and considerable knowledge about mechanisms of and defenses against toxicity. Very low Al levels may benefit some plants, although the metal is not recognized as an essential nutrient. Hyperaccumulator species of plants may concentrate Al to levels that are toxic to herbivores. Toxicity in aquatic invertebrates is also acid dependent. Taxa such as Ephemeroptera, Plecoptera, and Cladocera are sensitive and may perish when Al is less than 1 mg.L-1 whereas dipterans

  14. Packing parameters effect on injection molding of polypropylene nanostructured surfaces

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    In today´s industry, applications involving surface patterning of sub-μm to nanometer scale structures have shown a high growth potential. To investigate the injection molding capability of replicating sub-μm surface texture on a large scale area, a 30x80 mm2 tool insert with surface structures...... having a diameter of 500 nm was employed. The tool insert surface was produced using chemical-based-batch techniques such aluminum anodization and nickel electroplating. During the injection molding process, polypropylene (PP) was employed as material and packing phase parameters (packing time, packing...

  15. Histological Study of the Effect of Aluminum in Testes of Albino Mice

    Directory of Open Access Journals (Sweden)

    Abdul-Hadi Abbas Hadi

    2013-11-01

    Full Text Available Aluminum is widely distributed and constitutes approximately 8.8% of the earth's crust and considers as potential toxin in the environment, especially when present in high concentrations. This study sought to study the effects of subcutaneous injection of aluminum chloride on the histological structure of testes of the albino mice and comprises the effect at concentrations of 80, 160, 240, 320, and 400 mg/kg body weight. Increasing degree of damage of testicular tissue in correlation with the number and the amount of doses of aluminum chloride such as diffusion of oedematous fluid in the tissues, congestion of blood vessels, pyknosis of nuclei and an increase in the number of giant cells were the prominent histopathological changes.

  16. COMPARATIVE ANALYSIS OF STEEL AND ALUMINUM STRUCTURES

    Directory of Open Access Journals (Sweden)

    Josip Peko

    2016-12-01

    Full Text Available This study examined steel and aluminum variants of modern exhibition structures in which the main design requirements include low weight (increased span/depth ratio, transportation, and construction and durability (resistance to corrosion. This included a design situation in which the structural application of aluminum alloys provided an extremely convenient and practical solution. Viability of an aluminum structure depends on several factors and requires a detailed analysis. The overall conclusion of the study indicated that aluminum can be used as a structural material and as a viable alternative to steel for Croatian snow and wind load values and evidently in cases in which positive properties of aluminum are required for structural design. Furthermore, a structural fire analysis was conducted for an aluminum variant structure by using a zone model for realistic fire analysis. The results suggested that passive fire protection for the main structural members was not required in the event of areal fire with duration of 60 min.

  17. [Link between aluminum neurotoxicity and neurodegenerative disorders].

    Science.gov (United States)

    Kawahara, Masahiro

    2016-07-01

    Aluminum is an old element that has been known for a long time, but some of its properties are only now being discovered. Although environmentally abundant, aluminum is not essential for life; in fact, because of its specific chemical properties, aluminum inhibits more than 200 biologically important functions and exerts various adverse effects in plants, animals, and humans. Aluminum is a widely recognized neurotoxin. It has been suggested that there is a relationship between exposure to aluminum and neurodegenerative diseases, including dialysis encephalopathy, amyotrophic lateral sclerosis and parkinsonism dementia in the Kii Peninsula and Guam, as well as Alzheimer' s disease: however, this claim remains to be verified. In this chapter, we review the detailed characteristics of aluminum neurotoxicity and the link between Alzheimer' s disease and other neurodegenerative diseases, based on recent findings on metal-metal interactions and the functions of metalloproteins in synapses.

  18. TECHNOLOGY MATURATION PLAN FOR ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENERATION FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; GUILLOT S

    2011-01-27

    This Technology Maturation Plan schedules the development process that will bring the Lithium Hydrotalcite waste pretreatment process from its current estimated Technology Readiness Level of 3, to a level of 6. This maturation approach involves chemical and engineering research and development work, from laboratory scale to pilot scale testing, to incrementally make the process progress towards its integration in a fully qualified industrial system.

  19. Technology Maturation Plan For Aluminum Removal And Sodium Hydroxide Regeneration From Hanford Waste By Lithium Hydrotalcite Precipitation

    International Nuclear Information System (INIS)

    Sams, T.L.; Guillot, S.

    2011-01-01

    This Technology Maturation Plan schedules the development process that will bring the Lithium Hydrotalcite waste pretreatment process from its current estimated Technology Readiness Level of 3, to a level of 6. This maturation approach involves chemical and engineering research and development work, from laboratory scale to pilot scale testing, to incrementally make the process progress towards its integration in a fully qualified industrial system.

  20. Aluminum and aluminum nitride formation in sapphire by ion beam synthesis

    OpenAIRE

    Stritzker, Bernd

    2000-01-01

    Aluminum and aluminum nitride formation in sapphire by ion beam synthesis / J. K. N. Lindner, W. Schlosser, and B. Stritzker. - In: Nuclear instruments & methods in physics research. B. 166. 2000. S. 133-139

  1. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    Science.gov (United States)

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  2. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr)

    Science.gov (United States)

    Lee, Jonathan A.

    2009-01-01

    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  3. [Enhancement of a hepatitis B DNA vaccine potency using aluminum phosphate in mice].

    Science.gov (United States)

    Liang, Zeng-wei; Ren, Hong; Lang, Ying-hua; Li, Yong-guo

    2004-02-01

    To study antibody response to a hepatitis B DNA vaccine by formulation with aluminum phosphate in mice. An eukaryotic expression plasmid inserted HBsAg gene (pcDNA3.1-S) was constructed by cloning technique and the accuracy of the construct was confirmed by restriction enzyme digestion and DNA sequencing, then hepatitis B DNA vaccine formulations were prepared by mixing pcDNA3.1-S with various concentration of aluminum phosphate in 0.9% NaCl. HBsAg expressions were assayed by ELISA in vivo five days after intramuscular injection of pcDNA3.1-S with or without aluminum phosphate. And serum samples were obtained from individual immunized or control mice 6 weeks post injection. Then anti-HBs were assayed in mice sera by ELISA. Five days after intramuscular immunization, the levels of HBsAg expression of groups with aluminum phosphate showed no difference from those of control group in tibialis arterials muscles. In sera, HBsAg could not be detectable in all groups. Intramuscular immunization of BABL/C mice with pcDNA3.1-S mixed aluminum phosphate (0microg, 1microg, 10microg, 50microg, 100microg) 6 weeks later, the P/N values of anti-HBs in sera were 11.54+/-5.60, 11.00+/-6.62, 20.30+/-10.20, 49.18+/-24.40 and 48.68+/-27.78, respectively. It showed that pcDNA3.1-S mixing with aluminum phosphate could increase anti-HBs titers in mice. No increase of HBsAg expression was observed by mixing plasmid pcDNA3.1-S with various concentration of aluminum phosphate in vivo. But Intramuscular immunization of BALB/C mice with pcDNA3.1-S mixing aluminum phosphate adjuvant can increase anti -HBs titers. It seemed that aluminum phosphate would be valuable for further investigation as a potential adjuvant of hepatitis B DNA vaccines.

  4. Aluminum-stabilized NB3SN superconductor

    Science.gov (United States)

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  5. An all aluminum alloy UHV components

    International Nuclear Information System (INIS)

    Sugisaki, Kenzaburo

    1985-01-01

    An all aluminum components was developed for use with UHV system. Aluminum alloy whose advantage are little discharge gas, easy to bake out, light weight, little damage against radieactivity radiation is used. Therefore, as it is all aluminum alloy, baking is possible. Baking temperature is 150 deg C in case of not only ion pump, gate valve, angle valve but also aluminum components. Ion pump have to an ultrahigh vacuum of order 10 -9 torr can be obtained without baking, 10 -10 torr order can be obtained after 24 hour of baking. (author)

  6. Nd:YAG laser welding aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, E. Jr.

    1992-02-01

    Autogenous Nd:YAG laser welding wrought 4047, 1100, 3003, 2219, 5052, 5086, 5456, and 6061 and cast A356 aluminum alloys to cast A356 aluminum alloy in restrained annular weld joints was investigated. The welds were 12.7 mm (0.375 in.) and 9.5 mm (0.375 in.) diameter with approximately 0.30 mm (0.012 in.) penetration. This investigation determined 4047 aluminum alloy to be the optimum alloy for autogenous Nd:YAG laser welding to cast A356 aluminum alloy. This report describes the investigation and its results.

  7. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No. 555...

  8. Average formation number n-barOH of colloid-type indium hydroxide

    International Nuclear Information System (INIS)

    Stefanowicz, T.; Szent-Kirallyine Gajda, J.

    1983-01-01

    Indium perchlorate in perchloric acid solution was titrated with sodium hydroxide solution to various pH values. Indium hydroxide colloid was removed by ultracentrifugation and supernatant solution was titrated with base to neutral pH. The two-stage titration data were used to calculate the formation number of indium hydroxide colloid, which was found to equal n-bar OH = 2.8. (author)

  9. An automatic system for acidity determination based on sequential injection titration and the monosegmented flow approach.

    Science.gov (United States)

    Kozak, Joanna; Wójtowicz, Marzena; Gawenda, Nadzieja; Kościelniak, Paweł

    2011-06-15

    An automatic sequential injection system, combining monosegmented flow analysis, sequential injection analysis and sequential injection titration is proposed for acidity determination. The system enables controllable sample dilution and generation of standards of required concentration in a monosegmented sequential injection manner, sequential injection titration of the prepared solutions, data collecting, and handling. It has been tested on spectrophotometric determination of acetic, citric and phosphoric acids with sodium hydroxide used as a titrant and phenolphthalein or thymolphthalein (in the case of phosphoric acid determination) as indicators. Accuracy better than |4.4|% (RE) and repeatability better than 2.9% (RSD) have been obtained. It has been applied to the determination of total acidity in vinegars and various soft drinks. The system provides low sample (less than 0.3 mL) consumption. On average, analysis of a sample takes several minutes. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. The Apparent Solubility Of Aluminum(III) In Hanford High-Level Waste Tanks

    International Nuclear Information System (INIS)

    Reynolds, J.G.

    2012-01-01

    The solubility of aluminum in Hanford nuclear waste impacts on the process ability of the waste by a number of proposed treatment options. For many years, Hanford staff has anecdotally noted that aluminum appears to be considerably more soluble in Hanford waste than the simpler electrolyte solutions used as analogues. There has been minimal scientific study to confirm these anecdotal observations, however. The present study determines the apparent solubility product for gibbsite in 50 tank samples. The ratio of hydroxide to aluminum in the liquid phase for the samples is calculated and plotted as a function of total sodium molarity. Total sodium molarity is used as a surrogate for ionic strength, because the relative ratios of mono, di and trivalent anions are not available for all of the samples. These results were compared to the simple NaOH-NaAl(OH 4 )H 2 O system, and the NaOH-NaAl(OH 4 )NaCl-H 2 O system data retrieved from the literature. The results show that gibbsite is apparently more soluble in the samples than in the simple systems whenever the sodium molarity is greater than two. This apparent enhanced solubility cannot be explained solely by differences in ionic strength. The change in solubility with ionic strength in simple systems is small compared to the difference between aluminum solubility in Hanford waste and the simple systems. The reason for the apparent enhanced solubility is unknown, but could include. kinetic or thermodynamic factors that are not present in the simple electrolyte systems. Any kinetic explanation would have to explain why the samples are always supersaturated whenever the sodium molarity is above two. Real waste characterization data should not be used to validate thermodynamic solubility models until it can be confirmed that the apparent enhanced gibbsite solubility is a thermodynamic effect and not a kinetic effect.

  11. Hydrogen effects in aluminum alloys

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Caskey, G.R. Jr.; Dexter, A.H.

    1976-01-01

    The permeability of six commercial aluminum alloys to deuterium and tritium was determined by several techniques. Surface films inhibited permeation under most conditions; however, contact with lithium deuteride during the tests minimized the surface effects. Under these conditions phi/sub D 2 / = 1.9 x 10 -2 exp (--22,400/RT) cc (NTP)atm/sup -- 1 / 2 / s -1 cm -1 . The six alloys were also tested before, during, and after exposure to high pressure hydrogen, and no hydrogen-induced effects on the tensile properties were observed

  12. Epidural injections for back pain

    Science.gov (United States)

    ESI; Spinal injection for back pain; Back pain injection; Steroid injection - epidural; Steroid injection - back ... pillow under your stomach. If this position causes pain, you either sit up or lie on your ...

  13. Antimicrobial activity of calcium hydroxide and chlorhexidine on intratubular Candida albicans

    Science.gov (United States)

    Jacques Rezende Delgado, Ronan; Helena Gasparoto, Thaís; Renata Sipert, Carla; Ramos Pinheiro, Claudia; Gomes de Moraes, Ivaldo; Brandão Garcia, Roberto; Antônio Hungaro Duarte, Marco; Monteiro Bramante, Clóvis; Aparecido Torres, Sérgio; Pompermaier Garlet, Gustavo; Paula Campanelli, Ana; Bernardineli, Norberti

    2013-01-01

    This study investigated the efficacy of calcium hydroxide and chlorhexidine gel for the elimination of intratubular Candida albicans (C. albicans). Human single-rooted teeth contaminated with C. albicans were treated with calcium hydroxide, 2% chlorhexidine gel, calcium hydroxide plus 2% chlorhexidine gel, or saline (0.9% sodium chloride) as a positive control. The samples obtained at depths of 0–100 and 100–200 µm from the root canal system were analyzed for C. albicans load by counting the number of colony forming units and for the percentage of viable C. albicans using fluorescence microscopy. First, the antimicrobial activity of calcium hydroxide and the 2% chlorhexidine gel was evaluated by counting the number of colony forming units. After 14 days of intracanal medication, there was a significant decrease in the number of C. albicans colony forming units at a depth of 0–100 µm with chlorhexidine treatment either with or without calcium hydroxide compared with the calcium hydroxide only treatment. However, there were no differences in the number of colony forming units at the 100–200 µm depth for any of the medications investigated. C. albicans viability was also evaluated by vital staining techniques and fluorescence microscopy analysis. Antifungal activity against C. albicans significantly increased at both depths in the chlorhexidine groups with and without calcium hydroxide compared with the groups treated with calcium hydroxide only. Treatments with only chlorhexidine or chlorhexidine in combination with calcium hydroxide were effective for elimination of C. albicans. PMID:23538639

  14. Synthesis of oxide-free aluminum nanoparticles for application to conductive film

    Science.gov (United States)

    Jong Lee, Yung; Lee, Changsoo; Lee, Hyuck Mo

    2018-02-01

    Aluminum nanoparticles are considered promising as alternatives to conventional ink materials, replacing silver and copper nanoparticles, due to their extremely low cost and low melting temperature. However, a serious obstacle to realizing their use as conductive ink materials is the oxidation of aluminum. In this research, we synthesized the oxide-free aluminum nanoparticles using catalytic decomposition and an oleic acid coating method, and these materials were applied to conductive ink for the first time. The injection time of oleic acid determines the size of the aluminum nanoparticles by forming a self-assembled monolayer on the nanoparticles instead of allowing the formation of an oxide phase. Fabricated nanoparticles were analyzed by transmission electron microscopy and x-ray photoelectron spectroscopy to verify their structural and chemical composition. In addition, conductive inks made of these nanoparticles exhibit electrical properties when they are sintered at over 300 °C in a reducing atmosphere. This result shows that aluminum nanoparticles can be used as an alternative conductive material in printed electronics and can solve the cost issues associated with noble metals.

  15. Nerve lesions following apical extrusion of non-setting calcium hydroxide: A systematic case review and report of two cases

    DEFF Research Database (Denmark)

    Olsen, Jesper Jared; Thorn, Jens Jørn; Korsgaard, Niels

    2014-01-01

    of resections in both instances. In relation to the cases presented, a systematic review of similar cases in the literature between 1980 and April 2013 was conducted which resulted in eight cases meeting the criteria outlined. As with the two presented cases, half of these eight cases showed serious adverse......We present two cases of apical extrusion of non-setting, calcium hydroxide paste which had been placed as an interappointment root canal dressing during routine endodontic treatment and which resulted in tissue necrosis of a large part of themandible, while. Surgical intervention consisted...... effects and the use of an injectable system had most often been related to apical extrusion. Consequently, great care should be taken when applying the paste into the canal system. 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved....

  16. In Situ Formation of Decavanadate-Intercalated Layered Double Hydroxide Films on AA2024 and their Anti-Corrosive Properties when Combined with Hybrid Sol Gel Films

    Directory of Open Access Journals (Sweden)

    Junsheng Wu

    2017-04-01

    Full Text Available A layered double hydroxide (LDH film was formed in situ on aluminum alloy 2024 through a urea hydrolysis method, and a decavanadate-intercalated LDH (LDH-V film fabricated through the dip coating method. The microstructural and morphological characteristics were investigated by scanning electron microscopy (SEM. The corrosion-resistant performance was analyzed by electrochemical impedance spectroscopy (EIS, scanning electrochemical microscopy (SECM, and a salt-spray test (SST.The SEM results showed that a complete and defect-free surface was formed on the LDH-VS film. The anticorrosion results revealed that the LDH-VS film had better corrosion-resistant properties than the LDH-S film, especially long-term corrosion resistance. The mechanism of corrosion protection was proposed to consist of the self-healing effect of the decavanadate intercalation and the shielding effect of the sol-gel film.

  17. Injection moulding antireflective nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger

    We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used in an inject......We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used...... in an injection moulding process, to fabricate the antireflective surfaces. The cycle-time was 35 s. The injection moulded structures had a height of 125 nm, and the visible spectrum reflectance of injection moulded black polypropylene surfaces was reduced from 4.5±0.5% to 2.5±0.5%. The gradient of the refractive...

  18. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD... Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT...of both Aluminum Hydride Cluster Anions and Boron Aluminum Hydride Cluster Anions with Oxygen: Anionic Products The anionic products of reactions

  19. LAYERED DOUBLE HYDROXIDES: NANOMATERIALS FOR APPLICATIONS IN AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Luíz Paulo Figueredo Benício

    2015-02-01

    Full Text Available The current research aims to introduce Layered Double Hydroxides (LDH as nanomaterials to be used in agriculture, with particular reference to its use as storage and slow release matrix of nutrients and agrochemicals for plant growing. Structural characteristics, main properties, synthesis methods and characterization of LDH were covered in this study. Moreover, some literature data have been reported to demonstrate their potential for storage and slow release of nitrate, phosphate, agrochemicals, besides as being used as adsorbent for the wastewater treatment. This research aims to expand, in near future, the investigation field on these materials, with application in agriculture, increasing the interface between chemistry and agronomy.

  20. A new route to copper nitrate hydroxide microcrystals

    International Nuclear Information System (INIS)

    Niu Haixia; Yang Qing; Tang Kaibin

    2006-01-01

    A solution evaporation route has been successfully developed for the growth of copper nitrate hydroxide microcrystals using copper nitrate solution as the starting material in the absence of any surfactants or templates. The products were characterized by X-ray diffraction (XRD), infrared (IR) spectrum, scanning electron microscopy (SEM) and thermogravimetric (TG) analysis measurements. Controlled experiments suggested that the reaction temperature and solution concentration played an important role on the formation of the products. A possible formation mechanism of the products was also proposed

  1. Reduction kinetics of molecular nitrogen by niobium(3) hydroxide

    International Nuclear Information System (INIS)

    Denisov, N.T.; Shuvalova, N.I.; Shilov, A.E.

    1987-01-01

    Formation kinetics of hydrazine and ammonia durng nitrogen reduction by niobium(3) hydroxide at 284.5 - 334 K in water-methanol alkaline medium is studied. It is shown that the KOH concentration growth results in the rise of the N 2 H 4 formation rate and the decrease of the NH 3 formation rate. The sequence of reactions with respect to [Nb(3)] and [OH - ], as well as the value of activation energy of hydrazine formation of (50±4 kJ/mole) are determined

  2. Membrane interactions and antimicrobial effects of layered double hydroxide nanoparticles

    DEFF Research Database (Denmark)

    Malekkhaiat Häffner, S; Nyström, L; Nordström, R

    2017-01-01

    ) on layered double hydroxide (LDH) interactions with both bacteria-mimicking and mammalian-mimicking lipid membranes. LDH binding to bacteria-mimicking membranes, extraction of anionic lipids, as well as resulting membrane destabilization, was found to increase with decreasing particle size, also translating...... into size-dependent synergistic effects with the antimicrobial peptide LL-37. Due to strong interactions with anionic lipopolysaccharide and peptidoglycan layers, direct membrane disruption of both Gram-negative and Gram-positive bacteria is suppressed. However, LDH nanoparticles cause size-dependent charge...

  3. Effectiveness of different irrigation protocols on calcium hydroxide removal from simulated immature teeth after apexification

    Directory of Open Access Journals (Sweden)

    Evren Ok

    2015-01-01

    Full Text Available Aim: To evaluate the effectiveness of different irrigation solutions and ultrasonic activation of the irrigation solutions on the removal of calcium hydroxide (Ca(OH2 from the simulated immature root canals after apexification. Materials and methods: One-hundred and one single-rooted teeth were used. The root canals were shaped with ProTaper rotary files up to F5. Simulation of roots with immature apices was carried out using size 4 Unicore drills. An injectable Ca(OH2 was injected into each root canal, and packed to the working length. Then, cotton pellets were placed over canal orifices, and apical and coronal parts of the roots were sealed with resin-modified glass ionomer cement, and light cured. Specimens were stored in distilled water for 3 months at 37°C. After 3 months, the temporary coronal seal was removed and the samples were randomly divided into: (a saline (n = 20, (b ultrasonic activation of saline (n = 20, (c sodium hypochlorite (NaOCl (n = 20, (d ultrasonic activation of NaOCl (n = 15, (e chlorhexidine digluconate (CHX (n = 20 and one positive control group (n = 3 and one negative control group (n = 3. The amount of remaining Ca(OH2 on the canal walls was measured under stereomicroscope with 30× magnification. Comparisons between groups were made by the non-parametric Kruskal-Wallis test and Dunn post-test at a significance level of p  0.05 groups. Conclusions: Irrigation solutions and ultrasonic activation of the irrigation solutions could not completely remove Ca(OH2 from the simulated immature root canals.

  4. SQL injection detection system

    OpenAIRE

    Vargonas, Vytautas

    2017-01-01

    SQL injection detection system Programmers do not always ensure security of developed systems. That is why it is important to look for solutions outside being reliant on developers. In this work SQL injection detection system is proposed. The system analyzes HTTP request parameters and detects intrusions. It is based on unsupervised machine learning. Trained by regular request data system detects outlier user parameters. Since training is not reliant on previous knowledge of SQL injections, t...

  5. The effect of magnesium hydroxide, hydromagnesite and layered double hydroxide on the heat stability and fire performance of plasticized poly(vinyl chloride)

    CSIR Research Space (South Africa)

    Molefe, DM

    2015-09-01

    Full Text Available , FJWJ (Johan) Labuschagne, Walter W Focke, Isbé van der Westhuizen and Osei Ofosu. Magnesium hydroxide derivatives as fire retardants for plasticized PVC. Journal of Fire Sciences November 2015 vol. 33 no. 6 493-510 doi: 10.1177/0734904115612501 http...://jfs.sagepub.com/content/33/6/493.abstract The effect of magnesium hydroxide, hydromagnesite and layered double hydroxide on the heat stability and fire performance of plasticized PVC Dan Matlhomola Molefe1, FJWJ (Johan) Labuschagne2, Walter W Focke2,*, Isbé van der...

  6. Joint and Soft Tissue Injections

    Science.gov (United States)

    ... Injections Joint and Soft Tissue Injections Share Print What is a joint and soft tissue injection? Joint and soft tissue injections are shots ... many injections do I need and how often? What restrictions do I have after an ... tissue injection, treatment April 1, 2004 Copyright © American Academy ...

  7. Piezoelectric Injection Systems

    Science.gov (United States)

    Mock, R.; Lubitz, K.

    The origin of direct injection can be doubtlessly attributed to Rudolf Diesel who used air assisted injection for fuel atomisation in his first self-ignition engine. Although it became apparent already at that time that direct injection leads to reduced specific fuel consumption compared to other methods of fuel injection, it was not used in passenger cars for the moment because of its disadvantageous noise generation as the requirements with regard to comfort were seen as more important than a reduced specific consumption.

  8. Aluminum induced proteome changes in tomato cotyledons

    Science.gov (United States)

    Cotyledons of tomato seedlings that germinated in a 20 µM AlK(SO4)2 solution remained chlorotic while those germinated in an aluminum free medium were normal (green) in color. Previously, we have reported the effect of aluminum toxicity on root proteome in tomato seedlings (Zhou et al. J Exp Bot, 20...

  9. Aluminum extrusion with a deformable die

    NARCIS (Netherlands)

    Assaad, W.

    2010-01-01

    Aluminum extrusion process is one of metal forming processes. In aluminum extrusion, a work-piece (billet) is pressed through a die with an opening that closely resembles a desired shape of a profile. By this process, long profiles with an enormous variety of cross-sections can be produced to

  10. Scientific Background for Processing of Aluminum Waste

    Science.gov (United States)

    Kononchuk, Olga; Alekseev, Alexey; Zubkova, Olga; Udovitsky, Vladimir

    2017-11-01

    Changing the source of raw materials for producing aluminum and the emergence of a huge number of secondary alumina waste (foundry slag, sludge, spent catalysts, mineral parts of coal and others that are formed in various industrial enterprises) require the creation of scientific and theoretical foundations for their processing. In this paper, the aluminum alloys (GOST 4784-97) are used as an aluminum raw material component, containing the aluminum component produced as chips in the machine-building enterprises. The aluminum waste is a whole range of metallic aluminum alloys including elements: magnesium, copper, silica, zinc and iron. Analysis of the aluminum waste A1- Zn-Cu-Si-Fe shows that depending on the content of the metal the dissolution process of an aluminum alloy should be treated as the result of the chemical interaction of the metal with an alkaline solution. It is necessary to consider the behavior of the main components of alloys in an alkaline solution as applied to the system Na2O - Al2O3 - SiO2 - CO2 - H2O.

  11. Aluminum low temperature smelting cell metal collection

    Science.gov (United States)

    Beck, Theodore R.; Brown, Craig W.

    2002-07-16

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

  12. Plastic-aluminum composites in transportation infrastructure.

    Science.gov (United States)

    2017-03-01

    This report presents an initial investigation of the mechanics of I-beams developed with plastic-aluminum composite technology. Plastic-aluminum composites in structural beam/frame/truss elements are a relatively new concept that has seen little, if ...

  13. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    Science.gov (United States)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  14. Synthesis and Enhanced Corrosion Protection Performance of Reduced Graphene Oxide Nanosheet/ZnAl Layered Double Hydroxide Composite Films by Hydrothermal Continuous Flow Method.

    Science.gov (United States)

    Luo, Xiaohu; Yuan, Song; Pan, Xinyu; Zhang, Caixia; Du, Shuo; Liu, Yali

    2017-05-31

    Prevention of water, oxygen, and chloride ions contained in hydrotalcite interlayers from diffusing through the layered double hydroxides (LDH) is of crucial importance in corrosion protection. In this work, a hybrid composed of reduced graphene oxide (RGO) nanosheets/Zn 2+ /Al 3+ layered double hydroxide (RGO/ZnAl-LDH) composite films on the surface of 6N01 aluminum (Al) alloy was successfully synthesized by a novel and facile hydrothermal continuous flow method, which enabled direct growth of the composite on the surface of the Al alloy substrate. The structure and morphology of the RGO/ZnAl-LDH composite films were fully characterized. Based on electrochemical measurements in a NaCl solution, the RGO/ZnAl-LDH composite film significantly enhanced the corrosion protection, as compared with the ZnAl-LDH film. The RGO/ZnAl-LDH composite film could maintain an outstanding corrosion resistance after 7 days immersion in a high concentration of NaCl solution (i.e., 5.0 wt %). The enhanced corrosion resistance was attributed to the barrier effect on diffusion of water, oxygen, and chloride ions by the RGO contained in the RGO/ZnAl-LDH composite films.

  15. Proposal of recycling system for waste aluminum

    Directory of Open Access Journals (Sweden)

    Š. Valenčík

    2008-04-01

    Full Text Available Introduced work is focused on waste aluminum recycling process with objective to propose complex production system for recovering of aluminum and some aluminum alloys. Solution is supported by extended analysis concerning purpose, basis and system sequences for recyclation. Based on that, sources, possibilities and conditions for recycling are formed. This has been used in proposal of manufacturing system. The principle is the structural proposal of manufacturing system, which does not only differentiate the stage of aluminum melting process, but also related stages as gross separation, sizing, containerisation and batching, palletisation, stacking and some related operations. Production system respects technological specifications, requirements for rationalisation of manufacturing systems, technical and economical feasibility conditions and is considered in lower automation level. However production system solves complex problem of recycling of some types of aluminum, it improves flexibility, production, quality (melting by high enforcements and in protective atmosphere and extention of production (final products production.

  16. Aluminum-based metal-air batteries

    Science.gov (United States)

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  17. Drug: D04393 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D04393 Mixture ... Drug Aluminum hydroxide, dried - magnesium hydroxide mixt; Aluminum... hydroxide - magnesium hydroxide mixt; Maalox (TN); Sakloft (TN) (Aluminum hydroxide, dried [DR:D02416] | Aluminum...9 ... Use of granules for suspension: Aluminium hydroxide, dride Use of liquid: Aluminum hydroxide ... PubChem: 17398090 ...

  18. Experimental and numerical analysis of the combustor for a cogeneration system based on the aluminum/water reaction

    International Nuclear Information System (INIS)

    Milani, Massimo; Montorsi, Luca; Paltrinieri, Fabrizio; Stefani, Matteo

    2014-01-01

    Highlights: • Aluminum reaction with water is studied as a technology for hydrogen production. • A test rig is developed for the analysis of aluminum/water reaction. • The system is the core component of a cogeneration plant for hydrogen/power production. • The interaction of liquid aluminum jet and water steam stream is investigated. • The main capabilities of the injection system are assessed. - Abstract: The paper focuses on the design of the experimental apparatus aimed at analyzing the performance of the combustion chamber of a cogeneration system based on the reaction of liquid aluminum and water steam. The cogeneration system exploits the heat released by the oxidation of aluminum with water for super-heating the vapor of a steam cycle and simultaneously producing hydrogen. The only by-product is alumina, which in a closed loop can be recycled back and transformed again into aluminum. Therefore, aluminum is used as an energy carrier to transport the energy from the alumina reduction plant to the location of the proposed system. The water is also used in a closed loop since the amount of water produced employing the hydrogen obtained by the proposed system corresponds to the oxidizing water for the Al/H 2 O reaction. This study investigates the combustor where the liquid aluminum–steam reaction takes place. In particular, the design of the combustion chamber and the interaction between the liquid aluminum jet and the water steam flow are evaluated using a numerical and an experimental approach. The test rig is specifically designed for the analysis of the liquid aluminum injection in a slightly super-heated steam stream. The first experiments are carried out to verify the correct behavior of the test rig. Thermography is employed to qualitatively assess the steam entrainment of the liquid aluminum jet. Finally, the experimental measurements are compared with the multi-dimension multi-phase flow simulations in order to estimate the influence of

  19. Ions in water: The microscopic structure of concentrated hydroxide solutions

    Science.gov (United States)

    Imberti, S.; Botti, A.; Bruni, F.; Cappa, G.; Ricci, M. A.; Soper, A. K.

    2005-05-01

    Neutron-diffraction data on aqueous solutions of hydroxides, at solute concentrations ranging from 1 solute per 12 water molecules to 1 solute per 3 water molecules, are analyzed by means of a Monte Carlo simulation (empirical potential structure refinement), in order to determine the hydration shell of the OH- in the presence of the smaller alkali metal ions. It is demonstrated that the symmetry argument between H+ and OH- cannot be used, at least in the liquid phase at such high concentrations, for determining the hydroxide hydration shell. Water molecules in the hydration shell of K+ orient their dipole moment at about 45° from the K+-water oxygen director, instead of radially as in the case of the Li+ and Na+ hydration shells. The K+-water oxygen radial distribution function shows a shallower first minimum compared to the other cation-water oxygen functions. The influence of the solutes on the water-water radial distribution functions is shown to have an effect on the water structure equivalent to an increase in the pressure of the water, depending on both ion concentration and ionic radius. The changes of the water structure in the presence of charged solutes and the differences among the hydration shells of the different cations are used to present a qualitative explanation of the observed cation mobility.

  20. Electrochemical Recovery of Sodium Hydroxide from Alkaline Salt Solution

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T. [Westinghouse Savannah River Company, AIKEN, SC (United States); Edwards, T.B.

    1996-10-01

    A statistically designed set of tests determined the effects of current density, temperature, and the concentrations of nitrate/nitrite, hydroxide and aluminate on the recovery of sodium as sodium hydroxide (caustic) from solutions simulating those produced from the Savannah River Site (SRS) In-Tank Precipitation process. These tests included low nitrate and nitrite concentrations which would be produced by electrolytic nitrate/nitrite destruction. The tests used a two compartment electrochemical cell with a Nafion Type 324 ion-exchange membrane. Caustic was successfully recovered from the waste solutions. Evaluation of the testing results indicated that the transport of sodium across the membrane was not significantly affected by any of the varied parameters. The observed variance in the sodium flux is attributed to experimental errors and variations in the performance characteristics of individual pieces of the organic-based Nafion membrane.Additional testing is recommended to determine the maximum current density, to evaluate the chemical durability of the organic membrane as a function of current density and to compare the durability and performance characteristics of the organic-based Nafion membrane with that of other commercially available organic membranes and the inorganic class of membranes under development by Ceramatec and PNNL.

  1. Spin injection, accumulation, and precession in a mesoscopic nonmagnetic metal island

    NARCIS (Netherlands)

    Zaffalon, M; van Wees, BJ

    We experimentally study spin accumulation in an aluminum island with all dimensions smaller than the spin-relaxation length, so that the spin imbalance throughout the island is uniform. Electrical injection and detection of the spin accumulation are carried out in a four-terminal geometry by means

  2. Electron injection in microtron

    International Nuclear Information System (INIS)

    Axinescu, S.

    1977-01-01

    A review of the methods of injecting electrons in the microtron is presented. A special attention is paid to efficient injection systems developed by Wernholm and Kapitza. A comparison of advantages and disadvantages of both systems is made in relation to the purpose of the microtron. (author)

  3. Glenohumeral Joint Injections

    Science.gov (United States)

    Gross, Christopher; Dhawan, Aman; Harwood, Daniel; Gochanour, Eric; Romeo, Anthony

    2013-01-01

    Context: Intra-articular injections into the glenohumeral joint are commonly performed by musculoskeletal providers, including orthopaedic surgeons, family medicine physicians, rheumatologists, and physician assistants. Despite their frequent use, there is little guidance for injectable treatments to the glenohumeral joint for conditions such as osteoarthritis, adhesive capsulitis, and rheumatoid arthritis. Evidence Acquisition: We performed a comprehensive review of the available literature on glenohumeral injections to help clarify the current evidence-based practice and identify deficits in our understanding. We searched MEDLINE (1948 to December 2011 [week 1]) and EMBASE (1980 to 2011 [week 49]) using various permutations of intra-articular injections AND (corticosteroid OR hyaluronic acid) and (adhesive capsulitis OR arthritis). Results: We identified 1 and 7 studies that investigated intra-articular corticosteroid injections for the treatment of osteoarthritis and adhesive capsulitis, respectively. Two and 3 studies investigated the use of hyaluronic acid in osteoarthritis and adhesive capsulitis, respectively. One study compared corticosteroids and hyaluronic acid injections in the treatment of osteoarthritis, and another discussed adhesive capsulitis. Conclusion: Based on existing studies and their level of evidence, there is only expert opinion to guide corticosteroid injection for osteoarthritis as well as hyaluronic acid injection for osteoarthritis and adhesive capsulitis. PMID:24427384

  4. Tolerability of hypertonic injectables.

    Science.gov (United States)

    Wang, Wei

    2015-07-25

    Injectable drug products are ideally developed as isotonic solutions. Often, hypertonic injectables may have to be marketed for a variety of reasons such as product solubilization and stabilization. A key concern during product formulation development is the local and systemic tolerability of hypertonic products upon injection. This report reviews and discusses the tolerability in terms of local discomfort, irritation, sensation of heat and pain, along with other observed side effects of hypertonicity in both in-vitro systems and in-vivo animal and human models. These side effects clearly depend on the degree of hypertonicity. The sensation of pain among different injection routes seems to follow this order: intramuscular>subcutaneous>intravenous or intravascular. It is recommended that the upper osmolality limit should be generally controlled under 600 mOsm/kg for drug products intended for intramuscular or subcutaneous injection. For drug products intended for intravenous or intravascular injection, the recommended upper limit should be generally controlled under 1,000 mOsm/kg for small-volume injections (≤ 100 mL) and 500 mOsm/kg for large-volume injections (>100mL). Several options are available for minimization of hypertonicity-induced pain upon product administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Trace analysis of mefenamic acid in human serum and pharmaceutical wastewater samples after pre-concentration with Ni–Al layered double hydroxide nano-particles

    Directory of Open Access Journals (Sweden)

    Hossein Abdolmohammad-Zadeh

    2014-10-01

    Full Text Available In this work, the nickel–aluminum layered double hydroxide (Ni–Al LDH with nitrate interlayer anion was synthesized and used as a solid phase extraction sorbent for the selective separation and pre-concentration of mefenamic acid prior to quantification by UV detection at λmax=286 nm. Extraction procedure is based on the adsorption of mefenamate anions on the Ni–Al(NO3− LDH and/or their exchange with LDH interlayer NO3− anions. The effects of several parameters such as cations and interlayer anions type in LDH structure, pH, sample flow rate, elution conditions, amount of nano-sorbent and co-existing ions on the extraction were investigated and optimized. Under the optimum conditions, the calibration graph was linear within the range of 2–1000 µg/L with a correlation coefficient of 0.9995. The limit of detection and relative standard deviation were 0.6 µg/L and 0.84% (30 µg/L, n=6, respectively. The presented method was successfully applied to determine of mefenamic acid in human serum and pharmaceutical wastewater samples. Keywords: Mefenamic acid, Solid phase extraction, Nano-sorbent, Nickel-aluminum layered double hydroxide, Ultraviolet spectroscopy

  6. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bortolaz de Oliveira, Henrique; Wypych, Fernando, E-mail: wypych@ufpr.br

    2016-11-15

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO{sub 4}{sup 2−}/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO{sub 4}{sup 2−}/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.

  7. Assessment of ion diffusion from a calcium hydroxide-propolis paste through dentin

    Directory of Open Access Journals (Sweden)

    Janaina Corazza Montero

    2012-08-01

    Full Text Available This study evaluated the ability of ions from a non-alcoholic calcium hydroxide-propolis paste to diffuse through dentinal tubules. Thirty-six single-rooted bovine teeth were used. The tooth crowns were removed, and the root canals were instrumented and divided into 3 groups: Group 1 - calcium hydroxide-propylene glycol paste; Group 2 - calcium hydroxide-saline solution paste; Group 3 - calcium hydroxide-propolis paste. After the root canal dressings were applied, the teeth were sealed and placed in containers with deionized water. The pH of the water was measured after 3, 24, 72 and 168 hours to determine the diffusion of calcium hydroxide ions through the dentinal tubules. All of the pastes studied promoted the diffusion of calcium hydroxide ions through the dentinal tubules. Associating propolis to calcium hydroxide resulted in a pH increase, which occurred with greater intensity after 72 hours. The calcium hydroxide-propolis paste was able to diffuse in dentin.

  8. Preparation of plate-shape nano-magnesium hydroxide from asbestos tailings

    International Nuclear Information System (INIS)

    Du Gaoxiang; Zheng Shuilin

    2009-01-01

    To prepare magnesium hydroxide is one of the effective methods to the comprehensive utilization of asbestos tailings. Nano-scale magnesium hydroxide was prepared and mechanisms of in-situ surface modification were characterized in the paper. Process conditions of preparation of magnesium hydroxide from purified hydrochloric acid leachate of asbestos tailings were optimized and in-situ surface modification of the product was carried out. Results showed that optimum process conditions for preparing nano-scale magnesium hydroxide were as follows: initial concentration of Mg 2+ in the leachate was 22.75g/L, precipitant was NaOH solution (mass concentration 20%), reaction temperature was 50 deg. C, and reaction time was 5min. The diameter and thickness of the plate nano-scale magnesium hydroxide powder prepared under optimal conditions were about 100 nm and 10 nm, respectively. However, particle agglomeration was obvious, the particle size increased to micron-grade. Dispersity of the magnesium hydroxide powder could be elevated by in-situ modification by silane FR-693, titanate YB-502 and polyethylene glycol and optimum dosages were 1.5%, 1.5% and 0.75% of the mass of magnesium hydroxide, respectively. All of the modifiers adsorbed chemically on surfaces of magnesium hydroxide particles, among which Si-O-Mg bonds formed among silane FR-693 and the particle surfaces and Ti-O-Mg among titanate YB-502 and the surfaces.

  9. Synthesis and characterization of laurate-intercalated Mg–Al layered double hydroxide prepared by coprecipitation

    DEFF Research Database (Denmark)

    Gerds, Nathalie Christiane; Katiyar, Vimal; Koch, Christian Bender

    2012-01-01

    Effective utilization of layered double hydroxides (LDH) for industrial applications requires the synthesis of pure and well-defined LDH phases. In the present study, dodecanoate (laurate) anions were intercalated into Mg–Al-layered double hydroxide (LDH-C12) by coprecipitation in the presence...

  10. Structural perturbation of diphtheria toxoid upon adsorption to aluminium hydroxide adjuvant

    NARCIS (Netherlands)

    Regnier, M.; Metz, B.; Tilstra, W.; Hendriksen, C.; Jiskoot, W.; Norde, W.; Kersten, G.

    2012-01-01

    Aluminium-containing adjuvants are often used to enhance the potency of vaccines. In the present work we studied whether adsorption of diphtheria toxoid to colloidal aluminium hydroxide induces conformational changes of the antigen. Diphtheria toxoid has a high affinity for the aluminium hydroxide

  11. A solid state NMR study of Layered double hydroxides intercalated with para-amino salicylate, a tuberculosis drug

    DEFF Research Database (Denmark)

    Jensen, Nicholai Daugaard; Bjerring, Morten; Nielsen, Ulla Gro

    2016-01-01

    Para-amino salicylate (PAS), a tubercolosis drug, was intercalated in three different layered double hydroxides (MgAl, ZnAl, and CaAl-LDH) and the samples were studied by multi-nuclear (1H, 13C, and 27Al) solid state NMR (SSNMR) spectroscopy in combination with powder X-ray diffraction (PXRD....... Moreover, 13C MAS NMR and infra-red spectroscopy show that PAS did not decompose during synthesis. Large amounts (20-41%) of amorphous aluminum impurities were detected in the structure using 27Al single pulse and 3QMAS NMR spectra, which in combination with 1H single and double quantum experiments also...... showed that the M(II):Al ratio was higher than predicted from the bulk metal composition of MgAl-PAS and ZnAl-PAS. Moreover, the first high-resolution 1H SSNMR spectra of a CaAl LDH is reported and assigned using 1H single and double quantum experiments in combination with 27Al{1H} HETCOR....

  12. Process for anodizing aluminum foil

    International Nuclear Information System (INIS)

    Ball, J.A.; Scott, J.W.

    1984-01-01

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80 0 C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V

  13. Superhydrophobic coating deposited directly on aluminum

    International Nuclear Information System (INIS)

    Escobar, Ana M.; Llorca-Isern, Nuria

    2014-01-01

    This study develops an alternative method for enhancing superhydrophobicity on aluminum surfaces with an amphiphilic reagent such as the dodecanoic acid. The goal is to induce superhydrophobicity directly through a simple process on pure (99.9 wt%) commercial aluminum. The initial surface activation leading to the formation of the superhydrophobic coating is studied using confocal microscopy. Superhydrophobic behavior is analyzed by contact angle measurements, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The highest contact angle (approaching 153°) was obtained after forming hierarchical structures with a particular roughness obtained by grinding and polishing microgrooves on the aluminum surface together with the simultaneous action of HCl and dodecanoic acid. The results also showed that after immersion in the ethanol-acidic-fatty acid solutions, they reacted chemically through the action of the fatty acid, on the aluminum surface. The mechanism is analyzed by TOF-SIMS and XPS in order to determine the molecules involved in the reaction. The TOF-SIMS analysis revealed that the metal and its oxides seem to be necessary, and that free-aluminum is anchored to the fatty acid molecules and to the alumina molecules present in the medium. Consequently, both metallic aluminum and aluminum oxides are necessary in order to form the compound responsible for superhydrophobicity.

  14. Alkali metal and alkali metal hydroxide intercalates of the layered transition metal disulfides

    International Nuclear Information System (INIS)

    Kanzaki, Y.; Konuma, M.; Matsumoto, O.

    1981-01-01

    The intercalation reaction of some layered transition metal disulfides with alkali metals, alkali metal hydroxides, and tetraalkylammonium hydroxides were investigated. The alkali metal intercalates were prepared in the respective metal-hexamethylphosphoric triamide solutions in vaccuo, and the hydroxide intercalates in aqueous hydroxide solutions. According to the intercalation reaction, the c-lattice parameter was increased, and the increase indicated the expansion of the interlayer distance. In the case of alkali metal intercalates, the expansion of the interlayer distance increased continuously, corresponding to the atomic radius of the alkali metal. On the other hand, the hydroxide intercalates showed discrete expansion corresponding to the effective ionic radius of the intercalated cation. All intercalates of TaS 2 amd NbS 2 were superconductors. The expansion of the interlayer distance tended to increase the superconducting transition temperature in the intercalates of TaS 2 and vice versa in those of NbS 2 . (orig.)

  15. Lead exposure from aluminum cookware in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Kuepouo, Gilbert [Research and Education Centre for Development (CREPD), Yaounde (Cameroon); Corbin, Rebecca W. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Gottesfeld, Perry, E-mail: pgottesfeld@okinternational.org [Occupational Knowledge International, San Francisco, CA (United States)

    2014-10-15

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  16. Decontamination and reuse of ORGDP aluminum scrap

    International Nuclear Information System (INIS)

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

    1996-12-01

    The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF 6 . This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible

  17. Lead exposure from aluminum cookware in Cameroon

    International Nuclear Information System (INIS)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A.; Kuepouo, Gilbert; Corbin, Rebecca W.; Gottesfeld, Perry

    2014-01-01

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  18. Mechanochemical changes in mixture of magnesium and aluminium hydroxides

    Directory of Open Access Journals (Sweden)

    Luxová Mária

    2000-09-01

    Full Text Available Complex oxides with the spinel structure often called “spinels” belong to the group of strategic materials which are used in the wide area of modern technologies. They exhibit excellent magnetic, refractory, semiconducting, catalytic and sorption properties. Spinels based on magnesium aluminate (MA spinels are used for the preparation of refractory ceramic materials and bricks. Due to its good properties MA spinel is predestinated for special applications in electronics.Several methods and precursors for the synthesis of MA spinel have been studied experimentally. The conventional process of MA spinel preparation based on the high temperature solid state reaction of precursors is connected with the difficulty to obtain the high spinel phase purity required for its special applications. From the viewpoint of final material properties and of intensification of solid state reactions, the non-standard mechanochemical techniques are suitable.In the paper, results of the mechanochemical modification of the mixture of crystalline hydroxide precursors caused by the high-energy milling and subsequent heating in the temperature range 300-1500 °C are presented.Mixtures of brucite and gibbsite in the molar ratio 1:2 were submitted to grinding in a planetary mill using the corundum chamber for various milling times (0.5-12 hours. The specific surface area of the milled samples was determined by the BET method. Changes in the structure of mechanosynthesized products and the evolution of the spinel phase during the subsequent calcination of both mechanosynthesized samples and reference homogenised mixtures were monitored by the X-ray diffraction analysis and IR spectroscopy. The degree of conversion of hydroxide mixture to the MA spinel was determined by chelatometry.During the early stage of grinding (up to 1 hour, a considerable refinement of hydroxide mixture occurs. With the increasing grinding time, amorphisation of structure as well as a gradual

  19. Sterically screened halogenocyclobutanones. I. Transformations of cyclopropyl-substituted 2,2-dichlorocyclobutanones under the influence of potassium hydroxide

    International Nuclear Information System (INIS)

    Donskaya, N.A.; Bessmertnykh, A.G.; Drobysh, V.A.; Shabarov, Yu.S.

    1987-01-01

    The reaction of 2,2-dichloro-3-cyclopropylcyclobutanones with potassium hydroxide was studied. The direction of the reaction depends on the concentration of the potassium hydroxide; with a 2% solution of potassium hydroxide 4,4-dichlorobutyric acids are formed with yields of up to 80%, and with a 15% solution of potassium hydroxide 5-hydroxydihydro-2-furanones are formed with yields of up to 80%. Proposals are made about the mechanism of formation of 5-hydroxydihydro-2-furanones

  20. Spray Rolling Aluminum Strip for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kevin M. McHugh; Y. Lin; Y. Zhou; E. J. Lavernia; J.-P. Delplanque; S. B. Johnson

    2005-02-01

    Spray rolling is a novel strip casting technology in which molten aluminum alloy is atomized and deposited into the roll gap of mill rolls to produce aluminum strip. A combined experimental/modeling approach has been followed in developing this technology with active participation from industry. The feasibility of this technology has been demonstrated at the laboratory scale and it is currently being scaled-up. This paper provides an overview of the process and compares the microstructure and properties of spray-rolled 2124 aluminum alloy with commercial ingot-processed material

  1. Aluminum Hydride Catalyzed Hydroboration of Alkynes.

    Science.gov (United States)

    Bismuto, Alessandro; Thomas, Stephen P; Cowley, Michael J

    2016-12-05

    An aluminum-catalyzed hydroboration of alkynes using either the commercially available aluminum hydride DIBAL-H or bench-stable Et 3 Al⋅DABCO as the catalyst and H-Bpin as both the boron reagent and stoichiometric hydride source has been developed. Mechanistic studies revealed a unique mode of reactivity in which the reaction is proposed to proceed through hydroalumination and σ-bond metathesis between the resultant alkenyl aluminum species and HBpin, which acts to drive turnover of the catalytic cycle. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  3. HRR Field in an Aluminum SEN Specimen.

    Science.gov (United States)

    1989-04-01

    edge notched, 2024-T3, 2024-0, and 5052 -H32 aluminum alloy specimens subjected to uniaxial and biaxial loadings [4,5,6]. One of the objectives of this...Contract N00014-89-J-1276 Technical Report No. UWA/DME/TR-89/63 00 HRR FIELD IN AN ALUMINUM SEN SPECIMENrkft Ln1 0 by M.S. Dadkhah and A.S. Kobayashi...Washington ~ dY~LI3OI k t*a U1PA09Q111 89 02Ieja II A I 6 I HRR FIELD IN AN ALUMINUM SEN SPECIMEN Mahyar Dadkhah ° and Albert S. Kobayashi** ABSTRACT Moire

  4. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its... the aluminum cargo tank must meet the steel structural standards of the American Bureau of Shipping...

  5. 49 CFR 229.51 - Aluminum main reservoirs.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Aluminum main reservoirs. 229.51 Section 229.51... Aluminum main reservoirs. (a) Aluminum main reservoirs used on locomotives shall be designed and fabricated as follows: (1) The heads and shell shall be made of Aluminum Association Alloy No. 5083-0, produced...

  6. 49 CFR 178.505 - Standards for aluminum drums.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for aluminum drums. 178.505 Section 178... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.505 Standards for aluminum drums. (a) The following are the identification codes for aluminum drums: (1) 1B1 for a non-removable head aluminum drum...

  7. Formulation and method for preparing gels comprising hydrous aluminum oxide

    Science.gov (United States)

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  8. THE RHIC INJECTION SYSTEM.

    Energy Technology Data Exchange (ETDEWEB)

    FISCHER,W.; GLENN,J.W.; MACKAY,W.W.; PTITSIN,V.; ROBINSON,T.G.; TSOUPAS,N.

    1999-03-29

    The RHIC injection system has to transport beam from the AGS-to-RHIC transfer line onto the closed orbits of the RHIC Blue and Yellow rings. This task can be divided into three problems. First, the beam has to be injected into either ring. Second, once injected the beam needs to be transported around the ring for one turn. Third, the orbit must be closed and coherent beam oscillations around the closed orbit should be minimized. We describe our solutions for these problems and report on system tests conducted during the RHIC Sextant test performed in 1997. The system will be fully commissioned in 1999.

  9. A simple aluminum gasket for use with both stainless steel and aluminum flanges

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R.A.

    1991-01-01

    A technique has been developed for making aluminum wire seal gaskets of various sizes and shapes for use with both stainless steel and aluminum alloy flanges. The gasket material used is 0.9999 pure aluminum, drawn to a diameter of 3 mm. This material can be easily welded and formed into various shapes. A single gasket has been successfully used up to five times without baking. The largest gasket tested to date is 3.5 m long and was used in the shape of a parallelogram. Previous use of aluminum wire gaskets, including results for bakeout at temperatures from 20 to 660{degree}C, is reviewed. A search of the literature indicates that this is the first reported use of aluminum wire gaskets for aluminum alloy flanges. The technique is described in detail, and the results are summarized. 11 refs., 4 figs.

  10. A simple aluminum gasket for use with both stainless steel and aluminum flanges

    International Nuclear Information System (INIS)

    Langley, R.A.

    1991-01-01

    A technique has been developed for making aluminum wire seal gaskets of various sizes and shapes for use with both stainless steel and aluminum alloy flanges. The gasket material used is 0.9999 pure aluminum, drawn to a diameter of 3 mm. This material can be easily welded and formed into various shapes. A single gasket has been successfully used up to five times without baking. The largest gasket tested to date is 3.5 m long and was used in the shape of a parallelogram. Previous use of aluminum wire gaskets, including results for bakeout at temperatures from 20 to 660 degree C, is reviewed. A search of the literature indicates that this is the first reported use of aluminum wire gaskets for aluminum alloy flanges. The technique is described in detail, and the results are summarized. 11 refs., 4 figs

  11. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Drochioiu, Gabi; Ion, Laura [Alexandru Ioan Cuza University of Iasi, 11 Carol I, Iasi 700506 (Romania); Murariu, Manuela; Habasescu, Laura [Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487 (Romania)

    2014-10-06

    An elevation in the concentration of heavy metal ions in Alzheimer’s disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1–3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloid-β peptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals.

  12. Dgroup: DG01954 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available m silicate ... D03271 ... Magnesium trisilicate (USP) ... D04839 ... Magnesium silicate (JP17/NF) DG01680 ... Aluminum compounds ... D02416 ... Aluminum... hydroxide (USP); Aluminum hydroxide, dried (USP); Dried a...luminum hydroxide gel (JP17); Dried aluminum hydroxide gel fine granules (JP17) ... D02807 ... Algeldrate (USAN/INN) ... D02862 ... Aluminum...odium bicarbonate (JP17/USP) ... D03236 ... Synthetic aluminum silicate (JP17); Aluminum... silicate, synthetic (JAN) ... D04393 ... Aluminum hydroxide, dried - magnesium hydroxide mixt ... D02844 ... Aluminum

  13. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...

  14. Extended development of a sodium hydroxide thermal energy storage module

    Science.gov (United States)

    Rice, R. E.; Rowny, P. E.; Cohen, B. M.

    1980-09-01

    The post-test evaluation of a single heat exchanger sodium hydroxide thermal energy storage module for use in solar electric generation is reported. Chemical analyses of the storage medium used in the experimental model are presented. The experimental verification of the module performance using an alternate heat transfer fluid, Caloria HT-43, is described. Based on these results, a design analysis of a dual heat exchanger concept within the storage module is presented. A computer model and a reference design for the dual system (storage working fluid/power cycle working fluid) were completed. The dual system is estimated to have a capital cost of approximately one half that of the single heat exchanger concept.

  15. X-ray spectral analysis of niobium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Khabeev, I.A.; Belkina, V.A.; Makarova, R.V.; Mel' nikova, R.A.; Smagunova, A.N.

    1986-02-01

    The authors have derived an x-ray method of determining Ta/sub 2/O/sub 5/, TiO/sub 2/, Fe/sub 2/O/sub 3/, Nb/sub 2/O/sub 5/, C1 and SiO2 with a KRF-18 quantometer. The method should provide accuracy in determining these elements characterized by relative derivations. The main components of niobium hydroxide were ground for improved determination. The method allows one to analyze a sample in 30 min. In a six hour working day, an assistant can analyze up to 25 samples. The time required for one sample in the chemical method is about 30 hours.

  16. Surface modification and characterization of magnesium hydroxide sulfate hydrate nanowhiskers

    Energy Technology Data Exchange (ETDEWEB)

    Gao Chuanhui [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Li Xianguo, E-mail: chuanhuigao@foxmail.com [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Feng Lijuan; Lu Shaoyan; Liu Jinyan [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China)

    2010-03-01

    In order to enhance the compatibility with plastic polymers, magnesium hydroxide sulfate hydrate (MHSH) nanowhiskers were modified through grafting methyl methacrylate (MMA) on the surface of the nanowhiskers by emulsion polymerization. The influences of the reaction time, MMA monomer content, adding speed of monomer and the reaction temperature on the grafting ratio were investigated. Thermogravimetry (TG), Fourier transform infrared (FT-IR) spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray (EDX) spectroscopy and surface contact angle measurement were used to characterize the effect of surface modification. The results showed that the MHSH nanowhiskers were uniformly coated by polymethyl methacrylate (PMMA), and a well-defined core-shell hybrid structure of MHSH/PMMA was obtained. The surface contact angle of the hybrid whiskers increased to 87.32 deg. from 12.71 deg. and the whiskers surface was changed from hydrophilic to lipophilic.

  17. Vibrational and orientational dynamics of water in aqueous hydroxide solutions.

    Science.gov (United States)

    Hunger, Johannes; Liu, Liyuan; Tielrooij, Klaas-Jan; Bonn, Mischa; Bakker, Huib

    2011-09-28

    We report the vibrational and orientational dynamics of water molecules in isotopically diluted NaOH and NaOD solutions using polarization-resolved femtosecond vibrational spectroscopy and terahertz time-domain dielectric relaxation measurements. We observe a speed-up of the vibrational relaxation of the O-D stretching vibration of HDO molecules outside the first hydration shell of OH(-) from 1.7 ± 0.2 ps for neat water to 1.0 ± 0.2 ps for a solution of 5 M NaOH in HDO:H(2)O. For the O-H vibration of HDO molecules outside the first hydration shell of OD(-), we observe a similar speed-up from 750 ± 50 fs to 600 ± 50 fs for a solution of 6 M NaOD in HDO:D(2)O. The acceleration of the decay is assigned to fluctuations in the energy levels of the HDO molecules due to charge transfer events and charge fluctuations. The reorientation dynamics of water molecules outside the first hydration shell are observed to show the same time constant of 2.5 ± 0.2 ps as in bulk liquid water, indicating that there is no long range effect of the hydroxide ion on the hydrogen-bond structure of liquid water. The terahertz dielectric relaxation experiments show that the transfer of the hydroxide ion through liquid water involves the simultaneous motion of ~7 surrounding water molecules, considerably less than previously reported for the proton. © 2011 American Institute of Physics

  18. Altering surface characteristics of polypropylene mesh via sodium hydroxide treatment.

    Science.gov (United States)

    Regis, Shawn; Jassal, Manisha; Mukherjee, Nilay; Bayon, Yves; Scarborough, Nelson; Bhowmick, Sankha

    2012-05-01

    Incisional hernias represent a serious and common complication following laparotomy. The use of synthetic (e.g. polypropylene) meshes to aid repair of these hernias has considerably reduced recurrence rates. While polypropylene is biocompatible and has a long successful clinical history in treating hernias and preventing reherniation, this material may suffer some limitations, particularly in challenging patients at risk of wound failure due to, for example, an exaggerated inflammation reaction, delayed wound healing, and infection. Surface modification of the polypropylene mesh without sacrificing its mechanical properties, critical for hernia repair, represents one way to begin to address these clinical complications. Our hypothesis is treatment of a proprietary polypropylene mesh with sodium hydroxide (NaOH) will increase in vitro NIH/3T3 cell attachment, predictive of earlier and improved cell colonization and tissue integration of polypropylene materials. Our goal is to achieve this altered surface functionality via enhanced removal of chemicals/oils used during material synthesis without compromising the mechanical properties of the mesh. We found that NaOH treatment does not appear to compromise the mechanical strength of the material, despite roughly a 10% decrease in fiber diameter. The treatment increases in vitro NIH/3T3 cell attachment within the first 72 h and this effect is sustained up to 7 days in vitro. This research demonstrates that sodium hydroxide treatment is an efficient way to modify the surface of polypropylene hernia meshes without losing the mechanical integrity of the material. This simple procedure could also allow the attachment of a variety of biomolecules to the polypropylene mesh that may aid in reducing the complications associated with polypropylene meshes today. Copyright © 2012 Wiley Periodicals, Inc.

  19. Oxaliplatin-Induced Peripheral Neuropathy via TRPA1 Stimulation in Mice Dorsal Root Ganglion Is Correlated with Aluminum Accumulation

    Science.gov (United States)

    Roh, Kangsan; Kil, Eui-Joon; Lee, Minji; Auh, Chung-Kyun; Lee, Myung-Ah; Yeom, Chang-Hwan; Lee, Sukchan

    2015-01-01

    Oxaliplatin is a platinum-based anticancer drug used to treat metastatic colorectal, breast, and lung cancers. While oxaliplatin kills cancer cells effectively, it exhibits several side effects of varying severity. Neuropathic pain is commonly experienced during treatment with oxaliplatin. Patients describe symptoms of paresthesias or dysesthesias that are triggered by cold (acute neuropathy), or as abnormal sensory or motor function (chronic neuropathy). In particular, we found that aluminum levels were relatively high in some cancer patients suffering from neuropathic pain based on clinical observations. Based on these findings, we hypothesized that aluminum accumulation in the dorsal root ganglion (DRG) in the course of oxaliplatin treatment exacerbates neuropathic pain. In mice injected with oxaliplatin (three cycles of 3 mg/kg i.p. daily for 5 days, followed by 5 days of rest), we detected cold allodynia using the acetone test, but not heat hyperalgesia using a hot plate. However, co-treatment with aluminum chloride (AlCl3∙6H2O; 7 mg/kg i.p. for 14 days: equivalent 0.78 mg/kg of elemental Al) and oxaliplatin (1 cycle of 3 mg/kg i.p. daily for 5 days, followed by 5 days of rest) synergistically induced cold allodynia as well as increased TRPAl mRNA and protein expression. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis showed a significant increase in aluminum concentrations in the DRG of mice treated with aluminum chloride and oxaliplatin compared to aluminum chloride alone. Similarly, in a mouse induced-tumor model, aluminum concentrations were increased in DRG tissue and tumor cells after oxaliplatin treatment. Taken together, these findings suggest that aluminum accumulation in the DRG may exacerbate neuropathic pain in oxaliplatin-treated mice. PMID:25928068

  20. Parathyroid Hormone Injection

    Science.gov (United States)

    ... the blood in people with certain types of hypoparathyroidism (condition in which the body does not produce ... are taking this medication.Parathyroid hormone injection controls hypoparathyroidism but does not cure it. Continue to use ...