WorldWideScience

Sample records for aluminium matrix composites

  1. Aluminium matrix composites fabricated by infiltration method

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2009-03-01

    Full Text Available Purpose: The aim of this work is to examine the structure and properties of metal matrix composites obtained by infiltration method of porous ceramic preforms by liquid aluminium alloy.Design/methodology/approach: Ceramic preforms were manufactured by the sintering method of ceramic powder. The preform material consists of powder Condea Al2O3 CL 2500, however, as the pore forming the carbon fibers Sigrafil C10 M250 UNS were used. Then ceramic preforms were infiltrated with liquid eutectic EN AC – AlSi12 aluminum alloy. Stereological and structure investigations of obtained composite materials were made on light microscope. The mechanical properties of obtained composite material were investigated in tensile strength test and hardness test.Findings: It was proved that developed technology of manufacturing of composite materials based on the porous ceramic Al2O3 preforms infiltrated by liquid aluminium alloy ensures expected structure and strength Hardness increased about twice compared to the matrix and this process can be used in practice.Practical implications: The presented metal matrix composites fabrication technology allows to obtain locally reinforced elements and near net shape products.Originality/value: Results show the possibility of obtaining the new aluminium matrix composite materials being the cheaper alternative for other materials based on the ceramic fibers.

  2. Aluminium matrix composites fabricated by infiltration method

    OpenAIRE

    L.A. Dobrzański; M. Kremzer; A. J. Nowak; Nagel, A.

    2009-01-01

    Purpose: The aim of this work is to examine the structure and properties of metal matrix composites obtained by infiltration method of porous ceramic preforms by liquid aluminium alloy.Design/methodology/approach: Ceramic preforms were manufactured by the sintering method of ceramic powder. The preform material consists of powder Condea Al2O3 CL 2500, however, as the pore forming the carbon fibers Sigrafil C10 M250 UNS were used. Then ceramic preforms were infiltrated with liquid eutectic EN ...

  3. Aluminium matrix composites: Challenges and opportunities

    Indian Academy of Sciences (India)

    M K Surappa

    2003-02-01

    Aluminium matrix composites (AMCs) refer to the class of light weight high performance aluminium centric material systems. The reinforcement in AMCs could be in the form of continuous/discontinuous fibres, whisker or particulates, in volume fractions ranging from a few percent to 70%. Properties of AMCs can be tailored to the demands of different industrial applications by suitable combinations of matrix, reinforcement and processing route. Presently several grades of AMCs are manufactured by different routes. Three decades of intensive research have provided a wealth of new scientific knowledge on the intrinsic and extrinsic effects of ceramic reinforcement vis-a-vis physical, mechanical, thermo-mechanical and tribological properties of AMCs. In the last few years, AMCs have been utilised in high-tech structural and functional applications including aerospace, defence, automotive, and thermal management areas, as well as in sports and recreation. It is interesting to note that research on particle-reinforced cast AMCs took root in India during the 70’s, attained industrial maturity in the developed world and is currently in the process of joining the mainstream of materials. This paper presents an overview of AMC material systems on aspects relating to processing, microstructure, properties and applications.

  4. Mechanisms of de cohesion in cutting aluminium matrix composites

    International Nuclear Information System (INIS)

    In this paper properties and applications of aluminium matrix composites are presented with a composite reinforced with saffil fibres selected for topical study. Behavior of matrix and reinforcement during machining with a cutting tool is analyzed. The paper presents an explosive quick-stop device designed to obtain undisturbed machined surface for examination. Meso hardness measurements of deformed structure, resultant chips and built-up-edge were carried out. Scanning micrographs of machined surface are presented with morphology and types of chips analysed. Values of the fibrousness angle ψ and thickening index kh of chip are evaluated. The research performed has enabled the authors to define mechanisms of e cohesion during cutting aluminium matrix composites. The results received for composite material are compared with those pertinent to aluminum alloys.

  5. Mechanically milled aluminium matrix composites reinforced with halloysite nanotubes

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2012-12-01

    Full Text Available Purpose: The present work describes fabrication of aluminium AlMg1SiCu matrix composite materials reinforced with halloysite nanotubes by powder metallurgy techniques and hot extrusion.Design/methodology/approach: Mechanical milling, compacting and hot extrusion successively are considering as a method for manufacturing metal composite powders with a controlled fine microstructure and enhanced mechanical properties. It is possible by the repeated welding and fracturing of powders particles mixture in a highly energetic ball mill.Findings: The milling process has a huge influence on the properties of powder materials, changing the spherical morphology of as-received powder during milling process to flattened one due to particle deformation followed by welding and fracturing particles of deformed and hardened enough which allows to receive equiaxial particles morphology again. The investigation shows that so called brittle mineral particles yields to plastic deformation as good as ductile aluminium alloy particles. That indicates that the halloysite powder can play a role of the accelerator during mechanical milling. High energy ball milling as a method of mechanical milling improves the distribution of the halloysite reinforcing particles throughout the aluminium matrix, simultaneously reducing the size of particles. The apparent density changes versus milling time can be used to control the composite powders production by mechanical milling and the presence of halloysite reinforcements particles accelerates the mechanical milling process.Research limitations/implications: Contributes to knowledge about technology, structure and properties of aluminium alloy matrix composite material reinforced with mineral nanoparticles.Practical implications: Conducted research shows that applied technology allows obtaining very good microstructural characteristics.Originality/value: It has been confirmed that halloysite nanotubes can be applied as an effective

  6. METAL MATRIX COMPOSITES BASED ON ALUMINIUM LITHIUM AND SILICON CARBIDE

    OpenAIRE

    White, J.; Hughes, I; Willis, T.; Jordan, R.

    1987-01-01

    The present study tests the feasibility of producing metal matrix composites based on aluminium-lithium alloys. The first step in this process has been to produce an MMC based on 8090 with SiC. This has been successfully produced by Alcan International using the "Osprey" spray deposition process. The raw billets have been processed initially by extrusion. The tensile properties of this material have been determined and the strength compares favourably with DC cast alloys. Modulus is improved ...

  7. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate

    OpenAIRE

    B. Bobic; Mitrovic, S.; M. Babic; I. Bobic

    2010-01-01

    The corrosion behaviour of MMCs with aluminium alloy matrix was presented. The corrosion characteristics of boron-, graphite-, silicon carbide-, alumina- and mica- reinforced aluminium MMCs were reviewed. The reinforcing phase influence on MMCs corrosion rate as well as on various corrosion forms (galvanic, pitting, stress corrosion cracking, corrosion fatique, tribocorrosion) was discussed. Some corrosion protection methods of aluminium based MMCs were described

  8. Interface reaction in aluminium matrix composite at laser welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Interface reaction of SiCw/6061Al aluminium matrix composite subjected to laser welding was studied. It is pointed out that the main reason for bad weldability of the material is concerned with the interface reaction during the welding. Effects of welding parameters on interface reaction were also investigated. The results show that the interface bonding state can be improved by laser beam, and the main welding parameter affecting the strength of weld is laser output power. The smaller the output power, the lower the extent of interface reaction and the better the mechanical properties.

  9. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate

    Directory of Open Access Journals (Sweden)

    B. Bobic

    2010-03-01

    Full Text Available The corrosion behaviour of MMCs with aluminium alloy matrix was presented. The corrosion characteristics of boron-, graphite-, silicon carbide-, alumina- and mica- reinforced aluminium MMCs were reviewed. The reinforcing phase influence on MMCs corrosion rate as well as on various corrosion forms (galvanic, pitting, stress corrosion cracking, corrosion fatique, tribocorrosion was discussed. Some corrosion protection methods of aluminium based MMCs were described

  10. Aspects of fabrication aluminium matrix heterophase composites by suspension method

    Science.gov (United States)

    Dolata, A. J.; Dyzia, M.

    2012-05-01

    Composites with an aluminium alloy matrix (AlMMC) exhibit several advantageous properties such as good strength, stiffness, low density, resistance and dimensional stability to elevated temperatures, good thermal expansion coefficient and particularly high resistance to friction wear. Therefore such composites are more and more used in modern engineering constructions. Composites reinforced with hard ceramic particles (Al2O3, SiC) are gradually being implemented into production in automotive or aircraft industries. Another application of AlMMC is in the electronics industry, where the dimensional stability and capacity to absorb and remove heat is used in radiators. However the main problems are still: a reduction of production costs, developing methods of composite material tests and final product quality assessment, standardisation, development of recycling and mechanical processing methods. AlMMC production technologies, based on liquid-phase methods, and the shaping of products by casting methods, belong to the cheapest production methods. Application of a suspension method for the production of composites with heterophase reinforcement may turn out to be a new material and technological solution. The article presents the material and technological aspects of the transfer procedures for the production of composite suspensions from laboratory scale to a semi-industrial scale.

  11. Aspects of fabrication aluminium matrix heterophase composites by suspension method

    International Nuclear Information System (INIS)

    Composites with an aluminium alloy matrix (AlMMC) exhibit several advantageous properties such as good strength, stiffness, low density, resistance and dimensional stability to elevated temperatures, good thermal expansion coefficient and particularly high resistance to friction wear. Therefore such composites are more and more used in modern engineering constructions. Composites reinforced with hard ceramic particles (Al2O3, SiC) are gradually being implemented into production in automotive or aircraft industries. Another application of AlMMC is in the electronics industry, where the dimensional stability and capacity to absorb and remove heat is used in radiators. However the main problems are still: a reduction of production costs, developing methods of composite material tests and final product quality assessment, standardisation, development of recycling and mechanical processing methods. AlMMC production technologies, based on liquid-phase methods, and the shaping of products by casting methods, belong to the cheapest production methods. Application of a suspension method for the production of composites with heterophase reinforcement may turn out to be a new material and technological solution. The article presents the material and technological aspects of the transfer procedures for the production of composite suspensions from laboratory scale to a semi-industrial scale.

  12. Pemanfaatan Limbah Abu Terbang Sebagai Penguat Aluminium Matrix Composite

    Directory of Open Access Journals (Sweden)

    Subarmono Subarmono

    2008-01-01

    Full Text Available This research aims to utilize fly ash which is obtained from waste of combustion of coal in steam power plant as a reinforcement of aluminum matrix composite (AMC. The amounts of fly ash of 2.5%, 5%, 7.5% and 10% wt were added to fine aluminum powder (dimension of particles are smaller than 40 µm. Each composition was mixed using a rotary mixer for 3 hr. The mixture was uniaxially pressed and it was followed by isostatic compaction with a pressure of 100 MPa to produce green bodies. They was pressureless sintered in argon atmosphere at various temperatures of 500°C, 525°C, 550°C, 575°C and 600ºC. Bending strength, Vickers hardness, wear resistance, density of the AMC were tested, and the microstructures were observed using SEM. The results show that the mechanical properties increase with increasing the fly ash content up to 5% wt. The bending strength, hardness, porosity and wear rate are 74 MPa, 66 VHN, 4.5% and 0.04 mg/(MPa.m, respectively. Abstract in Bahasa Indonesia: Penelitian ini bertujuan untuk memanfaatkan abu terbang sebagai penguat komposit bermatrik aluminium (AMC. Abu terbang merupakan limbah pembakaran batu bara pada pembangkit listrik tenaga uap. Abu terbang sejumlah 2,5%; 5%; 7,5% dan 10% berat dicampur dengan serbuk aluminium (ukuran serbuk lebih kesil dari 40 µm. Setiap campuran diaduk menggunakan rotay mixer selama 3 jam. Campuran aluminum dan abu terbang dikompaksi secara uniaksial dilanjutkan kompaksi secara isostatik dengan tekanan 100 MPa dan diikuti sintering tanpa tekanan dengan lingkungan gas argon dan variasi temperatur 500°C, 525°C, 550°C, 575°C dan 600°C. Kekuatan bending, kekerasan Vickers, ketahanan aus dan densitas komposit diuji serta struktur mikro diamati menggunakan SEM. Hasil pengujian menunjukkan bahwa sifat mekanis meningkat seiring dengan peningkatan fraksi berat abu terbang sampai 5% berat, selebihnya terjadi penurunan. Kekuatam bending, kekerasan Vickers, porositas dan laju keausan berturut

  13. Aluminium Matrix Composites Reinforced with Co-continuous Interlaced Phases Aluminium-alumina Needles

    Directory of Open Access Journals (Sweden)

    Elvio de Napole Gregolin

    2002-09-01

    Full Text Available An Al-5SiO2 (5 wt% of SiO2 aluminium matrix fiber composite was produced where the reinforcement consists of fossil silica fibers needles. After being heat-treated at 600 °C, the original fiber morphology was retained but its microstructure changed from solid silica to an interconnected (Al-Si/Al2O3 interlaced structure named co-continuous composite. A technique of powder metallurgy, using commercial aluminium powder and the silica fibers as starting materials, followed by hot extrusion, was used to produce the composite. The co-continuous microstructure was obtained partially or totally on the fibers as a result of the reaction, which occurs during the heat treatment, first by solid diffusion and finally by the liquid Al-Si in local equilibrium, formed with the silicon released by reaction. The internal structure of the fibers was characterized using field emission electron microscope (FEG-SEM and optical microscopy on polished and fractured samples.

  14. Tribological properties of aluminium matrix composites reinforcement with intermetallic phases

    Directory of Open Access Journals (Sweden)

    J. Wieczorek

    2006-02-01

    Full Text Available Purpose: In the investigations, two types of material were taken for the cooperation with the composite Al + intermetallic phases. One of the materials were composites based on the AlMg12Si alloy, reinforced with ceramic particles (SiC, Al2O3, and the other was spheroidal cast iron.Design/methodology/approach: For the investigations of wear under technically dry friction conditions the pin-on-disc measuring system was applied.Findings: It has been shown that Al based composites reinforced with intermetallic phases are characterized by considerable resistance to tribological wear under technically dry friction conditions in a cooperation with composites based on the Al alloy (AlSi12CuNiMg . The tribological systems in which composites of the Al +intermetallic phases type are used, are characterized by a stable course of the friction coefficient value as a function of friction distance, irrespective of the type of material cooperating with them.Practical implications: In the case of cooperation of Al-Al2O3-Al3Ti-Al3Fe composites with aluminium alloy based composites, one should take into account the changes in friction conditions resulting from plastic deformation of the friction surface of the composite Al + intermetallic phases.Originality/value: Thanks to conducted researches it was stated that there is a possibilty of application of heterophase reinforcement that use the mixture of intermetalic phases as a effective method of aluminium alloys resistance improving the wear in dry sliding conditions.

  15. Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites

    International Nuclear Information System (INIS)

    Highlights: • Fabrication of MMC with aluminium alloy–alumina–boron carbide is done. • Different proportions of reinforcements are added. • The effects of varying proportions are studied. • Investigation on mechanical properties above composites is performed. • Failure morphology analysis is done using SEM. - Abstract: This paper deals with the fabrication and mechanical investigation of aluminium alloy, alumina (Al2O3) and boron carbide metal matrix composites. Aluminium is the matrix metal having properties like light weight, high strength and ease of machinability. Alumina which has better wear resistance, high strength, hardness and boron carbide which has excellent hardness and fracture toughness are added as reinforcements. Here, the fabrication is done by stir casting which involves mixing the required quantities of additives into stirred molten aluminium. After solidification, the samples are prepared and tested to find the various mechanical properties like tensile, flexural, impact and hardness. The internal structure of the composite is observed using Scanning Electron Microscope (SEM)

  16. Preparation of Hybrid Aluminium Metal Matrix Composites by Using Stir Process

    OpenAIRE

    V.Chandramohan*,; R.Arjunraj

    2014-01-01

    Generally aluminiums are used for various applications in industrial sectors and home based products. Metal matrix composites (MMCs) possess significantly improved properties including high specific strength, specific modulus, damping capacity and good wear resistance compared to unreinforced alloys. The objective of the project is to fabricate Al356/Fly ash, Graphite& Boron Carbide metal matrix composite by using stir process and study the properties of the fabricated composite. ...

  17. The influence of solidification rate on structure parameters of aluminium-matrix particulate composites

    OpenAIRE

    Moldovan, P.; Alexandru, C.; Panait, N.; Popescu, G; Condeiu, D.; Balescu, C.; Ghica, G.

    1993-01-01

    Aluminium alloy-matrix composites with ceramic particulates ( Graphite, SiC, A1203, TiC) were synthesised using liquid metallurgy route. The microstructural characteristics of composites are studied, using scanning electron microscope. Experiments using various cooling rates show that primary cell size is slightly smaller in AlSi12CuNiMg ceramic particles composite compared to the base alloy. The microstructure of rapidly solidified composites revealed a more homogeneous ceramic particles dis...

  18. Influence of Surface Modification of Alumina on Improvement of Wetability in Aluminium Matrix Composite

    Directory of Open Access Journals (Sweden)

    Alireza Samiee

    2014-01-01

    Full Text Available In this research, aluminium powder (50 wt% and alumina (50 wt% were first milled at a specific ball-to-powder ratio in a high-energy planetary mill at different times to manufacture Al-Al2O3 composite. Then, the capsules of powdery composites (Al-Al2O3CP produced at the milling stage were added to aluminium melt and cast through ex situ. Scanning electron microscope SEM was used to study the morphology of the capsules and the microstructure of the produced composite. The percentage of powdery composite capsules and reinforcing particles present in the microstructure of Al-Al2O3 composite was measured by Image Tool software. The results of the tests showed that, by optimizing the milling time to 5 hours, the alumina particles are sufficiently placed in the matrix of the capsules; on the other hand, alumina particles are also properly coated with aluminium powder. When these capsules are added to aluminium melt, the rate of the wetting of alumina particles greatly increases and accordingly the percentage of the reinforcing particles in the cast composite matrix increases dramatically. By surface modification and accordingly increasing percentage of Al2O3, the tensile strength increases and the tensile strength of the composites is higher than that of the matrix alloy.

  19. A study on microstructure of aluminium matrix composites

    Directory of Open Access Journals (Sweden)

    Pardeep Sharma

    2015-09-01

    Full Text Available This work focuses on the effect of graphite particles addition on the microstructure of Al6082 metal matrix composites manufactured by conventional stir casting process. The reinforcement content was varied from 0% to 12% in a step of 3%. The microstructures of the manufactured composites were analyzed by scanning electron micrographic test. Elemental mapping of the Al6082 + 12% Gr reinforced composite was carried out to see the different elements present with their amount. Different elements present in the manufactured composites were verified by X-ray diffraction technique to justify the elemental map analysis. The result of this microstructural investigation revealed that a non-uniform distribution of graphite particles takes place at all weight percentages of graphite reinforcement.

  20. Aluminium matrix heterophase composites for air compressor pistons

    Directory of Open Access Journals (Sweden)

    M.Dyzia

    2011-04-01

    Full Text Available The article presents the results of surface test of composite shaped in the permanent mould casting process. As part of the research anddevelopment project realized in the Department of Materials Technology at the Silesian University of Technology, a pilot plant scale stand was built to manufacture of more than 50 kg suspensions in a single technological cycle. Made in industrial conditions castings to form in the five inner core mould mounted in GM110 permanent mould casting machine confirmed the possibility of the shaping the composite pistons. Castings made from composite suspension AlSi7Mg/SiC and AlSi7Mg/SiC + Cg according to the technology procedure were classified as correct and devoted to the proper machining forming working surfaces of the piston to the air compressor. Comparative tests were performed for the casting of unreinforced AlSi7Mg alloy and composite castings. To assess the ability to fill the mold cavity and the accuracy of mapping used in contour shape FRT analysis of the distance between the grooves on the surface of the piston skirt. Studies have confirmed the differences in the fluidity of alloy matrix and composites suspensions. The difference in the accuracy of the dimensional mapping mould does not disqualify of composite materials, all castings are classified as correct and used for machining.

  1. Powder metallurgy route in production of aluminium alloy matrix particulate composites

    OpenAIRE

    Al-Rashed, A.; Holecek, S.; PrazÁk, M.; Procio, M.

    1993-01-01

    Meta1 matrix composites based on an aluminium alloys were produced by powder metallurgy route, involved unidirectionally hot pressing under 500 MPa for 15 minutes at temperature about 0.95 Ts [Solidus Temperature]. Metal matrix contains different weight percents of SiC, αAl2O3, WC and Si3N4 with different particle size. Wear and mechanical tests have been carried out on composites, and it was found that about 90% of wear reduction occured in composite with 30% SiC compared with pressed matrix.

  2. Laser remelting of Al-Fe-TiO powder composite on aluminium matrix

    Directory of Open Access Journals (Sweden)

    A. Grabowski

    2009-03-01

    Full Text Available Purpose: Synthesis of the AlFeTiO3 composite powder lead to formation metal matrix composite layer. The formation of an in-situ surface layer was carried out on aluminium alloy substrate using laser cladding technique.Design/methodology/approach: It was assumed in the material and technological conception that the low laser energy initiates high exothermic synthesis reaction in the AlFeTiO3. This change the AlFeTiO3 powder structure and intermetallic phases as well as aluminium oxide would be formed. The structure of the composite powders and the cross-section of the laser clad region were analyzed by optics and scanning microscopy, and X-ray microanalysis method.Findings: The correlation of the microstructure of powders remelted with the aluminium substrate was determined, depending on the laser beam energy density. There were aluminium oxide and intermetallic phases from the Al-Fe-Ti system present in the remelting region.Research limitations/implications: Laser parameters process such as density of laser energy as well as the time of interactions could be optimized to o find the laser parameter for remelting of the AlFeTiO3 composite.Originality/value: A complex multiphase ceramic matrix composite microstructure was displayed consisting of intermetallic compound Al3Ti distribute in the Al2O3 interdendritic region.

  3. Application of pressure infiltration to the manufacturing of aluminium matrix composite materials with different reinforcement shape

    OpenAIRE

    L.A. Dobrzański; M. Kremzer; Nagel, A.

    2007-01-01

    Purpose: The purpose of this work is to investigate the influence of reinforcing phase’s shape on structure and properties of composite materials with aluminium alloy matrix.Design/methodology/approach: The material for studies was produced by a method of pressure infiltration of the porous ceramic framework. In order to investigate the influence of reinforcing phase’s shape the comparison was made between the properties of the composite material based on preforms obtained by Al2O3 Alcoa CL...

  4. Manufacturing of aluminium matrix composite materials reinforced by Al2O3 particles

    OpenAIRE

    A. Włodarczyk-Fligier; L.A. Dobrzański; M. Kremzer; M. Adamiak

    2008-01-01

    Purpose: The purpose of the paper is to show and compare of modern method composite materials with aluminium alloy matrix reinforced by Al2O3 particles manufacturing.Design/methodology/approach: Material for investigation was manufactured by two methods: powder metallurgy (consolidation, pressing, hot extrusion of powder mixtures of aluminium EN AW-AlCu4Mg1(A) and ceramic particles Al2O3) and pressure infiltration of porous performs by liquid alloy EN AC AlSi12 (performs were prepared by sint...

  5. Process optimisation and numerical modelling of powder metallurgical aluminium matrix composites

    OpenAIRE

    O'Donnell, Gareth

    1999-01-01

    The present research focuses on optimisation of a novel application of the cold uniaxial pressing and liquid phase sintering powder metallurgical method to the processing of ceramic particulate reinforced aluminium matrix composites and the numerical modelling of these advanced materials. The investigated process areas include material selection, powder mixing and powder heat treatment, lubrication type, quantity and method, compaction and ejection, green sample conditioning, sintering time, ...

  6. Aluminium Alloy-Based Metal Matrix Composites: A Potential Material for Wear Resistant Applications

    OpenAIRE

    Rupa Dasgupta

    2012-01-01

    Aluminium alloy-based metal matrix composites (AMMCs) have been by now established themselves as a suitable wear resistant material especially for sliding wear applications. However, in actual practice engineering components usually encounter combination of wear types. An attempt has been made in the present paper to highlight the effect of dispersing SiC in 2014 base alloy adopting the liquid metallurgy route on different wear modes like sliding, abrasion, erosion, and combinations of wear m...

  7. ECAP – New consolidation method for production of aluminium matrix composites with ceramic reinforcement

    Directory of Open Access Journals (Sweden)

    Mateja Šnajdar Musa

    2013-06-01

    Full Text Available Aluminium based metal matrix composites are rapidly developing group of materials due to their unique combination of properties that include low weight, elevated strength, improved wear and corrosion resistance and relatively good ductility. This combination of properties is a result of mixing two groups of materials with rather different properties with aluminium as ductile matrix and different oxides and carbides added as reinforcement. Al2O3, SiC and ZrO2 are the most popular choices of reinforcement material. One of the most common methods for producing this type of metal matrix composites is powder metallurgy since it has many variations and also is relatively low-cost method. Many different techniques of compacting aluminium and ceramic powders have been previously investigated. Among those techniques equal channel angular pressing (ECAP stands out due to its beneficial influence on the main problem that arises during powder compaction and that is a non-uniform distribution of reinforcement particles. This paper gives an overview on ECAP method principles, advantages and produced powder composite properties.

  8. Use of Waste Flyash in Fabrication of Aluminium Alloy Matrix Composite

    Directory of Open Access Journals (Sweden)

    Ajit Kumar Senapati

    2014-05-01

    Full Text Available Waste flyash from two different industries (named as type A and type B were utilized as reinforcement in fabricating aluminium alloy based matrix composites (AMC. The AMCs were fabricated by continuous stir-casting method in a bottom pouring furnace at 7000C. Casting was made in rectangular metal mould having dimension 250x20x45 mm3. Effect of adding different flyash contents were realized thorough various mechanical behaviour tests. For measuring mechanical properties such as Brinell hardness, impact strength, compression strength, tensile strength, and micro hardness of both the AMCs, samples were prepared as per the standards in the mechanical workshop. The flyash distributions in the AMCs were confirmed through microstructure examination conducted on image analyzer and scanning electron micrographs. Results revealed that there is a great effect of reinforcing different flyash in aluminium alloy matrix composites. Type B flyash gave more enhanced mechanical properties compared to type A flyash. Thus, selection of flyash for reinforcement was found one of the most important criteria for fabricating aluminium matrix composites.

  9. SOLIDIFICATION CHARACTERISTIC OF TITANIUM CARBIDE PARTICULATE REINFORCED ALUMINIUM ALLOY MATRIX COMPOSITES

    Directory of Open Access Journals (Sweden)

    N. FATCHURROHMAN

    2012-04-01

    Full Text Available In this research solidification characteristic of metal matrix composites consisted of titanium carbide particulate reinforced aluminium-11.8% silicon alloy matrix is performed. Vortex mixing and permanent casting method are used as the manufacturing method to produce the specimens. Temperature measurements during the casting process are captured and solidification graphs are plotted to represent the solidification characteristic. The results show, as volume fraction of particulate reinforcement is increased, solidification time is faster. Particulate reinforcement promotes rapid solidification which will support finer grain size of the casting specimen. Hardness test is performed and confirmed that hardness number increased as more particulate are added to the system.

  10. Preparation of Hybrid Aluminium Metal Matrix Composites by Using Stir Process

    Directory of Open Access Journals (Sweden)

    V.Chandramohan*,

    2014-11-01

    Full Text Available Generally aluminiums are used for various applications in industrial sectors and home based products. Metal matrix composites (MMCs possess significantly improved properties including high specific strength, specific modulus, damping capacity and good wear resistance compared to unreinforced alloys. The objective of the project is to fabricate Al356/Fly ash, Graphite& Boron Carbide metal matrix composite by using stir process and study the properties of the fabricated composite. Co-continuous alumina/aluminium composite materials with excellent physical and mechanical properties offer great potentials for lightweight, wear resistant, and high-temperature applications. Composite materials prepared from a liquid-phase displacement reaction present a unique microstructure in which each phase is a continuous network penetrated by the network of the other constituent. There has been an increasing interest in composites containing low density and low cost reinforcements. Among various discontinuous dispersions used, fly ash is one of the most inexpensive and low density reinforcement available in large quantities as solid waste by-product during combustion of coal in thermal power plants. Hence, composites with fly ash as reinforcement are likely to overcome the cost barrier for wide spread applications in automotive and small engine applications.

  11. Development of a new aluminium matrix composite reinforced with iron oxide (Fe3O4

    Directory of Open Access Journals (Sweden)

    E. Bayraktar

    2010-01-01

    Full Text Available Purpose: of this paper is to develop new aluminium matrix (intermetallic composites reinforced with iron oxide (Fe3O4 that will be used in aeronautical engineering or in electronic industry. Different parameters such as sintering time and temperature, reinforcement, compact pressure were evaluated. The final purpose of this project is going on to improve conductivity and magnetic permeability of this new composite.Design/methodology/approach: In this paper, a new alternative materials “aluminium–iron oxide (Fe3O4, naturally as the mineral magnetite powder composite” has been developed by using a microwave (in the laboratory scale sintering programme with various aspect ratios, that iron oxide (Fe3O4 particle sizes and aluminium powders together were prepared. This paper contains partially preliminary results of our going-on research project.Findings: Green density increased regularly depending on the compact pressure and percentage of the iron oxide (Fe3O4. Micro and macro porosity was not found due to very clean microwave sintering. Density after microwave sintering was higher than that of traditional sintering in an electrical oven.Research limitations/implications: This project is going on and magnetic permeability and conductivity of this composite will be improved.Practical implications: This composite is new and clean and thanks to the new microwave sintering basically will be used in aeronautical engineering. Microwave heating results in lower energy costs and decreased processing times for many industrial processes.Originality/value: Originality of this paper is to use a new reinforcement in the aluminium matrix composite; Fe3O4-iron oxide. A new method - microwave sintering- has been carried out on this composite.

  12. Mechanical alloying for fabrication of aluminium matrix composite powders with Ti-Al intermetallics reinforcement

    Directory of Open Access Journals (Sweden)

    M. Adamiak

    2008-12-01

    Full Text Available Purpose: The aim of this work is to report the effect of the high energy milling processes, on fabrication ofaluminium matrix composite powders, reinforced with a homogeneous dispersion of the intermetallic Ti3Alreinforcing particles.Design/methodology/approach: MA process are considered as a method for producing composite metalpowders with a controlled fine microstructure. It occurs by the repeated fracturing and re-welding of powdersparticles mixture in a highly energetic ball mill.Findings: Mechanical alloying, applied for composite powder fabrication, improves the distribution of theTi3Al intermetallic reinforcing particles throughout the aluminium matrix, simultaneously reducing their size.Observed microstructural changes influence on the mechanical properties of powder particles.Research limitations/implications: Contributes to the knowledge on composite powders production via MA.Practical implications: Gives the answer to evolution of the powder production stages, during mechanicalalloying and theirs final properties.Originality/value: Broadening of the production routes for homogeneous particles reinforced aluminium matrixcomposites.

  13. Aluminium EN AW-2124 alloy matrix composites reinforced with Ti(C,N), BN and Al2O3 particles

    International Nuclear Information System (INIS)

    Investigation results of the aluminium alloy EN AW-2124 matrix composite materials with particles of the powders Ti(C,N), BN and Al2O3 (15 wt.%) are presented in the paper. In order to obtain uniform distribution of reinforcement particles in aluminium alloy matrix powders of composite components have been milled in the rotary ball-bearing pulverizer. The composites have been pressed in laboratory vertical press at room temperature under the pressure of 500 kN. Obtained die samplings have been heated to the temperature 520-550 oC and extruded. Bars of diameter 8 mm have been received as a final product. Metallographic examination of the composites materials' structure shows non-uniform distribution of reinforced powders in the aluminium alloy matrix banding of reinforcements particles corresponds to the extrusion direction. Particles of reinforcement distribution in aluminium alloy matrix is irregular, some agglomerations of powder of aluminium oxide and porosity of different size have been noticed. Investigations of hardness and ultimate compressive strength show that the particles of reinforcement improve mechanical properties of composite materials. Investigations of compressive strength, carried out at room temperature, enable to compare mechanical properties of matrix and composite. (author)

  14. Processing and mechanical properties of aluminium-silicon carbide metal matrix composites

    Science.gov (United States)

    Nuruzzaman, D. M.; Kamaruzaman, F. F. B.

    2016-02-01

    In this study, aluminium-silicon carbide (Al-SiC) metal matrix composites (MMCs) of different compositions were prepared under different compaction loads. Three different types Al-SiC composite specimens having 10%, 20% and 30% volume fractions of silicon carbide were fabricated using conventional powder metallurgy (PM) route. The specimens of different compositions were prepared under different compaction loads 10 ton and 15 ton. The effect of volume fraction of SiC particulates and compaction load on the properties of Al/SiC composites were investigated. The obtained results show that density and hardness of the composites are greatly influenced by volume fraction of silicon carbide particulates. Results also show that density, hardness and microstructure of Al-SiC composites are significantly influenced depending on the compaction load. The increase in the volume fraction of SiC enhances the density and hardness of the Al/SiC composites. For 15 ton compaction load, the composites show increased density and hardness as well as improved microstructure than the composites prepared under 10 ton compaction load. Furthermore, optical micrographs reveal that SiC particulates are uniformly distributed in the Al matrix.

  15. Synthesis and Characterization of TiB2 Reinforced Aluminium Matrix Composites: A Review

    Science.gov (United States)

    Kumar, Narendra; Gautam, Gaurav; Gautam, Rakesh Kumar; Mohan, Anita; Mohan, Sunil

    2015-09-01

    Aluminium-matrix composites (AMCs) are developed to meet the demands of light weight high performance materials in aerospace, automotive, marine and other applications. The properties of AMCs can be tailored suitably by combinations of matrix, reinforcement and processing route. AMCs are one of the most attractive alternatives for the manufacturing of light weight and high strength parts due to their low density and high specific strength. There are various techniques for preparing the AMCs with different reinforcement particles. In AMCs, the reinforcements are usually in the form of metal oxides, carbides, borides, nitrides and their combination. Among the various reinforcements titanium di-boride (TiB2) is of much interest due to its excellent stiffness, hardness, and wear resistance. This paper attempts to provide an overview to explore the possibilities of synthesizing titanium di-boride reinforced AMCs with different techniques. The mechanical and tribological properties of these composites have been emphasized to project these as tribo-materials.

  16. Aluminium EN AC-AlSi12 alloy matrix composite materials reinforced by Al2O3 porous preforms

    OpenAIRE

    Nagel, A.; M. Kremzer; L.A. Dobrzański,

    2007-01-01

    Purpose: The purpose of this work is to elaborate the method of manufacturing of composite materials based on porous ceramic preforms infiltrated by eutectic aluminium alloy.Design/methodology/approach: The material for investigations was fabricated by pressure infiltration method of ceramic porous preforms. The eutectic aluminium alloy EN AC – AlSi12 was use as a matrix while as reinforcement were used ceramic preforms fabricated by sintering of Al2O3 Alcoa CL 2500 powder with addition of po...

  17. Characterization of aluminium matrix composites reinforced by Al–Cu–Fe quasicrystalline particles

    Energy Technology Data Exchange (ETDEWEB)

    Lityńska-Dobrzyńska, L.; Dutkiewicz, J.; Stan-Głowińska, K.; Wajda, W. [Institute of Metallurgy and Materials Science Polish Academy of Sciences, 30-059 Kraków, 25 Reymonta St. (Poland); Dembinski, L.; Langlade, C.; Coddet, C. [Universite de Technologie de Belfort-Montbeliard, Site de Sevenans 90010, Belfort (France)

    2015-09-15

    Highlights: • Al powder and atomised Al{sub 65}Cu{sub 20}Fe{sub 15} powder were consolidated by vacuum hot pressing. • No changes in microstructure of Al{sub 65}Cu{sub 20}Fe{sub 15} powder in 20% and 40% composites. • Al{sub 2}Cu precipitates at the interfaces and inside the matrix in the 60% composite. • Increase of microhardness and compressive strength with content of reinforcement. • The friction coefficient were in the range 0.5–0.7. - Abstract: Aluminium matrix composites were consolidated from elemental Al powder and atomised Al{sub 65}Cu{sub 20}Fe{sub 15} particles by vacuum hot pressing technique. The spherical Al{sub 65}Cu{sub 20}Fe{sub 15} particles consisted of icosahedral quasicrystalline dendrites or cells and cubic τ-AlCu(Fe) phase located in interdendritic areas. The composites with different content of the reinforcement particles (20, 40 and 60 wt%) were prepared. All composites showed density about 99% and a good bonding between the Al{sub 65}Cu{sub 20}Fe{sub 15} particles and the matrix. It was shown that the phase composition of the atomised particles did not change after consolidation for the composite containing 20% and 40% added particles while Al{sub 2}Cu precipitates formed at the Al/Al{sub 65}Cu{sub 20}Fe{sub 15} interfaces and inside the matrix in the composite with 60% of Al{sub 65}Cu{sub 20}Fe{sub 15} particles. With the increase of the volume fraction of the reinforcement in the composite the hardness as well as compressive strength increased reaching the value of 173 HV{sub 0.5} and 370 MPa, respectively for 60% of Al{sub 65}Cu{sub 20}Fe{sub 15} particles. The friction coefficient slightly varied in the range 0.5–0.7 depending on the composition.

  18. Bonding of aluminium matrix composites for application in the transport industry

    International Nuclear Information System (INIS)

    A discontinuously reinforced MMC containing 12 vol % SiC particles in an Al-Cu-Mg alloy (AA 2124) matrix has been diffusion bonded. Thick interlayers of different superplastic aluminium alloys (Al-Li 8090 and Al-Cu SUPRAL) were used to reduce the bonding pressure and ensure complete surface contact. Microstructural studies shown higher continuity in joints bonded with 8090 interlayer than with other alloys. Precipitation of rich-copper intermetallic was detected, after bonding, in the interlayer because diffusion of Cu from 2124 matrix. Results suggest that Li contained in the interlayer favours the partial disruption of the aluminium oxide film, making easier the solid state bonding. (orig.)

  19. Micro/Nanostructure and Tribological Characteristics of Pressureless Sintered Carbon Nanotubes Reinforced Aluminium Matrix Composites

    OpenAIRE

    Manikandan, P.; Sieh, R.; A.Elayaperumal; H. R. Le; Basu, S.

    2016-01-01

    This study reports the manufacture, microstructure, and tribological behaviour of carbon nanotube reinforced aluminium composites against pure aluminium. The specimens were fabricated using powder metallurgy method. The nanotubes in weight percentages of 0.5, 1.0, 1.5, and 2.0 were homogeneously dispersed and mechanically alloyed using a high energy ball milling. The milled powders were cold compacted and then isothermally sintered in air. The density of all samples was measured using Archime...

  20. Micro/Nanostructure and Tribological Characteristics of Pressureless Sintered Carbon Nanotubes Reinforced Aluminium Matrix Composites

    Directory of Open Access Journals (Sweden)

    P. Manikandan

    2016-01-01

    Full Text Available This study reports the manufacture, microstructure, and tribological behaviour of carbon nanotube reinforced aluminium composites against pure aluminium. The specimens were fabricated using powder metallurgy method. The nanotubes in weight percentages of 0.5, 1.0, 1.5, and 2.0 were homogeneously dispersed and mechanically alloyed using a high energy ball milling. The milled powders were cold compacted and then isothermally sintered in air. The density of all samples was measured using Archimedes method and all had a relative density between 92.22% and 97.74%. Vickers hardness increased with increasing CNT fraction up to 1.5 wt% and then reduced. The microstructures and surfaces were investigated using high resolution scanning electron microscope (SEM. The tribological tests showed that the CNT reinforced composites displayed lower wear rate and friction coefficient compared to the pure aluminium under mild wear conditions. However, for severe wear conditions, the CNT reinforced composites exhibited higher friction coefficient and wear rate compared to the pure aluminium. It was also found that the friction and wear behaviour of CNT reinforced composites is significantly dependent on the applied load and there is a critical load beyond which CNTs could have adverse impact on the wear resistance of aluminium.

  1. Age-hardening characteristics of δ-alumina fibre reinforced aluminium-silicon LM-13 alloy metal matrix composites

    OpenAIRE

    Akbulut, H; Durman, M.; F. Yilmaz

    1993-01-01

    Metal Matrix Composites (MMCs) with an aluminium-silicon based LM-13 alloy and short-staple Saffil (δ-alumina) fibres with volume fractions of 0.10, 0.15, 0.20, 0.25 and 0.30 have been produced using a pressure liquid infiltration process. The standard T6 heat treatment procedure was applied to both the unreinforced matrix alloy and the composites, and the effect of the fibres on the age-hardening characteristics of the composites has been investigated by means of hardness measurements.

  2. Investigation of Mechanical Properties of Aluminium Based Metal Matrix Composites Reinforced With Sic & Al2O3

    Directory of Open Access Journals (Sweden)

    Kamaal Haider

    2015-09-01

    Full Text Available Present study is focused on the fabrication of aluminium 6061 based metal matrix composites, Reinforced with silicon carbide and Al2O3 by stir casting technique. The percentage of one reinforcement particulate is kept constant and varying other and vice versa, namely typeI and typeII composites. The various mechanical tests like tensile strength test, hardness test, wear test and Impact strength performed on the samples obtained by stir casting technique for comparison purpose. The result indicated that the developed method is quite successful and there is an increase in the value of tensile strength, hardness value and Impact strength of newly developed composite having (SiC + Al2O3 particulates in comparison to the Aluminium.

  3. EVALUATION & COMPARISION OF MECHANICAL PROPERTIES OF ALUMINIUM ALLOY 5052 REINFORCED WITH SILICONCARBIDE, GRAPHITE AND FLY ASH HYBRID METAL MATRIX COMPOSITES

    Directory of Open Access Journals (Sweden)

    ANKUSH SACHDEVA

    2013-10-01

    Full Text Available The engineering fraternity has always been looking forward to develop an outstanding and wonder-materials which would fit the ever-changing demands of the world. In order to fullfill the demands various newdiscoveries have been made by scientists, engineers and resrearchers. In todays competitive world many, materials have been tried for various unexplored conditions , but the never ending demand of the world encourages the researchers to develop the new material. Now the researchers are preparing the material by the combination of different materials called hybrid composite material.. Metal Matrix Composites (MMCs have emerged as a class of materials suitable for structural, aerospace, automotive, electronic, thermal and wearapplications owing to their advantages over the conventional materials. The present study was taken up to explore the possibility of using different reinforcements (silicon carbide, fly ash and graphite to enhance the properties of aluminium alloy (Al5052 composites. Different samples were prepared from the aluminium withvarying reinforcement composition. The mechanical properties studied after the experiment were strength, hardness and elongation.Further, these composites were characterized with the help of, mechanical testing and scanning electron microscopy.

  4. Influence of matrix composition on creep of aluminium-based composites

    Czech Academy of Sciences Publication Activity Database

    Dobeš, Ferdinand; Milička, Karel

    Patras: Institute of Chemical Engineering & High Temperature Processes, 2004, B101. [European Conference on Composite Materials /11./. Rhodes (GR), 31.05.2004-03.06.2004] R&D Projects: GA ČR GA106/02/0274 Institutional research plan: CEZ:AV0Z2041904 Keywords : creep * fibre composite * small punch test Subject RIV: BM - Solid Matter Physics ; Magnetism

  5. The effect of reinforcement on superplastic flow in powder-metallurgy processed aluminium matrix composites

    International Nuclear Information System (INIS)

    ''Particle weakening'' phenomenon was observed in 2124 Al composites as well as in 6061 Al composites. At high temperatures where superplastic flow controls the plastic flow, composite is weaker than unreinforced matrix alloy even after compensating for grain size and threshold stress. Furthermore, such strength differential between the two materials is temperature dependent, which increases with increasing temperature. This may resulted from the presence of liquid phase at the reinforcement/Al matrix whose amount is expected to increase with increase in temperature. (orig.)

  6. Processing, microstructure and mechanical properties of nickel particles embedded aluminium matrix composite

    International Nuclear Information System (INIS)

    Research highlights: → Al-Ni particle composite was successfully processed by FSP. → No harmful intermetallics formed. → The composite showed a 3 fold increase in yield strength with high ductility. → FSP also lead to a refined recrystallized grain structure. → A continuous type dynamic recrystallization process seems to be working during FSP. - Abstract: Nickel particles were embedded into an Al matrix by friction stir processing (FSP) to produce metal particle reinforced composite. FSP resulted in uniform dispersion of nickel particles with excellent interfacial bonding with the Al matrix and also lead to significant grain refinement of the matrix. The novelty of the process is that the composite was processed in one step without any pretreatment being given to the constituents and no harmful intermetallic formed. The novel feature of the composite is that it shows a three fold increase in the yield strength while appreciable amount of ductility is retained. The hardness also improved significantly. The fracture surface showed a ductile failure mode and also revealed the superior bonding between the particles and the matrix. Electron backscattered diffraction (EBSD) and transmission electron microscopy analysis revealed a dynamically recrystallized equiaxed microstructure. A gradual increase in misorientation from sub-grain to high-angle boundaries is observed from EBSD analysis pointing towards a continuous type dynamic recrystallization mechanism.

  7. Effect of stress ratio and frequency on fatigue crack growth rate of 2618 aluminium alloy silicon carbide metal matrix composite

    Indian Academy of Sciences (India)

    Nirbhay Singh; Ram Khelawan; G N Mathur

    2001-04-01

    Effect of stress ratio and frequency on the fatigue crack propagation of 2618 aluminium alloy–silicon carbide composite were investigated at ambient temperature. With the first set of specimens, the fatigue crack growth rates were studied at three frequencies of 1 Hz, 5 Hz and 10 Hz at a stress ratio of 0.1 whereas the effects of stress ratios of 0.1, 0.25 and 0.50 were studied with the second set of specimens. The study showed that the fatigue crack propagation behaviour of this metal matrix composite was influenced to an appreciable extent by the stress ratio, but not by the fatigue frequencies used in this investigation.

  8. Influence of particle size on Cutting Forces and Surface Roughness in Machining of B4Cp - 6061 Aluminium Matrix Composites

    Science.gov (United States)

    Hiremath, Vijaykumar; Badiger, Pradeep; Auradi, V.; Dundur, S. T.; Kori, S. A.

    2016-02-01

    Amongst advanced materials, metal matrix composites (MMC) are gaining importance as materials for structural applications in particular, particulate reinforced aluminium MMCs have received considerable attention due to their superior properties such as high strength to weight ratio, excellent low-temperature performance, high wear resistance, high thermal conductivity. The present study aims at studying and comparing the machinability aspects of B4Cp reinforced 6061Al alloy metal matrix composites reinforced with 37μm and 88μm particulates produced by stir casting method. The micro structural characterization of the prepared composites is done using Scanning Electron Microscopy equipped with EDX analysis (Hitachi Su-1500 model) to identify morphology and distribution of B4C particles in the 6061Al matrix. The specimens are turned on a conventional lathe machine using a Polly crystalline Diamond (PCD) tool to study the effect of particle size on the cutting forces and the surface roughness under varying machinability parameters viz., Cutting speed (29-45 m/min.), Feed rate (0.11-0.33 mm/rev.) and depth of cut (0.5-1mm). Results of micro structural characterization revealed fairly uniform distribution of B4C particles (in both cases i.e., 37μm and 88μm) in 6061Al matrix. The surface roughness of the composite is influenced by cutting speed. The feed rate and depth of cut have a negative influence on surface roughness. The cutting forces decreased with increase in cutting speed whereas cutting forces increased with increase in feed and depth of cut. Higher cutting forces are noticed while machining Al6061 base alloy compared to reinforced composites. Surface finish is high during turning of the 6061Al base alloy and surface roughness is high with 88μm size particle reinforced composites. As the particle size increases Surface roughness also increases.

  9. Weibull Probability Model for Fracture Strength of Aluminium (1101)-Alumina Particle Reinforced Metal Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    A.Suresh Babu; V.Jayabalan

    2009-01-01

    In recent times, conventional materials are replaced by metal matrix composites (MMCs) due to their high specific strength and modulus.Strength reliability, one of the key factors restricting wider use of composite materials in various applications, is commonly characterized by Weibull strength distribution function.In the present work, statistical analysis of the strength data of 15% volume alumina particle (mean size 15 μm)reinforced in aluminum alloy (1101 grade alloy) fabricated by stir casting method was carried out using Weibull probability model.Twelve tension tests were performed according to ASTM B577 standards and the test data, the corresponding Weibull distribution was obtained.Finally the reliability of the composite behavior in terms of its fracture strength was presented to ensure the reliability of composites for suitable applications.An important implication of the present study is that the Weibull distribution describes the experimentally measured strength data more appropriately.

  10. The influence of reinforcement shape on wear behaviour of aluminium matrix composite materials

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2010-09-01

    Full Text Available urpose: The purpose of this paper is to present the research results of modern metal matrix composite materials. The matrix material was EN AC - AlSi12 alloy while the reinforcement ceramic performs. In order to investigate the influence of reinforcing phase’s shape on tribological properties the comparison was made between the composite material based on preforms obtained by Al2O3 Alcoa CL 2500 powder sintered with addition of pore forming agent in form of carbon fibres Sigrafil C 10 M250 UNS from Carbon Group company and composite materials based on much more expensive commercial fibrous preforms.Design/methodology/approach: The composite was produced by the use of porous material pressure infiltration method. Obtained composite materials were examined with light and scanning electron microscopy. Hardness test was carried out with Rockwell method in A scale. Additionally, the wear resistance was measured by the use of device designed in the Institute of Engineering Materials and Biomaterials. The device realize dry friction wear mechanism of reciprocating movement conditions.Findings: The obtained results show the possibility of manufacturing the new composite materials by the method of porous sintered framework pressure infiltration based on the ceramic particles, with desired microstructure and properties, being a cheaper alternative for materials with base of ceramic fibers.Practical implications: Tested composite materials can be apply among the others in automotive and aircraft industries.Originality/value: Worked out technology of composite materials manufacturing can be used in the production of near net shape and locally reinforced elements

  11. PREDICTION OF TOOL CONDITION DURING TURNING OF ALUMINIUM/ALUMINA/GRAPHITE HYBRID METAL MATRIX COMPOSITES USING MACHINE LEARNING APPROACH

    Directory of Open Access Journals (Sweden)

    N. RADHIKA

    2015-10-01

    Full Text Available Aluminium/alumina/graphite hybrid metal matrix composites manufactured using stir casting technique was subjected to machining studies to predict tool condition during machining. Fresh tool as well as tools with specific amount of wear deliberately created prior to machining experiments was used. Vibration signals were acquired using an accelerometer for each tool condition. These signals were then processed to extract statistical and histogram features to predict the tool condition during machining. Two classifiers namely, Random Forest and Classification and Regression Tree (CART were used to classify the tool condition. Results showed that histogram features with Random Forest classifier yielded maximum efficiency in predicting the tool condition. This machine learning approach enables the prediction of tool failure in advance, thereby minimizing the unexpected breakdown of tool and machine.

  12. Formation process,microstructure and mechanical property of transient liquid phase bonded aluminium-based metal matrix composite joint

    Institute of Scientific and Technical Information of China (English)

    孙大谦; 刘卫红; 贾树盛; 邱小明

    2004-01-01

    The formation process, microstructure and mechanical properties of transient liquid phase (TLP) bonded aluminium-based metal matrix composite (MMC) joint with copper interlayer were investigated. The formation process of the TLP joint comprises a number of stages: plastic deformation and solid diffusion (stage 1), dissolution of interlayer and base metal (stage 2), isothermal solidification (stage 3) and homogenization (stage 4). The microstructure of the joint depends on the joint formation process (distinct stages). The plastic deformation and solid diffusion in stage 1 favoure the intimate contact at interfaces and liquid layer formation. The microstructure of joint consists of aluminium solid solution, alumina particle, Al2Cu and MgAl2O4 compounds in stage 2. The most pronounced feature of joint microstructure in stage 3 is the alumina particle segregation in the center of the joint. The increase of joint shear strength with increasing bonding temperature is mainly attributed to improving the fluidity and wettability of liquid phase and decreasing the amount of Al2Cu brittle phase in the joint. The principal reason of higher bonding temperature (>600 ℃) resulting in lowering obviously the joint shear strength is the widening of alumina particle segregation region that acts as a preferential site for failure. The increase of joint shear strength with increasing holding time is mainly associated with decreasing the amount of Al2 Cu brittle phase and promoting homogenization of joint.

  13. Experimental Investigation and Prediction of Mechanical Properties of Friction Stir Welded Aluminium Metal Matrix Composite Plates

    Directory of Open Access Journals (Sweden)

    Yahya BOZKURT

    2012-12-01

    Full Text Available Friction stir welding (FSW is a relatively contemporary solid state welding process and has been employed in aerospace, railway, automotive and marine industries for joining of aluminum, magnesium, zinc, titanium, copper alloys, dissimilar metals and thermoplastics. The FSW process parameters such as tool rotation speed, tool traverse speed and tilt angle play an important role in deciding the joining quality. The present study defines the effect of FSW process on the tensile properties of the AA2124/SiC/25p metal matrix composite (MMC plates. Obtained results showed that the joint efficiency decreases by increasing the tool traverse speed while tool rotation speed was kept constant. Second contribution of this study is the application of decision tree technique to predict the tensile properties of friction stir welded MMC plates. It is seen that methodology can be applied with great accuracy.DOI: http://dx.doi.org/10.5755/j01.ms.18.4.3092

  14. Precipitation phenomena in aluminium-based metal matrix composites: Effects of reinforcement on kinetics and misfit accomodation. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Starink, M.J.

    1992-06-15

    In the thesis several articles are brought together which focus on the influence of dispersed particles on the precipitation in aluminium alloys. As dispersed particles, silicon and aluminiumoxide particles were studied. The matrix of the alloys studied consisted of Al-Cu, Al-Cu-Si, and Al-Cu-Mg-Si. The articles concerning the first two alloys make up Part 1 of the thesis. The work on Al-Cu-Mg-Si alloys is compiled in Part 2. Precipitation was studied by differential scanning calorimetry (DSC), X-ray diffraction and hardness measurements.

  15. The effect of palm kernel shell ash on the mechanical properties of as-cast aluminium alloy matrix composites

    Directory of Open Access Journals (Sweden)

    Isiaka Oluwole OLADELE

    2016-06-01

    Full Text Available The present work describes the effect of palm kernel shell ash (PKSA as reinforcement on the mechanical properties of As-cast aluminium alloy. Recycled aluminium alloy from cylinder of an automotive engine block was degreased by using premium motor spirit (PMS also known as petrol, washed thoroughly with soap and water and sun dried for 5 days. The palm kernel shell was screened of dirt and other unwanted foreign materials before being roasted in furnace. The ash was further pulverized by laboratory ball mill machine followed by sieving to obtain particle sizes of 106 µm and divided into two parts. One portion was treated with NaOH solution while the other part was left as untreated before they are used to reinforced molten aluminium alloy in predetermined proportions. The newly developed composites were characterized with respect to their mechanical properties in response to the tests that were carried out on them. The results indicate that palm kernel shell ash can be used as potential reinforcing material for automobile applications.

  16. Aluminium composite casting dispersion reinforced with iron-aluminium and silicon carbide phases

    OpenAIRE

    B. Formanek; J. Piątkowski; J. Szymszal

    2010-01-01

    Aluminium matrix composite with dispersion-reinforced, made by similar to stircasting process was characterised. The mixture of powders was produced by the process of mechanical agglomeration of powdered FexAly and SiC with aluminium. The chemical composition ofagglomerates was selected in a way such as to obtain 25 wt.% reinforcement of the AlSi9Cu4 silumin matrix. Applying thermal analysis ATD, the alloy solidification process was determined, reading out the typical solidification parameter...

  17. Softening Resistance, Dimensional Stability and Corrosion Behaviour of Alumina and Rice Husk Ash Reinforced Aluminium Matrix Composites Subjected to Thermal Cycling

    Directory of Open Access Journals (Sweden)

    K.K. Alaneme

    2015-06-01

    Full Text Available The softening resistance, dimensional stability and corrosion behaviour of stir cast alumina and rice husk ash reinforced aluminium matrix composites subjected to thermal cycling has been investigated. Aluminium hybrid composites having 10 wt% reinforcement consisting of alumina (Al2O3 and rice husk ash (RHA in weight ratios of 1:0, 3:1, 1:1, 1:3, and 0:1 respectively were produced. The composites were subjected to varying thermal cycles of 3, 6, 9 and 12 from room temperature to 200 oC repeatedly. Hardness, linear change in dimensions, microstructural examination and corrosion test were used to characterize the composites produced. From the results, no obvious change in the microstructure could be discerned with thermal cycling. There were only marginal changes in hardness with increase in thermal cycling also less than 2 % change in linear dimensions was observed with thermal cycling. The composites were also observed to be very resistant to corrosion in 3.5 % NaCl solution with no appreciable change in corrosion resistance noted with increase in thermal cycling. However, in 0.3M H2SO4 solution, the corrosion resistance increased with increase in RHA content and samples subjected to 9 and 12 thermal cycles exhibited a relatively higher susceptibility to corrosion.

  18. Aluminium composite casting dispersion reinforced with iron-aluminium and silicon carbide phases

    Directory of Open Access Journals (Sweden)

    B. Formanek

    2010-10-01

    Full Text Available Aluminium matrix composite with dispersion-reinforced, made by similar to stircasting process was characterised. The mixture of powders was produced by the process of mechanical agglomeration of powdered FexAly and SiC with aluminium. The chemical composition ofagglomerates was selected in a way such as to obtain 25 wt.% reinforcement of the AlSi9Cu4 silumin matrix. Applying thermal analysis ATD, the alloy solidification process was determined, reading out the typical solidification parameters. The methods of light and scanning microscopy were used to reveal the structure of composite casting. Changes in chemical composition and phase composition of particles of the FeAl intermetallic phase in aluminium matrix were confirmed. The structure of silumin casting with matrix containing microregions of ceramic and intermetallic phases, typical of hybrid reinforcements, was obtained.

  19. Aluminium AA6061 Matrix Composite Reinforced with Spherical Alumina Particles Produced by Infiltration: Perspective on Aerospace Applications

    OpenAIRE

    Claudio Bacciarini; Vincent Mathier

    2014-01-01

    Metal matrix composites, based on AA6061 reinforced with 60 vol% Al2O3 spherical particles, were produced by gas pressure infiltration and characterized for hardness, impulse excitation modulus, tensile properties (at room temperature and at 250°C), and machining. It was experimentally demonstrated that the novel alumina powder used in the present work does not react with the liquid Mg-containing matrix during the infiltration process. The AA6061 matrix therefore retains its ability to be str...

  20. Anisotropy of tertiary creep in aluminium-based composites

    Czech Academy of Sciences Publication Activity Database

    Dobeš, Ferdinand; Milička, Karel

    Naples : University of Naples, 2005 - (Crivelli-Visconti, I.), s. 225-226 [Advancing with composites 2005. Naples (IT), 11.10.2005-14.10.2005] Institutional research plan: CEZ:AV0Z20410507 Keywords : metal matrix composite * tertiary creep * aluminium alloys Subject RIV: JI - Composite Materials

  1. Selected properties of the aluminium alloy base composites reinforced with intermetallic particles

    OpenAIRE

    M. Adamiak

    2005-01-01

    Purpose: The main aim of this work is to investigate two types of intermetallics TiAl and Ti3Al as reinforcement and their influence on selected properties and microstructure of aluminium matrix composites.Design/methodology/approach: Aluminium matrix composites were produced employing the atomised aluminium alloy AA6061 as metal matrix, when as reinforcement TiAl and Ti3Al intermetallics particles were used. The powders were cold pressed and then hot extruded. To evaluate the effect of mecha...

  2. Lubricated sliding wear behaviour of aluminium alloy composites

    OpenAIRE

    J. C. Walker; Rainforth, W. M.; Jones, H.

    2005-01-01

    Interest in aluminium alloy (Al-alloy) composites as wear resistant materials continues to grow. However, the use of the popular Al-alloy-SiC composite can be limited by the abrasive nature of the SiC, leading to increased counterface wear rates. This study reports new Al-alloy composites that offer high wear resistance, to a level similar to Al-alloy-SiC. Aluminium alloy (2124, 5056) matrix composites reinforced by nominally 15 vol.% of Cr3Si, MoSi2, Ni3Al and SiC particles were prepared by ...

  3. The influence of heat treatment on mechanical and fracture properties of an alumina microsphere reinforced aluminium matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Hadianfard, M.J.; Healy, J.C.; Mai, Y.W. [Univ. of Sydney, NSW (Australia). Dept. of Mechanical Engineering

    1993-12-31

    The effects of aging on the mechanical and fracture toughness properties of a 6061 Al reinforced with 20 vol % alumina microsphere (Comral-85) were studied. Fractographic examination combined with X-ray mapping and image analysis were used to investigate the fracture micro-mechanisms. Hardness and tensile strength were found to increase with aging time reaching a maximum value after approximately 8 hours aging at 175{degree}C. Although elongation to failure decreased with aging time the fracture toughness showed little variation. Specimens for all heat treated conditions (peak-aged, under-aged and over-aged) exhibited ductile fracture consisting of void formation and coalescence. However, the matrix aging condition and particulate distribution significantly affected the fracture mechanisms. Fracture was characterized by particulate distribution significantly affected the fracture mechanisms. Fracture was characterized by particle cracking and matrix failure in the under-aged condition and by decohesion at the matrix/particle interface in the over-aged condition. Image analysis indicated that regions of particulate clusters were preferential sites for crack initiation and subsequent growth for all heat treated conditions. These results are discussed in terms of the effects on matrix microstructure due to accelerated aging and the local density of particulates.

  4. Production and some properties of Si3N4 reinforced aluminium alloy composites

    Directory of Open Access Journals (Sweden)

    Pardeep Sharma

    2015-09-01

    Full Text Available The present research work focuses on the production of aluminium (AA6082-T6 matrix composites reinforced with various weight percentage of silicon nitride particles by conventional stir casting route. The percentage of reinforcement is varied from 0 wt.% to 12 wt.% in a stage of 3%. The microstructures and mechanical properties of the fabricated aluminium matrix composites are investigated. The scanning electron microstructure images reveal the presence of Si3N4 particles in the aluminium matrix. The distribution of Si3N4 particles has also been recognized with X-ray diffraction technique. The mechanical properties such as ultimate tensile strength and hardness have improved at the cost of reduction in ductility with increase in weight percentage of silicon nitride particulates in the aluminium metal matrix. The density and porosity of the composites also show an increasing trend with increase in volume fraction of Si3N4 particles in the aluminium matrix.

  5. Machining of Metal Matrix Composites

    CERN Document Server

    2012-01-01

    Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manu...

  6. Torni materiali za zavorne diske iz aluminijevega kompozitnega materiala (Al-MMCs): Friction materials for aluminium metal matrix composite rotors:

    OpenAIRE

    Stadler, Zmago

    1999-01-01

    Lately the Al-SiC MMCs materials became chipper and more attainable for use in automotive industry. Because of its excellent mechanical and thermal properties in composition with grey cast iron, Al-SiC MMCs became more interesting as brake rotors material. In this paper the development results of brake pad material for Al-SiC MMCs is presented. Completely new development approach was required, because friction materials for grey cast iron rotors are unsuitable for Al-SiC MMCs rotors. Friction...

  7. Analisa Pengaruh Heat Treatment Terhadap Sifat Mekanik Dan Mikrostruktur Material Metal Matrix Composite Aluminium – Palm Oil Fly Ash Menggunakan Metode Cetrifugal Casting

    OpenAIRE

    Andrika, Chandra

    2015-01-01

    The current technological developments are expected to use natural resources sparingly but still able to produce a product with good quality. One of the metal forming technology developed in this time is MMC. Metal Matrix composite is a combination of metal as the main constituent (matrix) with other materials as reinforcement. This study aimed to analyze the effect of palm oil fly ash content with a variation of 2.5%, 5%, 7.5%, 10% and 12.5%, and the effect of T6 heat treat...

  8. Reciprocal sliding wear of SiC particle-reinforced Al-Cu aluminium matrix composites against stainless steel, high speed tool steel and ceramics. Pt. 2. Wear mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bai Mingwu [Lab. of Solid Lubrication, Lanzhou Inst. of Chemical Physics (China); Xue Qunji [Lab. of Solid Lubrication, Lanzhou Inst. of Chemical Physics (China); Guo Huifang [Inst. of Powder Metallurgy, Central-South Univ. of Technology, Changsha (China)

    1996-06-01

    The friction and wear of Al-Cu-SiC aluminium matrix composite pins dry sliding against 4Cr13, W{sub 18}Cr{sub 4}V and Si{sub 3}N{sub 4} (SN) ceramic blocks were investigated in a reciprocal friction test machine under applied loads of 20-175 N and reciprocal speeds of 0.075-1.2 m s{sup -1}. The worn surface morphology was analysed to clarify the wear mechanisms. Wear mechanism maps were constructed to elucidate the effects of test condition such as applied load, reciprocal speed and counterface materials on the wear mode and wear mechanism transition. Wear models were proposed to explain the experimental phenomena based on the characterization studies. (orig.)

  9. Analysis of Orthogonal Cutting of Aluminium-based Composites

    Directory of Open Access Journals (Sweden)

    P. Ravinder Reddy

    2002-10-01

    Full Text Available A turning test on aluminium-based metal-matrix composites (MMCs (aluminium-30% silicon carbide was performed with K-20 carbide tool material and wear patterns and the wear land growth rates were analysed to evaluate the wear characteristics and to classify the relationship between the physical (mechanical properties and the flank wear of cutting tools. The study was also extended to the machining aspects and the width of cuts on MMCs and the influence of various cutting parameters. The experiments were conducted to measure the temperature along the cutting tool edge using thermocouple at various cutting speeds, and depth of cuts, keeping the feed rate constant while turning with K-20 carbide cutting tool. The finite-element method was used to simulate the orthogonal cutting of aluminium-based MMCs. The heat generation at the chip-tool interface, frictional heat generation at the tool flank, and the heat generation at the work tool interface were calculated analytically and imposed as boundary conditions. The analysis of the steady-state heat transfer was carried out and the temperature distribution at cutting edge, shear zone, and interface regions have been reported.

  10. Thermoelectric power of multilayer compositions of aluminium and carbon nanotubes

    International Nuclear Information System (INIS)

    Changing the thermoelectric power monolayer and multilayer aluminium foil and multilayer foils compositions of aluminium and carbon nanotubes is the deformation ε < 60% due to the scattering of conduction electrons at dislocations and ε=(70 ...96)% - due to their scattering on the boundaries between the layers (thermoelectric size effect)

  11. ThermophysicalProperties of Cellular Aluminium andCeramic Particulate / Aluminium Composites

    Directory of Open Access Journals (Sweden)

    Khalid Almadhoni

    2015-10-01

    Full Text Available In this paper, the thermophysical properties of cellular Al and Ceramic Particulate / Al Composites were explored. Thermophysical properties are defined as material properties that vary with temperature without altering the material's chemical identity including thermal conductivity (TC, coefficient of thermal expansion (CTE, energy absorption, porosity and relative density. The significance of cellular Al and AMMCs reinforced by ceramic particles lies in their propertieswhich are difficult to be available combined in other engineering materials. New cellular AMMCs that meet the needs of the required engineering applications could be synthesized by selection an appropriate reinforcements. Different kinds of ceramic particles such as oxides, carbides, nitrides, as well as carbon nanotubes can be utilized as reinforcements for manufacturing of cellular AMMCs. Thermophysicalproperties of cellular AMMCs consisting of Al as continuous matrix phase and ceramic particles as reinforcements are directly influenced by type, size, and geometry of dispersions, also the RVR. In addition, the constituents of ceramic particulate / aluminium composites characterized by different heat transfer mechanisms, wherethe TC mechanism in metals is attributed to free electrons, while phonons are primarily responsible for TC in nonmetallic materials, as well as an interfacial thermal barrier resistance influence effectively on heat transfer inside the composite and thus the thermophysical properties. In this paper, based on the literature review, thermophysical properties of cellular Al and AMMCs reinforced by ceramic particles were discussed.

  12. Fabrication experience of aluminium clad aluminium matrix dispersion fuels at BARC

    International Nuclear Information System (INIS)

    Aluminium clad, aluminium matrix plate type dispersion fuels have been fabricated in BARC in recent years as part of fuel development programme for small non-power research reactors. The present paper describes the flowsheet developed for fabrication of Al-UAlx, Al-U3Si2 and Al-U3O8 fuels at BARC. The Al-20% U alloy fuel for KAMINI neutron radiography reactor was prepared by 'melting and casting' route, followed by picture framing and roll-bonding. For higher 'U' density fuels namely, Al-UAlx, Al-U3O8 and Al-U3Si2 the 'powder metallurgy' route was followed for preparation of fuel meat. The novel features in fabrication route were: addition of Zr for stabilizing UAl3 phase in Al-20% U alloy; x-ray radiography and microdensitometric scanning of radiographs for location of fuel outline inside fuel element and for confirming homogeneous distribution of fissile atoms; immersion ultrasonic testing for confirming good bonding between mating Al surface of the fuel plate. (author)

  13. Composite materials of the aluminium-steel system

    International Nuclear Information System (INIS)

    Data on development and production of new composite materials with different aluminium matrices (SAP-1, AD1, AB), reinforced by high-strength wires of VNS-9 steel are given. Three methods of composite material production are applied: explosion welding, hot rolling in vacuum, diffusion sintering. Advantages and disadvantages of each of these methods are given. SAP1+VNS-9 steel wire composite is promising for constructions, operating under high temperature conditions (400-500 deg C). It is stated that at the temperature of 400 deg C short-time strength of reinforced SAP-1 is higher to 85 kgs/mm2, i.e. 12 times higher than the strength of non-reinforced one. The KAS-1A composite material based on heat matrix of AB alloy permitted to increase the strength of the A the transverse direction by 15-20 kgs/mm2. The KAS-1 and KAS-1 composite materials are considered to be promising for using as coverings of different slapes to strengthen constructions (to decrease a crack propagation rate)

  14. Multi-Objective Optimization in Electric Discharge Machining of Aluminium Composite

    Directory of Open Access Journals (Sweden)

    N. Radhika

    2014-12-01

    Full Text Available This paper involves the optimization of input process parameters in Electric Discharge Machining of Aluminium hybrid Metal Matrix Composite. Aluminium AlSi10Mg alloy reinforced with 9 %wt. alumina and 3 %wt. graphite particles fabricated through liquid metallurgy route was used for machining. Experiments were conducted in an Electric Discharge Machine and the influence of input process parameters such as Peak current, Pulse-on time and Flushing pressure during machining of aluminium composite was studied. The objective was to obtain a minimum surface roughness with minimum tool wear rate and maximum material removal rate. Multi-objective optimization of the input process parameters was performed by employing Artificial Neural Network and Genetic Algorithm hybrid optimization technique. The results obtained provide a pareto-optimal solution set that offers a set of non-dominated solutions that can be used in a practical situation by a decision maker.

  15. Silver Matrix Composites - Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wieczorek J.

    2016-03-01

    Full Text Available Phase compositions of composite materials determine their performance as well as physical and mechanical properties. Depending on the type of applied matrix and the kind, amount and morphology of the matrix reinforcement, it is possible to shape the material properties so that they meet specific operational requirements. In the paper, results of investigations on silver alloy matrix composites reinforced with ceramic particles are presented. The investigations enabled evaluation of hardness, tribological and mechanical properties as well as the structure of produced materials. The matrix of composite material was an alloy of silver and aluminium, magnesium and silicon. As the reinforcing phase, 20-60 μm ceramic particles (SiC, SiO2, Al2O3 and Cs were applied. The volume fraction of the reinforcing phase in the composites was 10%. The composites were produced using the liquid phase (casting technology, followed by plastic work (the KOBO method. The mechanical and tribological properties were analysed for plastic work-subjected composites. The mechanical properties were assessed based on a static tensile and hardness tests. The tribological properties were investigated under dry sliding conditions. The analysis of results led to determination of effects of the composite production technology on their performance. Moreover, a relationship between the type of reinforcing phase and the mechanical and tribological properties was established.

  16. Selected properties of the aluminium alloy base composites reinforced with intermetallic particles

    Directory of Open Access Journals (Sweden)

    M. Adamiak

    2005-12-01

    Full Text Available Purpose: The main aim of this work is to investigate two types of intermetallics TiAl and Ti3Al as reinforcement and their influence on selected properties and microstructure of aluminium matrix composites.Design/methodology/approach: Aluminium matrix composites were produced employing the atomised aluminium alloy AA6061 as metal matrix, when as reinforcement TiAl and Ti3Al intermetallics particles were used. The powders were cold pressed and then hot extruded. To evaluate the effect of mechanical milling two types of ball mills were used: a low energy (horizontal ball mill and a high energy one (eccentric ball mill. Reinforcement contents for both processes 5, 10, 15 % by weight. To determine hardness Vickers tests were performed. Microstructure observations were made by optical microscopy and scanning electron microscopy SEM.Findings: Based on the examinations carried out one can state that the mechanical milling can produce composites powders with homogenous distribution of reinforcement particles. The mechanically milled and extruded composites show finer and better distribution of reinforcement particles what leads to better mechanical properties of obtained products.Research limitations/implications: In order to evaluate with more detail the possibility of applying these composite materials at practical application, further investigations should be concentrated on the interface reaction of the matrix and reinforcing particles during elevated temperature exposition and their influence on mechanical properties.Practical implications: The composites materials produced by this way have shown significant improvement of the mechanical properties in comparision with matrix materials. Good properties of the composites make them suitable for various technical and industrial applications.Originality/value: It should be stressed that the materials as intermetallic compounds with outstanding mechanical properties and good thermal stability were

  17. Microstructural and mechanical properties analysis of an aluminium matrix composite reinforced with the amorphous alloy Al{sub 87.5}Ni{sub 4}Sm{sub 8.5} consolidated by hot extrusion; Propriedades mecanicas e microestruturais de um composito com matrix de aluminio e reforco amorfo de Al{sub 87.5}Ni{sub 4}Sm{sub 8.5} consolidado por extrusao a quente por extrusao a quente

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, L.C.R.; Bolfarini, C.; Kiminami, C.S.; Botta, W.J. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais; Peres, M.M., E-mail: peresmm@yahoo.com.b [Universidade Federal de Itajuba (UNIFEI), Itabira, MG (Brazil)

    2010-07-01

    The aim of this work is the microstructure and the mechanical properties analysis of an aluminium matrix composite reinforced with the Al{sub 87.5}Ni{sub 4}Sm{sub 8.5} amorphous alloy. The amorphous alloy was produced by melt-spinning and fragmented in powder particles by milling. Pure aluminium power was moistured with amorphous powder in a proportion of 80:20 (% weight) and processed by milling using 350 rpm during 30 minutes for the generation of a homogeneous composite powder. This product was consolidated by extrusion at 235 deg C, ram speed of 2mm/min and extrusion ratio of 7/1, generating a compact and cylindrical bar with 3 mm of width. The result sample was characterized by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC) and by X-Ray Diffraction (XRD). Microhardness and compression tests show an improvement on the mechanical properties. (author)

  18. Influence of filler size and morphology in controlling the thermal emissivity of aluminium/polymer composites for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Babrekar, Harshada A., E-mail: harshada98@gmail.co [Department of Physics, University of Pune, Ganeshkhind Road, Pune 411 007 (India); Kulkarni, Naveen V. [Department of Physics, University of Pune, Ganeshkhind Road, Pune 411 007 (India); Jog, Jyoti P. [National Chemical Laboratory, Pashan Road, Pune 411 008 (India); Mathe, Vikas L.; Bhoraskar, Sudha V. [Department of Physics, University of Pune, Ganeshkhind Road, Pune 411 007 (India)

    2010-04-15

    The paper has addressed the problem of controlling the thermal emissivities from metal/polymer composites prepared by solution method. Aluminium is used as a filler and polystyrene as a polymer-matrix. Aluminium particles, with micrometer and nanometer dimensions having different morphologies, were employed. The values of emissivities were reduced when the coarse grains and flakes of aluminium were used as fillers, whereas, no significant change was observed when nano-aluminium was used in the composite. Dielectric dispersion for the composites was measured and the results are analysed in view of Fresnel relation. The differences in the values of dielectric constants, between the experimentally measured and those which can be predicted theoretically, are thought to arise from the interfacial polarization.

  19. Abrasive wear response of aluminium alloy-sillimanite particle reinforced composite under low stress condition

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. [Regional Research Laboratory (CSIR), Hoshangabad Road, Near Habibganj Naka, Bhopal 462 026 (India)]. E-mail: mulayam_singh@hotmail.com; Mondal, D.P. [Regional Research Laboratory (CSIR), Hoshangabad Road, Near Habibganj Naka, Bhopal 462 026 (India); Das, S. [Regional Research Laboratory (CSIR), Hoshangabad Road, Near Habibganj Naka, Bhopal 462 026 (India)

    2006-03-15

    The abrasive wear behaviour of aluminium alloy-sillimanite particle reinforced composite under low stress condition has been reported and the results have been compared with the corresponding matrix alloy which was produced and cast under similar conditions. The study showed that wear resistance (inverse of wear rate) of the composite was higher than the matrix alloy. The wear rate decreased with sliding distance and increased with applied load irrespective of materials. The worn surfaces and subsurfaces of the tested samples were examined in the scanning electron microscope in order to understand the material removal mechanism during low stress abrasive wear process.

  20. Role of work hardening characteristics of matrix alloys in the strengthening of metal matrix composites

    Indian Academy of Sciences (India)

    K T Kashyap; C Ramachandra; C Dutta; B Chatterji

    2000-02-01

    The strengthening of particulate reinforced metal–matrix composites is associated with a high dislocation density in the matrix due to the difference in coefficient of thermal expansion between the reinforcement and the matrix. While this is valid, the role of work hardening characteristics of the matrix alloys in strengthening of these composites is addressed in the present paper. It is found that commercial purity aluminium which has the lowest work hardening rate exhibits the highest strength increment. This effect is due to increased prismatic punching of dislocations. This relationship of decreasing work hardening rate associated with increasing prismatic punching of dislocations in the order 7075, 2014, 7010, 2024, 6061 and commercial purity aluminium leading to increased strength increments is noted.

  1. The Effects of Cocos Nucifera (Coconut Shell on the Mechanical and Tribological Properties of Recycled Waste Aluminium Can Composites

    Directory of Open Access Journals (Sweden)

    J.O. Agunsoye

    2014-06-01

    Full Text Available The dry sliding wear behaviour and mechanical properties of recycled aluminium metal matrix composite reinforced with 5 and 10 % coconut shell particles (CSp has been investigated. The particle size of Cocosnucifera (coconut shell that were used ranges from 50-300µm. The wear behaviors of developed samples were investigated under varied loads and speed using pin on disc equipment. The samples were also subjected to tensile, impact and hardness test. The result shows that the additions of coconut shell particles improved the wear resistance of the recycled aluminium can/CSp composites at low Speed (2.36 m/s. However, with increase in Speed (4.72 m/s, an increase in the specific wear rates were observed. Increasing the coconut shell particles additions to the recycled waste aluminium cans (RWAlC reduced the impact resistance, hence the toughness of the RWAlC/CSp composite samples. However, the impact resistance of the composites increased as the Cocosnucifera particle size increased. The result of the filler size variation shows that decrease in filler particles size improved the tensile strength and yield strength of the developed aluminium metal matrix /CSp composite. The hardness of the composite increased with increased additions of the filler within the matrix.

  2. Use of Propranolol-Magnesium Aluminium Silicate Intercalated Complexes as Drug Reservoirs in Polymeric Matrix Tablets

    OpenAIRE

    T. Pongjanyakul; S Rojtanatanya

    2012-01-01

    The objective of the present study was to investigate the use of propranolol-magnesium aluminium silicate intercalated complexes as drug reservoirs in hydroxypropylmethylcellulose tablets. The matrix tablets containing the complexes were prepared and characterised with respect to propranolol release and were subsequently compared with those loading propranolol or a propranolol-magnesium aluminium silicate physical mixture. Additionally, the effects of varying viscosity grades of hydroxypropyl...

  3. Aluminium based composites strengthened with metallic amorphous phase or ceramic (Al2O3) particles

    International Nuclear Information System (INIS)

    Highlights: • Al-based composites with amorphous Al strengthening phase were obtained. • A better adhesion of metallic amorphous particles than of ceramic phase. • Avoiding crystallization of amorphous phase during a composite pressing process. • Properties similar for 10% metallic amorphous and ceramic strengthening phases. • Better amorphization in case of melt spinning than gas atomization of the Al alloy. - Abstract: Two methods were used to obtain amorphous aluminium alloy powder: gas atomization and melt spinning. The sprayed powder contained only a small amount of the amorphous phase and therefore bulk composites were prepared by hot pressing of aluminium powder with the 10% addition of ball milled melt spun ribbons of the Al84Ni6V5Zr5 alloy (numbers indicate at.%). The properties were compared with those of a composite containing a 10% addition of Al2O3 ceramic particles. Additionally, a composite based on 2618A Al alloy was prepared with the addition of the Al84Ni6V5Zr5 powder from the ribbons used as the strengthening phase. X-ray studies confirmed the presence of the amorphous phase with a small amount of aluminium solid solution in the melt spun ribbons. Differential Scanning Calorimetry (DSC) studies showed the start of the crystallization process of the amorphous ribbons at 437 °C. The composite samples were obtained in the process of uniaxial hot pressing in a vacuum at 380 °C, below the crystallization temperature of the amorphous phase. A uniform distribution of both metallic and ceramic strengthening phases was observed in the composites. The hardness of all the prepared composites was comparable and amounted to approximately 50 HV for those with the Al matrix and 120 HV for the ones with the 2618A alloy matrix. The composites showed a higher yield stress than the hot pressed aluminium or 2618A alloy. Scanning Electron Microscopy (SEM) studies after compression tests revealed that the propagation of cracks in the composites

  4. Fatigue behaviour of 6061 aluminium alloy and its composite

    OpenAIRE

    Hwa, Ping

    2001-01-01

    Fatigue behaviour of an artificial aged powder metallurgy 6061 aluminium alloy, and a composite made of this alloy with 15% volume fraction of SiCp was investigated. The alloy was subjected to T6 heat treatment, as was the composite material chosen (which incorporated SiC particles of average size 30pm). An extensive experimental programme was carried out in which fatigue lives were determined using load-controlled axial loading of unnotched cylindrical samples, at stress ratios of-1 and 0.1....

  5. Thermoplastic Matrix Composites from Towpregs

    OpenAIRE

    Silva, João; Nunes, João; Bernardo, C. A.; Marques, António

    2011-01-01

    In recent years, continuous fibre reinforced thermoplastic matrix composites have been successfully employed in the aircraft, military and aerospace industries due to the excellent properties (Brandt et al. 1993 & Nunes et al 2005a). In these and many other commercial engineering applications, they can replace other materials, such as thermosetting matrix composites. However, the high cost of the impregnation of continuous fibre thermoplastic composites, arising from the meltin...

  6. Microstructure characterization of aluminium syntactic functionally graded composites containing hollow ceramic microspheres manufactured by radial centrifugal casting

    OpenAIRE

    Ferreira, S. C.; Velhinho, A.; L. A. Rocha; Fernandes, F. M. Braz

    2008-01-01

    Syntactic functionally graded metal matrix composites (SFGMMC) are a class of metallic foams in which closed porosity results from the presence of hollow ceramic microspheres (microballoons), whose spatial distribution varies continuously between the inner and the outer section of the part, thus resulting in a continuous variation in properties. In this work, aluminium-based SFGMMC rings were fabricated by radial centrifugal casting. The graded composition along the radial direction is contro...

  7. Effect of fiber-matrix interface structure on crack stability of boron-aluminium

    International Nuclear Information System (INIS)

    Experimental investigation into the effect produced by matrix-fiber interface structure in monodirected boron-aluminium samples on resistance to the propagation of the central crack perpendicular to the reinforcement direction, is conducted. Effect of interphase linking density structural parameter θ on the change of fracture toughness indices is evaluated

  8. Aluminium composite materials for multichip modules

    International Nuclear Information System (INIS)

    This paper reports that, as a result of continued advances in microelectronics, packaging technologies have become ital to the success of advanced designs. Progress in this field has been driven by advances in active device technologies that have resulted in significant miniaturization, increased functional density, and higher operating frequencies. These developments have produced ever-increasing power densities requiring improve thermal management schemes. In particular, multichip modules (MCMs) present challenges because they contain several devices in close proximity. The alternatives to improve cooling schemes-higher junction temperatures and decreased reliability-are clearly unacceptable. Requirements for improved cooling are complicated further in avionics systems by the need to minimize system weight and in automotive systems by the need to provide protection from a more hostile environment while maintaining low cost. These needs are driving materials developments along a number of fonts, as reviewed in Carl Zweben's article in this issue. Unfortunately, no current-generation material can meet all of these challenges. The use of aluminum or copper results in unacceptable expansion stress on silicon- or gallium arsenide-based devices. Kovar is costly to manufacture in complex configurations and ins inherently poor in thermal conductivity. The Cu/W and Cu/Mo blends, either in the form of metallurgical or macroscopic composites, offer good thermal conductivity but are inherently heavy and are manufactured from expensive raw materials

  9. Reciprocal sliding wear of SiC particle reinforced Al-Cu aluminium matrix composites against stainless steel, high speed tool steel and ceramics. Pt. 1. Tribological properties and construction of tribo-maps

    Energy Technology Data Exchange (ETDEWEB)

    Bai Mingwu [Lab. of Solid Lubrication, Lanzhou Inst. of Chemical Physics, Lanzhou (China); Xue Qunji [Lab. of Solid Lubrication, Lanzhou Inst. of Chemical Physics, Lanzhou (China); Guo Huifang [Inst. of Powder Metallurgy, Central-South Univ. of Technology, Changsha (China)

    1996-07-01

    The SiC particle reinforced Al-Cu aluminum matrix composites were dry sliding against 4Cr13, W{sub 18}Cr{sub 4}V steel and Si{sub 3}N{sub 4} ceramics on a reciprocal sliding wear testing machine at ambient conditions. Experiments were performed within a normal load range of 20 to 175 N and a sliding velocity of 0.075 to 1.2 m s{sup -1}. It was found that there was a big friction coefficient and friction fluctuation at low reciprocal velocity and very low friction coefficient at very high reciprocal velocity. The composite pins in composite/W{sub 18}Cr{sub 4}V tribo-pairs had greatest wear resistance in three kinds of tribo-pairs. The wear maps of the three kinds of tribo-pairs constructed to illustrate the sliding wear characteristics of the composites. (orig.)

  10. Evaluation of the mechanical properties and corrosion behaviour of coconut shell ash reinforced aluminium (6063 alloy composites

    Directory of Open Access Journals (Sweden)

    Oluyemi O. DARAMOLA

    2015-12-01

    Full Text Available Aluminium 6063/Coconut shell ash (CSAp composites having 3-12 weight percent (wt% coconut shell ash were fabricated by double stir-casting method. The microstructure, ultimate tensile strength, hardness values, density and corrosion behaviour in 0.3M H2SO4 and 3.5wt% NaCl solution of the composites were evaluated. The density of the composites exhibit a linear and proportional decreased as the percentage of coconut shell ash increases in the aluminium alloy. It implies that composites with lower weight component can be produced by adding CSAp. The microstructural analysis showed uniform distribution of coconut shell ash particles in the aluminium alloy matrix. Significant improvement in hardness and ultimate tensile strength values was noticeable as the wt% of the coconut shell ash increased in the alloy, although this occur at the expense of ductility of the composites as the modulus of elasticity of the composites decreases as the percentage of CSAp increases. Hence, this work has established that incorporation of coconut shell particles in aluminum matrix can lead to the production of low cost aluminum composites with improved hardness and tensile strength values.

  11. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  12. Survey of aluminum matrix composites

    International Nuclear Information System (INIS)

    This is a review of the current stage of development of fiber reinforced Al matrix composites: primary and secondary fabrication, physical and mechanical properties, environmental effects, applications, current and projected costs of raw material and composites, and future developments. Boron and beryllium are among the filament materials. (101 references, 32 fig.) (U.S.)

  13. Corrosion of ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Scanu, T. (ONERA-OM, 92 Chatillon (France) LASIR, CNRS, 94 Thiais (France)); Colomban, P. (ONERA-OM, 92 Chatillon (France) LASIR, CNRS, 94 Thiais (France))

    1993-11-01

    Air stable ceramic matrix composites are promising for thermostructural applications such as aircraft engine parts. Turbine parts are subject to both sulphuric acid and sodium molten salts corrosion due to sulphate traces in engine fuel and to the NaCl air content. The chemical stability is a very important criterion but this point has not received much attention to date. We report here a study of acidic and sodium corrosion of various aluminosilicate matrices : LAS matrices (Li[sub 2]OAl[sub 2]O[sub 3]2-6SiO[sub 2],nP[sub 2]O[sub 5]) in the amorphous, [beta] eucryptite and [beta] spodumene forms, BAS matrix (BaOAl[sub 2]O[sub 3]2SiO[sub 2]) in the form of monoclinic and hexagonal celsian, NASICON matrix (Na[sub 3]Zr[sub 2]Si[sub 2]PO[sub 12]) and mullite matrix. Microstructure damages and ion exchange have been analysed by X-ray diffraction, IR absorption, scanning electron microscopy and Raman microprobe. Drastic corrosion is observed for [beta] spodumene containing composites with the formation of strong hydrogen bond or with the cell expansion due to Li/Na[sup +] exchange. Medium acidic attack occurs for glassy LAS, [beta] eucryptite, BAS and NASICON matrix composites. On the other hand, [beta] eucryptite, NASICON and monoclinic celsian resist to alkaline melts. Mullite matrix composites are never corroded. (orig.).

  14. Corrosion of ceramic matrix composites

    International Nuclear Information System (INIS)

    Air stable ceramic matrix composites are promising for thermostructural applications such as aircraft engine parts. Turbine parts are subject to both sulphuric acid and sodium molten salts corrosion due to sulphate traces in engine fuel and to the NaCl air content. The chemical stability is a very important criterion but this point has not received much attention to date. We report here a study of acidic and sodium corrosion of various aluminosilicate matrices : LAS matrices (Li2OAl2O32-6SiO2,nP2O5) in the amorphous, β eucryptite and β spodumene forms, BAS matrix (BaOAl2O32SiO2) in the form of monoclinic and hexagonal celsian, NASICON matrix (Na3Zr2Si2PO12) and mullite matrix. Microstructure damages and ion exchange have been analysed by X-ray diffraction, IR absorption, scanning electron microscopy and Raman microprobe. Drastic corrosion is observed for β spodumene containing composites with the formation of strong hydrogen bond or with the cell expansion due to Li/Na+ exchange. Medium acidic attack occurs for glassy LAS, β eucryptite, BAS and NASICON matrix composites. On the other hand, β eucryptite, NASICON and monoclinic celsian resist to alkaline melts. Mullite matrix composites are never corroded. (orig.)

  15. Structure and wear resistance of plasma sprayed coatings from composite aluminium powders with dispersion phases

    International Nuclear Information System (INIS)

    Composite aluminium powders with dispersion ceramic and ceramic-metallic phases were obtained by the mechanical alloying in the rotary-vibration mill. Parameters of obtaining powders and their microstructure and morphology were characterized. technological parameters of plasma spraying of coatings from the composite powders formed were determined. Investigation results of abrasion and erosion wear resistance of coatings are presented. The structure of coatings obtained from the composite of the powders of the Al-Ni-SiC, Al-Ti-SiC type also contains intermetallic phases formed 'in situ' reaction during thermal spraying. It has been found, that abrasion and erosion wear resistance of coatings is connected with the type and volume fraction dispersion phases strengthening the coating matrix. (author)

  16. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  17. A study of formation of iron nanoparticles in aluminium matrix with helium pores

    Czech Academy of Sciences Publication Activity Database

    Kichanov, S.E.; Kozlenko, D. P.; Belushkin, A.V.; Reutov, V.F.; Samoilenko, S.O.; Jirák, Zdeněk; Savenko, B. N.; Bulavin, L. A.; Zubavichus, Y.V.

    2012-01-01

    Roč. 351, č. 1 (2012), "012013-1"-"012013-5". ISSN 1742-6588. [International Workshop on SANS-YuMO User Meeting at the Start-up of Scientific Experiments on the IBR-2M Reactor - Devoted to the 75th anniversary of Yu M Ostanevich's Birth /2./. Dubna, 27.05.2011-30.05.2011] Institutional research plan: CEZ:AV0Z10100521 Keywords : iron nanoparticles * aluminium matrix * helium pores Subject RIV: BM - Solid Matter Physics ; Magnetism

  18. MECHANICAL PROPERTY EVALUATION OF A356/SiCp/Gr METAL MATRIX COMPOSITES

    OpenAIRE

    B. M. VISWANATHA; M. PRASANNA KUMAR; S. Basavarajappa; T. S. KIRAN

    2013-01-01

    In the present investigation, studies on microstructure and mechanical properties of Aluminium Matrix Composites (AMCs) reinforced with silicon carbide (SiCp) and graphite (Gr) particles. A356 alloy is used as the matrix material with varying the reinforcement of SiCp from 0 to 9 wt% in steps of 3 wt% and fixed quantity of 3 wt% of graphite. The composites were fabricated by liquid metallurgy method. The prepared composites were examined for microstructure to know the particle distribution in...

  19. Corrosion of Titanium Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Covino, B.S., Jr.; Alman, D.E.

    2002-09-22

    The corrosion behavior of unalloyed Ti and titanium matrix composites containing up to 20 vol% of TiC or TiB{sub 2} was determined in deaerated 2 wt% HCl at 50, 70, and 90 degrees C. Corrosion rates were calculated from corrosion currents determined by extrapolation of the tafel slopes. All curves exhibited active-passive behavior but no transpassive region. Corrosion rates for Ti + TiC composites were similar to those for unalloyed Ti except at 90 degrees C where the composites were slightly higher. Corrosion rates for Ti + TiB{sub 2} composites were generally higher than those for unalloyed Ti and increased with higher concentrations of TiB{sub 2}. XRD and SEM-EDS analyses showed that the TiC reinforcement did not react with the Ti matrix during fabrication while the TiB{sub 2} reacted to form a TiB phase.

  20. Simulation of metal hydride reactor with aluminium foam matrix

    International Nuclear Information System (INIS)

    'Full text:' A 1-D model has been developed for testing different designs of hydride reactors. The computer program can simulate a complete reactor or a part of it in planar, cylindrical or spherical geometry. It reproduces an experimental loop: absorption followed by desorption and calculates heat transfer during the reaction. Simulation results have been confronted to experimental data with very good correlation. A reactor with a heat transfer matrix inside, such as aluminum foam, can be simulated. We have evaluated the size limits of a reactor and the category of foam that preserves the good reaction kinetic performances of a reactor filled with LaNi5. (author)

  1. Interface in silicon carbide whisker reinforced aluminium composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Li; Geng, Lin; Yao, Zhongkai; Lei, Tingquan (Harbin Institute of Technology (China))

    1989-09-01

    The interface in SiCw/Al composites was examined. The Auger electron spectroscope analysis of the fracture surface after sputter etching shows that the bonding between SiC whisker and Al matrix is quite good. TEM and X-ray diffraction analysis show that there is no reaction layer at the SiC-Al interface. Si and C cannot diffuse into the matrix, and Al cannot diffuse into the whisker. The experimental results also show that there may be certain orientation relationships between the SiC whisker and the nearby matrix. 7 refs.

  2. Influence of cold rolling and fatigue on the residual stress state of a metal matrix composite

    OpenAIRE

    Hanus, E.; Ericsson, T.; Lu, J.; Decomps, F.

    1993-01-01

    The large difference in the coefficient of thermal expansion between the matrix alloy and the particle in a metal matrix composite gives rise to residual stresses in the material. In the present work the effect of cold rolling and four-point bending fatigue on the residual stress state of a silicon carbide particle reinforced aluminium alloy (AA 2014) has been investigated. The three dimensional stress state measured in both phases : matrix and reinforcement, has been determined by using an X...

  3. Electrochemical characteristics of a carbon fibre composite and the associated galvanic effects with aluminium alloys

    International Nuclear Information System (INIS)

    Highlights: • Exposed carbon fibres on two defined regions (“front” and “side”) are a focus of the investigation in NaCl electrolyte. • The exposed carbon fibres on the side and front regions are responsible for a high cathodic current density. • The NaCl + CuSO4 electrolyte was used to investigate the cathodic polarization behaviour of the exposed carbon fibres. • Galvanic coupling behaviour between the composite and aluminium alloys (AA7075-T6 and AA1050) was measured in NaCl electrolyte. • The higher galvanic current density measured on AA1050 alloy introduced a higher dissolution rate than the AA7075-T6 alloy. - Abstract: The electrochemical behaviour of a carbon fibre reinforced epoxy matrix composite in 3.5% NaCl and 3.5% NaCl + 0.5 M CuSO4 electrolytes was examined by potentiodynamic polarisation, potentiostatic polarisation and scanning electron microscopy. Exposed carbon fibres on two defined regions (“front” and “side”) are a focus of the investigation. The large size of the exposed carbon fibres on the side region is responsible for a higher cathodic current density than the front region in the NaCl electrolyte. The deposition of copper on the front surface of composite confirmed that the significantly higher cathodic current resulted from the exposure of the fibres to the NaCl electrolyte. Galvanic coupling between the composite and individual aluminium alloys (AA7075-T6 and AA1050) was used to measure galvanic potentials and galvanic current densities. The highly alloyed AA7075-T6 alloy and its high population density of cathodic sites compared to the AA1050 acted to reduce the galvanic effect when coupled to the composite front or side regions

  4. Wear performance of aluminium/AL2O3/C hybrid composites

    Directory of Open Access Journals (Sweden)

    K. Naplocha

    2008-02-01

    Full Text Available Purpose: The effects of the applied load and graphite volume fraction on dry-sliding friction and wear propertiesof hybrid composite reinforced with alumina fibres and graphite in form of fibres or flakes were investigated.Design/methodology/approach: The tests were carried out on preforms with about 6.5 to 15.0 % (all thepercentages v/v of Al2O3 fibres (Saffil and 1.5to 12.0 % of graphite, infiltrated using the squeeze casting method.Porous preforms possess suitable permeability, good strength and reveal semi-oriented arrangement of fibresand graphite flakes. The composite microstructure exhibit regular arrangement of fibres and rather poor bondingbetween matrix and graphite.Dry wear tests were carried out using a wear tester at constant sliding velocity and under various loads, which inrelation to diameter of specimens corresponds to pressure of P1 = 0.81; P2 = 1.23; P3 = 1.53 MPa.Findings: Comparison of wear losses for monolithic Al-Si7 alloy and its composites reveals that alumina fibresconsiderably improve this property but addition of graphite also protects from seizure. The composites reinforcedwith graphite fibres were less sensitive to the applied load than both the matrix and the composites reinforced withgraphite flakes.Research limitations/implications: Proposed method can be used for manufacturing of hybrid compositewith graphite fibers less than 10 vol. % due to problems with producing of the uniform microstructure.Practical implications: Aluminum casting alloys can be locally reinforced to improve strength and wearresistance in wide temperature range.Originality/value: Article is valuable for persons, that are interesting in production of casting compositematerials reinforced with hybrid ceramic perform. Proposed method allows incorporate graphite into compositereinforced with Al2O3 fibers (Saffil

  5. Titanium Matrix Composite Pressure Vessel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium...

  6. Optimization of machining parameters in drilling hybrid aluminium metal matrix composites%混合铝基复合材料钻削工艺参数的优化

    Institute of Scientific and Technical Information of China (English)

    T.RAJMOHAN; K.PALANIKUMAR; M.KATHIRVEL

    2012-01-01

    Taguchi method with grey relational analysis was used to optimize the machining parameters with multiple performance characteristics in drilling hybrid metal matrix A1356/SiC-mica composites.Experiments were conducted on a computer numerical control vertical machining centre and L18 orthogonal array was chosen for the experiments.The drilling parameters namely spindle speed,feed rate,drill type and mass fraction of mica were optimized based on the multiple performance characteristics including thrust force,surface roughness,tool wear and burr height (exit).The results show that the feed rate and the type of drill are the most significant factors which affect the drilling process and the performance in the drilling process can be effectively improved by using this approach.%采用Taguchi方法和灰色关联分析对A1356/SiC-云母混合金属基复合材料的钻削工艺参数进行优化.实验采用L18正交阵列,在计算机的控制立式机床上进行.考察的钻削性能指标包括轴向力、表面粗糙度、刀具磨损和毛刺高度,对影响这些性能的钻削工艺参数进行了优化,包括轴转数、给进速度、钻头类型和云母质量分数.结果表明:给进速度和钻头类型是影响钻削过程的重要因素,通过这种方法可以有效地改进钻削工艺的性能.

  7. Thermomechanically induced residual strains in Al/SiCp metal-matrix composites

    DEFF Research Database (Denmark)

    Lorentzen, T.; Clarke, A.P.

    Residual lattice strains in the aluminium and SiC phases of F3S.20S extruded A359 20% SiC metal-matrix composite were measured by using neutron diffi action at room and elevated temperatures to monitor the effects of in situ uniaxial plastic deformations. The results are interpreted with referenc...

  8. Corrosion of ceramic matrix composites

    OpenAIRE

    Scanu, T.; Colomban, Ph.

    1993-01-01

    Air stable ceramic matrix composites are promising for thermostructural applications such as aircraft engine parts. Turbine parts are subject to both sulphuric acid and sodium molten salts corrosion due to sulphate traces in engine fuel and to the NaCl air content. The chemical stability is a very important criterion but this point has not received much attention to date. We report here a study of acidic and sodium corrosion of various aluminosilicate matrices : LAS matrices (Li2OAl2O32-6SiO2...

  9. Simulation of reflectance from white-anodised aluminium surfaces using polyurethane–TiO2 composite coatings

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Johansen, Villads Egede; Ambat, Rajan;

    2015-01-01

    Theoretical calculations and experimental studies were carried out on polyurethane (PU)–TiO2 composite coatings on bright and matte aluminium surfaces with an aim to understand and tailor the light scattering from particles incorporated into an anodised layer for designing the optical appearance of...... surfaces in the visible region were analysed using an integrating sphere-spectrophotometer. Data showed that the coated surfaces have a high diffuse reflectance due to the multiple scattering from TiO2 particles and the coating–substrate interface. The diffuse reflectance spectra of the coated surfaces...... anodised surfaces. PU matrix was selected for its matching refractive-index (n = 1.7) with anodic alumina layer. Three different TiO2 particle size distributions were dispersed in PU and spin coated onto bright high-gloss and matte caustic-etched aluminium substrates. The reflectance spectra of coated...

  10. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  11. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  12. Development of textile-reinforced carbon fibre aluminium composites manufactured with gas pressure infiltration methods

    OpenAIRE

    W. Hufenbach; Gude, M.; A. Czulak; J. Śleziona; A. Dolata-Grosz; M. Dyzia

    2009-01-01

    Purpose: The aim of his paper is to show potential of textile-reinforced carbon fibre aluminium composite with advantage of the lightweight construction of structural components subjected to thermo-mechanical stress.Design/methodology/approach: The manufacture of specimens of the carbon fibre-reinforced aluminium was realised with the aid of an advanced differential gas pressure infiltration technique, which was developed at ILK, TU Dresden.Findings: The gas pressure infiltration technology e...

  13. Phase composition, microstructure and microhardness of electroless nickel composite coating co-deposited with SiC on cast aluminium LM24 alloy substrate

    OpenAIRE

    Franco, M.; Sha, W.; Malinov, S.; Rajendran, R

    2013-01-01

    Electroless Ni–P (EN) and composite Ni–P–SiC (ENC) coatings were developed on cast aluminium alloy substrate, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni–P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni–Si phase was observed up t...

  14. Characterisation of phase composition, microstructure and microhardness of electroless nickel composite coating co-deposited with SiC on casting aluminium LM24 alloy substrate

    OpenAIRE

    Franco, M.; Sha, Wei; Malinov, Savko

    2013-01-01

    Electroless Ni-P (EN) and composite Ni-P-SiC (ENC) coatings were developed on cast aluminium alloy, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni-P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni-Si phase was observed upto 500°C of ...

  15. Surface mechanical behaviour of composite Ni-P-fly ash/zincate coated aluminium alloy

    International Nuclear Information System (INIS)

    Ni-P-fly ash coatings were produced on zincate coated 5083 wrought aluminium alloy substrates with the aid of an electroless deposition technique. Structural and chemical characterization of the produced coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-P-fly ash coating was found to consist of an amorphous Ni-P matrix with dispersed fly ash particles. The wear resistance of the Ni-P-fly ash coating on zincate treated aluminium alloy was observed to be higher than that of the bare aluminium alloy, when sliding against a stainless steel counterface. In addition, the adhesion between the Ni-P-fly ash/zincate coating and the aluminium alloy substrate was also studied with a scratch testing apparatus. The adhesion strength of Ni-P-fly ash/zincate coating on the aluminium alloy substrate was observed to be higher in comparison to the Ni-P/zincate coating on the same aluminium alloy.

  16. Dependence of frame catalysts composition of the rhodium-ruthenium system on conditions of aluminium leacing

    International Nuclear Information System (INIS)

    The alteration in the composition of frame rhodium-ruthenium catalytic electrodes is studied depending on temperature (0-40O deg C) and time (24h) of their leaching. It is shown that the greater part of residual aluminium in catalysts of rhodium-ruthenium system is in the form of bayerite. The chemical composition of frame rhodium-ruthenium catalysts is established

  17. A low cost, light weight cenosphere–aluminium composite for brake disc application

    Indian Academy of Sciences (India)

    V Saravanan; P R Thyla; S R Balakrishnan

    2016-02-01

    The commonly used composite material for brake rotor consists of silicon carbide (SiC) or aluminium oxide (Al$_2$O$_3$) particles which are more expensive. The weight of conventionally used composite is more compared to base alloy. The aim of this paper is to develop a light weight material for brake disc applications thereby substituting base alloy and conventional composite. This analysis led to 10 vol% cenosphere reinforced aluminium alloy (AA) 6063 composite as the most appropriate material for brake disc. To ensure the manufacturability of composite, composite brake rotor was casted using the sand casting technique and was machined to achieve the final component. Thermal capability of brake disc was ensured by studying temperature variation through vehicle testing procedure of disc brake. Cost reduction is one of the important benefit acquired using cenosphere reinforced composite. This was ensured by cost estimation and analysis. The cost estimated to manufacture the AA6063 brake disc was compared with composite cost.

  18. Manufacturing of EN AW6061 matrix composites reinforced by halloysite nanotubes

    OpenAIRE

    L.A. Dobrzański; Tomiczek, B.; M. Adamiak

    2011-01-01

    Purpose: The core of the work consists in the elaboration of composite materials of aluminium alloy matrix, manufactured with the use of powder metallurgy technologies, including mechanical milling and hot extrusion and in determining the influence of the share of halloysite nanotubes – as the reinforcing phase on the structure and mechanical properties of fabricated composites.Design/methodology/approach: Mechanical milling and hot extrusion are considering as a method for fabricating compos...

  19. Ultrasonic vibration assisted scratch surface morphology of silicon carbide particle reinforced aluminium matrix composites%铝基碳化硅复合材料超声振动辅助划痕表面形貌研究

    Institute of Scientific and Technical Information of China (English)

    周晓勤; 梁桂强; 郭婷婷

    2014-01-01

    为了揭示 SiCp/Al 复合材料超声振动加工的去除机理,开展针对 SiCp/Al 复合材料的超声振动辅助划痕(UVAS)和普通划痕对比实验,从划痕形貌方面进行UVAS和普通划痕对比分析。结果表明,普通划痕凹槽处出现大颗粒的破碎,而 UVAS 凹槽表面则呈现较多的细小碎屑;超声划痕的材料去除率比普通划痕的大。超声振动的引入对改善加工表面形貌有明显作用,是SiCp/Al精密加工的有效方法。%It was proposed in this paper to conduct ultrasonic vibration-assisted scratch(UVAS)test with single particle diamond indenter on SiCp/Al composite to study the removal mechanism.Tests were done to compare the material removal of SiCp/Al under UVAS and traditional scratches in terms of scratch morphology in order to find the material removal mechanism of the composites.It was shown that large particles were obserseved in grooves caused by traditional scratches,but small chipping were found in the grooves of ultrasonic scrathes, which indicated material removal ratio of ultrasonic scrathes was higher than that of traditional ones.To sum up,it was an effective way to study the matrial removal mechanism of SiCp/Al composite with UVAS.

  20. Hard magnetic composite materials with polymer matrix reinforced Nd-Fe-B hard magnetic particles

    International Nuclear Information System (INIS)

    Investigation results of the polymer matrix hard magnetic composite materials with particles of the powered rapid quenched Nd-Fe-B strip quenched Nd-Fe-B strip are presented at this paper. The Nd-Fe-B powder was doped (10 wt.%) with powder of iron, aluminium, CuSn10 casting copper alloy with tin, high alloy steel X2CrNiNo17-12-2 and aluminium oxide. Epoxy resin has been used as a matrix (2.5 wt.%). The pressure of 800-900 MPa and cured afterwards for 2 hours at 180 oC. The influence of dopes' materials kind on magnetic and mechanical composites were unilaterally and uniaxially pressed at room temperature under properties of composite materials was estimated. Metallographic examination of the composite materials' structure and XRD analysis has been made. Investigations of magnetic properties of composite materials show the influence of the addition material. It was estimated that dopes of soft magnetic material decrease coercive force HcB and slightly reduce remanence Br of composite. The addition of non-magnetic material decreases coercive force HcB and reduces remanence Br. Metallographic examination of the structure shows uniform distribution of Nd-Fe-B powder in the polymer matrix, grains are irregular elongated in the direction. Dopes distribution in a polymer matrix is irregular, agglomerations of powders of aluminium, iron and copper casting alloy with tin have noticed. Ultimate compressive strength of composite materials is improved for all the addition material, except powder of aluminium oxide. XRD analysis has identified the hard magnetic phase Nd2Fe14B. (author)

  1. Steel sheet composite materials with foamed aluminium; Stahlblechverbundwerkstoffe mit geschaeumtem Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Baumeister, J.; Weber, M. [Institut fuer Angewandte Materialforschung, Bremen (Germany); Bleck, W.; Hagen, H. von [Technische Hochschule Aachen (Germany). Lehrstuhl und Inst. fuer Eisenhuettenkunde

    1999-07-01

    Sandwich structured steel sheets with a core of foamed aluminium can be produced by roll-bonding and glueing. Results of corrosion tests and laser welding tests so far were positive. Several applications have been proposed but none of them has been implemented as yet. The material is recommended for applications with a profile of requirements comprising structurally and functionally relevant characteristics. Recycling is unproblematic. [German] Zur Herstellung von Stahlblechsandwichverbunden mit einem Aluminiumschaumkern lassen sich die Verfahren Walzplattieren und Kleben einsetzen. Es sind Sandwichverbunde mit Gesamtdichten von 0,7 bis 2,0 g/cm{sup 3} und Gesamtdicken zwischen 10 und 32 mm darstellbar. Die Tafelgroessen fuer die vielversprechendsten Verfahren liegen derzeit bei ueber DIN A3 (konventionell geschaeumt) oder 160 mm x mehrere m (kontinuierlich im Banddurchlaufofen geschaeumt) und 2 m x 600 mm (geklebt). Es lassen sich gute mechanische Eigenschaften des Sandwichverbundes (Biegesteifigkeit) und hohe Versagensreserven bei Druck- und Biegebeanspruchungen sowie interessante funktionelle Eigenschaften (z.B. hohe Energieaufnahme) erzielen. Aus Tastversuchen zu Korrosionseigenschaften und Fuegeverfahren (Laserschweissen) konnten positive Resultate gewonnen werden. Vorschlaege zu Anwendungen bestehen, aber ein direkter Einsatz ist noch nicht realisiert worden. Ein Einsatz des Werkstoffverbundes ist sinnvoll in Gebieten, in denen ein Anforderungsprofil von strukturell und funktionell relevanten Eigenschaften vorherrscht. Das Recycling der rein metallischen Verbunde ist problemlos. (orig.)

  2. Chapter 3. Physicochemical and technological aspects of processing of solid wastes of aluminium production. 3.1. Chemical and mineralogical composition of sludge of Tajik Aluminium Plant

    International Nuclear Information System (INIS)

    This article is devoted to chemical and mineralogical composition of sludge of Tajik Aluminium Plant. Therefore, the carbon content in solid samples of sludge was determined. The chemical and mineralogical composition of components of sludge field was determined as well. The results of chemical, the X-ray phase and thermal analysis are presented.

  3. Processing and characterization of aluminium alloys or composites exhibiting low-temperature or high-rate superplasticity

    International Nuclear Information System (INIS)

    Wide applications of superplastic forming still face several problems, one is the high temperature that promotes grain growth, another is the low forming rate that makes economically inefficient. The current study is intended to develop a series of fabrication and thermomechanical processing, so as to result in materials possessing either low temperature superplasticity (LTSP) or high rate superplasticity (HRSP). The former has been achieved in the cast Al alloys, while the latter was accomplished in powder-metallurgy aluminium matrix composites. The aluminium alloys, after special thermomechanical processes, exhibited LTSP from 300 to 450 degree C with elongations varying from 300 to 700 %. The LTSP sheets after 700 % elongation at 350 degree C still possessed fine grains 3.7 μm size and narrow surface solute depletion zones 11 μm in with, resulting in a post-SP T6 strength of 500 MPa, significantly higher than that of the HTSP superplasticity alloys tested at 525 degree C or above. Meanwhile, it was found that LTSP materials may be transferred into HTSP materials simply by adding a preloading at 300-400 degree C for a small amount of work. As for the endeavor in making HRSP materials, 2024Al/SiC, 6061Al/SiC and Al/Al3Ti systems processed by powder metallurgy or mechanical alloying methods are under investigation. The average sizes of the reinforcing SiC or A13Ti particles, as well as the grain size are all around 1 μm. The aluminium composites have exhibited HRSP at 525-620 degree C and 10-2-10-1 s-l, with elongations varying from 150 to 350 %. This ultimate goal is to produce an alloy or composite exhibiting low temperature and high strain rate superplasticity (LT and HRSP). (author)

  4. Alkali-Activated Aluminium-Silicate Composites as Insulation Materials for Industrial Application

    Science.gov (United States)

    Dembovska, L.; Bajare, D.; Pundiene, I.; Bumanis, G.

    2015-11-01

    The article reports on the study of thermal stability of alkali-activated aluminium- silicate composites (ASC) at temperature 800-1100°C. ASC were prepared by using calcined kaolinite clay, aluminium scrap recycling waste, lead-silicate glass waste and quartz sand. As alkali activator, commercial sodium silicate solution modified with an addition of sodium hydroxide was used. The obtained alkali activation solution had silica modulus Ms=1.67. Components of aluminium scrap recycling waste (aluminium nitride (AlN) and iron sulphite (FeSO3)) react in the alkali media and create gases - ammonia and sulphur dioxide, which provide the porous structure of the material [1]. Changes in the chemical composition of ASC during heating were identified and quantitatively analysed by using DTA/TG, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of ASC was determined by XRD. The density of ASC was measured in accordance with EN 1097-7. ASC with density around 560 kg/m3 and heat resistance up to 1100°C with shrinkage less than 5% were obtained. The intended use of this material is the application as an insulation material for industrial purposes at elevated temperatures.

  5. Celsian Glass-Ceramic Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Dicarlo, James A.

    1996-01-01

    Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.

  6. Simplex Ceramic Matrix Composite Turbine Blisk Testing

    Science.gov (United States)

    Mash, Matt; McConnaughey, Helen V. (Technical Monitor)

    2001-01-01

    The purpose of this presentation is to discuss the testing and demonstration of the Ceramic Matrix Composite Turbine Blisk. Also discussed are material damping, fatigue life, damage to trailing edges, performance, unsteady blade loading, and stress.

  7. Microwave Processed Multifunctional Polymer Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified polymer matrix composites (PMCs) as a critical need for launch and in-space vehicles, but the significant costs of such materials limits their...

  8. Spark plasma sintering of aluminum matrix composites

    Science.gov (United States)

    Yadav, Vineet

    2011-12-01

    Aluminum matrix composites make a distinct category of advanced engineering materials having superior properties over conventional aluminum alloys. Aluminum matrix composites exhibit high hardness, yield strength, and excellent wear and corrosion resistance. Due to these attractive properties, aluminum matrix composites materials have many structural applications in the automotive and the aerospace industries. In this thesis, efforts are made to process high strength aluminum matrix composites which can be useful in the applications of light weight and strong materials. Spark Plasma Sintering (SPS) is a relatively novel process where powder mixture is consolidated under the simultaneous influence of uniaxial pressure and pulsed direct current. In this work, SPS was used to process aluminum matrix composites having three different reinforcements: multi-wall carbon nanotubes (MWCNTs), silicon carbide (SiC), and iron-based metallic glass (MG). In Al-CNT composites, significant improvement in micro-hardness, nano-hardness, and compressive yield strength was observed. The Al-CNT composites further exhibited improved wear resistance and lower friction coefficient due to strengthening and self-lubricating effects of CNTs. In Al-SiC and Al-MG composites, microstructure, densification, and tribological behaviors were also studied. Reinforcing MG and SiC also resulted in increase in micro-hardness and wear resistance.

  9. Polypropylene matrix composites reinforced with coconut fibers

    OpenAIRE

    Maria Virginia Gelfuso; Pedro Vieira Gurgel da Silva; Daniel Thomazini

    2011-01-01

    Polypropylene matrix composites reinforced with treated coconut fibers were produced. Fibers chemically treated (alkalization-CCUV samples) or mechanically treated (ultrasonic shockwave-CMUV samples) were dried using UV radiation. The goal was to combine low cost and eco-friendly treatments to improve fiber-matrix adhesion. Composite samples containing up to 20 vol. (%) of untreated and treated coconut fibers were taken from boxes fabricated by injection molding. Water absorption and mechanic...

  10. Manufacturing Titanium Metal Matrix Composites by Consolidating Matrix Coated Fibres

    Institute of Scientific and Technical Information of China (English)

    Hua-Xin PENG

    2005-01-01

    Titanium metal matrix composites (TiMMCs) reinforced by continuous silicon carbide fibres are being developed for aerospace applications. TiMMCs manufactured by the consolidation of matrix-coated fibre (MCF) method offer optimum properties because of the resulting uniform fibre distribution, minimum fibre damage and fibre volume fraction control. In this paper, the consolidation of Ti-6Al-4V matrix-coated SiC fibres during vacuum hot pressing has been investigated. Experiments were carried out on multi-ply MCFs under vacuum hot pressing (VHP). In contrast to most of existing studies, the fibre arrangement has been carefully controlled either in square or hexagonal arraysthroughout the consolidated sample. This has enabled the dynamic consolidation behaviour of MCFs to be demonstrated by eliminating the fibre re-arrangement during the VHP process. The microstructural evolution of the matrix coating was reported and the deformation mechanisms involved were discussed.

  11. The corrosion of ceramic-matrix composites

    International Nuclear Information System (INIS)

    Ceramic matrix composites could replace existing metals and alloys in aircraft, naval engine parts or heat exchanged systems because of their low density and high thermostability. These composites are promising materials for long-life applications if the metastable state of the composite is preserved during the synthesis and on working atmospheres without deletorious evolution of the fibre, the matrix and of the fibre-matrix interface. The review begins with a brief recall on the corrosion of ceramics able to be used in composites (SiC, Si3N4, AlN, BN, aluminosilicates, C). The main sources of corrosion in combustion environment (proton, sodium ion) are discussed. A comparison is made with long-term corrosion at room-temperature. Examples of the different corrosion mechanisms observed for Nicalon NLM202 fibre glass-ceramic or ceramic (LAS, CAS, celsian, cordierite, Al2TiO5, mullite, Nasicon) matrix composites developed at ONERA are presented : ion exchange, grain boundary dissolution, fluxing, favourable and unfavourable fibre-matrix reaction, enhanced corrosion by prior fibre-matrix reaction. (orig.)

  12. The corrosion of ceramic-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Colomban, P. [ONERA, Chatillon (France)]|[CNRS, LASIR, Thiais (France)

    1997-12-31

    Ceramic matrix composites could replace existing metals and alloys in aircraft, naval engine parts or heat exchanged systems because of their low density and high thermostability. These composites are promising materials for long-life applications if the metastable state of the composite is preserved during the synthesis and on working atmospheres without deletorious evolution of the fibre, the matrix and of the fibre-matrix interface. The review begins with a brief recall on the corrosion of ceramics able to be used in composites (SiC, Si{sub 3}N{sub 4}, AlN, BN, aluminosilicates, C). The main sources of corrosion in combustion environment (proton, sodium ion) are discussed. A comparison is made with long-term corrosion at room-temperature. Examples of the different corrosion mechanisms observed for Nicalon NLM202 fibre glass-ceramic or ceramic (LAS, CAS, celsian, cordierite, Al{sub 2}TiO{sub 5}, mullite, Nasicon) matrix composites developed at ONERA are presented : ion exchange, grain boundary dissolution, fluxing, favourable and unfavourable fibre-matrix reaction, enhanced corrosion by prior fibre-matrix reaction. (orig.) 39 refs.

  13. Advances in thermoplastic matrix composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Newaz, G.M.

    1989-01-01

    Accounts are given of the development status of thermoplastic composite processing methods, as well as their current thermal and mechanical behavior and delamination properties. Attention is given to the thermoplastic coating of carbon fibers, pultrusion-process modeling, the high temperature behavior of graphite/PEEK, the thermal conductivity of composites for electronic packaging, a FEM analysis of mode I and II thermoplastic-matrix specimens, and reinforcements' resin-impregnation behavior during thermoplastic composite manufacture. Also discussed are the mechanical properties of carbon fiber/PEEK for structural applications, moisture-content mechanical property effects in PPS-matrix composites, the interlaminar fracture toughness of thermoplastic composites, and thermoplastic composite delamination growth under elevated temperature cyclic loading.

  14. Early age corrosion of aluminium in calcium sulfo-aluminate cement based composites

    International Nuclear Information System (INIS)

    At present, encapsulation of low level and intermediate level nuclear wastes using Portland Cement (PC) based matrices is a preferred approach. However, it is now widely accepted that the high pH of the pore solution of these PC-based matrices (usually above pH 12.5) can cause concerns over the stability of certain wastes containing reactive metals, such as aluminium and uranium. One potential low pH system for reducing the corrosion of aluminium is calcium sulfo-aluminate cement (CSA). However, significant heat could be generated from the hydration of CSA, causing another concern to the nuclear industry. In the current study, various additives, namely pulverized fuel ash (PFA), ground granulated blast furnace slag (GGBS) and limestone powder (LSP) were used to replace part of the CSA in order to reduce the heat output. The results indicated that the replacement of CSA with GGBS, PFA and LSP can reduce the heat output of 100% CSA, although it is still higher than the control GGBS/PC 9:1 system. The corrosion rate of aluminium in each of the CSA composites was slightly higher than 100% CSA, however, all the CSA systems had corrosion rates lower than GGBS/PC 9:1 after 15 hours. Therefore, the composite CSA systems investigated in this study provide a good compromise between the heat output and the resistance to the corrosion of aluminium. Hence, offers a good potential for dealing with some historical nuclear wastes where the corrosion of aluminium is a concern. (authors)

  15. Nanophosphor composite scintillators comprising a polymer matrix

    Science.gov (United States)

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  16. Radiation effects on polymer matrix composites

    International Nuclear Information System (INIS)

    As the structural material and the electric and heat insulators for the superconducting magnets of nuclear fusion reactors, large quantity of polymer matrix composites is used. The radiation resistance of the polymer matrix composite insulators determines practically the operation life of superconducting magnets. This is the review of the results of research from 1983 to 1991 carried out in Takasaki Establishment of Japan Atomic Energy Research Institute, and mainly the mechanical properties of polymer matrix composites at 77 K, 4.2 K and room temperature after the irradiation with 60Co gamma ray or neutrons are introduced. The reinforcement was the plain fabrics of E glass or T glass fibers, and the matrix was epoxy resin. The load-deflection curves by three-point bending test are shown. The breaking mode was bending mode or shearing mode or their mixed mode. The effect of the degree of hardening of matrix resin, and the deteriorating behavior due to gamma ray irradiation are reported. The mechanism of the deterioration is the radiation damage of matrix or the interface between matrix and fibers. The determination of absorbed neutron dose, the effects of the kinds of reinforcement and the atmosphere of irradiation are discussed. (K.I.)

  17. Fabrication of Nano-Composite Surface Layers on Aluminium Employing Friction Stir Processing Technique

    International Nuclear Information System (INIS)

    Al/Al2O3 nano-composite surface layer was fabricated via friction stir processing technique. Commercial AA6082 aluminium alloy extruded bar and nanometric Al2O3 powder were subjected to friction stir processing at a substrate travel speed of 80 mm/min and a tool rotation speed of 1000 rpm using a hardened H-13 tool steel. The grain structure and reinforcement particles were investigated by using optical and scanning electron microscopy. Results show that Al2O3 particles can be more uniformly dispread in aluminium substrate by increasing the number of processing passes. Also, hardness enhancement of the nano-composite surface layer was found. This is attributed to uniform dispersion of Al2O3 particles.

  18. Optimum interface properties for metal matrix composites

    Science.gov (United States)

    Ghosn, Louis J.; Lerch, Bradley A.

    1989-01-01

    Due to the thermal expansion coefficient mismatch (CTE) between the fiber and the matrix, high residual sresses exist in metal matrix composite systems upon cool down from processing temperature to room temperature. An interface material can be placed between the fiber and the matrix to reduce the high tensile residual stresses in the matrix. A computer program was written to minimize the residual stress in the matrix subject to the interface material properties. The decision variables are the interface modulus, thickness and thermal expansion coefficient. The properties of the interface material are optimized such that the average distortion energy in the matrix and the interface is minimized. As a result, the only active variable is the thermal expansion coefficient. The optimum modulus of the interface is always the minimum allowable value and the interface thickness is always the maximum allowable value, independent of the fiber/matrix system. The optimum interface thermal expansion coefficient is always between the values of the fiber and the matrix. Using this analysis, a survey of materials was conducted for use as fiber coatings in some specific composite systems.

  19. Estimation of the mechanical properties of aluminium and an aluminium composite after equal channel angular pressing by means of the small punch test

    Czech Academy of Sciences Publication Activity Database

    Dobeš, Ferdinand; Dymáček, Petr; Besterci, M.

    2015-01-01

    Roč. 626, FEB (2015), s. 313-321. ISSN 0921-5093 R&D Projects: GA ČR(CZ) GAP108/12/1452; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Mechanical characterization * Aluminium alloys * Composite s * Equal channel angular processing * Grain refinement Subject RIV: JI - Composite Materials Impact factor: 2.567, year: 2014

  20. MECHANICAL PROPERTY EVALUATION OF A356/SiCp/Gr METAL MATRIX COMPOSITES

    Directory of Open Access Journals (Sweden)

    B. M. VISWANATHA

    2013-12-01

    Full Text Available In the present investigation, studies on microstructure and mechanical properties of Aluminium Matrix Composites (AMCs reinforced with silicon carbide (SiCp and graphite (Gr particles. A356 alloy is used as the matrix material with varying the reinforcement of SiCp from 0 to 9 wt% in steps of 3 wt% and fixed quantity of 3 wt% of graphite. The composites were fabricated by liquid metallurgy method. The prepared composites were examined for microstructure to know the particle distribution in the matrix material. Hardness and tensile properties were studied and compared with the alloy. There was a significant improvement in hardness and tensile properties by increasing the weight percentage of SiC particles.

  1. Wear performance of garnet aluminium composites at high contact pressure

    Science.gov (United States)

    Sharma, Anju; Arora, Rama; Kumar, Suresh; Singh, Gurmel; Pandey, O. P.

    2016-05-01

    To satisfy the needs of the engineering sector, researchers and material scientists in this area adopted the development of composites with tailor made properties to enhance efficiency and cost savings in the manufacturing sector. The technology of the mineral industry is shaping the supply and demand of minerals derived materials. The composites are best classified as high performance materials have high strength-to-weight ratios, and require controlled manufacturing environments for optimum performance. Natural mineral garnet was used as the reinforcement of composite because of satisfactory mechanical properties as well as an attractive ecological alternative to others ceramics. For this purpose, samples have been prepared with different sizesof the garnet reinforcement using the mechanical stirring method to achieve the homogeneously dispersed strengthening phase. A systematic study of the effect of high contact pressure on the sliding wear behaviour of garnet reinforced LM13 alloy composites is presented in this paper. The SEM analysis of the worn samples and debris reveals the clues about the wear mechanism. The drastic improvement in the wear resistance of the composites at high contact pressure shows the high potential of the material to be used in engineering applications.

  2. Study on sintering technique of NiFe2O4/SiCp used as matrix of inert anodes in aluminium electrolysis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to improve deficiencies of NiFe2O4 spinel used as matrix of inert anode in aluminium electrolysis, NiFe2O4/SiCp were prepared by the solid state reaction for the first time. Microstructural changes were observed by scanning electronic microscope and phase was determined with X-ray detector. Effect of sintering temperature and times on density, porosity and microstructure were researched, and the reasons that caused the difference were discussed deeply. At the same time the thermodynamical compatibility of NiFe2O4 and SiC was proved under 1200℃ by DTA.The results showed that the microstructure was more homogeneous when the sintering temperature reached 1 180℃and the density attained their maximum about 6 h sintering. The appropriate sintering technique of NiFe2 O4/SiCw composite materials was 1180℃× 6 h.

  3. Influence of Binder in Iron Matrix Composites

    International Nuclear Information System (INIS)

    The ability to use iron and its alloys as the matrix material in composite systems is of great importance because it is the most widely used metallic material with a variety of commercially available steel grades [1]. The aim of this study is to investigate the influence of binder in particulate iron based metal matrix composites. There are four types of binder that were used in this study; Stearic Acid, Gummi Arabisch, Polyvinyl alcohol 15000 MW and Polyvinyl alcohol 22000 MW. Six different weight percentage of each binder was prepared to produce the composite materials using powder metallurgy (P/M) route; consists of dry mixing, uniaxially compacting at 750 MPa and vacuum sintering at 1100 deg. C for two hours. Their characterization included a study of density, porosity, hardness and microstructure. Results indicate that MMC was affected by the binder and stearic acid as a binder produced better properties of the composite.

  4. Aluminium foam composite structures for the automotive industry; Aluminiumschau-Leichtbaustrukturen fuer den Fahrzeugbau

    Energy Technology Data Exchange (ETDEWEB)

    Banhart, J.; Baumeister, J.; Melzer, A.; Weber, M. [Fraunhofer-Inst. fuer Angewandte Materialforschung (IFAM), Bremen (Germany); Seeliger, W. [W. Karmann GmbH, Osnabrueck (Germany)

    1998-12-31

    There is an increased need for new materials for light-weight construction in automobiles. In the past few years aluminium foams were intensively evaluated in order to find such applications. Especially composites consisting of aluminium foams and conventional profiles or sheet seem to be very promising. The possibilities for making such composites are discussed. The starting point is a powder-metallurgical production route where metal powders are mixed with a blowing agent and are then compacted to a dense precursor material. The precursor material can then be foamed by a simple heat treatment. As an example for an application of aluminium foam sandwiches a part is presented which was developed in collaboration with the German car maker Karmann (Osnabrueck). The part is thought to replace the rear wall in a car and shows a higher stiffness at a lower weight as compared to the conventional steel part. (orig.) [Deutsch] Im Fahrzeugbau besteht ein grosser Bedarf an Werkstoffen fuer innovative Leichtbauanwendungen. Aluminiumschaeume wurden in den letzten Jahren intensiv auf solche Anwendungen hin untersucht. Besonders Verbundloesungen bestehend aus Aluminiumschaum und konventionellen Metallen wie zum Beispiel Aluminiumblechen oder Aluminiumprofilen oder Stahlblechen und -profilen versprechen hier interessante Anwendungsmoeglichkeiten. (orig.)

  5. Emerging Trends in Polymer Matrix Composites .

    OpenAIRE

    Vikas M. Nadkarni

    1993-01-01

    The performance characteristics of PMC products are determined by the microstructure developed during the processing of composite materials. The structure development in processing is the result of integration of process parameters and inherent material characteristics. The properties of PMCs can thus be manipulated through both changes in the materials composition and process conditions. The present article illustrates the scientific approach followed in engineering of matrix material...

  6. Development of Matrix Microstructures in UHTC Composites

    Science.gov (United States)

    Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael

    2012-01-01

    One of the major issues hindering the use of ultra high temperature ceramics for aerospace applications is low fracture toughness. There is considerable interest in developing fiber-reinforced composites to improve fracture toughness. Considerable knowledge has been gained in controlling and improving the microstructure of monolithic UHTCs, and this paper addresses the question of transferring that knowledge to composites. Some model composites have been made and the microstructures of the matrix developed has been explored and compared to the microstructure of monolithic materials in the hafnium diboride/silicon carbide family. Both 2D and 3D weaves have been impregnated and processed.

  7. Diamond/aluminium nitride composites for efficient thermal management applications

    Science.gov (United States)

    Cervenka, J.; Dontschuk, N.; Ladouceur, F.; Duvall, S. G.; Prawer, S.

    2012-07-01

    Synthetic diamond/AlN composite materials have been fabricated by a combination of microwave plasma-assisted chemical vapor deposition and molecular beam epitaxy. These wide band gap semiconductor heterojunctions show promises for many applications, including thermal management, deep ultraviolet light emitting devices, and high power and high temperature electronics. Here, we report results of an interface study of polycrystalline diamond layers grown on single crystal AlN(0001). High resolution transmission microscopy revealed atomically sharp interfaces between diamond and AlN. Temperature dependent Raman spectroscopy measurements showed reduced thermal resistance on diamond-coated AlN substrates compared to uncoated AlN at temperatures above 330 K.

  8. Emerging Trends in Polymer Matrix Composites .

    Directory of Open Access Journals (Sweden)

    Vikas M. Nadkarni

    1993-10-01

    Full Text Available The performance characteristics of PMC products are determined by the microstructure developed during the processing of composite materials. The structure development in processing is the result of integration of process parameters and inherent material characteristics. The properties of PMCs can thus be manipulated through both changes in the materials composition and process conditions. The present article illustrates the scientific approach followed in engineering of matrix materials and optimization of the processing conditions with specific reference to case studies on toughening of thermosetting resins and structure development in injection molding of thermoplastic composites. A novel approach is demonstrated for toughening of unsaturated polyester resins that involves the use of reactive liquid polymers chemically bonded to the matrix. The use of processing science is demonstrated by the significant effect of the mold temperature on the crystallinity and properties of molded poly (phenylene sulfide, a high performance engineering thermoplastic. An interactive approach is proposed for specific product and applications development.

  9. Inelastic deformation of metal matrix composites

    Science.gov (United States)

    Lissenden, C. J.; Herakovich, C. T.; Pindera, M-J.

    1993-01-01

    A theoretical model capable of predicting the thermomechanical response of continuously reinforced metal matrix composite laminates subjected to multiaxial loading was developed. A micromechanical model is used in conjunction with nonlinear lamination theory to determine inelastic laminae response. Matrix viscoplasticity, residual stresses, and damage to the fiber/matrix interfacial zone are explicitly included in the model. The representative cell of the micromechanical model is considered to be in a state of generalized plane strain, enabling a quasi two-dimensional analysis to be performed. Constant strain finite elements are formulated with elastic-viscoplastic constitutive equations. Interfacial debonding is incorporated into the model through interface elements based on the interfacial debonding theory originally presented by Needleman, and modified by Tvergaard. Nonlinear interfacial constitutive equations relate interfacial tractions to displacement discontinuities at the interface. Theoretical predictions are compared with the results of an experimental program conducted on silicon carbide/titanium (SiC/Ti) unidirectional, (O4), and angle-ply, (+34)(sub s), tubular specimens. Multiaxial loading included increments of axial tension, compression, torque, and internal pressure. Loadings were chosen in an effort to distinguish inelastic deformation due to damage from matrix plasticity and separate time-dependent effects from time-independent effects. Results show that fiber/matrix debonding is nonuniform throughout the composite and is a major factor in the effective response. Also, significant creep behavior occurs at relatively low applied stress levels at room temperature.

  10. Polypropylene matrix composites reinforced with coconut fibers

    Directory of Open Access Journals (Sweden)

    Maria Virginia Gelfuso

    2011-09-01

    Full Text Available Polypropylene matrix composites reinforced with treated coconut fibers were produced. Fibers chemically treated (alkalization-CCUV samples or mechanically treated (ultrasonic shockwave-CMUV samples were dried using UV radiation. The goal was to combine low cost and eco-friendly treatments to improve fiber-matrix adhesion. Composite samples containing up to 20 vol. (% of untreated and treated coconut fibers were taken from boxes fabricated by injection molding. Water absorption and mechanical properties were investigated according to ASTM D570-98 and ASTM D638-03, respectively. Electrical characterizations were carried out to identify applications of these composites in the electrical sector. NBR 10296-Electrical Tracking Standard (specific to industry applications and conductivity measurements were obtained applying 5 kV DC to the samples. CMUV samples containing 5 vol. (% fiber presented superior tensile strength values (σ~28 MPa compared to the untreated fibers composite (σ~22 MPa or alkali treatment (σ~24 MPa. However, CMUV composites containing 10 vol. (% fiber presented best results for the electrical tracking test and electrical resistivity (3 × 10(7 Ω.m. The results suggest that composites reinforced with mechanically treated coconut fibers are suitable for electrical applications.

  11. High Strain-Rate Mechanical Behaviour of a Copper Matrix Composite for Nuclear Applications

    CERN Document Server

    Peroni, L

    2012-01-01

    Aim of this work is the investigation of mechanical behaviour of an alumina dispersion strengthened copper, known by the trade name GLIDCOP®, subjected to dynamic loads: it is a composite material with a copper matrix strengthened with aluminium oxide ceramic particles. Since the particle content is quite small the material keeps the OFE copper physical properties, such as thermal and electrical conductivity, but with a higher yield strength, like a mild-carbon steel. Besides, with the addition of aluminium oxide, the good mechanical properties are retained also at high temperatures and the resistance to thermal softening is increased: the second phase blocks the dislocation movement preventing the grain growth. Thanks to these properties GLIDCOP® finds several applications in particle accelerator technologies, where problems of thermal management, combined with structural requirements, play a key role. Currently, it is used for the construction of structural and functional parts of the particle beam collim...

  12. Machinability of Al-SiC metal matrix composites using WC, PCD and MCD inserts

    Energy Technology Data Exchange (ETDEWEB)

    Beristain, J.; Gonzalo, O.; Sanda, A.

    2014-04-01

    The aim of this work is the study of the machinability of aluminium-silicon carbide Metal Matrix Composites (MMC) in turning operations. The cutting tools used were hard metal (WC) with and without coating, different grades and geometries of Poly-Crystalline Diamond (PCD) and Mono-Crystalline Diamond (MCD). The work piece material was AMC225xe, composed of aluminium-copper alloy AA 2124 and 25% wt of SiC, being the size of the SiC particles around 3 {mu}m. Experiments were conducted at various cutting speeds and cutting parameters in facing finishing operations, measuring the surface roughness, cutting forces and tool wear. The worn surface of the cutting tool was examined by Scanning Electron Microscope (SEM). It was observed that the Built Up Edge (BUE) and stuck material is higher in the MCD tools than in the PCD tools. The BUE acts as a protective layer against abrasive wear of the tool. (Author)

  13. Machinability of Al-SiC metal matrix composites using WC, PCD and MCD inserts

    International Nuclear Information System (INIS)

    The aim of this work is the study of the machinability of aluminium-silicon carbide Metal Matrix Composites (MMC) in turning operations. The cutting tools used were hard metal (WC) with and without coating, different grades and geometries of Poly-Crystalline Diamond (PCD) and Mono-Crystalline Diamond (MCD). The work piece material was AMC225xe, composed of aluminium-copper alloy AA 2124 and 25% wt of SiC, being the size of the SiC particles around 3 μm. Experiments were conducted at various cutting speeds and cutting parameters in facing finishing operations, measuring the surface roughness, cutting forces and tool wear. The worn surface of the cutting tool was examined by Scanning Electron Microscope (SEM). It was observed that the Built Up Edge (BUE) and stuck material is higher in the MCD tools than in the PCD tools. The BUE acts as a protective layer against abrasive wear of the tool. (Author)

  14. Experimental Study on Fatigue Characteristics for Aluminium and Al-SiC Composite Material Edge Crack Specimens under Flexural Loading Conditions

    Directory of Open Access Journals (Sweden)

    Shanmugavel P.

    2014-03-01

    Full Text Available Crack propagation studies on an Aluminium plate and Aluminium-Silicon Carbide composite plate under three point bend test conditions were done experimentally and the results so obtained been compared between Isotropic Aluminium and Aluminium-Silicon Carbide composite materials. The specimens with different crack length (a to the depth (d ratios (a/d Ratios were prepared and the fracture characteristics of the specimens with different a/d ratios have been obtained experimentally and analyzed. The analysis has been done for both the Isotropic Aluminium and Aluminium-Silicon Carbide composite material specimens with different a/d ratios. A comparative analysis between the fracture characteristics of the Aluminium and Aluminium-Silicon Carbide composite material specimens for the same a/d ratio has been done and the results been plotted. Also the fractography at the cracked surface of the Aluminium and Aluminium-Silicon Carbide composite material specimens were undertaken along with the microstructures of these specimens. An attempt has been made to relate the fracture location and propagation to the microstructure of the material specimens.

  15. Evaluation of the mechanical properties and corrosion behaviour of coconut shell ash reinforced aluminium (6063) alloy composites

    OpenAIRE

    Oluyemi O. DARAMOLA; Adeolu A.ADEDIRAN; Ayodele T. FADUMIYE

    2015-01-01

    Aluminium 6063/Coconut shell ash (CSAp) composites having 3-12 weight percent (wt%) coconut shell ash were fabricated by double stir-casting method. The microstructure, ultimate tensile strength, hardness values, density and corrosion behaviour in 0.3M H2SO4 and 3.5wt% NaCl solution of the composites were evaluated. The density of the composites exhibit a linear and proportional decreased as the percentage of coconut shell ash increases in the aluminium alloy. It implies tha...

  16. The study of aluminium fly-ash composite produced by powder metallurgy

    International Nuclear Information System (INIS)

    About several tons of coal combustion by products, including fly-ash, slag, and flue gas desulfurization are produced by coal power electric plant. Major quantity of the fly ash is being used as additives in cements. Fly ash is also used as filler in polymers. In this work, 5%, 10% and 15% fly ash have been dispersed in aluminium powder in order to improve their hardness and wear resistance. By using powder metallurgy technique the composite pellets are then produced. The pellets are sintered at temperature of 550 degree C for 1 hour. Selected properties like hardness, Young's modulus and wear resistance have been measured. (Author)

  17. Process optimization in Nd:YAG laser microdrilling of alumina–aluminium interpenetrating phase composite

    Directory of Open Access Journals (Sweden)

    Ranjib Biswas

    2015-07-01

    Full Text Available In laser beam micromachining process, the quality of the drilled hole is of great importance. The quality of the microdrilled hole mainly depends on appropriate selection of process parameters. Predefined diameter of hole with minimum taper is of today's demand. The composite used for microdrilling operation is alumina–aluminium (Al2O3–Al interpenetrating phase composite (IPC, which is widely used in aircraft and space stations. Until date, no experimental study has been done to obtain microdrilled hole of desired diameter. In the present paper three hole qualities such as hole diameter at entry, at exit and hole taper have been optimized individually as well as simultaneously using a central composite design (CCD based on response surface methodology (RSM during pulsed Nd:YAG laser microdrilling operation on alumina–aluminium IPC sheet of 1.14 mm thickness. The analysis of variance (ANOVA test has also been done to identify the process parameters that contributed the most to get desired hole quality.

  18. Synthesis and characterization of complex composite oxides of aluminium, titanium and yttrium materials

    International Nuclear Information System (INIS)

    The aluminium, titanium and yttrium composite oxide materials such as tialite (Al/sub 2/TiO/sub 5/) and YAG (Yttrium aluminium garnet, Y/sub 3/Al/sub 5/O/sub 12/) were synthesized by sol spray process and sintered at different temperatures (900-1650 deg. C). YAG is important material for solid state laser which is widely used in luminescence systems, window materials for a variety of lamps and fiber-optics telecommunication systems. The aim of this study was to determine the feasibility of process for the growth of nano sized YAG and Nd-YAG powders. Phase and microstructural analysis of sintered materials were performed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM images of sintered specimens of tialite are shown. XRD and SEM results revealed that crystallization of YAG started around 920 deg. C. The synthesized products had composition uniformity, lower residual oxide, cubic phase with a ratio of yttrium, aluminum and oxygen close to 3:5:12 (Y/sub 2.97/ Al 5.03 O 11.85). Scanning electron microscope results indicated that particle size of Nd-YAG was <150 nm. The morphology of Nd-YAG nano sized powder was rounded. (Orig./A.B.)

  19. Nanotube reinforced thermoplastic polymer matrix composites

    Science.gov (United States)

    Shofner, Meisha Lei

    The inherent high strength, thermal conductivity, and electrical conductivity make nanotubes attractive reinforcements for polymer matrix composites. However, the structure that makes them desirable also causes highly anisotropic properties and limited reactivity with other materials. This thesis isolates these problems in two separate studies aimed at improving mechanical properties with single wall nanotube (SWNT) reinforced thermoplastic polymer composites. The two studies demonstrate the effect of solid freeform fabrication (SFF) and chemical functionalization on anisotropy and limited reactivity, respectively. Both studies showed mechanical property improvements. The alignment study demonstrates a maximum increase of 93% in tensile modulus with single wall nanotubes (SWNTs). The chemical functionalization study shows a larger increase in storage modulus for functionalized SWNTs as compared to purified SVWNTs with respective increases of 9% and 44% in storage modulus. Improved interfacial properties are also observed as a decrease in mechanical damping. Maximum property increases in composites are obtained when nanotubes are aligned, requiring additional processing consideration to the anisotropic structure. Melt spinning and extrusion processing effectively align nanotubes, but the end product of these techniques, composite fibers, requires further processing to be incorporated into finished parts. Extrusion-based SFF is a novel technique for processing nanotube reinforced composites because it allows for the direct fabrication of finished parts containing aligned nanotubes. SFF processing produces parts containing preferentially oriented nanotubes with improved mechanical properties when compared to isotropic composites. Functionalization of the nanotube surface disrupts the rope structure to obtain smaller ropes and promote further interfacial bonding. The chemically inert nature of nanotubes resulting from a structure containing few defects and the

  20. Production and wear properties of metal matrix composites reinforced with boride particles

    International Nuclear Information System (INIS)

    Highlights: • Production of MMC reinforced with in situ boride particles have been investigated. • Higher reinforcement percentage of borides was produced by a filtration technique. • Hardness of boride particles was measured as approximately 3050 Hv. • The cumulative weight loss of the composite was lower than of the matrix alone. - Abstract: Production and properties of metal matrix composites reinforced with in situ cuboidal boride particles have been investigated. Boron 3 weight (wt.)% was dissolved in an aluminium copper alloy at 1400 °C through direct addition of boron oxide (B2O3) which resulted in 6.14 volume (vol.)% reinforcing phase of cuboidal boride particles in the alloy. Higher reinforcement volume per cent of in situ boride particles in the Al–Cu matrix has been produced by using a filtration device. Metallographic examinations, optical microscopy, and a wet chemistry analysis technique for determination of boron content have been used to reveal the structure and the volume fraction of the reinforcement phase. The wear behaviour of the composite and matrix were investigated using a pin-on-disk tester under different conditions. Results showed that average cumulative weight loss of the new composite can be decreased by 68% with addition of 33 vol.% of cuboidal boride particles into the Al–Cu matrix

  1. Influence of cold rolling and fatigue on the residual stress state of a metal matrix composite

    International Nuclear Information System (INIS)

    The large difference in the coefficient of thermal expansion between the matrix alloy and the particle in a metal matrix composite gives rise to residual stresses in the material. In the present work the effect of cold rolling and four-point bending fatigue on the residual stress state of a silicon carbide particle reinforced aluminium alloy (AA 2014) has been investigated. The three dimensional stress state measured in both phases: matrix and reinforcement, has been determined by using an X-ray diffraction technique. It was found that cold rolling induces surface compressive macrostresses of about -250 MPa, with a penetration depth around 2 mm. The absolute values of the pseudomacrostresses in both phases are significantly reduced due to the single track rolling. Stress relaxation occurs during four-point bending fatigue. (orig.)

  2. Structural state and phase composition of titanium surface layers implanted by aluminium ions

    International Nuclear Information System (INIS)

    The elemental, phase composition, morphology and structural state of the ion-alloyed surface layers of titanium implanted by the Al ions have been investigated. It was found out that increase of the Al ions dose led to increasing the ion-alloyed layers thickness. It was established that the fine dispersed equilibrium intermetallic phases Ti3Al, TiAl and the solid solution of aluminium in titanium were formed in the modified layers. The agglomeration of the intermetallide phases occurred above the dose 6.2 x 1017 ion/cm2. The dependence of the structure state and phase composition of the implanted titanium layers on the implantation condition was considered

  3. Production and characterization of Al-Mg matrix composite by mechanical alloying

    International Nuclear Information System (INIS)

    Mechanical alloying technique has been used to produce aluminium-based metal matrix composite powders. Powders of AI, Mg (5 wt %) and SiC (10-40 vol %) were used for the composite development. These powders were mechanically mixed in planetary ball mill (Retsch PM 200). The parameters used were 10:1 ball to powder weight ratio, 800 rpm speed of vial rotation and WC as grinding media. These milled powders were characterized by XRD. Mechanical alloying for the production of composite was achieved in only one step. There was decrease in density with the increase of contents of SiC. Compacted samples were sintered at 580 Co for 80 minutes. Maximum density achieved was 98.7% for composite containing 40 % SiC. Vickers hardness of consolidated samples was found to increase with the increase of SiC contents. (author)

  4. Metal-Matrix/Hollow-Ceramic-Sphere Composites

    Science.gov (United States)

    Baker, Dean M.

    2011-01-01

    A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.

  5. Fracture behaviour of brittle (glass) matrix composites

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk; Boccaccini, A. R.

    2005-01-01

    Roč. 482, - (2005), s. 115-122. ISSN 0255-5476. [International Conference on Materials Structure and Micromechanics of Fracture /4./. Brno, 23.06.2004-25.06.2004] R&D Projects: GA AV ČR(CZ) IAA2041003; GA ČR(CZ) GA101/02/0683 Institutional research plan: CEZ:AV0Z2041904 Keywords : Ceramic matrix composites * fracture toughness * toughening effects Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass Impact factor: 0.399, year: 2005

  6. Fracture behaviour of brittle (glass) matrix composites

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk; Boccaccini, A. R.

    Brno : VUTIUM Brno, 2004 - (Šandera, P.), s. 1-134 ISBN 80-214-2673-X. [International Conference on Materials Structure and Micromechanics of Fracture /4./. Brno (CZ), 23.06.2004-25.06.2004] R&D Projects: GA AV ČR IAA2041003; GA ČR GA101/02/0683 Institutional research plan: CEZ:AV0Z2041904 Keywords : Ceramic matrix composites * fracture toughness * toughening effects Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass

  7. Optimisation of the rivet joints of the CFRP composite material and aluminium alloy

    Directory of Open Access Journals (Sweden)

    A. Czulak

    2007-01-01

    Full Text Available Purpose: The project included analysis of strain, cracking, and failure of riveted joints of plate elements madefrom the carbon-fibre-reinforced plastics (CFRP and from the 6061 aluminium alloy.Design/methodology/approach: The modelled static tensile strength test carried out for the plates from CFRPand from the 6061 aluminium alloy joined with the steel rivet. Computer simulation was carried out with IDEASsoftware package employing the FEM.Findings: Simulations using the mesh with a bigger number of FEM elements do not yield better accuracy ofcalculations and do not improve convergence with the results of laboratory experiments. Only the calculationtime gets longer. Computer simulation has also show that the type of contacts employed between elementsaffects the results significantly.Research limitations/implications: For the composite materials, joints between materials and computersimulation examinations are planed.Practical implications: Results obtained for the mesh with 4 and 5 FEM elements are the closest to the resultsof laboratory experiments, which is confirmed by the strain plot. Simulations using the mesh with a biggernumber of FEM elements do not yield better accuracy of calculations and do not improve convergence with theresults of laboratory experiments. Only the calculation time gets longer. Computer simulation has show that thetype of contacts employed between elements affects the results significantly.Originality/value: The paper presents influence of fibre mesh closeness on convergence of the results with laboratorytests. Simulation results were collected and compared with the laboratory static tensile strength tests results.

  8. Graphite fiber reinforced glass matrix composites for aerospace applications

    Science.gov (United States)

    Prewo, K. M.; Bacon, J. F.; Dicus, D. L.

    1979-01-01

    The graphite fiber reinforced glass matrix composite system is described. Although this composite is not yet a mature material, it possesses low density, attractive mechanical properties at elevated temperatures, and good environmental stability. Properties are reported for a borosilicate glass matrix unidirectionally reinforced with 60 volume percent HMS graphite fiber. The flexural strength and fatigue characteristics at room and elevated temperature, resistance to thermal cycling and continuous high temperature oxidation, and thermal expansion characteristics of the composite are reported. The properties of this new composite are compared to those of advanced resin and metal matrix composites showing that graphite fiber reinforced glass matrix composites are attractive for aerospace applications.

  9. 多层喷射沉积颗粒增强铝基复合材料的研究现状与发展趋势%Current State and Developing Trends of Multiinlayer Spray Deposited Aluminium Matrix Composites Reinforced with Particles

    Institute of Scientific and Technical Information of China (English)

    贺毅强; 陈志钢

    2012-01-01

    Multi-layer spray deposition technology employed to make particle reinforced aluminum matrix composites can promote the effect of fast cooling, refine and homogenize microstructure, narrow the particle size distribution and optimize the particles and matrix bonding. In this paper, the current situations of R~D of spray deposited aluminum matrix composites, the principles and processing parameters of multi-layer spray deposition are reviewed. The developments of spray deposited A1-Zn-Mg, A1-Fe and A1-Si matrix composites are summarized. Densification methods for spray deposited aluminum matrix composites, especially novel methods including wedge pressing, cage rolling, ceramics rolling, and hot pressing for bulk preform compacted on a light tonnage equipment are emphasized. Developing trends of multi-layer spray deposited aluminum matrix composites are also presented. It is Considered that the bonding of the interface between the reinforcement particles and the aluminum matrix needs to be optimized. Multi-layer spray deposition has been invented to preparing bulk parts with uniform and high density in a programmable control. Densifieation methods are also developed towards light tonnage compact bulk preform. And the forming ability of the bulk deposits can be enhanced effectively by hot and wedge pressing, and then benefitting the deformation in next step.%通过多层喷射沉积技术制备颗粒增强铝基复合材料,强化了冷却效果,能获得细小均匀的显微组织,优化复合材料中增强相的分布及其与基体的结合状态。本文综述了喷射沉积颗粒增强铝基复合材料的发展现状;介绍了多层喷射沉积技术的原理与工艺参数;概述了喷射沉积颗粒增强Al-Zn—Mg系、Al—Fe系与Al-Si系复合材料;并介绍喷射沉积颗粒增强铝基复合材料的致密化技术,着重介绍在小吨位设备上致密大块多孔材料的楔形压制工艺、外框限制轧制、陶粒包覆轧制工

  10. Characterization of Hybrid CNT Polymer Matrix Composites

    Science.gov (United States)

    Grimsley, Brian W.; Cano, Roberto J.; Kinney, Megan C.; Pressley, James; Sauti, Godfrey; Czabaj, Michael W.; Kim, Jae-Woo; Siochi, Emilie J.

    2015-01-01

    Carbon nanotubes (CNTs) have been studied extensively since their discovery and demonstrated at the nanoscale superior mechanical, electrical and thermal properties in comparison to micro and macro scale properties of conventional engineering materials. This combination of properties suggests their potential to enhance multi-functionality of composites in regions of primary structures on aerospace vehicles where lightweight materials with improved thermal and electrical conductivity are desirable. In this study, hybrid multifunctional polymer matrix composites were fabricated by interleaving layers of CNT sheets into Hexcel® IM7/8552 prepreg, a well-characterized toughened epoxy carbon fiber reinforced polymer (CFRP) composite. The resin content of these interleaved CNT sheets, as well as ply stacking location were varied to determine the effects on the electrical, thermal, and mechanical performance of the composites. The direct-current electrical conductivity of the hybrid CNT composites was characterized by in-line and Montgomery four-probe methods. For [0](sub 20) laminates containing a single layer of CNT sheet between each ply of IM7/8552, in-plane electrical conductivity of the hybrid laminate increased significantly, while in-plane thermal conductivity increased only slightly in comparison to the control IM7/8552 laminates. Photo-microscopy and short beam shear (SBS) strength tests were used to characterize the consolidation quality of the fabricated laminates. Hybrid panels fabricated without any pretreatment of the CNT sheets resulted in a SBS strength reduction of 70 percent. Aligning the tubes and pre-infusing the CNT sheets with resin significantly improved the SBS strength of the hybrid composite To determine the cause of this performance reduction, Mode I and Mode II fracture toughness of the CNT sheet to CFRP interface was characterized by double cantilever beam (DCB) and end notch flexure (ENF) testing, respectively. Results are compared to the

  11. Analysis of Aluminium Nano Composites using Anova in CNC Machining Process

    Directory of Open Access Journals (Sweden)

    Maria Joe Christopher Poonthota Irudaya Raj

    2013-08-01

    Full Text Available The Objective of this work is to reinforce the Aluminum alloy with CNT by Stir Casting Method in different weight percentage of CNT was added to Aluminium separately to make composites and it physical and thermal properties have been investigated using test like tensile, hardness, Micro Structure and XRD. The improvement of mechanical, Physical and thermal properties for both the cases has been compared with pure aluminum. The TAGUCHI – ORTHOGONAL ARRAY experimental technique is used to optimize the machining parameters. The predicted surface roughness was estimated using S/N ratio and compared with actual values. ANOVA analysis is used to find the significant factors affecting the machining process in order to improve the surface characteristics of Al Material.

  12. Chemical composition and morphology of oxidic ceramics at filtration of steel deoxidised by aluminium

    Directory of Open Access Journals (Sweden)

    J. Bažan

    2009-10-01

    Full Text Available Composition and morphology of filter ceramics were investigated during filtration of steel deoxidised by aluminium. Filtration was realized with use of filters based on oxidic ceramics Cr2O3, TiO2, SiO2, ZrO2, Al2O3, 3Al2O3•2SiO2 and MgO•Al2O3. It was established that change of interphase (coating occurs during filtration of steel on the surface of capillaries of ceramics, where content of basic oxidic component decreases. Loss of oxidic component in the coating is replaced by increase of oxides of manganese and iron and it is great extent inversely proportional to the value of Gibbs’ energy of oxide, which forms this initial basis of ceramics.

  13. Appearance of anodised aluminium: Effect of alloy composition and prior surface finish

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Canulescu, Stela; Dirscherl, Kai; Johansen, Villads Egede; Engberg, Sara Lena Josefin; Schou, Jørgen; Ambat, Rajan

    2014-01-01

    Effect of alloy composition and prior surface finish on the optical appearance of the anodised layer on aluminium alloys was investigated. Four commercial alloys namely AA1050, Peraluman 706, AA5754, and AA6082 were used for the investigation. Microstructure and surface morphology of the substrate...... prior to anodising were analysed using scanning electron microscopy and atomic force microscopy. The optical appearance of the anodised surface with and without sealing was investigated using a photography setup, photospectrometry and bidirectional reflectance distribution function. It was found that...... the roughness of the as-etched surface increases with the degree of alloying due to second phase particles making the reflection more diffused, and that the as-etched surface morphology is similar to the oxide–substrate interface after anodising. Proper polishing is achieved on hard alloys and the...

  14. Chapter 4. Physicochemical and technological aspects of processing of aluminium production wastes with local aluminium- and fluorine containing raw material. 4.1. Influence of batch composition and technological conditions on sintering process. Kinetics of sintering process

    International Nuclear Information System (INIS)

    The flowsheet of cryolite and alumina obtaining from aluminium production wastes was considered. The chemical composition of initial materials, including samples of aluminium production wastes, kaolin, nepheline and fluorite are presented. Dependence of rate extraction of Al2O3 on temperature and duration of batch sintering process was studied. The kinetics of sintering process under isothermal conditions at temperature intervals 700-980 deg C was studied. The empirical activation energy of sintering was defined.

  15. Fracture toughness in metal matrix composites

    Directory of Open Access Journals (Sweden)

    Perez Ipiña J.E.

    2000-01-01

    Full Text Available Evaluations of the fracture toughness in metal matrix composites (Duralcan reinforced with 15% of Al(20(3 and SiC are presented in this work. The application of Elastic Plastic Fracture Mechanics is discussed and the obtained values are compared with the ones obtained by means of Linear Elastic Fracture Mechanics. Results show that J IC derived K JC values are higher than the corresponding values obtained by direct application of the linear elastic methodology. The effect of a heat treatment on the material fracture toughness was also evaluated in which the analyzed approaches showed, not only different toughness values, but also opposite tendencies. A second comparison of the J IC and K JC values obtained in this work with toughness values reported in the literature is presented and discussed.

  16. Ceramic matrix composites in simulated SSME environments

    Science.gov (United States)

    Herbell, Thomas P.; Eckel, Andrew J.

    1988-01-01

    Future Space Shuttle Main Engine (SSME)-type rocket engines can benefit from the use of fiber-reinforced ceramix matrix composites (FRCMC). Ceramics reinforced with long continuous fibers exhibit improved tolerance to severe thermomechanical and environmental exposures. An in-house NASA-Lewis program to evaluate the durability of FRCMC in simulated SSME environments is described. Primary tests involve multiple (one second) exposures of FRCMC specimens in a hydrogen/oxygen rocket test rig. This rig generates surface heating rates of 1000 to 2500 C/second. The FRCMC durability evaluation involves measurement of retained strength as a function of thermal shock severity and number of upshock cycles. Preliminary test results for monolithic silicon nitride (Si3N4) and silicon carbide (SiC), and one type of silicon based FRCMC, are presented. The test data are examined in terms of simple thermal shock theory.

  17. Influence of in situ formed ZrB2 particles on microstructure and mechanical properties of AA6061 metal matrix composites

    International Nuclear Information System (INIS)

    Highlights: → In situ fabrication of aluminium metal matrix composite reinforced ZrB2 particles. → Colour metallography of composites. → Improvement of matrix properties by ZrB2 particles. → Sliding wear behaviour of in situ composites. - Abstract: Particulate reinforced metal matrix composites (PMMCs) have gained considerable amount of research emphasis and attention in the present era. Research is being carried out across the globe to produce new combination of PMMCs. PMMCs are prepared by adding a variety of ceramic particles with monolithic alloys using several techniques. An attempt has been made to produce aluminium metal matrix composites reinforced with zirconium boride (ZrB2) particles by the in situ reaction of K2ZrF6 and KBF4 salts with molten aluminium. The influence of in situ formed ZrB2 particles on the microstructure and mechanical properties of AA6061 alloy was studied in this work. The in situ formed ZrB2 particles significantly refined the microstructure and enhanced the mechanical properties of AA6061 alloy. The weight percentage of ZrB2 was varied from 0 to 10 in steps of 2.5. Improvement of hardness, ultimate tensile strength and wear resistance of AA6061 alloy was observed with the increase in ZrB2 content.

  18. Multifunctional Metal Matrix Composite Filament Wound Tank Liners Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Metal Matrix Composite (MMC) materials offer tremendous potential for lightweight propellant and pressurant tankage for space applications. Thin MMC liners for...

  19. Simulating the galvanic coupling between S-Al2CuMg phase particles and the matrix of 2024 aerospace aluminium alloy

    OpenAIRE

    Lacroix, Loïc; Blanc, Christine; Pébère, Nadine; Thompson, George; Tribollet, Bernard; Vivier, Vincent

    2012-01-01

    Study of the corrosion behaviour of a magnetron sputtered Al–Cu/Al–Cu–Mg model alloy couple in sulphate solutions has been undertaken to gain insight into the galvanic coupling between the matrix and SAl2CuMg particles in the 2024 aluminium alloy (AA2024). Polarisation curves and local electrochemical impedance spectroscopy measurements (LEIS) were performed on the individual alloys and on the model alloy couple. SEM enabled correlation of electrochemical phenomena to the observed damage. The...

  20. In-situ processing and aging behaviour of an aluminium/Al/sub 2/O/sub 3/ composite

    International Nuclear Information System (INIS)

    Reactive sintering involving a displacement reaction between aluminium and CuO powders was applied to fabricate an aluminium based composite. The two powders were mixed in a ball mill and uniaxially pressed before sintering in nitrogen atmosphere at 900 deg. C. During sintering a displacement reaction between CuO and aluminium occurred, which resulted in in-situ synthesis of alumina particles. Differential thermal analysis (DTA), X-ray diffractometry (XRD), optical and scanning electron micros copies were used to investigate the phase and microstructural changes taking place during processing of the composite. Results revealed that no chemical reaction occurred during ball milling and Al/sub 2/O/sub 3/ phase developed in two stages during sintering of the compact. Below 700 deg. C, amorphous alumina formed which transformed to crystalline alumina at higher temperature. Aging response of the composite was examined as a function of time in temperature range of 180-220 deg. C. Composite attained a peak hardness value of 133 Hv after 4 hours of aging at 200 deg. C. (Orig./A.B.)

  1. Effect of friction time on the properties of friction welded YSZ‐alumina composite and 6061 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Uday M. Basheer

    2012-03-01

    Full Text Available The aim of this work was to study the effect of friction time on the microstructure and mechanical properties of alumina 0, 25, 50 wt% yttria stabilized zirconia (YSZ composite and 6061 aluminium alloy joints formed by friction welding. The alumina-YSZ composites were prepared through slip casting in plaster of Paris molds (POP and subsequently sintered at 1600°C, while the aluminium rods were machined down using a lathe machine to the dimension required. The welding process was carried out under different rotational speeds and friction times, while friction force (0.5 ton-force was kept constant. Scanning electron microscopy was used to characterize the interface of the joints structure. The experimental results showed that the friction time has a significant effect on joint structure and mechanical properties.

  2. Thermal conductivity of microPCMs-filled epoxy matrix composites

    NARCIS (Netherlands)

    Su, J.F.; Wang, X.Y; Huang, Z.; Zhao, Y.H.; Yuan, X.Y.

    2011-01-01

    Microencapsulated phase change materials (microPCMs) have been widely applied in solid matrix as thermal-storage or temperature-controlling functional composites. The thermal conductivity of these microPCMs/matrix composites is an important property need to be considered. In this study, a series of

  3. Thermal residual stresses in SiC particle reinforced aluminium composites: a study by the Taylor-based nonlocal theory of plasticity

    International Nuclear Information System (INIS)

    Strain gradient theories have been considered to be an effective means for capturing the size effects on ceramic particle-reinforced metal-matrix composites (MMCp), but the results predicted by them are significantly lower than the corresponding experimental data. One reason might be, that the thermal residual stresses caused by thermal contraction mismatch between the metal matrix and the ceramic particle were neglected in the numerical models. By incorporating the Taylor-based nonlocal theory (TNT) of plasticity, the finite element method (FEM) is applied in the present research, to investigate the effect of thermal residual stresses on the yield stress and average axial stresses of the aluminium matrix reinforced by silicon carbide particles (SiCp/Al). The elements of the matrix have been implemented in the ABAQUS finite element code through its USER-ELEMENT (UEL) interface for TNT plasticity. Some comparisons with the associated literature demonstrate that the numerical model with the thermal residual stresses is more in agreement with the experimental results.

  4. Insight of the interface of electroless Ni-P/SiC composite coating on aluminium alloy, LM24

    OpenAIRE

    Franco, M.; Sha, W.; Tan, V.; Malinov, S.

    2015-01-01

    Electroless nickel composite coatings with silicon carbide, SiC, as reinforcing particles deposited with Ni–P onto aluminium alloy, LM24, having zincating as under layer were subjected to heat treatment using air furnace. The changes at the interface were investigated using scanning electron microscope (SEM) and energy dispersive X-ray (EDX) to probe the chemistry changes upon heat treatment. Microhardness tester with various loads using both Knoop and Vickers indenters was used to study the ...

  5. Evaluation of thermophysical and thermomechanical properties of aluminium matrix dispersion fuels at BARC

    International Nuclear Information System (INIS)

    Al-U alloy and Al-UAIx, Al-U3O8 and Al-U3Si2 composites are being extensively used all over the world as fuel for small, water-cooled, non-power research reactors. As part of 40 kWt KAMINI and 5 MWt and 10 MWt research reactor fuels development programme at Bhabha Atomic Research Centre (BARC), Bombay, out-of-pile properties of these fuels, namely, hot hardness, high temperature microstructure and thermal conductivity were evaluated in the temperature range of 300-900K. (author)

  6. Matrix effect on leaching of Bisphenol A diglycidyl ether (BADGE) from epoxy resin based inner lacquer of aluminium tubes into semi-solid dosage forms.

    Science.gov (United States)

    Lipke, Uwe; Haverkamp, Jan Boris; Zapf, Thomas; Lipperheide, Cornelia

    2016-04-01

    To study the impact of different semi-solid dosage form components on the leaching of Bisphenol A (BPA) and Bisphenol A diglycidyl ether (BADGE) from the epoxy resin-based inner lacquer of aluminium tubes, the tubes were filled with different matrix preparations and stored at an elevated temperature. Despite compliance with the European Standards EN 15348 and EN 15766 on porosity and polymerisation of internal coatings of aluminium tubes, the commercially available tubes used in the study contained an increased amount of polymerisation residues, such as unbound BPA, BADGE and BADGE derivatives in the lacquer, as determined by acetonitrile extraction. Storage of Macrogol ointments in these tubes resulted in an almost quantitative migration of the unbound polymerisation residues from the coating into the ointment. In addition, due to alterations observed in the RP-HPLC chromatograms of the matrix spiked with BADGE and BADGE derivatives it is supposed that the leachates can react with formulation components. The contamination of the medicinal product by BPA, BADGE and BADGE derivatives can be precluded by using aluminium tubes with an internal lacquer with a low degree of unbound polymerisation residues. PMID:26724272

  7. Test on Sensor Effect of Cement Matrix Piezoelectric Composite

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaoming; LI Zhongxian; DING Yang; LI Zongjin

    2005-01-01

    A novel cement matrix smart piezoelectric composite and its application as sensing element are presented.A cement matrix smart piezoelectric composite piece encapsulated in a cement mortar formed a practical sensor, and it was tested on material test system with cyclic loading.According to the theoretical analysis, the function of the cement matrix piezoelectric sensor output voltage was expressed in terms of the magnitude of the input cyclic loading amplitude and frequency.The curve fitting of gain function that is defined as sensor′s gain factor under different frequencies of input loading was carried out. From the results of curve fitting, it is found that the cement matrix smart piezoelectric composite has a simple relationship between input loading and output voltage.Therefore the cement matrix piezoelectric composite sensor is suitable to be applied in structural health monitoring.

  8. Composition of microfouling on aluminium and fibre glass panels exposed in Agatti waters (Lakshadweep Island)

    Digital Repository Service at National Institute of Oceanography (India)

    Raveendran, T.V.; Sankaran, P.D.; Wagh, A.B.

    Rate of microfouling build-up was high during the initial periods of exposure of test surfaces but decreased with the increasing duration. Fibre glass surfaces showed higher deposition than those of aluminium. Carbohydrates and lipids were the major...

  9. Rod extrusion of titanium-aluminum composites; Verbundstrangpressen von Titan-Aluminium-Verbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Grittner, N.; Bormann, D.; Nikolaus, M.; Bach, F.W. [Bereich Biomedizintechnik und Leichtbau (BML), Institut fuer Werkstoffkunde, Leibniz-Universitaet Hannover, Garbsen (Germany); Stelling, O.; Schimanski, K.; von Hehl, A.; Zoch, H.W. [Stiftung Institut fuer Werkstofftechnik, Bremen (Germany); Senden, H. von

    2009-12-15

    The combination of different metals enables the processing of materials with local optimized properties. Thus, the production of metallic composites is associated with high standards in manufacturing technologie. Focus of the following investigations is the rod extrusion process of titanium-aluminum-composites. Besides the mechanical properties, the formation of the bonding zone and the mechanisms of adhesion in the bonding zone were investigated. The influence of specimens' preparation and of different coatings used improve bonding were a matter of particular interest. Whereas coatings of copper or nickel inhibit the formation of a strong bonding due to the formation of oxide layers, sealed titanium cores can reach a mechanical strength of up to 100 MPa after rod extrusion. Compared to other joining technologies, an impairment of the base metal via formation of heat affected zones, pores or grain coarsening does not occur. (Abstract Copyright [2009], Wiley Periodicals, Inc.) [German] Durch die Kombination von unterschiedlichen metallischen Werkstoffen lassen sich massgeschneiderte Konstruktionen mit optimierten Eigenschaften herstellen. Die Herstellung von Werkstoffverbunden ist jedoch haeufig mit hohen Anforderungen an die Fertigungstechnik verbunden. Schwerpunkt dieser Untersuchung ist das Verbundstrangpressen von Aluminium und Titan. Neben den mechanischen Eigenschaften des Verbundes wurden die Ausbildung der Bindungszone sowie die beim Haftungsaufbau wirksamen Bindungsmechanismen untersucht. Hierbei war neben dem Einfluss der Probenvorbereitung vor allem die Wirksamkeit von unterschiedlichen Haftvermittlerschichten von Interesse. Waehrend Schichten aus Kupfer oder Nickel den Haftungsaufbau aufgrund von Oxidschichtbildung verhindern, koennen durch Umformung eingegossener Titankerne Festigkeiten von ueber 100 MPa erreicht werden. Im Vergleich zu alternativen Fuegeverfahren tritt eine Beeintraechtigung des Werkstoffgefueges in Form von Waermeeinflusszonen

  10. Morphology, thermal, electrical and electrochemical stability of nano aluminium-oxide-filled polyvinyl alcohol composite gel electrolyte

    Indian Academy of Sciences (India)

    Navin Chand; Neelesh Rai; S L Agrawal; S K Patel

    2011-12-01

    In the present work, an attempt has been made to develop nano aluminium oxide (Al2O3)-filled polyvinyl alcohol (PVA) composite gel electrolytes. Surface morphological studies, thermal behaviour, electrochemical stability and electrical characterization of these composite gel electrolytes have been performed. An increase in the concentration of Al2O3 in composite gel electrolytes increases the amorphous characteristics of pure PVA. Bulk conductivity of composite gel electrolytes increases by an order of magnitude on addition of a nano filler. Maximum conductivity of 5.81 × 10-2 S/cm is observed for 6 wt% Al2O3-filled polymer gel composite electrolytes. Temperature dependence of electrical conductivity shows a combination of Arrhenius and Vogel–Tamman–Fulcher (VTF) nature. Maximum current stability during oxidation and reduction cycle is noticed for 6 wt% Al2O3-filled PVA composite electrolyte, viz. ±1.65 V.

  11. Mechanical Properties of Continuous Fiber Reinforced Zirconium Diboride Matrix Composites

    Science.gov (United States)

    Stuffle, Kevin; Creegan, Peter; Nowell, Steven; Bull, Jeffrey D.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    Continuous fiber reinforced zirconium diboride matrix composites, SCS-9a-(RBSiCZrB2)matrix, are being developed for leading edge, rocket nozzle and turbine engine applications. Recently, the composite materials have been characterized for tensile properties to 1250 C, the highest temperature tested. The tensile properties are fiber dominated as the matrix is microcracked on fabrication, but favorable failure characteristic are observed. Compression and shear mechanical testing results will be reported if completed. The effects of fiber volume fraction and matrix density on mechanical properties will be discussed. The target applications of the materials will be discussed. Specific testing being performed towards qualification for these applications will be included.

  12. Fabrication of aluminum matrix composite reinforced with carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1.0 wt.% carbon nanotube (CNT) reinforced 2024A1 matrix composite was fabricated by cold isostatic press and subsequent hot extrusion techniques. The mechanical properties of the composite were measured by a tensile test. Meanwhile, the fracture surfaces were examined using field emission scanning electron microscopy. The experimental results show that CNTs are dispersed homogeneously in the composite and that the interfaces of the Al matrix and the CNT bond well. Although the tensile strength and the Young's modulus of the composite are enhanced markedly, the elongation does not decrease when compared with the matrix material fabricated under the same process. The reasons for the increments may be the extraordinary mechanical properties of CNTs, and the bridging and pulling-out role of CNTs in the Al matrix composite.

  13. Continuous fiber ceramic matrix composites for heat engine components

    Science.gov (United States)

    Tripp, David E.

    1988-01-01

    High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs.

  14. Corrosion performance of SiCsubp/6061 Al metal matrix composites in sodium chloride solution

    International Nuclear Information System (INIS)

    The corrosion performance of silicon carbide particle/aluminium metal matrix composites (SiCsubp/Al) were studied in sodium chloride solution by means of electrochemical, microscopic, gravimetric and analytical techniques. The materials under investigation were compocasting processed 6061 Al reinforced with increasing amounts of SiC particles. Potentiostatic polarization tests were done in 0.1M NaCl solutions that were aerated or deaerated to observe overall corrosion behaviour. It was seen that the corrosion potentials did not vary greatly in relation to the amounts of SiCsubp reinforcement. Corrosion tests showed that the degree of corrosion increased with increasing SiCsubp content. SEM analysis technique was used to study the corroded samples and the pitting morphology. By TEM, no intermetallic layer was found at SiC/Al interface. A model for pitting process was proposed

  15. Nanophosphor composite scintillator with a liquid matrix

    Science.gov (United States)

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  16. Experimental Test of Stainless Steel Wire Mesh and Aluminium Alloy With Glass Fiber Reinforcement Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Ranga Raj R.,

    2015-05-01

    Full Text Available At present, composite materials are mostly used in aircraft structural components, because of their excellent properties like lightweight, high strength to weight ratio, high stiffness, and corrosion resistance and less expensive. In this experimental work, the mechanical properties of laminate, this is reinforced with stainless steel wire mesh, aluminum sheet metal, perforated aluminum sheet metal and glass fibers to be laminate and investigated. The stainless steel wire mesh and perforated aluminum metal were sequentially stacked to fabricate, hybrid composites. The aluminum metal sheet is also employed with that sequence to get maximum strength and less weight. The tensile, compressive and flexure tests carried out on the hybrid composite. To investigate the mechanical properties and elastic properties of the metal matrix composite laminate of a material we are using experimental test and theoretical calculation. The experimental work consists of Tensile, compressive and flexural test. The expectation of this project results in the tensile and compressive properties of this hybrid composite it is slightly lesser than carbon fibers but it could facilitate a weight reduction compared with CFRP panels. So this hybrid laminates composite material offering significant weight savings and maximum strength over some other GFRP conventional panels.

  17. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    Science.gov (United States)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  18. Diffraction measurements of residual stress in titanium matrix composites

    International Nuclear Information System (INIS)

    Metal matrix composites develop residual strains after consolidation due to the thermal expansion mismatch between the reinforcement fiber and the matrix. X-ray and neutron diffraction measured values for the longitudinal residual stress in the matrix of four titanium MMCs are reported. For thick composites (> 6 plies) the surface stress measured by x-ray diffraction matches that determined by neutron diffraction and therefore represents the stress in the bulk region consisting of the fibers and matrix. For thin sheet composites, the surface values are lower than in the interior and increase as the outer rows of fibers are approached. While a rationale for the behavior in the thin sheet has yet to be developed, accounting for composite thickness is important when using x-ray measured values to validate analytic and finite element calculations of the residual stress state

  19. Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The work proposed herein is to demonstrate that the higher temperature capabilities of Ceramic Matrix Composites (CMC) can be fully utilized to reduce emissions and...

  20. Ultra-Low-Density (ULD) Polymer Matrix Composites (PMCs) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR proposal seeks to demonstrate a new class of ultra-low-density (ULD) polymer matrix composites of high specific modulus and specific strength...

  1. Laser Assisted Machining of Metal Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Metal matrix composites (MMC's) are of great interest in aerospace applications where their high specific strength provides a weight saving alternative to standard...

  2. Mechanical spectroscopy of interface stress relaxation in magnesium matrix composites

    OpenAIRE

    Chowdhury, Abu Salek Md. Fahim

    2009-01-01

    Magnesium matrix composites made of pure (99.98%) magnesium reinforced with long carbon (Mg/C) and stainless steel (Mg/steel) fibers were processed by low pressure infiltration method. Mg/C composites were then oriented from the crystallographic point of view by Bridgman technique and finally three composites were obtained with γ = 0°, 45° and 90° (γ is the angle between the matrix-fiber interface and the normal to the basal plane). The results show that the damping level in the composite for...

  3. OPTIMIZATION OF ELECTRICAL DISCHARGE MACHINING PARAMETERS OF ALUMINIUM HYBRID COMPOSITES USING TAGUCHI METHOD

    Directory of Open Access Journals (Sweden)

    N. RADHIKA

    2014-08-01

    Full Text Available Metal matrix composites utilises the combined properties of the constituent material that finds applications in various fields. The present study investigates the influence of peak current, flushing pressure and pulse-on time on Electrical Discharge Machining of AlSi10Mg alloy reinforced with 3 wt% graphite and 9 wt% alumina hybrid metal matrix composites. Taguchi’s Design of Experiment was used to analyse the machining characteristics of hybrid composites. Analysis of Variance and Signal-to-Noise ratio were used to determine the influence of input process parameters on the surface roughness, material removal rate and tool wear rate. Signal to Noise ratio and Analysis of Variance revealed that peak current was the most influential parameter on surface roughness followed by pulse on time and flushing pressure. For material removal rate, the major parameter was flushing pressure followed by peak current and pulse on time. The most significant parameter of tool wear rate was pulse on time followed by peak current and flushing pressure. Interaction terms also have significant effect on their output responses.

  4. Watermarking Digital Image Using Fuzzy Matrix Compositions and Rough Set

    Directory of Open Access Journals (Sweden)

    Sharbani Bhattacharya

    2014-07-01

    Full Text Available Watermarking is done in digital images for authentication and to restrict its unauthorized usages. Watermarking is sometimes invisible and can be extracted only by authenticated party. Encrypt a text or information by public –private key from two fuzzy matrix and embed it in image as watermark. In this paper we proposed two fuzzy compositions Product-Mod-Minus, and Compliment-Product-Minus. Embedded watermark using Fuzzy Rough set created from fuzzy matrix compositions.

  5. Watermarking Digital Image Using Fuzzy Matrix Compositions and Rough Set

    OpenAIRE

    Sharbani Bhattacharya

    2014-01-01

    Watermarking is done in digital images for authentication and to restrict its unauthorized usages. Watermarking is sometimes invisible and can be extracted only by authenticated party. Encrypt a text or information by public –private key from two fuzzy matrix and embed it in image as watermark. In this paper we proposed two fuzzy compositions Product-Mod-Minus, and Compliment-Product-Minus. Embedded watermark using Fuzzy Rough set created from fuzzy matrix compositions.

  6. Glass matrix composite material prepared with waste foundry sand

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao-shu; XIA Ju-pei; ZHU Xiao-qin; LIU Fan; HE Mao-yun

    2006-01-01

    The technology of glass matrix of the composite material manufactured through a sintering process and using waste foundry sand and waste glass as the main raw materials was studied. The effects of technological factors on the performance of this material were studied. The results showed that this composite material is formed with glass as matrix, core particulate as strengthening material, it has the performance of glass and ceramics, and could be used to substitute for stone.

  7. Review on preparation techniques of particle reinforced metal matrix composites

    Directory of Open Access Journals (Sweden)

    HAO Bin

    2006-02-01

    Full Text Available This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparation techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  8. Review on preparation techniques of particle reinforced metal matrix composites

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparatior techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  9. Modification of natural matrix lac-bagasse for matrix composite films

    Science.gov (United States)

    Nurhayati, Nanik Dwi; Widjaya, Karna; Triyono

    2016-02-01

    Material technology continues to be developed in order to a material that is more efficient with composite technology is a combination of two or more materials to obtain the desired material properties. The objective of this research was to modification and characterize the natural matrix lac-bagasse as composite films. The first step, natural matrix lac was changed from solid to liquid using an ethanol as a solvent so the matrix homogenly. Natural matrix lac was modified by adding citric acid with concentration variation. Secondly, the bagasse delignification using acid hydrolysis method. The composite films natural matrix lac-bagasse were prepared with optimum modified the addition citric acid 5% (v/v) and delignification bagasse optimum at 1,5% (v/v) in hot press at 80°C 6 Kg/cm-1. Thirdly, composite films without and with modification were characterized functional group analysis using FTIR spectrophotometer and mechanical properties using Universal Testing Machine. The result of research showed natural matrix lac can be modified by reaction with citric acid. FTIR spectra showed without and with modification had functional groups wide absorption 3448 cm-1 group -OH, C=O ester strong on 1712 cm-1 and the methylene group -CH2 on absorption 1465 cm-1. The mechanical properties showed tensile strength 0,55 MPa and elongation at break of 0,95 %. So that composite films natural matrix lac can be made with reinforcement bagasse for material application.

  10. Modelling of a cracked aluminium plate repaired with composite octagonal patch in mode I and mixed mode

    Energy Technology Data Exchange (ETDEWEB)

    Ouinas, D. [Faculty of Engineering, University Ibn Badis of Mostaganem, 27000 (Algeria)], E-mail: douinas@netcourrier.com; Bachir Bouiadjra, B. [LMPM, Department of Mechanical Engineering, University of Sidi Bel Abbes, 22000 (Algeria); Achour, B.; Benderdouche, N. [Faculty of Engineering, University Ibn Badis of Mostaganem, 27000 (Algeria)

    2009-03-15

    Adhesively bonded composite patch repair technique has been successfully applied in military aircraft repair and has recently been expanded to commercial aircraft industry. This technique is applied to extend the service life of cracked aluminium components. In this paper, the finite element method is applied to analyse the central crack's behaviour repaired by a boron/epoxy composite patch. The effects of the mechanical and geometrical properties of the patch on the variation of the stress intensity factor at the crack tip were highlighted. The obtained results show that the stress intensity factor at the crack tip, repaired by an octagonal patch of height 2c/3, is reduced by 5% with regard to the one repaired by an octagonal patch of size 'c'. For a height patch of c/3 the reduction is about 7%. The maximum reduction of composite patch of fibres in y-direction is about 30% compared to the aluminium patch. This reduction doubles when a composite patch of fibres in x-direction is used. The adhesive properties must be optimised to increase the performance of the repair of structures by such reinforcement.

  11. Microstructure and composition of rare earth-transition metal-aluminium-magnesium alloys

    OpenAIRE

    Lia Maria Carlotti Zarpelon; Eguiberto Galego; Hidetoshi Takiishi; Rubens Nunes Faria

    2008-01-01

    The determination of the microstructure and chemical composition of La0.7-xPr xMg0.3Al 0.3Mn0.4Co0.5 Ni3.8 (0 < x < 0.7) metal hydride alloys has been carried out using scanning electron microscopy (SEM), energy dispersive X ray analysis (EDX) and X ray diffraction analysis (XRD). The substitution of La with Pr changed the grain structure from equiaxial to columnar. The relative atomic ratio of rare earth to (Al, Mn, Co, Ni) in the matrix phase was 1:5 (LaNi5-type structure). Magnesium was de...

  12. Fatigue of continuous fiber reinforced titanium matrix composites

    Science.gov (United States)

    Johnson, W. S.

    1991-01-01

    Several lay-ups of SCS-6/Ti-15-3 composites were investigated. Static and fatigue tests were conducted for both notched and unnotched specimens at room and elevated temperatures. Test results indicated that the stress in the 0 fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be dependent on the level of residual stresses and the fiber/ matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix material without breaking fibers. These matrix cracks can significantly reduce the residual strength of notched composite.

  13. Composite Matrix Systems for Cryogenic Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As an alternative material to aluminum-lithium, cryotanks developed from fiber reinforced composites can offer significant weight savings in applications for fuel...

  14. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  15. Pseudomonas biofilm matrix composition and niche biology

    OpenAIRE

    Mann, Ethan E.; Wozniak, Daniel J.

    2012-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produ...

  16. Fatigue damage criteria - Matrix, fibers and interfaces of continuous fiber reinforced metal matrix composites

    Science.gov (United States)

    Johnson, W. S.

    1988-01-01

    Continuous fiber reinforced metal matrix composites (MMC) are projected for use in high temperature, stiffness critical parts that will be subjected to cyclic loadings. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four catagories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage are discussed and illustrated by examples. The emphasis is on the fatigue of unnotched laminates.

  17. Magnesium Matrix Composite Foams—Density, Mechanical Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Kyu Cho

    2012-07-01

    Full Text Available Potential of widespread industrial applications of magnesium has been realized in recent years. A variety of magnesium alloy matrix composites are now being studied for mechanical properties. Since magnesium is the lightest structural metal, it can replace aluminum in existing applications for further weight savings. This review presents an overview of hollow particle filled magnesium matrix syntactic composite foams. Fly ash cenospheres are the most commonly used hollow particles for such applications. Fly ash cenospheres primarily have alumino-silicate composition and contain a large number of trace elements, which makes it challenging to study the interfacial reactions and microstructure in these composites. Microstructures of commonly studied AZ and ZC series magnesium alloys and their syntactic foams are discussed. Although only a few studies are available on these materials because of the nascent stage of this field, a comparison with similar aluminum matrix syntactic foams has provided insight into the properties and weight saving potential of magnesium matrix composites. Analysis shows that the magnesium matrix syntactic foams have higher yield strength at the same level of density compared to most other metal matrix syntactic foams. The comparison can guide future work and set goals that need to be achieved through materials selection and processing method development.

  18. Mechanical Behaviour of Aluminium Dispersed Unsaturated Polyester/Jute Composites for Structural Applications

    Science.gov (United States)

    Biswas, Bhabatosh; Chabri, Sumit; Mitra, Bhairab Chandra; Bandyopadhyay, Nil Ratan; Sinha, Arijit

    2016-07-01

    The fibrous filler Jute along with Al particle reinforced unsaturated polyester composites having different filler (both Jute and Al were in equal wt%) were fabricated by compression molding technique. The variation of loading was taken as 2, 5, 10 and 15 wt% in the fabricated composites. In present investigation, it was observed that with fillers (Jute and Al) incorporation the microhardness increases and become optimum at 10 wt% of fillers content followed by slight deterioration at 15 wt%. Structural investigation through scanning electron microscopy and X-ray diffraction confirm the dispersion of the fillers within the composites. An improvement of crystallinity % of the matrix with filler addition was observed as predicted from X-ray diffraction technique. The results of tensile testing shows that the strength and modulus increase monotonically up to 10 wt% of filler addition followed by slight decreases at 15 wt% of the same. The scratch result shows the optimization of strength and toughness of the composites with filler content of 10 wt%.

  19. Use of silica sol as a transient phase for fabrication of aluminium titanate-mullite ceramic composite

    International Nuclear Information System (INIS)

    A novel approach for the fabrication of aluminium titanate-mullite composite via silica sol gelating is described. The bending strength of sintered samples was greatly improved (by up to about 200%) compared with that of samples fabricated by dry pressing and gel-casting. The effect of silica sol on the dispersion behaviour of slurry was revealed. The results from scanning electron microscopy analysis showed that silica sol gel-casting provides a dense microstructure with fine grains, which are responsible for the improvement in bending strength.

  20. Electrical and Thermal Properties of Glass Matrix-Al/sub 2/TiO/sub 5/ Composites Prepared at Low Temperature

    International Nuclear Information System (INIS)

    In this research, the electrical and thermal properties of glass matrix composites filled with different amounts of aluminium titanate (Al/sub 2/TiO/sub 5/) powder varying from 5 to 15 wt. percent have been investigated. In order to optimize the processing route, some sintering strategies were tested. The densest specimens were obtained by less pressure of the sintering. The composites were characterized by means of SEM micrography, X-ray diffraction (XRD), differential thermal analysis (DTA), dilatometry and impedance spectrometry. XRD results showed that the main crystallization phases were Wollastonite, Aluminium titanate, Rutile, and Alumina in all sintered glass matrix composites. It was also revealed that addition of 15 wt.% aluminium titanate has increased the relative density and decreased thermal expansion coefficient (TEC) (6.9*10/sup -6/degree C) and electrical conductivity (3.1*10/sup -4 Ohm.cm) in comparison with other composites. The results would be explained considering nature and concentration of the formed crystalline phases and their micro-structures. (author)

  1. Micromechanics effects in creep of metal-matrix composites

    Science.gov (United States)

    Davis, L. C.; Allison, J. E.

    1995-12-01

    The creep of metal-matrix composites is analyzed by finite element techniques. An axisymmetric unit-cell model with spherical reinforcing particles is used. Parameters appropriate to TiC particles in a precipitation-hardened (2219) Al matrix are chosen. The effects of matrix plasticity and residual stresses on the creep of the composite are calculated. We confirm (1) that the steady-state rate is independent of the particle elastic moduli and the matrix elastic and plastic properties, (2) that the ratio of composite to matrix steady-state rates depends only on the volume fraction and geometry of the reinforcing phase, and (3) that this ratio can be determined from a calculation of the stress-strain relation for the geometrically identical composite (same phase volume and geometry) with rigid particles in the appropriate power-law hardening matrix. The values of steady-state creep are compared to experimental ones (Krajewski et al.). Continuum mechanics predictions give a larger reduction of the composite creep relative to the unreinforced material than measured, suggesting that the effective creep rate of the matrix is larger than in unreinforced precipitation-hardened Al due to changes in microstructure, dislocation density, or creep mechanism. Changes in matrix creep properties are also suggested by the comparison of calculated and measured creep strain rates in the primary creep regime, where significantly different time dependencies are found. It is found that creep calculations performed for a timeindependent matrix creep law can be transformed to obtain the creep for a time-dependent creep law.

  2. Development and characterization of 430L matrix composites gradient materials

    Directory of Open Access Journals (Sweden)

    Elisa Maria Ruiz-Navas

    2005-03-01

    Full Text Available This paper deals with a new concept that is Functionally Gradient Materials (FGM. The materials developed in this work are constituted by a 430L matrix core and composite materials with this matrix and gradient concentration with NbC reinforcement, from the core to the surface, through different steps. Composite powders of different content in NbC were produced through high energy milling in order to obtain the gradient composition. The morphology and microhardness of these powders were characterised and subsequently were processed through conventional P/M techniques, pressing and sintering. The materials obtained show improved wear behaviour.

  3. The effect of surface pre-conditioning treatments on the local composition of Zr-based conversion coatings formed on aluminium alloys

    Science.gov (United States)

    Cerezo, J.; Vandendael, I.; Posner, R.; de Wit, J. H. W.; Mol, J. M. C.; Terryn, H.

    2016-03-01

    This study investigates the effect of different alkaline, acidic and thermal pre-conditioning treatments applied to different Al alloy surfaces. The obtained results are compared to the characteristics of Zr-based conversion coatings that were subsequently generated on top of these substrates. Focus is laid on typical elemental distributions on the sample surfaces, in particular on the amount of precipitated functional additives such as Cu species that are present in the substrate matrix as well as in the conversion bath solutions. To this aim, Field Emission Auger Electron spectra, depth profiles and surface maps with superior local resolution were acquired and compared to scanning electron microscopy images of the sample. The results show how de-alloying processes, which occur at and around intermetallic particles in the Al matrix during typical industrial alkaline or acidic cleaning procedures, provide a significant source of crystallization cores for any following coating processes. This is in particular due for Cu-species, as the resulting local Cu structures on the surface strongly affect the film formation and compositions of state-of-the-art Zr-based films. The findings are highly relevant for industrial treatments of aluminium surfaces, especially for those that undergo corrosion protection and painting process steps prior to usage.

  4. Standard Guide for Testing Polymer Matrix Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide summarizes the application of ASTM standard test methods (and other supporting standards) to continuous-fiber reinforced polymer matrix composite materials. The most commonly used or most applicable ASTM standards are included, emphasizing use of standards of Committee D30 on Composite Materials. 1.2 This guide does not cover all possible standards that could apply to polymer matrix composites and restricts discussion to the documented scope. Commonly used but non-standard industry extensions of test method scopes, such as application of static test methods to fatigue testing, are not discussed. A more complete summary of general composite testing standards, including non-ASTM test methods, is included in the Composite Materials Handbook (MIL-HDBK-17). Additional specific recommendations for testing textile (fabric, braided) composites are contained in Guide D6856. 1.3 This guide does not specify a system of measurement; the systems specified within each of the referenced standards shall appl...

  5. Time-dependent deformation of titanium metal matrix composites

    Science.gov (United States)

    Bigelow, C. A.; Bahei-El-din, Y. A.; Mirdamadi, M.

    1995-01-01

    A three-dimensional finite element program called VISCOPAC was developed and used to conduct a micromechanics analysis of titanium metal matrix composites. The VISCOPAC program uses a modified Eisenberg-Yen thermo-viscoplastic constitutive model to predict matrix behavior under thermomechanical fatigue loading. The analysis incorporated temperature-dependent elastic properties in the fiber and temperature-dependent viscoplastic properties in the matrix. The material model was described and the necessary material constants were determined experimentally. Fiber-matrix interfacial behavior was analyzed using a discrete fiber-matrix model. The thermal residual stresses due to the fabrication cycle were predicted with a failed interface, The failed interface resulted in lower thermal residual stresses in the matrix and fiber. Stresses due to a uniform transverse load were calculated at two temperatures, room temperature and an elevated temperature of 650 C. At both temperatures, a large stress concentration was calculated when the interface had failed. The results indicate the importance of accuracy accounting for fiber-matrix interface failure and the need for a micromechanics-based analytical technique to understand and predict the behavior of titanium metal matrix composites.

  6. Manufacturing and damage mechanisms in metal matrix composites

    Directory of Open Access Journals (Sweden)

    E. Bayraktar

    2008-12-01

    Full Text Available Purpose: Mechanical properties of metal matrix composites (MMCs are essentially functions of the manufacturing processes. Surface state and roughness conditions as well as the type of matrix reinforcement and heat treatment influence the mechanical behaviour of the MMCs in service conditions. The factors such as the porosity of the matrix, volume fraction of the reinforcement and their distribution, agglomeration or sedimentation of particles and particle size, dross and porosities influence the behaviour of the MMC. The static and cyclic deformation behaviour of these two metal matrix composites has been investigated at room temperature; 2124/Al-Si-Cu fabricated by powder metallurgy and AS7G/Al-Si-Mg fabricated by foundry.Design/methodology/approach: In cyclic deformation, surface roughness effect on the damage behaviour has been discussed. The microstructure for optical images was made by Olympus optical microscope (OM. The failed specimens are observed by using of scanning electron microscope (SEM and also the variation of volume fraction depending on the tomography density (TD was evaluated by means of X-rays computed tomography, CT.Findings: AS7G composite showed considerable lower mechanical properties regarding to the 2124 composite. In the AS7G composite, the crack generally initiated at the interface (SiC/matrix with many interface debonding between the SiC particles and the matrix. This was the principal cause of the reduced fatigue strength.Practical implications: Applications of χ-rays CT on the composite materials is more efficient and skilful. χ-rays CT well characterise the particle size and the distribution of the reinforcements-volume fraction as 3D at the mesoscopic scale as a possible way to study this aspect.Originality/value: Manufacturing of two new different MM-composites and damage analysis in successful usage of aerospace application.

  7. Properties and Structure of Magnesium Matrix Composite Reinforced with CNTs

    Institute of Scientific and Technical Information of China (English)

    LI Si-nian; SONG Shou-zhi; YU Tian-qing; CHEN Hui-min; ZHANG You-shou; SHEN Jin-long

    2004-01-01

    By using high pure Magnesium (99.9 wt% )as matrix and multi-walled bended carbonnanotubes ( CNTs ) as reinforced phase, carbon nanotubes/magnesium matrix composite was prepared by thefoundry method under the argon gas protection, and its mechanical properties were tested. The interface structureand component of plating and un-plating carbon nanotubes were analyzed by TEM and EDS, and the action mech-anism was discussed. The experiment results show that the CNTs can strengthen mechanical properties of the nano-tube- reinforced Mg matrix composite, the tensile strength and elongation ratio are greatly improved. Furthermore,the plating CNTs are better than un-plating CNTs in strengthening effects. The tensile strength is inereased by150% and the elongation ratio is increased by 30% than that of matrix when content of CNTs is 0.67 wt% .

  8. Radiation-protective polymer-matrix nanostructured composites

    Energy Technology Data Exchange (ETDEWEB)

    Kaloshkin, S.D.; Tcherdyntsev, V.V. [College of Advanced Materials and Nanotechnologies, National University of Science and Technology ' MISiS' , Leninsky Prospect, 4 Moscow (Russian Federation); Gorshenkov, M.V., E-mail: mvg@misis.ru [College of Advanced Materials and Nanotechnologies, National University of Science and Technology ' MISiS' , Leninsky Prospect, 4 Moscow (Russian Federation); Gulbin, V.N. [College of Advanced Materials and Nanotechnologies, National University of Science and Technology ' MISiS' , Leninsky Prospect, 4 Moscow (Russian Federation); Kuznetsov, S.A. [Russian State Technological University ' MATI' , Orshanskaya 3, Moscow (Russian Federation)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Radiation-protective composites were fabricated by solid state intermixing and thermal pressing. Black-Right-Pointing-Pointer The composites based on UHMWPE contain B{sub 4}S and W nanopowders as fillers. Black-Right-Pointing-Pointer The mechanical and {gamma}-radiation protective properties of the polymer-matrix nanocomposites were determined experimentally. Black-Right-Pointing-Pointer For composites containing 12% B{sub 4}C and 12% W the mechanical properties were studied prior to and after the irradiation with fast neutrons. - Abstract: UHMWPE-based nanostructured composites containing B{sub 4}C and W nanopowders were fabricated and studied. The mechanical and {gamma}-radiation protective properties of the polymer-matrix nanocomposites were determined experimentally. For selected composites the mechanical properties were studied prior to and after the irradiation.

  9. Abrasive Wear Performance of Aluminium Modified Epoxy-Glass Fiber Composites

    Science.gov (United States)

    Kamble, Vikram G.; Mishra, Punyapriya; Al Dabbas, Hassan A.; Panda, H. S.; Fernandez, Johnathan Bruce

    2015-07-01

    For a long time, Aluminum filled epoxies molds have been used in rapid tooling process. These molds are very economical when applied in manufacturing of low volume of plastic parts. To improve the thermal conductivity of the material, the metallic filler material is added to it and the glass fiber improves the wear resistance of the material. These two important parameters establish the life of composites. The present work reports on abrasive wear behavior of Aluminum modified epoxy and glass fiber composite with 5 wt.% and 10 wt.% of aluminum particles. Through pin on disc wear testing machine, we studied the wear behaviors of composites, and all these samples were fabricated by using hand layup process. Epoxy resin was used as matrix material which was reinforced with Glass fiber and Aluminum as filler. The composite with 5 wt.% and 10 wt.% of Al was cast with dimensions 100 × 100 × 6 mm. The specimens were machined to a size of 6 × 6 × 4 mm for abrasive testing. Abrasive tests were carried out for different grit paper sizes, i.e., 150, 320, 600 at different sliding distance, i.e., 20, 40, 60 m at different loads of 5, 10 and 15 N and at constant speed. The weight loss due to wear was calculated along with coefficient of friction. Hardness was found using Rockwell hardness machine. The SEM morphology of the worn out surface wear was analyzed to understand the wear mechanism. Results showed that the addition of Aluminum particles was beneficial for low abrasive conditions.

  10. Nickel matrix micro/nano SiC composite electrodeposition

    OpenAIRE

    Albert Calbeto, Sònia

    2010-01-01

    Electrochemical codeposition is widely used in the last decade to produce composite metal matrix coatings. Hard particles such as oxides or carbides embedded in a metal matrix coating aim to increase its mechanical and wear properties. The use of nanometric particles could also change the microstructure of the electrodeposits leading to a more compact structure and thus to an increased corrosion resistance. The aim of this work is the production of pure nickel, nickel containing SiC micro-...

  11. Creep processes in magnesium metal matrix composites

    Czech Academy of Sciences Publication Activity Database

    Sklenička, Václav; Kuchařová, Květa; Svoboda, M.; Kvapilová, Marie; Lukáč, P.

    Brno: Ústav fyziky materiálů AV ČR, v. v. i., 2015 - (Dlouhý, A.; Kunz, L.). s. 216-216 ISBN 978-80-87434-07-9. [ICSMA-17 International Conference on the Strength of Materials /17./. 09.08.2015-14.08.2015, Brno] R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : magnesium composites * magnesium alloy s * creep * reinforcement * interfacial microstructure * load transfer Subject RIV: JG - Metallurgy

  12. On the effective properties of thermo-piezoelectric matrix composites

    International Nuclear Information System (INIS)

    Explicit expressions for the effective pyroelectric, dielectric, piezoelectric, elastic and thermoelastic constants of a matrix composite have been obtained in closed form. A numerical analysis has been carried out of the concentration dependences of constants of a composite in which the BaTiO3 ceramics is the matrix while the inclusions are represented by spheroidal ceramic particles of PZT-19. A case is examined when the matrix and the inclusions possess opposite polarization. At a certain concentration of PZT-19 the composite exhibits well pronounced pyroelectric properties without having any appreciable piezoeffect. At another concentration, it manifests marked piezoelectric properties, but does not possess the pyroeffect. Practical implementations of the results are discussed. (author)

  13. Research and development of advanced aluminium/graphite composites for thermal management applications

    CERN Document Server

    Wyszkowska, Edyta; Bertarelli, Alessandro

    Thermal management materials are continuously gaining importance as a consequence of everlasting evolution in performance of electronic and electric devices. In particular, by improving the heat exchanger’s materials' properties (i.e. thermal conductivity) it is possible to boost further performance and miniaturization of such devices. Due to their high thermal conductivity, Copper and Aluminium are currently the most commonly used materials for thermal management applications. However, the mismatch in thermal expansion between Cooper/Aluminium and Silicon is limiting the heat transfer at the interface between the electronic chip and the heat exchanger. Furthermore, Copper is indeed characterized by a high thermal conductivity but at the same time its high density (8.9 g/cm3) increases weight of the final product, which in most of the cases does not meet specific application requirements. High cost of these materials is another constraint which limits their application. Due to aforementioned facts, monolith...

  14. Analysis of Damage in a Ceramic Matrix Composite

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Talreja, Ramesh

    1993-01-01

    Mechanisms of damage and the associated mechanical response are stud ied for a unidirectionally fiber-reinforced ceramic matrix composite subjected to uniaxial tensile loading parallel to fibers. A multi-stage development of damage is identified, and for each stage the governing mechanisms are...... discussed. For distributed matrix micro cracking a continuum damage model is used as the basis for describing the associated stress-strain behavior. A simplified analysis of frictional sliding at the fiber/matrix inter face is made to elucidate its effect on the stress-strain response....

  15. Obtainment, machining and wear of metal matrix composites processed by powder metallurgy

    International Nuclear Information System (INIS)

    The aim of this investigation was the obtainment of metal matrix composites (MMC) by the route of powder metallurgy, and the valuation of these materials with relation to their machining and wear characteristics. Firstly, were obtained pure commercial aluminium matrix composites materials, with 5, 10 and 15% volumetric fraction of silicon carbide particles. Was also obtained a material without reinforcement particles in order to verify by comparison, the influence of addition of reinforcement particles. The obtained materials were characterized physics (hydrostatic density), mechanics (hardness and tensile tests) and microstructurally (optical microscopy and scanning electron microscopy). The results showed a homogeneous distribution of reinforcement particles in the composite, and improvement in the mechanical properties, mainly tensile strength (UTS) in comparison to the unreinforced material. After, tests were made to verify the materials behavior during machining and to check the performance of several tool materials (cemented carbide, ceramics and polycrystalline diamond). In these tests, values of the cutting force were measured by instrumented tool-holders. Phenomena such as tool wear, built-up edge formation and mechanism of chip formation were also observed and evaluated. The results from the cemented carbide tool tests, were utilised for the machinability index determination of each material. These results were applied to the Taylor equation and the equation constants for each material and test conditions were determined. The results showed that the inclusion of silicon carbide particles made extremely difficult the machining of the composites, and only with diamond tool, satisfactory results were obtained. At last, wear tests were performed to verify the influence of the reinforcement particles in the characteristics of wear resistance of the materials. The results obtained were utilized in the wear coefficient determination for each material. The

  16. Ductility of a continuous fiber reinforced aluminum matrix composite

    Science.gov (United States)

    Jansson, S.; Leckie, Frederick A.

    1991-01-01

    The transverse properties of an aluminum alloy metal matrix composite reinforced by continuous alumina fibers have been investigated. The composite is subjected to both mechanical and cyclic thermal loading. The ductility can vary by an order of magnitude according to the operating conditions. For high mechanical and low thermal loading the ductility is small, for low mechanical and high thermal loading the ductility is an order of magnitude higher. Experiments on a beam in bending confirm that the ductility is strongly dependent on the loading conditions. The observations suggest a means of utilizing the inherent ductility of the matrix.

  17. Corrosion Behavior of Silicon Carbide/7091 Aluminum Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Wooseung [Inha Technical College, Incheon (Korea, Republic of)

    2012-04-15

    The effects of volume fraction (15-30%) of SiC particulate reinforcements on the corrosion behavior of SiCp/7091 Al composites in the 3.5% NaCl solution were studied by electrochemical techniques and scanning electron microscopy. The results showed that the amount of SiC particulate reinforcements did not cause much difference in the corrosion behavior of SiCp/7091 Al composites but the corrosion rate was proportional to the amount of SiCp reinforcement. And numerous pits and severe dissolution of the matrix was observed probably due to the discontinuities and galvanic effects between Al matrix and SiC reinforcements.

  18. Melt infiltration casting of bulk metallic-glass matrix composites

    OpenAIRE

    Dandliker, R. B.; Conner, R. D.; Johnson, W.L.

    1998-01-01

    The authors describe a technique for melt infiltration casting of composites with a metallic-glass matrix. We made rods 5 cm in length and 7 mm in diameter. The samples were reinforced by continuous metal wires, tungsten powder, or silicon carbide particulate preforms. The most easily processed composites were those reinforced with tungsten and carbon steel continuous wire reinforcement. The Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 matrix was quenched to a glass after infiltrating the reinforcement. We...

  19. Composite Matrix Regenerator for Stirling Engines

    Science.gov (United States)

    Knowles, Timothy R.

    1997-01-01

    This project concerns the design, fabrication and testing of carbon regenerators for use in Stirling power convertors. Radial fiber design with nonmetallic components offers a number of potential advantages over conventional steel regenerators: reduced conduction and pressure drop losses, and the capability for higher temperature, higher frequency operation. Diverse composite fabrication methods are explored and lessons learned are summarized. A pulsed single-blow test rig has been developed that has been used for generating thermal effectiveness data for different flow velocities. Carbon regenerators have been fabricated by carbon vapor infiltration of electroflocked preforms. Performance data in a small Stirling engine are obtained. Prototype regenerators designed for the BP-1000 power convertor were fabricated and delivered to NASA-Lewis.

  20. Electron beam curing of polymer matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Janke, C.J. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Wheeler, D. [Sandia National Lab., Albuquerque, NM (United States); Saunders, C. [AECL Technologies, Inc., Rockville, MD (United States)] [and others

    1998-01-08

    The purpose of the CRADA was to conduct research and development activities to better understand and utilize the electron beam PMC curing technology. This technology will be used to replace or supplement existing PMC thermal curing processes in Department of Energy (DOE) Defense Programs (DP) projects and American aircraft and aerospace industries. This effort involved Lockheed Martin Energy Systems, Inc./Lockheed Martin Energy Research Corp. (Contractor), Sandia National Laboratories, and ten industrial Participants including four major aircraft and aerospace companies, three advanced materials companies, and three electron beam processing organizations. The technical objective of the CRADA was to synthesize and/or modify high performance, electron beam curable materials that meet specific end-use application requirements. There were six tasks in this CRADA including: Electron beam materials development; Electron beam database development; Economic analysis; Low-cost Electron Beam tooling development; Electron beam curing systems integration; and Demonstration articles/prototype structures development. The contractor managed, participated and integrated all the tasks, and optimized the project efforts through the coordination, exchange, and dissemination of information to the project participants. Members of the Contractor team were also the principal inventors on several electron beam related patents and a 1997 R and D 100 Award winner on Electron-Beam-Curable Cationic Epoxy Resins. The CRADA achieved a major breakthrough for the composites industry by having successfully developed high-performance electron beam curable cationic epoxy resins for use in composites, adhesives, tooling compounds, potting compounds, syntactic foams, etc. UCB Chemicals, the world`s largest supplier of radiation-curable polymers, has acquired a license to produce and sell these resins worldwide.

  1. Electron beam curing of polymer matrix composites

    International Nuclear Information System (INIS)

    The purpose of the CRADA was to conduct research and development activities to better understand and utilize the electron beam PMC curing technology. This technology will be used to replace or supplement existing PMC thermal curing processes in Department of Energy (DOE) Defense Programs (DP) projects and American aircraft and aerospace industries. This effort involved Lockheed Martin Energy Systems, Inc./Lockheed Martin Energy Research Corp. (Contractor), Sandia National Laboratories, and ten industrial Participants including four major aircraft and aerospace companies, three advanced materials companies, and three electron beam processing organizations. The technical objective of the CRADA was to synthesize and/or modify high performance, electron beam curable materials that meet specific end-use application requirements. There were six tasks in this CRADA including: Electron beam materials development; Electron beam database development; Economic analysis; Low-cost Electron Beam tooling development; Electron beam curing systems integration; and Demonstration articles/prototype structures development. The contractor managed, participated and integrated all the tasks, and optimized the project efforts through the coordination, exchange, and dissemination of information to the project participants. Members of the Contractor team were also the principal inventors on several electron beam related patents and a 1997 R and D 100 Award winner on Electron-Beam-Curable Cationic Epoxy Resins. The CRADA achieved a major breakthrough for the composites industry by having successfully developed high-performance electron beam curable cationic epoxy resins for use in composites, adhesives, tooling compounds, potting compounds, syntactic foams, etc. UCB Chemicals, the world's largest supplier of radiation-curable polymers, has acquired a license to produce and sell these resins worldwide

  2. Ceramic matrix composites -- Advanced high-temperature structural materials

    International Nuclear Information System (INIS)

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy's Office of Industrial Technology's Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base

  3. Fabrication of Fiber-Reinforced Celsian Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Setlock, John A.

    2000-01-01

    A method has been developed for the fabrication of small diameter, multifilament tow fiber reinforced ceramic matrix composites. Its application has been successfully demonstrated for the Hi-Nicalon/celsian system. Strong and tough celsian matrix composites, reinforced with BN/SiC-coated Hi-Nicalon fibers, have been fabricated by infiltrating the fiber tows with the matrix slurry, winding the tows on a drum, cutting and stacking of the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from the 0.75BaO-0.25SrO-Al2O3-2SiO2 mixed precursor synthesized by solid state reaction from metal oxides. Hot pressing resulted in almost fully dense fiber-reinforced composites. The unidirectional composites having approx. 42 vol% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of yield stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 percent, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was measured to be 165 +/- 5 GPa.

  4. Experimental Investigation on Active Cooling for Ceramic Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    PENG Li-na; HE Guo-qiang; LIU Pei-jin

    2009-01-01

    Compared with conventional materials, the active cooling ceramic matrix composite used in ramjet or scramjet makes their structures lighter in mass and better in performance. In this paper, an active and a passive cooling refractory composite specimens are designed and tested with an experimental facility composed of multilayer smale scale cooling penel which consists of a water cooling system and a ceramic matrix composite specimen, and a gas generator used for providing lower and higher transfer rate gases to simulate the temperatures in combustion chamber of ramjst. The active cooling specimen can continuously suffer high surface temperature of 2 000K for 30s and that of 3 000 K for 9.3 s, respectively. The experiment results show that the active cooling composite structure is available for high-temperature condition in ramjet.

  5. CONSTITUTIVE RELATION OF DISCONTINUOUS REINFORCED METAL-MATRIX COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    季葆华; 王自强

    2001-01-01

    A micromechanical model is developed to simulate the mechanical behaviors of discontinuous reinforced composites. The analysis for a representative unit cell is based on the assumption of a periodic array of aligned reinforcements.The minimum energy principle is used to determine the unknown coefficients of the displacement field of the unit cell. The constitutive behavior of composites is studied to obtain the relationship between the main variables of matrix and reinforcements.It is concluded that the flow strength of composites is strongly influenced by volume fraction, aspect ratio of reinforcement, and the strain hardening exponent of matrix.An analytical constitutive relation of composites is obtained. The predicted results are in agreement with the existing experimental and numerical results.

  6. Effect of Fiber Surface Structure on Interfacial Reaction between Carbon Fiber and Aluminium

    Science.gov (United States)

    Chang, Kuang-Chih; Matsugi, Kazuhiro; Sasaki, Gen; Yanagisawa, Osamu

    Surface structure of carbon fiber and interfacial reaction between fiber and aluminium in carbon fiber reinforced aluminium composites were investigated by high-resolution transmission electron microscopy. Low and high graphitized carbon fiber reinforced pure aluminium composites were prepared by ultrasonic liquid infiltration. Vapor grown carbon nano fiber (VGCF) reinforced pure aluminium composites were prepared by hot-pressing. Heteroatoms, which existed abundantly in the surface of low graphitized carbon fiber, caused carbon lamellar structure in the fiber surface pronounced curvature. VGCF surface structure appeared regular and linear graphitic lamellae. Low graphitized fiber reinforced pure aluminium composites revealed serious interfacial reaction produced crystalline aluminium carbides (Al4C3), compared to composites reinforced by high graphitized fiber. On the other hand, Al4C3 crystalline reactants were not found at the interface of VGCF reinforced pure aluminium composites, but formation of interlayer was observed. In order to promote Al4C3 growth, carbon fiber reinforced composites were heat-treated at 573K and 873K for 1.8ks. Al4C3 interfacial phases in low and high graphitized fiber reinforced aluminium composites grew with the rise in the temperature. The heat-treatment resulted in the formation of non-crystalline Al4C3 interlayer by energy dispersive X-ray spectroscopy analysis of electron microscopy. At high temperature, Al4C3 was not grew and increased merely at the interface between carbon fiber and pure aluminium matrix, and moreover, the formation of new Al4C3 crystal occurred in this interlayer.

  7. Ceramic fiber reinforced glass-ceramic matrix composite

    Science.gov (United States)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  8. Thermosetting Polymer-Matrix Composites for Strucutral Repair Applications

    Energy Technology Data Exchange (ETDEWEB)

    William Kirby Goertzen

    2007-12-01

    Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporate of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.

  9. Thermosetting polymer-matrix composites for structural repair applications

    Science.gov (United States)

    Goertzen, William Kirby

    2007-12-01

    Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporation of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.

  10. Separation of matrix alloy and reinforcement from aluminum metal matrix composites scrap by salt flux addition

    Indian Academy of Sciences (India)

    K R Ravi; R M Pillai; B C Pai; M Chakraborty

    2007-08-01

    Separation of matrix alloy and reinforcements from pure Al–SiCp composite scrap by salt flux addition has been theoretically predicted using interface free energies. Experiments performed confirm the theoretical prediction. Complete separation of matrix aluminum and reinforcement from metal matrix composites (MMCs) scrap has been achieved by addition of 2.05 wt% of equimolar mixture of NaCl–KCl salt flux with a metal and particle yield of 84 and 50%, respectively. By adding 5 wt% of NaF to equimolar mixture of NaCl–KCl, metal and particle yield improved to 91 and 73%, respectively. Reusability of both the matrix aluminum and the SiC separated from Al–SiCp scraps has been analysed using XRD, SEM and DTA techniques. The matrix alloy separated from Al–SiCp scraps can be used possibly as a low Si content Al–Si alloy. However, the interfacial reaction that occurred during the fabrication of the composites had degraded the SiC particles.

  11. Caracterisation du composite titanium diboride-carbone avec l'aluminium liquide et le bain cryolithique des cuves d'electrolyse de l'aluminium

    Science.gov (United States)

    Dionne, Martin

    with the carbon matrix to form a TiB2/Al4 C3 composite sealing the surface to further penetration. (Abstract shortened by UMI.)

  12. Numerical analysis of the residual stresses in polymer matrix composites

    International Nuclear Information System (INIS)

    In this study, the three-dimensional finite element method is used for the analysis of thermal residual stresses in epoxy matrix composite reinforced with boron fibre. The effect of fibre inter-distance, interposition layer, fibre concentration and the interaction between fibres on the residual stresses level were highlighted.

  13. Fracture criteria for discontinuously reinforced metal matrix composites

    Science.gov (United States)

    Rack, H. J.; Goree, J. G.; Albritton, J.; Ratnarparkhi, P.

    1988-01-01

    The effect of sample configuration on the details of initial crack propagation in discontinuously whisker reinforced aluminum metal matrix composites was investigated. Care was taken to allow direct comparison of fracture toughness values utilizing differing sample configurations and orientations, holding all materials variables constant, e.g., extrusion ration, heat treatment, and chemistry.

  14. Fatigue and frictional heating in ceramic matrix composites

    DEFF Research Database (Denmark)

    Jacobsen, T.K.; Sørensen, B.F.; Brøndsted, P.

    1997-01-01

    This paper describes an experimental technique for monitoring the damage evolution in ceramic matrix composites during cyclic testing. The damage is related to heat dissipation, which may be measured as radiated heat from the surface of the test specimen. In the present experimental set-up an iso...

  15. Functionally Graded Dual-Nanoparticulate-Reinforced Aluminum Matrix Composite Materials

    International Nuclear Information System (INIS)

    Functionally graded carbon nanotubes (CNT) and nano Silicon carbide (nSiC) reinforced aluminum (Al) matrix composite materials were fully densified by a simple ball milling and hot-pressing processes. The nSiC was used as a physical mixing agent to increase dispersity of the CNT in the Al particles. It was observed that the CNT was better dispersed in the Al particles with a nSiC mixing agent compared to without it used. SEM micrograph showed that the interface of the each layers had very tightly adhesion without any serious pores and micro-cracks. This functionally graded dual-nanoparticulate-reinforced Al matrix composite by powder metallurgical approach could also be applied to comples matrix materials.

  16. Characterization and control of the fiber-matrix interface in ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, R.A.

    1989-03-01

    Fiber-reinforced SiC composites fabricated by thermal-gradient forced-flow chemical-vapor infiltration (FCVI) have exhibited both composite (toughened) and brittle behavior during mechanical property evaluation. Detailed analysis of the fiber-matrix interface revealed that a silica layer on the surface of Nicalon Si-C-O fibers tightly bonds the fiber to the matrix. The strongly bonded fiber and matrix, combined with the reduction in the strength of the fibers that occurs during processing, resulted in the observed brittle behavior. The mechanical behavior of Nicalon/SiC composites has been improved by applying thin coatings (silicon carbide, boron, boron nitride, molybdenum, carbon) to the fibers, prior to densification, to control the interfacial bond. Varying degrees of bonding have been achieved with different coating materials and film thicknesses. Fiber-matrix bond strengths have been quantitatively evaluated using an indentation method and a simple tensile test. The effects of bonding and friction on the mechanical behavior of this composite system have been investigated. 167 refs., 59 figs., 18 tabs.

  17. Synthesis of nano-crystalline zirconium aluminium oxynitride (ZrAlON) composite films by dense plasma Focus device

    International Nuclear Information System (INIS)

    Zirconium aluminium oxynitride multiphase composite film is deposited on zirconium substrate using energetic nitrogen ions delivered from dense plasma Focus device. X-ray diffractometer (XRD) results show that five Focus shots are sufficient to initiate the nucleation of ZrN and Al2O3 whereas 10 Focus shots are sufficient to initiate the nucleation of AlN. XRD results reveal that crystal growth of nitrides/oxides increases by increasing Focus shots (up to 30 Focus shots) and resputtering of the previously deposited film is taken place by further increase in Focus shots (40 Focus shots). Scanning electron microscopic (SEM) results indicate the uniform distribution of spherical grains (∼35 nm). A smoother surface is observed for 20 Focus shots at 0 deg. angular position. SEM results also show a net-type microstructure (thread like features) of the sample treated for 30 Focus shots whereas rough surface morphology is observed for 40 Focus shots. Energy dispersive spectroscopic profiles show the distribution of different elements present in the deposited composite films. A typical microhardness value of the deposited composite films is 5255 ± 10 MPa for 10 grams imposed load which is 3.3 times than the microhardness values of unexposed sample. The microhardness values of the exposed samples increases with increasing Focus shots (up to 30 Focus shots) and decreases for 40 Focus shots treatment due to resputtering of the previously deposited composite film. The microhardness values of the composite films decreases by increasing the sample's angular position.

  18. An Facile High-Density Polyethylene - Exfoliated Graphite - Aluminium Hydroxide Composite: Manufacture, Morphology, Structure, Antistatic and Fireproof Properties

    Directory of Open Access Journals (Sweden)

    Jihui LI

    2014-09-01

    Full Text Available Graphite intercalation compounds (GIC and exfoliated graphite (EG as raw materials were prepared with flake graphite, concentrated sulphuric acid (H2SO4, potassium bichromate (K2Cr2O7 and peracetic acid (CH3CO3H and characterized. Then, high-density polyethylene-exfoliated graphite (HDPE-EG composites were fabricated with HDPE and EG via in situ synthesis technique in the different mass ratio, and their resistivity values (ohms/sq were measured. Based on the resistivity values, it was discovered that HDPE-EG composite with the antistatic property could be fabricated while the mass ratio was 5.00 : 0.30. Last, HDPE-EG-aluminium hydroxide (HDPE-EG-Al(OH3 composites were manufactured with HDPE, GIC and Al(OH3 via the in situ synthesis-thermal expansion technique, and their resistivity values and limiting oxygen index (LOI values were measured. Based on the resistivity values and LOI values, it was discovered that HDPE-EG-Al(OH3 composite with the antistatic and fireproof property could be manufactured while HDPE, GICs and Al(OH3 of mass ratio was 5.00 : 0.30 : 1.00. Otherwise, the petal-like morphology and structure of HDPE-EG-Al(OH3 composite were characterized, which consisted of EG, HDPE and Al(OH3. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4275

  19. Influence of Aluminium on Performance of HTPB-based Aluminised PBXs

    Directory of Open Access Journals (Sweden)

    Vinay Prakash

    2004-10-01

    Full Text Available The paper describes the development of aluminised plastic-bonded explosives (PBXs based on aluminium and nitramine explosives using hydroxy-terminated polybutadiene as polymer matrix. The PBXs were processed as per standard procedures. Compositions with different formulations were prepared by varying the percentages of aluminium and RDX and their explosive properties, including velocity of detonation (VOD, peak overpressure, duration, impulse and sensitivity to different types of stimuli, were studied. The experimental and theoretical values of the VOD have been compared. It is observed that about 15 per cent aluminium content in the aluminised PBXs shows the optimum VOD.

  20. Dual-nanoparticulate-reinforced aluminum matrix composite materials

    Science.gov (United States)

    Kwon, Hansang; Cho, Seungchan; Leparoux, Marc; Kawasaki, Akira

    2012-06-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al4C3) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al4C3. Along with the CNT and the nano-SiC, Al4C3 also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials.

  1. Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications

    Science.gov (United States)

    Shunmugasamy, Vasanth Chakravarthy; Mansoor, Bilal; Gupta, Nikhil

    2016-01-01

    The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.

  2. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites

    Science.gov (United States)

    Grande, D. H.; Mandell, J. F.; Hong, K. C. C.

    1988-01-01

    An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.

  3. Boron carbide whisker and platelet reinforced ceramic matrix composites

    International Nuclear Information System (INIS)

    Boron carbide whisker and platelet-reinforced alumina and boron-carbide-whisker-reinforced silicon carbide composites were prepared by hot-pressing. The mechanical properties of hot-pressed boron carbide platelet and whisker-reinforced composites are better than the inherent ceramic matrix. A maximum fracture toughness, K(lc), of 9.5 MPa sq rt m is achieved for alumina/boron carbide whisker composites, 8.6 MPa sq rt m is achieved for alumina/boron carbide platelet composites, and 3.8 MPa sq rt m is achieved for silicon carbide/boron carbide whisker composites. The fracture toughness is dependent on the volume fraction of the platelets and whiskers. 12 refs

  4. Metallographic investigations of composite structures of aluminium foam with thermally sprayed coatings; Metallographische Untersuchungen an Verbundstrukturen aus Aluminiumschaum mit thermisch aufgespritzten Schichten

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, M.; Koch, D.; Zhao Lidong; Lugscheider, E. [Werkstoffwissenschaften, RWTH Aachen, Aachen (Germany)

    2005-01-01

    Aluminium foams are on the brink of industrial use. Many new fields of use could be found for these new materials if a defined, wear and corrosion resistant coating could be applied. This is quite possible using thermally sprayed coatings, but the metallographical examination of this type of composite structure is extremely difficult as the very hard coatings have completely different properties to the soft open porous structure of the aluminium foam. This article introduces the concept of aluminium foams and the spraying techniques which can be used to improve their surfaces, and more centrally the methods of metallographical preparation which can be used to examine them and the problems which can occur. (orig.)

  5. Formation of carbon fiber-reinforced ceramic matrix composites with polysiloxane/silicon derived matrix

    International Nuclear Information System (INIS)

    A ceramic matrix for carbon fiber-reinforced ceramic matrix composites (CMCs) has been developed from poly(methylsilsesquioxane)/silicon mixtures, using a low-cost process. In this process the space in two-dimensional carbon fiber preform was filled with a slurry composed by Si powder dispersed into poly(methylsilsesquioxane)/trietoxysilane solutions. Three different volume ratio of Si:polymer were used to stack eight-harness plain weave of carbon fiber, forming laminates composites, which were pressed and cured up to 200 deg. C. The compact bodies were first pre-pyrolyzed at 1000 deg. C and then pyrolyzed at 1450 deg. C/2 h and 1500 deg. C/1 h. On pyrolysis, the polymer-filler mixture was converted to a multiphase ceramic matrix through reactions between Si, gaseous and solids products from the polymer degradation and the N2 atmosphere. Pyrolysis led to conversion of the initial matrix into silicon oxide (SiO2), silicon carbide (SiC) and silicon oxinitride (Si2ON2), though after pyrolysis at 1450 deg. C metallic silicon was still detected. With one cycle of infiltration the composite characteristics were followed by bulk density and open porosity measurements, X-ray diffraction, microscopy and mechanical testing

  6. Nonlinear laminate analysis for metal matrix fiber composites

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1981-01-01

    A nonlinear laminate analysis is described for predicting the mechanical behavior (stress-strain relationships) of angle-ply laminates in which the matrix is strained nonlinearly by both the residual stress and the mechanical load and in which additional nonlinearities are induced due to progressive fiber fractures and ply relative rotations. The nonlinear laminate analysis is based on linear composite mechanics and a piece-wise linear laminate analysis to handle the nonlinear responses. Results obtained by using this nonlinear analysis on boron-fiber/aluminum-matrix angle-ply laminates agree well with experimental data. The results shown illustrate the in situ ply stress-strain behavior and synergistic strength enhancement.

  7. Laser cladding of wear resistant metal matrix composite coatings

    International Nuclear Information System (INIS)

    A number of coatings with wear-resistant properties as well as with a low friction coefficient are produced by laser cladding. The structure of these coatings is determined by required performance and realized as metal matrix composite (MMC), where solid lubricant serves as a ductile matrix (e.g. CuSn), reinforced by appropriate ceramic phase (e.g. WC/Co). One of the engineered coating with functionally graded material (FGM) structure has a dry friction coefficient 0.12. Coatings were produced by coaxial injection of powder blend into the zone of laser beam action. Metallographic and tribological examinations were carried out confirming the advanced performance of engineered coatings

  8. Microstructural characterization of interpenetrating light weight metal matrix composites

    International Nuclear Information System (INIS)

    Interpenetrating metal matrix composites, MMCs, were fabricated successfully by infiltrating of porous ceramic preforms with Al and Mg alloys by a pressure supported casting process. Open porosity of the preforms varied from 50 to 60%, the pore diameters were in the range of 1-10 μm. The microstructure of the materials was characterized using light optical-, scanning electron-, transmission electron microscopy and X-ray diffraction. Several observations indicate the formation of a thin MgAl2O4 spinel at the interface Al2O3 to Mg matrix alloy.

  9. Shock Interaction Studies on Glass Fibre Reinforced Epoxy Matrix Composites

    Science.gov (United States)

    Reddy, K. P. J.; Jagadeesh, G.; Jayaram, V.; Reddy, B. Harinath; Madhu, V.; Reddy, C. Jaya Rami

    Glass fibre reinforced polymer matrix composites are being extensively used for structural applications both in civil and defense sectors, owing to their high specific strength, stiffness and good energy absorbing capability. Understanding the dynamic response of these composites on shock loading is very essential for effective design of structures resistant to blast loads. In the present study, E- glass/epoxy composite laminate has been fabricated and evaluated for their mechanical properties such as tensile strength, flexural strength and inter laminar shear strength (ILSS). Further, dynamic response of E-glass laminates is presently studied by shock loading. When E-glass composite subjected to peak shock reflected pressure of 7.2 MPa and estimated temperature of about 14000 K for short duration, it underwent surface discolorations and charring of epoxy matrix. Post test analysis of the composite sample was carried out to study the damage analysis using Scanning Electron Microscope (SEM), changes in thermal properties of composites using Dynamic Mechanical Analyzer (DMA) and Thermo-Gravimetric Analyzer (TGA). The results of these investigations are discussed in this paper.

  10. Rapid Prototyping of Continuous Fiber Reinforced Ceramic Matrix Composites

    Science.gov (United States)

    Vaidyanathan, R.; Green, C.; Phillips, T.; Cipriani, R.; Yarlagadda, S.; Gillespie, J. W., Jr.; Effinger, M.; Cooper, K. C.

    2003-01-01

    For ceramics to be used as structural components in high temperature applications, their fracture toughness is improved by embedding continuous ceramic fibers. Ceramic matrix composite (CMC) materials allow increasing the overall operating temperature, raising the temperature safety margins, avoiding the need for cooling, and improving the damping capacity, while reducing the weight at the same time. They also need to be reliable and available in large quantities as well. In this paper, an innovative rapid prototyping technique to fabricate continuous fiber reinforced ceramic matrix composites is described. The process is simple, robust and will be widely applicable to a number of high temperature material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The results of mechanical properties and microstructural characterization are presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts at an order of magnitude lower cost than current chemical vapor infiltration (CVI) and polymer impregnation and pyrolysis (PIP) processes.

  11. Metal matrix composite fuel for space radioisotope energy sources

    International Nuclear Information System (INIS)

    Highlights: ► Neodymium (III) oxide Nd2O3 – niobium composites created via Spark Plasma Sintering. ► Nd is a surrogate for Am-241 fuel for European Space radioisotope power systems. ► Composites mechanically tested under equibiaxial flexure per ASTM C1499. ► Fifty weight percent Nb increased mean flexural strength × 2 versus typical ceramic nuclear fuels. ► Could reduce fuel dispersion in severe accidents: may improve launch safety case. -- Abstract: Radioisotope fuels produce heat that can be used for spacecraft thermal control or converted to electricity. They must retain integrity in the event of destruction or atmospheric entry of the parent spacecraft. Addition of a metal matrix to the actinide oxide could yield a more robust fuel form. Neodymium (III) oxide (Nd2O3) – niobium metal matrix composites were produced using Spark Plasma Sintering; Nd2O3 is a non-radioactive surrogate for americium (III) oxide (Am2O3). Two compositions, 70 and 50 wt% Nd2O3, were mechanically tested under equibiaxial (ring-on-ring) flexure according to ASTM C1499. The addition of the niobium matrix increased the mean flexural strength by a factor of about 2 compared to typical ceramic nuclear fuels, and significantly increased the Weibull modulus to over 20. These improved mechanical properties could result in reduced fuel dispersion in severe accidents and improved safety of space radioisotope power systems

  12. Fiber-Matrix Interface Studies on Electron Beam Cured Composites

    Energy Technology Data Exchange (ETDEWEB)

    Drazel, L.T.; Janke, C.J.; Yarborough, K.D.

    1999-05-23

    The recently completed Department of Energy (DOE) and industry sponsored Cooperative Research and Development Agreement (CRADA) entitled, ''Electron Beam Curing of Polymer Matrix Composites,'' determined that the interlaminar shear strength properties of the best electron beam cured IM7/epoxy composites were 19-28% lower than autoclave cured IM7/epoxy composites (i.e. IM7/977-2 and IM7/977-3). Low interlaminar shear strength is widely acknowledged as the key barrier to the successful acceptance and implementation of electron beam cured composites in the aircraft/aerospace industry. The objective of this work was to improve the interlaminar shear strength properties of electron beam cured composites by formulating and evaluating several different fiber sizings or coating materials. The researchers have recently achieved some promising results by having discovered that the application of epoxy-based, electron beam compatible sizings or coatings onto surface-treated, unsized IM7 carbon fibers improved the composite interlaminar shear strength properties by as much as 55% versus composites fabricated from surface-treated, unsized IM7 fibers. In addition, by applying these same epoxy-based sizings or coatings onto surface-treated, unsized IM7 fibers it was possible to achieve an 11% increase in the composite interlaminar shear strength compared to composites made from surface-treated, GP-sized IM7 fibers. Work is continuing in this area of research to further improve these properties.

  13. A honeycomb composite of mollusca shell matrix and calcium alginate.

    Science.gov (United States)

    You, Hua-jian; Li, Jin; Zhou, Chan; Liu, Bin; Zhang, Yao-guang

    2016-03-01

    A honeycomb composite is useful to carry cells for application in bone, cartilage, skin, and soft tissue regenerative therapies. To fabricate a composite, and expand the application of mollusca shells as well as improve preparing methods of calcium alginate in tissue engineering research, Anodonta woodiana shell powder was mixed with sodium alginate at varying mass ratios to obtain a gel mixture. The mixture was frozen and treated with dilute hydrochloric acid to generate a shell matrix/calcium alginate composite. Calcium carbonate served as the control. The composite was transplanted subcutaneously into rats. At 7, 14, 42, and 70 days after transplantation, frozen sections were stained with hematoxylin and eosin, followed by DAPI, β-actin, and collagen type-I immunofluorescence staining, and observed using laser confocal microscopy. The composite featured a honeycomb structure. The control and composite samples displayed significantly different mechanical properties. The water absorption rate of the composite and control group were respectively 205-496% and 417-586%. The composite (mass ratio of 5:5) showed good biological safety over a 70-day period; the subcutaneous structure of the samples was maintained and the degradation rate was lower than that of the control samples. Freezing the gel mixture afforded control over chemical reaction rates. Given these results, the composite is a promising honeycomb scaffold for tissue engineering. PMID:26700239

  14. TEM study of {beta} Prime precipitate interaction mechanisms with dislocations and {beta} Prime interfaces with the aluminium matrix in Al-Mg-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Teichmann, Katharina [Norwegian University of Science and Technology, Trondheim (Norway); Marioara, Calin D.; Andersen, Sigmund J. [SINTEF Materials and Chemistry, Trondheim (Norway); Marthinsen, Knut, E-mail: knut.marthinsen@material.ntnu.no [Norwegian University of Science and Technology, Trondheim (Norway)

    2013-01-15

    The interaction mechanisms between dislocations and semi-coherent, needle-shaped {beta} Prime precipitates in Al-Mg-Si alloys have been studied by High Resolution Transmission Electron Microscopy (HRTEM). Dislocation loops appearing as broad contrast rings around the precipitate cross-sections were identified in the Al matrix. A size dependency of the interaction mechanism was observed; the precipitates were sheared when the longest dimension of their cross-section was shorter than approximately 15 nm, and looped otherwise. A more narrow ring located between the Al matrix and bulk {beta} Prime indicates the presence of a transition interface layer. Together with the bulk {beta} Prime structure, this was further investigated by High Angle Annular Dark Field Scanning TEM (HAADF-STEM). In the bulk {beta} Prime a higher intensity could be correlated with a third of the Si-columns, as predicted from the published structure. The transition layer incorporates Si columns in the same arrangement as in bulk {beta} Prime , although it is structurally distinct from it. The Z-contrast information and arrangement of these Si-columns demonstrate that they are an extension of the Si-network known to structurally connect all the precipitate phases in the Al-Mg-Si(-Cu) system. The width of the interface layer was estimated to about 1 nm. - Highlights: Black-Right-Pointing-Pointer {beta} Prime is found to be looped at sizes larger than 15 nm (cross section diameter). Black-Right-Pointing-Pointer {beta} Prime is found to be sheared at sizes smaller than 15 nm (cross section diameter). Black-Right-Pointing-Pointer The recently determined crystal structure of {beta} Prime is confirmed by HAADF-STEM. Black-Right-Pointing-Pointer Between {beta} Prime and the Al-matrix a transition layer of about 1 nm is existent. Black-Right-Pointing-Pointer The {beta} Prime /matrix layer is structurally distinct from bulk {beta} Prime and the aluminium matrix.

  15. Reinforcement/matrix interaction in SiC fiber-reinforced Ni3Al matrix composites

    International Nuclear Information System (INIS)

    This paper presents an investigation of the interfacial reaction characteristics of two different types of SiC fibers with Ni3Al (Ni-Al-Cr-Zr-B) matrix. The microstructure and chemical compositions across the reaction zone have been analyzed quantitatively using microscopy and electron probe microanalysis. In both types of SiC/Ni3Al composites, it was found that Ni was the dominant diffusing species responsible for the overall reaction. The C-rich layer outside the SCS-6 fiber provided an incubation period, but could not stop the inward diffusion of Ni. It could, however, effectively stop the diffusion of Al,Zr and Cr. No significant increase in reaction zone thickness after exposure at temperatures below 900 degrees C for up to 100 hours was observed. When the C-rich layer was depleted, a rapid increase in reaction zone thickness and the formation of multilayer reaction products occurred. In the case of Sigma/Ni3Al composite, extensive reaction between the fiber and the matrix occurred at all the temperatures studied. Diffusion barrier coating for both types of fibers is required to develop nickel aluminide matrix composites

  16. Effects of Fiber/Matrix Interface and its Composition on Mechanical Properties of Hi Nicalon/Celsian Composites

    Science.gov (United States)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1998-01-01

    Fiber-reinforced ceramic matrix composites (CMC) are prospective candidate materials for high temperature structural applications in aerospace, energy conservation, power generation, nuclear, petrochemical, and other industries. At NASA Lewis, we are investigating celsian matrix composites reinforced with various types of silicon carbide fibers. The objective of the present study was to investigate the effects of fiber/matrix interface and its composition on the mechanical properties of silicon carbide (Hi-Nicalon) fiber-reinforced celsian matrix composites.

  17. The influence of alloy composition on residual stresses in heat treated aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.S., E-mail: jeremy.robinson@ul.ie [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); Redington, W. [Materials and Surface Science Institute, University of Limerick (Ireland)

    2015-07-15

    The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin{sup 2}ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A, 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling.

  18. The influence of alloy composition on residual stresses in heat treated aluminium alloys

    International Nuclear Information System (INIS)

    The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin2ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A, 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling

  19. Composite orthogonal projection methods for large matrix eigenproblems

    Institute of Scientific and Technical Information of China (English)

    贾仲孝

    1999-01-01

    For classical orthogonal projection methods for large matrix eigenproblems, it may be much more difficult for a Ritz vector to converge than for its corresponding Ritz value when the matrix in question is non-Hermitian. To this end, a class of new refined orthogonal projection methods has been proposed. It is proved that in some sense each refined method is a composite of two classical orthogonal projections, in which each refined approximate eigenvector is obtained by realizing a new one of some Hermitian semipositive definite matrix onto the same subspace. A priori error bounds on the refined approximate eigenvector are established in terms of the sine of acute angle of the normalized eigenvector and the subspace involved. It is shown that the sufficient conditions for convergence of the refined vector and that of the Ritz value are the same, so that the refined methods may be much more efficient than the classical ones.

  20. EFFECT OF RICE HUSKS AS FILLER IN POLYMER MATRIX COMPOSITES

    Directory of Open Access Journals (Sweden)

    K. Hardinnawirda

    2012-06-01

    Full Text Available In this study, rice husk-filled polyester composites were produced with rice husks (RH as the filler and unsaturated polyester resin (UPR as the matrix. Several percentages of filler loadings were used (10, 15, 20 and 25 wt % in order to gain insights into the effect of filler content on the mechanical properties and water intake of the composites. The tensile strength of the RH-filled UPR composites was found to decrease as the filler loading increased; however, as it reached 25 wt %, the strength showed a moderate increase. The Young’s modulus showed a remarkable increase for 15 wt % of RH but decreased as the RH percentage increased further to 25 wt %. A water absorption test was conducted and the results showed that the composites absorb more water as the percentage weight of RH increased, which is attributed to the ability of the RH filler to absorb water.

  1. Inorganic Polymer Matrix Composite Strength Related to Interface Condition

    Directory of Open Access Journals (Sweden)

    John Bridge

    2009-12-01

    Full Text Available Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon coated fibers are compared using room temperature 3-point bend testing. Carbon coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.

  2. Method of thermal strain hysteresis reduction in metal matrix composites

    Science.gov (United States)

    Dries, Gregory A. (Inventor); Tompkins, Stephen S. (Inventor)

    1987-01-01

    A method is disclosed for treating graphite reinforced metal matrix composites so as to eliminate thermal strain hysteresis and impart dimensional stability through a large thermal cycle. The method is applied to the composite post fabrication and is effective on metal matrix materials using graphite fibers manufactured by both the hot roll bonding and diffusion bonding techniques. The method consists of first heat treating the material in a solution anneal oven followed by a water quench and then subjecting the material to a cryogenic treatment in a cryogenic oven. This heat treatment and cryogenic stress reflief is effective in imparting a dimensional stability and reduced thermal strain hysteresis in the material over a -250.degree. F. to +250.degree. F. thermal cycle.

  3. High-temperature testing of glass/ceramic matrix composites

    Science.gov (United States)

    Mandell, John F.; Grande, Dodd H.; Dannemann, Kathryn A.

    1989-01-01

    Recent advances in ceramic and other high-temperature composites have created a need for test methods that can be used at 1000 C and above. Present test methods usually require adhesively bonded tabs that cannot be used at high temperatures. This paper discusses some of the difficulties with high-temperature test development and describes several promising test methods. Stress-strain data are given for Nicalon ceramic fiber reinforced glass and glass-ceramic matrix composites tested in air at temperatures up to 1000 C.

  4. Glass matrix composites. I - Graphite fiber reinforced glass

    Science.gov (United States)

    Prewo, K. M.; Bacon, J. F.

    1978-01-01

    An experimental program is described in which graphite fibers of Hercules HMS and HTS, Thornel 300, and Celanese DG-12 were used to reinforce, both uniaxially and biaxially, borosilicate pyrex glass. Composite flexural strength distribution, strength as a function of test temperature, fracture toughness and oxidative stability were determined and shown to be primarily a function of fiber type and the quality of fiber-matrix bond formed during composite fabrication. It is demonstrated that the graphite fiber reinforced glass system offers unique possibilities as a high performance structural material.

  5. Preparation of SiC Fiber Reinforced Nickel Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    Lu Zhang; Nanlin Shi; Jun Gong; Chao Sunt

    2012-01-01

    A method of preparing continuous(Al+Al2O3)-coated SiC fiber reinforced nickel matrix composite was presented,in which the diffusion between SiC fiber and nickel matrix could be prevented.Magnetron sputtering is used to deposit Ni coating on the surface of the(Al+Al2O3)-coated SiC fiber in preparation of the precursor wires.It is shown that the deposited Ni coating combines well with the(Al+Al2O3) coating and has little negative effect on the tensile strength of(Al+Al2O3)-coated SiC fiber.Solid-state diffusion bonding process is employed to prepare the(Al+Al2O3)-coated SiC fiber reinforced nickel matrix with 37% fibers in volume.The solid-state diffusion bonding process is optimized and the optimum parameters are temperature of 870,pressure of 50 MPa and holding time of 2 h.Under this condition,the precursor wires can diffuse well,composite of full density can be formed and the(Al+Al2O3) coating is effective to restrict the reaction between SiC fiber and nickel matrix.

  6. Fabrication and characterization of carbon nanotube reinforced magnesium matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Mindivan, Harun, E-mail: hmindivan@hotmail.com [Bilecik S.E. University, Department of Mechanical and Manufacturing Engineering, 11210, Gulumbe, Bilecik (Turkey); Efe, Arife; Kosatepe, A. Hadi [Atatürk University, Department of Nanoscience and Nanoengineering, 25240, Erzurum (Turkey); Kayali, E.Sabri [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469 Maslak, Istanbul (Turkey)

    2014-11-01

    Highlights: • Carbon nanotube (CNT) reinforced magnesium (Mg chips) matrix composite rod was successfully fabricated by mechanical ball milling, cold pressing and subsequently hot extrusion process without sintering step. • CNT content has effect on the microstructure, mechanical, corrosion and wear properties of the composites. • The small amount CNT addition to the Mg matrix improved the hardness, wear and corrosion resistances of the composites. - Abstract: In the present investigation, Mg chips are recycled to produce Mg–6 wt.% Al reinforced with 0.5, 1, 2 and 4 wt.% nanosized CNTs by mechanical ball milling, cold pressing and subsequently hot extrusion process without sintering step. The microstructure, mechanical properties and corrosion behavior of Mg/Al without CNT (base alloy) and composites were evaluated. The distribution of CNTs was analyzed using a Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS) analyzer and a Wavelength Dispersive X-Ray Fluorescence spectrometer (WDXRF). Microstructural analysis revealed that the CNTs on the Mg chips were present throughout the extrusion direction and the uniform distribution of CNTs at the chip surface decreased with increase in the CNT content. The results of the mechanical and corrosion test showed that small addition of CNTs (0.5 wt.%) evidently improved the hardness and corrosion resistance of the composite by comparing with the base alloy, while increase in the CNT weight fraction in the initial mixture resulted in a significant decrease of hardness, compression strength, wear rate and corrosion resistance.

  7. Fracture Resistance Evaluation of Fibre Reinforced Brittle Matrix Composites

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk

    2005-01-01

    Roč. 290, - (2005), s. 167-174. ISSN 1013-9826. [Fractography of Advanced Ceramic s /2./. Stará Lesná, 03.10.2004-06.10.2004] R&D Projects: GA AV ČR(CZ) IAA2041003; GA ČR(CZ) GA101/02/0683 Keywords : fibre-reinforced ceramic s * glass matrix composites * chevron notch Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.224, year: 2005

  8. Fracture Resistance Evaluation of Fibre Reinforced Brittle Matrix Composites

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk

    2004, s. -. [Fractography of Advanced Ceramic s. Stará Lesná (SK), 03.10.2004-06.10.2004] R&D Projects: GA AV ČR IAA2041003; GA ČR GA101/02/0683 Institutional research plan: CEZ:AV0Z2041904 Keywords : fibre-reinforced ceramic s * glass matrix composites * chevron notch Subject RIV: JL - Materials Fatigue, Friction Mechanics

  9. Electron Beam Curing of Polymer Matrix Composites - CRADA Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Janke, C. J. [ORNL; Howell, Dave [ORNL; Norris, Robert E. [ORNL

    1997-05-01

    The major cost driver in manufacturing polymer matrix composite (PMC) parts and structures, and one of the elements having the greatest effect on their quality and performance, is the standard thermal cure process. Thermal curing of PMCs requires long cure times and high energy consumption, creates residual thermal stresses in the part, produces volatile toxic by-products, and requires expensive tooling that is tolerant of the high cure temperatures.

  10. Tensile and compressive test results for metal matrix composites

    Science.gov (United States)

    Shuart, M. J.; Herakovich, C. T.

    1977-01-01

    Experimental results of the mechanical behavior of two metal matrix composite systems at room temperature are presented. Ultimate stress, ultimate strain, Poisson's ratio, and initial Young's Modulus are documented for BORSIC/Aluminum in uniaxial tension and Boron/Aluminum in uniaxial tension and compression. Poisson's ratio is used for nonlinear stress-strain behavior. A comparison of compression results for B/Al as obtained from sandwich beam compression specimens and IITRI coupon compression specimens is presented.

  11. Laminate squeeze casting of carbon fiber reinforced aluminum matrix composites

    International Nuclear Information System (INIS)

    Highlights: • Laminate squeeze casting shortens infiltration distance to half the fabric thickness. • Oxide scale on aluminum sheets serves as initial carbon–aluminum diffusion barrier. • Liquid infiltrates fiber fabrics from their respective neighboring aluminum layers. • Hydrostatic pressure in molten aluminum preserves the laminate configuration. • A good carbon fiber–aluminum matrix interface bond is achieved. - Abstract: Carbon fiber reinforced aluminum matrix composites show an excellent combination of lightweight, mechanical properties, ease of processing and low costs. However, standard liquid infiltration squeeze casting often requires complex preforms in order to control fiber configuration and distribution. It also requires relatively high pressures to overcome the pressure drop across the preform, which can lead to preform compaction and damage and can limit the maximum component thickness that can be thoroughly infiltrated. Therefore, a laminate squeeze casting process is investigated as alternative whereby alternate layers of fiber fabrics and aluminum sheets are hot consolidated. Liquid infiltrates the fiber fabrics from their two respective neighboring aluminum layers, thereby reducing the infiltration distance from the entire component height to only half the thickness of individual fiber layers. This results in a rapid and thorough infiltration. Composites with fiber contents between 7 and 14 vol% are successfully fabricated. Despite complete melting of the aluminum layers at 850 °C, optical and scanning electron microscopy investigations show that hydrostatic pressure practically preserves the laminate configuration during fabrication and no fiber agglomeration occurs. The composites show good fiber–matrix bonding. No noticeable fiber damage is observed despite some carbide formation primarily at interfaces. A composite hardness over 50% higher compared to the reference 6061 matrix alloy is achieved at a carbon fiber content of 7

  12. OPTIMIZATION OF PARAMETER FOR METAL MATRIX COMPOSITE IN WIRE EDM

    OpenAIRE

    Nagaraja, R.; K.Chandrasekaran; S.Shenbhgaraj

    2015-01-01

    The bronze alumina (Al2O3) alloy is an Metal Matrix Composite (MMC) of interest in several applications like bearing sleeve, piston and cylinder liners etc., The reinforcement used in this MMC makes it difficult to machine using traditional technique. Wire-Electric Discharge Machine (WEDM) seems to be a viable option to machine. This paper presents an investigation on the optimization of machining parameters in WEDM of bronze-alumina MMC. The main objective is to find the optimum ...

  13. Micromechanical modelling of thermoplastic elastomer composite with a Polypropylene matrix

    OpenAIRE

    Parenteau, Thomas

    2009-01-01

    Due to their high consumption, the vulcanized elastomeric products are an important source of waste. One way of recycling these materials is their reuse under the form of particles in polymer matrix composites to reduce stiffness and increase their resistance to low-energy impacts. This study is born of a collaboration between the LIMATB and the Technische Universität Chemnitz, which develops this concept of materials.The aim of this study is to conduct experimental characterization and to de...

  14. Analytical Scanning and Transmission Electron Microscopy of Laboratory Impacts on Stardust Aluminium Foils: Interpreting Impact Crater Morphology and the Composition of Impact Residues.

    Energy Technology Data Exchange (ETDEWEB)

    Kearsley, A T; Graham, G A; Burchell, M J; Cole, M J; Dai, Z R; Teslich, N; Chater, R; Wozniakiewicz, P A; Spratt, J; Jones, G

    2006-10-19

    The known encounter velocity (6.1kms{sup -1}) between the Stardust spacecraft and the dust emanating from the nucleus of comet Wild 2 has allowed realistic simulation of dust collection in laboratory experiments designed to validate analytical methods for the interpretation of dust impacts on the aluminium foil components of the Stardust collector. In this report we present information on crater gross morphology, the pre-existing major and trace element composition of the foil, geometrical issues for energy dispersive X-ray analysis of the impact residues in scanning electron microscopes, and the modification of dust chemical composition during creation of impact craters as revealed by analytical transmission electron microscopy. Together, these observations help to underpin the interpretation of size, density and composition for particles impacted upon the Stardust aluminium foils.

  15. Composite materials based on AlMg1SiCu aluminium alloy reinforced with halloysite particles

    OpenAIRE

    Tomiczek, B.; L.A. Dobrzański

    2013-01-01

    Purpose: The present work describes microstructure and technological, as well as mechanical properties of AlMg1SiCu matrix composite materials reinforced with halloysite particles by powder metallurgy techniques and hot extrusion. Design/methodology/approach: Mechanical milling, compacting and hot extrusion successively are considering as a method for manufacturing metal composite powders with a controlled fine microstructure and enhanced mechanical properties. Findings:...

  16. Thermomechanically induced residual strains in Al/SiCp metal-matrix composites

    DEFF Research Database (Denmark)

    Lorentzen, T.; Clarke, A.P.

    Residual lattice strains in the aluminium and SiC phases of F3S.20S extruded A359 20% SiC metal-matrix composite were measured by using neutron diffi action at room and elevated temperatures to monitor the effects of in situ uniaxial plastic deformations. The results are interpreted with reference...... to the thermomechanical history of the specimens. The compressive strain at yield due to thermal expansion mismatch strains and uniaxial deformation was found to be identical over the temperature range 100250 degrees C. The separation of the aluminum compressive and tensile strain yield loci were...... found to be 45 x 10(-4) at 50 degrees C, 4.1x10(-4) at 100 degrees C and 2.5x10(-4) at 250 degrees C. The temperature dependence of the separation of the loci was found to agree closely with the temperature dependence of the! macroscopic flow stress. (C) 1998 Elsevier Science Ltd. All rights reserved....

  17. Investigation of Product Performance of Al-Metal Matrix Composites Brake Disc using Finite Element Analysis

    Science.gov (United States)

    Fatchurrohman, N.; Marini, C. D.; Suraya, S.; Iqbal, AKM Asif

    2016-02-01

    The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc.

  18. High Temperature Mechanical Characterization of Ceramic Matrix Composites

    Science.gov (United States)

    Gyekenyesi, John Z.

    1998-01-01

    A high temperature mechanical characterization laboratory has been assembled at NASA Lewis Research Center. One contribution of this work is to test ceramic matrix composite specimens in tension in environmental extremes. Two high temperature tensile testing systems were assembled. The systems were assembled based on the performance and experience of other laboratories and meeting projected service conditions for the materials in question. The systems use frames with an electric actuator and a center screw. A PC based data acquisition and analysis system is used to collect and analyze the data. Mechanical extensometers are used to measure specimen strain. Thermocouples, placed near the specimen, are used to measure the specimen gage section temperature. The system for testing in air has a resistance element furnace with molybdenum disilicide elements and pneumatic grips with water cooling attached to hydraulic alignment devices. The system for testing in an inert gas has a graphite resistance element furnace in a chamber with rigidly mounted, water cooled, hydraulically actuated grips. Unidirectional SiC fiber reinforced reaction bonded Si3N4 and triaxially woven, two dimensional, SiC fiber reinforced enhanced SiC composites were tested in unidirectional tension. Theories for predicting the Young's modulus, modulus near the ultimate strength, first matrix cracking stress, and ultimate strength were applied and evaluated for suitability in predicting the mechanical behavior of SiC/RBSN and enhanced SiC/SiC composites. The SiC/RBSN composite exhibited pseudo tough behavior (increased area under the stress/strain curve) from 22 C to 1500 C. The rule of mixtures provides a good estimate of the Young's modulus of the SiC/RBSN composite using the constituent properties from room temperature to 1440 C for short term static tensile tests in air or nitrogen. The rule of mixtures significantly overestimates the secondary modulus near the ultimate strength. The ACK theory

  19. Effect of TiN particulate reinforcement on corrosive behaviour of aluminium 6061 composites in chloride medium

    Indian Academy of Sciences (India)

    H C Ananda Murthy; V Bheema Raju; C Shivakumara

    2013-11-01

    In the present investigation, the corrosive behaviour of Al 6061–TiN particulate composites prepared by liquidmetallurgy has been studied in chloride medium using electroanalytical techniques such as Tafel, cyclic polarization and electrochemical impedance spectroscopy (EIS). Surface morphology of the sample electrodes was examined using scanning electron micrography and energy dispersive X-ray methods. X-ray diffraction technique was used to confirm inclusion of TiN particulates in the matrix alloy and identify the alloying elements and intermetallic compounds in the Al 6061 composites. Polarization studies indicate an increase in the corrosion resistance in composites compared to the matrix alloy. EIS study reveals that the polarization resistance (p) increases with increase in TiN content in composites, thus confirming improved corrosion resistance in composites. The observed decrease in corrosion rate in the case of composites is due to decoupling between TiN particles and Al 6061 alloy. It is understood that after the initiation of corrosion, interfacial corrosion products may have decoupled the conducting ceramic TiN from Al 6061 matrix alloy thus eliminating the galvanic effect between them.

  20. Wear Behaviour of Al-6061/SiC Metal Matrix Composites

    Science.gov (United States)

    Mishra, Ashok Kumar; Srivastava, Rajesh Kumar

    2016-06-01

    Aluminium Al-6061 base composites, reinforced with SiC particles having mesh size of 150 and 600, which is fabricated by stir casting method and their wear resistance and coefficient of friction has been investigated in the present study as a function of applied load and weight fraction of SiC varying from 5, 10, 15, 20, 25, 30, 35 and 40 %. The dry sliding wear properties of composites were investigated by using Pin-on-disk testing machine at sliding velocity of 2 m/s and sliding distance of 2000 m over a various loads of 10, 20 and 30 N. The result shows that the reinforcement of the metal matrix with SiC particulates up to weight percentage of 35 % reduces the wear rate. The result also show that the wear of the test specimens increases with the increasing load and sliding distance. The coefficient of friction slightly decreases with increasing weight percentage of reinforcements. The wear surfaces are examined by optical microscopy which shows that the large grooved regions and cavities with ceramic particles are found on the worn surface of the composite alloy. This indicates an abrasive wear mechanism, which is essentially a result of hard ceramic particles exposed on the worn surfaces. Further, it was found from the experimentation that the wear rate decreases linearly with increasing weight fraction of SiC and average coefficient of friction decreases linearly with increasing applied load, weight fraction of SiC and mesh size of SiC. The best result has been obtained at 35 % weight fraction and 600 mesh size of SiC.

  1. Ultrasonic assessment of interfacial oxidation damage in ceramic matrix composites

    Science.gov (United States)

    Chu, Y. C.; Rokhlin, S. I.; Baaklini, G. Y.

    1993-01-01

    A new approach to characterizing oxidation damage in ceramic matrix composites using ultrasonic techniques is proposed. In this approach, the elastic constants of the composite are determined nondestructively by measuring the angular dependence of both longitudinal and transverse wave velocities. A micromechanical model for composites with anisotropic constituents is used to find the anisotropic properties of an effective fiber, which is a combination of the fiber and the interface. Interfacial properties are extracted from the properties of this effective fiber by analyzing the difference between effective and actual fiber properties. Unidirectional /0/28 SiC/Si3N4 composites with 30 percent fiber volume fraction and 30 percent matrix porosity are used. The samples are exposed in a flowing oxygen environment at elevated temperatures, up to 1400 C, for 100 hours and then measured by ultrasonic methods at room temperature. The Young's modulus in the fiber direction of the sample oxidized at 600 C decreased significantly but it was unchanged for samples oxidized at temperatures above 1200 C. The transverse moduli obtained from ultrasonic measurements decrease continuously up to 1200 C. The shear stiffnesses show behavior similar to the transverse moduli. The effective elastic moduli of the interfacial carbon coating are determined from the experimental data, and their change due to thermal oxidation is discussed.

  2. Mechanical and morphological properties of basalt filled polymer matrix composites

    Directory of Open Access Journals (Sweden)

    A. Akinci

    2009-01-01

    Full Text Available Purpose: The aim of this work is to study the effect of basalt on physical, mechanical and morphological of the injection molded LDPE.Design/methodology/approach: In this study, the effect of basalt was investigated as a filler material in polymer matrix composite (PMC and low density polyethylene (LDPE was chosen as a matrix material.Findings: A variety of mechanical tests were performed on the resultant composites which has appropriate compositions. Tensile, flexural, density and hardness tests have been carried out and, the relationship between the basalt content and properties were examined. XRD and SEM facilities were applied on polished and fractured surfaces after flexural tests respectively.Research limitations/implications: In present study, it was found that, the content of basalt filler affected structural integrity and mechanical properties of composites. With increasing the amount of the basalt addition to the LDPE results in a decrease in elongation at break values.Originality/value: It is thought that the nucleating effect of the basalt leads to an increased rate in orientation of the polymer. The crystallization was increased by increasing the basalt content. Basalt addition was observed to be an alternative additive to the LDPE. If suitable coupling agents could be added to basalt and LDPE mixtures, the mechanical properties can possibly be increased.

  3. High temperature resin matrix composites for aerospace structures

    Science.gov (United States)

    Davis, J. G., Jr.

    1980-01-01

    Accomplishments and the outlook for graphite-polyimide composite structures are briefly outlined. Laminates, skin-stiffened and honeycomb sandwich panels, chopped fiber moldings, and structural components were fabricated with Celion/LARC-160 and Celion/PMR-15 composite materials. Interlaminar shear and flexure strength data obtained on as-fabricated specimens and specimens that were exposed for 125 hours at 589 K indicate that epoxy sized and polyimide sized Celion graphite fibers exhibit essentially the same behavior in a PMR-15 matrix composite. Analyses and tests of graphite-polyimide compression and shear panels indicate that utilization in moderately loaded applications offers the potential for achieving a 30 to 50 percent reduction in structural mass compared to conventional aluminum panels. Data on effects of moisture, temperature, thermal cycling, and shuttle fluids on mechanical properties indicate that both LARC-160 and PMR-15 are suitable matrix materials for a graphite-polyimide aft body flap. No technical road blocks to building a graphite-polyimide composite aft body flap are identified.

  4. Interfacial sliding in carbon nanotube/diamond matrix composites

    International Nuclear Information System (INIS)

    Carbon matrix-carbon nanotube (CNT) composites have a broad range of applications because of the exceptional mechanical properties of both matrix and fibers. Since interfacial sliding plays a key role in determining the strength and toughness of ceramic composites, here interface behavior during nanotube pull-out is studied using molecular dynamics models. The degree of interfacial coupling/adhesion between a diamond matrix and a carbon nanotube is captured through interstitial carbon atoms located in the interface, which can form bonds with both the matrix and CNT atoms. Bonding is accurately captured using the modified REBO potential of Pastewka et al. that introduces an environmental screening coefficient to better capture covalent bond breaking and reforming. Pull-out tests reveal that, after an initial transient, the pull-out force becomes constant, mimicking frictional sliding. The pull-out force is directly proportional to the number of interstitial atoms per unit area in the interface, showing that 'friction' is generated by the energy dissipated during breaking and reforming of bonds involving the interstitial atoms. The effective friction stresses are quite high (several GPa) for interstitial areal densities of 0.72-2.18 nm-2 and the energy dissipated during pull-out can thus be substantial. No differences were found in the pull-out of single wall nanotubes and double wall nanotubes having interwall sp3 bonding. These results demonstrate that 'friction-like' behavior can emerge from non-smooth interfaces and that chemical control of interfacial bonding in CNT can yield substantial sliding resistance and high potential toughening in nanoceramic composites.

  5. Metal matrix composites reinforced with SiC long fibers and carbon nanomaterials produced by electrodeposition

    OpenAIRE

    Abdul Karim, Muhammad Ramzan

    2015-01-01

    The research work of this PhD thesis was done on the study, production and characterization of two types of metal matrix composites: 1) fiber reinforced metal matrix composites and, 2) carbon nanomaterials reinforced metal matrix composites. In fiber reinforced metal matrix composites, a metal or an alloy is reinforced with continuous or discontinuous fibers in order to improve the specific strength and stiffness at high temperatures. For example superalloys are the typical materials for the ...

  6. Self-lubricating carbon nanotube reinforced nickel matrix composites

    International Nuclear Information System (INIS)

    Nickel (Ni)--multiwalled carbon nanotube (CNT) composites have been processed in a monolithic form using the laser-engineered net shape (LENS) processing technique. Auger electron spectroscopy maps determined that the nanotubes were well dispersed and bonded in the nickel matrix and no interfacial chemical reaction products were determined in the as-synthesized composites. Mechanisms of solid lubrication have been investigated by micro-Raman spectroscopy spatial mapping of the worn surfaces to determine the formation of tribochemical products. The Ni-CNT composites exhibit a self-lubricating behavior, forming an in situ, low interfacial shear strength graphitic film during sliding, resulting in a decrease in friction coefficient compared to pure Ni.

  7. Electrochemical process for the manufacturing of titanium alloy matrix composites

    Directory of Open Access Journals (Sweden)

    V. Soare

    2009-07-01

    Full Text Available The paper presents a new method for precursors’ synthesis of titanium alloys matrix composites through an electrochemical process in molten calcium chloride. The cathode of the cell was made from metallic oxides powders and reinforcement ceramic particles, which were pressed and sintered into disk form and the anode from graphite. The process occurred at 850 °C, in two stages, at 2,7 / 3,2 V: the ionization of the oxygen in oxides and the reduction with calcium formed by electrolysis of calcium oxide fed in the electrolyte. The obtained composite precursors, in a form of metallic sponge, were consolidated by pressing and sintering. Chemical and structural analyses on composites samples were performed.

  8. Hot extruded carbon nanotube reinforced aluminum matrix composite materials

    Science.gov (United States)

    Kwon, Hansang; Leparoux, Marc

    2012-10-01

    Carbon nanotube (CNT) reinforced aluminum (Al) matrix composite materials were successfully fabricated by mechanical ball milling followed by powder hot extrusion processes. Microstructural analysis revealed that the CNTs were well dispersed at the boundaries and were aligned with the extrusion direction in the composites obtained. Although only a small quantity of CNTs were added to the composite (1 vol%), the Vickers hardness and the tensile strength were significantly enhanced, with an up to three-fold increase relative to that of pure Al. From the fractography of the extruded Al-CNT composite, several shapes were observed in the fracture surface, and this unique morphology is discussed based on the strengthening mechanism. The damage in the CNTs was investigated with Raman spectroscopy. However, the Al-CNT composite materials were not only strengthened by the addition of CNTs but also enhanced by several synergistic effects. The nanoindentation stress-strain curve was successfully constructed by setting the effective zero-load and zero-displacement points and was compared with the tensile stress-strain curve. The yield strengths of the Al-CNT composites from the nanoindentation and tensile tests were compared and discussed. We believe that the yield strength can be predicted using a simple nanoindentation stress/strain curve and that this method will be useful for materials that are difficult to machine, such as complex ceramics.

  9. Hot extruded carbon nanotube reinforced aluminum matrix composite materials

    International Nuclear Information System (INIS)

    Carbon nanotube (CNT) reinforced aluminum (Al) matrix composite materials were successfully fabricated by mechanical ball milling followed by powder hot extrusion processes. Microstructural analysis revealed that the CNTs were well dispersed at the boundaries and were aligned with the extrusion direction in the composites obtained. Although only a small quantity of CNTs were added to the composite (1 vol%), the Vickers hardness and the tensile strength were significantly enhanced, with an up to three-fold increase relative to that of pure Al. From the fractography of the extruded Al–CNT composite, several shapes were observed in the fracture surface, and this unique morphology is discussed based on the strengthening mechanism. The damage in the CNTs was investigated with Raman spectroscopy. However, the Al–CNT composite materials were not only strengthened by the addition of CNTs but also enhanced by several synergistic effects. The nanoindentation stress–strain curve was successfully constructed by setting the effective zero-load and zero-displacement points and was compared with the tensile stress–strain curve. The yield strengths of the Al–CNT composites from the nanoindentation and tensile tests were compared and discussed. We believe that the yield strength can be predicted using a simple nanoindentation stress/strain curve and that this method will be useful for materials that are difficult to machine, such as complex ceramics. (paper)

  10. Experimental investigation on mechanical behaviour, modelling and optimization of wear parameters of B4C and graphite reinforced aluminium hybrid composites

    International Nuclear Information System (INIS)

    Highlights: • Aluminium alloy reinforced with boron carbide and graphite through liquid casting. • The high hardness and elongation obtained in the AA 7075 hybrid composite. • SEM, EDS observations were used to evaluate the worn surface. • MINITAB software was used to analyse the wear rate and develop the map. - Abstract: Aluminium alloy (AA) 6061 and 7075 were reinforced with 10 wt.% of boron carbide (B4C) and 5 wt.% of graphite through liquid casting technique. The Scanning Electron Microscope (SEM) and Energy Dispersive Spectrum (EDS) were used for the characterization of composites. The wear experiment was carried out by using a pin-on-disc apparatus with various input parameters like applied load (10, 20, and 30 N), sliding speed (0.6, 0.8, and 1.0 m/s) and sliding distance (1000, 1500, and 2000 m). Response Surface Methodology (RSM) using MINITAB 14 software was used to analyse the wear rate of hybrid composites and aluminium alloys. The worn surfaces of hybrid composites and base alloys were studied through SEM and EDS systems and some useful conclusions were made

  11. X-ray microtomography of ceramic and metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Baaklini, G.Y.; Bhatt, R.T.; Eckel, A.J. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Engler, P.; Rauser, R.W. [Cleveland State Univ., OH (United States); Castelli, M.G. [NYMA, Inc., Cleveland, OH (United States)

    1995-09-01

    Capabilities and limitations of X-ray computed microtomography (CT) in characterizing relevant composite material issues as identified during manufacturing processes were investigated. Damage in engine subcomponents was evaluated and compared with damage detected in pedigreed coupon type specimens. The system used is a newly developed state-of-the-art X-ray computed tomography system capable of providing digital radiography, computed tomography, and computed laminography. CT was found viable for characterizing processing defects and coating effect in thermally shocked carbon fiber reinforced silicon carbide matrix (C/SiC) samples. CT results from mechanically tested silicon carbide fiber reinforced reaction bonded silicon nitride (SiC/RBSN) matrix sample were evaluated and compared to engine tested SiC/RBSN turbine vanes. Thermomechanically cycled SiC (SCS-6) fiber reinforced Timetal 21S samples showed viability of CT in detecting composite constituents and limitations of CT in detecting matrix and fiber cracking. Also an engineering analysis approach was proposed to continuously integrate nondestructive evaluation modalities in the design-manufacturing-prototyping cycle of engine components.

  12. Interfacial sliding in fibrous brittle-matrix composites

    Science.gov (United States)

    Miles, Herbert Frederick, II

    Ceramic materials have desirable characteristics for use in high temperature applications, but due to their brittle nature they were avoided until the recent advent of ceramic matrix composites (CMCs) in which ceramic fibers are inserted into a ceramic matrix to toughen the material by retarding crack growth. This work investigates the role of sliding at interfaces in making brittle matrix composites (BMCs) more crack resistant. A two-dimensional study investigates the effects of roughness, toughness, and friction on the fracture behavior of BMCs. This study was then expanded to an axisymmetric study of a fiber engulfed by a crack. The results indicate that there are significant interaction effects between friction and the other parameters. To achieve 'long' sliding lengths, the magnitude of the interfacial critical energy release rate must be significantly less than the magnitude required to ensure crack deflection. The study then investigates the three-dimensional nature of a crack as it flows past a fiber. A computational analysis is performed to determine the crack propagation angle at a frictional interface. The computational results show good agreement with a novel experimental analysis using modified DCDC specimens. The experiments show, in real time, the propagation of a crack which is perpendicular to and intersects a frictional interface.

  13. Development of a Precipitation-Strengthened Matrix for Non-quenchable Aluminum Metal Matrix Composites

    Science.gov (United States)

    Vo, Nhon Q.; Sorensen, Jim; Klier, Eric M.; Sanaty-Zadeh, Amirreza; Bayansan, Davaadorj; Seidman, David N.; Dunand, David C.

    2016-07-01

    Recent developments in metal matrix composite-encapsulated ceramic armor show promise in lightweight armor technology. The system contains ceramic tiles, such as alumina, sandwiched between unreinforced aluminum or aluminum metal matrix composite (Al-MMC), which has a better toughness compared to the ceramic tiles. The sandwich structures should not be quenched during the fabrication, as the large mismatch in the coefficients of thermal expansion between the ceramic tiles and the unreinforced aluminum or Al-MMC creates internal stresses high enough to fracture the ceramic tiles. However, slow cooling of most commercial alloys creates large precipitates making solute unavailable for the formation of fine precipitates during aging. Here, we develop a non-quenched, high-strength metal matrix utilizing dilute Al-Sc-Zr alloys. We demonstrate that the dilute Al-0.09 Sc-0.045 Zr at.% alloy and the same alloy containing 0-4 vol.% alumina short fibers do not result in precipitation upon slow cooling from a high temperature, and can thereafter be aged to increase their strength. They exhibit a moderate strength, but improved ductility and toughness as compared to common armor aluminum alloys, such as AA5083-H131, making them attractive as armor materials and hybrid armor systems.

  14. Development of a Precipitation-Strengthened Matrix for Non-quenchable Aluminum Metal Matrix Composites

    Science.gov (United States)

    Vo, Nhon Q.; Sorensen, Jim; Klier, Eric M.; Sanaty-Zadeh, Amirreza; Bayansan, Davaadorj; Seidman, David N.; Dunand, David C.

    2016-04-01

    Recent developments in metal matrix composite-encapsulated ceramic armor show promise in lightweight armor technology. The system contains ceramic tiles, such as alumina, sandwiched between unreinforced aluminum or aluminum metal matrix composite (Al-MMC), which has a better toughness compared to the ceramic tiles. The sandwich structures should not be quenched during the fabrication, as the large mismatch in the coefficients of thermal expansion between the ceramic tiles and the unreinforced aluminum or Al-MMC creates internal stresses high enough to fracture the ceramic tiles. However, slow cooling of most commercial alloys creates large precipitates making solute unavailable for the formation of fine precipitates during aging. Here, we develop a non-quenched, high-strength metal matrix utilizing dilute Al-Sc-Zr alloys. We demonstrate that the dilute Al-0.09 Sc-0.045 Zr at.% alloy and the same alloy containing 0-4 vol.% alumina short fibers do not result in precipitation upon slow cooling from a high temperature, and can thereafter be aged to increase their strength. They exhibit a moderate strength, but improved ductility and toughness as compared to common armor aluminum alloys, such as AA5083-H131, making them attractive as armor materials and hybrid armor systems.

  15. Effect of aluminium phosphate as admixture on oxychloride cement

    Indian Academy of Sciences (India)

    M P S Chandrawat; R N Yadav

    2000-02-01

    The effect of admixing of aluminium phosphate on oxychloride cement in the matrix has been investigated. It is shown that aluminium phosphate retards the setting process of the cement and improves water-tightness.

  16. Thermal Fatigue Limitations of Continuous Fiber Metal Matrix Composites

    Science.gov (United States)

    Halford, Gary R.; Arya, Vinod K.

    1997-01-01

    The potential structural benefits of unidirectional, continuous-fiber, metal matrix composites (MMC's) are legendary. When compared to their monolithic matrices, MMC's possess superior properties such as higher stiffness and tensile strength, and lower coefficient of thermal expansion in the direction of the reinforcing fibers. As an added bonus, the MMC density will be lower if the fibers are less dense than the matrix matErial they replace. The potential has been demonstrated unequivocally both analytically and experimentally, especially at ambient temperatures. Successes prompted heavily-funded National efforts within the United States (USAF and NASA) and elsewhere to extend the promise of MMC's into the temperature regime wherein creep, stress relaxation, oxidation, and thermal fatigue damage mechanisms lurk. This is the very regime for which alternative high-temperature materials are becoming mandatory, since further enhancement of state- of-the-art monolithic alloys is rapidly approaching a point of diminishing returns.

  17. Economical Fabrication of Thick-Section Ceramic Matrix Composites

    Science.gov (United States)

    Babcock, Jason; Ramachandran, Gautham; Williams, Brian; Benander, Robert

    2010-01-01

    A method was developed for producing thick-section [>2 in. (approx.5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (approx.6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to 41 ksi (approx. 283 MPa) flexural strength.

  18. Designing the matrix of Gr/Al composites

    International Nuclear Information System (INIS)

    The effects of alloying elements on the Gr/Al interfacial reaction, bonding, and wettability are of great importance for designing the matrix of Gr/Al composites. These effects of zirconium, cerium, and silicon have been investigated by mechanical testing of precursor wires, single fiber tension, SEM, EPMA, and TEM analyses. The results show that the growth of Al4C3 can be significantly retarded if matrix contains a small amount of zirconium, and a proper interfacial bonding can be achieved by regulating cerium concentration. Silicon improves the wettability of interface when it is added into Al-Zr binary alloy, but it destroys the effect of zirconium and causes the degradation of the strength of precursor wires after high temperature exposure. 8 refs

  19. Hoop Tensile Properties of Ceramic Matrix Composite Cylinders

    Science.gov (United States)

    Verrilli, Michael J.; DiCarlo, James A.; Yun, HeeMan; Barnett, Terry

    2004-01-01

    Tensile stress-strain properties in the hoop direction were obtained for 100-mm diameter SiC/SiC ceramic matrix composite cylinders using ring specimens machined form the cylinder ends. The cylinders were fabricated from 2D balanced SiC fabric with several material variants, including wall thickness (6,8, and 12 plies), SiC fiber type (Sylramic, Sylramic-iBN, Hi-Nicalon, and Hi-Nicalon S), fiber sizing type, and matrix type (full CVI SiC, and partial CVI SiC plus slurry cast + melt-infiltrated SiC-Si). Fiber ply splices existed in all the hoops. Tensile hoop measurements are made at room temperature and 1200 C using hydrostatic ring test facilities. The failure mode of the hoops, determined through microstructural examination, is presented. The hoop properties are compared with in-plane data measured on flat panels using same material variants, but containing no splices.

  20. Wear and impact resistance of HVOF sprayedceramic matrix composites coating

    Science.gov (United States)

    Prawara, B.; Martides, E.; Priyono, B.; Ardy, H.; Rikardo, N.

    2016-02-01

    Ceramic coating has the mechanical properties of high hardness and it is well known for application on wear resistance, but on the other hand the resistance to impact load is low. Therefore its use is limited to applications that have no impact loading. The aim of this research was to obtain ceramic-metallic composite coating which has improved impact resistance compared to conventional ceramic coating. The high impact resistance of ceramic-metallic composite coating is obtained from dispersed metallic alloy phase in ceramic matrix. Ceramic Matrix Composites (CMC) powder with chrome carbide (Cr3C2) base and ceramic-metal NiAl-Al2O3 with various particle sizes as reinforced particle was deposited on mild steel substrate with High Velocity Oxygen Fuel (HVOF) thermal spray coating. Repeated impact test showed that reinforced metallic phase size influenced impact resistance of CMC coating. The ability of CMC coating to absorb impact energy has improved eight times and ten times compared with original Cr3C2 and hard chrome plating respectively. On the other hand the high temperature corrosion resistance of CMC coating showed up to 31 cycles of heating at 800°C and water quenching cooling.

  1. Carbon materials as fillers for polymer matrix composites

    Directory of Open Access Journals (Sweden)

    J. Stabik

    2012-01-01

    Full Text Available Purpose: Paper presents different types of carbon materials used as modifiers for polymer matrix composites. The article contains summary description of the available varieties of carbon materials from brown and hard coal to the carbon nanotubes and fullerenes.Design/methodology/approach: The aim of the publication is to present different forms of carbon materials, their origins and ways of creation. Paper summarizes also basic properties and possible applications of carbon materials as components of engineering polymeric composites.Findings: Paper especially focuses on types of hard coal (mine coal as potential fillers for polymers. These materials and their properties and applications were studied in detail by the authors in previous researches.Research limitations/implications: Analysis of the literature and authors’ own research results indicate that carbon materials as fillers can essentially improve many different properties of polymer matrix composites but still have to be extensively searched to fully evaluate their characteristics and possible applications.Practical implications: Particular attention should be directed to the use of mined coal as a properties modifier of polymers because of its interesting properties, low prize and availability in Poland.Originality/value: New types of carbon materials as polymer fillers, their properties and application possibilities are presented.

  2. LDEF results for polymer-matrix composite experiment AO 180

    International Nuclear Information System (INIS)

    This report represents a summary of the results obtained to-date on a polymer matrix composite experiment (AO 180) located at station D-12, about 82 deg off the 'ram' direction. Different material systems comprised of graphite, boron, and aramid (Kevlar) fiber reinforcements were studied. Although previous results were presented on in-situ thermal-vacuum cycling effects, particularly dimensional changes associated with outgassing, additional comparative data will be shown from ground-based tests on control and flight samples. The system employed was fully automated for thermal-vacuum cycling using a laser interferometer for monitoring displacements. Erosion of all three classes of materials due to atomic oxygen (AO) will also be discussed, including angle of incidence effects. Data from this experiment will be compared to published results for similar materials in other LDEF experiments. Composite materials' erosion yields will be presented on an AO design nomogram useful for estimating total material loss for given exposure conditions in low Earth orbit (LEO). Optical properties of these materials will also be compared with control samples. A survey of the damage caused by micrometeoroids/debris impacts will be addressed as they relate to polymer matrix composites. Correlations between hole size and damage pattern will be given. Reference to a new nomogram for estimating the number distribution of micrometeoroid/debris impacts for a given space structure as a function of time in LEO will be addressed based on LDEF data

  3. Effect of plasma spraying conditions on structure and properties of Al-B hot pressed composites

    International Nuclear Information System (INIS)

    Composition and properties of composite matrixes obtained by plasmic sputtering of aluminium alloys have been studied. The effect of sputtering conditions on properties of boron and boron-silicon fibres is described. Formation of the matrix strong contact with the fibres during hot pressing has been studied. Plasmic sputtering is shown to be able of controlling the structure and properties of composite metal matrixes

  4. Rapid Fabrication of Carbide Matrix/Carbon Fiber Composites

    Science.gov (United States)

    Williams, Brian E.; Bernander, Robert E.

    2007-01-01

    Composites of zirconium carbide matrix material reinforced with carbon fibers can be fabricated relatively rapidly in a process that includes a melt infiltration step. Heretofore, these and other ceramic matrix composites have been made in a chemical vapor infiltration (CVI) process that takes months. The finished products of the CVI process are highly porous and cannot withstand temperatures above 3,000 F (approx.1,600 C). In contrast, the melt-infiltration-based process takes only a few days, and the composite products are more nearly fully dense and have withstood temperatures as high as 4,350 F (approx.2,400 C) in a highly oxidizing thrust chamber environment. Moreover, because the melt- infiltration-based process takes much less time, the finished products are expected to cost much less. Fabrication begins with the preparation of a carbon fiber preform that, typically, is of the size and shape of a part to be fabricated. By use of low-temperature ultraviolet-enhanced chemical vapor deposition, the carbon fibers in the preform are coated with one or more interfacial material(s), which could include oxides. The interfacial material helps to protect the fibers against chemical attack during the remainder of the fabrication process and against oxidation during subsequent use; it also enables slippage between the fibers and the matrix material, thereby helping to deflect cracks and distribute loads. Once the fibers have been coated with the interfacial material, the fiber preform is further infiltrated with a controlled amount of additional carbon, which serves as a reactant for the formation of the carbide matrix material. The next step is melt infiltration. The preform is exposed to molten zirconium, which wicks into the preform, drawn by capillary action. The molten metal fills most of the interstices of the preform and reacts with the added carbon to form the zirconium carbide matrix material. The zirconium does not react with the underlying fibers because they

  5. Baseplates in metallic matrix composites for power and microwave applications

    International Nuclear Information System (INIS)

    Baseplates for microelectronic devices in fields where transform environments are encountered, such as automotive or airborne must have some fundamental characteristics such as: high thermal conductivity, low density, good mechanical properties and a coefficient of thermal expansion (CTE) nearly equal to the microelectronic substrates and the components installed on the baseplates. Metallic matrix composites are very good candidates because they perfectly answer to those requirements. In this presentation, with some examples of electronic devices in power and microwave applications we will show the big interest to use this kind of material. (author)

  6. Analytical Micromechanics Modeling Technique Developed for Ceramic Matrix Composites Analysis

    Science.gov (United States)

    Min, James B.

    2005-01-01

    Ceramic matrix composites (CMCs) promise many advantages for next-generation aerospace propulsion systems. Specifically, carbon-reinforced silicon carbide (C/SiC) CMCs enable higher operational temperatures and provide potential component weight savings by virtue of their high specific strength. These attributes may provide systemwide benefits. Higher operating temperatures lessen or eliminate the need for cooling, thereby reducing both fuel consumption and the complex hardware and plumbing required for heat management. This, in turn, lowers system weight, size, and complexity, while improving efficiency, reliability, and service life, resulting in overall lower operating costs.

  7. Fatigue In Continuous-Fiber/Metal-Matrix Composites

    Science.gov (United States)

    Johnson, William S.

    1992-01-01

    Report describes experimental approaches to quantification of fatigue damage in metal-matrix composites (MMC's). Discusses number of examples of development of damage and failure along with associated analytical models of behavior of MMC. Objectives of report are twofold. First, present experimental procedures and techniques for conducting meaningful fatigue tests to detect and quantify fatigue damage in MMC's. Second, present examples of how fatigue damage initiated and grows in various MMC's. Report furnishes some insight into what type of fatigue damage occurs and how damage quantified.

  8. Refractory metal-matrix composites for space nuclear power applications

    International Nuclear Information System (INIS)

    Space nuclear power systems for SDI will require materials that have excellent high specific strength and creep resistance at high temperature, are compatible with space environmental conditions, and the heat transfer fluids of power conversion systems, and stable at high neutron fluence in extended operation. The development of composite components composed of continuous high strength tungsten alloy filaments in a ductile refractory metal alloy matrix is a logical next step in the progression of high temperature structural materials to meet these requirements. The basis for this technology advance is the extraordinary high temperature strength and recrystallization resistance of a class of tungsten alloys containing small quantities of hafnium carbide

  9. Characterization of metal matrix composite using acoustic emission and single fiber composite

    International Nuclear Information System (INIS)

    Interfacial shear strength(IFSS) between fiber and matrix is one of the most important factors in characterizing the mechanical properties of fiber reinforced composites. The single fiber composites(SFC) test, originally proposed by Kelly and Tyson, is one of the most frequently used techniques to evaluate the IFSS of composites. This method gives comparatively abundant information such as the interfacial failure mode and the IFSS using only several specimens. In this study, the SFC test with the aid of acoustic emission(AE) technique has been conducted to evaluate the IFSS and micro-failure mechanism of SiC fiber reinforced metal matrix composite(MMC). For this purpose, dog-bone shaped single fiber composite specimens were fabricated. It is obviously shown that the failure mechanisms of MMC were divided by three groups which were matrix cracking, fiber breakage and debonding and fiber breakage. AE amplitude and AE energy versus duration time respectively were useful distinguishing AE signals by fiber breakage between from by matrix cracking. One-to-one correspondence between the AE event and fiber breakage can be established vis optical microscope and ultrasonic C-scanning technique.

  10. Steel-SiC Metal Matrix Composite Development. Final report

    International Nuclear Information System (INIS)

    One of the key materials challenges for Generation IV reactor technology is to improve the strength and resistance to corrosion and radiation damage in the metal cladding of the fuel pins during high-temperature operation. Various candidate Gen IV designs call for increasing core temperature to improve efficiency and facilitate hydrogen production, operation with molten lead moderator to use fast neutrons. Fuel pin lifetime against swelling and fracture is a significant limit in both respects. The goal of this project is to develop a method for fabricating SiC-reinforced high-strength steel. We are developing a metal-matrix composite (MMC) in which SiC fibers are be embedded within a metal matrix of steel, with adequate interfacial bonding to deliver the full benefit of the tensile strength of the SiC fibers in the composite. In the context of the mission of the SBIR program, this Phase I grant has been successful. The development of a means to attain interfacial bonding between metal and ceramic has been a pacing challenge in materials science and technology for a century. It entails matching or grading of thermal expansion across the interface and attaining a graded chemical composition so that impurities do not concentrate at the boundary to create a slip layer. To date these challenges have been solved in only a modest number of pairings of compatible materials, e.g. Kovar and glass, titanium and ceramic, and aluminum and ceramic. The latter two cases have given rise to the only presently available MMC materials, developed for aerospace applications. Those materials have been possible because the matrix metal is highly reactive at elevated temperature so that graded composition and intimate bonding happens naturally at the fiber-matrix interface. For metals that are not highly reactive at processing temperature, however, successful bonding is much more difficult. Recent success has been made with copper MMCs for cooling channels in first-wall designs for fusion

  11. Modeling oxidation damage of continuous fiber reinforced ceramic matrix composites

    Institute of Scientific and Technical Information of China (English)

    Cheng-Peng Yang; Gui-Qiong Jiao; Bo Wang

    2011-01-01

    For fiber reinforced ceramic matrix composites (CMCs), oxidation of the constituents is a very important damage type for high temperature applications. During the oxidizing process, the pyrolytic carbon interphase gradually recesses from the crack site in the axial direction of the fiber into the interior of the material. Carbon fiber usually presents notch-like or local neck-shrink oxidation phenomenon, causing strength degradation. But, the reason for SiC fiber degradation is the flaw growth mechanism on its surface. A micromechanical model based on the above mechanisms was established to simulate the mechanical properties of CMCs after high temperature oxidation. The statistic and shearlag theory were applied and the calculation expressions for retained tensile modulus and strength were deduced, respectively. Meanwhile, the interphase recession and fiber strength degradation were considered. And then, the model was validated by application to a C/SiC composite.

  12. Machinability of Al-SiC metal matrix composites using WC, PCD and MCD inserts

    Directory of Open Access Journals (Sweden)

    Beristain, Jokin

    2014-03-01

    Full Text Available The aim of this work is the study of the machinability of aluminium-silicon carbide Metal Matrix Composites (MMC in turning operations. The cutting tools used were hard metal (WC with and without coating, different grades and geometries of Poly-Crystalline Diamond (PCD and Mono-Crystalline Diamond (MCD. The work piece material was AMC225xe, composed of aluminium-copper alloy AA 2124 and 25% wt of SiC, being the size of the SiC particles around 3 μm. Experiments were conducted at various cutting speeds and cutting parameters in facing finishing operations, measuring the surface roughness, cutting forces and tool wear. The worn surface of the cutting tool was examined by Scanning Electron Microscope (SEM. It was observed that the Built Up Edge (BUE and stuck material is higher in the MCD tools than in the PCD tools. The BUE acts as a protective layer against abrasive wear of the tool.El objetivo de este trabajo es el estudio de la maquinabilidad del material compuesto de matriz metálica aluminio-carburo de silicio en operaciones de torneado. Las herramientas de corte utilizadas han sido de metal duro con y sin recubrimiento, diferentes grados de diamante policristalino (PCD y diamante monocristalino (MCD. El material mecanizado ha sido AMC225xe, compuesto de la aleación de aluminio AA 2124 con un 25% en peso de partículas de SiC con un tamaño medio de 3 μm. Los experimentos se han realizado con diferentes velocidades de corte en una operación de refrentado, midiendo la rugosidad superficial, las fuerzas y el desgaste de la herramienta. La superficie desgastada de la herramienta ha sido examinada en el microscopio electrónico (SEM. Se ha observado que el filo recrecido y el material adherido son mayores en el caso de las herramientas de MCD que en las de PCD. El filo recrecido actúa como una capa protectora contra la abrasión.

  13. Application of ceramic short fiber reinforced Al alloy matrix composite on piston for internal combustion engines

    OpenAIRE

    Wu Shenqing; Li Jun

    2010-01-01

    The preparation and properties of ceramic short fiber reinforced Al-Si alloy matrix composite and it’s application on the piston for internal combustion engines are presented. Alumina or aluminosilicate fibers reinforced Al-Si alloy matrix composite has more excellent synthetical properties at elevated temperature than the matrix alloys. A partially reinforced Al-Si alloy matrix composite piston produced by squeeze casting technique has a firm interface between reinforced and unreinforced are...

  14. Development of antifriction composites based on polypyromellitimide matrix

    International Nuclear Information System (INIS)

    Highlights: • Polypyromellitimide powder from waste of production polyimide films were obtained. • Structure of polypyromellitimide strongly changes after high energy ball milling. • Addition of commercial polyimide powder improve moldability of polypyromellitimide. • Polypyromellitimide based composites show good tribological properties in dry friction mode. -- Abstract: A method of polypyromellitimide powder production from PM-A film was proposed and a possibility of fabricating bulk composites based on polypyromellitimide matrix was investigated. The powders were prepared by the treatment of PM-A films in a planetary ball mill. The compositions based on polypyromellitimide containing additives of Al65Cu23Fe12 quasicrystals, graphite, polytetrafluoroethylene and PI-PR-20 polyimide were prepared by the solid-state mixing in an IKA M20 batch mill. The bulk samples were fabricated by the compression molding technique. Thus produced materials were characterized by using the methods of sieve analysis, scanning electron microscopy, Fourier-transform infrared spectroscopy, dynamo-mechanical analysis and tribological tests. It was found that the PM-A polypyromellitimide powder had a low sinterability and, therefore, the bulk samples of unfilled PM-A and also the composites based on PM-A containing additives of Al65Cu23Fe12 quasicrystals, graphite and polytetrafluoroethylene exhibited a high brittleness and show unstable behavior in the tribological tests. It was found that an addition of 15 wt.% PI-PR-20 polyimide improved the sinterability of PM-A and also provides excellent antifriction properties

  15. Thermal expansion behaviour of high performance PEEK matrix composites

    International Nuclear Information System (INIS)

    The thermal expansion behaviour of high performance poly(ether-ether-ketone) (PEEK) composites reinforced with micro- (8 μm) and nano- (39 nm) sized Al2O3 particles was studied. The distribution of Al2O3 in the PEEK matrix was studied by scanning electron microscopy and transmission electron microscopy. The coefficient of thermal expansion (CTE) was reduced from 58 x 10-6 deg. C-1 for pure PEEK to 22 x 10-6 deg. C-1 at 43 vol% micro-Al2O3 and to 23 x 10-6 deg. C-1 at 12 vol% nano-Al2O3 composites. For a given volume fraction, nano-Al2O3 particles are more effective in reducing the CTE of composites than that of micro-Al2O3 particles. This may be attributed to the much higher interfacial area or volume of nanocomposites than that of microcomposites. The upper limit and lower limit of the Schapery model separately fit closely the CTE of the micro- and nano-composites, respectively. Other models such as the rule of mixture and Kerner and Turner models were also correlated with the data

  16. Orthorhombic Titanium Matrix Composite Subjected to Simulated Engine Mission Cycles

    Science.gov (United States)

    Gabb, Timothy P.

    1997-01-01

    Titanium matrix composites (TMC's) are commonly made up of a titanium alloy matrix reinforced by silicon carbide fibers that are oriented parallel to the loading axis. These composites can provide high strength at lower densities than monolithic titanium alloys and superalloys in selected gas turbine engine applications. The use of TMC rings with unidirectional SiC fibers as reinforcing rings within compressor rotors could significantly reduce the weight of these components. In service, these TMC reinforcing rings would be subjected to complex service mission loading cycles, including fatigue and dwell excursions. Orthorhombic titanium aluminide alloys are of particular interest for such TMC applications because their tensile and creep strengths are high in comparison to those of other titanium alloys. The objective of this investigation was to assess, in simulated mission tests at the NASA Lewis Research Center, the durability of a SiC (SCS-6)/Ti-22Al-23Nb (at.%) TMC for compressor ring applications, in cooperation with the Allison Engine Company.

  17. Silver matrix composites reinforced with galvanically silvered particles

    Directory of Open Access Journals (Sweden)

    J. Śleziona

    2007-08-01

    Full Text Available Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powder layer with the silver or copper coats was proposed.Design/methodology/approach: For silver coating the method of non-current deposition from the solution was used.Findings: Conducted investigations allowed such a selection of non-current coating parameters that durable and qualitatively satisfactory coats on the iron particles surface could be obtained.Research limitations/implications: In the course of the researches it was stated that the temperature of the bath, the time of the spread and the intensity of the stirring were the most important parameters of the deposition method itself that guaranteed the obtaining of the coat. The conducted investigations allow to state that the most favourably from the quality of the obtained composite point of view were the applications of the silver coat on the surface of the iron particles and copper coat for glass carbon covering.Originality/value: Selection of the deposited galvanic coats allows to obtain the good quality of the connection on the reinforcing particle sliver matrix interface.

  18. Conditioning of radioactive aluminium generated by the VVR-S Nuclear Reactor Decommissioning Laboratory Inactive Tests

    International Nuclear Information System (INIS)

    Aluminium is a reactive amphoteric metal, readily forming a protective oxide layer on contact with air or water. However, as the oxides are amphoteric, aluminium is not resistant to corrosion in acidic and alkaline conditions, because the protective films dissolve. As a consequence radioactive waste containing bulk aluminium alloys can not be embedded in Ordinary Portland Cement (OPC). A potential encapsulating material for the radioactive aluminium is potassium magnesium phosphate (MKP). This paper presents the characterization results obtained from analyzing the potential magnesium phosphate formulations and assesses its potential to reduce the corrosion of aluminium. A series of experiments have been performed. The main conclusions of the paper are as follows. First, the pH values of magnesium phosphate formulation investigated increased gradually over the test duration, with pH measurement ranging from 8.1 - 9.1, indicating lower values compared with the reference composite OPC (pH ∼ 13). The reduction of pH is an important controlling factor for the corrosion of aluminium. Secondly, according to XRD, the hardened magnesium phosphate matrix is polycrystalline and the main reaction product of magnesium phosphate cement formulations was confirmed as MgKPO4-6H2O, which was found to dominate the crystalline phase composition. Thirdly, the compressive strengths obtained for magnesium phosphate matrices investigated are included in the accepted limits for the embedding matrix with cement (above 5 N/mm2). And fourthly, the corrosion of metallic aluminium in magnesium phosphate matrix is markedly reduced in comparison with the composite OPC

  19. Monitoring Damage Accumulation in Ceramic Matrix Composites Using Electrical Resistivity

    Science.gov (United States)

    Smith, Craig E.; Morscher, Gregory N.; Xia, Zhenhai H.

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection and accurate life prediction for high-temperature ceramic matrix composites. Woven silicon carbide fiber-reinforced silicon carbide (SiC/SiC) ceramic matrix composites (CMC) possess unique properties such as high thermal conductivity, excellent creep resistance, improved toughness, and good environmental stability (oxidation resistance), making them particularly suitable for hot structure applications. In specific, CMCs could be applied to hot section components of gas turbines [1], aerojet engines [2], thermal protection systems [3], and hot control surfaces [4]. The benefits of implementing these materials include reduced cooling air requirements, lower weight, simpler component design, longer service life, and higher thrust [5]. It has been identified in NASA High Speed Research (HSR) program that the SiC/SiC CMC has the most promise for high temperature, high oxidation applications [6]. One of the critical issues in the successful application of CMCs is on-board or insitu assessment of the damage state and an accurate prediction of the remaining service life of a particular component. This is of great concern, since most CMC components envisioned for aerospace applications will be exposed to harsh environments and play a key role in the vehicle s safety. On-line health monitoring can enable prediction of remaining life; thus resulting in improved safety and reliability of structural components. Monitoring can also allow for appropriate corrections to be made in real time, therefore leading to the prevention of catastrophic failures. Most conventional nondestructive

  20. Identification of phase composition of AlSi5Cu2Mg aluminium alloy in T6 condition

    Directory of Open Access Journals (Sweden)

    M. Wierzbińska

    2008-04-01

    xxx series aluminium alloys, provide wide data about their chemical composition, morphology, shape and distribution.

  1. Experimental Test of Stainless Steel Wire Mesh and Aluminium Alloy With Glass Fiber Reinforcement Hybrid Composite

    OpenAIRE

    Ranga Raj R.,; Velmurugan R

    2015-01-01

    At present, composite materials are mostly used in aircraft structural components, because of their excellent properties like lightweight, high strength to weight ratio, high stiffness, and corrosion resistance and less expensive. In this experimental work, the mechanical properties of laminate, this is reinforced with stainless steel wire mesh, aluminum sheet metal, perforated aluminum sheet metal and glass fibers to be laminate and investigated. The stainless steel wire mesh and...

  2. Ultrasonic location for core end of Al-Li alloy and aluminium composite tube

    International Nuclear Information System (INIS)

    The locating method of the core end of Al-Li alloy is studied by ultrasonic wave time-frequency analysis. Adopting the high frequency and narrow pulse emission the composite metal tube can be located by means of the states of longitudinal wave and transverse wave. The dissection of the sample proves that the core end thickness is 0.1 mm and the location precision is 2 mm

  3. Composite materials based on porous ceramic preform infiltrated by aluminium alloy

    Directory of Open Access Journals (Sweden)

    A. Nagel

    2007-01-01

    Full Text Available Purpose: The goal of this project is the optimization of manufacturing technology of the ceramic preforms basedon Al2O3 powder manufactured by the pressure infiltration method with liquid metal alloy.Design/methodology/approach: Ceramic preforms were manufactured by the method of sintering of ceramicpowder. The preform material consists of powder Condea Al2O3 CL 2500, however, as the forming factor ofthe structure of canals and pores inside the ceramic agglomerated framework the carbon fibers Sigrafil C10M250 UNS were used. Then ceramic preforms were infiltrated with liquid EN AC – AlSi12 aluminum alloy.Stereological and structure investigations of obtained composite materials were made on light microscope.Findings: It was proved that developed technology of manufacturing of composite materials with the pore ceramicAl2O3 infiltration ensures expected structure and can be used in practice.Practical implications: The developed technology allows to obtain method’s elements locally reinforced andcomposite materials with precise shape mapping.Originality/value: The received results show the possibility of obtaining the new composite materials being thecheaper alternative for other materials based on the ceramic fibers.

  4. Survey of inorganic polymers. [for composite matrix resins

    Science.gov (United States)

    Gerber, A. H.; Mcinerney, E. F.

    1979-01-01

    A literature search was carried out in order to identify inorganic, metallo-organic, and hybrid inorganic-organic polymers that could serve as potential matrix resins for advanced composites. The five most promising candidates were critically reviewed and recommendations were made for the achievement of their potential in terms of performance and cost. These generic polymer classes comprise: (1) Poly(arylsil sesquioxanes); (2) Poly(silyl arylene siloxanes); (3) Poly(silarylenes); (4) Poly(silicon-linked ferrocenes); and (5) Poly(organo phosphazenes). No single candidate currently possesses the necessary combination of physicomechanical properties, thermal stability, processability, and favorable economics. The first three classes exhibit the best thermal performance. On the other hand, poly (organo phosphazenes), the most extensively studied polymer class, exhibit the best combination of structure-property control, processability, and favorable economics.

  5. Nondestructive evaluation of a ceramic matrix composite material

    Science.gov (United States)

    Grosskopf, Paul P.; Duke, John C., Jr.

    1992-01-01

    Monolithic ceramic materials have proven their usefulness in many applications, yet, their potential for critical structural applications is limited because of their sensitivity to small imperfections. To overcome this extreme sensitivity to small imperfections, ceramic matrix composite materials have been developed that have the ability to withstand some distributed damage. A borosilicate glass reinforced with several layers of silicon-carbide fiber mat has been studied. Four-point flexure and tension tests were performed not only to determine some of the material properties, but also to initiate a controlled amount of damage within each specimen. Acousto-ultrasonic (AU) measurements were performed periodically during mechanical testing. This paper will compare the AU results to the mechanical test results and data from other nondestructive methods including acoustic emission monitoring and X-ray radiography. It was found that the AU measurements were sensitive to the damage that had developed within the material.

  6. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  7. Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes

    Science.gov (United States)

    Boyle, Robert

    2014-01-01

    This project demonstrated that higher temperature capabilities of ceramic matrix composites (CMCs) can be used to reduce emissions and improve fuel consumption in gas turbine engines. The work involved closely coupling aerothermal and structural analyses for the first-stage vane of a high-pressure turbine (HPT). These vanes are actively cooled, typically using film cooling. Ceramic materials have structural and thermal properties different from conventional metals used for the first-stage HPT vane. This project identified vane configurations that satisfy CMC structural strength and life constraints while maintaining vane aerodynamic efficiency and reducing vane cooling to improve engine performance and reduce emissions. The project examined modifications to vane internal configurations to achieve the desired objectives. Thermal and pressure stresses are equally important, and both were analyzed using an ANSYS® structural analysis. Three-dimensional fluid and heat transfer analyses were used to determine vane aerodynamic performance and heat load distributions.

  8. Measuring time-dependent diffusion in polymer matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Pilli, Siva Prasad; Smith, Lloyd V.; Shutthanandan, V.

    2014-11-01

    Moisture plays a significant role in influencing the mechanical behavior and long-term durability of polymer matrix composites (PMC’s). The common methods used to determine the moisture diffusion coefficients of PMCs are based on the solution of Fickian diffusion in the one-dimensional domain. Fick’s Law assumes that equilibrium between the material surface and the external vapor is established instantaneously. A time dependent boundary condition has been shown to improve correlation with some bulk diffusion measurements, but has not been validated experimentally. The surface moisture content in a Toray 800S/3900-2B toughened quasi-isotropic laminate system, [0/±60]s, was analyzed experimentally using Nuclear Reaction Analysis (NRA). It was found that the surface moisture content showed a rapid increase to an intermediate concentration C0, followed by a slow linear increase to the saturation level.

  9. Measuring time-dependent diffusion in polymer matrix composites

    Science.gov (United States)

    Pilli, Siva P.; Smith, Lloyd V.; Vaithiyalingam, Shutthanandan

    2014-11-01

    Moisture plays a significant role in influencing the mechanical behavior and long-term durability of polymer matrix composites (PMCs). The common methods used to determine the moisture diffusion coefficients of PMCs are based on the solution of Fickian diffusion in the one-dimensional domain. Fick's Law assumes that equilibrium between the material surface and the external vapor is established instantaneously. A time-dependent boundary condition has been shown to improve correlation with some bulk diffusion measurements, but has not been validated experimentally. The surface moisture content in a Toray 800S/3900-2B toughened quasi-isotropic laminate system, [0/±60] s , was analyzed experimentally using Nuclear Reaction Analysis (NRA). It was found that the surface moisture content showed a rapid increase to an intermediate concentration C 0, followed by a slow linear increase to the saturation level.

  10. Thermal analysis of metal foam matrix composite phase change material

    Science.gov (United States)

    Song, Xiange

    2015-06-01

    In this paper, CPCM (Composite Phase Change Material) was manufactured with metal foam matrix used as filling material. The temperature curves were obtained by experiment. The performance of heat transfer was analyzed. The experimental results show that metal foam matrix can improve temperature uniformity in phase change thermal storage material and enhance heat conduction ability. The thermal performance of CPCM is significantly improved. The efficiency of temperature control can be obviously improved by adding metal foam in phase change material. CPCM is in solid-liquid two-phase region when temperature is close to phase change point of paraffin. An approximate plateau appears. The plateau can be considered as the temperature control zone of CPCM. Heat can be transferred from hot source and be uniformly spread in thermal storage material by using metal foam matrix since thermal storage material has the advantage of strong heat storage capacity and disadvantage of poor heat conduction ability. Natural convection promotes the melting of solid-liquid phase change material. Good thermal conductivity of foam metal accelerates heat conduction of solid-liquid phase change material. The interior temperature difference decreases and the whole temperature becomes more uniform. For the same porosity with a metal foam, melting time of solid-liquid phase change material decreases. Heat conduction is enhanced and natural convection is suppressed when pore size of metal foam is smaller. The thermal storage time decreases and heat absorption rate increases when the pore size of metal foam reduces. The research results can be used to guide fabricating the CPCM.

  11. Advanced Measurements of Silicon Carbide Ceramic Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

    2012-08-01

    Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of

  12. DEVELOPMENT OF LIGNIN EPOXIDE—A POTENTIAL MATRIX OF RESIN MATRIX COMPOSITE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To develop new kinds of matrix resin of composite and utilize lignosulfonate in large scale and high value, a kind of lignosulfonate was modified into epoxide in this paper. Two kinds of phenolized lignosulfonic acid and two kinds of lignin epoxides were prepared. The lignin epoxides and a kind of bisphenol-A epoxy resin were mixed respectively with a kind of liquid anhydride (MNA) to be measured by DSC technology. Both of these two kinds of epoxides can be cured by MNA, and curing exotherm of the liquid one is more than that of the solid one. Samples of the phenolized lignosulfonic acid and the epoxides were all analyzed by IR spectroscopy to find relations between them. It is suggested that the phenolation decide the type and the yield of the lignin epoxides.

  13. Influence of modification on structure, fluidity and strength of 226D aluminium alloy

    OpenAIRE

    A. Dolata-Grosz; M. Dyzia; J. Śleziona

    2008-01-01

    In the article the fluidity, solidification conditions, microstructure and tensile properties have been studied for the non-modified and modified 226D aluminium silicon alloy.Realized investigations concerned modification of alloy 226D for application as the matrix to carbon fibre reinforcement composite (MMC-Cf). One of main factors determining to good connection between metal matrix and fibres reinforcement is good wettability. It is possible to obtain suitable conditions of wettability by ...

  14. Investigations of a reduced enrichment dispersion fuel (U-Mo alloy in aluminium matrix) for research reactor fuel pins

    International Nuclear Information System (INIS)

    Russia possesses considerable experience in utilisation of uranium-molybdenum alloys containing in dispersion fuel composition no more than 6 g/cm3 uranium. The feasibility of utilising the U-9 mass.% Mo alloy with reduced enrichment uranium (< 20%) in research reactor dispersion fuel pins has been analysed in the IPPE. Specimens with the 40 vol.% (U-9 mass. % Mo) + 60 vol.% Al fuel have been fabricated by hot pressing. Investigations of thermal physical properties of this fuel as well as tests for compatibility of U-Mo alloy with Al have been carried out in a wide temperature range. Corrosive tests of dispersion fuel have been realised in water. A flow chart of reproducing wastes from fuel pin production has been considered. The results of works carried out enable to hope on successful solution of the problem of utilisation high-density U-Mo fuel in research reactors. (author)

  15. Oxidation Behavior of C/C-SiC Gradient Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Oxidation behavior of C/C-SiC gradient matrix composites and C/C composites were compared in stationary air. The results show that oxidation threshold of C-SiC materials increases with the amount of SiC particles in the codeposition matrix. Oxidation rate of C/C-SiC gradient matrix composites is significantly lower than that of C/C material. The micro-oxidation process was observed by SEM.

  16. Wear mechanisms in powder metallurgy high speed steels matrix composites

    International Nuclear Information System (INIS)

    The development of metal matrix composites has a major interest for automotive and cutting tools industries since they possess better mechanical properties and wear resistance than corresponding base materials. One of the manufacturing methods for these materials includes processing by powder metallurgy techniques. in this case, blending of both, base material and reinforcement powders constitute the most important process in order to achieve a homogeneous distribution of second phase particles. in the present work, composite materials of M3/2 tool steel reinforced with 2.5,5 and 8 vol% of niobium carbide have been prepared. In order to ensure a homogeneous mix, powders of both materials were mixed by dry high-energy mechanical milling at 200 r.p.m. for 40 h. After a recovering annealing, two routes for consolidate were followed die pressing and vacuum sintering, and hot isostatic pressing (HIP). Pin-on-disc tests were carried out to evaluate wear behaviour in all the materials. Results show that ceramic particles additions improve wear resistance of base material. (Author) 9 refs

  17. CNT-based Reinforcing Polymer Matrix Composites for Lightweight Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon Polymer Matrix Composites (PMCs) are attractive structural materials for NASA applications due to their high strength to weight ratio, mechanical properties...

  18. Polymer matrix composites research: A survey of federally sponsored programs

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report identifies research conducted by agencies of the federal government other than the Department of Energy (DOE) in the area of advanced polymer matrix composites (PMCs). DOE commissioned the report to avoid duplicating other agencies' efforts in planning its own research program for PMCs. PMC materials consist of high-strength, short or continuous fibers fused together by an organic matrix. Compared to traditional structural metals, PMCs provide greater strength and stiffness, reduced weight and increased heat resistance. The key contributors to PMC research identified by the survey are the Department of Defense (DOD), the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the Department of Transportation (DOT). The survey identified a total of 778 projects. More than half of the total projects identified emphasize materials research with a goal toward developing materials with improved performance. Although an almost equal number of identified materials projects focus on thermosets and thermoplastics receive more attention because of their increased impact resistance and their easy formability and re-formability. Slightly more than one third of projects identified target structures research. Only 15 percent of the projects identified focus on manufacturing techniques, despite the need for efficient, economical methods manufacturing products constructed of PMCs--techniques required for PMCs to gain widespread acceptance. Three issues to be addressed concerning PMCs research are economy of use, improvements in processing, and education and training. Five target technologies have been identified that could benefit greatly from increased use of PMCs: aircraft fuselages, automobile frames, high-speed machinery, electronic packaging, and construction.

  19. Numerical studies of fibrous composites from the view point of fiber-matrix interface and fiber-matrix bonding

    Science.gov (United States)

    Yilmaz, Yahya Ilyas

    In the present research, the micromechanics of fibrous composites was studied numerically. The effects of the fiber/matrix interphase region and fiber/matrix bonding were the main goals of this research. Throughout the research NASTRAN finite element analyses were used. First we investigated the effect of the interphase region on the stress field by varying the thickness of the interphase region and the material properties in the interphase region. Second, we numerically simulated the bonding qualities between the fiber and the matrix by the implementation of the fiber/matrix interphase region. The change for bonding between the fiber and the matrix were simulated through a periodic material property change in the interphase region. Third, we developed a bi-dimensional concentric cylindrical model for stress transfer between the fiber and the matrix model in case of a broken fiber or short fiber composites. This model is unique in accounting for the real non-linear stress-strain relationship for the matrix material. The stress transfer between the fiber and the matrix was also analyzed by finite element models. Toward this end finite element analysis proved a useful tool to help us evaluate key model parameters, most importantly the radius of fiber influence. This parameter is also a key parameter of simple models upon which the new model is based. Finally we applied our stress transfer model to analyze single fiber fragmentation test data obtained at Kansas State University.

  20. DETERMINATION OF RATIONAL COMPOSITION AND CONCENTRATION OF SUPERFINE ALUMINIUM MODIFIER FOR MODIFYING OF THE ALLOY AK18 STRUCTURE

    OpenAIRE

    V. Ju. Stetsenko; A. P Gutev

    2016-01-01

    It is shown that for reaching of maximal effect of mo­ difying of alloy AK18 structure it is necessary to use super­ fine aluminium modifier AlSi12Sb15Ti5 in the quantity of 0,1% of melt mass or AlSb5Ti3 at the quantity of 0,5%.

  1. Metal Matrix Composites Deposition in Twin Wire Arc Spraying Utilizing an External Powder Injection Composition

    Science.gov (United States)

    Tillmann, W.; Abdulgader, M.; Hagen, L.; Nellesen, J.

    2014-01-01

    The powder injection parameters, the location of the injection port, as well as the metal matrix composites are important features, which determine the deposition efficiency and embedding behavior of hard materials in the surrounding matrix of the twin wire arc-spraying process. This study investigates the applicability of external powder injection and aims to determine whether the powder injection parameters, the location, and the material combination (composition of the matrix as well as hard material) need to be specifically tailored. Therefore, the position of the injection port in relation to the arc zone was altered along the spraying axis and perpendicular to the arc. The axial position of the injection port determines the thermal activation of the injected powder. An injection behind the arc, close to the nozzle outlet, seems to enhance the thermal activation. The optimal injection positions of different hard materials in combination with zinc-, nickel- and iron-based matrices were found to be closer to the arc zone utilizing a high-speed camera system. The powder size, the mass of the particle, the carrier gas flow, and the electric insulation of the hard material affect the perpendicular position of the radial injection port. These findings show that the local powder injection, the wetting behavior of particles in the realm of the molten pool as well as the atomization behavior of the molten pool all affect the embedding behavior of the hard material in the surrounded metallic matrix. Hardness measurement by means of nanoindentation and EDX analysis along transition zones were utilized to estimate the bonding strength. The observation of a diffusion zone indicates a strong metallurgical bonding for boron carbides embedded in steel matrix.

  2. High-temperature mechanical properties of aluminium alloys reinforced with boron carbide particles

    International Nuclear Information System (INIS)

    The mechanical properties of particulate-reinforced metal-matrix composites based on aluminium alloys (6061 and 7015) at high temperatures were studied. Boron carbide particles were used as reinforcement. All composites were produced by hot extrusion. The tensile properties and fracture analysis of these materials were investigated at room temperature and at high temperature to determine their ultimate strength and strain to failure. The fracture surface was analysed by scanning electron microscopy

  3. Matrix-filler interfaces and physical properties of metal matrix composites with negative thermal expansion manganese nitride

    Science.gov (United States)

    Takenaka, Koshi; Kuzuoka, Kota; Sugimoto, Norihiro

    2015-08-01

    Copper matrix composites containing antiperovskite manganese nitrides with negative thermal expansion (NTE) were formed using pulsed electric current sintering. Energy dispersive X-ray spectroscopy revealed that the chemically reacted region extends over 10 μm around the matrix-filler interfaces. The small-size filler was chemically deteriorated during formation of composites and it lost the NTE property. Therefore, we produced the composites using only the nitride particles having diameter larger than 50 μm. The large-size filler effectively suppressed the thermal expansion of copper and improved the conductivity of the composites to the level of pure aluminum. The present composites, having high thermal conductivity and low thermal expansion, are suitable for practical applications such as a heat radiation substrate for semiconductor devices.

  4. The effect of resin matrix composition on mechanical properties of e-glass fiber-reinforced composite for dental use

    OpenAIRE

    Zhang, M.; Matinlinna, JP

    2011-01-01

    The effects of resin matrix composition including bis-phenol-A-diglycidyl dimethacrylate (bis-GMA)-methyl methacrylate (MMA) based or urethane dimethacrylate (UEDMA)-triethylene glycol dimethacrylate (TEGDMA) based composition and storage conditions on the mechanical properties of E-glass fiber-reinforced composites (FRCs) were studied. Three experimental groups ('Exper 1', 'Exper 2', 'Exper 3') with differing UEDMA to TEGDMA ratio in the matrix together with a control group ('Control') based...

  5. Creep Forming of Carbon-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Vaughn, Wallace L.; Scotti, Stephan J.; Ashe, Melissa P.; Connolly, Liz

    2007-01-01

    A set of lecture slides describes an investigation of creep forming as a means of imparting desired curvatures to initially flat stock plates of carbon-reinforced ceramic-matrix composite (C-CMC) materials. The investigation is apparently part of a continuing effort to develop improved means of applying small CCMC repair patches to reinforced carbon-carbon leading edges of aerospace vehicles (e.g., space shuttles) prior to re-entry into the atmosphere of the Earth. According to one of the slides, creep forming would be an intermediate step in a process that would yield a fully densified, finished C-CMC part having a desired size and shape (the other steps would include preliminary machining, finish machining, densification by chemical vapor infiltration, and final coating). The investigation included experiments in which C-CMC disks were creep-formed by heating them to unspecified high temperatures for time intervals of the order of 1 hour while they were clamped into single- and double-curvature graphite molds. The creep-formed disks were coated with an oxidation- protection material, then subjected to arc-jet tests, in which the disks exhibited no deterioration after exposure to high-temperature test conditions lasting 490 seconds.

  6. OPTIMIZATION OF PARAMETER FOR METAL MATRIX COMPOSITE IN WIRE EDM

    Directory of Open Access Journals (Sweden)

    R.Nagaraja

    2015-02-01

    Full Text Available The bronze alumina (Al2O3 alloy is an Metal Matrix Composite (MMC of interest in several applications like bearing sleeve, piston and cylinder liners etc., The reinforcement used in this MMC makes it difficult to machine using traditional technique. Wire-Electric Discharge Machine (WEDM seems to be a viable option to machine. This paper presents an investigation on the optimization of machining parameters in WEDM of bronze-alumina MMC. The main objective is to find the optimum cutting parameters to achieve a low value of Surface roughness and high value of material removal rate (MRR. The cutting parameters considered in this experimental study are, pulse on time (Ton, pulse off time (Toff and wire feed rate. The settings of cutting parameters were determined by using Taguchi experimental design method. An L9 orthogonal array was chosen. Signal to Noise ratio (S/N and analysis of variance (ANOVA was used to analyze the effect of the parameters on surface roughness and to identify the optimum cutting parameters. The contribution of each cutting parameters towards the surface roughness and MRR is also identified. The study shows that the Taguchi method is suitable to solve the stated problem with minimum number of trails as compared with a full factorial design.

  7. 3-D stamp forming of thermoplastic matrix composites

    Science.gov (United States)

    Hou, M.; Friedrich, K.

    1994-03-01

    In this investigation a mould with hemispherical cavity and 80 kN hydraulic press, allowing variable stamping speeds, are employed for experimentally studying of the 3-D stamp forming process of continuous fiber reinforced thermoplastic laminates. In particular, glass fiber (GF) reinforced polyetherimide (PEI) woven fabric made of sheath surrounded, polymer powder impregnated fiber bundles manufactured by Enichem, Italy, is used. Pre-consolidated laminates are heated by contact heating in an external heater up to about 120°C above the glass transition temperature ( T g) of the polymer matrix; they are then stamp formed in a cold matched metal tool. Typical cycle times (including preheating time of the preconsolidated laminates) are in the range of 3 min. Useful processing conditions, such as stamping temperature, stamping velocity and hold-down pressure required for stamp forming of this composite are determined. In addition the effect of die geometries (deformation radian) and original laminate dimensions are studied. The results describe the correlations between processing parameters and fiber buckling. Finally the thickness distribution in stamped parts are investigated in relation to different directions of fiber orientation.

  8. Deformation behavior of SiC particle reinforced Al matrix composites based on EMA model

    Institute of Scientific and Technical Information of China (English)

    CHENG Nan-pu; ZENG Su-min; YU Wen-bin; LIU Zhi-yi; CHEN Zhi-qian

    2007-01-01

    Effects of the matrix properties, particle size distribution and interfacial matrix failure on the elastoplastic deformation behavior in Al matrix composites reinforced by SiC particles with an average size of 5 μm and volume fraction of 12% were quantitatively calculated by using the expanded effective assumption(EMA) model. The particle size distribution naturally brings about the variation of matrix properties and the interfacial matrix failure due to the presence of SiC particles. The theoretical results coincide well with those of the experiment. The current research indicates that the load transfer between matrix and reinforcements, grain refinement in matrix, and enhanced dislocation density originated from the thermal mismatch between SiC particles and Al matrix increase the flow stress of the composites, but the interfacial matrix failure is opposite. It also proves that the load transfer, grain refinement and dislocation strengthening are the main strengthening mechanisms, and the interfacial matrix failure and ductile fracture of matrix are the dominating fracture modes in the composites. The mechanical properties of the composites strongly depend on the metal matrix.

  9. Residual stress measurements in an SiC continuous fiber reinforced Ti matrix composite

    NARCIS (Netherlands)

    Willemse, P.F.; Mulder, F.M.; Wei, W.; Rekveldt, M. Th.; Knight, K.S.

    2000-01-01

    During the fabrication of ceramic fiber reinforced metal matrix composites mismatch stresses will be introduced due to differences in thermal expansion coefficients between the matrix and the fibers. Calculations, based on a coaxial cylinder model, [1 and 2] predict that, for a Ti matrix SiC continu

  10. Heat Treatment Parameters to Optimize Friction and Wear behavior of Novel Hybrid Aluminium Composites Using Taguchi Technique

    Directory of Open Access Journals (Sweden)

    V.C.Uvaraja

    2014-05-01

    Full Text Available In the present study, an Al 7075 alloy is used as the matrix and varying weight percentage of Silicon Carbide (SiC and constant weight percentage of Boron Carbide (B4C as the reinforcing material. The composite is produced using stir casting technique. The composite thus formed is termed as hybrid composite. The samples are prepared for heat treatment process by subjecting to solutionizing temperature of 530o C for 1 hr followed by quenching in water. Further the specimens are subjected to artificial aging for durations of 4, 6 and 8 hr at a temperature of 175°C. The mechanical and tribological properties of composites before and after heat treatment are examined by Vickers hardness test machine and pin-on-disc test machine respectively. The wear rate and friction co-efficient of heat treatment parameters are evaluated based on Taguchi technique. The analysis is further extended to the optimization of test parameters using Design of Experiment (DoE based on L9 orthogonal array. The developed Analysis of Variance (ANOVA and the regression equations is obtained through MINITAB R16 are used to investigate the influence of parameters like sliding speed, applied load, sliding time, and percentage of reinforcement on the dry sliding wear and friction co-efficient of the composites. The wear surface morphology and wear mechanism of the pins are investigated using Scanning Electron Microscope (SEM and are correlated them with wear test results. Finally, confirmation tests are carried out to verify the experimental results.

  11. Fatigue damage growth mechanisms in continuous fiber reinforced titanium matrix composites

    Science.gov (United States)

    Johnson, W. S.; Naik, R. A.; Pollock, W. D.

    1990-01-01

    The role of fiber/matrix interface strength, residual thermal stresses, and fiber and matrix properties on fatigue damage accumulation in continuous fiber metal matrix composites (MMC) will be discussed. Results from titanium matrix/silicon-carbide fiber composites will be the primary topic of discussion. Results have been obtained from both notched and unnotched specimens at room and elevated temperatures. The stress in the 0 deg fibers has been indentified as the controlling factor in fatigue life. Fatigue of the notched specimens indicated that cracks can grow many fiber spacings in the matrix materials without breaking fibers.

  12. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Lou, D.; Hellman, J.; Luhulima, D.; Liimatainen, J.; Lindroos, V.K

    2003-01-15

    A variety of experimental techniques have been used to investigate the interactions between tungsten carbide (WC-Co 88/12) particulates and the matrix in some new wear resistant cobalt-based superalloy and steel matrix composites produced by hot isostatic pressing. The results show that the chemical composition of the matrix has a strong influence on the interface reaction between WC and matrix and the structural stability of the WC particulates in the composite. Some characteristics of the interaction between matrix and reinforcement are explained by the calculation of diffusion kinetics. The three-body abrasion wear resistance of the composites has been examined based on the ASTM G65-91 standard procedure. The wear behavior of the best composites of this study shows great potential for wear protection applications.

  13. Approach to microstructure-behavior relationships for ceramic matrix composites reinforced by continuous fibers

    OpenAIRE

    Lamon Jacques

    2015-01-01

    Ceramic matrix composites (CMCs) reinforced with continuous fibers exhibit several features that differentiate them from homogeneous unreinforced materials. The microstructure consists of various distinct constituents: fibres, matrix, and fiber/matrix interfaces or interphases. Several entities at micro- and mesoscopic length scales can be defined depending on fiber arrangement. Furthermore, the CMCs contain flaw populations that govern matrix cracking and fiber failures. The paper describes ...

  14. Automotive Aluminium Recycling

    Energy Technology Data Exchange (ETDEWEB)

    Gelas, B. des

    2000-07-01

    This paper aims at providing an overview on the contribution of aluminium recycling in the supply of new aluminium for automotive applications. Based on a presentation on how the global European automotive aluminium supply requirements are met, an analysis of the present and future contribution of automotive aluminium recycling is first presented. Current situation and future developments for automotive aluminium recycling practices are then commented, together with an outline on design principles for easier aluminium recycling. (orig.)

  15. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    Directory of Open Access Journals (Sweden)

    Y. L. Chen

    2011-01-01

    Full Text Available Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT- reinforced hard matrix composites is carried out on the basis of shear-lag theory and facture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  16. In situ (Al3Zr + Al2O3np)/2024Al metal matrix composite with novel reinforcement distributions fabricated by reaction hot pressing

    International Nuclear Information System (INIS)

    Highlights: •(Al3Zr + Al2O3np)/2024Al MMC with a novel network distribution was tailored. •Al3Zr and Al2O3np were in situ synthesized at 740 °C using the 2024Al–ZrO2 system. •The effect of sintering parameters on Al3Zr morphology was investigated. •Influence of Al3Zr morphology on tensile properties of the composite was studied. -- Abstract: In situ hybrid (Al3Zr + Al2O3np)/2024Al metal matrix composites with unique controlled reinforcement distributions were fabricated using low energy ball milling and reactive hot pressing. The reaction system between 2024Al and ZrO2 was studied using differential thermal analysis (DTA). In situ formed aluminium oxide (Al2O3) and zirconium tri-aluminide (Al3Zr) with varying morphology and sizes were produced under different fabricating conditions. Al3Zr with varying morphologies such as particle, plate and flakes were observed. With a total 10 vol.% of reinforcements, the composite containing a three-dimensional network of closely spaced in situ synthesized Al3Zr and Al2O3 particles had a YS of 175 MPa and a UTS of 261 MPa, effectively strengthening the 2024Al matrix. The effect of different sintering conditions on the microstructure and tensile properties of the composite was systematically investigated

  17. Application of ceramic short fiber reinforced Al alloy matrix composite on piston for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Wu Shenqing

    2010-11-01

    Full Text Available The preparation and properties of ceramic short fiber reinforced Al-Si alloy matrix composite and it’s application on the piston for internal combustion engines are presented. Alumina or aluminosilicate fibers reinforced Al-Si alloy matrix composite has more excellent synthetical properties at elevated temperature than the matrix alloys. A partially reinforced Al-Si alloy matrix composite piston produced by squeeze casting technique has a firm interface between reinforced and unreinforced areas, low reject rate and good technical tolerance. As a new kind of piston material, it has been used for mass production of about 400,000 pieces of automobile engines piston. China has become one of a few countries in which aluminum alloy matrix composite materials have been used in automobile industry and attained industrialization.

  18. Steam Assisted Accelerated Growth of Oxide Layer on Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Yuksel, Serkan; Jellesen, Morten Stendahl; Møller, Per; Ambat, Rajan

    2013-01-01

    Corrosion resistance of aluminium alloys is related to the composition and morphology of the oxide film on the surface of aluminium. In this paper we investigated the use of steam on the surface modification of aluminium to produce boehmite films. The study reveals a detailed investigation of the...... effect of vapour pressure, structure of intermetallic particles and thickness of boehmite films on the corrosion behaviour of aluminium alloys....

  19. Microstructural characterization of a silicon carbide whisker reinforced 2014 aluminum metal matrix composite

    International Nuclear Information System (INIS)

    Microstructural development in a powder metallurgy 2014 aluminum alloy -SiC whisker composite subject to controled and systematic aging treatments was investigated using analytical transmission electron microscopy and matrix microhardness measurements. In order to build a basis for comparison, the precipitation characteristics of the unreinforced matrix material with an identical processing history were also examined. The results indicate that the matrix of the composite material has a much greater density of dislocations than the control alloy. This high density of dislocations is due to the substantial difference on thermal expansion of Al matrix with respect to the SiC particles. (orig.)

  20. Thresholds in creep behaviour of magnesium alloy matrix composites with short alumina fibres

    Czech Academy of Sciences Publication Activity Database

    Milička, Karel; Dobeš, Ferdinand

    Naples : University of Naples, 2005 - (Crivelli-Visconti, I.), s. 223-224 [Advancing with composites 2005. Naples (IT), 11.10.2005-14.10.2005] R&D Projects: GA ČR(CZ) GA106/03/0843 Institutional research plan: CEZ:AV0Z20410507 Keywords : metal matrix composite * creep * threshold stress Subject RIV: JI - Composite Materials

  1. Numerical Modeling of Macroscopic Behavior of Particulate Composite with Crosslinked Polymer Matrix

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Máša, B.; Hutař, Pavel

    2011-01-01

    Roč. 465, - (2011), s. 129-132. ISSN 1013-9826 R&D Projects: GA ČR GA106/08/1409 Institutional research plan: CEZ:AV0Z20410507 Keywords : Particle reinforced composites * polymer matrix composite * mechanical response Subject RIV: JI - Composite Materials

  2. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    Science.gov (United States)

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-04-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  3. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    Science.gov (United States)

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  4. Mechanism of radiation-induced degradation in mechanical properties of polymer matrix composites

    International Nuclear Information System (INIS)

    Four kinds of polymer matrix composites (filler, E-glass or carbon fibre cloth; matrix, epoxy or polyimide resin) and pure epoxy and polyimide resins were irradiated with 60Co γ-rays or 2 MeV electrons at room temperature. Mechanical tests were then carried out at 77K and at room temperature. Following irradiation, the Young's (tensile) modulus of these composites and pure resins remains practically unchanged even at 170 MGy for both test temperatures. The ultimate strength, however, decreases appreciably with increasing dose. The dose dependence of the composite strength depends not only on the combination of fibre and matrix in the composite but also on the test temperature. A relationship is found between the composite ultimate strain and the matrix ultimate strain, thus indicating that the dose dependence of the composite strength is virtually determined by a change in the matrix ultimate strain due to irradiation. Based on this finding, we propose a mechanism of radiation-induced degradation of a polymer matrix composite in order to explain the dose dependence of the composite strength measured at 77 K and at room temperature. (author)

  5. Morphology, chemical composition and nanostructure of single carbon-rich particles studied by transmission electron microscopy: source apportionment in workroom air of aluminium smelters.

    Science.gov (United States)

    Weinbruch, Stephan; Benker, Nathalie; Kandler, Konrad; Ebert, Martin; Ellingsen, Dag G; Berlinger, Balázs; Thomassen, Yngvar

    2016-02-01

    Sources of C-rich particles at work places in two aluminium smelters in Norway were studied by transmission electron microscopy and energy-dispersive X-ray microanalysis. Based on morphology, nanostructure and chemistry, three different types of C-rich particles are distinguished: (a) chain-like agglomerates (70-100% by number, relative to the sum of C-rich particles) consisting of primary particles with typical onion-shell structure of graphene layers, (b) multi-walled carbon nanotube particles (≈3%) and (c) spheres or agglomerates of amorphous C-rich particles (0-30%). Chain-like agglomerates are interpreted as diesel soot in accordance with literature data on primary particle diameter, chemical composition and nanostructure of primary particles. The source of the observed multi-walled carbon nanotubes is not known. The amorphous C-rich particles most likely consist of organic carbon species which cannot be characterized further by X-ray microanalysis. Unaltered graphitic electrode material was not found among the C-rich particles. The high fraction of diesel soot particles indicates that elemental carbon is generally suited as proxy for diesel soot in aluminium smelters. However, due to the presence of carbon nanotubes and amorphous C-rich particles, detailed characterization of sources of carbon-rich particles by electron microscopy is recommended for accurate assessment of adverse health effects. PMID:26637216

  6. The dissolution and formation enthalpy of alloys and intermetallics of aluminium-lanthanum and aluminium-cerium systems

    International Nuclear Information System (INIS)

    Present article is devoted to dissolution and formation enthalpy of alloys and intermetallics of aluminium-lanthanum and aluminium-cerium systems. Therefore the dissolution temperatures of alloys and intermetallics of aluminium-lanthanum and aluminium-cerium systems were defined by means of calorimetry method. The enthalpy of formation of intermetallics of Al-Ce system was defined as well. The regularities in changes of dissolution and formation enthalpy of alloys and intermetallics depending on composition were studied.

  7. A new route for fibre management in powder injection molded metal matrix composites

    International Nuclear Information System (INIS)

    The properties of short fibre reinforced metal matrix composites can be enhanced by controlling the directionality of the fibers. In the reported research, the multiple live feed injection moulding technique was successfully used for controlling the orientation of short fibers in powder injection molded metal matrix composites. A range of heavily loaded short fibre reinforced metal matrix compounds were injection molded by both parameters. The level of fibre orientation achieved in injection molded components was assessed by calculation of the orientation factor. One result of this investigation was identification of the moulding composition to achieve the highest level of fibre orientation in a preferred direction. (author)

  8. NewIn-situ synthesis method of magnesium matrix composites reinforced with TiC particulates

    Directory of Open Access Journals (Sweden)

    Zhang Xiuqing

    2006-12-01

    Full Text Available Magnesium matrix composites reinforced with TiC particulates was prepared using a new in-situ synthesis method of remelting and dilution technique. And measurements were performed on the composites. The results of x ray diffraction (XRD analysis confirmed that TiC particulates were synthesized during the sintering process, and they retained in magnesium matrix composites after the remelting and dilution processing. From the microstructure characterization and electron probe microanalysis (EPMA, we could see that fine TiC particulates distributed uniformly in the matrix material.

  9. Composites applied for pistons

    OpenAIRE

    Wieczorek J.; Śleziona J.; Dyzia M.; Dolata-Grosz A.

    2007-01-01

    In the article the possibility of application the composite materials in casts into metal mould to form the pistons for compressors have been presented. In cooperation with “Zlotecki” company was undertaken the test of casting in productive conditions the aluminium alloy matrix composites reinforced with silicon carbide particles and composites reinforced with the mixture of the silicon carbide (SiC) and amorphous glass carbon particles. On the basis microstructural investigations were affirm...

  10. Mechanisms controlling fatigue damage development in continuous fiber reinforced metal matrix composites

    Science.gov (United States)

    Johnson, W. S.

    1989-01-01

    Damage in continuous fiber reinforced metal matrix composite materials can be quite complex since there are a number of different constituents (fiber, matrix, and the fiber/matrix interface) that can fail. Multidirectional lay-ups have an even greater number of possible damage orientations and mechanisms. Based on the simplifying assumption of equivalent constituent strain states in the absence of damage, a strain based failure criteria may be applied to determine when and where initial damage will occur. Based on the relative strain to fatigue failure of the fiber and matrix, the possible damage mechanisms of an MMC can be grouped into three categories: (1) matrix dominated, (2) fiber dominated, and (3) self-similar damage growth. A fourth type of damage development, fiber/matrix interface failure, is dependent on the relative strength of the fiber/matrix interface and the matrix yield strength. These four types of damage are discussed and illustrated by examples.

  11. Microfibrillar composites of PCL matrix and layered silicates

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Kratochvíl, Jaroslav

    Lisbon: Faculdade de Engenharia da Universidade do Porto, 2015 - (Ferreira, A.). s. 7889 [International Conference on Composite Structures /18./ - ICCS18. 15.06.2015-18.06.2015, Lisbon] R&D Projects: GA ČR(CZ) GA13-15255S Institutional support: RVO:61389013 Keywords : microfibrillar composite s * nanofiller Subject RIV: JI - Composite Materials

  12. The effect of matrix extension on fiber stresses and matrix de bonding in a hybrid composite monolayer

    International Nuclear Information System (INIS)

    The effect of matrix extension on stress concentrations as well as shear stress distribution between fiber and matrix interface is examined in a hybrid composite lamina of finite width subjected to internal cracks. To formulate the problem, a plastic zone of Dug dale type is considered at the crack tips. The results show that in composites with low extensional stiffness, although shear-lag model appears to be excellent in predicting normal stress concentrations in intact filaments, its results on peak shear stresses in the matrix bays remain questionable. According to the results, in a lamina with a weak matrix in extension (ε=0.0064), based on ψ=0.25, shear-lag model predicts peak shear stresses to be 58% and 28% below their actual values at I=3 (2a/w=0.1), and I=7 (2a/w=0.3), respectively. It is also observed that with an increase in matrix extensional stiffness, the values of normal stress concentrations in both H M and Lm fibers are reduced by 18% and 16% respectively, for a crack to width ratio f 0.3, ε=0.0875, and ψ=0.25

  13. Matrix-filler interfaces and physical properties of metal matrix composites with negative thermal expansion manganese nitride

    International Nuclear Information System (INIS)

    Copper matrix composites containing antiperovskite manganese nitrides with negative thermal expansion (NTE) were formed using pulsed electric current sintering. Energy dispersive X-ray spectroscopy revealed that the chemically reacted region extends over 10 μm around the matrix–filler interfaces. The small-size filler was chemically deteriorated during formation of composites and it lost the NTE property. Therefore, we produced the composites using only the nitride particles having diameter larger than 50 μm. The large-size filler effectively suppressed the thermal expansion of copper and improved the conductivity of the composites to the level of pure aluminum. The present composites, having high thermal conductivity and low thermal expansion, are suitable for practical applications such as a heat radiation substrate for semiconductor devices

  14. Matrix-filler interfaces and physical properties of metal matrix composites with negative thermal expansion manganese nitride

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Koshi, E-mail: takenaka@nuap.nagoya-u.ac.jp [Department of Applied Physics, Nagoya University, Nagoya 464-8603 (Japan); Department of Crystalline Materials Science, Nagoya University, Nagoya 464-8603 (Japan); Kuzuoka, Kota [Department of Applied Physics, Nagoya University, Nagoya 464-8603 (Japan); Sugimoto, Norihiro [Department of Crystalline Materials Science, Nagoya University, Nagoya 464-8603 (Japan)

    2015-08-28

    Copper matrix composites containing antiperovskite manganese nitrides with negative thermal expansion (NTE) were formed using pulsed electric current sintering. Energy dispersive X-ray spectroscopy revealed that the chemically reacted region extends over 10 μm around the matrix–filler interfaces. The small-size filler was chemically deteriorated during formation of composites and it lost the NTE property. Therefore, we produced the composites using only the nitride particles having diameter larger than 50 μm. The large-size filler effectively suppressed the thermal expansion of copper and improved the conductivity of the composites to the level of pure aluminum. The present composites, having high thermal conductivity and low thermal expansion, are suitable for practical applications such as a heat radiation substrate for semiconductor devices.

  15. Recent developments in advanced aircraft aluminium alloys

    International Nuclear Information System (INIS)

    Highlights: • To compete with composites, performance of aluminium alloys should be increased. • Al–Li alloys have higher strength, fracture and fatigue/corrosion resistance. • Improvements of aerospace Al alloys are due to optimised solute content and ratios. • In selecting new materials, there should be no reduction in the level of safety. • The use of hybrid materials could provide additional opportunities for Al alloys. - Abstract: Aluminium alloys have been the primary material for the structural parts of aircraft for more than 80 years because of their well known performance, well established design methods, manufacturing and reliable inspection techniques. Nearly for a decade composites have started to be used more widely in large commercial jet airliners for the fuselage, wing as well as other structural components in place of aluminium alloys due their high specific properties, reduced weight, fatigue performance and corrosion resistance. Although the increased use of composite materials reduced the role of aluminium up to some extent, high strength aluminium alloys remain important in airframe construction. Aluminium is a relatively low cost, light weight metal that can be heat treated and loaded to relatively high level of stresses, and it is one of the most easily produced of the high performance materials, which results in lower manufacturing and maintenance costs. There have been important recent advances in aluminium aircraft alloys that can effectively compete with modern composite materials. This study covers latest developments in enhanced mechanical properties of aluminium alloys, and high performance joining techniques. The mechanical properties on newly developed 2000, 7000 series aluminium alloys and new generation Al–Li alloys are compared with the traditional aluminium alloys. The advantages and disadvantages of the joining methods, laser beam welding and friction stir welding, are also discussed

  16. Improvement of interface and mechanical properties in carbon nanotube reinforced Cu–Cr matrix composites

    International Nuclear Information System (INIS)

    Highlights: ► Cr is used to improve the interfacial bonding of CNT/Cu composites. ► The addition of Cr greatly enhances the interfacial bonding of CNT/Cu composites. ► The addition of Cr greatly enhances the strength of CNT/Cu composites. -- Abstract: An effective approach is utilized to establish a strong interface between the carbon nanotube (CNT) and the Cu matrix by introducing the matrix-alloying chromium (Cr) element. The interface microstructure and mechanical properties of the composites are characterized by high-resolution transmission electron microscopy (HRTEM), hardness and tensile tests, respectively. Compared to CNT/Cu composites, CNT/CNT–Cr composites show evenly improved interfacial bonding and enhanced mechanical properties, which is ascribed to the formation of thin intermediate Cr3C2 transition layer between CNTs and Cu–Cr matrix.

  17. Constitutive model of ferroelectric composites with a viscoelastic and dielectric relaxation matrix Ⅰ——Theory

    Institute of Scientific and Technical Information of China (English)

    江冰; 方岱宁; 黄克智

    1999-01-01

    Based on micromechanics and Laplace transformation, a constitutive model of ferroelectric composites with a linear elastic and linear dielectric matrix is developed and extended to the ferroelectric composites with a viscoelastic and dielectric relaxation matrix. Thus, a constitutive model for ferroelectric composites with a viscoelastic and dielectric relaxation matrix has been set up.

  18. Aluminium structural elements

    OpenAIRE

    Švent, Nejc

    2016-01-01

    This thesis focuses on the structural analysis of aluminium structural members in accordance with the SIST EN 1999-1-1 standard. In the introduction, historical development of aluminium is summarized, as well as the processes of structural aluminium production and manufacture. Predominantly, resistance control checks of aluminium structural members are covered, with special attention to the major contrasts between aluminium and steel structural analyses. Finally, fundamental examples of resis...

  19. Matrix Cracking in Four Different 2D SiC/SiC Composite Systems

    Science.gov (United States)

    Morscher, Gregory N.

    2003-01-01

    Silicon carbide fiber reinforced, silicon carbide matrix composites are some of the most advanced composite systems for high-temperature, high-stress applications in oxidizing environments. A basic area that needs to be understood for the purpose of material behavior modeling and optimization is the architectural, constituent, and mechanistic factors that contribute to non-linear stress-strain behavior. The mechanism that causes non-linear stress-strain in dense-matrix composites is the formation and propagation of bridged matrix cracks. In addition, the occurrence and propagation of matrix cracks controls the time-dependent strength-properties of these materials in oxidizing environments at elevated temperatures. A modal acoustic emission technique has been used to monitor and estimate the stress-dependent matrix cracking. Two different SiC matrix systems, chemical vapor infiltrated (CVI) and melt-infiltrated (MI), with two different SiC fiber reinforcement, Hi-Nicalon (trademark) and Sylramic (trademark) were compared. Even though the averages of the range where matrix cracking occurred for the composites varied by more than 0.1% in strain and almost 200 MPa in stress, the range or distribution for matrix cracking could be reduced to a narrow band of stress for CVI SiC and MI SiC composites if it were assumed that all matrix cracks emanate outside of the load-bearing fiber, interphase, CVI preform minicomposite. A simple relationship was determined to describe stress-dependent matrix cracking which can then be used to estimate the onset of large, bridged matrix cracks or for material behavior models.

  20. The mechanical properties measurement of multiwall carbon nanotube reinforced nanocrystalline aluminum matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Manjula, E-mail: manjula.physics@gmail.com; Pal, Hemant; Sharma, Vimal [Department of Physics, NIT Hamirpur (HP) - 177005 (India)

    2015-05-15

    Nanocrystalline aluminum matrix composite containing carbon nanotubes were fabricated using physical mixing method followed by cold pressing. The microstructure of the composite has been investigated using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. These studies revealed that the carbon nanotubes were homogeneously dispersed throughout the metal matrix. The consolidated samples were pressureless sintered in inert atmosphere to further actuate a strong interface between carbon nanotubes and aluminum matrix. The nanoindentation tests carried out on considered samples showed that with the addition of 0.5 wt% carbon nanotubes, the hardness and elastic modulus of the aluminum matrix increased by 21.2 % and 2 % repectively. The scratch tests revealed a decrease in the friction coefficient of the carbon nanotubes reinforced composite due to the presence of lubricating interfacial layer. The prepared composites were promising entities to be used in the field of sporting goods, construction materials and automobile industries.

  1. Improved Foreign Object Damage Performance for 3D Woven Ceramic Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...

  2. Improved Foreign Object Damage Performance for 2D Woven Ceramic Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...

  3. Low-Cost Innovative Hi-Temp Fiber Coating Process for Advanced Ceramic Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MATECH GSM (MG) proposes 1) to demonstrate a low-cost innovative Hi-Temp Si-doped in-situ BN fiber coating process for advanced ceramic matrix composites in order...

  4. Characterization of SiC (SCS-6) Fiber Reinforced Reaction-Formed Silicon Carbide Matrix Composites

    Science.gov (United States)

    Singh, Mrityunjay; Dickerson, Robert M.

    1995-01-01

    Silicon carbide (SCS-6) fiber reinforced-reaction formed silicon carbide matrix composites were fabricated using NASA's reaction forming process. Silicon-2 at a percent of niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bi-modal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon and silicon. Fiber push-out tests on these composites determined a debond stress of approx. 67 MPa and a frictional stress of approx. 60 MPa. A typical four point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pull out.

  5. Characterization of SiC Fiber (SCS-6) Reinforced-Reaction-Formed Silicon Carbide Matrix Composites

    Science.gov (United States)

    Singh, M.; Dickerson, R. M.

    1996-01-01

    Silicon carbide fiber (SCS-6) reinforced-reaction-formed silicon carbide matrix composites were fabricated using a reaction-forming process. Silicon-2 at.% niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bimodal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon, and silicon. Fiber pushout tests on these composites determined a debond stress of approximately 67 MPa and a frictional stress of approximately 60 MPa. A typical four-point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pullout.

  6. Reduction of thermal stresses in continuous fiber reinforced metal matrix composites with interface layers

    Science.gov (United States)

    Jansson, S.; Leckie, F. A.

    1992-01-01

    The potential of using interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion of fiber and matrix has been investigated. It was found that compliant layers, with properties of readily available materials, do not have the potential to reduce thermal stresses significantly. However, interface layers with high coefficient of thermal expansion can compensate for the mismatch and reduce thermal stresses in the matrix significantly.

  7. Reduction of thermal stresses in continuous fiber reinforced metal matrix composites with interface layers

    Science.gov (United States)

    Jansson, S.; Leckie, F. A.

    1990-01-01

    The potential of using an interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion of fiber and matrix was investigated. It was found that compliant layers, with properties of readily available materials, do not have the potential to reduce thermal stresses significantly. However, interface layers with high coefficient of thermal expansion can compensate for the mismatch and reduce thermal stresses in the matrix significantly.

  8. Fabrication and Microstructure of BN Matrix Composites with Electrical Conductivity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    BN ceramic is an advanced engineering ceramics with excellent thermal shock resistance, good workability and excellent dielectricity.TiB2 ceramic has excellent electric conductivity,high melting points, and corrosion resistance to molten metal.Therefore,the composite consisting of BN and TiB2 ceramics is expected to have a combination of above-mentioned properties,thereby can be used as self- heating crucible.In this paper,hot pressing technology was used to fabricate the high performance BN-TiB2 composite materials.microstructure and electric conducting mechanism were studied,and the relationship between the microstructure and physical property was discussed.The results show that the microstructure of composites has a great influence on the physical property of composites.The BN-TiB2 composites with excellent mechanical strength and stable resistivity can be obtained by optimizing the processing parameter and controlling the microstructure of composites.

  9. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  10. Ultrasonic Characterization of Fiber-Matrix Interphasial Properties and Damage in High-Temperature Composites

    Science.gov (United States)

    Chu, Ya-Cherng

    This study addresses ultrasonic characterization of fiber-matrix interphasial properties and damage in high -temperature composites. To accomplish this, experimental techniques for measurements of ultrasonic phase velocities and methodology for calculation of composite elastic moduli from velocity data are first developed and applied to unidirectional ceramic and intermetallic matrix composites. It is shown that computational error in the composite moduli is comparable to experimental error in the velocity data. For cross -ply composites, a novel method for determination of lamina elastic moduli from measurements on a (0/90) _ {s} composite is developed and validated experimentally. Second, a method to determine the elastic moduli of interphasial layers in high-temperature composites from the measured composite moduli is developed and applied to characterization of 3-μm thick carbon interphasial layers in ceramic and intermetallic matrix composites. Third, the techniques developed are used for assessment of oxidation and fatigue damage in ceramic and metal matrix composites. It is shown that ultrasonic phase velocities are very sensitive to damage and can effectively quantify damage severity. Appropriate models are applied to describe the effect of damage on the measured ultrasonic data, and they show reasonable agreement with experiments.

  11. Neutron irradiation damage of graphite, C/C and metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Iseki, Michio (Nagoya Univ. (Japan). Faculty of Engineering)

    1992-06-01

    Graphite and carbon-carbon composites or other carbide composites are considered to be candidate for plasma facing materials or structural material of fusion reactors because of their low atomic number, high thermal conductivity, stability under irradiation etc. This report briefly summarizes the mechanical properties, physical properties and microstructure changes of graphite, carbon composites and metal matrix composites after neutron irradiation. Generally, the effects of neutron irradiation are quite remarkable on physical properties of the graphite materials. (author).

  12. Modelling of polypropylene fibre-matrix composites using finite element analysis

    Directory of Open Access Journals (Sweden)

    2009-01-01

    Full Text Available Polypropylene (PP fibre-matrix composites previously prepared and studied experimentally were modelled using finite element analysis (FEA in this work. FEA confirmed that fibre content and composition controlled stress distribution in all-PP composites. The stress concentration at the fibre-matrix interface became greater with less fibre content. Variations in fibre composition were more significant in higher stress regions of the composites. When fibre modulus increased, the stress concentration at the fibres decreased and the shear stress at the fibre-matrix interface became more intense. The ratio between matrix modulus and fibre modulus was important, as was the interfacial stress in reducing premature interfacial failure and increasing mechanical properties. The model demonstrated that with low fibre concentration, there were insufficient fibres to distribute the applied stress. Under these conditions the matrix yielded when the applied stress reached the matrix yield stress, resulting in increased fibre axial stress. When the fibre content was high, there was matrix depletion and stress transfer was inefficient. The predictions of the FEA model were consistent with experimental and published data.

  13. Corrosion rates and electrochemical studies of a depleted uranium alloy tungsten fiber metal matrix composite

    International Nuclear Information System (INIS)

    The corrosion rates of a tungsten reinforced depleted uranium alloy metal matrix composite have been measured, by immersion tests, in three environments (laboratory air, distilled water, and 3.5% NaCl) and compared to the rates of the matrix alloy (DU-0.75 Ti) alone. The corrosion rates of both specimens are negligible in laboratory air, increase in distilled water, and are greatest in NaCl for a 30 day period. In all environments the matrix allo is preferentially attacked. In distilled water the corrosion rate of the matrix alloy is 3 times greater than the composite whereas in NaCl the corrosion rate of the composite is 1.3 times greater than the matrix. In electrochemical tests the composite was simulated by coupling separate samples of the fiber and matrix and the short-circuit (galvanic) currents were measured. A comparison of the corrosion rates calculated from the galvanic currents and from immersio tests shows the principal reaction of the composite in NaCl is galvanic coupling of the matrix and fiber

  14. Fracture Toughness of Thermally Shocked SiC-Fibre Reinforced Glass Matrix Composites

    Czech Academy of Sciences Publication Activity Database

    Chlup, Zdeněk; Dlouhý, Ivo; Boccaccini, A. R.

    Wileyvch, 2001 - (Krenkel, W.; Naslain, R.; Schneider, H.), s. 463-468 ISBN 3-527-30320-0. [International Conference on High Temperature Ceramic Matrix Composites /4./. Munich (DE), 01.10.2001-03.10.2001] R&D Projects: GA AV ČR IAA2041003; GA MŠk ME 491 Institutional research plan: CEZ:AV0Z2041904 Keywords : fracture toughness * glass matrix composite * sic fibre Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass

  15. Nanomodeling of Nonlinear Thermoelastic Behavior of AA5454/ Silicon Nitride Nanoparticulate Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    Chennakesava R Alavala

    2016-01-01

    Full Text Available The aim of the present work was to estimate non-linear thermoelastic behavior of three-phase AA5454/silicon nitride nanoparticle metal matrix composites. The thermal loading was varied from subzero temperature to under recrystallization temperature. The RVE models were used to analyze thermo-elastic behavior. The AA5454/silicon nitride nanoparticle metal matrix composites have gained the elastic modulus below 0oC and lost at high temperatures.

  16. Finite element analysis of stress transfer in carbon nanotube reinforced magnesium matrix composites

    OpenAIRE

    Li, Sinian; Wang, Yang; Rümmeli, M. H.; Vlček, Jaroslav; Pištora, Jaromír; Lesňák, Michal

    2010-01-01

    A simplified finite element model was established to simulate deformation of carbon nanotubes (CNTs) reinforcing magnesium matrix composites during the tensile test. The stress and strain of matrix and reinforcement agent and the effect of interface on mechanical behaviour of composites were specially studied. The simulation results showed that for uniformly distributed CNTs a stress concentration occurs from the fibre axis towards the interface. The simulations proved that the destruction of...

  17. The effect of alumina nanofillers size and shape on mechanical behavior of PMMA matrix composite

    OpenAIRE

    Ben Hasan Somaya Ahmed; Dimitrijević Marija M.; Kojović Aleksandar; Stojanović Dušica B.; Obradović-Đuričić Kosovka; Jančić-Heinemann Radmila M.; Aleksić Radoslav

    2014-01-01

    Composites with the addition of alumina nanofillers show improvement in mechanical properties. The PMMA polymer was used as a matrix and two different types of nanofillers, having extremely different shapes were added in the matrix to form the composite. Reinforcements were based on alumina nanoparticles having either spherical shape or whiskers having the length to diameter ratio of 100. The influence of alumina fillers size, shape and fillers loading on m...

  18. Feasibility Study of a Tungsten Wire Reinforced Tungsten Matrix Composite with ZrOx Interfacial Coatings

    OpenAIRE

    Du, J.; Höschen, T.; Rasinski, M.; Wurster, S; Grosinger, W.; You, J-H.

    2007-01-01

    Abstract Brittleness problem imposes a severe restriction on the potential application of tungsten as high-temperature structural material. In this paper, a novel toughening method for tungsten is proposed based on reinforcement by tungsten wires. The underlying toughening mechanism is analogous to that of fiber-reinforced ceramic matrix composites. Strain energy is dissipated by debonding and frictional sliding at engineered fiber/matrix interfaces. To achieve maximum composite to...

  19. Effects of ductile matrix failure in three dimensional analysis of metal matrix composites

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1998-01-01

    Full three dimensional numerical cell model analyses are carried out for a metal reinforced by short fibers, to study the development of ductile matrix failure. A porous ductile material model is used to describe the effect of the nucleation and growth of voids to coalescence. In each case studied...... the computations are continued through the mechanically unstable regime, where an open crack forms near the ends of the fibers by the coalescence of voids in the matrix. Comparison of predictions for an isotropic hardening model and a kinematic hardening model are used to evaluate the effect of a...

  20. Fibrous monoliths: Economic ceramic matrix composites from powders [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark; Sutaria, Manish; Mulligan, Anthony; Creegan, Peter; Cipriani, Ron

    1999-05-26

    The project was to develop and perform pilot-scale production of fibrous monolith composites. The principal focus of the program was to develop damage-tolerant, wear-resistant tooling for petroleum drilling applications and generate a basic mechanical properties database on fibrous monolith composites.

  1. Research on polyamide matrix composites filled with hard coal

    Directory of Open Access Journals (Sweden)

    M. Rojek

    2012-08-01

    Full Text Available Purpose: The aim of this paper is to present the summary results of studies on polyamide composites filled with hard coal. Research on the use of coal as a filler of polymers are conducted for many years in Division of Metallic and Polymeric Materials Processing, Silesian University of Technology. This paper summarizes results obtained in different research programmes preformed in recent years. Described materials are polyamide 6 composites filled with modified and unmodified hard coal powder.Design/methodology/approach: All the resulting compositions intended for research have been produced using twin screw extruder. The resulting mixtures of various compositions were then subjected to a process of granulation. The prepared composites have undergone a process of injection moulding which allowed to obtain samples for strength tests. Full statement of research results obtained for composites could help to predict the material with the best mechanical properties and hence the best material for construction.Findings: It has appeared from studies that in both a composite made of unmodified coal and of coal modified with coupling agents show a decrease in mechanical properties in comparison with the neat polymer. Apart from this these composites are interesting materials because of low prize of the filler.Research limitations/implications: It can be concluded from research that all types of obtained composites are characterized by a decrease in mechanical properties.Practical implications: Applications of hard coal as a filler of polymer composites is way to produce new materials. It is worth noting that the main features of the filler used is its prevalence, low cost and electrical conductance.Originality/value: The results describe new fillers of thermoplastic polymers and the possibility of its modification.

  2. Influence of Sea Water Aging on the Mechanical Behaviour of Acrylic Matrix Composites

    Science.gov (United States)

    Davies, P.; Le Gac, P.-Y.; Le Gall, M.

    2016-07-01

    A new matrix resin was recently introduced for composite materials, based on acrylic resin chemistry allowing standard room temperature infusion techniques to be used to produce recyclable thermoplastic composites. This is a significant advance, particularly for more environmentally-friendly production of large marine structures such as boats. However, for such applications it is essential to demonstrate that composites produced with these resins resist sea water exposure in service. This paper presents results from a wet aging study of unreinforced acrylic and glass and carbon fibre reinforced acrylic composites. It is shown that the acrylic matrix resin is very stable in seawater, showing lower property losses after seawater aging than those of a commonly-used epoxy matrix resin. Carbon fibre reinforced acrylic also shows good property retention after aging, while reductions in glass fibre reinforced composite strengths suggest that specific glass fibre sizing may be required for optimum durability.

  3. Effects of ductile matrix failure in three dimensional analysis of metal matrix composites

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1998-01-01

    the computations are continued through the mechanically unstable regime, where an open crack forms near the ends of the fibers by the coalescence of voids in the matrix. Comparison of predictions for an isotropic hardening model and a kinematic hardening model are used to evaluate the effect of a metal that forms...

  4. Unified continuum damage model for matrix cracking in composite rotor blades

    International Nuclear Information System (INIS)

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load

  5. Unified continuum damage model for matrix cracking in composite rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Pollayi, Hemaraju; Harursampath, Dineshkumar [Nonlinear Multifunctional Composites - Analysis and Design Lab (NMCAD Lab) Department of Aerospace Engineering Indian Institute of Science Bangalore - 560012, Karnataka (India)

    2015-03-10

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.

  6. Ultrasonic evaluation of initiation and development of oxidation damage in ceramic-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Y.C.; Lavrentyev, A.I.; Rokhlin, S.I. [Ohio State Univ., Columbus, OH (United States). Nondestructive Evaluation Program; Baaklini, G.Y.; Bhatt, R.T. [NASA Lewis Research Center, Cleveland, OH (United States)

    1995-07-01

    In this paper the authors report on the development of a method for ultrasonic nondestructive characterization of oxidation damage in ceramic-matrix composites. The method is based on ultrasonic measurement of elastic moduli of the composite, which are then used to determine the elastic moduli of the fiber-matrix interphase. Thus the interphasial damage may be estimated quantitatively. As a model system they used, to demonstrate applicability of the method, a unidirectional SiC-fiber-reinforced reaction-bonded silicon nitride matrix composite (SiC/RBSN). The composite samples were oxidized in flowing oxygen for 0.1, 1, 10, and 100 h at 600, 900, 1200, and 1400 C. The ultrasonic phase velocity in the composite was measured at room temperature before and after oxidation; the data were then used to find the composite moduli, which quantify the induced damage. significant changes in ultrasonic velocities and composite moduli, which quantify the induced damage. Significant changes in ultrasonic velocities and composite moduli were found as a result of oxidation. Fiber-matrix interphasial moduli were determined by multiphase micromechanical analysis. They found that oxidation of the carbon interphasial layer is the dominant mechanism in decreasing the elastic moduli of the composite. The critical exposure time for transition from the nondamaged to the damage state of different oxidation temperatures has been determined.

  7. The Mechanical Properties of Castor Seed Shell-polyester Matrix Composites

    Directory of Open Access Journals (Sweden)

    S.C. Nwigbo

    2013-05-01

    Full Text Available A composite with a polyester matrix reinforced with chemically modified shells of castor seed (Ricinus communis was produced. The effect of the shell (filler on the mechanical properties of the composite was experimentally quantified. A preliminary study was earlier carried out the shell in terms of their chemical constituents, functional group and mechanical strength. The shell was ground and chemically treated to enhance good bonding and adhesion to the matrix. Composites were fabricated using a hand lay-up or contact mould method for different percentage compositions of the filler. Tests, with respect to the mechanical properties (i.e., tensile, flexural and creep response were carried out. The result obtained was compared with the unreinforced polyester plate. It was observed that the inclusion of the filler (shell added strength to the composite. Scanning Electron Microscopy (SEM was taken on the composite samples to study the morphology of the composites.

  8. Concurrent tailoring of fabrication process and interphase layer to reduce residual stresses in metal matrix composites

    Science.gov (United States)

    Saravanos, D. A.; Chamis, C. C.; Morel, M.

    1991-01-01

    A methodology is presented to reduce the residual matrix stresses in continuous fiber metal matrix composites (MMC) by optimizing the fabrication process and interphase layer characteristics. The response of the fabricated MMC was simulated based on nonlinear micromechanics. Application cases include fabrication tailoring, interphase tailoring, and concurrent fabrication-interphase optimization. Two composite systems, silicon carbide/titanium and graphite/copper, are considered. Results illustrate the merits of each approach, indicate that concurrent fabrication/interphase optimization produces significant reductions in the matrix residual stresses and demonstrate the strong coupling between fabrication and interphase tailoring.

  9. PMR polyimides - Processable high temperature composite matrix resins

    Science.gov (United States)

    Winters, W. E.; Serafini, T. T.

    1975-01-01

    Processing reproducibility and versatility were demonstrated for producing addition-cured polyimide/graphite fiber composites using a unique in situ polymerization of monomeric reactants directly on the fiber surface. The polymers so derived, designated PMR polyimides, can be fabricated into composite structures by laminating, random fiber molding or autoclave curing. Composites were determined to be thermally stable and retain useful properties after extended exposures at 550 to 650 F. The material and fabrication capability were demonstrated by the fabrication and evaluation of prototype complex fan blades.-

  10. PMR polyimides: Processable high temperature composite matrix resins

    Science.gov (United States)

    Winters, W. E.; Serafini, T. T.

    1975-01-01

    Processing reproducibility and versatility were demonstrated for producing addition-cured polyimide/graphite fiber composites using an in situ polymerization of monomeric reactants directly on the fiber surface. The polymers so derived, designated PMR polyimides, can be fabricated into composite structures by laminating, random fiber molding or autoclave curing. Composites were determined to be thermally stable and retain useful properties after extended exposures at 550 F to 650 F. The material and fabrication capability were demonstrated by the fabrication and evaluation of prototype complex fan blades.

  11. Multifunctional Metal Matrix Composite Filament Wound Tank Liners Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Composite Overwrapped Pressure Vessels (COPVs) are used for storing pressurized gases on board spacecraft when mass saving is a key requirement. All future mass...

  12. Role of segregation and precipitates on interfacial strengthening mechanisms in metal matrix composites when subjected to thermo-mechanical processing

    OpenAIRE

    Myriounis, Dimitrios

    2009-01-01

    Metal Matrix ceramic-reinforced composites are rapidly becoming strong candidates as structural materials for many high temperatures and aerospace applications. Metal matrix composites combine the ductile properties of the matrix with a brittle phase of the reinforcement, leading to high stiffness and strength with a reduction in structural weight. The main objective of using a metal matrix composite system is to increase service temperature or improve specific mechanical prope...

  13. Niobium matrix composites for high temperature turbine blades, phase 2

    Science.gov (United States)

    Heng, Sangvavann; Laferla, Raffaele; Tuffias, Robert H.

    1991-01-01

    This program demonstrated the feasibility of fabricating fiber-reinforced MMC (niobium matrix) turbine blades to net shape by chemical vapor infiltration (CVI). A controllable, repeatable niobium infiltration process was developed, and the kinetics of both deposition and infiltration were studied. Several continuous refractory fibers (Nicalon, Nextel 440, FP-Al2O3, HPZ, and tungsten mesh) were investigated as potential reinforcements for strengthening niobium. Thermodynamic and experimental evaluation indicated FP-Al2O3 and tungsten to be the most chemically compatible with niobium, while Nicalon, FP-Al2O3, and tungsten were found to be best with regard to reinforcing capability. Finally, a protective coating for iridium was found to provide substantial oxidation protection to the niobium blade matrix.

  14. Ferromagnetic Levan Composite: An Affinity Matrix to Purify Lectin

    OpenAIRE

    Renata Angeli; da Paz, Nathalia V. N.; Maciel, Jackeline C.; Flávia F. B. Araújo; Paiva, Patrícia M. G.; Glícia M. T. Calazans; Ana Paula Valente; Almeida, Fábio C. L.; Coelho, Luana C. B. B.; Carvalho, Luiz B; Silva, Maria da Paz C.; Maria Tereza dos Santos Correia

    2009-01-01

    A simple and inexpensive procedure used magnetite and levan to synthesize a composite recovered by a magnetic field. Lectins from Canavalia ensiformis (Con A) and Cratylia mollis (Cramoll 1 and Cramoll 1, 4) did bind specifically to composite. The magnetic property of derivative favored washing out contaminating proteins and recovery of pure lectins with glucose elution. Cramoll 1 was purified by this affinity binding procedure in two steps instead of a previous three-step protocol with ammon...

  15. Research on polyamide matrix composites filled with hard coal

    OpenAIRE

    M. Rojek; J. Stabik; M. Szymiczek; Ł. Suchoń; K. Mrowiec

    2012-01-01

    Purpose: The aim of this paper is to present the summary results of studies on polyamide composites filled with hard coal. Research on the use of coal as a filler of polymers are conducted for many years in Division of Metallic and Polymeric Materials Processing, Silesian University of Technology. This paper summarizes results obtained in different research programmes preformed in recent years. Described materials are polyamide 6 composites filled with modified and unmodified hard coal powde...

  16. Fabrication and properties of Al matrix composites strengthened by in situ alumina particulates

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    New aluminum matrix composites strengthened by Al2O3 particulates through stirring cast by adding NH4Al(SO4)2 to the molten aluminum have been fabricated. TEM observation shows that in-situ Al2O3 particulates are generally spherical and they are uniformly distributed in the Al matrix. Dry sliding wear test results show that the volume loss of the unreinforced Al matrix is about three times that of the Al2O3 reinforced metal matrix composite (MMC) and the volume loss of the MMC fabricated by adding Al2O3 is larger than that of the MMC by adding NH4Al(SO4)2. Lubricating sliding wear test results show that the volume loss of the MMCs increases more slowly than that of the matrix with the increasing of the load.

  17. Stereological characterization of crack path transitions in ceramic matrix composites

    Indian Academy of Sciences (India)

    Parag Bhargava; B R Patterson

    2001-04-01

    All ceramic composites involve a mismatch in physical properties the extent of which differs from one composite to another. Mismatch in thermal expansion ( ) and elastic modulus (E) is known to produce stresses that influence the path of a propagating crack. Thus, the relative effect of thermal and elastic mismatch on the crack path is expected to change with change in stress intensity. We propose that the crack path in ceramic composites should undergo a transition with the crack being strongly influenced by the thermal mismatch stresses at low stress intensity and elastic mismatch stresses at high stress intensities. Thus, a material in use under different applications each with its own loading conditions is expected to exhibit different crack propagation tendencies which may be reflected in the – characteristics of the composite material. In the present work several model composites with different combinations of thermal and elastic mismatch have been considered. Cracks propagating at different sub-critical stress intensities (velocities) were generated by a novel indentation technique. Each indentation was performed at a constant displacement rate and a peak load. A range of displacement rates were used to produce cracks propagating at different velocities. The indentations were made using a Vickers indentor fitted in a universal mechanical testing machine. The crack paths in composites were quantified by stereological technique and the proposed theory was verified.

  18. Fabrication of fiber composites with a MAX phase matrix by reactive melt infiltration

    International Nuclear Information System (INIS)

    Due to the inherent brittleness of ceramics it is very desirable to increase the damage tolerance of ceramics. The ternary MAX phases are a promising group of materials with high fracture toughness. The topic of this study is the development of ceramic matrix composites (CMCs) with a matrix containing MAX phases, to achieve a damage tolerant structural composite material. For this purpose carbon fiber reinforced preforms with a carbon-titanium carbide matrix (C/C-TiC) were developed and infiltrated with silicon by a pressureless reactive melt infiltration. Finally liquid silicon caused the formation of SiC, TiSi2 and Ti3SiC2 in the matrix of the composite.

  19. Strong and Tough Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.

    1997-01-01

    Strong, tough and almost fully dense Hi-Nicalon/BN/SiC fiber reinforced celsian matrix composites have been fabricated by impregnation of the fiber tows with the matrix slurry, winding on a drum, stacking the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from a mixed oxide precursor. The unidirectional composites having approx. 42 volume percent of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was 165 +/- 5 GPa.

  20. Concurrent micromechanical tailoring and fabrication process optimization for metal-matrix composites

    Science.gov (United States)

    Morel, M.; Saravanos, D. A.; Chamis, Christos C.

    1990-01-01

    A method is presented to minimize the residual matrix stresses in metal matrix composites. Fabrication parameters such as temperature and consolidation pressure are optimized concurrently with the characteristics (i.e., modulus, coefficient of thermal expansion, strength, and interphase thickness) of a fiber-matrix interphase. By including the interphase properties in the fabrication process, lower residual stresses are achievable. Results for an ultra-high modulus graphite (P100)/copper composite show a reduction of 21 percent for the maximum matrix microstress when optimizing the fabrication process alone. Concurrent optimization of the fabrication process and interphase properties show a 41 percent decrease in the maximum microstress. Therefore, this optimization method demonstrates the capability of reducing residual microstresses by altering the temperature and consolidation pressure histories and tailoring the interphase properties for an improved composite material. In addition, the results indicate that the consolidation pressures are the most important fabrication parameters, and the coefficient of thermal expansion is the most critical interphase property.

  1. Combined micromechanical and fabrication process optimization for metal-matrix composites

    Science.gov (United States)

    Morel, M.; Saravanos, D. A.; Chamis, C. C.

    1991-01-01

    A method is presented to minimize the residual matrix stresses in metal matrix composites. Fabrication parameters such as temperature and consolidation pressure are optimized concurrently with the characteristics (i.e., modulus, coefficient of thermal expansion, strength, and interphase thickness) of a fiber-matrix interphase. By including the interphase properties in the fabrication process, lower residual stresses are achievable. Results for an ultra-high modulus graphite (P100)/copper composite show a reduction of 21 percent for the maximum matrix microstress when optimizing the fabrication process alone. Concurrent optimization of the fabrication process and interphase properties show a 41 percent decrease in the maximum microstress. Therefore, this optimization method demonstrates the capability of reducing residual microstresses by altering the temperature and consolidation pressure histories and tailoring the interphase properties for an improved composite material. In addition, the results indicate that the consolidation pressures are the most important fabrication parameters, and the coefficient of thermal expansion is the most critical interphase property.

  2. SiC whisker-MoSi/sub 2/ matrix composites

    International Nuclear Information System (INIS)

    Whisker reinforcement was investigated as a means to improve mechanical properties. Vapor-liquid-solid (VLS) SiC whisker-MoSi/sub 2/ matrix composites containing 20 vol% whiskers were fabricated by conventional hot pressing techniques. In this system, whisker reinforcement toughen the material at low temperatures when the matrix is brittle and strengthen the material at elevated temperatures when the matrix is ductile. At composite fabrication temperatures (1500-17000C) SiC and MoSi/sub 2/ do not react. For such high fabrication temperatures, SiC whiskers are currently the only fiber reinforcement material suitable for composite synthesis. No reaction between the MoSi/sub 2/ matrix and the SiC whiskers was observed as a result of hot pressing at 16000C

  3. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  4. Bone induction by composite of bioerodible polyorthoester and deminiralized bone matrix in rats

    International Nuclear Information System (INIS)

    A composite of a local, sustained, drug-release system, Alzamer bioerodible polyorthoester, and demineralized bone-matrix (DBM) particles implanted in the abdominal muscle of 89 Wistar rats induced cartilage and bone formation at the same rate as DBM when evaluated histologically and by 85Sr uptake. The composite implant was technically easier to use than DBM alone. (author)

  5. Bone induction by composite of bioerodible polyorthoester and deminiralized bone matrix in rats

    Energy Technology Data Exchange (ETDEWEB)

    Pinholt, E.M.; Solheim, E. (Institute for Surgical Research, Rikshospitalet, University of Oslo (Norway)); Bang, G. (Department of Oral Pathology and Forensic Odontology, University of Bergen (Norway)); Sudmann, E. (Hagavik Orthopedic Hospital, University of Bergen (Norway))

    1991-01-01

    A composite of a local, sustained, drug-release system, Alzamer bioerodible polyorthoester, and demineralized bone-matrix (DBM) particles implanted in the abdominal muscle of 89 Wistar rats induced cartilage and bone formation at the same rate as DBM when evaluated histologically and by {sup 85}Sr uptake. The composite implant was technically easier to use than DBM alone. (author).

  6. Influence of four-point bending fatigue on the residual stress state of a pressure-rolled, particulate-reinforced metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Hanus, E. [Linkoeping Univ. (Sweden). Div. of Eng. Mater.; Ericsson, T. [Linkoeping Univ. (Sweden). Div. of Eng. Mater.

    1995-05-01

    In this work, the influence of fatigue on the residual stress state of a pressure-rolled metal matrix composite has been investigated. The three-dimensional stress state measured in both matrix and reinforcement has been determined by X-ray diffraction. To estimate the efficiency of the pressure rolling treatment, Woehler curves were derived for both the heat-treated (to maximum hardness) (T6) and further rolled composites. To study the stability of the induced residual stress field, four-point bending fatigue tests were performed on a 2014 aluminium alloy reinforced with 15% SiC particles. It was found that pressure rolling increased the fatigue strength by 30% in the high-cycle region. Macrostress relaxation occurs during cyclic loading: the higher the applied load, the larger the relaxation. A more pronounced effect is observed on the compression-loaded side. As regards the microstresses, a reduction, creation and/or stabilization during cycling may occur according to the loading and metallurgical conditions. ((orig.))

  7. Effect of deformation temperature on the hot compressive behavior of metal matrix composites with misaligned whiskers

    Institute of Scientific and Technical Information of China (English)

    LI Aibin; MENG Qingyuan; GENG Lin; DENG Chunfeng; YAN Yiwu

    2007-01-01

    A multi-inclusion cell model is used to investigate the effect of deformation temperature and whisker rotation on the hot compressive behavior of metal matrix composites with misaligned whiskers. Numerical results show that deformation temperature influences the work-hardening behavior of the matrix and the rotation behavior of the whiskers. With increasing temperature, the work hardening rate of the matrix decreases, but the whisker rotation angle increases. Both whisker rotation and the increase of deformation temperature can induce reductions in the load supported by whisker and the load transferred from matrix to whisker. Additionally, it is found that during large strain deformation at higher temperatures, the enhancing of deformation temperature can reduce the effect of whisker rotation. Meanwhile, the stress-strain behavior of the composite is rather sensitive to deformation temperature. At a relatively lower temperature (150℃), the composite exhibits work hardening due to the matrix work hardening, but at relatively higher temperatures (300℃ and above),the composite shows strain softening due to whisker rotation. It is also found that during hot compression at higher temperatures, the softening rate of the composite decreases with increasing temperature. The predicted stress-strain behavior of the composite is approximately in agreement with the experimental results.

  8. Controlled release evaluation of bacterial fertilizer using polymer composites as matrix.

    Science.gov (United States)

    Wu, Chin-San

    2008-11-24

    The use of polybutylene succinate (PBSU)/starch-type composite as biodegradable matrix material for the controlled release of bacterial fertilizer was evaluated. The composites were prepared by a melting-blending method and various methods/instruments were applied to characterize composites and PBSU. The mechanical properties of the PBSU/starch composite were worse than PBSU alone because the former had poor compatibility between starch and the polymer matrix. Much better dispersion and homogeneity were observed in the composite when PBSU was replaced by acrylic acid grafted PBSU (PBSU-g-AA), hence leading to better mechanical properties of PBSU-g-AA/starch. Furthermore, PBSU-g-AA/starch was more easily processed. The bacterial fertilizer was encapsulated in PBSU and PBSU-g-AA/starch matrix. Increased blending of starch increased the biodegradability of matrix and the amount and rate of cell release from matrix suggesting that this composite is a promising candidate material for 'controlled release' bacterial fertilizer. PMID:18796320

  9. Fracture morphology and deformation characteristics of repeatedly impacted thermoplastic matrix composites

    International Nuclear Information System (INIS)

    Deformations of thermoplastic matrix composites during impact fatigue loading were investigated by instrumented impacts tester and scanning electron and optic microscopy (SEM). Curves of damage evolution against the number of repeated impacts to fracture the composites revealed three distinct zones: fibre micro buckling and shear fracture of fibres (1st region), initiation and propagation of delaminations and matrix deformations (2nd region), propagation of delaminations and fibre cracking and pull out especially in tensile area (3rd region). Intensive deformations observed primarily in compression region during impact-fatigue loading can be explained by lower compressive strength of composites compared to their tensile strength

  10. Polymer matrix composites on LDEF experiments M0003-9 and M0003-10

    International Nuclear Information System (INIS)

    Over 250 polymer matrix composites were exposed to the natural space environment on Long Duration Exposure Facility (LDEF) experiments M0003-9 and 10. The experiments included a wide variety of epoxy, thermoplastic, polyimide, and bismalimide matrix composites reinforced with graphite, glass, or organic fibers. A review of the significant observations and test results obtained to date is presented. Estimated recession depths from atomic oxygen exposure are reported and the resulting surface morphologies are discussed. The effects of the LDEF exposure on the flexural strength and modulus, short beam shear strength, and coefficient of thermal expansion of several classes of bare and coated composites are reviewed. Lap shear data are presented for composite-to-composite and composite-to-aluminum alloy samples that were prepared using different bonding techniques and subsequently flown on LDEF

  11. Method of producing a ceramic fiber-reinforced glass-ceramic matrix composite

    Science.gov (United States)

    Bansal, Narottam P. (Inventor)

    1994-01-01

    A fiber-reinforced composite composed of a BaO-Al2O3-2SiO2 (BAS) glass ceramic matrix is reinforced with CVD silicon carbide continuous fibers. A slurry of BAS glass powders is prepared and celsian seeds are added during ball melting. The slurry is cast into tapes which are cut to the proper size. Continuous CVD-SiC fibers are formed into mats of the desired size. The matrix tapes and the fiber mats are alternately stacked in the proper orientation. This tape-mat stack is warm pressed to produce a 'green' composite. The 'green' composite is then heated to an elevated temperature to burn out organic constituents. The remaining interim material is then hot pressed to form a silicon carbide fiber-reinforced celsian (BAS) glass-ceramic matrix composite which may be machined to size.

  12. Synthesis and Characterization of Multi Wall Carbon Nanotubes (MWCNT) Reinforced Sintered Magnesium Matrix Composites

    Science.gov (United States)

    Vijaya Bhaskar, S.; Rajmohan, T.; Palanikumar, K.; Bharath Ganesh Kumar, B.

    2016-04-01

    Metal matrix composites (MMCs) reinforced with ceramic nano particles (less than 100 nm), termed as metal matrix nano composites (MMNCs), can overcome those disadvantages associated with the conventional MMCs. MMCs containing carbon nanotubes are being developed and projected for diverse applications in various fields of engineering like automotive, avionic, electronic and bio-medical sectors. The present investigation deals with the synthesis and characterization of hybrid magnesium matrix reinforced with various different wt% (0-0.45) of multi wall carbon nano tubes (MWCNT) and micro SiC particles prepared through powder metallurgy route. Microstructure and mechanical properties such as micro hardness and density of the composites were examined. Microstructure of MMNCs have been investigated by scanning electron microscope, X-ray diffraction and energy dispersive X-ray spectroscopy (EDS) for better observation of dispersion of reinforcement. The results indicated that the increase in wt% of MWCNT improves the mechanical properties of the composite.

  13. Novel in situ synthesized zirconium matrix composites reinforced with ZrC particles

    International Nuclear Information System (INIS)

    In the present work, novel zirconium (Zr) matrix composites reinforced by ZrC particles were prepared though the synthesis reaction from Zr and C with non-consumable vacuum arc melting. Microstructural observation indicates that the ZrC reinforcement grows in dendritic and near equiaxed shapes. The solute atom aluminum (Al) was added into the in situ ZrC/Zr composites and the ZrC reinforcement was refined. The results of room temperature compressive test show that the composites exhibit significant increase of Young's modulus and higher ultimate compressive strength (UCS) than the Zr sample, which can be attributed to the presence of ZrC and the solute atom Al in the Zr matrix. It is implied from the fractography that modification of the shape and interface of the in situ ZrC particles improve the mechanical properties of the Zr matrix composites.

  14. Processing, structure and flexural strength of CNT and carbon fibre reinforced, epoxy-matrix hybrid composite

    Indian Academy of Sciences (India)

    K Chandra Shekar; M Sai Priya; P K Subramanian; Anil Kumar; B Anjaneya Prasad; N Eswara Prasad

    2014-05-01

    Advanced materials such as continuous fibre-reinforced polymer matrix composites offer significant enhancements in variety of properties, as compared to their bulk, monolithic counterparts. These properties include primarily the tensile stress, flexural stress and fracture parameters. However, till date, there are hardly any scientific studies reported on carbon fibre (Cf) and carbon nanotube (CNT) reinforced hybrid epoxy matrix composites (unidirectional). The present work is an attempt to bring out the flexural strength properties along with a detailed investigation in the synthesis of reinforced hybrid composite. In this present study, the importance of alignment of fibre is comprehensively evaluated and reported. The results obtained are discussed in terms of material characteristics, microstructure and mode of failure under flexural (3-point bend) loading. The study reveals the material exhibiting exceptionally high strength values and declaring itself as a material with high strength to weight ratio when compared to other competing polymer matrix composites (PMCs); as a novel structural material for aeronautical and aerospace applications.

  15. Computational Simulation of Continuous Fiber-Reinforced Ceramic Matrix Composites Behavior

    Science.gov (United States)

    Murthy, Pappu L. N.; Chamis, Christos C.; Mital, Subodh K.

    1996-01-01

    This report describes a methodology which predicts the behavior of ceramic matrix composites and has been incorporated in the computational tool CEMCAN (CEramic Matrix Composite ANalyzer). The approach combines micromechanics with a unique fiber substructuring concept. In this new concept, the conventional unit cell (the smallest representative volume element of the composite) of the micromechanics approach is modified by substructuring it into several slices and developing the micromechanics-based equations at the slice level. The methodology also takes into account nonlinear ceramic matrix composite (CMC) behavior due to temperature and the fracture initiation and progression. Important features of the approach and its effectiveness are described by using selected examples. Comparisons of predictions and limited experimental data are also provided.

  16. Mechanical behavior and properties of fiber reinforced ceramic matrix composites for high temperature use

    Institute of Scientific and Technical Information of China (English)

    Chongdu Cho; Qiang Pan; Sangkyo Lee

    2007-01-01

    Ceramics can keep their mechanical characteristics up to 2 000℃ or higher.In this paper,A model to predict ultimate strength of continuous fiber-reinforced brittle matrix composites is developed.A statistical theory for the strength of a uni-axially fiber-reinforced brittle matrix composite is presented.Also a semi-empirical frictional heating method for estimating in-situ interfacial shear in fiber-reinforced ceramic matrix composites was improved.Local uneven fiber packing variation as well as uneven micro-damage during fatigue can be expected to have effects on the composites:generation of frictional heating,thermal gradients,and residual stresses around local fiber breaks.This study examined those engineering interests by the finite element method.

  17. Research on toughening mechanisms of alumina matrix ceramic composite materials improved by rare earth additive

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xihua; LIU Changxia; LI Musen; ZHANG Jianhua

    2008-01-01

    Mixed rare earth elements were incorporated into alumina ceramic materials. Hot-pressing was used to fabricate alumina matrix composites in nitrogen atmosphere protection. Microstructures and mechanical properties of the composites were tested. It was indicated that the bending strength and fracture toughness of alumina matrix ceramic composites sintered at 1550℃ and 28 Mpa for 30 min were improved evidently. Besides mixed rare earth elements acting as a toughening phase, AlTiC master alloys were also added in as sintering assistants, which could prompt the formation of transient liquid phase, and thus nitrides of rare earth elements were produced. All of the above were beneficial for improving the mechanical properties of alumina matrix ceramic composites.

  18. Ferromagnetic Levan Composite: An Affinity Matrix to Purify Lectin

    Directory of Open Access Journals (Sweden)

    Renata Angeli

    2009-01-01

    Full Text Available A simple and inexpensive procedure used magnetite and levan to synthesize a composite recovered by a magnetic field. Lectins from Canavalia ensiformis (Con A and Cratylia mollis (Cramoll 1 and Cramoll 1,4 did bind specifically to composite. The magnetic property of derivative favored washing out contaminating proteins and recovery of pure lectins with glucose elution. Cramoll 1 was purified by this affinity binding procedure in two steps instead of a previous three-step protocol with ammonium sulfate fractionation, affinity chromatography on Sephadex G-75, and ion exchange chromatography through a CM-cellulose column.

  19. Ferromagnetic levan composite: an affinity matrix to purify lectin.

    Science.gov (United States)

    Angeli, Renata; da Paz, Nathalia V N; Maciel, Jackeline C; Araújo, Flávia F B; Paiva, Patrícia M G; Calazans, Glícia M T; Valente, Ana Paula; Almeida, Fábio C L; Coelho, Luana C B B; Carvalho, Luiz B; Silva, Maria da Paz C; dos Santos Correia, Maria Tereza

    2009-01-01

    A simple and inexpensive procedure used magnetite and levan to synthesize a composite recovered by a magnetic field. Lectins from Canavalia ensiformis (Con A) and Cratylia mollis (Cramoll 1 and Cramoll 1, 4) did bind specifically to composite. The magnetic property of derivative favored washing out contaminating proteins and recovery of pure lectins with glucose elution. Cramoll 1 was purified by this affinity binding procedure in two steps instead of a previous three-step protocol with ammonium sulfate fractionation, affinity chromatography on Sephadex G-75, and ion exchange chromatography through a CM-cellulose column. PMID:19547713

  20. Composite Nickel Coatings Produced on 6XXX Series Aluminium Alloys with the Addition of Vanadium / Kompozytowe Powłoki Niklowe Wytwarzane Na Stopach Aluminum Serii 6XXX Z Dodatkiem Wanadu

    Directory of Open Access Journals (Sweden)

    Nowak M.

    2015-12-01

    Full Text Available Studies of composite nickel coatings electrolytically deposited on aluminium alloys with different content of vanadium were described. Composite coatings were deposited from a Watts bath containing fine-dispersed SiC powder particles in an amount of 20 g/l and organic matters such as saccharin and sodium laurate. The morphology, structure and thickness of the obtained composite coatings were presented. The corrosion resistance of produced coatings was examined by electrochemical method. Basing on the results of studies it was found that coatings obtained with the sole addition of saccharin were characterized by numerous surface defects. The addition of sodium laurate eliminated the occurrence of defects caused by hydrogen evolution and the resulting coatings were continuous with good adhesion to the substrate. The distribution of the ceramic SiC phase in coatings was fairly uniform for all the examined variants of aluminium alloys. SEM examinations did not reveal the phenomenon of the ceramic particles agglomeration.

  1. Influence of particles-matrix interphase on stress distribution in particulate composite with polymer matrix

    Czech Academy of Sciences Publication Activity Database

    Majer, Zdeněk; Hutař, J.; Náhlík, Luboš; Knésl, Zdeněk

    2007-01-01

    Roč. 1, č. 1 (2007), s. 143-148. ISSN 1802-680X. [Výpočtová mechanika 2007. Hrad Nečtiny, 05.11.2007-07.11.2007] R&D Projects: GA ČR GA101/05/0227; GA ČR GD106/05/H008 Institutional research plan: CEZ:AV0Z20410507 Keywords : particulate composite * crack propagation * interphase * CaCO3 – PP composite Subject RIV: JL - Materials Fatigue, Friction Mechanics

  2. Superelement methods applications to micromechanics of high temperature metal matrix composites

    Science.gov (United States)

    Caruso, J. J.; Chamis, C. C.

    1988-01-01

    Adaptation of the superelement finite-element method for micromechanics of continuous fiber high temperature metal matrix composites (HT-MMC) is described. The method is used to predict the thermomechanical behavior of P100-graphite/copper composites using MSC/NASTRAN and it is also used to validate those predicted by using an in-house computer program designed to perform micromechanics for HT-MMC. Typical results presented in the paper include unidirectional composite thermal properties, mechanical properties, and microstresses.

  3. Exercise Alters Mineral and Matrix Composition in the Absence of Adding New Bone

    OpenAIRE

    Kohn, David H.; Sahar, Nadder D.; Wallace, Joseph M.; Golcuk, Kurtulus; Morris, Michael D.

    2008-01-01

    The mechanical properties of bone are dictated by its amount, distribution and ‘quality’. The composition of the mineral and matrix phases is integral to defining ‘bone quality’. Exercise can potentially increase resistance to fracture, yet the effects of exercise on skeletal fragility, and how alterations in fragility are modulated by the amount, distribution and composition of bone, are unknown. In this investigation, the effects of exercise on the size, composition, mechanical properties a...

  4. Alumina matrix ceramic-nickel composites formed by centrifugal slip casting

    OpenAIRE

    Justyna Zygmuntowicz; Aleksandra Miazga; Katarzyna Konopka; Katarzyna Jedrysiak; Waldemar Kaszuwara

    2015-01-01

    The paper is focused on the possibility of fabricating the alumina matrix ceramic-nickel composites with gradient concentration of metal particles. Centrifugal slip casting method was chosen for the composite fabrication. This method allows fabrication of the graded distribution of nickel particles in the hollow cylinder composites. The horizontal rotation axis was applied. The samples were characterized by XRD, SEM and quantitative description of the microstructure. The macroscopic as well a...

  5. Strain measurements and imaging of metal matrix composites using high-energy X-rays

    Science.gov (United States)

    Young, Marcus L.

    Metal matrix composites (MMCs) are of technological importance for a variety of applications [1, 2]. One important aspect of MMCs is their unique mechanical behavior, which is controlled by the load transfer occurring between matrix and reinforcement. Load transfer is affected by the mismatch in stiffness between matrix and reinforcement, by plastic deformation of the metallic matrix and by damage of the ceramic reinforcement or its interface with the matrix. The goal of this thesis is to study the micromechanics of load transfer in MMC by a combination of x-ray diffraction and imaging, using high-energy synchrotron x-rays in conjunction with in-situ mechanical loading. Diffraction was used for direct measurements of internal elastic strains of all phases within the bulk (rather than near surface) of MMCs during in-situ mechanical loading. Imaging was done using an edge-enhanced, phase-contrast technique providing high spatial resolution radiographic images providing insight into the macro- and micro-mechanical evolution of damage. Three MMC systems with widely different architectures, composition, and end-use were studied: ultrahigh-carbon steels, superconducting fiber composites, and co-continuous composites. First, ultrahigh-carbon steels exhibiting spherical Fe3C particles in a Fe matrix are characterized by no load transfer in the elastic range, followed by marked load transfer in the plastic range of the matrix. Second, superconducting composites consisting of continuous MgB2 fibers in a Mg matrix show mostly elastic (and somewhat plastic) load transfer from matrix to reinforcement, which is complicated by the presence of cracks and a WB4 core in the fibers. Finally, a complex three-dimensional (3-D) Al2O3 preform infiltrated with an Al matrix, like the superconducting composites, show mostly elastic load transfer from matrix to reinforcement. For the latter two composites, differences were found between average bulk measurements and spatially

  6. Carbon-carbon composites based on a polyimide matrix ITA

    Czech Academy of Sciences Publication Activity Database

    Yudin, V. E.; Goikhman, M. Y.; Gribanov, A. V.; Gubanova, G. N.; Kudryavtsev, V. V.; Balík, Karel; Glogar, Petr

    Singapore : World Scientific, 1996 - (Palmer, K.; Marx , D.; Wright, M.), s. 187-197 ISBN 981-02-2801-5. [Carbon and Carbonaceous Composite Materials: Structure-Property Relationships. Malenovice (CZ), 10.10.1995-13.10.1995] R&D Projects: GA ČR GA104/94/1789

  7. Aluminum-matrix composite materials with shungite rock fillers

    Science.gov (United States)

    Kalashnikov, I. E.; Kovalevski, V. V.; Chernyshova, T. A.; Bolotova, L. K.

    2010-11-01

    A method is proposed for the introduction of shungite rocks into aluminum melts by mechanical mixing with carriers, namely, aluminum granules and reactive titanium powders taking part in exothermic in situ reactions. The structures of composite materials with shungite rock additions are studied, and a stabilizing effect of these additions on dry sliding friction is revealed.

  8. Non-destructive diagnostic methods of polymer matrix composites degradation

    Directory of Open Access Journals (Sweden)

    G. Wróbel

    2008-11-01

    Full Text Available Purpose: The aim of this paper is to present results of application of ultrasonic and termovision techniques to non-destructive evaluation of the degree of thermal degradation of fibre reinforced polymer composites. a model describing heat transfer taking place during Thermographic tests were undertaken to identify thermal properties of searched material and to correlate them with operational characteristics. In the same manner ultrasounds propagation characteristics were correlated with strength properties.Design/methodology/approach: Epoxy-glass composites were exposed to thermal ageing and subsequently tested using thermography and ultrasounds. Finally destructive bending test was performed. Material characteristics evaluated in these test were compared and related to elaborate diagnostic relations.Findings: The most essential result of the project is the methodology of applying thermovision and ultrasonic testing to diagnose the state of thermal degradation of polymeric composites.Research limitations/implications: Results showed the possibility of non-destructive diagnosis of the degree of thermal degradation manifested by strength capacity deterioration of wide class of materials, namely polymeric composites.Practical implications: Results of presented project together with results of planned experimental programme devoted to elaboration of diagnostic relations enable to apply thermography and ultrasonic testing directly to the state of polymeric structural materials assessment. Especially the degree of material degradation may be estimated.Originality/value: Originality of the project is based on possibility of practical application of the thermovison and ultrasonic testing to non-destructive diagnosis of kinematics of degradation processes.

  9. Resin Matrix/Fiber Reinforced Composite Material,Ⅲ:Simulating Results

    Institute of Scientific and Technical Information of China (English)

    Li Chensha(李辰砂); Jiao Caishan; Liu Ying; Wang Zhengping; Wang Hongjie; Cao Maosheng

    2004-01-01

    According to the mathematical model which describes the curing process of composites constructed from continuous fiber-reinforced, thermosetting resin matrix prepreg materials, and the consolidation of the composite, the computer code calculates the data of the process variables of the flat-plate composites cured by a specified cure cycle, provides the variation of temperature distribution, the cure degree process, the resin variation and fibers stress inside the composite, the void variation and the residual stress distribution. The mechanism of curing process is illustrated and the cure cycle of composite material is optimized.

  10. Alumina matrix ceramic-nickel composites formed by centrifugal slip casting

    Directory of Open Access Journals (Sweden)

    Justyna Zygmuntowicz

    2015-12-01

    Full Text Available The paper is focused on the possibility of fabricating the alumina matrix ceramic-nickel composites with gradient concentration of metal particles. Centrifugal slip casting method was chosen for the composite fabrication. This method allows fabrication of the graded distribution of nickel particles in the hollow cylinder composites. The horizontal rotation axis was applied. The samples were characterized by XRD, SEM and quantitative description of the microstructure. The macroscopic as well as SEM observations of the prepared composites confirmed the gradient concentration of Ni particles in the composite materials. The application of the centrifugal slip casting method allows for the graded distribution of metal particles in the samples.

  11. Probabilistic simulation of long term behavior in polymer matrix composites

    Science.gov (United States)

    Shah, A. R.; Singhal, S. N.; Murthy, P. L. N.; Chamis, C. C.

    1995-01-01

    A methodology to compute cumulative probability distribution functions (CDF) of fatigue life for different ratios, r of applied stress to the laminate strength based on first ply failure criteria has been developed and demonstrated. Degradation effects due to long term environmental exposure and mechanical cyclic loads are considered in the simulation process. A unified time-stress dependent multi-factor interaction equation model developed at NASA Lewis Research Center has been used to account for the degradation/aging of material properties due to cyclic loads. Fast probability integration method is used to perform probabilistic simulation of uncertainties. Sensitivity of fatigue life reliability to uncertainties in the primitive random variables are computed and their significance in the reliability based design for maximum life is discussed. The results show that the graphite/epoxy (0/+45/90) deg laminate with ply thickness 0.125 in. has 500,000 cycles life for applied stress to laminate strength ratio of 0.6 and a reliability of 0.999. Also, the fatigue life reliability has been found to be most sensitive to the ply thickness and matrix tensile strength. Tighter quality controls must therefore be enforced on ply thickness and matrix strength in order to achieve high reliability of the structure.

  12. Research on the preparation, biocompatibility and bioactivity of magnesium matrix hydroxyapatite composite material.

    Science.gov (United States)

    Linsheng, Li; Guoxiang, Lin; Lihui, Li

    2016-08-12

    In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity. PMID:27567779

  13. Wear behaviour of Zr-based in situ bulk metallic glass matrix composites

    Indian Academy of Sciences (India)

    X F WU; G A ZHANG; F F WU

    2016-06-01

    Zr-based bulk metallic glass (BMG) and its in situ BMG matrix composites with diameter of 3 mm were fabricated by conventional Cu-mould casting method and the dry sliding wear behaviour of the BMG and composites was investigated. Compared to the pure BMG, the composites exhibited a markedly improved wear resistance from 10 to 48% due to the existence of various volume fractions of the ductile $\\beta$-Zr dendritic phase embedded in the glassy matrix. The composites showed lower friction coefficient and wear rate than the pure BMG. Meanwhile, the surface wearing of the composite with a proper amount of $\\beta$-Zr dendrites was less severe compared to that of the pure BMG. The worn surface of the composite was covered with mild grooves and some fine wear debris, which exhibited the characteristic of a mild abrasive wear. The improvement of the wear resistance of the composite with the proper amount of $\\beta$-Zr crystalline phase is attributed to the fact that the $\\beta$-Zr crystalline phase distributed in the amorphous matrix has some effective load bearing, plastic deformation and work hardening ability to decrease strain accumulation and the release of strain energy in the glassy matrix, restrict the expanding of shear bands and cracks, and occur plastic deformation homogeneously.

  14. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  15. Method of making carbon fiber-carbon matrix reinforced ceramic composites

    Science.gov (United States)

    Williams, Brian (Inventor); Benander, Robert (Inventor)

    2007-01-01

    A method of making a carbon fiber-carbon matrix reinforced ceramic composite wherein the result is a carbon fiber-carbon matrix reinforcement is embedded within a ceramic matrix. The ceramic matrix does not penetrate into the carbon fiber-carbon matrix reinforcement to any significant degree. The carbide matrix is a formed in situ solid carbide of at least one metal having a melting point above about 1850 degrees centigrade. At least when the composite is intended to operate between approximately 1500 and 2000 degrees centigrade for extended periods of time the solid carbide with the embedded reinforcement is formed first by reaction infiltration. Molten silicon is then diffused into the carbide. The molten silicon diffuses preferentially into the carbide matrix but not to any significant degree into the carbon-carbon reinforcement. Where the composite is intended to operate between approximately 2000 and 2700 degrees centigrade for extended periods of time such diffusion of molten silicon into the carbide is optional and generally preferred, but not essential.

  16. Zinc oxide-potassium ferricyanide composite thin film matrix for biosensing applications

    International Nuclear Information System (INIS)

    Thin film of zinc oxide-potassium ferricyanide (ZnO-KFCN) composite has been deposited on indium tin oxide (ITO) coated corning glass using pulsed laser deposition (PLD). The composite thin film electrode has been exploited for amperometric biosensing in a mediator-free electrolyte. The composite matrix has the advantages of high iso-electric point of ZnO along with enhanced electron communication due to the presence of a redox species in the matrix itself. Glucose oxidase (GOx) has been chosen as the model enzyme for studying the application of the developed matrix to biosensing. The sensing response of the bio-electrode, GOx/ZnO-KFCN/ITO/glass, towards glucose was studied using cylic voltammetry (CV) and photometric assay. The bio-electrode exhibits good linearity from 2.78 mM to 11.11 mM glucose concentration. The low value of Michaelis-Menten constant (1.69 mM) indicates an enhanced affinity of the immobilized enzyme towards its substrate. A quassireversible system is obtained with the composite matrix. The results confirm promising application of the ZnO-KFCN composite matrix for amperometric biosensing applications in a mediator-less electrolyte that could lead to the realization of an integrated lab-on-chip device.

  17. The effect of alumina nanofillers size and shape on mechanical behavior of PMMA matrix composite

    Directory of Open Access Journals (Sweden)

    Ben Hasan Somaya Ahmed

    2014-01-01

    Full Text Available Composites with the addition of alumina nanofillers show improvement in mechanical properties. The PMMA polymer was used as a matrix and two different types of nanofillers, having extremely different shapes were added in the matrix to form the composite. Reinforcements were based on alumina nanoparticles having either spherical shape or whiskers having the length to diameter ratio of 100. The influence of alumina fillers size, shape and fillers loading on mechanical properties of prepared composite were studied using the nanoindentation measurements and dynamic mechanical analysis. It was observed that both alumina whiskers and alumina spherical nanoparticles added in the PMMA matrix improved the mechanical properties of the composite but the improvement was significantly higher with alumina whisker reinforcement. The concentration of the reinforcing alumina spherical nanoparticles and alumina whiskers in PMMA matrix varied up to 5 wt. %. The best performance was obtained by the addition of 3 wt. % of alumina whiskers in the PMMA matrix with regard to mechanical properties of the obtained composite.

  18. Hydrogen Permeability of Polymer Matrix Composites at Cryogenic Temperatures

    Science.gov (United States)

    Grenoble, Ray W.; Gates, Thomas S

    2005-01-01

    This paper presents experimental methods and results of an ongoing study of the correlation between damage state and hydrogen gas permeability of laminated composite materials under mechanical strains and thermal loads. A specimen made from IM-7/977-2 composite material has been mechanically cycled at room temperature to induce microcrack damage. Crack density and tensile modulus were observed as functions of number of cycles. Damage development was found to occur most quickly in the off-axis plies near the outside of the laminate. Permeability measurements were made after 170,000 cycles and 430,000 cycles. Leak rate was found to depend on applied mechanical strain, crack density, and test temperature.

  19. Freeform fabrication of polymer-matrix composite structures

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, S.G.; Spletzer, B.L.; Guess, T.L.

    1997-05-01

    The authors have developed, prototyped, and demonstrated the feasibility of a novel robotic technique for rapid fabrication of composite structures. Its chief innovation is that, unlike all other available fabrication methods, it does not require a mold. Instead, the structure is built patch by patch, using a rapidly reconfigurable forming surface, and a robot to position the evolving part. Both of these components are programmable, so only the control software needs to be changed to produce a new shape. Hence it should be possible to automatically program the system to produce a shape directly from an electronic model of it. It is therefore likely that the method will enable faster and less expensive fabrication of composites.

  20. Performance of the Cement Matrix Composite Material With Rubber Powder

    Institute of Scientific and Technical Information of China (English)

    SONG Shao-min; LIU Juan-hong; ZHANG Xi-qing

    2004-01-01

    The effect of the deferent rubber content substituted for fine aggregate on the mortar performancewas studied. The effects of the rubber coated with the coating materials on the mortar compressive strength, bendingstrength and impact work were discussed. The optimum rubber powder content and the suitable coating materialwere found. Through the electrical probe test- BEI, SEI and calcium ion distribution, and the slight crack and theinterface between the rubber and cement matrix are analyzed. The results show that the rubber powder coated withthe surface treatment materials A, B and C bas the capability of absorbing a large amount of energy under thecompressive and flexural load and the slight cracks of R- C were controlled and restrained.

  1. Multiple strengthening mechanisms in nanoparticle-reinforced copper matrix composites

    Indian Academy of Sciences (India)

    D Bozic; J Stasic; B Dimcic; M Vilotijevic; V Rajkovic

    2011-04-01

    The multiple hardening mechanisms of a copper matrix have been presented and discussed. The prealloyed ball milled Cu–3 wt.%Al and the atomized Cu–0.6 wt.%Ti–2.5 wt.%TiB2 powders have been used as starting materials. Dispersoid particles Al2O3 and TiB2 were formed in situ. The powders have been hot consolidated. Optical microscopy, SEM, TEM, and X-ray diffraction analysis were performed for microstructural characterization. Increase in microhardness of Cu–3 wt.%Al compacts is a consequence of the crystallite size refinement and the presence of Al2O3 particles. High hardening of Cu–0.6 wt.%Ti–2.5 wt.%TiB2 is a consequence of the presence of modular structure, Cu4Ti$_{(m)}$, and TiB2 particles.

  2. Damage evolution in uniaxial silicon carbide fiber-reinforced titanium matrix composites

    Science.gov (United States)

    Hanan, Jay Clarke

    Fiber fractures initiate damage zones ultimately determining the strength and lifetime of metal matrix composites (MMCs). The evolution of damage in a MMC comprising a row of unidirectional SiC fibers (32 vol.%) surrounded by a Ti matrix was examined using X-ray microdiffraction (gym beam size) and macrodiffraction (mm beam size). A comparison of high-energy X-ray diffraction (XRD) techniques including a powerful two-dimensional XRD method capable of obtaining powder averaged strains from a small number of grains is presented (HEmuXRD2). Using macrodiffraction, the bulk residual strain in the composite was determined against a true strain-free reference. In addition, the bulk in situ response of both the fiber reinforcement and the matrix to tensile stress was observed and compared to a three-dimensional finite element model. Using microdiffraction, multiple strain maps including both phases were collected in situ before, during, and after the application of tensile stress, providing an unprecedented detailed picture of the micromechanical behavior in the laminate metal matrix composite. Finally, the elastic axial strains were compared to predictions from a modified shear lag model, which unlike other shear lag models, considers the elastic response of both constituents. The strains showed excellent correlation with the model. The results confirmed, for the first time, both the need and validity of this new model specifically developed for large scale multifracture and damage evolution simulations of metal matrix composites. The results also provided unprecedented insight for the model, revealing the necessity of incorporating such factors as plasticity of the matrix, residual stress in the composite, and selection of the load sharing parameter. The irradiation of a small number of grains provided strain measurements comparable to a continuum mechanical state in the material. Along the fiber axes, thermal residual stresses of 740 MPa (fibers) and +350 MPa (matrix

  3. Microstructure and high temperature compatibility of composite consisting of magnesium oxide matrix and zirconium dioxide filaments

    International Nuclear Information System (INIS)

    Presented are the investigation results of interface interaction between the filament (ZrO2) and matrix (MgO) as well as peculiarities of its microstructure independence on the content of reinforcing phase. Investigation of composition microstructure and high-temperature compatibility of its components has been carried out by methods of light and electron microscopy, X-ray phase and micro X-ray spectral analyses. It is shown that reinforcing of magnium oxide with zirconium dioxide filaments is accompanied by two competitive phenomena. On one side, formation of solid solution zone (of limited coherence) promotes curing of different structural imperfections in matrix, decelerates crack propagation. On other side, solid solution zone presence at the interface filament-matrix slightly decreases the reinforcing effect, because the interface becomes more permeable for the propagation of defects of different kind in comparison with compositions, where filament and matrix do not interact with each other

  4. High Porosity Alumina as Matrix Material for Composites of Al-Mg Alloys

    International Nuclear Information System (INIS)

    The sophisticated industry and technologies require higher and higher assumptions against mechanical strength and surface hardness of ceramic reinforced metal alloys and metal matrix composites. Applying the well-known alumina powders by dry pressing technology and some special pore-forming additives and sintering technology the authors have successfully developed a new, high porosity alumina matrix material for composites of advenced Al-Mg alloys. The developed new matrix material have higher than 30% porosity, with homogenous porous structure and pore sizes from few nano up to 2–3 mm depending on the alloys containments. Thanks to the used materials and the sintering conditions the authors could decrease the wetting angles less than 90° between the high porosity alumina matrix and the Al-Mg alloys. Applied analytical methods in this research were laser granulometry, scanning electron microscopy, and X-ray diffraction. Digital image analysis was applied to microscopy results, to enhance the results of transformation

  5. Carbon fiber/reaction-bonded carbide matrix for composite materials - Manufacture and characterization

    International Nuclear Information System (INIS)

    The processing of self-healing ceramic matrix composites by a short time and low cost process was studied. This process is based on the deposition of fiber dual inter-phases by chemical vapor infiltration and on the densification of the matrix by reactive melt infiltration of silicon. To prevent fibers (ex-PAN carbon fibers) from oxidation in service, a self-healing matrix made of reaction bonded silicon carbide and reaction bonded boron carbide was used. Boron carbide is introduced inside the fiber preform from ceramic suspension whereas silicon carbide is formed by the reaction of liquid silicon with a porous carbon xerogel in the preform. The ceramic matrix composites obtained are near net shape, have a bending stress at failure at room temperature around 300 MPa and have shown their ability to self-healing in oxidizing conditions. (authors)

  6. Structure and properties of nanocrystalline soft magnetic composite materials with silicon polymer matrix

    International Nuclear Information System (INIS)

    The paper concerns investigation of nanocrystalline composites technology preparation. The composites in the form of rings with rectangular transverse section, and with polymer matrix and nanocrystalline metallic powders fulfillment were made, for obtaining good ferromagnetic properties. The nanocrystalline ferromagnetic powders were manufactured by high-energy ball milling of metallic glasses strips in an as-quenched state. Generally for investigation, Co matrix alloys with the silicon polymer were used. Magnetic properties in the form of hysteresis loop by rings method were measured. Generally composite cores showed lower soft ferromagnetic properties than winded cores of nanocrystalline strips, but composite cores showed interesting mechanical properties. Furthermore, the structure of strips and powders on properties of composites were investigated

  7. Structure and properties of nanocrystalline soft magnetic composite materials with silicon polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Dobrzanski, L.A. [Mechanical Engineering Faculty, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A Street, Gliwice 44-100 (Poland); Nowosielski, R. [Mechanical Engineering Faculty, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A Street, Gliwice 44-100 (Poland); Konieczny, J. [Mechanical Engineering Faculty, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A Street, Gliwice 44-100 (Poland)]. E-mail: jk@zmn.mt.polsl.gliwice.pl; PrzybyI, A. [Faculty of Materials Processing Technology and Applied Physics, Czestochowa University of Technology, Armii Krajowej 19 Street, Czestochowa 42-200 (Poland); WysIocki, J. [Faculty of Materials Processing Technology and Applied Physics, Czestochowa University of Technology, Armii Krajowej 19 Street, Czestochowa 42-200 (Poland)

    2005-04-15

    The paper concerns investigation of nanocrystalline composites technology preparation. The composites in the form of rings with rectangular transverse section, and with polymer matrix and nanocrystalline metallic powders fulfillment were made, for obtaining good ferromagnetic properties. The nanocrystalline ferromagnetic powders were manufactured by high-energy ball milling of metallic glasses strips in an as-quenched state. Generally for investigation, Co matrix alloys with the silicon polymer were used. Magnetic properties in the form of hysteresis loop by rings method were measured. Generally composite cores showed lower soft ferromagnetic properties than winded cores of nanocrystalline strips, but composite cores showed interesting mechanical properties. Furthermore, the structure of strips and powders on properties of composites were investigated.

  8. Ablation and radar-wave transmission performances of the nitride ceramic matrix composites

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The 2.5 dimensional silica fiber reinforced nitride matrix composites (2.5D SiO2f/Si3N4-BN) were prepared through the preceramic polymer impregnation pyro- lysis (PIP) method. The ablation and radar-wave transparent performances of the composite at high temperature were evaluated under arc jet. The composition and ablation surface microstructures were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that the 2.5D SiO2f/Si3N4-BN composites have a linear ablation rate of 0.33 mm/s and high radar-wave trans- parent ratio of 98.6%. The fused layer and the matrix are protected by each other, and no fused layer accumulates on the ablation surface. The nitride composite is a high-temperature ablation resistivity and microwave transparent material.

  9. Microstructural characterisation of electrodeposited coatings of metal matrix composite with alumina nanoparticles

    Science.gov (United States)

    Indyka, P.; Beltowska-Lehman, E.; Bigos, A.

    2012-03-01

    In the present work a nanocrystalline Ni-W metallic matrix was used to fabricate Ni-W/Al2O3 composite coatings. The MMC (metal matrix composite) coatings with inert α-Al2O3 particles (30 - 90 nm) were electrodeposited from aqueous electrolytes under direct current (DC) and controlled hydrodynamic conditions in a system with a rotating disk electrode (RDE). The chemical composition and microstructure of electrodeposited composites mainly control their functional properties; however, the particles must be uniformly dispersed to exhibit the dispersion-hardening effect. In order to increase the alumina particles incorporation as well as to promote the uniform distribution of the ceramic phase in a matrix, outer ultrasonic field was applied during electrodeposition. The influence of embedded alumina nanoparticles on structural characteristics (morphology, phase composition, residual stresses) of the resulting Ni-W/Al2O3 coatings was investigated in order to obtain a nanocomposite with high hardness and relatively low residual stresses. Surface and cross-section morphology and the chemical composition of deposits was examined in the scanning electron microscope, the EDS technique was used. Microstructure and phase composition were determined by transmission electron microscopy and X-ray diffraction. Based on microstructural and micromechanical properties of the coatings, the optimum conditions for obtaining crack-free homogeneous Ni-W/Al2O3 composite coatings have been determined.

  10. Determination of lattice orientation in aluminium alloy grains by low energy gallium ion-channelling

    International Nuclear Information System (INIS)

    Polished sections of a fine-grained aluminium, silicon carbide metal matrix composite (MMC) alloy were prepared by sputtering using a low energy gallium ion source and column (FIB). The MMC had been processed by high temperature extrusion. Images of the polished surface were recorded using the ion-induced secondary electron emission. The metal matrix grains were distinguished by gallium ion-channelling contrast from the silicon carbide component. The variation of the contrast from the aluminium grains with tilt angle can be recorded and used to determine lattice orientation with the contrast from the silicon carbide (SiC) component as a reference. This method is rapid and suits site-specific investigations where classical methods of sample preparation fail.

  11. Determination of lattice orientation in aluminium alloy grains by low energy gallium ion-channelling

    Energy Technology Data Exchange (ETDEWEB)

    Silk, Jonathan R. [Aerospace Metal Composites Ltd., RAE Road, Farnborough, GU14 6XE (United Kingdom); Dashwood, Richard J. [WMG, University of Warwick, Coventry, CV4 7AL (United Kingdom); Chater, Richard J., E-mail: r.chater@imperial.ac.u [Department of Materials, Imperial College, London SW7 2AZ (United Kingdom)

    2010-06-15

    Polished sections of a fine-grained aluminium, silicon carbide metal matrix composite (MMC) alloy were prepared by sputtering using a low energy gallium ion source and column (FIB). The MMC had been processed by high temperature extrusion. Images of the polished surface were recorded using the ion-induced secondary electron emission. The metal matrix grains were distinguished by gallium ion-channelling contrast from the silicon carbide component. The variation of the contrast from the aluminium grains with tilt angle can be recorded and used to determine lattice orientation with the contrast from the silicon carbide (SiC) component as a reference. This method is rapid and suits site-specific investigations where classical methods of sample preparation fail.

  12. Modern composite materials manufactured by pressure infiltration method

    OpenAIRE

    L.A. Dobrzański; M. Kremzer; M. Drak

    2008-01-01

    Purpose: The purpose of this paper is to present the technique of manufacturing the composite materials based on porous ceramic preforms infiltrated by liquid aluminium alloy and examination of the structure and corrosion resistance of those materials.Design/methodology/approach: The material for investigations was manufactured by pressure infiltration method of ceramic porous preforms. The eutectic aluminium alloy EN AC – AlSi12 was use as a matrix while as reinforcement were used...

  13. Investigation of Coating Layer to Reduce Thermal Stresses in Steel Fiber Reinforced Aluminum Metal Matrix Composite

    OpenAIRE

    OKUMUŞ, Fuat

    2011-01-01

    In this study, by using coating layers to reduce thermal stresses in the metal matrix composites with a mismatch in coefficients of thermal expansions of fiber and matrix is investigated. The thermoelastic solutions based on a three cylinder model are deformed. It is shown that the effectiveness of the layer can be defined by the product of its cofficients of thermal expansions and thickness and that a compensating layer with a sufficiently high coefficient of thermal expansions can reduce th...

  14. Damage Mechanisms of a TiB2-Reinforced Steel Matrix Composite for Lightweight Automotive Application

    Science.gov (United States)

    Li, Y. Z.; Luo, Z. C.; Yi, H. L.; Huang, M. X.

    2016-05-01

    The microscopic strain-and-stress fields related to primary and eutectic particles in a lightweight steel matrix composite (SMC) produced by in situ precipitation of TiB2 particles during solidification were investigated by means of microscale digital image correlation and finite element method. The damage process in this SMC is a sequential process of primary particles cracking, the fracture of the surrounding eutectic particles, and finally the growth and coalescence of voids in the ferrite matrix.

  15. Poly(borosiloxanes) as precursors for carbon fiber ceramic matrix composites

    OpenAIRE

    Renato Luiz Siqueira; Inez Valéria Pagotto Yoshida; Luiz Claudio Pardini; Marco Antônio Schiavon

    2007-01-01

    Ceramic matrix composites (CMCs), constituted of a silicon boron oxycarbide (SiBCO) matrix and unidirectional carbon fiber rods as a reinforcement phase, were prepared by pyrolysis of carbon fiber rods wrapped in polysiloxane (PS) or poly(borosiloxane) (PBS) matrices. The preparation of the polymeric precursors involved hydrolysis/condensation reactions of alkoxysilanes in the presence and absence of boric acid, with B/Si atomic ratios of 0.2 and 0.5. Infrared spectra of PBS showed evidence o...

  16. Phase analysis of nickel surface layer implanted by aluminium

    International Nuclear Information System (INIS)

    The experimental result of study of microstructure and phase composition in the surface zone of nickel target under intensive implantation of aluminium ions on a vacuum-arc and plasma flow source Raduga-5 are presented. It was established that the fine dispersed intermetallic precipitates Ni3Al and NiAl and the variable composition solid solution of aluminium in nickel are formed

  17. The high frequency fatigue behavior of continuous-fiber-reinforced ceramic matrix composites

    Science.gov (United States)

    Chawla, Nikhilesh

    Many potential applications for continuous fiber ceramic matrix composites (CFCMCs), such as gas turbines and heat exchangers, will involve high frequency cyclic loading (75 Hz or higher). While most of the work in the area of fatigue of CFCMCs has concentrated on low frequency behavior, it has been shown that fatigue at high frequencies can exacerbate the accumulation of microstructural damage and significantly decrease fatigue life. "Soft" matrix composites with strong interface bonding provided superior resistance to high frequency fatigue damage. Nicalon/SiCON composites with strong interfacial bonding between the fibers and matrix exhibited very little internal heating during high frequency fatigue loading. This composite system exhibited excellent fatigue life, with fatigue runout at 10sp7 cycles occurring for stresses close to 80% of the ultimate strength (at a loading frequency of 100 Hz). Thick fiber coatings may be more effective in reducing the amount of fiber wear and damage which occur during high frequency fatigue. More effective lubrication at the fiber/matrix interface was achieved with thicker carbon coatings in Nicalon/C/SiC composites subjected to high frequency fatigue loading. Composites with thicker coatings exhibited substantially lower frictional heating and had much higher fatigue lives. The effect of laminate stacking sequence had a significant effect on the high frequency fatigue behavior of CFCMCs. In SCS-6/Sisb3Nsb4 composites, frictional heating in angle-ply laminates (±45) was substantially higher than that in cross-ply laminates (0/90). Since the angle-ply had a lower stiffness, matrix microcracking in this composite was more predominant. Finally, preliminary fatigue damage mechanism maps for CFCMCs were developed. These maps provided a means to identify which fatigue mechanisms were operating at a given stress level and number of cycles.

  18. Microcracking mechanisms and interface toughening of semi-IPN polyimide matrix composites

    Science.gov (United States)

    Lee, Byung L.; Pater, R.

    1990-01-01

    A new research program was initiated as a preliminary phase. The following three objectives are being pursued for the overall program: to elucidate the mechanisms of microcracking for graphite fiber-reinforced semi-IPN polyimide matrix composites under mechanical and thermal cyclic loading; to devise material engineering solutions for possible improvement of fatigue damage resistance (or the increase of fatigue endurance strength) of semi-IPN matrix composites by tailoring of modulus and toughness of fiber-resin interface region; and to assess processing characteristics of the composites and their roles in controlling the resistance of composites to microcracking and the effectiveness of interface toughening. The main emphasis was placed upon the initial screening of material systems and optimization of processing conditions for semi-IPN matrix composites with tailored interface. As a first set of control material systems to study, the composites were prepared with unsized Celion 6000 graphite fiber reinforcement and the following resin matrices of varied fracture toughness: PMR-15 thermoset polyimide, semi-IPN of PNR-15 thermoset polyimide and NR150B2 thermoplastic polyimide in 75/25 ratio, and semi-IPN of PMR-15 and NR150B2 in 50/50 ratio. For the composites with the resin matrix of semi-IPN in 75/25 ratio, interface tailoring was attempted by using graphite fibers coated with the resins of systematically varied fracture toughness. In the continuing work, a broad range of interlayer toughness will be achieved by coating the fibers with reactants of semi-IPN having lower or higher content of thermoplastic constituent in comparison with the composition of surrounding resin matrix. In pursuing the objectives of the overall research program, the respective roles and interaction of critical parameters were defined.

  19. Niobium-Matrix-Composite High-Temperature Turbine Blades

    Science.gov (United States)

    Kaplan, Richard B.; Tuffias, Robert H.; La Ferla, Raffaele; Heng, Sangvavann; Harding, John T.

    1995-01-01

    High-temperture composite-material turbine blades comprising mainly niobium matrices reinforced with refractory-material fibers being developed. Of refractory fibrous materials investigated, FP-AL(2)0(3), tungsten, and polymer-based SiC fibers most promising. Blade of this type hollow and formed in nearly net shape by wrapping mesh of reinforcing refractory fibers around molybdenum mandrel, then using thermal-gradient chemical-vapor infiltration (CVI) to fill interstices with niobium. CVI process controllable and repeatable, and kinetics of both deposition and infiltration well understood.

  20. Strong and tough Hi-Nicalon-fiber-reinforced celsian-matrix composites

    International Nuclear Information System (INIS)

    Strong, tough, and almost fully dense BN/SiC-coated Hi-Nicalon-fiber-reinforced celsian-matrix composites have been fabricated by impregnation of the fiber tows with the matrix slurry, winding on a drum, stacking the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from a mixed oxide precursor. The unidirectional composites having ∼42 vol% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of stress and strain at the proportional limit were 435 ± 35 MPa and 0.27 ± 0.01%, respectively, and an apparent ultimate strength of 900 ± 60 MPa was observed. Young's modulus of the composites was 165 ± 5 GPa