WorldWideScience

Sample records for aluminium ions implanted

  1. Characterization of nitrogen-ion-implanted aluminium

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Breuer, K.; Leonhardt, G.

    1990-01-01

    Aluminium has been implanted with nitrogen ions at different temperatures. The implanted samples have been characterized by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and electron energy-loss spectroscopy (EELS). Deconvolution procedures are needed to separate the influence of the ion sputter profiling by AES and XPS from the nitrogen-ion-beam-induced effects. The chemical state of Al, N, O and C was identified by deconvolution of the measured spectra. In general, there were double-peak structures observed for N 1s and O 1s, identified as contributions from nitrides and weakly bound nitrogen, and oxides and weakly bound oxygen, respectively. Auger analysis confirms the influence of the nitrogen ion fluence on the shape of the concentration distribution. The influence of temperature on the chemical state of implanted aluminium and on the concentration distribution is discussed. (orig.)

  2. Formation of aluminium nitride and segregation of Cu impurity atoms in aluminium implanted by high dose nitrogen ions

    International Nuclear Information System (INIS)

    Lin Chenglu; Hemment, P.L.F.; Li Jinhua; Zou Shichang

    1994-01-01

    Aluminium films with a thickness of 7000 A (containing 0.85% copper) were deposited on silicon substrates. 400 keV N 2 + or 350 keV N + ions were implanted into the aluminium films or at the interface between the aluminium and silicon, respectively. Automatic spreading resistance (ASR), Fourier transform infrared spectroscopy (FTIR) and Rutherford backscattering (RBS) and channelling were used to characterize the formation of aluminium nitride and the depth distribution of the Cu impurity in the aluminium films after ion implantation and post-annealing. The formation of a stoichiometric AlN layer with high resistance was evident from ASR, RBS analysis and FTIR measurements by the presence of the absorption band at 650 cm -1 . When the implanted nitrogen is near the interface between the aluminium and silicon, a multilayer structure can be obtained, which consists of aluminium, aluminium nitride and the silicon substrate. Cu, which is a background impurity in the deposited aluminium films, segregated into the synthesised aluminium nitride during high dose nitrogen ion implantation. This is due to irradiation-induced segregation during ion implantation. (orig.)

  3. Titanium and aluminium ions implanted by plasma on polyethylene

    International Nuclear Information System (INIS)

    Cruz, G.J.; Olayo, M.G.; Lopez, R.; Granda, E.; Munoz, A.; Valencia, R.; Morales, J.

    2007-01-01

    The ion implantation by plasma of titanium and aluminum on polyethylene thin films (PE) is presented. The results indicate that the polymers reacted firstly with the oxygen and/or nitrogen carrying gases, and later its received the metallic particles that formed thin films. The stainless steel and the titanium formed a single phase. The metallic layers grew in the interval of 1 to 2 nm/min, its are thin, but enough to change the hardness of the polymer that it is increased in more of 20 times. (Author)

  4. Ion nitriding of aluminium

    International Nuclear Information System (INIS)

    Fitz, T.

    2002-09-01

    The present study is devoted to the investigation of the mechanism of aluminium nitriding by a technique that employs implantation of low-energy nitrogen ions and diffusional transport of atoms. The nitriding of aluminium is investigated, because this is a method for surface modification of aluminium and has a potential for application in a broad spectrum of fields such as automobile, marine, aviation, space technologies, etc. However, at present nitriding of aluminium does not find any large scale industrial application, due to problems in the formation of stoichiometric aluminium nitride layers with a sufficient thickness and good quality. For the purposes of this study, ion nitriding is chosen, as an ion beam method with the advantage of good and independent control over the process parameters, which thus can be related uniquely to the physical properties of the resulting layers. Moreover, ion nitriding has a close similarity to plasma nitriding and plasma immersion ion implantation, which are methods with a potential for industrial application. (orig.)

  5. A study of enhanced diffusion during high dose high flux pulsed metal ion implantation into steel and aluminium

    International Nuclear Information System (INIS)

    Zhang Tonghe; Ji Chengzhou; Shen Jinghua; Chen Jun

    1992-01-01

    The depth profiles of metal ions implanted into steel and aluminium were measured by Rutherford backscattering (RBS). The ions of Mo, W and Y, produced by a metal vapour vacuum are ion source (MEVVA) were implanted at an energy range from 25 to 50 keV for doses of (2-5)x10 17 cm -2 into H13 steel and aluminium. Beam currents were from 0.5 to 1.0 A. The beam flux is in the range of 25 to 75 μAcm -2 . In order to simulate the profiles, a formula which includes the sputtering yield, diffusion coefficients and reaction rate was obtained. The results demonstrate that the penetration depth and retained dose increase with increasing beam flux for Mo implanted into aluminium. The peak concentration of Mo implanted H13 steel increases with increasing ion flux. In contrast to this for Y implantation into steel, the peak concentration of Y decreases with increasing ion flux. For an ion flux of 25 μAcm -2 for Mo, Y and W implantation into steel, the penetration depth and retained dose are 3-5 times greater than the theoretical values. The diffusion coefficients are about 10 -16 to 10 -15 s -1 . If the ion flux is greater than 47 μAcm -2 , the penetration depth and retained dose are 5 to 10 times greater than the theoretical values for Mo implanted aluminium. The diffusion coefficients increase with increasing ion flux for Mo implanted aluminium. The diffusion coefficients hardly change with increasing ion flux for Y and Mo implanted H13 steel. The retained dose increases 0.43 to 1.16 times for Y implanted steel for an ion flux of 25 μAcm -2 . Finally, the influence of phases precipitates, reaction rate and diffusion on retained dose, diffusion coefficient and penetration depth are discussed. (orig.)

  6. Friction and wear of stainless steel, titanium and aluminium with various surface treatments, ion implantation and overlay hard coatings

    International Nuclear Information System (INIS)

    Bunshah, R.F.

    1979-01-01

    This paper deals with the evaluation of the wear properties of 304 stainless steel, commercial grade titanium and commercial grade aluminium without and with different surface treatments, i.e., ion implantation of boron and nitrogen, and overlay coating of superhard materials, titanium carbide and nitride by the Biased Activated Reactive Evaporation (BARE) process. Wear properties were evaluated in adhesive, erosive and abrasive modes of wear. In the case of adhesive wear, ion implantation resulted in an improved wear behaviour in lubricated conditions but had no beneficial effect in dry wear conditions. Overlay coatings on the other hand resulted in improved wear behaviour for both the dry and lubricating conditions. In the case of erosive wear with SiC particles at high velocities, overlay coatings showed higher erosion rates (typical of brittle materials in normal impingement) whereas ion implanted materials behaved similarly as untreated materials; i.e., a lower wear rate than the specimens with overlay coatings. In the case of abrasive wear, it was again observed that the wear rates of overlay coatings is far lower than the wear rates of untreated or ion implanted materials. (author)

  7. Ion implantation

    International Nuclear Information System (INIS)

    Dearnaley, Geoffrey

    1975-01-01

    First, ion implantation in semiconductors is discussed: ion penetration, annealing of damage, gettering, ion implanted semiconductor devices, equipement requirements for ion implantation. The importance of channeling for ion implantation is studied. Then, some applications of ion implantation in metals are presented: study of the corrosion of metals and alloys; influence or ion implantation on the surface-friction and wear properties of metals; hyperfine interactions in implanted metals

  8. Corrosion behaviour of ion implanted aluminium alloy in 0.1 M NaCl electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Chu, J W; Evans, P J [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D K [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    Aluminum and its alloys are widely used in industry because of their light weight, high strength and good corrosion resistance which is due to the formation of a protective oxide layer. However, under saline conditions such as those encountered in marine environments, this group of metals are vulnerable to localised degradation in the form of pitting corrosion. This type of corrosion involves the adsorption of an anion, such as chlorine, at the oxide solution interface. Ion implantation of metal ions has been shown to improve the corrosion resistance of a variety of materials. This effect occurs : when the implanted species reduces anion adsorption thereby decreasing the corrosion rate. In this paper we report on the pitting behavior of Ti implanted 2011 Al alloy in dilute sodium chloride solution. The Ti implanted surfaces exhibited an increased pitting potential and a reduced oxygen uptake. 5 refs., 3 figs.

  9. Corrosion behaviour of ion implanted aluminium alloy in 0.1 M NaCl electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Chu, J.W.; Evans, P.J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Aluminum and its alloys are widely used in industry because of their light weight, high strength and good corrosion resistance which is due to the formation of a protective oxide layer. However, under saline conditions such as those encountered in marine environments, this group of metals are vulnerable to localised degradation in the form of pitting corrosion. This type of corrosion involves the adsorption of an anion, such as chlorine, at the oxide solution interface. Ion implantation of metal ions has been shown to improve the corrosion resistance of a variety of materials. This effect occurs : when the implanted species reduces anion adsorption thereby decreasing the corrosion rate. In this paper we report on the pitting behavior of Ti implanted 2011 Al alloy in dilute sodium chloride solution. The Ti implanted surfaces exhibited an increased pitting potential and a reduced oxygen uptake. 5 refs., 3 figs.

  10. Rows of Dislocation Loops in Aluminium Irradiated by Aluminium Ions

    DEFF Research Database (Denmark)

    Henriksen, L.; Johansen, A.; Koch, J.

    1967-01-01

    Single-crystal aluminium specimens, irradiated with 50-keV aluminium ions, contain dislocation loops that are arranged in regular rows along <110 > directions. ©1967 The American Institute of Physics......Single-crystal aluminium specimens, irradiated with 50-keV aluminium ions, contain dislocation loops that are arranged in regular rows along directions. ©1967 The American Institute of Physics...

  11. Configuration and mobility of hydrogen implanted in aluminium

    International Nuclear Information System (INIS)

    Bugeat, J.P.; Chami, A.C.; Ligeon, E.

    1976-01-01

    Localization methods through channeling and nuclear reaction analysis using low energy ion beam were applied to the study of deuterium and hydrogen implanted in aluminium single crystals. It was shown that implanted hydrogen occupies a tetrahedral site in the lattice as far as the implantation temperature is lower than 175K. This fact is interpreted by considering an interaction between hydrogen and monovacancies created during the implantation [fr

  12. Implantation of Fe ions into aluminium fast cooled tapes; Vliyanie bombardirovki c uskorennymi do 70 keV jonami na structuru i svoistva alyuminievogo splava

    Energy Technology Data Exchange (ETDEWEB)

    Dimova, V; Danailov, D; Markov, T; Zlateva, G [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. po Metaloznanie i Tekhnologiya na Metalite; Angelov, Kh [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika

    1996-12-31

    Aluminium alloy containing 1% Zn is investigated as a material for fusion reactor first wall. The effect of 60 keV Fe ion implantation at a dose 10{sup 16}-10{sup 17} cm{sup -2} on the microstructure and properties of 50 {mu}m thick tapes has been investigated. It is found that implantation affects mainly the surface at the crystallite boundaries. An over-equilibrium solubility of Fe in the alloy Al-1% Zn has been established. Fe ions move by diffusion along the grain boundaries and contribute to increased magnetic properties after annealing at 250{sup o} C for at least 2 hours. Quasi-amorphous implanted alloy containing ferromagnetic atoms has been detected. The estimated Curie temperature has been estimated to 540 {sup o} C, which is typical for strongly diluted solid solutions. 3 refs., 6 figs.

  13. Lattice defects in ion-implanted aluminium studied by means of perturbed angular correlations. Pt. 1

    International Nuclear Information System (INIS)

    Pleiter, F.; Prasad, K.G.

    1984-01-01

    Migration and clustering of lattice defects after implantation of 111 In in Al and subsequent annealing at temperatures in the range from 80 to 800 K were investigated applying the DPAC technique. The effects of implantation dose, implantation temperature, laser irradiation, and plastic deformation were studied. The measurements on plastically deformed Al were complemented by positron lifetime measurements. Four In-defect clusters were observed that can be flagged by well-defined hyperfine interaction parameters, and their symmetry properties were determined by using single-crystal samples. Important conclusions are: (i) monovacancies are not trapped by In-atoms, (ii) small In-defect clusters are formed by direct trapping of divacancies and/or trivacancies, and (iii) extended In-defect clusters are very stable and anneal in the temperature range 600-700 K. Consequences for the interpretation of other measurements on dilute Al(In) alloys are discussed. (Auth.)

  14. Ion implantation

    International Nuclear Information System (INIS)

    Johnson, E.

    1986-01-01

    It is the purpose of the present paper to give a review of surface alloy processing by ion implantation. However, rather than covering this vast subject as a whole, the survey is confined to a presentation of the microstructures that can be found in metal surfaces after ion implantation. The presentation is limited to alloys processed by ion implantation proper, that is to processes in which the alloy compositions are altered significantly by direct injection of the implanted ions. The review is introduced by a presentation of the processes taking place during development of the fundamental event in ion implantation - the collision cascade, followed by a summary of the various microstructures which can be formed after ion implantation into metals. This is compared with the variability of microstructures that can be achieved by rapid solidification processing. The microstructures are subsequently discussed in the light of the processes which, as the implantations proceed, take place during and immediately after formation of the individual collision cascades. These collision cascades define the volumes inside which individual ions are slowed down in the implanted targets. They are not only centres for vigorous agitation but also the sources for formation of excess concentrations of point defects, which will influence development of particular microstructures. A final section presents a selection of specific structures which have been observed in different alloy systems. (orig./GSCH)

  15. Surface microhardening by ion implantation

    International Nuclear Information System (INIS)

    Singh, Amarjit

    1986-01-01

    The paper discusses the process and the underlying mechanism of surface microhardening by implanting suitable energetic ions in materials like 4145 steel, 304 stainless steel, aluminium and its 2024-T351 alloy. It has been observed that boron and nitrogen implantation in materials like 4145 steel and 304 stainless steel can produce a significant increase in surface hardness. Moreover the increase can be further enhanced with suitable overlay coatings such as aluminium (Al), Titanium (Ti) and carbon (C). The surface hardening due to implantation is attributed to precipitation hardening or the formation of stable/metastable phase or both. The effect of lithium implantation in aluminium and its alloy on microhardness with increasing ion dose and ion beam energy is also discussed. (author)

  16. Study of ionic movements during anodic oxidation of nitrogen-implanted aluminium

    International Nuclear Information System (INIS)

    Terwagne, G.; Lucas, S.; Bodart, F.; Sorensen, G.; Jensen, H.

    1990-01-01

    In recent years there has been a considerable interest in synthesizing aluminium nitrides by ion implantation in order to modify the tribological properties of aluminium. The growth of an oxide layer by anodic process on these synthesized aluminium nitrides gives an interesting oxide-on-semiconductor material with surprising dynamic and decorative properties. During the anodic oxidation, ionic movements are involved in the near-surface region of the aluminium material; these ionic movements have been studied by Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) on thin aluminium foils (7000 A) preimplanted with nitrogen and post-oxidized in an ammonium pentaborate solution. The growth of the oxide layer is reduced when the aluminium is preimplanted with nitrogen: the speed of oxidation depends on the implantation conditions (energy and fluence). Moreover, the aluminium nitride can be dissolved when all metallic aluminium staying between the surface and the AlN are consumed by the anodic process. (orig.)

  17. Titanium and aluminium ions implanted by plasma on polyethylene; lones de titanio y aluminio implantados por plasma sobre polietileno

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, G.J.; Olayo, M.G.; Lopez, R.; Granda, E.; Munoz, A.; Valencia, R. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Morales, J. [UAM-I, Apdo. Postal 5534, Iztapalapa, D.F. (Mexico)]. e-mail: gcc@nuclear.inin.mx

    2007-07-01

    The ion implantation by plasma of titanium and aluminum on polyethylene thin films (PE) is presented. The results indicate that the polymers reacted firstly with the oxygen and/or nitrogen carrying gases, and later its received the metallic particles that formed thin films. The stainless steel and the titanium formed a single phase. The metallic layers grew in the interval of 1 to 2 nm/min, its are thin, but enough to change the hardness of the polymer that it is increased in more of 20 times. (Author)

  18. Study of hydrogen implanted in aluminium

    International Nuclear Information System (INIS)

    Bugeat, J.P.; Chami, A.C.; Danielou, R.; Ligeon, E.

    1976-01-01

    An aluminium sample was implanted with deuterium and hydrogen at 5keV and 10keV respectively. The 1 H( 11 B,α) 8 Be* and D( 3 He,p) 4 He reactions were used for the analysis of H and D respectively. The implanted deuterium was shown to be as a whole in a tetrahedral site as far as the implantation temperature is lower than 175K, beyond that temperature the deuterium is randomly located. When the implantation temperature increases from 33K up to 275K the tetrahedral siting remains during annealing. The migration temperatures of hydrogen (or temperature of transition from the tetrahedral siting to a random distribution) experimentally observed during annealing (300K) and for increased implantation temperatures, show that the tetrahedral site is associated with a monovacancy migrating at 300K, the diffusion temperature of hydrogen being lower than 180K [fr

  19. An aluminium evaporation source for ion plating

    International Nuclear Information System (INIS)

    Walley, P.A.; Cross, K.B.

    1977-01-01

    Ion plating with aluminium is becoming increasingly accepted as a method of anti-corrosion surface passivation, the usual requirements being for a layer between 12 and 50 microns in thickness, (0.0005 to 0.002). The evaporation system described here offers a number of advantages over high power electron beam sources when used for aluminium ion plating. The source consists of a resistively heated, specially shaped, boron nitride-titanium diboride boat and a metering feed system. Its main features are small physical size, soft vacuum compatibility, low power consumption and metered evaporation output. (author)

  20. Optical effects of ion implantation

    International Nuclear Information System (INIS)

    Townsend, P.D.

    1987-01-01

    The review concerns the effects of ion implantation that specifically relate to the optical properties of insulators. Topics which are reviewed include: ion implantation, ion range and damage distributions, colour centre production by ion implantation, high dose ion implantation, and applications for integrated optics. Numerous examples are presented of both diagnostic and industrial examples of ion implantation effects in insulators. (U.K.)

  1. Hyperfine interactions of iron implanted into aluminium

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Drwiega, M.; Sawicki, J.; Stanek, J.

    1976-01-01

    Systematical investigations of the stable 57 Fe implanted into Al at energies of 10 to 70 keV and doses of 10 14 to 2.10 17 ions/cm 2 were performed by means of conversion electron Moessbauer spectroscopy at room and liquid nitrogen temperatures. The spectra measured were interpreted as originated by iron monomers (single line) and by iron associations, mostly dimers (dublet). The isomer shifts of both components differ considerably and are constant against iron concentration. The ratio of both components depends strongly on the iron concentration. The quadrupole splitting of the doublet rises with the concentration, the rise being reproduced by computer simulations of efg distributions in densely packed random charge defected lattices. The annealing processes were investigated. The spectra of the Fe-Al samples made by ion implantation and by a splat-cooling technique are well comparable. (author)

  2. Ion implantation in semiconductors

    International Nuclear Information System (INIS)

    Gusev, V.; Gusevova, M.

    1980-01-01

    The historical development is described of the method of ion implantation, the physical research of the method, its technological solution and practical uses. The method is universally applicable, allows the implantation of arbitrary atoms to an arbitrary material, ensures high purity of the doping element. It is linked with sample processing at low temperatures. In implantation it is possible to independently change the dose and energy of the ions thereby affecting the spatial distribution of the ions. (M.S.)

  3. Ion implantation in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, V; Gusevova, M

    1980-06-01

    The historical development of the method of ion implantation, the physical research of the method, its technological solution and practical uses is described. The method is universally applicable, allows the implantation of arbitrary atoms to an arbitrary material and ensures high purity of the doping element. It is linked with sample processing at low temperatures. In implantation it is possible to independently change the dose and energy of the ions thereby affecting the spatial distribution of the ions.

  4. Ion implantation into iron

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1978-01-01

    The distribution of implanted ions in iron, the friction characteristics and the corrosion of iron were studied. The distribution of Ni or Cr ions implanted into mild steel was measured. The accelerated voltage was 150 keV, and the beam current density was about 2 microampere/cm 2 . The measurement was made with an ion microanalyzer. The measured distribution was compared with that of LSS theory. Deep invasion of Ni was seen in the measured distribution. The distribution of Cr ions was different from the distribution calculated by the LSS theory. The relative friction coefficient of mild steel varied according to the dose of implanted Cu or N ions, and to the accelerating voltage. Formation of compound metals on the surfaces of metals by ion-implantation was investigated for the purpose to prevent the corrosion of metals. The resistance of mild steel in which Ni ions were implanted was larger than that of mild steel without any treatment. (Kato, T.)

  5. Ion implantation technology

    CERN Document Server

    Downey, DF; Jones, KS; Ryding, G

    1993-01-01

    Ion implantation technology has made a major contribution to the dramatic advances in integrated circuit technology since the early 1970's. The ever-present need for accurate models in ion implanted species will become absolutely vital in the future due to shrinking feature sizes. Successful wide application of ion implantation, as well as exploitation of newly identified opportunities, will require the development of comprehensive implant models. The 141 papers (including 24 invited papers) in this volume address the most recent developments in this field. New structures and possible approach

  6. Ion implantation of metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1976-01-01

    In this part of the paper descriptions are given of the effects of ion implantation on (a) friction and wear in metals; and (b) corrosion of metals. In the study of corrosion, ion implantation can be used either to introduce a constituent that is known to convey corrosion resistance, or more generally to examine the parameters which control corrosion. (U.K.)

  7. Quantitative ion implantation

    International Nuclear Information System (INIS)

    Gries, W.H.

    1976-06-01

    This is a report of the study of the implantation of heavy ions at medium keV-energies into electrically conducting mono-elemental solids, at ion doses too small to cause significant loss of the implanted ions by resputtering. The study has been undertaken to investigate the possibility of accurate portioning of matter in submicrogram quantities, with some specific applications in mind. The problem is extensively investigated both on a theoretical level and in practice. A mathematical model is developed for calculating the loss of implanted ions by resputtering as a function of the implanted ion dose and the sputtering yield. Numerical data are produced therefrom which permit a good order-of-magnitude estimate of the loss for any ion/solid combination in which the ions are heavier than the solid atoms, and for any ion energy from 10 to 300 keV. The implanted ion dose is measured by integration of the ion beam current, and equipment and techniques are described which make possible the accurate integration of an ion current in an electromagnetic isotope separator. The methods are applied to two sample cases, one being a stable isotope, the other a radioisotope. In both cases independent methods are used to show that the implantation is indeed quantitative, as predicted. At the same time the sample cases are used to demonstrate two possible applications for quantitative ion implantation, viz. firstly for the manufacture of calibration standards for instrumental micromethods of elemental trace analysis in metals, and secondly for the determination of the half-lives of long-lived radioisotopes by a specific activity method. It is concluded that the present study has advanced quantitative ion implantation to the state where it can be successfully applied to the solution of problems in other fields

  8. Angular distributions of sputtered particles from lithium-implanted aluminium and copper crystals

    International Nuclear Information System (INIS)

    Johansen, A.; Johnson, E.; Sarholt-Kristensen, L.; Steenstrup, S.; Andersen, H.H.; Buhanov, V.M.; Chernysh, V.S.; Ivanov, I.N.; Minnebaev, K.F.

    1991-01-01

    The anisotropy of angular distributions of sputtered ions from lithium implanted aluminium and copper single crystals, measured by SIMS analysis, have been used to obtain information about the microstructure of the implanted layers. Sputtered Al + distributions from the {111} surface show three-fold symmetry with maximum intensity near the and directions respectively, while Li + distributions show maximum intensity only in the directions. From {100} crystals the Al + distributions have four-fold symmetry while there are no preferential ejection directions for the Li + ions. This agrees conceptually with the fact that the implanted layer contains the ordered Al 3 Li (δ') phase, which has earlier been observed by TEM analysis on implanted samples. In contrast, a similar study of Li + implanted copper crystals shows that the implanted lithium is randomly located. (orig.)

  9. Lattice site occupation of insoluble impurity atoms in aluminium after implantation and irradiation

    International Nuclear Information System (INIS)

    Kloska, M.K.

    1987-03-01

    Several elements, whose atoms are oversized and insoluble in aluminium, were implanted in aluminium single crystals at different temperatures. The substitutional fraction and the lattice site location were determined using the ion-channeling technique. The substitutional fractions obtained by in situ analyses are strongly dependent on the implantation temperature. At implantation and analysis temperatures below the temperature of stage III the substitutional fraction is significant larger than at temperatures above. With increasing heat of solution the substitutional fraction decreases for all implantation temperatures. The nonsubstitutional component consists of impurity atom-vacancy complexes. These complexes are formed in the cooling phase of the cascade. At temperatures above the temperature of stage III additional free mobile vacancies were captured by the impurity atoms. The capture radius is correlated with the heat of solution and the size mismatch energy. The results constitute for the first time an experimental confirmation of molecular dynamics calculations of cascade evolution. (orig./BHO)

  10. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2012-01-01

    The current paper presents a state-of-the-art review in the field of ion implantation of polymers. Numerous published studies of polymers modified by ion beams are analysed. General aspects of ion stopping, latent track formation and changes of structure and composition of organic materials...... are discussed. Related to that, the effects of radiothermolysis, degassing and carbonisation are considered. Specificity of depth distributions of implanted into polymers impurities is analysed and the case of high-fluence implantation is emphasised. Within rather broad topic of ion bombardment, the focus...... is put on the low-energy implantation of metal ions causing the nucleation and growth of nanoparticles in the shallow polymer layers. Electrical, optical and magnetic properties of metal/polymer composites are under the discussion and the approaches towards practical applications are overviewed....

  11. Ion implantation for microelectronics

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1977-01-01

    Ion implantation has proved to be a versatile and efficient means of producing microelectronic devices. This review summarizes the relevant physics and technology and assesses the advantages of the method. Examples are then given of widely different device structures which have been made by ion implantation. While most of the industrial application has been in silicon, good progress continues to be made in the more difficult field of compound semiconductors. Equipment designed for the industrial ion implantation of microelectronic devices is discussed briefly. (Auth.)

  12. Plasma source ion implantation

    International Nuclear Information System (INIS)

    Conrad, J.R.; Forest, C.

    1986-01-01

    The authors' technique allows the ion implantation to be performed directly within the ion source at higher currents without ion beam extraction and transport. The potential benefits include greatly increased production rates (factors of 10-1000) and the ability to implant non-planar targets without rastering or shadowing. The technique eliminates the ion extractor grid set, beam raster equipment, drift space and target manipulator equipment. The target to be implanted is placed directly within the plasma source and is biased to a large negative potential so that plasma ions gain energy as they accelerate through the potential drop across the sheath that forms at the plasma boundary. Because the sheath surrounds the target on all sides, all surfaces of the target are implanted without the necessity to raster the beam or to rotate the target. The authors have succeeded in implanting nitrogen ions in a silicon target to the depths and concentrations required for surface treatment of materials like stainless steel and titanium alloys. They have performed ESCA measurements of the penetration depth profile of a silicon target that was biased to 30 kV in a nitrogen discharge plasma. Nitrogen ions were implanted to a depth of 700A at a peak concentration of 30% atomic. The measured profile is quite similar to a previously obtained profile in titanium targets with conventional techniques

  13. Ion implantation into diamond

    International Nuclear Information System (INIS)

    Sato, Susumu

    1994-01-01

    The graphitization and the change to amorphous state of diamond surface layer by ion implantation and its characteristics are reported. In the diamond surface, into which more than 10 16 ions/cm 2 was implanted, the diamond crystals are broken, and the structure changes to other carbon structure such as amorphous state or graphite. Accompanying this change of structure, the electric conductivity of the implanted layer shows two discontinuous values due to high resistance and low resistance. This control of structure can be done by the temperature of the base during the ion implantation into diamond. Also it is referred to that by the base temperature during implantation, the mutual change of the structure between amorphous state and graphite can be controlled. The change of the electric resistance and the optical characteristics by the ion implantation into diamond surface, the structural analysis by Raman spectroscopy, and the control of the structure of the implanted layer by the base temperature during implantation are reported. (K.I.)

  14. Ion implantation - an introduction

    International Nuclear Information System (INIS)

    Townsend, P.D.

    1986-01-01

    Ion implantation is a widely used technique with a literature that covers semiconductor production, surface treatments of steels, corrosion resistance, catalysis and integrated optics. This brief introduction outlines advantages of the technique, some aspects of the underlying physics and examples of current applications. Ion implantation is already an essential part of semiconductor technology while in many other areas it is still in an early stage of development. The future scope of the subject is discussed. (author)

  15. High energy ion implantation

    International Nuclear Information System (INIS)

    Ziegler, J.F.

    1985-01-01

    High energy ion implantation offers the oppertunity for unique structures in semiconductor processing. The unusual physical properties of such implantations are discussed as well as the special problems in masking and damage annealing. A review is made of proposed circuit structures which involve deep implantation. Examples are: deep buried bipolar collectors fabricated without epitaxy, barrier layers to reduce FET memory sensitivity to soft-fails, CMOS isolation well structures, MeV implantation for customization and correction of completed circuits, and graded reach-throughs to deep active device components. (orig.)

  16. Ion implantation control system

    International Nuclear Information System (INIS)

    Gault, R. B.; Keutzer, L. L.

    1985-01-01

    A control system is disclosed for an ion implantation system of the type in which the wafers to be implanted are mounted around the periphery of a disk which rotates and also moves in a radial direction relative to an ion beam to expose successive sections of each wafer to the radiation. The control system senses beam current which passes through one or more apertures in the disk and is collected by a Faraday cup. This current is integrated to obtain a measure of charge which is compared with a calculated value based upon the desired ion dosage and other parameters. The resultant controls the number of incremental steps the rotating disk moves radially to expose the adjacent sections of each wafer. This process is continued usually with two or more traverses until the entire surface of each wafer has been implanted with the proper ion dosage

  17. Ion implantation in metals

    International Nuclear Information System (INIS)

    Vook, F.L.

    1977-02-01

    The application of ion beams to metals is rapidly emerging as a promising area of research and technology. This report briefly describes some of the recent advances in the modification and study of the basic properties of metals by ion implantation techniques. Most of the research discussed illustrates some of the new and exciting applications of ion beams to metals which are under active investigation at Sandia Laboratories, Albuquerque

  18. Ion implantation for semiconductors

    International Nuclear Information System (INIS)

    Grey-Morgan, T.

    1995-01-01

    Full text: Over the past two decades, thousands of particle accelerators have been used to implant foreign atoms like boron, phosphorus and arsenic into silicon crystal wafers to produce special embedded layers for manufacturing semiconductor devices. Depending on the device required, the atomic species, the depth of implant and doping levels are the main parameters for the implantation process; the selection and parameter control is totally automated. The depth of the implant, usually less than 1 micron, is determined by the ion energy, which can be varied between 2 and 600 keV. The ion beam is extracted from a Freeman or Bernas type ion source and accelerated to 60 keV before mass analysis. For higher beam energies postacceleration is applied up to 200 keV and even higher energies can be achieved by mass selecting multiplycharged ions, but with a corresponding reduction in beam output. Depending on the device to be manufactured, doping levels can range from 10 10 to 10 15 atoms/cm 2 and are controlled by implanter beam currents in the range up to 30mA; continuous process monitoring ensures uniformity across the wafer of better than 1 % . As semiconductor devices get smaller, additional sophistication is required in the design of the implanter. The silicon wafers charge electrically during implantation and this charge must be dissipated continuously to reduce the electrical stress in the device and avoid destructive electrical breakdown. Electron flood guns produce low energy electrons (below 10 electronvolts) to neutralize positive charge buildup and implanter design must ensure minimum contamination by other isotopic species and ensure low internal sputter rates. The pace of technology in the semiconductor industry is such that implanters are being built now for 256 Megabit circuits but which are only likely to be widely available five years from now. Several specialist companies manufacture implanter systems, each costing around US$5 million, depending on the

  19. Stimulation of eryptosis by aluminium ions

    International Nuclear Information System (INIS)

    Niemoeller, Olivier M.; Kiedaisch, Valentin; Dreischer, Peter; Wieder, Thomas; Lang, Florian

    2006-01-01

    Aluminium salts are utilized to impede intestinal phosphate absorption in chronic renal failure. Toxic side effects include anemia, which could result from impaired formation or accelerated clearance of circulating erythrocytes. Erythrocytes may be cleared secondary to suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and exposure of phosphatidylserine (PS) at the erythrocyte surface. As macrophages are equipped with PS receptors, they bind, engulf and degrade PS-exposing cells. The present experiments have been performed to explore whether Al 3+ ions trigger eryptosis. The PS exposure was estimated from annexin binding and cell volume from forward scatter in FACS analysis. Exposure to Al 3+ ions (≥ 10 μM Al 3+ for 24 h) indeed significantly increased annexin binding, an effect paralleled by decrease of forward scatter at higher concentrations (≥ 30 μM Al 3+ ). According to Fluo3 fluorescence Al 3+ ions (≥ 30 μM for 3 h) increased cytosolic Ca 2+ activity. Al 3+ ions (≥ 10 μM for 24 h) further decreased cytosolic ATP concentrations. Energy depletion by removal of glucose similarly triggered annexin binding, an effect not further enhanced by Al 3+ ions. The eryptosis was paralleled by release of hemoglobin, pointing to loss of cell membrane integrity. In conclusion, Al 3+ ions decrease cytosolic ATP leading to activation of Ca 2+ -permeable cation channels, Ca 2+ entry, stimulation of cell membrane scrambling and cell shrinkage. Moreover, Al 3+ ions lead to loss of cellular hemoglobin, a feature of hemolysis. Both effects are expected to decrease the life span of circulating erythrocytes and presumably contribute to the development of anemia during Al 3+ intoxication

  20. Defect trapping of deuterium implanted in aluminium

    International Nuclear Information System (INIS)

    Kido, Y.; Kakeno, M.; Yamada, K.; Hioki, T.; Kawamoto, J.

    1982-01-01

    The behaviour of deuterium implanted in Al was studied by the D( 3 He,p) 4 He and the D(d,p)T nuclear reactions. Changes of the depth profiles of the deuterium after heat treatments indicated that the implanted deuterium was trapped by the defect produced during the deuterium implantation and the release probability of the trapped deuterium increased as the specimen temperature was raised. Assuming a thermal equilibrium locally in the region of high defect concentration, the trapping energy of deuterium in Al was determined to be 0.12eV. Since the release probability for the single crystal was considerably larger than that for the polycrystal specimens, the deuterium was considered to be strongly trapped in the grain boundaries. Distributions of displaced Al atoms and the recovery of the lattice damage by annealing were measured by the channelling technique. (author)

  1. Ion beam analysis of aluminium in thin layers

    International Nuclear Information System (INIS)

    Healy, M.J.F.; Pidduck, A.J.; Dollinger, G.; Gorgens, L.; Bergmaier, A.

    2002-01-01

    This work quantifies aluminium in thin surface and near surface layers. In one example, the layer overlies a thin gallium nitride layer on an aluminium oxide substrate and in a second example the aluminium exists just below the surface of an indium arsenide substrate. The technique of non-Rutherford elastic backscattering of protons was used for the samples where aluminum in the layer of interest needed to be resolved from aluminium in the sapphire substrate and the results were corroborated at the Technische Universitaet Muenchen using heavy ion elastic recoil detection analysis. In the second example, where it was unnecessary to isolate the signal of aluminium in the layer of interest (as the substrate contained no aluminium), then the 27 Al(d,p 01 ) 28 Al nuclear reaction was used. The elastic proton scattering cross section of aluminum was found to vary very rapidly over the energy range of interest

  2. Ion implantation apparatus

    International Nuclear Information System (INIS)

    Forneris, J.L.; Hicks, W.W.; Keller, J.H.; McKenna, C.M.; Siermarco, J.A.; Mueller, W.F.

    1981-01-01

    The invention relates to ion bombardment or implantation apparatus. It comprises an apparatus for bombarding a target with a beam of ions, including an arrangement for measuring the ion beam current and controlling the surface potential of the target. This comprises a Faraday cage formed, at least in part, by the target and by walls adjacent to, and electrically insulated from, the target and surrounding the beam. There is at least one electron source for supplying electrons to the interior of the Faraday cage and means within the cage for blocking direct rectilinear radiation from the source to the target. The target current is measured and combined with the wall currents to provide a measurement of the ion beam current. The quantity of electrons supplied to the interior of the cage can be varied to control the target current and thereby the target surface potential. (U.K.)

  3. Irradiation damage in aluminium single crystals produced by 50-keV aluminium and copper ions

    DEFF Research Database (Denmark)

    Henriksen, L.; Johansen, A.; Koch, J.

    1968-01-01

    Aluminium single crystals, thin enough to be examined by electron microscopy, have been irradiated with 50-keV aluminium and copper ions. The irradiation fluxes were in the range 1011–1014 cm−2 s−1 and the doses were from 6 × 1012 to 6 × 1014 cm−2. Irradiation along either a or a direction produces...... rows of dislocation loops all lying parallel to one particular direction. If the aluminium target is quenched from 600 °C and annealed at room temperature prior to irradiation with aluminium ions, the rows of loops are suppressed. The amount of damage observed is considerably less than would...

  4. Semiconductor Ion Implanters

    International Nuclear Information System (INIS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-01-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  5. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    Gimbert, J.

    1999-01-01

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  6. Ion implantation: an annotated bibliography

    International Nuclear Information System (INIS)

    Ting, R.N.; Subramanyam, K.

    1975-10-01

    Ion implantation is a technique for introducing controlled amounts of dopants into target substrates, and has been successfully used for the manufacture of silicon semiconductor devices. Ion implantation is superior to other methods of doping such as thermal diffusion and epitaxy, in view of its advantages such as high degree of control, flexibility, and amenability to automation. This annotated bibliography of 416 references consists of journal articles, books, and conference papers in English and foreign languages published during 1973-74, on all aspects of ion implantation including range distribution and concentration profile, channeling, radiation damage and annealing, compound semiconductors, structural and electrical characterization, applications, equipment and ion sources. Earlier bibliographies on ion implantation, and national and international conferences in which papers on ion implantation were presented have also been listed separately

  7. A method to measure depth distributions of implanted ions

    International Nuclear Information System (INIS)

    Arnesen, A.; Noreland, T.

    1977-04-01

    A new variant of the radiotracer method for depth distribution determinations has been tested. Depth distributions of radioactive implanted ions are determined by dissolving thin, uniform layers of evaporated material from the surface of a backing and by measuring the activity before and after the layer removal. The method has been used to determine depth distributions for 25 keV and 50 keV 57 Co ions in aluminium and gold. (Auth.)

  8. Ion implantation and amorphous metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Rauschenbach, B.

    1981-01-01

    This review deals with ion implantation of metals in the high concentration range for preparing amorphous layers (>= 10 at%, implantation doses > 10 16 ions/cm 2 ). Different models are described concerning formation of amorphous phases of metals by ion implantation and experimental results are given. The study of amorphous phases has been carried out by the aid of Rutherford backscattering combined with the channeling technique and using transmission electron microscopy. The structure of amorphous metals prepared by ion implantation has been discussed. It was concluded that amorphous metal-metalloid compounds can be described by a dense-random-packing structure with a great portion of metal atoms. Ion implantation has been compared with other techniques for preparing amorphous metals and the adventages have been outlined

  9. Adsorption of lithium ion to amorphous hydrous aluminium oxide

    International Nuclear Information System (INIS)

    Wada, Hideo; Kitamura, Takao; Fujii, Ayako; Katoh, Shunsaku

    1982-01-01

    Adsorption process of lithium ion to amorphous hydrous aluminium oxide (a-HAO) was investigated by pH titration method with lithium chloride-lithium hydroxide mixed solution and X-ray diffraction analysis of a-HAO after pH titration. In the pH titration, the addition of hydroxide ion in amount from 0 to 4.0 mmol.g -1 gave no change to the pH of the solution and caused adsorption of lithium ion equivalent in amount to added hydroxide ion. X-ray diffraction analysis showed the formation of lithium hydrogenaluminate LiH (AlO 2 ) 2 .5H 2 O (LHA) in the a-HAO after pH titration. These results showed that adsorption of lithium ion by a-HAO was related to a reaction which consumed hydroxide ion and formed LHA. In order to elucidate detail process of the reaction, changes of pH, aluminium concentration and lithium concentration of the solution, respectively with time, were determined. The pH of the solution decreased in two stages. At the first stage of the pH decrease, the aluminium concentration increased whereas the lithium concentration did not change. At the second stage, the lithium concentration decreased together with the decrease of the aluminium concentration. It was inferred that adsorption of lithium ion proceeded through dissolution of a-HAO and precipitation of LHA. Theoretical adsorption capacity calculated from the above formula for LHA and aluminium content in a-HAO was 4.7 mmol.g -1 and agreed fairly well with observed value 4.0 mmol.g -1 . (author)

  10. Silicon carbide layer structure recovery after ion implantation

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Demakov, K.D.; Kal'nin, A.A.; Nojbert, F.; Potapov, E.N.; Tairov, Yu.M.

    1984-01-01

    The process of recovery of polytype structure of SiC surface layers in the course of thermal annealing (TA) and laser annealing (LA) upon boron and aluminium implantation is studied. The 6H polytype silicon carbide C face (0001) has been exposed to ion radiation. The ion energies ranged from 80 to 100 keV, doses varied from 5x10 14 to 5x10 16 cm -2 . TA was performed in the 800-2000 K temperature range. It is shown that the recovery of the structure of silicon carbide layers after ion implantation takes place in several stages. Considerable effect on the structure of the annealed layers is exerted by the implantation dose and the type of implanted impurity. The recovery of polytype structure is possible only under the effect of laser pulses with duration not less than the time for the ordering of the polytype in question

  11. Particle energy loss spectroscopy and SEM studies of topography development in thin aluminium films implanted with high doses of helium

    International Nuclear Information System (INIS)

    Barfoot, K.M.; Webb, R.P.; Donnelly, S.E.

    1984-01-01

    Development of topography in thin (55.5 μg cm -2 ) self-supporting aluminium films, caused by high fluence (approx. 10 17 ions cm -2 ) irradiation with 5 keV helium ions, has been observed. This has been achieved by measuring the topography-enhanced energy straggling of 0.40 MeV 4 He + ions transmitted through the foils and detected with an electrostatic analyser of resolution 0.2 keV. Features, about 0.7 μm in width, are observed with scanning electron microscopy. TRIM Monte Carlo calculations of the implantation processes are performed in order to follow the helium implantation and damage depth distributions. It is deduced that a form of thin film micro-wrinkling has occurred which is caused by the relief of stress brought about by the implantation of helium. (author)

  12. Structure of ion-implanted ceramics

    International Nuclear Information System (INIS)

    Naramoto, Hiroshi

    1983-01-01

    The variation of structure of LiF, MgO, Al 2 O 3 and TiO 2 accompanying annealing after ion implantation is explained. The analysis of structure is usually made by the perturbed gamma ray angular correlation, the internal electron Moessbauer method, or the ion scattering method. The results of analyses are discussed for alkali ion implantation, Fe-ion implantation, In-ion implantation, Au-ion implantation, Pt-ion implantation, Pb-ion implantation and transition metal ion implantation. The coupling of the implanted elements with lattice defects and matrix elements, and the compatibility between deposited elements and matrix crystal lattice were studied. The variation of physical properties due to ion implantation such as phase transition, volume change, the control of single crystal region, and the variation of hardness near surface were investigated, and the examples are presented. (Kato, T.)

  13. Thermal migration of iron implanted in aluminium at high doses

    International Nuclear Information System (INIS)

    Asundi, V.K.; Joshi, M.C.; Deb, S.K.; Soud, D.K.; Kulkarni, V.N.; Sundararaman, M.

    1978-01-01

    The anneal behaviour of the Fe-Al metastable system produced by implantation of Fe + ions at 30 keV has been reported. The implant concentrations between 18-42 at percent have been chosen, in order to exceed the normal solid solubility of Fe in Al by about three orders of magnitude. Isothermal annealing has been done under vacuum (55 x 10 -6 Torr) at 400deg C and 570 deg C. The iron depth profiles have been determined, by Rutherford backscattering of 2 MeV He + ions. It has been found that 1) as annealing proceeds, all specimens show rapid enhanced diffusion initially (upto about 30 m), followed by a much slower diffusion as iron ions migrate inwards (2) at implant concentrations 23 at percent, double peaks appear in iron depth profiles, followed by rapid migration of diffused iron towards surface and (3) at still higher anneal times, the out-diffused iron moves inward again. This kind of out-diffusion behaviour in a metallic system has not been reported earlier in the literature. Also, the presence of Fe 4 Al 13 has been identified as terminal phase, using x-ray diffraction techniques. (K.B.)

  14. Ion beam stabilization in ion implantation equipment

    International Nuclear Information System (INIS)

    Pina, L.

    1973-01-01

    The results are presented of experimental efforts aimed at ion beam current stabilization in an equipment for ion implantation in solids. The related problems of power supplies are discussed. Measured characteristics of laboratory equipment served the determination of the parameters to be required of the supplies as well as the design and the construction of the supplies. The respective wiring diagram is presented. (J.K.)

  15. Ion implantation in semiconductor bodies

    International Nuclear Information System (INIS)

    Badawi, M.H.

    1984-01-01

    Ions are selectively implanted into layers of a semiconductor substrate of, for example, semi-insulating gallium arsenide via a photoresist implantation mask and a metallic layer of, for example, titanium disposed between the substrate surface and the photoresist mask. After implantation the mask and metallic layer are removed and the substrate heat treated for annealing purposes. The metallic layer acts as a buffer layer and prevents possible contamination of the substrate surface, by photoresist residues, at the annealing stage. Such contamination would adversely affect the electrical properties of the substrate surface, particularly gallium arsenide substrates. (author)

  16. Hardness of ion implanted ceramics

    International Nuclear Information System (INIS)

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al 2 O 3 with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material

  17. Surface engineering by ion implantation

    International Nuclear Information System (INIS)

    Nielsen, Bjarne Roger

    1995-01-01

    Awidespread commercial applica tion iof particle accelerators is for ion implantation. Accelerator beams are used for ion implantation into metals, alloying a thin surface layer with foreign atoms to concentrations impossible to achieve by thermal processes, making for dramatic improvements in hardness and in resistance to wear and corrosion. Traditional hardening processes require high temperatures causing deformation; ion implantation on the other hand is a ''cold process'', treating the finished product. The ionimplanted layer is integrated in the substrate, avoiding the risk of cracking and delamination from normal coating processes. Surface properties may be ''engineered'' independently of those of the bulk material; the process does not use environmentally hazardous materials such as chromium in the surface coating. The typical implantation dose required for the optimum surface properties of metals is around 2 x 10 17 ion/cm 2 , a hundred times the typical doses for semiconductor processing. When surface areas of more than a few square centimetres have to be treated, the implanter must therefore be able to produce high beam currents (5 to 10 mA) to obtain an acceptable treatment time. Ion species used include nitrogen, boron, carbon, titanium, chromium and tantalum, and beam energies range from 50 to 200 keV. Since most components are three dimensional, it must be possible to rotate and tilt them in the beam, and control beam position over a large area. Examples of industrial applications are: - surface treatment of prostheses (hip and knee joints) to reduce wear of the moving parts, using biocompatible materials; - ion implantation into high speed ball bearings to protect against the aqueous corrosion in jet engines (important for service helicopters on oil rigs); - hardening of metal forming and cutting tools; - reduction of corrosive wear of plastic moulding tools, which are expensive to produce

  18. Preparation of targets by ion implantation

    International Nuclear Information System (INIS)

    Santry, D.C.

    1976-01-01

    Various factors are described which are involved in target preparation by direct ion implantation and the limitations and pitfalls of the method are emphasized. Examples are given of experiments for which ion implanted targets are well suited. (author)

  19. Current trends in ion implantation

    International Nuclear Information System (INIS)

    Gwilliam, R.M.

    2001-01-01

    As semiconductor device dimensions continue to shrink, the drive beyond 250 nm is creating significant problems for the device processor. In particular, trends toward shallower-junctions, lower thermal budgets and simplified processing steps present severe challenges to ion implantation. In parallel with greater control of the implant process goes the need for a better understanding of the physical processes involved during implantation and subsequent activation annealing. For instance, the need for an understanding of dopant-defect interaction is paramount as defects mediate a number of technologically important phenomena such as transient enhanced diffusion and impurity gettering. This paper will outline the current trends in the ion implantation and some of the challenges it faces in the next decade, as described in the semiconductor roadmap. It will highlight some recent positron annihilation work that has made a contribution to addressing one of these challenges, namely the need for tighter control of implant uniformity and dose. Additionally, some vacancy-mediated processes are described with the implication that these may provide areas in which positron annihilation spectroscopy could make a significant contribution. (orig.)

  20. Ion implantation and bio-compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshiaki; Kusakabe, Masahiro [Sony Corp., Tokyo (Japan). Corporate Research Labs.; Iwaki, Masaya

    1992-07-01

    Surface modification of polymers by ion implantation has been carried out to control surface properties such as conductivity, wettability, blood and tissue compatibility. Ion implantation into silicone rubber, polystyrene and segmented polyurethane was performed at 150 keV with doses ranging from 1 x 10[sup 15] to 3 x 10[sup 17] ions/cm[sup 2] to improve bio-compatibility. The platelet accumulation on ion implanted silicone rubber decreased and non-thrombogenicity of ion implanted specimens were improved. The ion implanted polystyrene and segmented polyurethane have been found to exhibit remarkably higher adhesion and spreading of endothelial cells compared to the non-implanted case. It is concluded that ion implantation into polymers is effective in controlling their bio-compatibility. (author).

  1. Annealing of ion implanted silicon

    International Nuclear Information System (INIS)

    Chivers, D.; Smith, B.J.; Stephen, J.; Fisher, M.

    1980-09-01

    The newer uses of ion implantation require a higher dose rate. This has led to the introduction of high beam current implanters; the wafers move in front of a stationary beam to give a scanning effect. This can lead to non-uniform heating of the wafer. Variations in the sheet resistance of the layers can be very non-uniform following thermal annealing. Non-uniformity in the effective doping both over a single wafer and from one wafer to another, can affect the usefulness of ion implantation in high dose rate applications. Experiments to determine the extent of non-uniformity in sheet resistance, and to see if it is correlated to the annealing scheme have been carried out. Details of the implantation parameters are given. It was found that best results were obtained when layers were annealed at the maximum possible temperature. For arsenic, phosphorus and antimony layers, improvements were observed up to 1200 0 C and boron up to 950 0 C. Usually, it is best to heat the layer directly to the maximum temperature to produce the most uniform layer; with phosphorus layers however it is better to pre-heat to 1050 0 C. (U.K.)

  2. Ion Implantation and Synthesis of Materials

    CERN Document Server

    Nastasi, Michael

    2006-01-01

    Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification, such as ion-beam mixing, stresses, and sputtering, are also described.

  3. Production of amorphous alloys by ion implantation

    International Nuclear Information System (INIS)

    Grant, W.A.; Chadderton, L.T.; Johnson, E.

    1978-01-01

    Recent data are reported on the use of ion implantation to produce amorphous metallic alloys. In particular data on the dose dependence of the crystalline to amorphous transition induced by P + implantation of nickel is presented. (Auth.)

  4. Plasma immersion ion implantation into insulating materials

    International Nuclear Information System (INIS)

    Tian Xiubo; Yang Shiqin

    2006-01-01

    Plasma immersion ion implantation (PIII) is an effective surface modification tool. During PIII processes, the objects to be treated are immersed in plasmas and then biased to negative potential. Consequently the plasma sheath forms and ion implantation may be performed. The pre-requirement of plasma implantation is that the object is conductive. So it seems difficult to treat the insulating materials. The paper focuses on the possibilities of plasma implantation into insulting materials and presents some examples. (authors)

  5. Endothelial cell adhesion to ion implanted polymers

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y; Kusakabe, M [SONY Corp., Tokyo (Japan); Lee, J S; Kaibara, M; Iwaki, M; Sasabe, H [RIKEN (Inst. of Physical and Chemical Research), Saitama (Japan)

    1992-03-01

    The biocompatibility of ion implanted polymers has been studied by means of adhesion measurements of bovine aorta endothelial cells in vitro. The specimens used were polystyrene (PS) and segmented polyurethane (SPU). Na{sup +}, N{sub 2}{sup +}, O{sub 2}{sup +} and Kr{sup +} ion implantations were performed at an energy of 150 keV with fluences ranging from 1x10{sup 15} to 3x10{sup 17} ions/cm{sup 2} at room temperature. The chemical and physical structures of ion-implanted polymers have been investigated in order to analyze their tissue compatibility such as improvement of endothelial cell adhesion. The ion implanted SPU have been found to exhibit remarkably higher adhesion and spreading of endothelial cells than unimplanted specimens. By contrast, ion implanted PS demonstrated a little improvement of adhesion of cells in this assay. Results of FT-IR-ATR showed that ion implantation broke the original chemical bond to form new radicals such as OH, ....C=O, SiH and condensed rings. The results of Raman spectroscopy showed that ion implantation always produced a peak near 1500 cm{sup -1}, which indicated that these ion implanted PS and SPU had the same carbon structure. This structure is considered to bring the dramatic increase in the extent of cell adhesion and spreading to these ion implanted PS and SPU. (orig.).

  6. Electrochemical properties of ion implanted silicon

    International Nuclear Information System (INIS)

    Pham minh Tan.

    1979-11-01

    The electrochemical behaviour of ion implanted silicon in contact with hydrofluoric acid solution was investigated. It was shown that the implanted layer on silicon changes profoundly its electrochemical properties (photopotential, interface impedance, rest potential, corrosion, current-potential behaviour, anodic dissolution of silicon, redox reaction). These changes depend strongly on the implantation parameters such as ion dose, ion energy, thermal treatment and ion mass and are weakly dependent on the chemical nature of the implantation ion. The experimental results were evaluated and interpreted in terms of the semiconductor electrochemical concepts taking into account the interaction of energetic ions with the solid surface. The observed effects are thus attributed to the implantation induced damage of silicon lattice and can be used for profiling of the implanted layer and the electrochemical treatment of the silicon surface. (author)

  7. Mutagenic effects of ion implantation on stevia

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Chen Qiufang; Lu Ting; Shu Shizhen

    1998-01-01

    Dry seeds of Stevia were implanted by 75 keV nitrogen and carbon ions with various doses. The biological effects in M 1 and mutation in M 2 were studied. The results showed that ion beam was able to induce variation on chromosome structure in root tip cells. The rate of cells with chromosome aberration was increased with ion beam dose. The rate of cells with chromosomal aberration was lower than that induced with γ-rays. Frequency of the mutation induced by implantation of N + and C + ions were higher than those induced by γ-rays. The rate of cell with chromosome aberration and in M 2 useful mutation induced by implantation of C + ion was higher than those induced by implantation of N + ion. Mutagenic effects Feng 1 x Riyuan and Riyuan x Feng 2 by implantation of N + and C + were higher than that of Jining and Feng 2

  8. High-energy ion implantation of materials

    International Nuclear Information System (INIS)

    Williams, J.M.

    1991-11-01

    High-energy ion implantation is an extremely flexible type of surface treatment technique, in that it offers the possibility of treating almost any type of target material or product with ions of almost any chemical species, or combinations of chemical species. In addition, ion implantations can be combined with variations in temperature during or after ion implantation. As a result, the possibility of approaching a wide variety of surface-related materials science problems exists with ion implantation. This paper will outline factors pertinent to application of high-energy ion implantation to surface engineering problems. This factors include fundamental advantages and limitations, economic considerations, present and future equipment, and aspects of materials science

  9. Wettability control of polystyrene by ion implantation

    International Nuclear Information System (INIS)

    Suzuki, Yoshiaki; Kusakabe, Masahiro; Iwaki, Masaya

    1994-01-01

    The permanent effects of ion implantation on the improvement of wettability of polystyrene is investigated in relation to ion species and fluences. The He + , Ne + , Na + , N 2 + , O 2 + , Ar + , K + and Kr + ion implantations were performed at energies of 50 and 150 keV at room temperature. The fluences ranged from 1x10 15 to 1x10 17 ions/cm 2 . The results showed that the contact angle of water for Na + and K + implanted polystyrene decreased from 87 to 0 , as the fluences increased to 1x10 17 ions/cm 2 at an energy of 50 keV. The contact angle for Na + and K + implanted polystyrene did not change under ambient room conditions, even when time elapsed. However, the contact an gle for He + , C + , O + , Ne + , N 2 + , O 2 + , Ar + , and Kr + ion implanted specimens decreased slightly immediately after ion implantation. Results of X-ray photoelectron spectroscopy showed that the increase in the Na content in the surface of Na + implanted specimens were observed with increasing fluence. It is concluded that permanent improvement in wettability was caused by doping effects rather than by radiation effects from Na + and K + ion implantation. ((orig.))

  10. Doping of silicon carbide by ion implantation; Dopage du carbure de silicium par implantation ionique

    Energy Technology Data Exchange (ETDEWEB)

    Gimbert, J

    1999-03-04

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  11. Modification of metallic corrosion by ion implantation

    International Nuclear Information System (INIS)

    Clayton, C.R.

    1981-01-01

    This review will consider some of the properties of surface alloys, formed by ion implantation, which are effective in modifying corrosion behaviour. Examples will be given of the modification of the corrosion behaviour of pure metals, steels and other engineering alloys, resulting from implantation with metals and metalloids. Emphasis will be given to the modification of anodic processes produced by ion implantation since a review will be given elsewhere in the proceedings concerning the modification of cathodic processes. (orig.)

  12. Ion implantation as an efficient surface treatment

    International Nuclear Information System (INIS)

    Straede, C.A.

    1992-01-01

    Ion beam processing has for several years been well established in the semiconductor industry. In recent years ion implantation of tool steels, ceramics and even plastics has gained increasing industrial awareness. The development of ion implantation to a commercially viable surface treatment of tools and spare parts working in production type environments is very dependent on technical merits, economic considerations, competing processes and highly individual barriers to acceptance for each particular application. Some examples of this will be discussed. The development of the process is very closely linked with the development of high current accelerators and their ability to efficiently manipulate the samples being treated, or to make sample manipulation superfluous by using special beam systems like the PSII. Furthermore, the ability to produce high beam currents (mA) of a wide variety of ions is crucial. Previously, it was broadly accepted that ion implantation of tools on a commercial basis generally had to be limited to nitrogen implantation. The development of implanters which can produce high beam currents of ions like B + , C + , Ti + , Cr + and others is rapidly changing this situation, and today an increasing number of commercial implantations are performed with these ions although nitrogen is still successfully used in the majority of commercial implantation. All in all, the recent development of equipment makes it possible to a higher extent than before to tailor the implantation to a specific situation. The emerging new possibilities in this direction will be discussed, and a broad selection of practical examples of ion implantation at standard low temperatures of tools and spare parts will be given. Furthermore, very interesting results have been obtained recently by implanting nitrogen at elevated temperatures, which yields a relatively deep penetration of the implanted ions. (orig./WL)

  13. Nonlinear effects in defect production by atomic and molecular ion implantation

    International Nuclear Information System (INIS)

    David, C.; Dholakia, Manan; Chandra, Sharat; Nair, K. G. M.; Panigrahi, B. K.; Amirthapandian, S.; Amarendra, G.; Varghese Anto, C.; Santhana Raman, P.; Kennedy, John

    2015-01-01

    This report deals with studies concerning vacancy related defects created in silicon due to implantation of 200 keV per atom aluminium and its molecular ions up to a plurality of 4. The depth profiles of vacancy defects in samples in their as implanted condition are carried out by Doppler broadening spectroscopy using low energy positron beams. In contrast to studies in the literature reporting a progressive increase in damage with plurality, implantation of aluminium atomic and molecular ions up to Al 3 , resulted in production of similar concentration of vacancy defects. However, a drastic increase in vacancy defects is observed due to Al 4 implantation. The observed behavioural trend with respect to plurality has even translated to the number of vacancies locked in vacancy clusters, as determined through gold labelling experiments. The impact of aluminium atomic and molecular ions simulated using MD showed a monotonic increase in production of vacancy defects for cluster sizes up to 4. The trend in damage production with plurality has been explained on the basis of a defect evolution scheme in which for medium defect concentrations, there is a saturation of the as-implanted damage and an increase for higher defect concentrations

  14. Long range implantation by MEVVA metal ion source

    International Nuclear Information System (INIS)

    Zhang Tonghe; Wu Yuguang; Ma Furong; Liang Hong

    2001-01-01

    Metal vapor vacuum arc (MEVVA) source ion implantation is a new technology used for achieving long range ion implantation. It is very important for research and application of the ion beam modification of materials. The results show that the implanted atom diffusion coefficient increases in Mo implanted Al with high ion flux and high dose. The implanted depth is 311.6 times greater than that of the corresponding ion range. The ion species, doses and ion fluxes play an important part in the long-range implantation. Especially, thermal atom chemistry have specific effect on the long-range implantation during high ion flux implantation at transient high target temperature

  15. Nitrogen implantation in steel with an impulsive ion implanter

    International Nuclear Information System (INIS)

    Feugeas, J.N.; Gonzalez, C.O.; Hermida, J.; Nieto, M.; Peyronel, M.F.; Sanchez, G.

    1990-01-01

    This work describes the results of steel implantation with nitrogen, with a pulsed accelerator which provides a continuous ion energy spectrum giving a uniform profile of nitrogen without changing its operative conditions. (Author)

  16. Metal ion implantation: Conventional versus immersion

    International Nuclear Information System (INIS)

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.

    1994-01-01

    Vacuum-arc-produced metal plasma can be used as the ion feedstock material in an ion source for doing conventional metal ion implantation, or as the immersing plasma for doing plasma immersion ion implantation. The basic plasma production method is the same in both cases; it is simple and efficient and can be used with a wide range of metals. Vacuum arc ion sources of different kinds have been developed by the authors and others and their suitability as a metal ion implantation tool has been well established. Metal plasma immersion surface processing is an emerging tool whose characteristics and applications are the subject of present research. There are a number of differences between the two techniques, both in the procedures used and in the modified surfaces created. For example, the condensibility of metal plasma results in thin film formation and subsequent energetic implantation is thus done through the deposited layer; in the usual scenario, this recoil implantation and the intermixing it produces is a feature of metal plasma immersion but not of conventional energetic ion implantation. Metal plasma immersion is more suited (but not limited) to higher doses (>10 17 cm -2 ) and lower energies (E i < tens of keV) than the usual ranges of conventional metal ion implantation. These and other differences provide these vacuum-arc-based surface modification tools with a versatility that enhances the overall technological attractiveness of both

  17. Ion implantation and fracture toughness of ceramics

    International Nuclear Information System (INIS)

    Clark, J.; Pollock, J.T.A.

    1985-01-01

    Ceramics generally lack toughness which is largely determined by the ceramic surface where stresses likely to cause failure are usually highest. Ion implantation has the capacity to improve the surface fracture toughness of ceramics. Significantly reduced ion size and reactivity restrictions exist compared with traditional methods of surface toughening. We are studying the effect of ion implantation on ceramic fracture toughness using indentation testing as the principal tool of analysis

  18. Microscopic observation of pattern attack by aggressive ions on finished surface of aluminium alloy sacrificial anode

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhammad Daud; Siti Radiah Mohd Kamarudin; Nur Ubaidah Saidin; Azali Muhammad; Mohd Shaari Ripin; Rusni Rejab; Mohd Shariff Sattar

    2010-01-01

    This paper presents the results of a microscopic observation on submerged finished surface of aluminium alloy sacrificial anode. Experimental tests were carried out on polished surface aluminium anode exposed to seawater containing aggressive ions in order to observe of pattern corrosion attack on corroding surface of anode. Results have shown, at least under the present testing condition, that surface of sacrificial anode were attack by an aggressive ion such as chloride along grain boundaries. In addition, results of microanalysis showed that the corrosion products on surface of aluminium alloy have Al, Zn and O element for all sample and within the pit was consists of Al, Zn, O and Cl element. (author)

  19. Amorphization of metals by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Heera, V.

    1988-01-01

    Amorphous metallic systems can be formed either by high-fluence ion implantation of glassforming species or by irradiation of layered metal systems with inert gas ions. Both techniques and experimental examples are presented. Empirical rules are discussed which predict whether a given system can be transformed into an amorphous phase. Influence of temperature, implantation dose and pre-existing crystalline metal composition on amorphization is considered. Examples are given of the implantation induced amorphous structure, recrystallization and formation of quasicrystalline structures. (author)

  20. High energy ion implantation for IC processing

    International Nuclear Information System (INIS)

    Oosterhoff, S.

    1986-01-01

    In this thesis the results of fundamental research on high energy ion implantation in silicon are presented and discussed. The implantations have been carried out with the 500 kV HVEE ion implantation machine, that was acquired in 1981 by the IC technology and Electronics group at Twente University of Technology. The damage and anneal behaviour of 1 MeV boron implantations to a dose of 10 13 /cm 2 have been investigated as a function of anneal temperature by sheet resistance, Hall and noise measurements. (Auth.)

  1. Metallic oxide nano-clusters synthesis by ion implantation in high purity Fe10Cr alloy

    International Nuclear Information System (INIS)

    Zheng, Ce

    2015-01-01

    ODS (Oxide Dispersed Strengthened) steels, which are reinforced with metal dispersions of nano-oxides (based on Y, Ti and O elements), are promising materials for future nuclear reactors. The detailed understanding of the mechanisms involved in the precipitation of these nano-oxides would improve manufacturing and mechanical properties of these ODS steels, with a strong economic impact for their industrialization. To experimentally study these mechanisms, an analytical approach by ion implantation is used, to control various parameters of synthesis of these precipitates as the temperature and concentration. This study demonstrated the feasibility of this method and concerned the behaviour of alloys models (based on aluminium oxide) under thermal annealing. High purity Fe-10Cr alloys were implanted with Al and O ions at room temperature. Transmission electron microscopy observations showed that the nano-oxides appear in the Fe-10Cr matrix upon ion implantation at room temperature without subsequent annealing. The mobility of implanted elements is caused by the defects created during ion implantation, allowing the nucleation of these nanoparticles, of a few nm in diameter. These nanoparticles are composed of aluminium and oxygen, and also chromium. The high-resolution experiments show that their crystallographic structure is that of a non-equilibrium compound of aluminium oxide (cubic γ-Al 2 O 3 type). The heat treatment performed after implantation induces the growth of the nano-sized oxides, and a phase change that tends to balance to the equilibrium structure (hexagonal α-Al 2 O 3 type). These results on model alloys are fully applicable to industrial materials: indeed ion implantation reproduces the conditions of milling and heat treatments are at equivalent temperatures to those of thermo-mechanical treatments. A mechanism involving the precipitation of nano-oxide dispersed in ODS alloys is proposed in this manuscript based on the obtained experimental results

  2. Versatile high current metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1992-01-01

    A metal ion implantation facility has been developed with which high current beams of practically all the solid metals of the periodic table can be produced. A multicathode, broad-beam, metal vapor vacuum arc ion source is used to produce repetitively pulsed metal ion beams at an extraction voltage of up to 100 kV, corresponding to an ion energy of up to several hundred kiloelectronvolts because of the ion charge state multiplicity, and with a beam current of up to several amps peak pulsed and several tens of milliamps time averaged delivered onto a downstream target. Implantation is done in a broad-beam mode, with a direct line of sight from ion source to target. Here we summarize some of the features of the ion source and the implantation facility that has been built up around it. (orig)

  3. Some aspects of ion implantation in semiconductors

    International Nuclear Information System (INIS)

    Klose, H.

    1982-01-01

    The advantages and disadvantages of ion implantation in the application of semiconductor technology are reviewed in short. This article describes some aspects of the state of the art and current developments of nonconventional annealing procedures, ion beam gettering of deep impurities, special applications of ion implantation using low or high energy ions and GaAs-electronics, respectively. Radiation defects in Si and the nonexponential emission and capture processes in GaAsP are discussed. Final future trends of ion beam methods in semiconductor production technology are summarized. (author)

  4. Ion implantation methods for semiconductor substrates

    International Nuclear Information System (INIS)

    Matsushita, T.; Mamine, T.; Hayashi, H.; Nishiyama, K.

    1980-01-01

    A method of ion implantation for controlling the life time of minority carriers in a semiconductor substrate and hence to reduce the temperature dependency of the life time, comprises implanting iron ions into an N type semiconductor substrate with a dosage of 10 10 to 10 15 ions cm -2 , and then heat-treating the implanted substrate at 850 0 to 1250 0 C. The method is applicable to the production of diodes, transistors, Si controlled rectifiers and gate controlled switching devices. (author)

  5. The effect of ion implantation on the resistance of 316L stainless steel to crevice corrosion

    International Nuclear Information System (INIS)

    Bombara, G.; Cavallini, M.

    1983-01-01

    The results of an investigation of the influence of aluminium, titanium and scandium implantation on the electrochemical and chemical crevice corrosion behaviour of 316L stainless steel are presented and discussed. Ion implantation, in addition to improving markedly the protective quality of the passive film at the free corrosion potential, greatly increases the resistance of 316L stainless steel to crevice corrosion in both neutral NaCl and acidic FeCl 3 solutions. A moderate decrease in pitting resistance is possibly due to coverage effect of implanted species on the surface molybdenum constituent. (Auth.)

  6. Surface modification of metals by ion implantation

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1988-01-01

    Ion implantation in metals has attracted the attention as a useful technology for the formation of new metastable alloys and compounds in metal surface layers without thermal equilibrium. Current studies of metal surface modification by ion implantation with high fluences have expanded from basic research areas and to industrial applications for the improvement of life time of tools. Many results suggest that the high fluence implantation produces the new surface layers with un-expected microscopic characteristics and macroscopic properties due to implant particles, radiation damage, sputtering, and knock-on doping. In this report, the composition, structure and chemical bonding state in surface layers of iron, iron-based alloy and aluminum sheets implanted with high fluences have been investigated by means of secondary ion mass spectroscopy (SIMS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Tribological properties such as hardness, friction and wear are introduced. (author)

  7. Semiconductor applications of plasma immersion ion implantation ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 6. Semiconductor applications of plasma immersion ion implantation technology ... Department of Electronic Science, Kurukshetra University, Kurukshetra 136 119, India ...

  8. Silicon technologies ion implantation and thermal treatment

    CERN Document Server

    Baudrant, Annie

    2013-01-01

    The main purpose of this book is to remind new engineers in silicon foundry, the fundamental physical and chemical rules in major Front end treatments: oxidation, epitaxy, ion implantation and impurities diffusion.

  9. Ion Implantation Processing Technologies for Telecommunications Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, T E

    2000-05-01

    The subject CRADA was a collaboration between Oak Ridge National Laboratory and Bell Laboratories, Lucent Technologies (formerly AT and T Bell Laboratories) to explore the development of ion implantation technologies for silicon integrated circuit (IC) manufacturing.

  10. Laser annealing of ion implanted silicon

    International Nuclear Information System (INIS)

    White, C.W.; Narayan, J.; Young, R.T.

    1978-11-01

    The physical and electrical properties of ion implanted silicon annealed with high powered ruby laser radiation are summarized. Results show that pulsed laser annealing can lead to a complete removal of extended defects in the implanted region accompanied by incorporation of dopants into lattice sites even when their concentration far exceeds the solid solubility limit

  11. Magnetoreflection studies of ion implanted bismuth

    International Nuclear Information System (INIS)

    Nicolini, C.; Chieu, T.C.; Dresselhaus, M.S.; Massachusetts Inst. of Tech., Cambridge; Dresselhaus, G.

    1982-01-01

    The effect of the implantation of Sb ions on the electronic structure of the semimetal bismuth is studied by the magnetoreflection technique. The results show long electronic mean free paths and large implantation-induced increases in the band overlap and L-point band gap. These effects are opposite to those observed for Bi chemically doped with Sb. (author)

  12. Ion implantation of boron in germanium

    International Nuclear Information System (INIS)

    Jones, K.S.

    1985-05-01

    Ion implantation of 11 B + into room temperature Ge samples leads to a p-type layer prior to any post implant annealing steps. Variable temperature Hall measurements and deep level transient spectroscopy experiments indicate that room temperature implantation of 11 B + into Ge results in 100% of the boron ions being electrically active as shallow acceptor, over the entire dose range (5 x 10 11 /cm 2 to 1 x 10 14 /cm 2 ) and energy range (25 keV to 100 keV) investigated, without any post implant annealing. The concentration of damage related acceptor centers is only 10% of the boron related, shallow acceptor center concentration for low energy implants (25 keV), but becomes dominant at high energies (100 keV) and low doses ( 12 /cm 2 ). Three damage related hole traps are produced by ion implantation of 11 B + . Two of these hole traps have also been observed in γ-irradiated Ge and may be oxygen-vacancy related defects, while the third trap may be divacancy related. All three traps anneal out at low temperatures ( 0 C). Boron, from room temperature implantation of BF 2 + into Ge, is not substitutionally active prior to a post implant annealing step of 250 0 C for 30 minutes. After annealing additional shallow acceptors are observed in BF 2 + implanted samples which may be due to fluorine or flourine related complexes which are electrically active

  13. Development of industrial ion implantation technology

    International Nuclear Information System (INIS)

    Choi, Byung Hoh; Jung, Kee Suk; Kim, Wan; Song, Woo Sub; Hwang, Chul Kyoo

    1994-02-01

    We developed an ion implanter fitted for the treatment of 12 inch or larger wafers to make 256 or higher Mega D-Ram wafers. Design features are dual usage of gas/solid for the ion source loading, production of multi-balanced ions, and the possible oxygen ion implantation. BOSII program was used for the ion optics calculation. Beams are triangularly scanned to wafers for the even implantation by a proper magnetic field application. More than 10 mA ion current is produced. For the efficient implantation to be made, target is made to rotate with tilted angle at a displaced axis. High speed tools, diamond tools, precision dies, and razor blades were implanted and the performance was evaluated after two or three times of line application. Of those materials studied, PCB drills and end mills are on the commercial treatment stages. Industrial materials as SKD-11, WC-Co, NAK-55 was compositely treated with ion beam and coating. Resultant properties were analyzed using AES, XRD, and TEM. For the case of xenon ions, excellent TiN coating resulted and its application to microcircuit lead frame increased the performance to more than 30 percent. 94 figs, 29 pix, 19 tabs, 50 refs. (Author)

  14. Development of industrial ion implantation technology

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Hoh; Jung, Kee Suk; Kim, Wan; Song, Woo Sub; Hwang, Chul Kyoo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-02-01

    We developed an ion implanter fitted for the treatment of 12 inch or larger wafers to make 256 or higher Mega D-Ram wafers. Design features are dual usage of gas/solid for the ion source loading, production of multi-balanced ions, and the possible oxygen ion implantation. BOSII program was used for the ion optics calculation. Beams are triangularly scanned to wafers for the even implantation by a proper magnetic field application. More than 10 mA ion current is produced. For the efficient implantation to be made, target is made to rotate with tilted angle at a displaced axis. High speed tools, diamond tools, precision dies, and razor blades were implanted and the performance was evaluated after two or three times of line application. Of those materials studied, PCB drills and end mills are on the commercial treatment stages. Industrial materials as SKD-11, WC-Co, NAK-55 was compositely treated with ion beam and coating. Resultant properties were analyzed using AES, XRD, and TEM. For the case of xenon ions, excellent TiN coating resulted and its application to microcircuit lead frame increased the performance to more than 30 percent. 94 figs, 29 pix, 19 tabs, 50 refs. (Author).

  15. Ion-implantation dense cascade data

    International Nuclear Information System (INIS)

    Winterbon, K.B.

    1983-04-01

    A tabulation is given of data useful in estimating various aspects of ion-implantation cascades in the nuclear stopping regime, particularly with respect to nonlinearity of the cascade at high energy densities. The tabulation is restricted to self-ion implantation. Besides power-cross-section cascade dimensions, various material properties are included. Scaling of derived quantities with input data is noted, so one is not limited to the values assumed by the author

  16. Ion beam analysis of metal ion implanted surfaces

    International Nuclear Information System (INIS)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T.; Sood, D.K.

    1993-01-01

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs

  17. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P J; Chu, J W; Johnson, E P; Noorman, J T [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D K [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  18. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  19. Highly Stripped Ion Sources for MeV Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  20. Ion implantation in semiconductors and other materials

    International Nuclear Information System (INIS)

    Guernet, G.; Bruel, M.; Gailliard, J.P.; Garcia, M.; Robic, J.Y.

    1977-01-01

    The evolution of ion implantation techniques in the field of semiconductors and its extension to various fields such as metallurgy, mechanics, superconductivity and opto-electronics are considered. As for semiconductors ion implantation is evoked as: a means of predeposition of impurities at low doping level (10 11 to 10 14 cm -2 ); a means for obtaining profiles of controlled concentration; a means of reaching high doping levels with using 'strong current' implantation machines of the second generation. Some results obtained are presented [fr

  1. Fabrication and characterisation of embedded metal nanostructures by ion implantation with nanoporous anodic alumina masks

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Wei [NanoLAB, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom); Peng, Nianhua, E-mail: n.peng@surrey.ac.uk [Surrey Ion Beam Centre, Surrey University, Guildford GU2 7XH (United Kingdom); Jeynes, Christopher [Surrey Ion Beam Centre, Surrey University, Guildford GU2 7XH (United Kingdom); Ghatak, Jay [NanoLAB, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Peng, Yong [NanoLAB, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); School of Physical Science and Technology, Lanzhou University, 222 Tianshui Road, Lanzhou 730000 (China); Ross, Ian M. [Department of Electronic and Electric Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Bhatta, Umananda M.; Inkson, Beverley J.; Möbus, Günter [NanoLAB, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2013-07-15

    Lateral ordered Co, Pt and Co/Pt nanostructures were fabricated in SiO{sub 2} and Si{sub 3}N{sub 4} substrates by high fluence metal ion implantation through periodic nanochannel membrane masks based on anodic aluminium oxides (AAO). The quality of nanopatterning transfer defined by various AAO masks in different substrates was examined by transmission electron microscopy (TEM) in both imaging and spectroscopy modes.

  2. Aligned ion implantation using scanning probes

    International Nuclear Information System (INIS)

    Persaud, A.

    2006-01-01

    A new technique for precision ion implantation has been developed. A scanning probe has been equipped with a small aperture and incorporated into an ion beamline, so that ions can be implanted through the aperture into a sample. By using a scanning probe the target can be imaged in a non-destructive way prior to implantation and the probe together with the aperture can be placed at the desired location with nanometer precision. In this work first results of a scanning probe integrated into an ion beamline are presented. A placement resolution of about 120 nm is reported. The final placement accuracy is determined by the size of the aperture hole and by the straggle of the implanted ion inside the target material. The limits of this technology are expected to be set by the latter, which is of the order of 10 nm for low energy ions. This research has been carried out in the context of a larger program concerned with the development of quantum computer test structures. For that the placement accuracy needs to be increased and a detector for single ion detection has to be integrated into the setup. Both issues are discussed in this thesis. To achieve single ion detection highly charged ions are used for the implantation, as in addition to their kinetic energy they also deposit their potential energy in the target material, therefore making detection easier. A special ion source for producing these highly charged ions was used and their creation and interactions with solids of are discussed in detail. (orig.)

  3. Structure, morphology and melting hysteresis of ion-implanted nanocrystals

    International Nuclear Information System (INIS)

    Andersen, H.H.; Johnson, E.

    1995-01-01

    Investigations of nanosized metal and semimetal inclusions produced by ion implantation in aluminium are reviewed. The inclusions are from 1 nm to 15 nm in size and contain from 80 to 100,000 atoms. Embedded crystallites, which are topotactically aligned with the surrounding matrix, may not be produced in this size range by any other method. The inclusions offer unique possibilities for study of the influence of interfaces on the crystal structure of the inclusions as well as on their melting and solidification behaviour. Studies are made with transmission electron microscopy (TEM), electron- and x-ray diffraction and in situ RBS- channeling measurements. Bi, Cd, In, Pb and Tl inclusions all show a substantial melting/solidification temperature hysteresis, which, in all cases except for Bi, is placed around the bulk melting temperature, while bismuth melts below that temperature. (au) 46 refs

  4. Synthesis of titanium sapphire by ion implantation

    International Nuclear Information System (INIS)

    Morpeth, L.D.; McCallum, J.C.; Nugent, K.W.

    1998-01-01

    Since laser action was first demonstrated in titanium sapphire (Ti:Al 2 O 3 ) in 1982, it has become the most widely used tunable solid state laser source. The development of a titanium sapphire laser in a waveguide geometry would yield an elegant, compact, versatile and highly tunable light source useful for applications in many areas including optical telecommunications. We are investigating whether ion implantation techniques can be utilised to produce suitable crystal quality and waveguide geometry for fabrication of a Ti:Al 2 O 3 waveguide laser. The implantation of Ti and O ions into c-axis oriented α-Al 2 O 3 followed by subsequent thermal annealing under various conditions has been investigated as a means of forming the waveguide and optimising the fraction of Ti ions that have the correct oxidation state required for laser operation. A Raman Microprobe is being used to investigate the photo-luminescence associated with Ti 3+ ion. Initial photoluminescence measurements of ion implanted samples are encouraging and reveal a broad luminescence profile over a range of ∼ .6 to .9 μm, similar to that expected from Ti 3+ . Rutherford Backscattering and Ion Channelling analysis have been used to study the crystal structure of the samples following implantation and annealing. This enables optimisation of the implantation parameters and annealing conditions to minimise defect levels which would otherwise limit the ability of light to propagate in the Ti:Al 2O 3 waveguide. (authors)

  5. Channeling ion implantation through palladium films

    International Nuclear Information System (INIS)

    Ishiwara, H.; Furukawa, S.

    1975-01-01

    The possibility of channeling ion implantation into semiconductors through polycrystalline metallic layers is studied. Minimum values and standard deviations of channeling angular yield in polycrystalline Pd 2 Si layers formed on Si have been measured by protons and 4 He, and 14 N ion backscattering and channeling measurements. Depth distributions of the spread of crystallite orientations and scattering centers such as lattice defects have been separately derived by using the above two quantities. It has been concluded that the channeling-ion-implantation technique will become a practical one by using the parallel scanning system

  6. Development of a high current ion implanter

    International Nuclear Information System (INIS)

    Choi, Byung Ho; Kim, Wan; Jin, Jeong Tae

    1990-01-01

    A high current ion implanter of the energy of 100 Kev and the current of about 100 mA has been developed for using the high dose ion implantation, surface modification of steels and ceramics, and ion beam milling. The characteristics of the beam extraction and transportation are investigated. A duoPIGatron ion source compatible with gas ion extraction of about 100 mA, a single gap acceleration tube which is able to compensate the divergence due to the space charge effect, and a beam transport system with the concept of the space charge neutralization are developed for the high current machine. The performance of the constructed machine shows that nitrogen, argon, helium, hydrogen and oxygen ion beams are successfully extracted and transported at a beam divergence due to space charge effect is negligible in the operation pressure of 2 x 10 -5 torr. (author)

  7. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S P; Jamieson, D N; Nugent, K W; Prawer, S [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  8. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S.P.; Jamieson, D.N.; Nugent, K.W.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  9. Application of ion implantation in stevia breeding

    International Nuclear Information System (INIS)

    Wang Cailian; Chen Qiufang; Jin Wei; Lu Ting; Shu Shizhen

    1999-08-01

    Dry seed of stevia were implanted with 60-100 keV nitrogen ion and 75 keV carbon ion of various doses, and the effects of the composition and yield of stevioside were studied. The results showed that ion beam could induce variation in total stevioside yield and the composition of the plant. The best treatment was 75 keV nitrogen ion with 5 x 10 14 N + /cm 2 , the stevioside yield and Rebaudioside A (R-A) content were increased by 4.74% and 14.08% respectively. The effects induced by implantation of carbon ion were higher than those induced by implantation of nitrogen ion. Effects of Feng 1 x Ri Yuan and Ri Yuan x Feng 2 are higher than those of Ji Ning and Feng 2 . Seven mutation lines were selected from the mutation progenies. The stevioside composition of these lines were previously improved. The results suggest a potential application of ion implantation in stevia breeding

  10. Nano-size metallic oxide particle synthesis in Fe-Cr alloys by ion implantation

    Science.gov (United States)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Delauche, L.; Arnal, B.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels reinforced with metal oxide nanoparticles are advanced structural materials for nuclear and thermonuclear reactors. The understanding of the mechanisms involved in the precipitation of nano-oxides can help in improving mechanical properties of ODS steels, with a strong impact for their commercialization. A perfect tool to study these mechanisms is ion implantation, where various precipitate synthesis parameters are under control. In the framework of this approach, high-purity Fe-10Cr alloy samples were consecutively implanted with Al and O ions at room temperature and demonstrated a number of unexpected features. For example, oxide particles of a few nm in diameter could be identified in the samples already after ion implantation at room temperature. This is very unusual for ion beam synthesis, which commonly requires post-implantation high-temperature annealing to launch precipitation. The observed particles were composed of aluminium and oxygen, but additionally contained one of the matrix elements (chromium). The crystal structure of aluminium oxide compound corresponds to non-equilibrium cubic γ-Al2O3 phase rather than to more common corundum. The obtained experimental results together with the existing literature data give insight into the physical mechanisms involved in the precipitation of nano-oxides in ODS alloys.

  11. High current pelletron for ion implantation

    International Nuclear Information System (INIS)

    Schroeder, J.B.

    1989-01-01

    Since 1984, when the first production MeV ion implanter (an NEC model MV-T30) went on-line, interest in versatile electrostatic accelerator systems for MeV ion implantation has grown. The systems use a negative ion source to inject a tandem megavolt accelerator. In early systems the 0.4 mA of charging current from the two Pelletron charging chains in the accelerator was sufficient for the low intensity of beams from the ion source. This 2-chain system, however, is no longer adequate for the much higher beam intensities from today's improved ion sources. A 4-chain charging system, which delivers 1.3 mA to the high voltage terminal, was developed and is in operation in new models of NEC S Series Pelletron accelerators. This paper describes the latest beam performance of 1 MV and 1.7 MW Pelletron accelerators with this new 4-chain charging system. (orig.)

  12. More-reliable SOS ion implantations

    Science.gov (United States)

    Woo, D. S.

    1980-01-01

    Conducting layer prevents static charges from accumulating during implantation of silicon-on-sapphire MOS structures. Either thick conducting film or thinner film transparent to ions is deposited prior to implantation, and gaps are etched in regions to be doped. Grounding path eliminates charge flow that damages film or cracks sapphire wafer. Prevention of charge buildup by simultaneously exposing structure to opposite charges requires equipment modifications less practical and more expensive than deposition of conducting layer.

  13. Graphitic structure formation in ion implanted polyetheretherketone

    Energy Technology Data Exchange (ETDEWEB)

    Tavenner, E., E-mail: tazman1492@gmail.com [Creative Polymers Pty. Ltd., 41 Wilkinson Street, Toowoomba, Queensland 4350 (Australia); Chemical Committee, Surface Chemical Analysis, Standards (Australia); Wood, B. [Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Queensland 4072 (Australia); Chemical Committee, Surface Chemical Analysis, Standards (Australia); Curry, M.; Jankovic, A.; Patel, R. [Center for Applied Science and Engineering, Missouri State University, 524 North Boonville Avenue, Springfield, MO 65806 (United States)

    2013-10-15

    Ion implantation is a technique that is used to change the electrical, optical, hardness and biocompatibility of a wide range of inorganic materials. This technique also imparts similar changes to organic or polymer based materials. With polymers, ion implantation can produce a carbon enriched volume. Knowledge as to the nature of this enrichment and its relative concentration is necessary to produce accurate models of the physical properties of the modified material. One technique that can achieve this is X-ray photoelectron spectroscopy. In this study the formation of graphite like structures in the near surface of polyetheretherketone by ion implantation has been elucidated from detailed analysis of the C 1s and valence band peak structures generated by X-ray photoelectron spectroscopy. Further evidence is given by both Rutherford backscatter spectroscopy and elastic recoil detection.

  14. Studies of ion implanted thermally oxidised chromium

    International Nuclear Information System (INIS)

    Muhl, S.

    1977-01-01

    The thermal oxidation of 99.99% pure chromium containing precise amounts of foreign elements has been studied and compared to the oxidation of pure chromium. Thirty-three foreign elements including all of the naturally occurring rare earth metals were ion implanted into chromium samples prior to oxidation at 750 0 C in oxygen. The role of radiation induced damage, inherent in this doping technique, has been studied by chromium implantations at various energies and doses. The repair of the damage has been studied by vacuum annealing at temperatures up to 800 0 C prior to oxidation. Many of the implants caused an inhibition of oxidation, the greatest being a 93% reduction for 2 x 10 16 ions/cm 2 of praseodymium. The distribution of the implant was investigated by the use of 2 MeV alpha backscattering and ion microprobe analysis. Differences in the topography and structure of the chromic oxide on and off the implanted area were studied using scanning electron and optical microscopy. X-ray diffraction analysis was used to investigate if a rare earth-chromium compound of a perovskite-type structure had been formed. Lastly, the electrical conductivity of chromic oxide on and off the implanted region was examined at low voltages. (author)

  15. Tribological properties of ion-implanted steels

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1987-01-01

    The tribological properties such as surface hardness, friction and wear have been studied for low carbon steels and tool steels implanted with many types of ion including metallic elements. The hardness measured by Vickers or Knoop hardness testers as a function of normal load is dependent on the implanted species, fluence and substrate. The friction coefficients measured by Bowden-Leben type of friction tests or detected during wear tests also depend on the implantation conditions. The improvement in the wear resistance, which is most important for industrial use of implanted materials, has been investigated for AISI H13 prehardened and tool steels implanted with nitrogen and boron ions. The relationship between hardness, friction and wear is discussed in comparison with the microcharacteristics such as composition and chemical bonding states measured by means of secondary ion mass spectrometry and X-ray photoelectron spectroscopy. It is concluded that the increase in hardness and/or the decrease in friction coefficient play(s) an important role in improving the wear resistance, and the relationship between relative wear volume and relative hardness is correlated for boron and nitrogen implantation. (orig.)

  16. Changes in surface properties caused by ion implantation

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1987-01-01

    This report outlines various aspects of ion implantation. Major features of ion implantation are described first, focusing on the structure of ion implantation equipment and some experimental results of ion implantation into semiconductors. Distribution of components in ion-implantated layers is then discussed. The two major features of ion implantation in relation to the distribution of implanted ions are: (1) high controllability of addition of ions to a surface layer and (2) formation of a large number of lattice defects in a short period of time. Application of ion implantation to metallic materials is expected to permit the following: (1) formation of a semi-stable alloy surface layer by metallic ion implantation, (2) formation of a semi-stable ceramic surface layer or buried layer by non-metallic ion implantation, and (3) formation of a buried layer by combined implementation of a different metallic ion and non-metallic ion. Ion implantation in carbon materials, polymers and ceramics is discussed next. The last part of the report is dedicated to macroscopic properties of an ion-implanted layer, centering on surface modification, formation of a conductive surface layer, and tribology. (Nogami, K.) 60 refs

  17. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  18. Bone response to a titanium aluminium nitride coating on metallic implants.

    Science.gov (United States)

    Freeman, C O; Brook, I M

    2006-05-01

    The design, surface characteristics and strength of metallic implants are dependant on their intended use and clinical application. Surface modifications of materials may enable reduction of the time taken for osseointegration and improve the biological response of bio-mechanically favourable metals and alloys. The influence of a titanium aluminium nitride (TAN) coating on the response of bone to commercially pure titanium and austenitic 18/8 stainless steel wire is reported. TAN coated and plain rods of stainless steel and commercially pure titanium were implanted into the mid-shaft of the femur of Wistar rats. The femurs were harvested at four weeks and processed for scanning electron and light microscopy. All implants exhibited a favourable response in bone with no evidence of fibrous encapsulation. There was no significant difference in the amount of new bone formed around the different rods (osseoconduction), however, there was a greater degree of shrinkage separation of bone from the coated rods than from the plain rods (p = 0.017 stainless steel and p = 0.0085 titanium). TAN coating may result in reduced osseointegration between bone and implant.

  19. Hip implants - Paper VI - Ion concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Sargeant, A. [Department of Biological Sciences, Ohio Northern University, Ada, OH 45810 (United States); Goswami, T. [Department of Mechanical Engineering, Ohio Northern University, Ada, OH 45810 (United States)]. E-mail: t-goswami@onu.edu

    2007-07-01

    Total hip-joint arthroplasty is performed in increasing numbers where it translates to about 0.16-0.2% of population per year in industrial countries. In most cases, an implant is a metallic component articulating with a metal, ceramic or poly-ethylene liner as seen in the case of hip, knee and spine. The metal implants release ions in vivo. Therefore, there is a need to study metallic implants and ions released as a result. Toxic concentrations of ions can lead to many adverse physiological effects, including cytotoxicity, genotoxicity, carcinogenicity, and metal sensitivity. There is a need to map ion concentrations establishing boundaries between normal and toxic levels; which however, does not exist. Reference levels of ion concentrations in body fluids and tissues determined by many studies are compiled, reviewed, and presented in this paper. The concentrations of ions released from different alloys, including cobalt, chromium, nickel, molybdenum titanium, aluminum, and vanadium, are presented in this paper. This paper reviews the literature pertaining to clinical data on metal ion concentrations in patients with metal joint prostheses, and laboratory data on the physiological effects of the metals.

  20. Forming controlled inset regions by ion implantation and laser bombardment

    International Nuclear Information System (INIS)

    Gibbons, J.F.

    1981-01-01

    A semiconductor integrated circuit structure in which the inset regions are ion implanted and laser annealed to maintain substantially the dimensions of the implantation and the method of forming inset implanted regions having controlled dimensions

  1. Evaluation of an expence of materials during ion implantation

    International Nuclear Information System (INIS)

    Bannikov, M.G.; Zlobin, N.; Zotov, A.V.; Vasilev, V.I.; Vasilev, I.P.

    2003-01-01

    Ion implantation is used for a surface modification. The implantation dose must be sufficient to obtain the required properties of a processed surface, but should not be exceeded to prevent over-expenditure of implanted materials. The latter is especially important when noble metals are used as an implanted material. The ion implanter includes a vacuum chamber, source of metal ions (target) and a vacuum pumping-out system. Ions of a plasma-forming gas sputter the target and ions of metal are then accelerated and implanted into surface treated. Ion implantation dose can be calculated from operation parameters such as ion beam current density and duration of implanting. The presence of the plasma-forming gas in the ion flow makes it difficult to determine the expenditure of an implanted metal itself. The objective of this paper is the more accurate definition of an expense of an implanted metal. Mass- spectrometric analysis of an ion beam together with the weighing of the target was used to determine the expense of an implanted metal. It was found that, depending on the implantation parameters, on average around 50% of a total ion flow are metal ions. Results obtained allow more precise definition of an implantation dose. Thus, over- expenditure of implanted metals can be eliminated. (author)

  2. Mechanical properties of ion-implanted alumina

    International Nuclear Information System (INIS)

    Pope, S.G.

    1988-01-01

    Monolithic oxide ceramics are being proposed as structural materials in continuously more-demanding applications. The demands being placed on these materials have caused concern pertaining to the continued growth of oxide structural ceramics due to limited toughness. The realization that ceramic strength and toughness can be affected by surface conditions has led to many surface-modification techniques, all striving to improve the mechanical properties of ceramics. Along these lines, the effects of ion implantation as a surface modification technique for improvement of the mechanical properties of alumina were studied. Initially, sapphire samples were implanted with elemental ion species that would produce oxide precipitates within the sapphire surface when annealed in an oxygen-containing atmosphere. Optimum conditions as determined from implantation into sapphire were then used to modify a polycrystalline alumina. Specific modifications in microhardness, indentation fracture toughness and flexure strength are reported for the parameters studied. Microstructure and phase relationships related to modified surfaces properties are also reported

  3. Improvement of tribological properties by ion implantation

    International Nuclear Information System (INIS)

    Gerve, A.

    1993-01-01

    Many different measurements confirm that ion implantation changes the friction and wear behaviour, which are the most important properties of tribological systems. Unfortunately, these properties will not always be improved. In industrial application, very often different results of the effects of ion implantation into tools or machine components can be observed, even if the same materials are used. A very important reason for this is the different stresses on the tribological systems. The energy input caused by friction, which is a function of the stress and other parameters of the tribosystem, within a short time leads to the appearance of energy islands, which are statistically distributed over the surfaces. The density of energy within these tiny energy islands is very high. Results of these high energy densities is a mutation of the material's composition and structure within a very thin layer of less than 100 nm underneath the surface and wear. Ion implantation also changes the composition and structure of the bulk material close to the surface. Thus there is urgent need to understand tribo-induced mutations of ion-implanted materials and their influence on the tribological properties. For that reason surface analyses have to be carried out to determine the composition and structure of the materials and the mutation caused by friction and wear

  4. Studies for determining thermal ion extraction potential for aluminium plasma generated by electron beam evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V Dileep; Barnwal, Tripti A; Mukherjee, Jaya; Gantayet, L M, E-mail: dileepv@barc.gov.i [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2010-02-01

    For effective evaporation of refractory metal, electron beam is found to be most suitable vapour generator source. Using electron beam, high throughput laser based purification processes are carried out. But due to highly concentrated electron beam, the vapour gets ionised and these ions lead to dilution of the pure product of laser based separation process. To estimate the concentration of these ions and extraction potential requirement to remove these ions from vapour stream, experiments have been conducted using aluminium as evaporant. The aluminium ingots were placed in water cooled copper crucible. Inserts were used to hold the evaporant, in order to attain higher number density in the vapour processing zone and also for confining the liquid metal. Parametric studies with beam power, number density and extraction potential were conducted. In this paper we discuss the trend of the generation of thermal ions and electrostatic field requirement for extraction.

  5. Plasma immersion ion implantation of Pebax polymer

    Energy Technology Data Exchange (ETDEWEB)

    Kondyurin, A. [Applied and Plasma Physics, School of Physics (A28), University of Sydney, Sydney, NSW 2006 (Australia)]. E-mail: kond@mailcity.com; Volodin, P. [Leibniz Institute of Polymer Research Dresden e.v., Hohe Str.6, Dresden 01069 (Germany); Weber, J. [Boston Scientific Corporation, One Scimed Place, Maple Grove, MN 55311-1566 (United States)

    2006-10-15

    Nitrogen plasma immersion ion implantation (PIII) was applied to Pebax thin films and plates using doses ranging from 5 x 10{sup 14} to 10{sup 17} ions/cm{sup 2} at applied voltages of 5, 10, 20 and 30 kV. The analysis of the Pebax structure after implantation was performed using FTIR ATR, Raman, UV-vis transmission spectra, tensile and AFM contact mode data. The carbonization and depolymerisation processes were observed in the surface layer of Pebax. It was found, that graphitic- and diamond-like structures in Pebax are formed at PIII treatment of 30 kV applied voltage. AFM measurement data showed that the hardness of the Pebax surface layer increased sharply at PIII treatment with a dose higher then 10{sup 16} ions/cm{sup 2}. The bulk mechanical properties of the Pebax film after PIII remained unchanged.

  6. Kinetics and thermodynamics of aluminium dissolution in 1.0M sulphuric acid containing chloride ions

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gaber, A.M. [Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321 (Egypt)]. E-mail: ashrafmoustafa@yahoo.com; Abd-El-Nabey, B.A. [Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321 (Egypt); Sidahmed, I.M. [Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321 (Egypt); El-Zayady, A.M. [Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321 (Egypt); Saadawy, M. [Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321 (Egypt)

    2006-08-01

    The dissolution of aluminium in 1M sulphuric acid solutions containing different chloride ion concentrations (0.01-0.06M) were studied at 25, 30, 35 and 40deg. C using electrochemical impedance spectroscopy (EIS) technique and polarization curves measurements. The kinetic rate equation, under the experimental condition described, was derived and found to verify the following relationship:V=k{sub obs}K{sub 2}C{sub Cl{sup -}}{sup n}1+K{sub 2}C{sub Cl{sup -}}{sup n}where V is the corrosion rate, k{sub obs} and K{sub 2} are the dissolution rate constant of aluminium oxide-chloride complex and the equilibrium constant of chloride ions adsorbed at aluminium oxide surface, respectively. The kinetic and thermodynamic energy parameters were calculated and their values indicate that chloride ions are chemisorbed onto the aluminium oxide surface and the formation of oxide-chloride complex is the rate-determining step.

  7. Ion implantation data acquisition system

    International Nuclear Information System (INIS)

    Struttmann, D.A.; Anderl, R.A.

    1989-01-01

    This paper describes a data acquisition system developed for hydrogen ion-driven permeation experiments for materials relevant to fusion technology. The system consists of an IMB PC-AT, CAMAC interface to diagnostic instrumentation and custom-developed software (BASIC) to provide time-history information for signals from several instruments including three quadrupole mass spectrometers. 4 refs., 5 figs

  8. Ballistic self-annealing during ion implantation

    International Nuclear Information System (INIS)

    Prins, Johan F.

    2001-01-01

    Ion implantation conditions are considered during which the energy, dissipated in the collision cascades, is low enough to ensure that the defects, which are generated during these collisions, consist primarily of vacancies and interstitial atoms. It is proposed that ballistic self-annealing is possible when the point defect density becomes high enough, provided that none, or very few, of the interstitial atoms escape from the layer being implanted. Under these conditions, the fraction of ballistic atoms, generated within the collision cascades from substitutional sites, decreases with increasing ion dose. Furthermore, the fraction of ballistic atoms, which finally end up within vacancies, increases with increasing vacancy density. Provided the crystal structure does not collapse, a damage threshold should be approached where just as many atoms are knocked out of substitutional sites as the number of ballistic atoms that fall back into vacancies. Under these conditions, the average point defect density should approach saturation. This model is applied to recently published Raman data that have been measured on a 3 MeV He + -ion implanted diamond (Orwa et al 2000 Phys. Rev. B 62 5461). The conclusion is reached that this ballistic self-annealing model describes the latter data better than a model in which it is assumed that the saturation in radiation damage is caused by amorphization of the implanted layer. (author)

  9. Subnanosecond timing with ion-implanted detectors

    International Nuclear Information System (INIS)

    Rijken, H.A.; Klein, S.S.; Jacobs, W.; Teeuwen, L.J.H.G.W.; Voigt, M.J.A. de; Burger, P.

    1992-01-01

    The energy resolution of ion-implanted charged particle detectors may be improved by decreasing the thickness of the implanted detector window to minimize energy straggling. Because of the resistance of this layer, however, the timing depends on the position of entry. Two solutions to this conflict between energy resolution and time resolution are studied: evaporating a very thin aluminum layer on the detector window and fabricating a rectangular detector. Both solutions are shown to be successful with a total time resolution in the low subnanosecond region (<200 ps). (orig.)

  10. Ion beam sputter implantation method

    International Nuclear Information System (INIS)

    King, W.J.

    1978-01-01

    By means of ion beam atomizing or sputtering an integrally composed coating, the composition of which continuously changes from 100% of the substrate to 100% of the coating, can be surfaced on a substrate (e.g. molten quartz on plastic lenses). In order to do this in the facility there is directed a primary beam of accelerated noble gas ions on a target from the group of the following materials: SiO 2 , Al 2 O 3 , Corning Glass 7070, Corning Glass 7740 or borosilicate glass. The particles leaving the target are directed on the substrate by means of an acceleration potential of up to 10 KV. There may, however, be coated also metal layers (Ni, Co) on a mylar film resulting in a semireflecting metal film. (RW) [de

  11. Plasma immersion ion implantation for reducing metal ion release

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J. [Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain); Leibniz-Institut fuer Oberflaechenmodifizierung, 04318 Leipzig (Germany); Universidad de Oviedo, Departamento Quimica Fisica y Analitica (Spain); Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain)

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  12. Determination of lattice orientation in aluminium alloy grains by low energy gallium ion-channelling

    Energy Technology Data Exchange (ETDEWEB)

    Silk, Jonathan R. [Aerospace Metal Composites Ltd., RAE Road, Farnborough, GU14 6XE (United Kingdom); Dashwood, Richard J. [WMG, University of Warwick, Coventry, CV4 7AL (United Kingdom); Chater, Richard J., E-mail: r.chater@imperial.ac.u [Department of Materials, Imperial College, London SW7 2AZ (United Kingdom)

    2010-06-15

    Polished sections of a fine-grained aluminium, silicon carbide metal matrix composite (MMC) alloy were prepared by sputtering using a low energy gallium ion source and column (FIB). The MMC had been processed by high temperature extrusion. Images of the polished surface were recorded using the ion-induced secondary electron emission. The metal matrix grains were distinguished by gallium ion-channelling contrast from the silicon carbide component. The variation of the contrast from the aluminium grains with tilt angle can be recorded and used to determine lattice orientation with the contrast from the silicon carbide (SiC) component as a reference. This method is rapid and suits site-specific investigations where classical methods of sample preparation fail.

  13. Mechanical properties of ion implanted ceramic surfaces

    International Nuclear Information System (INIS)

    Burnett, P.J.

    1985-01-01

    This thesis investigates the mechanisms by which ion implantation can affect those surface mechanical properties of ceramics relevant to their tribological behaviour, specifically hardness and indentation fracture. A range of model materials (including single crystal Si, SiC, A1 2 0 3 , Mg0 and soda-lime-silica glass) have been implanted with a variety of ion species and at a range of ion energies. Significant changes have been found in both low-load microhardness and indentation fracture behaviour. The changes in hardness have been correlated with the evolution of an increasingly damaged and eventually amorphous thin surface layer together with the operation of radiation-, solid-solution- and precipitation-hardening mechanisms. Compressive surface stresses have been shown to be responsible for the observed changes in identation fracture behaviour. In addition, the levels of surface stress present have been correlated with the structure of the surface layer and a simple quantitative model proposed to explain the observed stress-relief upon amorphisation. Finally, the effects of ion implantation upon a range of polycrystalline ceramic materials has been investigated and the observed properties modifications compared and contrasted to those found for the model single crystal materials. (author)

  14. Operation of low-energy ion implanters for Si, N, C ion implantation into silicon and glassy carbon

    International Nuclear Information System (INIS)

    Carder, D.A.; Markwitz, A.

    2009-01-01

    This report details the operation of the low-energy ion implanters at GNS Science for C, N and Si implantations. Two implanters are presented, from a description of the components through to instructions for operation. Historically the implanters have been identified with the labels 'industrial' and 'experimental'. However, the machines only differ significantly in the species of ions available for implantation and sample temperature during implantation. Both machines have been custom designed for research purposes, with a wide range of ion species available for ion implantation and the ability to implant two ions into the same sample at the same time from two different ion sources. A fast sample transfer capability and homogenous scanning profiles are featured in both cases. Samples up to 13 mm 2 can be implanted, with the ability to implant at temperatures down to liquid nitrogen temperatures. The implanters have been used to implant 28 Si + , 14 N + and 12 C + into silicon and glassy carbon substrates. Rutherford backscattering spectroscopy has been used to analyse the implanted material. From the data a Si 30 C 61 N 9 layer was measured extending from the surface to a depth of about 77 ± 2 nm for (100) silicon implanted with 12 C + and 14 N + at multiple energies. Silicon and nitrogen ion implantation into glassy carbon produced a Si (40.5 %), C (38 %), N (19.5 %) and O (2%) layer centred around a depth of 50 ± 2 nm from the surface. (author). 8 refs., 20 figs

  15. Cluster Ion Implantation in Graphite and Diamond

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2014-01-01

    Cluster ion beam technique is a versatile tool which can be used for controllable formation of nanosize objects as well as modification and processing of surfaces and shallow layers on an atomic scale. The current paper present an overview and analysis of data obtained on a few sets of graphite...... and diamond samples implanted by keV-energy size-selected cobalt and argon clusters. One of the emphases is put on pinning of metal clusters on graphite with a possibility of following selective etching of graphene layers. The other topic of concern is related to the development of scaling law for cluster...... implantation. Implantation of cobalt and argon clusters into two different allotropic forms of carbon, namely, graphite and diamond is analysed and compared in order to approach universal theory of cluster stopping in matter....

  16. Chemical and catalytic effects of ion implantation

    International Nuclear Information System (INIS)

    Wolf, G.K.

    1982-01-01

    Energetic particles are used for inducing chemical reactions as well as for modifying the properties of materials with regard to their bulk and surface chemical behavior. The effects are partly caused by radiation damage or phase intermixing, partly by the chemical properties of the individual bombarding particles. In this contribution a survey of relevant applications of these techniques is presented: (1) Chemical reactions of implanted and recoil atoms and their use for syntheses, doping and labeling of compounds. (2) The formation of thin films by decomposing chemical compounds with ion beams. 3) Catalytic effects on substrates treated by sputtering or ion implantation. Recent results with nonmetallic substrates are reviewed. Mainly hydrogenation reactions at a solid/gas interface or redox reactions at an electrified solid/liquid interface are mentioned. The present status and future prospects of these kinds of investigations will be discussed. (author)

  17. Damage accumulation in ceramics during ion implantation

    International Nuclear Information System (INIS)

    McHargue, C.J.; Farlow, G.C.; Begun, G.M.; Williams, J.M.; White, C.W.; Appleton, B.R.; Sklad, P.S.; Angelini, P.

    1985-01-01

    The damage structures of α-Al 2 O 3 and α-SiC were examined as functions of ion implantation parameters using Rutherford backscattering-channeling, analytical electron microscopy, and Raman spectroscopy. Low temperatures or high fluences of cations favor formation of the amorphous state. At 300 0 K, mass of the bombarding species has only a small effect on residual damage, but certain ion species appear to stabilize the damage microstructure and increase the rate of approach to the amorphous state. The type of chemical bonding present in the host lattice is an important factor in determining the residual damage state

  18. Laser annealing of ion implanted silicon

    International Nuclear Information System (INIS)

    White, C.W.; Appleton, B.R.; Wilson, S.R.

    1980-01-01

    Pulsed laser annealing of ion implanted silicon leads to the formation of supersaturated alloys by nonequilibrium crystal growth processes at the interface occurring during liquid phase epitaxial regrowth. The interfacial distribution coefficients from the melt (k') and the maximum substitutional solubilities (C/sub s//sup max/) are far greater than equilibrium values. Both K' and C/sub s//sup max/ are functions of growth velocity. Mechanisms limiting substitutional solubilities are discussed. 5 figures, 2 tables

  19. Quantum effects in ion implanted devices

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Chan, V.; Hudson, F.E.; Andresen, S.E.; Yang, C.; Hopf, T.; Hearne, S.M.; Pakes, C.I.; Prawer, S.; Gauja, E.; Yang, C.; Dzurak, A.S.; Yang, C.; Clark, R.G.; Yang, C.

    2005-01-01

    Fabrication of nanoscale devices that exploit the rules of quantum mechanics to process information presents formidable technical challenges because it will be necessary to control quantum states at the level of individual atoms, electrons or photons. We have developed a pathway to the construction of quantum devices using ion implantation and demonstrate, using charge transport analysis, that the devices exhibit single electron effects. We construct devices that employ two P donors in Si by employing the technique of ion beam induced charge (IBIC) in which single 14 keV P ions can be implanted into ultra-pure silicon by monitoring on-substrate detector electrodes. We have used IBIC with a MeV nuclear microprobe to map and measure the charge collection efficiency in the development of the electrode structure and show that 100% charge collection efficiency can be achieved leading to the fabrication of prototype devices that display quantum effects in the transport of single charge quanta between the islands of implanted donors. (author). 9 refs., 4 figs., 1 tab

  20. Lithium ion implantation effects in MgO (100)

    NARCIS (Netherlands)

    van Huis, MA; Fedorov, AV; van Veen, A; Labohm, F; Schut, H; Mijnarends, PE; Kooi, BJ; De Hosson, JTM; Triftshauser, W; Kogel, G; Sperr, P

    2001-01-01

    Single crystals of MgO (100) were implanted with 10(16) (6)Li ions cm(-2) at an energy of 30 keV. After ion implantation the samples were annealed isochronally in air at temperatures up to 1200K. After implantation and after each annealing step, the defect evolution was monitored with optical

  1. Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel

    Science.gov (United States)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    The tension-dependent activity of mechanosensory calcium-selective cation channels in excised plasmalemmal patches from onion bulb scale epidermis is modulated by pH in the physiologically meaningful range between 4.5 and 7.2. It is rapidly lowered by lowering pH and rapidly raised by raising pH. Channel activity is effectively inhibited by low levels of aluminium ions and activity can be partially restored by washing for a few minutes. We suggest that under normal conditions the sensitivity of the mechanosensory channels to pH of the wall free space plays important roles in regulation of plant activities such as growth. We further suggest that, when levels of acid and aluminium ions in the soil solution are high, they might inhibit similar sensory channels in cells of the root tip, thus contributing critically to the acid soil syndrome.

  2. Electron microscopy studies of ion implanted silicon

    International Nuclear Information System (INIS)

    Seshan, K.

    1975-11-01

    The nature of defects resulting from the implantation of phosphorous ions into doped silicon and a model of how they form are reported. This involved an electron microscope study of the crystallographic defects (in the 300A size range in concentration of 10 15 /cm 3 ) that form upon annealing. Images formed by these crystallographic defects are complex and that nonconventional imaging techniques are required for their characterization. The images of these small defects (about 300A) are sensitive to various parameters, such as foil thickness, their position in the foil, and diffracting conditions. The defects were found to be mostly interstitial hexagonal Frank loops lying on the four [111] planes and a few perfect interstitial loops; these loops occurred in concentrations of about 10 16 /cm 3 . In addition, ''rod like'' linear defects that are shown to be interstitial are also found in concentrations of 10 13 /cm 3 . It was found that the linear defects require boron for their formation. A model is proposed to account for the interstitial defects. The number of point defects that make up the defects is of the same order as the number of implanted ions. The model predicts that only interstitial loops ought to be observed in agreement with several recent investigations. Dislocation models of the loops are examined and it is shown that phosphorous ions could segregate to the Frank loops, changing their displacement vectors to a/x[111]. (x greater than 3) thus explaining the contrast effects observed. It would also explain the relative electrical inactivity of P + ion implants

  3. Paramagnetism in ion-implanted oxides

    CERN Document Server

    Mølholt, Torben Esmann; Gíslason, Hafliði Pétur; Ólafsson, Sveinn

    This thesis describes the investigation on para-magnetism in dilute ion-implanted single-crystal oxide samples studied by on- and off-line $^{57}$Fe emission Mössbauer spectroscopy. The ion-implantation of the radioactive isotopes ( $^{57}$Mn and $^{57}$Co) was performed at the ISOLDE facility at CERN in Geneva, Switzerland. The off-line measurements were performed at Aarhus University, Denmark. Mössbauer spectroscopy is a unique method, giving simultaneously local information on valence/spin state of the $^{57}$Fe probe atoms, site symmetry and magnetic properties on an atomic scale. The utilisation of emission Mössbauer spectroscopy opens up many new possibilities compared with traditional transmission Mössbauer spectroscopy. Among them is the possibility of working with a low concentration below 10$^{-4}$ –10$^{-3}$ at.%, where the implanted Mössbauer $^{57}$Fe probes are truly dilute impurities exclusively interacting with their nearest neighbours and therefore the possibility of crea...

  4. High energy iron ion implantation into sapphire

    International Nuclear Information System (INIS)

    Allen, W.R.; Pedraza, D.F.

    1990-01-01

    Sapphire specimens of c-axis orientation were implanted at room temperature with iron ions at energies of 1.2 and of 2 MeV to various fluences up to 8 x 10 16 cm -2 . The damage induced by the implantations was assessed by Rutherford backscattering spectroscopy in random and channeling geometries. Dechanneling in both sublattices was observed to saturate for all implantation conditions. Disorder in the aluminum sublattice was found to increase with depth at a significantly slower rate than in the oxygen sublattice. In the oxygen sublattice, a relative yield, χ, of 0.80 ± 0.11 was attained at a depth of 0.1 μm and remained constant up to the measured depth of 0.45 μm. In the aluminum sublattice, the disorder increased with depth and the dechanneling asymptotically approached χ =0.70 ± 0.04 at 0.45 μm. These results are discussed and compared with those for shallower Fe implantations obtained by other researchers

  5. Studying of ion implantation effect on the biology in China

    International Nuclear Information System (INIS)

    Yu Zengliang

    1993-04-01

    Since low energy ion effect on the biology was observed, the ion implantation as a new mutagenic source has been widely used in improving crops and modifying microbes in China. The basic phenomenon of ion implantation effect on the biology and analytical results are reported, and the examples of its application and its further development are shown

  6. Production of Endohedral Fullerenes by Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Diener, M.D.; Alford, J. M.; Mirzadeh, S.

    2007-05-31

    The empty interior cavity of fullerenes has long been touted for containment of radionuclides during in vivo transport, during radioimmunotherapy (RIT) and radioimaging for example. As the chemistry required to open a hole in fullerene is complex and exceedingly unlikely to occur in vivo, and conformational stability of the fullerene cage is absolute, atoms trapped within fullerenes can only be released during extremely energetic events. Encapsulating radionuclides in fullerenes could therefore potentially eliminate undesired toxicity resulting from leakage and catabolism of radionuclides administered with other techniques. At the start of this project however, methods for production of transition metal and p-electron metal endohedral fullerenes were completely unknown, and only one method for production of endohedral radiofullerenes was known. They therefore investigated three different methods for the production of therapeutically useful endohedral metallofullerenes: (1) implantation of ions using the high intensity ion beam at the Oak Ridge National Laboratory (ORNL) Surface Modification and Characterization Research Center (SMAC) and fullerenes as the target; (2) implantation of ions using the recoil energy following alpha decay; and (3) implantation of ions using the recoil energy following neutron capture, using ORNL's High Flux Isotope Reactor (HFIR) as a thermal neutron source. While they were unable to obtain evidence of successful implantation using the ion beam at SMAC, recoil following alpha decay and neutron capture were both found to be economically viable methods for the production of therapeutically useful radiofullerenes. In this report, the procedures for preparing fullerenes containing the isotopes {sup 212}Pb, {sup 212}Bi, {sup 213}Bi, and {sup 177}Lu are described. None of these endohedral fullerenes had ever previously been prepared, and all of these radioisotopes are actively under investigation for RIT. Additionally, the chemistry for

  7. Computational stochastic model of ions implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zmievskaya, Galina I., E-mail: zmi@gmail.ru; Bondareva, Anna L., E-mail: bal310775@yandex.ru [M.V. Keldysh Institute of Applied Mathematics RAS, 4,Miusskaya sq., 125047 Moscow (Russian Federation); Levchenko, Tatiana V., E-mail: tatlevchenko@mail.ru [VNII Geosystem Russian Federal Center, Varshavskoye roadway, 8, Moscow (Russian Federation); Maino, Giuseppe, E-mail: giuseppe.maino@enea.it [Scuola di Lettere e BeniCulturali, University di Bologna, sede di Ravenna, via Mariani 5, 48100 Ravenna (Italy)

    2015-03-10

    Implantation flux ions into crystal leads to phase transition /PT/ 1-st kind. Damaging lattice is associated with processes clustering vacancies and gaseous bubbles as well their brownian motion. System of stochastic differential equations /SDEs/ Ito for evolution stochastic dynamical variables corresponds to the superposition Wiener processes. The kinetic equations in partial derivatives /KE/, Kolmogorov-Feller and Einstein-Smolukhovskii, were formulated for nucleation into lattice of weakly soluble gases. According theory, coefficients of stochastic and kinetic equations uniquely related. Radiation stimulated phase transition are characterized by kinetic distribution functions /DFs/ of implanted clusters versus their sizes and depth of gas penetration into lattice. Macroscopic parameters of kinetics such as the porosity and stress calculated in thin layers metal/dielectric due to Xe{sup ++} irradiation are attracted as example. Predictions of porosity, important for validation accumulation stresses in surfaces, can be applied at restoring of objects the cultural heritage.

  8. The study of an aluminium-alloy distributed ion pump

    International Nuclear Information System (INIS)

    Liu, Y.C.; Lin, W.J.; Chen, J.R.; National Tsinghua Univ., Hsinchu, Taiwan

    1990-01-01

    A distribution ion pump with aluminum chamber, aluminum anodes and titanium cathodes has been studied. It was observed from AES and RBS analyses that a titanium layer with oxygen and nitrogen atoms (with a ratio T i /N + 0 ≅ 0.7) was deposited on the surface of the aluminum anode. (author)

  9. Possibilities of UV laser oscillation on aluminium ion lines

    NARCIS (Netherlands)

    Grozeva, M.; Mihailova, D.B.; Sabotinov, N.

    2006-01-01

    An analysis of the general energy level structure of the singly ionised Al is made. It is found that in the UV spectrum of Al II there are many intensive lines starting from levels which can be populated selectively via charge transfer collisions with either helium or neon ions. The emission

  10. Non-Uniformity of Ion Implantation in Direct-Current Plasma Immersion Ion Implantation

    International Nuclear Information System (INIS)

    Cheng-Sen, Liu; Yu-Jia, Fan; Nan, Zhang; Li, Guan; Yuan, Yao; De-Zhen, Wang

    2010-01-01

    A particle-in-cell simulation is developed to study dc plasma immersion ion implantation. Particular attention is paid to the influence of the voltage applied to the target on the ion path, and the ion flux distribution on the target surface. It is found that the potential near the aperture within the plasma region is not the plasma potential, and is impacted by the voltage applied to the implanted target. A curved equipotential contour expands into the plasma region through the aperture and the extent of the expansion depends on the voltage. Ions accelerated by the electric field in the sheath form a beam shape and a flux distribution on the target surface, which are strongly dependent on the applied voltage. The results of the simulations demonstrate the formation mechanism of the grid-shadow effect, which is in agreement with the result observed experimentally. (physics of gases, plasmas, and electric discharges)

  11. Wear properties of metal ion implanted 4140 steel

    International Nuclear Information System (INIS)

    Evans, P.J.; Paoloni, F.J.

    1994-01-01

    AISI type 4140 (high tensile) steel has been implanted with tungsten and titanium using a metal vapour vacuum arc ion source. Doses in the range (1-5)x10 16 ionscm -2 were implanted to a depth of approximately 30nm. The relative wear resistance between non-implanted and implanted specimens has been estimated using pin-on-disc and abrasive wear tests. Implantation of titanium decreased the area of wear tracks by a factor of 5 over unimplanted steel. In some cases the steel was also hardened by a liquid carburization treatment before implantation. Abrasion tests revealed a further improvement in wear resistance on this material following ion irradiation. ((orig.))

  12. Surface modification of yttria stabilized zirconia by ion implantation

    International Nuclear Information System (INIS)

    Scholten, D.

    1987-01-01

    The results of investigations of surface modification by ion implantation in zirconia are described. As dopant material, iron was investigated thoroughly. The depth distribution of implanted ions depends on implantation parameters and the dopant-matrix system. The investigations of thermal stability of some implanted iron profiles by RBS and AES are described. Special interest lies in the thermal stability under working conditions of the zirconia material (400-1000 0 C). Radiation damage introduced in the implanted layer was investigated using transmission electron microscopy on polycrystalline material and channeling experiments on a single crystal implanted with iron. 179 refs.; 87 figs.; 20 tabs

  13. Simulation of ion implantation for ULSI technology

    International Nuclear Information System (INIS)

    Hoessinger, A.

    2000-07-01

    In modern semiconductor technology ion implantation has turned out to be the most important technique to introduce dopant atoms into semiconducting materials. The major advantage of the ion implantation technique is the high controllability and reproducibility of the process parameters influencing the doping distributions. Furthermore, very shallow doping profiles can be formed, which are a prerequisite for ULSI (ultra large scale integration) technology. Since it is mainly ion implantation which determines the distribution of the dopants and thereby the electrical properties of the semiconductor devices highly accurate simulation methods for ion implantation processes are required to be able to predict and optimize the behavior of integrated circuits. In recent years successively shrinking device dimensions and new design concepts have shown the necessity of a full three-dimensional treatment of simulation problems, e.g. the simulation of MOS transistors with narrow gates, or vertical transistors. Three-dimensional simulations obviously require large computation times and a lot of memory. Therefore, it is a waste of computational resources if a three-dimensional simulation would be applied to all applications. Several problems, like the buried layer or the well formation of an MOS transistor can be analyzed as accurate by simpler two-dimensional or even one-dimensional simulations. Since it should be easy to switch the dimension of the simulation without recalibrating a simulator, it is not desirable to use different simulators, which eventually use different models, for the simulation of one-dimensional, two-dimensional and three-dimensional problems. The goal of this work was to further improve a Monte-Carlo ion implantation simulator developed over the last fifteen years within the scope of several PhD theses. As part of this work several new models and methods have been developed and implemented to improve the accuracy and the efficiency of the simulator, in

  14. Biodegradable radioactive implants for glaucoma filtering surgery produced by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W. [Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, 85748 Garching (Germany)]. E-mail: walter.assmann@lmu.de; Schubert, M. [Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, 85748 Garching (Germany); Held, A. [Augenklinik, Technische Universitaet Muenchen, 81675 Munich (Germany); Pichler, A. [Augenklinik, Technische Universitaet Muenchen, 81675 Muenchen (Germany); Chill, A. [Zentralinstitut fuer Medizintechnik, Technische Universitaet Muenchen, 85748 Garching (Germany); Kiermaier, S. [Zentralinstitut fuer Medizintechnik, Technische Universitaet Muenchen, 85748 Garching (Germany); Schloesser, K. [Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Busch, H. [NTTF GmbH, 53619 Rheinbreitbach (Germany); Schenk, K. [NTTF GmbH, 53619 Rheinbreitbach (Germany); Streufert, D. [Acri.Tec GmbH, 16761 Hennigsdorf (Germany); Lanzl, I. [Augenklinik, Technische Universitaet Muenchen, 81675 Munich (Germany)

    2007-04-15

    A biodegradable, {beta}-emitting implant has been developed and successfully tested which prevents fresh intraocular pressure increase after glaucoma filtering surgery. Ion implantation has been used to load the polymeric implants with the {beta}-emitter {sup 32}P. The influence of ion implantation and gamma sterilisation on degradation and {sup 32}P-fixation behavior has been studied by ion beam and chemical analysis. Irradiation effects due to the applied ion fluence (10{sup 15} ions/cm{sup 2}) and gamma dose (25 kGy) are found to be tolerable.

  15. Interaction of aluminium(3) with uranyl ions in the course of joint hydrolysis

    International Nuclear Information System (INIS)

    Yusov, A.B.; Budantseva, N.A.; Fedoseev, A.M.; Astafurova, L.N.

    2001-01-01

    By means of spectrophotometry, luminescence and IR-spectroscopy one studied interaction of uranyl ions with Al 3+ ions in solutions at pH≥2 and in precipitates at pH≥5. It is shown that within 3-4 pH range the uranyl hydrolyzed forms interact with these of aluminium. Mixed hydroxoaquacomplexes are likely to be formed in solution with U:Al = 1:1 molar ratio. Large-size mixed polymers may be formed with pH increase. Varying of precipitation pH from 5 up to 14 does not minimize the importance of the oligomer mixed compounds for precipitation formation [ru

  16. Quantum effects in ion implanted devices

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Chan, V.; Hudson, F.E.; Andresen, S.E.; Yang, C.; Hopf, T.; Hearne, S.M.; Pakes, C.I.; Prawer, S.; Gauja, E.; Dzurak, A.S.; Clark, R.G.

    2006-01-01

    Fabrication of nanoscale devices that exploit the rules of quantum mechanics to process information presents formidable technical challenges because of the need to control quantum states at the level of individual atoms, electrons or photons. We have used ion implantation to fabricate devices on the scale of 10 nm that have allowed the development and test of nanocircuitry for the control of charge transport at the level of single electrons. This fabrication method is compatible with the construction of devices that employ counted P dopants in Si by employing the technique of ion beam induced charge (IBIC) in which single 14 keV P ions can be implanted into ultra-pure silicon substrates by monitoring on-substrate detector electrodes. We have used IBIC with a MeV nuclear microprobe to map and measure the charge collection efficiency in the development of the electrode structure and show that 100% charge collection efficiency can be achieved. Prototype devices fabricated by this method have been used to investigate quantum effects in the control and transport of single electrons with potential applications to solid state quantum information processing devices

  17. Formation of InN phase by sequential ion implantation

    International Nuclear Information System (INIS)

    Santhana Raman, P.; Ravichandran, V.; Nair, K.G.M.; Kesavamoorthy, R.; Kalavathi, S.; Panigrahi, B.K.; Dhara, S.

    2006-01-01

    Formation of InN phase by sequentially implanting nitrogen on indium implanted silica was demonstrated. The growth of embedded InN phase on as-implanted and post-implantation annealed sample was studied using Glancing Incidence X-Ray Diffraction (GIXRD) and Raman spectroscopy. Existence of both cubic and hexagonal phases of InN was observed. Results of irradiation induced ripening of In nanoclusters due to N + ion implantation was also studied. (author)

  18. Adherent zirconia films by reactive ion implantation

    International Nuclear Information System (INIS)

    Bunker, S.N.; Armini, A.J.

    1993-01-01

    Conventional methods of forming ceramic coatings on metal substrates, such as CVD or plasma spray, typically retain a sharp interface and may have adhesion problems. In order to produce a completely mixed interface for better adhesion, a method using reactive ion implantation was used which can grow a thick stoichiometric film of an oxide ceramic starting from inside the substrate. Zirconium oxide ceramic films have been produced by this technique using a high-energy zirconium ion beam in an oxygen gas ambient. Compositional data are shown based on Auger electron spectroscopy of the film. Tribological properties of the layer were determined from wear and friction measurements using a pin-on-disk test apparatus. The adhesion was measured both by a scratch technique as well as by thermal shock. Results show an extremely adherent ZrO 2 film with good tribological properties

  19. Evaluation of stabilization techniques for ion implant processing

    Science.gov (United States)

    Ross, Matthew F.; Wong, Selmer S.; Minter, Jason P.; Marlowe, Trey; Narcy, Mark E.; Livesay, William R.

    1999-06-01

    With the integration of high current ion implant processing into volume CMOS manufacturing, the need for photoresist stabilization to achieve a stable ion implant process is critical. This study compares electron beam stabilization, a non-thermal process, with more traditional thermal stabilization techniques such as hot plate baking and vacuum oven processing. The electron beam processing is carried out in a flood exposure system with no active heating of the wafer. These stabilization techniques are applied to typical ion implant processes that might be found in a CMOS production process flow. The stabilization processes are applied to a 1.1 micrometers thick PFI-38A i-line photoresist film prior to ion implant processing. Post stabilization CD variation is detailed with respect to wall slope and feature integrity. SEM photographs detail the effects of the stabilization technique on photoresist features. The thermal stability of the photoresist is shown for different levels of stabilization and post stabilization thermal cycling. Thermal flow stability of the photoresist is detailed via SEM photographs. A significant improvement in thermal stability is achieved with the electron beam process, such that photoresist features are stable to temperatures in excess of 200 degrees C. Ion implant processing parameters are evaluated and compared for the different stabilization methods. Ion implant system end-station chamber pressure is detailed as a function of ion implant process and stabilization condition. The ion implant process conditions are detailed for varying factors such as ion current, energy, and total dose. A reduction in the ion implant systems end-station chamber pressure is achieved with the electron beam stabilization process over the other techniques considered. This reduction in end-station chamber pressure is shown to provide a reduction in total process time for a given ion implant dose. Improvements in the ion implant process are detailed across

  20. Ion Implantation of Calcium and Zinc in Magnesium for Biodegradable Implant Applications

    Directory of Open Access Journals (Sweden)

    Sahadev Somasundaram

    2018-01-01

    Full Text Available In this study, magnesium was implanted with calcium-ion and zinc-ion at fluences of 1015, 1016, and 1017 ion·cm−2, and its in vitro degradation behaviour was evaluated using electrochemical techniques in simulated body fluid (SBF. Rutherford backscattering spectrometry (RBS revealed that the implanted ions formed layers within the passive magnesium-oxide/hydroxide layers. Electrochemical impedance spectroscopy (EIS results demonstrated that calcium-ion implantation at a fluence of 1015 ions·cm−2 increased the polarisation resistance by 24%, but higher fluences showed no appreciable improvement. In the case of zinc-ion implantation, increase in the fluence decreased the polarisation resistance. A fluence of 1017 ion·cm−2 decreased the polarisation resistance by 65%, and fluences of 1015 and 1016 showed only marginal effect. Similarly, potentiodynamic polarisation results also suggested that low fluence of calcium-ion decreased the degradation rate by 38% and high fluence of zinc-ion increased the degradation rate by 61%. All the post-polarized ion-implanted samples and the bare metal revealed phosphate and carbonate formation. However, the improved degradative behaviour in calcium-ion implanted samples can be due to a relatively better passivation, whereas the reduction in degradation resistance in zinc-ion implanted samples can be attributed to the micro-galvanic effect.

  1. Electrochemical investigations of ion-implanted oxide films

    International Nuclear Information System (INIS)

    Schultze, J.W.; Danzfuss, B.; Meyer, O.; Stimming, U.

    1985-01-01

    Oxide films (passive films) of 40-50 nm thickness were prepared by anodic polarization of hafnium and titanium electrodes up to 20 V. Multiple-energy ion implantation of palladium, iron and xenon was used in order to obtain modified films with constant concentration profiles of the implanted ions. Rutherford backscattering, X-ray photoelectron spectroscopy measurements and electrochemical charging curves prove the presence of implanted ions, but electrochemical and photoelectrochemical measurements indicate that the dominating effect of ion implantation is the disordering of the oxide film. The capacity of hafnium electrodes increases as a result of an increase in the dielectric constant D. For titanium the Schottky-Mott analysis shows that ion implantation causes an increase in D and the donor concentration N. Additional electronic states in the band gap which are created by the implantation improve the conductivity of the semiconducting or insulating films. This is seen in the enhancement of electron transfer reactions and its disappearance during repassivation and annealing. Energy changes in the band gap are derived from photoelectrochemical measurements; the absorption edge of hafnium oxide films decreases by approximately 2 eV because of ion implantation, but it stays almost constant for titanium oxide films. All changes in electrochemical behavior caused by ion implantation show little variation with the nature of the implanted ion. Hence the dominating effect seems to be a disordering of the oxide. (Auth.)

  2. Depth distribution of nitrogen in silicon from plasma ion implantation

    International Nuclear Information System (INIS)

    Vajo, J.J.; Williams, J.D.; Wei, R.; Wilson, R.G.; Matossian, J.N.

    1994-01-01

    Plasma Ion Implantation (PII) is an ion implantation technique that eliminates the line-of-sight restriction of conventional ion-beam implantation and therefore allows for cost effective surface modification of large-scale objects or large-number of small-scale objects. In PII, a part to be implanted is immersed in a low-pressure (10 -4 --10 -5 Torr), partially-ionized plasma that surrounds the part with a plasma sheath. The part is negatively pulse biased up to 100 keV using a repetitive train (100--1,000 Hz) of short-duration (10--40 μsec) voltage pulses. The applied voltage develops across the sheath and accelerates plasma ions into the surface, implanting them omnidirectionally and simultaneously over the entire surface of the part. The depth distribution of the implanted ions influences the extent and type of surface modification achieved and depends upon many factors. These include three rise and fall time of the voltage-pulse waveform, the voltage-pulse amplitude, the ion specie, the ion density, and the temperature of the target. Understanding the contributions to the depth distribution from each of these factors will enable prediction of conditions that will be useful for implantation of large complex parts. To investigate the contributions to the measured depth distributions from these factors nitrogen, predominantly as N + 2 , has been implanted into silicon using PII at 50 and 100 keV (25 and 50 keV per N atom). The implanted depth distributions have been determined using secondary ion mass spectroscopy and Auger electron spectroscopy depth profiling. The distributions differ from the typical, approximately Gaussian, profiles that result from conventional mass selected monoenergetic ion beam implantation. In comparison with ion beam implants and numerical simulations the profiles appear ''filled-in'' with an approximately constant nitrogen concentration for depths less than the expected average ion range

  3. SIMS analysis of isotopic impurities in ion implants

    International Nuclear Information System (INIS)

    Sykes, D.E.; Blunt, R.T.

    1986-01-01

    The n-type dopant species Si and Se used for ion implantation in GaAs are multi-isotopic with the most abundant isotope not chosen because of potential interferences with residual gases. SIMS analysis of a range of 29 Si implants produced by several designs of ion implanter all showed significant 28 Si impurity with a different depth distribution from that of the deliberately implanted 29 Si isotope. This effect was observed to varying degrees with all fifteen implanters examined and in every 29 Si implant analysed to date 29 Si + , 29 Si ++ and 30 Si implants all show the same effect. In the case of Se implantation, poor mass resolution results in the implantation of all isotopes with the same implant distribution (i.e. energy), whilst implants carried out with good mass resolution show the implantation of all isotopes with the characteristic lower depth distribution of the impurity isotopes as found in the Si implants. This effect has also been observed in p-type implants into GaAs (Mg) and for Ga implanted in Si. A tentative explanation of the effect is proposed. (author)

  4. Corrosion resistance of uranium with carbon ion implantation

    International Nuclear Information System (INIS)

    Liang Hongwei; Yan Dongxu; Bai Bin; Lang Dingmu; Xiao Hong; Wang Xiaohong

    2008-01-01

    The carbon modified layers prepared on uranium surface by carbon ion implantation, gradient implantation, recoil implantation and ion beam assisted deposition process techniques were studied. Depth profile elements of the samples based on Auger electron spectroscopy, phase composition identified by X-ray diffraction as well as corrosion resistance of the surface modified layers by electrochemistry tester and humid-thermal oxidation test were carried out. The carbon modified layers can be obtained by above techniques. The samples deposited with 45 keV ion bombardment, implanted by 50 keV ions and implanted with gradient energies are of better corrosion resistance properties. The samples deposited carbon before C + implantation and C + assisted deposition exhibit worse corrosion resistance properties. The modified layers are dominantly dot-corraded, which grows from the dots into substructure, however, the assisted deposition samples have comparatively high carbon composition and are corraded weakly. (authors)

  5. The activation of aluminium by mercury ions in non-aggressive media

    Energy Technology Data Exchange (ETDEWEB)

    Bessone, J.B. [INIEC-Dto de Ingenieria Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)]. E-mail: jbessone@criba.edu.ar

    2006-12-15

    The presence of Hg at concentration less than 300 ppm in Al base alloys causes their passivation breakdown. On alloys used as sacrificial anodes, it causes a major lowering (>0.3 V) in their operational potential in chloride media. Mercury as trace constituent in the natural gas stream causes severe damage to cryogenic heat exchangers. The present paper presents evidences of the mechanism by which mercury produces its pronounced effect in aqueous non-aggressive media. The work was carried out using pure (99.99%) aluminium and mercury (II) acetate solutions of different concentrations and pH. Open circuit potential-time responses were obtained. The surface effects were followed by means of scanning microscopy and EDAX/X-Ray analysis. The results demonstrate that immediately after immersion, the initial air-formed oxide film underwent a dynamic crack-healing process at flaws in the film, possible associated to grain boundaries. The subsequent healing process, if any, depends on the media composition. Thus, in this special case, Hg{sup 2+} ions can be directly reduced on the bare aluminium, reaching a true metallic contact, and initiating surface diffusion. This enables the formation of an amalgam. Aluminium atoms diffuse through the liquid mercury and undergo oxidation at the amalgam/electrolyte interface. This process is responsible for the oxide detachment (by undermining) and the attack morphology (i.e., wide cavities). The presence of aggressive anions is not needed to initiate activation.

  6. Ion implantation induced blistering of rutile single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Bing-Xi [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Jiao, Yang [College of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250100 (China); Guan, Jing [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Wang, Lei [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China)

    2015-07-01

    The rutile single crystals were implanted by 200 keV He{sup +} ions with a series fluence and annealed at different temperatures to investigate the blistering behavior. The Rutherford backscattering spectrometry, optical microscope and X-ray diffraction were employed to characterize the implantation induced lattice damage and blistering. It was found that the blistering on rutile surface region can be realized by He{sup +} ion implantation with appropriate fluence and the following thermal annealing.

  7. Adhesive, abrasive and oxidative wear in ion-implanted metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1985-01-01

    Ion implantation is increasingly being used to provide wear resistance in metals and cemented tungsten carbides. Field trials and laboratory tests indicate that the best performance is achieved in mild abrasive wear. This can be understood in terms of the classification of wear modes (adhesive, abrasive, oxidative etc.) introduced by Burwell. Surface hardening and work hardenability are the major properties to be enhanced by ion implantation. The implantation of nitrogen or dual implants of metallic and interstitial species are effective. Recently developed techniques of ion-beam-enhanced deposition of coatings can further improve wear resistance by lessening adhesion and oxidation. In order to support such hard coatings, ion implantation of nitrogen can be used as a preliminary treatment. There is thus emerging a versatile group of related hard vacuum treatments involving intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (Auth.)

  8. Synthesis of graphene by MEVVA source ion implantation

    International Nuclear Information System (INIS)

    Ying, J.J.; Xiao, X.H.; Dai, Z.G.; Wu, W.; Li, W.Q.; Mei, F.; Cai, G.X.; Ren, F.; Jiang, C.Z.

    2013-01-01

    Ion implantation provides a new synthesis route for graphene, and few-layered graphene synthesis by ion implantation has been reported. Here we show the synthesis of a single layer of high-quality graphene by Metal Vapor Vacuum Arc (MEVVA) source ion implantation. Polycrystalline nickel and copper thin films are implanted with MEVVA source carbon ions at 40 kV, followed by high-temperature thermal annealing and quenching. A Raman spectrum is applied to probe the quality and thickness of the prepared graphene. A single layer of high-quality graphene is grown on the nickel films, but not on the copper films. The growth mechanisms on the nickel and copper films are explained. MEVVA source ion implantation has been widely applied in industrial applications, demonstrating that this synthesis method can be generalized for industrial production

  9. In-situ deposition of sacrificial layers during ion implantation

    International Nuclear Information System (INIS)

    Anders, A.; Anders, S.; Brown, I.G.; Yu, K.M.

    1995-02-01

    The retained dose of implanted ions is limited by sputtering. It is known that a sacrificial layer deposited prior to ion implantation can lead to an enhanced retained dose. However, a higher ion energy is required to obtain a similar implantation depth due to the stopping of ions in the sacrificial layer. It is desirable to have a sacrificial layer of only a few monolayers thickness which can be renewed after it has been sputtered away. We explain the concept and describe two examples: (i) metal ion implantation using simultaneously a vacuum arc ion source and filtered vacuum arc plasma sources, and (ii) Metal Plasma Immersion Ion Implantation and Deposition (MePIIID). In MePIIID, the target is immersed in a metal or carbon plasma and a negative, repetitively pulsed bias voltage is applied. Ions are implanted when the bias is applied while the sacrificial layer suffers sputtering. Low-energy thin film deposition - repair of the sacrificial layer -- occurs between bias pulses. No foreign atoms are incorporated into the target since the sacrificial film is made of the same ion species as used in the implantation phase

  10. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source

    Science.gov (United States)

    Pilz, W.; Laufer, P.; Tajmar, M.; Böttger, R.; Bischoff, L.

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi2+ ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  11. Channeling effect for low energy ion implantation in Si

    International Nuclear Information System (INIS)

    Cho, K.; Allen, W.R.; Finstad, T.G.; Chu, W.K.; Liu, J.; Wortman, J.J.

    1985-01-01

    Ion implantation is one of the most important processes in semiconductor device fabrication. Due to the crystalline nature of Si, channeling of implanted ions occurs during this process. Modern devices become smaller and shallower and therefore require ion implantation at lower energies. The effect of channeling on ion implantation becomes a significant problem for low energy ion implantation. The critical angle for axial and planar channeling increases with decreasing energy. This corresponds to an increased probability for channeling with lowering of ion energy. The industry approach to avoid the channeling problem is to employ a tilt angle of 7 0 between the ion implantation direction and the surface normal. We approach the problem by mapping major crystalline axes and planes near the [100] surface normal. Our analysis indicates that a 7 0 tilt is not an optimum selection in channeling reduction. Tilt angles in the range 5 0 to 6 0 combined with 7 0 +- 0.5 0 rotation from the (100) plane are better selections for the reduction of the channeling effect. The range of suitable angles is a function of the implantation energy. Implantations of boron along well specified crystallographic directions have been carried out by careful alignment and the resulting boron profiles measured by SIMS. (orig.)

  12. Electrical properties of polymer modified by metal ion implantation

    International Nuclear Information System (INIS)

    Wu Yuguang; Zhang Tonghe; Zhang Huixing; Zhang Xiaoji; Deng Zhiwei; Zhou Gu

    2000-01-01

    Polyethylene terephthalate (PET) has been modified by Ag, Cr, Cu and Si ion implantation with a dose range from 1x10 16 to 2x10 17 ions cm -2 using a metal vapor vacuum arc (MEVVA) source. The electrical properties of PET have been changed after metal ion implantation. The resistivity of implanted PET decreased obviously with an increase of ion dose. When metal ion dose of 2x10 17 cm -2 was selected, the resistivity of PET could be less than 10 Ω cm, but when Si ions are implanted, the resistivity of PET would be up to several hundred Ω cm. The results show that the conductive behavior of a metal ion implanted sample is obviously different from Si implantation one. The changes of the structure and composition have been observed with transmission electron microscope (TEM) and X-ray diffraction (XRD). The surface structure is varying after ion implantation and it is believed that the change would cause the improvement of the conductive properties. The mechanism of electrical conduction will be discussed

  13. Fatigue and wear of metalloid-ion-implanted metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Richter, E.; Rauschenbach, B.; Blochwitz, C.

    1985-01-01

    The effect of metalloid ion implantation on the fatigue behaviour and wear of nickel and two steels has been investigated. These metals were implanted with boron, carbon and nitrogen ions at energies from 30 to 60 keV and with doses from 1 X 10 16 to 1 X 10 18 ions cm -2 at room temperature. The mechanical behaviour of fatigued nickel was studied in push-pull tests at room temperature. Wear measurements were made using a pin-and-disc technique. The surface structure, dislocation arrangement and modification of the implantation profile resulting from mechanical tests on metals which had been implanted with metalloid ions were examined using high voltage electron microscopy, transmission high energy electron diffraction, scanning electron microscopy and Auger electron spectroscopy. It is reported that nitrogen and boron ion implantation improves the fatigue lifetime, changes the number and density of the slip bands and modifies the dislocation arrangements in nickel. The cyclic deformation leads to recrystallization of the boron-ion-induced amorphous structure of nickel and to diffusion of the boron and nitrogen in the direction of the surface. The wear behaviour of steels was improved by implantation of mass-separated ions and by implantation of ions without mass separation. (Auth.)

  14. Structural-phase changes of α-Fe implanted with high ion doses

    International Nuclear Information System (INIS)

    Ivanov, Y.F.; Pogrebnyak, A.; Martynenko, V.

    2001-01-01

    The CEMS method was used to examine and implanted layer of α-Fe with a thickness of up to 100 nm. The radiation of α-Fe with carbon ions results of the formation of the solid solution of carbon in α-Fe and the precipitation of the iron carbides Fe 2 C. The implantation of aluminium in the α-Fe is accompanied by the formation of the order phase Fe 3 Al. The results of show that the phase the composition of the surface layer of α-Fe, irradiated with titanium, is represented by the solid solution of the titanium in α-Fe, and also by the micro-clusters of iron characterised by different environment of the titanium atoms of the level of several co-ordination spheres. The presence of these micro-clusters indicates the non-uniform distribution of titanium in α-Fe. The additional Auger analysis of the specimens of α-Fe, implanted with titanium with a dose of 5 x 10 -17 cm -2 , showed a high concentration of carbon (up to 20 at.%) in the layer up to 50 nm thick. The authors of 2 assumed that the carbon, implanted from the residual atmosphere, affects not only the resultant profile of the distribution of titanium in the depth of α-Fe, but also the change of the physical-mechanical properties of the surface layer. The main aim of the investigations was to examine the phase composition and the formation of secondary defects (dislocations and dislocation sub structures) in the surface layer of α-Fe, implanted with titanium, aluminium, carbon, with a dose of 5 x 10 -17 cm -2

  15. Evaluation of electron beam stabilization for ion implant processing

    Science.gov (United States)

    Buffat, Stephen J.; Kickel, Bee; Philipps, B.; Adams, J.; Ross, Matthew F.; Minter, Jason P.; Marlowe, Trey; Wong, Selmer S.

    1999-06-01

    With the integration of high energy ion implant processes into volume CMOS manufacturing, the need for thick resist stabilization to achieve a stable ion implant process is critical. With new photoresist characteristics, new implant end station characteristics arise. The resist outgassing needs to be addressed as well as the implant profile to ensure that the dosage is correct and the implant angle does not interfere with other underlying features. This study compares conventional deep-UV/thermal with electron beam stabilization. The electron beam system used in this study utilizes a flood electron source and is a non-thermal process. These stabilization techniques are applied to a MeV ion implant process in a CMOS production process flow.

  16. Tribological effects of oxygen ion implantation into stainless steel

    International Nuclear Information System (INIS)

    Evans, P.J.; Vilaithong, T.; Yu, L.D.; Monteiro, O.R.; Yu, K.M.; Brown, I.G.

    2000-01-01

    The formation of sub-surface oxide layers by hybrid metal-gas co-implantation into steel and other metals can improve their tribological properties. In this report, we compare the wear and friction performance of previously studied Al + O hybrid implants with that produced by single species oxygen ion (O + ) implantation under similar conditions. The substrates were AISI 304L stainless steel discs polished to a final mirror finish using 1 μm diamond paste, and the ion implantation was done using a conventional swept-beam technique at ion energies of 70 or 140 keV and doses of up to 1x10 17 cm -2 . The wear and friction behaviour of the implanted and unimplanted material was measured with a pin-on-disc tribometer. Here we describe the experimental procedure and results, and discuss the improvement relative to that achieved with surface layers modified by metal-gas co-implantation

  17. DC plasma ion implantation in an inductively coupled RF plasma

    International Nuclear Information System (INIS)

    Silawatshananai, C.; Matan, N.; Pakpum, C.; Pussadee, N.; Srisantitam, P.; Davynov, S.; Vilaithong, T.

    2004-01-01

    Various modes of plasma ion implantation have been investigated in a small inductively coupled 13.6 MHz RF plasma source. Plasma ion implantation with HVDC(up to -10 kV bias) has been investigated in order to incorporate with the conventional implantation of diamond like carbon. In this preliminary work, nitrogen ions are implanted into the stainless steel sample with a dose of 5.5 x 10 -2 cm for a short implanting time of 7 minutes without target cooling. Surface properties such as microhardness, wear rate and the friction coefficient have been improved. X-ray and SEM analyses show distinct structural changes on the surface. A combination of sheath assisted implantation and thermal diffusion may be responsible for improvement in surface properties. (orig.)

  18. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    CERN Document Server

    Baumann, H; Bilger, G; Jones, D; Symietz, I

    2002-01-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (alpha,alpha) backscattering and the resonant nuclear reaction sup 1 H( sup 1 sup 5 N,alpha gamma) sup 1 sup 2 C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of m...

  19. Dopant profile engineering of advanced Si MOSFET's using ion implantation

    International Nuclear Information System (INIS)

    Stolk, P.A.; Ponomarev, Y.V.; Schmitz, J.; Brandenburg, A.C.M.C. van; Roes, R.; Montree, A.H.; Woerlee, P.H.

    1999-01-01

    Ion implantation has been used to realize non-uniform, steep retrograde (SR) dopant profiles in the active channel region of advanced Si MOSFET's. After defining the transistor configuration, SR profiles were formed by dopant implantation through the polycrystalline Si gate and the gate oxide (through-the-gate, TG, implantation). The steep nature of the as-implanted profile was retained by applying rapid thermal annealing for dopant activation and implantation damage removal. For NMOS transistors, TG implantation of B yields improved transistor performance through increased carrier mobility, reduced junction capacitances, and reduced susceptibility to short-channel effects. Electrical measurements show that the gate oxide quality is not deteriorated by the ion-induced damage, demonstrating that transistor reliability is preserved. For PMOS transistors, TG implantation of P or As leads to unacceptable source/drain junction broadening as a result of transient enhanced dopant diffusion during thermal activation

  20. Enhancement of electrical conductivity of ion-implanted polymer films

    International Nuclear Information System (INIS)

    Brock, S.

    1985-01-01

    The electrical conductivity of ion-implanted films of Nylon 66, Polypropylene (PP), Poly(tetrafluoroethylene) (Teflon) and mainly Poly (ethylene terephthalate) (PET) was determined by DC measurements at voltages up to 4500 V and compared with the corresponding values of pristine films. Measurements were made at 21 0 C +/- 1 0 C and 65 +/- 2% RH. The electrical conductivity of PET films implanted with F + , Ar + , or As + ions at energies of 50 keV increases by seven orders of magnitude as the fluence increases from 1 x 10 18 to 1 x 10 20 ions/m 2 . The conductivity of films implanted with As + was approximately one order greater than those implanted with Ar + , which in turn was approximately one-half order greater than those implanted with F + . The conductivity of the most conductive film ∼1 S/m) was almost 14 orders of magnitude greater than the pristine PET film. Except for the three PET samples implanted at fluences near 1 x 10 20 ions/m 2 with F + , Ar + , and As + ions, all implanted films were ohmic up to an electric field strength of 600 kV/m. The temperature dependence of the conductivity of the three PET films implanted near a fluence of 1 x 10 20 ions/m 2 was measured over the range of 80 K < T < 300 K

  1. Modification of the hydriding of uranium using ion implantation

    International Nuclear Information System (INIS)

    Musket, R.G.; Robinson-Weis, G.; Patterson, R.G.

    1983-01-01

    The hydriding of depleted uranium at 76 Torr hydrogen and 130 0 C has been significantly reduced by implantation of oxygen ions. The high-dose implanted specimens had incubation times for the initiation of the reaction after exposure to hydrogen that exceeded those of the nonimplanted specimens by more than a factor of eight. Furthermore, the nonimplanted specimens consumed enough hydrogen to cause macroscopic flaking of essentially the entire surface in times much less than the incubation time for the high-dose implanted specimens. In contrast, the ion-implanted specimens reacted only at isolated spots with the major fraction of the surface area unaffected by the hydrogen exposure

  2. Dose measurement of ion implanted silicon by RBS technique

    International Nuclear Information System (INIS)

    Kamawanna, Teerasak; Intarasiri, Saweat; Prapunsri, Chowunchun; Thongleurm, Chome; Maleepatra, Saenee; Singkarat, Somsorn

    2003-10-01

    Surface modification can be achieved by ion implantation. This study used a 1 mm thick silicon wafer as a target which was implanted with Ar+ at 80 keV. The degree of the modification depends on both the ion energy and the implanted dose. The distribution of argon in the silicon substrate and the absolute implanted dose can be measured by using Rutherford Backscattering Spectrometry (RBS). These investigations utilized a 1.7 MV Tandetron accelerator system at Chiang Mai University. The dose determination by a direct calculation is in agreement with the simulation by the SIMNRA code

  3. Magnetic properties of Kramers rare earth ions in aluminium and gallium garnets

    International Nuclear Information System (INIS)

    Capel, H.

    1964-01-01

    The magnetic properties of Kramers rare earth ions in aluminium and gallium garnets (MAlG and MGaG) are discussed by means of a molecular field treatment. The symmetry properties of the space group permit to establish a parametrization for the magnetic dipolar and exchange couplings. The magnetic properties of the system can be expressed in terms of these parameters and the g factors of the rare earth ions. We have calculated the transition temperatures, the sub-lattice magnetizations, the susceptibility in the paramagnetic region and the antiferromagnetic susceptibility for a special type of magnetic ordering. The influence of the excited Kramers doublets is described by means of a generalization of the usual g tensor. (authors) [fr

  4. High-temperature superconductors induced by ion implantation. Final report

    International Nuclear Information System (INIS)

    Greenwald, A.C.; Johnson, E.

    1988-08-01

    High dose oxygen ion implantation (10 to the 17th power ions per sq. cm.) at elevated temperatures (300 C) has been shown to adjust the critical temperature of gamma-Y-Ba-Cu-O and Bi-Ca-Sr-Cu-O materials. These results are in marked contrast to earlier work which showed complete destruction of superconducting properties for similar radiation doses, and marked reduction in superconducting properties at one-tenth this dose in the 1-2-3- compound only. Experiments also showed that the superconducting materials can be patterned into conducting and nonconducting areas without etching by ion implantation, allowing maintenance of planar geometries required for microcircuit fabrication. Experiments on deposition of thin films of high temperature superconductors for use with the ion implantation experiments showed that ion beam sputtering from a single target could achieve the correct stoichiometry. Variations of composition with ion beam energy and angle of sputtered ions were studied

  5. Iron ion implantation into C60 layer

    International Nuclear Information System (INIS)

    Racz, R.; Biri, S.; Csik, A.; Vad, K.

    2011-01-01

    Complete text of publication follows. The soccer ball shaped carbon molecule consisting of 60 carbon atoms (C 60 , fullerene) was discovered in 1985. Since that time the fullerene has become intensively studied. This special molecule has much potential in medical care, biotechnology and nanotechnology. We are motivated to produce special type fullerenes, so called endohedral fullerenes (some alien atoms are encapsulated inside the fullerene cage). The spring of our motivation is that the Fe at C 60 could be applied as a contrast material for MRI (Magnetic Resonance Imaging) or microwave heat therapy. One way to make X at C 60 is the surface production using an ECRIS (Electron Cyclotron Resonance Ion Source). An evaporated or preprepared fullerene layer is irradiated by ions to form a new material during the implantation. By this method several kinds of atomic species, such as Li, Na, K, Rb, Xe were encapsulated into the fullerenes. However evidence for the Fe at C 60 has not been found yet. During the analysis of the irradiated samples three questions must be answered. 1. Are there iron atoms in the layer and where? 2. Does the iron bond to the fullerene? 3. How does the iron bond to the fullerene, inside or outside? Using different investigation tools, SNMS (Secondary Neural Mass Spectrometer), MALDI-TOF (Matrix Assisted Laser Desorption Ionization Time of Flight), XPS (Xray Photoelectron Spectroscopy) or HPLC (High-Performance Liquid Chromatography), all these questions could be clarified step by step. In this paper we made the first steps to answer the first question: fullerene layers irradiated by iron ion beam delivered by the ATOMKI-ECRIS have been analyzed by the ATOMKI-SNMS. The evaporated 90 - 120 nm thick fullerene layers on Si holder were irradiated by Fe 5+ and Fe + ion beams produced from Ferrocene vapor. Samples were irradiated with two different doses (5 10 18 ion/cm 3 and 10 22 ion/cm 3 ) at four ion energies (65 keV, 6.5 keV, 0.2 keV and two of

  6. Cytological effect of nitrogen ion implantation into Stevia

    International Nuclear Information System (INIS)

    Shen Mei; Wang Cailian; Chen Qiufang; Lu Ting; Shu Shizhen

    1997-01-01

    Dry seeds of Stevia were implanted by 35∼150 keV nitrogen ion with various doses. The cytological effect on M 1 was studied. The results showed that nitrogen ion beam was able to induce variation on chromosome structure in root tip cells. The rate of cells with chromosome aberration was increased with the increased with the increase of ion beam energy and dose. However, there was no significant linear regression relationship between ion dose and aberration rate. The cytological effect of nitrogen ion implantation was lower than that of γ-rays

  7. Modification of medical metals by ion implantation of copper

    Science.gov (United States)

    Wan, Y. Z.; Xiong, G. Y.; Liang, H.; Raman, S.; He, F.; Huang, Y.

    2007-10-01

    The effect of copper ion implantation on the antibacterial activity, wear performance and corrosion resistance of medical metals including 317 L of stainless steels, pure titanium, and Ti-Al-Nb alloy was studied in this work. The specimens were implanted with copper ions using a MEVVA source ion implanter with ion doses ranging from 0.5 × 10 17 to 4 × 10 17 ions/cm 2 at an energy of 80 keV. The antibacterial effect, wear rate, and inflexion potential were measured as a function of ion dose. The results obtained indicate that copper ion implantation improves the antibacterial effect and wear behaviour for all the three medical materials studied. However, corrosion resistance decreases after ion implantation of copper. Experimental results indicate that the antibacterial property and corrosion resistance should be balanced for medical titanium materials. The marked deteriorated corrosion resistance of 317 L suggests that copper implantation may not be an effective method of improving its antibacterial activity.

  8. Plasma source ion implantation research at southwestern institute of physics

    International Nuclear Information System (INIS)

    Shang Zhenkui; Geng Man; Tong Honghui

    1997-10-01

    The PSII-EX device and PSII-IM device for research and development of plasma source ion implantation (PSII) technology are described briefly. The functions, main technical specifications and properties of the devices are also discussed. After ion implantation by PSII, the improvements of the surface-mechanical properties (such as microhardness, wear-resistance, friction factor, biological compatibility, etc) for some materials, microanalysis and numerical simulation of modified layers of materials, the technical developments for the practical workpiece treatments and the preliminary experiments for plasma source ion implantation-enhanced deposition are introduced too. As last, the future work about PSII have been proposed

  9. Microstructure evolution in carbon-ion implanted sapphire

    International Nuclear Information System (INIS)

    Orwa, J. O.; McCallum, J. C.; Jamieson, D. N.; Prawer, S.; Peng, J. L.; Rubanov, S.

    2010-01-01

    Carbon ions of MeV energy were implanted into sapphire to fluences of 1x10 17 or 2x10 17 cm -2 and thermally annealed in forming gas (4% H in Ar) for 1 h. Secondary ion mass spectroscopy results obtained from the lower dose implant showed retention of implanted carbon and accumulation of H near the end of range in the C implanted and annealed sample. Three distinct regions were identified by transmission electron microscopy of the implanted region in the higher dose implant. First, in the near surface region, was a low damage region (L 1 ) composed of crystalline sapphire and a high density of plateletlike defects. Underneath this was a thin, highly damaged and amorphized region (L 2 ) near the end of range in which a mixture of i-carbon and nanodiamond phases are present. Finally, there was a pristine, undamaged sapphire region (L 3 ) beyond the end of range. In the annealed sample some evidence of the presence of diamond nanoclusters was found deep within the implanted layer near the projected range of the C ions. These results are compared with our previous work on carbon implanted quartz in which nanodiamond phases were formed only a few tens of nanometers from the surface, a considerable distance from the projected range of the ions, suggesting that significant out diffusion of the implanted carbon had occurred.

  10. Defects in boron ion implanted silicon

    International Nuclear Information System (INIS)

    Wu, W.K.

    1975-05-01

    The crystal defects formed after post-implantation annealing of B-ion-implanted Si irradiated at 100 keV to a moderate dose (2 x 10 14 /cm 2 ) were studied by transmission electron microscopy. Contrast analysis and annealing kinetics show at least two different kinds of linear rod-like defects along broken bracket 110 broken bracket directions. One kind either shrinks steadily remaining on broken bracket 110 broken bracket at high temperatures (greater than 850 0 C), or transforms into a perfect dislocation loop which rotates toward broken bracket 112 broken bracket perpendicular to its Burgers vector. The other kind shrinks steadily at moderate temperatures (approximately 800 0 C). The activation energy for shrinkage of the latter (3.5 +- 0.1 eV) is the same as that for B diffusion in Si, suggesting that this linear defect is a boron precipitate. There also exist a large number of perfect dislocation loops with Burgers vector a/2broken bracket 110 broken bracket. The depth distribution of all these defects was determined by stereomicroscopy. The B precipitates lying parallel to the foil surfaces are shown to be at a depth of about 3500 +- 600 A. The loops are also at the same depth, but with a broader spread, +-1100 A. Si samples containing B and samples containing no B (P-doped) were irradiated in the 650-kV electron microscope. Irradiation at 620 0 C resulted in the growth of very long linear defects in the B-doped samples but not in the others, suggesting that at 620 0 C Si interstitials produced by the electron beam replace substitutional B some of which precipitates in the form of long rods along broken bracket 110 broken bracket. (DLC)

  11. Procedure for the ion implantation of MOS elements

    International Nuclear Information System (INIS)

    Gessner, T.; Vetter, E.; Tolonics, J.

    1986-01-01

    The ion implantation procedure is applied to the doping of MOS elements. The invention guarantees a homogeneous doping in the dose range from 10 10 to 10 12 ions/cm 2 without additional installations of mechanical orifices in high-current implantation devices. The ion source parameters like cathode heating current, pressure at the ion source, extraction and acceleration voltages correspond to the dose range (10 10 to 10 12 ions/cm 2 ) for single charged ions of the doping agent. Double or triple charged ions generated at the ion source have been separated mass-analytically, accelerated and scanned. Ion densities below 100 nA/cm 2 have been obtained

  12. Modification of polyvinyl alcohol surface properties by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pukhova, I.V., E-mail: ivpuhova@mail.ru [National Research Tomsk State University, 36 Lenin Ave, Tomsk 634050 (Russian Federation); Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation); Kurzina, I.A. [National Research Tomsk State University, 36 Lenin Ave, Tomsk 634050 (Russian Federation); Savkin, K.P. [Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation); Laput, O.A. [National Research Tomsk Polytechnic University, 30 Lenin Ave, Tomsk 634050 (Russian Federation); Oks, E.M. [Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation)

    2017-05-15

    We describe our investigations of the surface physicochemical properties of polyvinyl alcohol modified by silver, argon and carbon ion implantation to doses of 1 × 10{sup 14}, 1 × 10{sup 15} and 1 × 10{sup 16} ion/cm{sup 2} and energies of 20 keV (for C and Ar) and 40 keV (for Ag). Infrared spectroscopy (IRS) indicates that destructive processes accompanied by chemical bond (−C=O) generation are induced by implantation, and X-ray photoelectron spectroscopy (XPS) analysis indicates that the implanted silver is in a metallic Ag3d state without stable chemical bond formation with polymer chains. Ion implantation is found to affect the surface energy: the polar component increases while the dispersion part decreases with increasing implantation dose. Surface roughness is greater after ion implantation and the hydrophobicity increases with increasing dose, for all ion species. We find that ion implantation of Ag, Ar and C leads to a reduction in the polymer microhardness by a factor of five, while the surface electrical resistivity declines modestly.

  13. Development of vertical compact ion implanter for gemstones applications

    Science.gov (United States)

    Intarasiri, S.; Wijaikhum, A.; Bootkul, D.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.; Singkarat, S.

    2014-08-01

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented.

  14. Development of vertical compact ion implanter for gemstones applications

    International Nuclear Information System (INIS)

    Intarasiri, S.; Wijaikhum, A.; Bootkul, D.; Suwannakachorn, D.; Tippawan, U.; Yu, L.D.; Singkarat, S.

    2014-01-01

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented

  15. Development of vertical compact ion implanter for gemstones applications

    Energy Technology Data Exchange (ETDEWEB)

    Intarasiri, S., E-mail: saweat@gmail.com [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Wijaikhum, A. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Bootkul, D., E-mail: mo_duangkhae@hotmail.com [Department of General Science (Gems and Jewelry), Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Suwannakachorn, D.; Tippawan, U.; Yu, L.D.; Singkarat, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-08-15

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented.

  16. Low energy implantation of boron with decaborane ions

    Science.gov (United States)

    Albano, Maria Angela

    The goal of this dissertation was to determine the feasibility of a novel approach to forming ultra shallow p-type junctions (tens of nm) needed for future generations of Si MOS devices. In the new approach, B dopant atoms are implanted by cluster ions obtained by ionization of decaborane (B 10H14) vapor. An experimental ion implanter with an electron impact ion source and magnetic mass separation was built at the Ion Beam and Thin Film Research Laboratory at NJIT. Beams of B10Hx+ ions with currents of a few microamperes and energies of 1 to 12 keV were obtained and used for implantation experiments. Profiles of B and H atoms implanted in Si were measured by Secondary Ion Mass Spectroscopy (SIMS) before and after rapid thermal annealing (RTA). From the profiles, the junction depth of 57 nm (at 1018 cm-3 B concentration) was obtained with 12 keV decaborane ions followed by RTA. The dose of B atoms that can be implanted at low energy into Si is limited by sputtering as the ion beam sputters both the matrix and the implanted atoms. As the number of sputtered B atoms increases with the implanted dose and approaches the number of the implanted atoms, equilibrium of B in Si is established. This effect was investigated by comparison of the B dose calculated from the ion beam integration with B content in the sample measured by Nuclear Reaction Analysis (NRA). Maximum (equilibrium) doses of 1.35 x 1016 B cm -2 and 2.67 x 1016 B cm-2 were obtained at the beam energies of 5 and 12 keV, respectively. The problem of forming shallow p-type junctions in Si is related not only to implantation depth, but also to transient enhanced diffusion (TED). TED in Si implanted with B10Hx+ was measured on boron doping superlattice (B-DSL) marker layers. It was found that TED, following decaborane implantation, is the same as with monomer B+ ion implantation of equivalent energy and that it decreases with the decreasing ion energy. (Abstract shortened by UMI.)

  17. Investigation of corrosion and ion release from titanium dental implant

    International Nuclear Information System (INIS)

    Ektessabi, A.M.; Mouhyi, J.; Louvette, P.; Sennerby, L.

    1997-01-01

    A thin passive titanium dioxide, in its stoichiometric form, has a very high corrosion resistance, but the same conclusion can not be made on corrosion resistance of a surface which is not stoichiometrically titanium dioxide, or even a surface which is a composition of various elements and oxides. In practice, the implants available on the market have an oxide surface contaminated with other elements. The aim of this paper is to correlate clinical observations that show the deterioration of Ti made implants after certain period of insertion in the patients, and in vitro corrosion resistance of Ti implants with surface passive oxide layer. For this purpose, surface analysis of the retrieved failed implants were performed and in vivo animal experiments with relation to ion release from implants were done. Finally, on the basis of the clinical observation, in vivo animal test, and in vitro electrochemical corrosion test, a model is proposed to explain the corrosion and ion release from the Ti implant. (author)

  18. Wear properties of metal ion implanted 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J. (Applications of Nuclear Physics, Ansto, Private Mail Bag 1, Menai, NSW 2234 (Australia)); Paoloni, F.J. (Department of Electrical and Computer Engineering, University of Wollongong, GPO Box 1144, Wollongong, NSW 2500 (Australia))

    1994-07-01

    AISI type 4140 (high tensile) steel has been implanted with tungsten and titanium using a metal vapour vacuum arc ion source. Doses in the range (1-5)x10[sup 16]ionscm[sup -2] were implanted to a depth of approximately 30nm. The relative wear resistance between non-implanted and implanted specimens has been estimated using pin-on-disc and abrasive wear tests. Implantation of titanium decreased the area of wear tracks by a factor of 5 over unimplanted steel. In some cases the steel was also hardened by a liquid carburization treatment before implantation. Abrasion tests revealed a further improvement in wear resistance on this material following ion irradiation. ((orig.))

  19. Modelling of ion implantation in SiC crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chakarov, Ivan [SILVACO International, 4701 Patrick Henry Drive, Building 2, Santa Clara, CA 95054 (United States)]. E-mail: ivan.chakarov@silvaco.com; Temkin, Misha [SILVACO International, 4701 Patrick Henry Drive, Building 2, Santa Clara, CA 95054 (United States)

    2006-01-15

    An advanced electronic stopping model for ion implantation in SiC has been implemented within the binary collision approximation. The model has been thoroughly tested and validated for Al implantation into 4H-, 6H-SiC under different initial implant conditions. A very good agreement between calculated and experimental profiles has been achieved. The model has been integrated in an industrial technology CAD process simulator.

  20. Modelling of ion implantation in SiC crystals

    International Nuclear Information System (INIS)

    Chakarov, Ivan; Temkin, Misha

    2006-01-01

    An advanced electronic stopping model for ion implantation in SiC has been implemented within the binary collision approximation. The model has been thoroughly tested and validated for Al implantation into 4H-, 6H-SiC under different initial implant conditions. A very good agreement between calculated and experimental profiles has been achieved. The model has been integrated in an industrial technology CAD process simulator

  1. Ion implantation induced nanotopography on titanium and bone cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Vera, Carolina; Ayerdi-Izquierdo, Ana [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Muñoz, Roberto [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Lorenzo, Jaione; Alvarez, Noelia [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Maeztu, Miguel Ángel de [Private Practice, P° San Francisco, 43 A-1°, 20400 Tolosa (Spain)

    2014-08-15

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm{sup 2}) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  2. Ion implantation induced nanotopography on titanium and bone cell adhesion

    International Nuclear Information System (INIS)

    Braceras, Iñigo; Vera, Carolina; Ayerdi-Izquierdo, Ana; Muñoz, Roberto; Lorenzo, Jaione; Alvarez, Noelia; Maeztu, Miguel Ángel de

    2014-01-01

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm 2 ) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  3. Structural and electronic properties of ion-implanted superconductors

    International Nuclear Information System (INIS)

    Bernas, H.; Nedellec, P.

    1980-01-01

    Recent work on ion implanted superconductors is reviewed. In situ x-ray, channeling, resistivity, and electron tunneling experiments now approach the relation between lattice order (or disorder) and superconductivity

  4. Industrial applications of ion implantation into metal surfaces

    International Nuclear Information System (INIS)

    Williams, J.M.

    1987-07-01

    The modern materials processing technique, ion implantation, has intriguing and attractive features that stimulate the imaginations of scientists and technologists. Success of the technique for introducing dopants into semiconductors has resulted in a stable and growing infrastructure of capital equipment and skills for use of the technique in the economy. Attention has turned to possible use of ion implantation for modification of nearly all surface related properties of materials - optical, chemical and corrosive, tribological, and several others. This presentation provides an introduction to fundamental aspects of equipment, technique, and materials science of ion implantation. Practical and economic factors pertaining to the technology are discussed. Applications and potential applications are surveyed. There are already available a number of ion-implanted products, including ball-and-roller bearings and races, punches-and-dies, injection screws for plastics molding, etc., of potential interest to the machine tool industry

  5. Improving Sustainability of Ion Implant Modules

    Science.gov (United States)

    Mayer, Jim

    2011-01-01

    Semiconductor fabs have long been pressured to manage capital costs, reduce energy consumption and increasingly improve efforts to recycle and recover resources. Ion implant tools have been high-profile offenders on all three fronts. They draw such large volumes of air for heat dissipation and risk reduction that historically, they are the largest consumer of cleanroom air of any process tool—and develop energy usage and resource profiles to match. This paper presents a documented approach to reduce their energy consumption and dramatically downsize on-site facilities support for cleanroom air manufacture and abatement. The combination produces significant capital expenditure savings. The case entails applying SAGS Type 1 (sub-atmospheric gas systems) toxic gas packaging to enable engineering adaptations that deliver the energy savings and cost benefits without any reduction in environmental health and safety. The paper also summarizes benefits as they relate to reducing a fabs carbon emission footprint (and longer range advantages relative to potential cap and trade programs) with existing technology.

  6. A simple ion implantation system for solar cells

    International Nuclear Information System (INIS)

    Kenny, M.J.; Bird, J.R.; Broe, H.G.

    1982-11-01

    A project has been initiated to investigate simple but effective ion implantation and pulsed annealing techniques for the fabrication of high efficiency silicon solar cells. In particular, the method aims to eliminate the mass analyser and associated components from the implanter. A solid feed source is used in a clean ultra high vacuum environment to minimise impurities

  7. Plasma immersion ion implantation: duplex layers from a single process

    International Nuclear Information System (INIS)

    Hutchings, R.; Collins, G.A.; Tendys, J.

    1992-01-01

    Plasma immersion ion implantation (PI 3 ) is an alternative non-line-of-sight technique for implanting ions directly from a plasma which surrounds the component to be treated. In contrast to plasma source ion implantation, the PI 3 system uses an inductively coupled r.f. plasma. It is shown that nitrogen can be retained during implantation at elevated temperatures, even for unalloyed steels. This allows controlled diffusion of nitrogen to greater depths, thereby improving the load bearing capacity of the implanted layer. Components can be heated directly, using the energy deposited by the incident ions during the pulsed implantation. The necessary temperature control can be accomplished simply by regulating the frequency and length of the high voltage pulses applied to the component. Chemical depth profiles and microstructural data obtained from H13 tool steel are used to show that PI 3 can, in a single process, effectively produce a duplex subsurface structure. This structure consists of an outer non-equilibrium layer typical of nitrogen implantation (containing in excess of 20 at.% nitrogen) backed by a substantial diffusion zone of much lower nitrogen content. The relationship between implantation temperature and the resultant subsurface microstructure is explored. (orig.)

  8. SIMPLANT: analytic calculation of ion implantation within the Tadpance system

    International Nuclear Information System (INIS)

    Fawcett, R.J.

    1988-04-01

    An analytic method for calculating the concentration distribution of dopant atoms introduced into a multilayer semiconductor device by ion beam implantation is explained. Computer software written to apply the method is described. The operation of the software within a semiconductor process and device modelling package is outlined. Implantation distributions generated by the software are illustrated. (author)

  9. Study on surface modification of M2 steel induced by Cu ions and Al ions implantation

    International Nuclear Information System (INIS)

    Wang Chao; Liu Zhengmin

    2001-01-01

    Changes of surface hardness and wear resistances in M2 type steel implanted by Cu Al ions were reported. The dependence of surface strengthening on ion species and dose was studied by X-ray diffraction (XRD) and Rutherford Backscattering Spectroscopy (RBS) for microhardness and wear resistances measurement. It is shown that both hardness and wear resistance increases apparently after ion implantation. XRD analysis indicates that different phases formed after Al Cu ions implanted. It is also suggested that Cu, Al ions have different role in surface strengthening

  10. Plasma Immersion Ion Implantation in Radio Frequency Plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Wyndham, E.

    2013-01-01

    Plasma immersion ion implantation (PIII) has attracted wide interests since it emulates conventional ion-beam ion implantation (IBII) in niche applications. For instance, the technique has very high throughput, the implantation time is independent of the sample size, and samples with an irregular shape can be implanted without complex beam scanning or sample manipulation. For uniform ion implantation and deposition on to different substrates, like silicon, stainless steel etc., a capacitive coupled Radio frequency (RF), 13.6 MHz, plasma is used. During the PIII process, the physical parameters which are expected to play crucial rule in the deposition process like RF power, Negative pulse voltage and pulse duration, gas type and gas mixture, gas flow rates and the implantation dose are studied. The ion dose is calculated by dynamic sheath model and the plasma parameters are calculated from the V-I characteristic and power balance equation by homogeneous model of rf plasma discharge considering Ohmic as well as Stochastic heating. The correlations between the yield of the implantation process and the physical parameters as well as plasma parameters are discussed. (author)

  11. Modification of polyethyleneterephtalate by implantation of nitrogen ions

    International Nuclear Information System (INIS)

    Svorcik, V.; Endrst, R.; Rybka, V.; Hnatowicz, V.; Cerny, F.

    1994-01-01

    The implantation of 90 keV N + ions into polyethyleneterephtalate (PET) to fluences of 1 x 10 14 --1 x 10 17 cm -2 was studied. The changes in electrical sheet conductivity and polarity of ion-exposed PET were observed and the structural changes were examined using IR spectroscopy. One degradation process is a chain fission according to the Norrish II reaction. The sheet conductivity due to conjugated double bonds was increased by ten orders of magnitude as a result of ion implantation. The surface polarity of the PET samples increases slightly with increasing ion fluence

  12. Effect of ion implantation on apple wine yeast

    International Nuclear Information System (INIS)

    Song Andong; Chen Hongge; Zhang Shimin; Jia Cuiying

    2004-01-01

    The wild type apple wine yeast Y 02 was treated by ion implantation with the dose of 8 x 10 15 ion/cm 2 . As results, a special mutant strain, ION II -11 dry, was obtained. The morphology characters, partial biochemistry characters, mycelium protein of the mutant strain were distinctively changed compared with original strain Y 02 . After the fermentation test ,the apple wine producing rate of the mutant strain increased 22.4% compared with original strain. These results showed that ion implantation was an effective method for mutagenesis

  13. Nanocomposites formed by ion implantation: Recent developments and future opportunities

    International Nuclear Information System (INIS)

    Meldrum, A.; Boatner, L.A.; White, C.W.

    2001-01-01

    Ion implantation is a versatile and powerful technique for forming many types of nanocrystalline precipitates embedded in the near-surface region of a wide variety of crystalline and amorphous host materials. The unique optical, electronic and magnetic properties of these nanocomposites has stimulated considerable recent research interest. In this review, we discuss recent developments in the field as well as some of the problems that currently hinder the potential applications of nanocomposites formed by ion implantation

  14. Effective implantation of light emitting centers by plasma immersion ion implantation and focused ion beam methods into nanosized diamond

    International Nuclear Information System (INIS)

    Himics, L.; Tóth, S.; Veres, M.; Tóth, A.; Koós, M.

    2015-01-01

    Highlights: • Characteristics of nitrogen implantation of nanodiamond using two low ion energy ion implantation methods were compared. • Formation of complex nitrogen-related defect centers was promoted by subsequent helium implantation and heat treatments. • Depth profiles of the implanted ions and the generated vacancies were determined using SRIM calculations. • The presence of nitrogen impurity was demonstrated by Fourier-transform infrared spectroscopic measurements. • A new nitrogen related band was detected in the photoluminescence spectrum of the implanted samples that was attributed to the N3 color center in nanodiamond. - Abstract: Two different implantation techniques, plasma immersion ion implantation and focused ion beam, were used to introduce nitrogen ions into detonation nanodiamond crystals with the aim to create nitrogen-vacancy related optically active centers of light emission in near UV region. Previously samples were subjected to a defect creation process by helium irradiation in both cases. Heat treatments at different temperatures (750 °C, 450 °C) were applied in order to initiate the formation of nitrogen-vacancy related complex centers and to decrease the sp 2 carbon content formed under different treatments. As a result, a relatively narrow and intensive emission band with fine structure at 2.98, 2.83 and 2.71 eV photon energies was observed in the light emission spectrum. It was assigned to the N3 complex defect center. The formation of this defect center can be expected by taking into account the relatively high dose of implanted nitrogen ions and the overlapped depth distribution of vacancies and nitrogen. The calculated depth profiles distribution for both implanted nitrogen and helium by SRIM simulation support this expectation

  15. Prospects of ion implantation and ion beam mixing for corrosion protection

    International Nuclear Information System (INIS)

    Wolf, G.K.; Munn, P.; Ensinger, W.

    1985-01-01

    Ion implantation is very useful new low temperature treatment for improving the mechanical surface properties of materials without any dimensional changes. In addition also the corrosion properties of metals can be modified considerably by this technique. The long term corrosion behaviour of implanted metals, however, has been studied only for a very limited number of cases. In this contribution a survey of attempts to do this will be presented. As examples of promising systems for corrosion protection by ion beams iron, steel and titanium were examined with and without pretreatment by ion implantation and ion beam mixing. The corrosion rates of the systems have been obtained by neutron activation analysis and by electrochemical methods. Experimental results are presented on: Palladium implanted in titanium - crevice corrosion in salt solution; Palladium implanted in and deposited on titanium -corrosion in sulfuric acid; Platinum implanted in stainless steel -corrosion in sulfuric acid. (author)

  16. High fluence effects on ion implantation stopping and range

    International Nuclear Information System (INIS)

    Selvi, S.; Tek, Z.; Oeztarhan, A.; Akbas, N.; Brown, I.G.

    2005-01-01

    We have developed a code STOPPO which can be used to modify the more-widely used ion implantation codes to more accurately predict the mean nuclear and electronic stopping power, preferential sputtering and range of heavy ions in monatomic target materials. In our simulations an effective atomic number and effective atomic mass are introduced into conveniently available analytical stopping cross-sections and a better fitting function for preferential sputtering yield is carefully evaluated for each ion implantation. The accuracy of the code confirmed experimentally by comparison with measured Rutherford backscattering spectrometry (RBS) concentration profiles for 130 keV Zr ions implanted into Be to fluences of 1 x 10 17 , 2 x 10 17 and 4 x 10 17 ions/cm 2 . We find a steady increase in the mean nuclear and electronic stopping powers of the target; the increase in nuclear stopping power is much greater than the increase in electronic stopping power

  17. Enhanced Physicochemical and Biological Properties of Ion-Implanted Titanium Using Electron Cyclotron Resonance Ion Sources

    Directory of Open Access Journals (Sweden)

    Csaba Hegedűs

    2016-01-01

    Full Text Available The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS. The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants.

  18. Development of industrial ion implantation and ion assisted coating processes: A perspective

    International Nuclear Information System (INIS)

    Legg, K.O.; Solnick-Legg, H.

    1989-01-01

    Ion beam processes have gone through a series of developmental stages, from being the mainstay of the semiconductor industry for production of integrated circuits, to new commercial processes for biomedical, aerospace and other industries. Although research is still continuing on surface modification using ion beam methods, ion implantation and ion assisted coatings for treatment of metals, ceramics, polymers and composites must now be considered viable industrial processes of benefit in a wide variety of applications. However, ion implantation methods face various barriers to acceptability, in terms not only of other surface treatment processes, but for implantation itself. This paper will discuss some of the challenges faced by a small company whose primary business is development and marketing of ion implantation and ion-assisted coating processes. (orig.)

  19. Nitrogen ion implantation effect on friction coefficient of tool steel

    International Nuclear Information System (INIS)

    Velichko, N.I.; Udovenko, V.F.; Markus, A.M.; Presnyakova, G.N.; Gamulya, G.D.

    1988-01-01

    Effect of nitrogen molecular ion implantation into KhVSG steel on the friction coefficient in the air and vacuum is investigated. Irradiation is carried out by the N 2 + beam with energy 120 keV and flux density 5 μ/cm 2 at room temperature in vacuum 5x10 -4 Pa. The integral dose of irradiation is 10 17 particle/cm 2 . Nitrogen ion implantation is shown to provide the formation of the modified layer changing friction properties of steel. The friction coefficient can either increase or decrease depending on implantation and test conditions. 4 refs.; 2 figs

  20. Ion implantation induced conducting nano-cluster formation in PPO

    International Nuclear Information System (INIS)

    Das, A.; Patnaik, A.; Ghosh, G.; Dhara, S.

    1997-01-01

    Conversion of polymers and non-polymeric organic molecules from insulating to semiconducting materials as an effect of energetic ion implantation is an established fact. Formation of nano-clusters enriched with carbonaceous materials are made responsible for the insulator-semiconductor transition. Conduction in these implanted materials is observed to follow variable range hopping (VRH) mechanism. Poly(2,6-dimethyl phenylene oxide) [PPO] compatible in various proportion with polystyrene is used as a high thermal resistant insulating polymer. PPO has been used for the first time in the ion implantation study

  1. Characterization of ion implanted silicon by the electrolytic reverse current

    International Nuclear Information System (INIS)

    Hueller, J.; Pham, M.T.

    1977-01-01

    The current voltage behaviour of ion implanted silicon electrodes in HF electrolyte is investigated. The electrolytic reverse current, i.e. the reaction rate of the minority carrier limited reactions is found to increase. The current increase depends on the implanted dose and layer stripping. Reason for the increased reverse current can be referred to radiation damage acting as generation centres for minority carriers. Measurement of the electrolytic reverse current can be used for determining damage profiles. Layer stripping is carried out by anodic dissolution in the same electrolyte. The sensitivity of this new method for characterizing ion implanted silicon layers lies at 10 11 to 10 12 atoms/cm 2 . (author)

  2. Thermal stress resistance of ion implanted sapphire crystals

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Jamieson, D.N.; Szymanski, R.; Orlov, A.V.; Williams, J.S.; Conway, M.

    1999-01-01

    Monocrystals of sapphire have been subjected to ion implantation with 86 keV Si - and 80 keV Cr - ions to doses in the range of 5x10 14 -5x10 16 cm -2 prior to thermal stress testing in a pulsed plasma. Above a certain critical dose ion implantation is shown to modify the near-surface structure of samples by introducing damage, which makes crack nucleation easier under the applied stress. The effect of ion dose on the stress resistance is investigated and the critical doses which produce a noticeable change in the stress resistance are determined. The critical dose for Si ions is shown to be much lower than that for Cr - ions. However, for doses exceeding 2x10 16 cm -2 the stress resistance parameter decreases to approximately the same value for both implants. The size of the implantation-induced crack nucleating centers and the density of the implantation-induced defects are considered to be the major factors determining the stress resistance of sapphire crystals irradiated with Si - and Cr - ions

  3. The emittance and brightness characteristics of negative ion sources suitable for MeV ion implantation

    International Nuclear Information System (INIS)

    Alton, G.D.

    1987-01-01

    This paper provides the description and beam properties of ion sources suitable for use with ion implantation devices. Particular emphasis is placed on the emittance and brightness properties of state-of-the-art, high intensity, negative ion sources based on the cesium ion sputter principle

  4. Characterization of diamond amorphized by ion implantation

    International Nuclear Information System (INIS)

    Allen, W.R.; Lee, E.H.

    1992-01-01

    Single crystal diamond has been implanted at 1 MeV with 2 x 10 20 Ar/m 2 . Rutherford backscattering spectrometry in a channeled geometry revealed a broad amorphized region underlying a thin, partially crystalline layer. Raman spectroscopy disclosed modifications in the bonding characteristic of the appearance of non-diamond carbon. The complementary nature of the two analysis techniques is demonstrated. The Knoop hardness of the implanted diamond was reduced by implantation

  5. Dual-ion implantation into GaAs

    International Nuclear Information System (INIS)

    Sealy, B.J.; Bell, E.C.; Surridge, R.K.; Stephens, K.G.; Ambridge, T.; Heckingbottom, R.

    1976-01-01

    A variety of dual implants have been carried out to test the theory of Ambridge and Heckingbottom (Ambridge, T. and Heckingbottom, R., 1973, Radiat. Effects, vol. 17, 31). After annealing at 700 0 C or 750 0 C a significant enhancement of electrical activity compared with single-ion implants has been obtained for (Ga + Se) and (Sn + Se) implants but the degree of enhancement is dose dependent. The results imply that the dual implantation process is more complex than predicted by the theory and the electrical activity measured seems to be dominated by residual, compensating damage. (author)

  6. Characterisation of Cs ion implanted GaN by DLTS

    Science.gov (United States)

    Ngoepe, P. N. M.; Meyer, W. E.; Auret, F. D.; Omotoso, E.; Hlatshwayo, T. T.; Diale, M.

    2018-04-01

    Deep level transient spectroscopy (DLTS) was used to characterise Cs implanted GaN grown by hydride vapour phase epitaxy (HVPE). This implantation was done at room temperature using energy of 360 keV to a fluence of 10-11 cm-2. A defect with activation energy of 0.19 eV below the conduction band and an apparent capture cross section of 1.1 × 10-15 cm2 was induced. This defect has previously been observed after rare earth element (Eu, Er and Pr) implantation. It has also been reported after electron, proton and He ion implantation.

  7. A collisional model for plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Vahedi, V.; Lieberman, M.A.; Alves, M.V.; Verboncoeur, J.P.; Birdsall, C.K.

    1990-01-01

    In plasma immersion ion implantation, a target is immersed in a plasma and a series of negative short pulses are applied to it to implant the ions. A new analytical model is being developed for the high pressure regimes in which the motion of the ions is highly collisional. The model provides values for ion flux, average ion velocity at the target, and sheath edge motion as a function of time. These values are being compared with those obtained from simulation and show good agreement. A review is also given (for comparison) of the earlier work done at low pressures, where the motion of ions in the sheath is collisionless, also showing good agreement between analysis and simulation. The simulation code is PDP1 which utilizes particle-in-cell techniques plus Monte-Carlo simulation of electron-neutral (elastic, excitation and ionization) and ion-neutral (scattering and charge-exchange) collisions

  8. Corrosion behaviour of pure iron implanted with Pd ion beam

    International Nuclear Information System (INIS)

    Sang, J.M.; Lin, W.L.; Wu, Z.D.; Wang, H.S.

    1999-01-01

    The corrosion behavior of pure iron implanted with Pd ions up to doses in the range 1x10 16 -1x10 18 ions/cm 2 at an extracting voltage 45kV by using MEVVA source ion implanter has been investigated. The concentration profiles and valence states of elements at the near surface of Pd implanted iron specimens were analyzed by AES and XPS respectively. The Anodic dissolution process of Pd implanted pure iron was measured by means of potentiokinetic sweep in a 0.5 mol/1 NaAc/Hac buffer solution with pH5.0. The open circuit corrosion potential as a function of immersion time was used to evaluate the corrosion resistance of Pd implanted iron specimens. The experimental results show that Pd ion implantation decreases the critical passive current of iron and maintains a better passivity in acetate buffer solution with pH5.0. It is interesting that the active corrosion rate of Pd implanted iron is even higher than that of unimplanted one, when the oxide layer on the surface of iron has been damaged. (author)

  9. Chemical characterization of 4140 steel implanted by nitrogen ions

    International Nuclear Information System (INIS)

    Niño, E D V; Dugar-Zhabon, V; Pinto, J L; Henao, J A

    2012-01-01

    AISI SAE 4140 steel samples of different surface roughness which are implanted with 20 keV and 30 keV nitrogen ions at a dose of 10 17 ions/cm 2 are studied. The crystal phases of nitrogen compositions of the implanted samples, obtained with help of an x-ray diffraction method, are confronted with the data reported by the International Centre for Diffraction Data (ICDD) PDF-2. The implantation treatment is realized in high-voltage pulsed discharges at low pressures. The crystal structure of the implanted solid surfaces is analyzed by the x-ray diffraction technique which permits to identify the possible newly formed compounds and to identify any change in the surface structure of the treated samples. A decrease in the intensity of the plane (110), a reduction of the cell unity in values of 2-theta and a diminishing of the crystallite dimensions in comparison with non-implanted samples are observed.

  10. Chemical characterization of 4140 steel implanted by nitrogen ions

    Science.gov (United States)

    Niño, E. D. V.; Pinto, J. L.; Dugar-Zhabon, V.; Henao, J. A.

    2012-06-01

    AISI SAE 4140 steel samples of different surface roughness which are implanted with 20 keV and 30 keV nitrogen ions at a dose of 1017 ions/cm2 are studied. The crystal phases of nitrogen compositions of the implanted samples, obtained with help of an x-ray diffraction method, are confronted with the data reported by the International Centre for Diffraction Data (ICDD) PDF-2. The implantation treatment is realized in high-voltage pulsed discharges at low pressures. The crystal structure of the implanted solid surfaces is analyzed by the x-ray diffraction technique which permits to identify the possible newly formed compounds and to identify any change in the surface structure of the treated samples. A decrease in the intensity of the plane (110), a reduction of the cell unity in values of 2-theta and a diminishing of the crystallite dimensions in comparison with non-implanted samples are observed.

  11. Lithium ion implantation effects in MgO(100)

    International Nuclear Information System (INIS)

    Huis, M.A. van; Fedorov, A.V.; Veen, A. van; Labohm, F.; Schut, H.; Mijnarends, P.E.; Kooi, B.J.; Hosson, J.T.M. de

    2001-01-01

    Single crystals of MgO(100) were implanted with 10 16 6 Li ions cm -2 at an energy of 30 keV. After ion implantation the samples were annealed isochronally in air at temperatures up to 1200K. After implantation and after each annealing step, the defect evolution was monitored with optical absorption spectroscopy and depth-sensitive Doppler Broadening positron beam analysis (PBA). A strong increase in the S-parameter is observed in the implantation layer at a depth of approximately 100 nm. The high value of the S-parameter is ascribed to positron annihilation in small lithium precipitates. The results of 2D-ACAR and X-TEM analysis show evidence of the presence of lithium precipitates. The depth distribution of the implanted 6 Li atoms was monitored with neutron depth profiling (NDP). It was observed that detrapping and diffusion of 6 Li starts at an annealing temperature of 1200K. (orig.)

  12. Behavior of PET implanted by Ti, Ag, Si and C ion using MEVVA implantation

    International Nuclear Information System (INIS)

    Wu Yuguang; Zhang Tonghe; Zhang Yanwen; Zhang Huixing; Zhang Xiaoji; Zhou Gu

    2001-01-01

    Polyethylene terephthalane (PET) has been modified with Ti, Ag, Si and C ions from a metal vapor arc source (MEVVA). Ti, Ag, Si and C ions were implanted with acceleration voltage 40 kV to fluences ranging from 1x10 16 to 2x10 17 cm -2 . The surface of implanted PET darkened with increasing ion dose, when the metal ion dose was greater than 1x10 17 cm -2 the color changed to metallic bright. The surface resistance decreases by 5-6 orders of magnitude with increasing dose. The resistivity is stable after long-term storage. The depth of Ti- and Ag-implanted layer is approximately 150 and 80 nm measured by Rutherford backscattering (RBS), respectively. TEM photos revealed the presence of Ti and Ag nano-meter particles on the surface resulting from the high-dose implantation. Ti and Ag ion implantations improved conductivity and wear resistance significantly. The phase and structural changes were obtained by X-ray diffraction (XRD). It can be seen that nano-meter particles of Ti precipitation, TiO 2 and Ti-carbides have been formed in implanted layer. Nano-hardness of implanted PET has been measured by a nano-indenter. The results show that the surface hardness, modulus and wear resistance could be increased

  13. Carbon dioxide ion implantation in Titanium Nitride (Ti N)

    International Nuclear Information System (INIS)

    Torabi, Sh.; Sari, A. H.; Hojabri, A.; Ghoranneviss, M.

    2007-01-01

    Nitrogen ion implantation on titanium samples performed at 3x10 18 , 8x10 17 , 3x10 18 doses. In addition CO 2 ions were also implanted at doses in the range of 1x10 17 ,4 x10 17 ,8x10 17 . Atomic Force Microscopy, used to investigate the topographical changes of implanted samples. The structure of samples and phase composition were characterized using x-ray diffraction. The results show that by increasing of nitrogen ions, the roughness, grain sizes and hardness will increase. But by further increasing of dose, hardness will be decreased. The CO 2 implantation also enhance the roughness, grain size and hardness which could be caused by phase composition.

  14. Surface sputtering in high-dose Fe ion implanted Si

    International Nuclear Information System (INIS)

    Ishimaru, Manabu

    2007-01-01

    Microstructures and elemental distributions in high-dose Fe ion implanted Si were characterized by means of transmission electron microscopy and Rutherford backscattering spectroscopy. Single crystalline Si(0 0 1) substrates were implanted at 350 deg. C with 120 keV Fe ions to fluences ranging from 0.1 x 10 17 to 4.0 x 10 17 /cm 2 . Extensive damage induced by ion implantation was observed inside the substrate below 1.0 x 10 17 /cm 2 , while a continuous iron silicide layer was formed at 4.0 x 10 17 /cm 2 . It was found that the spatial distribution of Fe projectiles drastically changes at the fluence between 1.0 x 10 17 and 4.0 x 10 17 /cm 2 due to surface sputtering during implantation

  15. Fe doped Magnetic Nanodiamonds made by Ion Implantation.

    Science.gov (United States)

    Chen, ChienHsu; Cho, I C; Jian, Hui-Shan; Niu, H

    2017-02-09

    Here we present a simple physical method to prepare magnetic nanodiamonds (NDs) using high dose Fe ion-implantation. The Fe atoms are embedded into NDs through Fe ion-implantation and the crystal structure of NDs are recovered by thermal annealing. The results of TEM and Raman examinations indicated the crystal structure of the Fe implanted NDs is recovered completely. The SQUID-VSM measurement shows the Fe-NDs possess room temperature ferromagnetism. That means the Fe atoms are distributed inside the NDs without affecting NDs crystal structure, so the NDs can preserve the original physical and chemical properties of the NDs. In addition, the ion-implantation-introduced magnetic property might make the NDs to become suitable for variety of medical applications.

  16. Fe doped Magnetic Nanodiamonds made by Ion Implantation

    Science.gov (United States)

    Chen, Chienhsu; Cho, I. C.; Jian, Hui-Shan; Niu, H.

    2017-02-01

    Here we present a simple physical method to prepare magnetic nanodiamonds (NDs) using high dose Fe ion-implantation. The Fe atoms are embedded into NDs through Fe ion-implantation and the crystal structure of NDs are recovered by thermal annealing. The results of TEM and Raman examinations indicated the crystal structure of the Fe implanted NDs is recovered completely. The SQUID-VSM measurement shows the Fe-NDs possess room temperature ferromagnetism. That means the Fe atoms are distributed inside the NDs without affecting NDs crystal structure, so the NDs can preserve the original physical and chemical properties of the NDs. In addition, the ion-implantation-introduced magnetic property might make the NDs to become suitable for variety of medical applications.

  17. Statistical 3D damage accumulation model for ion implant simulators

    CERN Document Server

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  18. Statistical 3D damage accumulation model for ion implant simulators

    International Nuclear Information System (INIS)

    Hernandez-Mangas, J.M.; Lazaro, J.; Enriquez, L.; Bailon, L.; Barbolla, J.; Jaraiz, M.

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided

  19. The KFKI 150 kV ion-implanter

    International Nuclear Information System (INIS)

    Pasztor, E.

    1976-09-01

    The description of the ion-implanter of 150 keV maximum energy designed and built in the Central Research Institute for Physics, Budapest is given. The implanter fulfils all technological and safety requirements of the industry. In addition to B,P and As other elements up to mass-number 76 can also be implanted by help of the Danfysik 911 type ion source. The 3x10 -6 Torr operational pressure is provided by three turbomolecular pumps. The maximum dose is 1 μCb/cm 2 min and to ensure uniformity of the implantation on the 100x105 mm 2 target area the ion beam is swept electrostatically. According to the testing experiments the inhomogenity can be taken to be +-1.3%. (Sz.N.Z.)

  20. TEM study of amorphous alloys produced by ion implantation

    International Nuclear Information System (INIS)

    Johnson, E.; Grant, W.A.; Wohlenberg, P.; Hansen, P.; Chadderton, L.T.

    1978-01-01

    Ion implantation is a technique for introducing foreign elements into surface layers of solids. Ions, as a suitably accelerated beam, penetrate the surface, slow down by collisions with target atoms to produce a doped layer. This non-equilibrium technique can provide a wide range of alloys without the restrictions imposed by equilibrium phase diagrams. This paper reports on the production of some amorphous transition metal-metalloid alloys by implantation. Thinned foils of Ni, Fe and stainless steel were implanted at room temperature with Dy + and P + ions at doses between 10 13 - 10 17 ions/cm 2 at energies of 20 and 40 keV respectively. Transmission electron microscopy and selected area diffraction analysis were used to investigate the implanted specimens. Radial diffracted intensity measurements confirmed the presence of an amorphous implanted layer. The peak positions of the maxima are in good agreement with data for similar alloys produced by conventional techniques. Only certain ion/target combinations produce these amorphous layers. Implantations at doses lower than those needed for amorphization often result in formation of new crystalline phases such as an h.c.p. phase in nickel and a b.c.c. phase in stainless steel. (Auth.)

  1. Improving Aspergillus niger tannase yield by N+ ion beam implantation

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2013-02-01

    Full Text Available This work aimed to improve tannase yield of Aspergillus niger through N+ ion beam implantation in submerged fermentation. The energy and dose of N+ ion beam implantation were investigated. The results indicated that an excellent mutant was obtained through nine successive implantations under the conditions of 10 keV and 30-40 (×2.6×10(13 ions/cm², and its tannase yield reached 38.5 U/mL, which was about five-time higher than the original strain. The study on the genetic stability of the mutant showed that its promising performance in tannase production could be stable. The studies of metal ions and surfactants affecting tannase yield indicated that manganese ions, stannum ions, xylene and SDS contained in the culture medium had positive effects on tannase production under submerged fermentation. Magnesium ions, in particular, could enhance the tannase yield by the mutant increasing by 42%, i.e. 53.6 U/mL. Accordingly, low-energy ion implantation could be a desirable approach to improve the fungal tannase yield for its commercial application.

  2. Ion implantation induced martensite nucleation in SUS301 steel

    International Nuclear Information System (INIS)

    Kinoshita, Hiroshi; Takahashi, Heishichiro; Gustiono, Dwi; Sakaguchi, Norihito; Shibayama, Tamaki; Watanabe, Seiichi

    2007-01-01

    Phase transformation behaviors of the austenitic 301 stainless steel was studied under Fe + , Ti + and Ar + ions implantation at room temperature with 100, 200 and 300 keV up to fluence of 1x10 21 ions/m 2 and the microstructures were observed by means of transmission electron microscopy (TEM). The plane and cross-sectional observations of the implanted specimen showed that the induced-phases due to implantation from the γ matrix phase were identified as α' martensite phases with the orientation relationship of (11-bar0) α parallel (111-bar) γ and [111] α parallel [011] γ close to the Kurdjumov-Sachs (K-S). The ion implantation induced phases nucleated near the surface region and the depth position of the nucleation changed depending on the ion accelerating energy and ion species. It was also found that the induced marten sites phases nucleate under the influence of the stress distribution, which is introduced due to the concentration of implanted ions, especially due to the stress gradient caused by the corresponding concentration gradient. (author)

  3. Structural changes in the polyethylene after ion implantation

    International Nuclear Information System (INIS)

    Proskova, K.; Svorcik, V.

    1999-01-01

    This work deals with the study of the polyethylene (PE) after its modification by ion implantation. In this way the mechanical, optical, magnetic and electric characteristics can be changed. Experiments were processed on PE films with 15 μm thickness. For modification of the surface of PE for implantation the Ar + ions with the energy 63 keV and Xe + ions with the energy 156 keV and with doses from 1·10 13 to 3·10 15 cm +2 were used. The aim of this work was the study of structural changes of modified layer of the PE

  4. The ion implantation of metals and engineering materials

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1978-01-01

    An entirely new method of metal finishing, by the process of ion implantation, is described. Introduced at first for semiconductor device applications, this method has now been demonstrated to produce major and long-lasting improvements in the durability of material surfaces, as regards both wear and corrosion. The process is distinct from that of ion plating, and it is not a coating technique. After a general description of ion implantation examples are given of its effects on wear behaviour (mostly in steels and cemented carbides) and on corrosion, in a variety of metals and alloys. Its potential for producing decorative finishes is mentioned briefly. The equipment necessary for carrying out ion implantation for engineering applications has now reached the prototype stage, and manufacture of plant for treating a variety of tools and components is about to commence. These developments are outlined. (author)

  5. Electrical conductivity enhancement of polyethersulfone (PES) by ion implantation

    International Nuclear Information System (INIS)

    Bridwell, L.B.; Giedd, R.E.; Wang Yongqiang; Mohite, S.S.; Jahnke, T.; Brown, I.M.

    1991-01-01

    Amorphous polyethersulfone (PES) films have been implanted with a variety of ions (He, B, C, N and As) at a bombarding energy of 50 keV in the dose range 10 16 -10 17 ions/cm 2 . Surface resistance as a function of dose indicates a saturation effect with a significant difference between He and the other ions used. ESR line shapes in the He implanted samples changed from a mixed Gaussian/Lorentzian to a pure Lorentzian and narrowed with increasing dose. Temperature dependent resistivity indicates an electron hopping mechanism for conduction. Infrared results indicate cross-linking or self-cyclization occurred for all implanted ions with further destruction in the case of As. (orig.)

  6. Modification of electrical properties of polymer membranes by ion implantation

    International Nuclear Information System (INIS)

    Dworecki, K.; Hasegawa, T.; Sudlitz, K.; Wasik, S.

    2000-01-01

    This paper presents an experimental study of the electrical properties of polymer ion irradiated polyethylene terephthalate (PET) membranes. The polymer samples have been implanted with a variety of ions (O 5+ , N 4+ , Kr 9+ ) by the energy of 10 keV/q up to doses of 10 15 ions/cm 2 and then they were polarized in an electric field of 4.16x10 6 V/m at non-isothermal conditions. The electrical properties and the changes in the chemical structure of implanted membrane were measured by conductivity and discharge currents and FTIR spectra. Electrical conductivity of the membranes PET increases to 1-3 orders of magnitude after implantation and is determined by the charge transport caused by free space charge and by thermal detrapping of charge carriers. The spectra of thermally induced discharge current (TDC) shows that ion irradiated PET membranes are characterized by high ability to accumulate charge

  7. Surface modification of commercial tin coatings by carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L J; Sood, D K; Manory, R R [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    Commercial TiN coatings of about 2 {mu}m thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10{sup 17} - 8x10{sup 17} ions cm{sup -2}. Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs.

  8. Surface modification of commercial tin coatings by carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.J.; Sood, D.K.; Manory, R.R. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Commercial TiN coatings of about 2 {mu}m thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10{sup 17} - 8x10{sup 17} ions cm{sup -2}. Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs.

  9. Surface modification of commercial tin coatings by carbon ion implantation

    International Nuclear Information System (INIS)

    Liu, L.J.; Sood, D.K.; Manory, R.R.

    1993-01-01

    Commercial TiN coatings of about 2 μm thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10 17 - 8x10 17 ions cm -2 . Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs

  10. Implantation of D+ ions in niobium and deuterium gas reemission

    International Nuclear Information System (INIS)

    Pisarev, A.A.; Tel'kovskij, V.G.

    1975-01-01

    This is a study of the implanting and reflex gasoisolation of D ions in niobium. It has been discovered that deutrium scope and gasoisolation are defined by several processes. An assumption is made that in ion bombarding conditions the implanting solutions are possible to exist and that deutrium can be replaced on the basis of niobium and hydrid compounds NbxDy. The portion of the particles entrained in the metal in one or another way depends on the ion energy. The dependence of the scope coefficient of n D + ions from the target temperature in the range of 290-1500 K was registered. An increase of the scope coefficient of the ions at high temperature with an increase of the ion energy was discovered

  11. Study of ion implantation in grown layers of multilayer coatings under ion-plasma vacuum deposition

    International Nuclear Information System (INIS)

    Voevodin, A.A.; Erokhin, A.L.

    1993-01-01

    The model of ion implantation into growing layers of a multilayer coating produced with vacuum ion-plasma deposition was developed. The model takes into account a possibility for ions to pass through the growing layer and alloys to find the distribution of implanted atoms over the coating thickness. The experimental vitrification of the model was carried out on deposition of Ti and TiN coatings

  12. The influence of ion implantation on the oxidation of nickel

    International Nuclear Information System (INIS)

    Goode, P.D.

    1975-11-01

    The effects of ion implantation on the oxidation of polycrystalline nickel have been studied for a range of implanted species: viz. He, Li, Ne, Ca, Ti, Ni, Co, Xe, Ce and Bi. The oxides were grown in dry oxygen at 630 0 C and the 16 O(d,p) 17 O nuclear reaction technique used to determine the amount of oxygen taken up. The influence of atomic and ionic size, valency and electronegativity of the implanted impurities was studied as also were the effects of ion bombardment damage and the influence of sputtering during implantation. Atomic size and the annealing of disorder were found to have a marked influence on oxide growth rate. The dependence of oxidation on annealing was further studied by implanting polycrystalline specimens with self ions and observing the oxide growth rate as a function of annealing temperature. A peak in the curve was found at 400 0 C and a similar peak observed at a somewhat higher temperature for oxidised single crystals. It is concluded that the oxidation rate will be influenced by those factors which alter the epitaxial relationship between metal and growing oxide. Such factors include atomic size of the implanted species, surface strain induced by implantation and changes in surface topography as a result of sputtering. In addition a model based on vacancy assisted cation migration is proposed to explain enhanced oxidation observed over a limited temperature range. (author)

  13. Polymer tribology by combining ion implantation and radionuclide tracing

    International Nuclear Information System (INIS)

    Timmers, Heiko; Gladkis, Laura G.; Warner, Jacob A.; Byrne, Aidan P.; Grosso, Mariela F. del; Arbeitman, Claudia R.; Garcia-Bermudez, Gerardo; Geruschke, Thomas; Vianden, Reiner

    2010-01-01

    Radionuclide tracers were ion implanted with three different techniques into the ultra-high molecular weight polyethylene polymer. Tracer nuclei of 7 Be were produced with inverse kinematics via the reaction p( 7 Li, 7 Be)n and caught by polymer samples at a forward scattering angle with a maximum implantation energy of 16 MeV. For the first time, 97 Ru, 100 Pd, and, independently, 111 In have been used as radionuclide tracers in ultra-high molecular weight polyethylene. 97 Ru and 100 Pd were recoil-implanted following the fusion evaporation reactions 92 Zr( 12 C,α3n) 97 Ru and 92 Zr( 12 C,4n) 100 Pd with a maximum implantation energy of 8 MeV. 111 In ions were produced in an ion source, mass-separated and implanted at 160 keV. The tribology of implanted polymer samples was studied by tracing the radionuclide during mechanical wear. Uni-directional and bi-directional sliding apparatus with stainless steel actuators were used. Results suggest a debris exchange process as the characteristic feature of the wear-in phase. This process can establish the steady state required for a subsequently constant wear rate in agreement with Archard's equation. The nano-scale implantation of mass-separated 111 In appears best suited to the study of non-linear tribological processes during wear-in. Such non-linear processes may be expected to be important in micro- and nanomachines.

  14. Surface modification of austenitic stainless steel by titanium ion implantation

    International Nuclear Information System (INIS)

    Evans, P.J.; Hyvarinen, J.; Samandi, M.

    1995-01-01

    The wear properties of AISI 316 austenitic stainless steel implanted with Ti were investigated for ion doses in the range (2.3-5.4)x10 16 ionscm -2 and average ion energies of 60 and 90keV. The implanted layer was examined by Rutherford backscattering, from which the retained doses were determined, and glow discharge optical emission spectroscopy. Following implantation, the surface microhardness was observed to increase with the greatest change occurring at higher ion energy. Pin-on-disc wear tests and associated friction measurements were also performed under both dry and lubricated conditions using applied loads of 2N and 10N. In the absence of lubrication, breakthrough of the implanted layer occurred after a short sliding time; only for a dose of 5.1x10 16 ionscm -2 implanted at an average energy of 90keV was the onset of breakthrough appreciably delayed. In contrast, the results of tests with lubrication showed a more gradual variation, with the extent of wear decreasing with implant dose at both 2N and 10N loads. Finally, the influence of Ti implantation on possible wear mechanisms is discussed in the light of information provided by several surface characterization techniques. ((orig.))

  15. Computer simulation of damage processes during ion implantation

    International Nuclear Information System (INIS)

    Kang, H.J.; Shimizu, R.; Saito, T.; Yamakawa, H.

    1987-01-01

    A new version for the marlowe code, which enables dynamic simulation of damage processes during ion implantation to be performed, has been developed. This simulation code is based on uses of the Ziegler--Biersack--Littmark potential [in Proceedings of the International Engineering Congress on Ion Sources and Ion-Assisted Technology, edited by T. Takagi (Ionic Co., Tokyo, 1983), p. 1861] for elastic scattering and Firsov's equation [O. B. Firsov, Sov. Phys. JETP 61, 1453 (1971)] for electron stopping

  16. Structural changes in the polyethylene after ion implantation

    International Nuclear Information System (INIS)

    Proskova, K.; Svorcik, V.

    1999-01-01

    This work deals with the study of structural changes of the polyethylene after ion implantation. There were used the polyethylene film with thickness 15 μm, and Ar + ions with energy 63 keV and Xe + ions with energy 156 keV with doses 1·10 13 - 3·10 15 cm -2 for experiments. For the study of structural changes of polymer were used methods UV-VIS spectrometry, ESR, Rutherford back scattering

  17. Progress in ion implantation equipment for semiconductor manufacturing

    International Nuclear Information System (INIS)

    Kawai, Tadashi; Naito, Masao

    1987-01-01

    In the semiconductor device manufacturing industry, ion implantation systems are used to dope semiconductor substrates with impurities that act as donor or acceptor. In an ion implantation system, required impurity ions are generated from an ion source, subjected to mass analysis, accelerated, converged and implanted in semiconductor wafers. High-tension arc tends to cause troubles in these systems, but improvement in design increased the average operation rate of medium-power systems from bout 70 percent to 90 percent during the past 10 years. Freeman type ion sources have replaced most RF ion sources and cold cathode PIG sources, which had been widely used until the early 1970s. Many of the recent ion sources are equipped with a P and As vaporizer to increase the beam intensity. By an increased beam intensity or decreased handling time in combination with an automatic handling system, the throughput has reached 330 wafers per hour for 10 second implantation. The yield has increased due to the development of improved scanning methods, vacuum devices such as cryopump, and processes and apparatus that serve for preventing particles from being contained in micro-devices. Various other improvements have been made to permit efficient production. (Nogami, K.)

  18. Optimal pulse modulator design criteria for plasma source ion implanters

    International Nuclear Information System (INIS)

    Reass, W.

    1993-01-01

    This paper describes what are believed to be the required characteristics of a high-voltage modulator for efficient and optimal ion deposition from the ''Plasma Source Ion Implantation'' (PSII) process. The PSII process is a method to chemically or physically alter and enhance surface properties of objects by placing them in a weakly ionized plasma and pulsing the object with a high negative voltage. The attracted ions implant themselves and form chemical bonds or are interstitially mixed with the base material. Present industrial uses of implanted objects tends to be for limited-production, high-value-added items. Traditional implanting hardware uses the typical low-current (ma) semiconductor ''raster scan'' implanters. The targets must also be manipulated to maintain a surface normal to the ion beam. The PSII method can provide ''bulk'' equipment processing on a large industrial scale. For the first generation equipment, currents are scaled from milliamps to hundreds of amps, voltages to -175kV, at kilohertz rep-rates, and high plasma ion densities

  19. Magnetic patterning by means of ion irradiation and implantation

    International Nuclear Information System (INIS)

    Fassbender, J.; McCord, J.

    2008-01-01

    A pure magnetic patterning by means of ion irradiation which relies on a local modification of the magnetic anisotropy of a magnetic multilayer structure has been first demonstrated in 1998. Since then also other magnetic properties like the interlayer exchange coupling, the exchange bias effect, the magnetic damping behavior and the saturation magnetization to name a few have also been demonstrated to be affected by ion irradiation or ion implantation. Consequently, all these effects can be used if combined with a masking technique or employing direct focused ion beam writing for a magnetic patterning and thus an imprinting of an artificial magnetic domain structure, which subsequently modifies the integral magnetization reversal behavior or the magnetization dynamics of the film investigated. The present review will summarize how ion irradiation and implantation can affect the magnetic properties by means of structural modifications. The main part will cover the present status with respect to the pure magnetic patterning of micro- and nano structures

  20. Critical microstructure for ion-implantation gettering effects in silicon

    International Nuclear Information System (INIS)

    Geipel, H.J.; Tice, W.K.

    1977-01-01

    The nature of residual ion-implantation damage responsible for gettering deleterious impurities from active semiconductor device regions in Si has been studied. A propensity for dislocations of the type b=1/2 to gather metallic contaminant (e.g., Cu), as compared to Frank partials b=1/3 , is established. Transmission electron microscopy and pulsed leakage measurements are used to demonstrate that the density of 1/2 dislocations introduced by Xe implantation greatly influences gettering efficiency

  1. Annealing behavior and selected applications of ion-implanted alloys

    International Nuclear Information System (INIS)

    Myers, S.M.

    Thermally activated processes cause ion-implanted metals to evolve from the initial state toward thermodynamic equilibrium. The degree of equilibration is strongly dependent upon temperature and is considered for three temperature regimes which are distinguished by the varying mobilities of interstitial and substitutional atoms. In addition, perturbations resulting from the irradiation environment are discussed. Examples are given of the use of implanted and annealed alloys in studies of diffusion, phase diagrams, and solute trapping

  2. Ion implantation for manufacturing bent and periodically bent crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, Valerio; Camattari, Riccardo; Guidi, Vincenzo, E-mail: guidi@fe.infn.it; Mazzolari, Andrea; Paternò, Gianfranco [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/c, 44122 Ferrara, Italy and INFN, Section of Ferrara (Italy); Mattei, Giovanni, E-mail: giovanni.mattei@unipd.it; Scian, Carlo [Department of Physics and Astronomy Galileo Galilei, University of Padova, Via Marzolo 8, 35131 Padova (Italy); Lanzoni, Luca [Dipertimento di Economia e Tecnologia, Università degli Studi della Repubblica di San Marino, Salita alla Rocca, 44, 47890 San Marino Città (San Marino)

    2015-08-10

    Ion implantation is proposed to produce self-standing bent monocrystals. A Si sample 0.2 mm thick was bent to a radius of curvature of 10.5 m. The sample curvature was characterized by interferometric measurements; the crystalline quality of the bulk was tested by X-ray diffraction in transmission geometry through synchrotron light at ESRF (Grenoble, France). Dislocations induced by ion implantation affect only a very superficial layer of the sample, namely, the damaged region is confined in a layer 1 μm thick. Finally, an elective application of a deformed crystal through ion implantation is here proposed, i.e., the realization of a crystalline undulator to produce X-ray beams.

  3. Yttrium ion implantation on the surface properties of magnesium

    International Nuclear Information System (INIS)

    Wang, X.M.; Zeng, X.Q.; Wu, G.S.; Yao, S.S.

    2006-01-01

    Owing to their excellent physical and mechanical properties, magnesium and its alloys are receiving more attention. However, their application has been limited to the high reactivity and the poor corrosion resistance. The aim of the study was to investigate the beneficial effects of ion-implanted yttrium using a MEVVA ion implanter on the surface properties of pure magnesium. Isothermal oxidation tests in pure O 2 at 673 and 773 K up to 90 min indicated that the oxidation resistance of magnesium had been significantly improved. Surface morphology of the oxide scale was analyzed using scanning electron microscope (SEM). Auger electron spectroscopy (AES) and X-ray diffraction (XRD) analyses indicated that the implanted layer was mainly composed of MgO and Y 2 O 3 , and the implanted layer with a duplex structure could decrease the inward diffusion of oxygen and reduce the outward diffusion of Mg 2+ , which led to improving the oxidation resistance of magnesium. Potentiodynamic polarization curves were used to evaluate the corrosion resistance of the implanted magnesium. The results show yttrium implantation could enhance the corrosion resistance of implanted magnesium compared with that of pure magnesium

  4. Ion implantation of CdTe single crystals

    International Nuclear Information System (INIS)

    Wiecek, Tomasz; Popovich, Volodymir; Bester, Mariusz; Kuzma, Marian

    2017-01-01

    Ion implantation is a technique which is widely used in industry for unique modification of metal surface for medical applications. In semiconductor silicon technology ion implantation is also widely used for thin layer electronic or optoelectronic devices production. For other semiconductor materials this technique is still at an early stage. In this paper based on literature data we present the main features of the implantation of CdTe single crystals as well as some of the major problems which are likely to occur when dealing with them. The most unexpected feature is the high resistance of these crystals against the amorphization caused by ion implantation even at high doses (10"1"7 1/cm"2). The second property is the disposal of defects much deeper in the sample then it follows from the modeling calculations. The outline of principles of the ion implantation is included in the paper. The data based on RBS measurements and modeling results obtained by using SRIM software were taken into account.

  5. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    Science.gov (United States)

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  6. Development of a CMOS process using high energy ion implantation

    International Nuclear Information System (INIS)

    Stolmeijer, A.

    1986-01-01

    The main interest of this thesis is the use of complementary metal oxide semiconductors (CMOS) in electronic technology. Problems in developing a CMOS process are mostly related to the isolation well of p-n junctions. It is shown that by using high energy ion implantation, it is possible to reduce lateral dimensions to obtain a rather high packing density. High energy ion implantation is also presented as a means of simplifying CMOS processing, since extended processing steps at elevated temperatures are superfluous. Process development is also simplified. (Auth.)

  7. Mutation effect of ion implantation on tomato breeding

    International Nuclear Information System (INIS)

    Wu Baoshan; Ling Haiqiu; Mao Peihong; Jin Xiang; Zeng Xianxian

    2003-01-01

    The mutation effects of N + ion implantation on cultivated tomato, Catchup type and Eatable type were studied. The result show that the mutation ranges of single-fruit weight and fruit number per plant were increased and their mutation frequencies were high, however the effect of ion implantation on germination rate of seed and quality of fruit was very weak. Using doses of 4 x 10 16 and 6 x 10 16 N + /cm 2 , the yield was greatly improved. The optimum mutation dosage was slightly different for seed of 2 tomato lines

  8. Standard Enucleation with Aluminium Oxide Implant (Bioceramic Covered with Patient's Sclera

    Directory of Open Access Journals (Sweden)

    Gian Luigi Zigiotti

    2012-01-01

    Full Text Available Purpose. We describe in our study a modified standard enucleation, using sclera harvested from the enucleated eye to cover the prosthesis in order to insert a large porous implant and to reduce postoperative complication rates in a phthisis globe. Methods. We perform initially a standard enucleation. The porous implant (Bioceramic is then covered only partially by the patient's sclera. The implant is inserted in the posterior Tenon's space with the scleral covering looking at front. All patients were followed at least for twelve months (average followup 16 months. Results. We performed nineteen primary procedures (19 patients, 19 eyes, M; F and secondary, to fill the orbital cavity in patients already operated by standard evisceration (7 patients, 7 eyes. There were no cases of implant extrusion. The orbital volume was well reintegrated. Conclusion. Our procedure was safe and effective. All patients had a good cosmetic result after final prosthetic fitting and we also achieved good prothesis mobility.

  9. Development of Mechanical Improvement of the Cladding by Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Han, J G; Lee, S B [Sungkyunkwan University, Seoul (Korea, Republic of); Kim, S H [Kangwon University, Chunchon (Korea, Republic of); Song, G [Suwon College, Suwon (Korea, Republic of)

    1997-07-01

    In this research we analyzed the state of art related to the surface treatment method of nuclear fuel cladding for the development of the surface treatment technique of nuclear fuel cladding by ion beam while investigating major causes of the leakage of fuel rods. Ion implantation simulation code called TRIM-95 was used to decide basic parameters ion beams and wetup an appropriate process for ion implantation. For the mechanical properties measurements, a high temperature wear resistance tester, a fretting wear tester, and a fretting fatigue resistance tester were constructed. Using these testers, some mechanical properties as micro hardness, wear resistance against AISI52100 and AI{sub 2}O{sub 3} balls, and fretting properties were measured and analyzed for the implanted materials as a function of ion dose and processing temperature. Effect of the oxygen atmosphere was measured in the nitrogen implantation. Auger electron spectroscopy(AES) was applied for the depth profile, and X-ray diffraction was used for the nitrogen and oxide measurements. 48 refs., 7 tabs., 46 figs. (author)

  10. Amorphous GaP produced by ion implantation

    International Nuclear Information System (INIS)

    Shimada, T.; Kato, Y.; Shiraki, Y.; Komatsubara, K.F.

    1976-01-01

    Two types of non-crystalline states ('disordered' and 'amorphous') of GaP were produced by using ion implantation and post annealing. A structural-phase-transition-like annealing behaviour from the 'disordered' state to the 'amorphous' state was observed. The ion dose dependence and the annealing behaviour of the atomic structure of GaP implanted with 200 keV -N + ions were studied by using electron diffraction, backscattering and volume change measurements. The electronic structure was also investigated by measuring optical absorption and electrical conductivity. The implanted layer gradually loses the crystalline order with the increase of the nitrogen dose. The optical absorption coefficient α and electric conductivity sigma of GaP crystals implanted with 200 keV -N + ions of 1 x 10 16 cm -2 were expressed as αhν = C(hν - E 0 )sup(n) and log sigma = A -BTsup(-1/4), respectively. Moreover, the volume of the implanted layer increased about three percent and the electron diffraction pattern was diffused halo whose intensity monotonically decreases along the radial direction. These results indicate that the as-implanted layer has neither a long range order or short range order ('disordered state'). In the sample implanted at 1 x 10 16 cm -2 , a structural phase-transition-like annealing stage was observed at around 400 0 C. That is, the optical absorption coefficient abruptly fell off from 6 x 10 4 to 7 x 10 3 cm -1 and the volume of the implanted layer decreased about 2% within an increase of less than 10 degrees in the anneal temperature. Moreover, the short range order of the lattice structure appeared in the electron diffraction pattern. According to the backscattering experiment, the heavily implanted GaP was still in the non-crystalline state even after annealing. These facts suggest that heavily implanted GaP, followed by annealing at around 400 0 C, is in the 'amorphous' state, although as-implanted GaP is not in the 'amorphous' state but in the

  11. Application of TXRF for ion implanter dose matching experiments

    Science.gov (United States)

    Frost, M. R.; French, M.; Harris, W.

    2004-06-01

    Secondary ion mass spectrometry (SIMS) has been utilized for many years to measure the dose of ion implants in silicon for the purpose of verifying the ability of ion implantation equipment to accurately and reproducibly implant the desired species at the target dose. The development of statistically and instrumentally rigorous protocols has lead to high confidence levels, particularly with regard to accuracy and short-term repeatability. For example, high-dose, high-energy B implant dosimetry can be targeted to within ±1%. However, performing dose determination experiments using SIMS does have undesirable aspects, such as being highly labor intensive and sample destructive. Modern total reflection X-ray fluorescence (TXRF) instruments are equipped with capabilities for full 300 mm wafer handling, automated data acquisition software and intense X-ray sources. These attributes enable the technique to overcome the SIMS disadvantages listed above, as well as provide unique strengths that make it potentially highly amenable to implanter dose matching. In this paper, we report on data collected to date that provides confidence that TXRF is an effective and economical method to perform these measurements within certain limitations. We have investigated a number of ion implanted species that are within the "envelope" of TXRF application. This envelope is defined by a few important parameters. Species: For the anode materials used in the more common X-ray sources on the market, each has its own set of elements that can be detected. We have investigated W and Mo X-ray sources, which are the most common in use in commercial instrumentation. Implant energy: In general, if the energy of the implanted species is too high (or more specifically, the distribution of the implanted species is too deep), the amount of dopant not detected by TXRF may be significant, increasing the error of the measurement. Therefore, for each species investigated, the implant energy cannot exceed a

  12. Corrosion resistance of titanium ion implanted AZ91 magnesium alloy

    International Nuclear Information System (INIS)

    Liu Chenglong; Xin Yunchang; Tian Xiubo; Zhao, J.; Chu, Paul K.

    2007-01-01

    Degradable metal alloys constitute a new class of materials for load-bearing biomedical implants. Owing to their good mechanical properties and biocompatibility, magnesium alloys are promising in degradable prosthetic implants. The objective of this study is to improve the corrosion behavior of surgical AZ91 magnesium alloy by titanium ion implantation. The surface characteristics of the ion implanted layer in the magnesium alloys are examined. The authors' results disclose that an intermixed layer is produced and the surface oxidized films are mainly composed of titanium oxide with a lesser amount of magnesium oxide. X-ray photoelectron spectroscopy reveals that the oxide has three layers. The outer layer which is 10 nm thick is mainly composed of MgO and TiO 2 with some Mg(OH) 2 . The middle layer that is 50 nm thick comprises predominantly TiO 2 and MgO with minor contributions from MgAl 2 O 4 and TiO. The third layer from the surface is rich in metallic Mg, Ti, Al, and Ti 3 Al. The effects of Ti ion implantation on the corrosion resistance and electrochemical behavior of the magnesium alloys are investigated in simulated body fluids at 37±1 deg. C using electrochemical impedance spectroscopy and open circuit potential techniques. Compared to the unimplanted AZ91 alloy, titanium ion implantation significantly shifts the open circuit potential (OCP) to a more positive potential and improves the corrosion resistance at OCP. This phenomenon can be ascribed to the more compact surface oxide film, enhanced reoxidation on the implanted surface, as well as the increased β-Mg 12 Al 17 phase

  13. Effect of ion implantation on thin hard coatings

    International Nuclear Information System (INIS)

    Auner, G.; Hsieh, Y.F.; Padmanabhan, K.R.; Chevallier, J.; Soerensen, G.

    1983-01-01

    The surface mechanical properties of thin hard coatings of carbides, nitrides and borides deposited by r.f. sputtering were improved after deposition by ion implantation. The thickness and the stoichiometry of the films were measured by Rutherford backscattering spectrometry and nuclear reaction analysis before and after ion bombardment. The post ion bombardment was achieved with heavy inert ions such as Kr + and Xe + with an energy sufficient to penetrate the film and to reach the substrate. Both the film adhesion and the microhardness were consistently improved. In order to achieve a more detailed understanding, Rb + and Ni + ions were also used as projectiles, and it was found that these ions were more effective than the inert gas ions. (Auth.)

  14. Synergistic Effect of Azadirachta Indica Extract and Iodide Ions on the Corrosion Inhibition of Aluminium in Acid Media

    Energy Technology Data Exchange (ETDEWEB)

    Arab, S. T.; Al- Turkustani, A. M.; Al- Dhahiri, R. H. [King Abd El- Aziz University, Jeddah (Saudi Arabia)

    2008-06-15

    The synergistic action caused by iodide ions on the corrosion inhibition of aluminium (Al) in 0.5 M HCl in the presence of Azadirachta Indica (AZI) plant extract has been investigated using potintiodynamic polarization and impedance techniques. It is found that AZI extract inhibits the corrosion of aluminium in 0.5 M HCl. The inhibition efficiency increases with the increase in AZI extract concentration, until 24% v/v of AZI extract, then Inh.% is decreased with father increase in AZI extract concentration. The adsorption of this extract in the studied concentration is found to obey Frewendlish adsorption isotherm. The addition of iodide ions enhances the inhibition efficiency to a considerable extent. The increase in Inh.% values in presence of fixed concentration of iodide ions indicates that AZI extract forms an insoluble complex at lower AZI extract concentrations by undergoing a joint adsorption. But at higher concentrations of AZI extract, competitive adsorption is found between iodide ions and the formed complex leading to less Inh.%. The Inh.% decreased in presence of iodide ions with AZI extract than in presence of AZI extract alone at all studied iodide concentrations. The synergism parameter S {sub θ} is defined and calculated from surface coverage values. This parameter in the case of AZI extract is found to be more than unity, indicating that the enhanced inhibition efficiency caused by the addition of iodide ions.

  15. Laws of phase formation in ion-implanted metals

    International Nuclear Information System (INIS)

    Kazdaev, H.R.; Abylkhalykova, R.B.; Skakov, M.K.

    2004-01-01

    Full text: Main laws of ordered structures formation at molybdenum implantation by elements forming phases of introduction (B, C, N, 0, Si, P, S) are discovered in this work. According to them the character of structural and phase transformations in molybdenum at ion implantation is determined not by kinetic parameters of bombarding particles and their chemical activity but by size factor η x/Me (ratio of nuclear radii of introduced elements and atoms of a matrix). At change of its meaning in the certain limits the following can be observed: superstructures formation (η x/Mo x/Mo x/Mo >0.69). In the latter case at the further implantation doze increasing recrystallization of molybdenum monocrystalline layers amorphized during previous bombarding with chemical connection formation takes place, characterized by us as ion-inducted synthesis. The phenomenon discovered on the samples implanted by phosphorus ions. As the result, the high-temperature phase of molybdenum monophosphide MoP having densely situated lattice was synthesized. The complete confirmation of the main laws of structural and phased transformations at ion implantation established by results on molybdenum monocrystals with OCC lattice was achieved at realization of similar researches on the other transitive metal - zirconium which differs from molybdenum according to a number of attributes: a type of an initial lattice structural condition (large scaled polycrystal), presence of interparticle borders and high solubility of atmospheric impurities (nitrogen, carbon, oxygen). The discovered laws have proved to be true also according to ion implanted samples of monocrystal tungsten and polycrystal tantalum

  16. Application of ion implantation in metals and alloys

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1981-01-01

    Ion implantation first became established as a precise method of introducing dopant elements into semiconductors. It is now appreciated that there may be equally important applications in metallic tools or components with the purpose of improving their resistance to wear, fatigue or corrosion. Nitrogen ions implanted into steels pin dislocations and thereby harden the metal. Some metallic ions such as yttrium reduce the tendency for oxidative wear. There is a fairly good understanding of how both treatments can provide a long-lasting protection that extends to many times the original depth of implantation. Nitrogen implantation also improves the wear resistance of Co-cemented tungsten carbide and of hard chromium electroplated coatings. These treatments have wide application in press tools, molds, dies and other metal-forming tools as well as in a more limited variety of cutting tools. Some striking improvements can be achieved in the corrosion field, but there are economic and technical reasons for concluding that practical applications of ion implantation will be more restricted and specialized in this area. The most promising area is that in which mechanical stress and oxidation coexist. When a metallic species has to be introduced, a promising new development is to bombard a thin coating of the metal at an elevated temperature. Several powerful mechanisms of radiation-enhanced diffusion can bring about a complete intermixing. Examples of how this has been used to produce wear resistant surfaces in titanium are given. Finally, the equipment developed for the large scale application of the ion implantation process in the engineering field is described

  17. Comparison of oxidation resistance of copper treated by beam-line ion implantation and plasma immersion ion implantation

    International Nuclear Information System (INIS)

    An Quanzhang; Li Liuhe; Hu Tao; Xin Yunchang; Fu, Ricky K.Y.; Kwok, D.T.K.; Cai Xun; Chu, Paul K.

    2009-01-01

    Copper which has many favorable properties such as low cost, high thermal and electrical conductivity, as well as easy fabrication and joining is one of the main materials in lead frames, interconnects, and foils in flexible circuits. Furthermore, copper is one of the best antibacterial materials. However, unlike aluminum oxide or chromium oxide, the surface copper oxide layer does not render sufficient protection against oxidation. In this work, in order to improve the surface oxidation resistance of Cu, Al and N were introduced into copper by plasma immersion ion implantation (PIII) and beam-line ion implantation (BII). The implantation fluences of Al and N were 2 x 10 17 ions cm -2 and 5 x 10 16 ions cm -2 , respectively. The implanted and untreated copper samples were oxidized in air at 260 deg. C for 1 h. The X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as X-ray photoelectron spectroscopy (XPS) results indicate that both implantation methods can enhance the oxidation resistance of copper but to different extent. PIII is superior to BII in enhancing the oxidation resistance of copper. The effects and possible mechanisms are discussed.

  18. Characterization of duplex hard coatings with additional ion implantation

    Directory of Open Access Journals (Sweden)

    B. Škorić

    2012-01-01

    Full Text Available In this paper, we present the results of a study of TiN thin fi lms which are deposited by a Physical Vapour Deposition (PVD and Ion Beam Assisted Deposition (IBAD. In the present investigation the subsequent ion implantation was provided with N+2 ions. The ion implantation was applied to enhance the mechanical properties of surface. The thin film deposition process exerts a number of eff ects such as crystallographic orientation, morphology, topography, densifi cation of the fi lms. The evolution of the microstructure from porous and columnar grains to densel packed grains is accompanied by changes in mechanical and physical properties. A variety of analytic techniques were used for characterization, such as scratch test, calo test, Scanning electron microscopy (SEM, Atomic Force Microscope (AFM, X-ray diff raction (XRD and Energy Dispersive X-ray analysis (EDAX.

  19. Analysis of metal ion release from biomedical implants

    Directory of Open Access Journals (Sweden)

    Ivana Dimić

    2013-06-01

    Full Text Available Metallic biomaterials are commonly used for fixation or replacement of damaged bones in the human body due to their good combination of mechanical properties. The disadvantage of metals as implant materials is their susceptibility to corrosion and metal ion release, which can cause serious health problems. In certain concentrations metals and metal ions are toxic and their presence can cause diverse inflammatory reactions, genetic mutations or even cancer. In this paper, different approaches to metal ion release examination, from biometallic materials sample preparation to research results interpretation, will be presented. An overview of the analytical techniques, used for determination of the type and concentration of released ions from implants in simulated biofluids, is also given in the paper.

  20. Sheath physics and materials science results from recent plasma source ion implantation experiments

    International Nuclear Information System (INIS)

    Conrad, J.R.; Radtke, J.L.; Dodd, R.A.; Worzala, F.J.

    1987-01-01

    Plasma Source Ion Implantation (PSII) is a surface modification technique which has been optimized for ion-beam processing of materials. PSII departs radically from conventional implantation by circumventing the line of sight restriction inherent in conventional ion implantation. The authors used PSII to implant cutting tools and dies and have demonstrated substantial improvements in lifetime. Recent results on plasma physics scaling laws, microstructural, mechanical, and tribological properties of PSII-implanted materials are presented

  1. Chemical effects induced by ion implantation in molecular solids

    International Nuclear Information System (INIS)

    Foti, G.; Calcagno, L.; Puglisi, O.

    1983-01-01

    Ion implantation in molecular solids as ice, frozen noble gases, benzene and polymers produces a large amount of new molecules compared to the starting materials. Mass and energy analysis of ejected molecules together with the erosion yield, are discussed for several ion-target combinations at low temperature. The observed phenomena are analyzed in terms of deposited ennergy in electronic and nuclear collisions, for incoming beams, as helium or argon, in the range 10-2000 keV. (orig.)

  2. Chemical characterization of 4140 steel implanted by nitrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Nino, Ely Dannier V.; Duran, Fernando [Grupo de Investigacion en Tecnologia del Plasma (GINTEP), Departamento de Ciencias Basicas, Universidad Pontificia Bolivariana, Bucaramanga (Colombia); Pinto, Jose L.C. [Grupo de Investigacion en Quimica Estructural (GIQUE), Universidad Industrial de Santander, Bucaramanga (Colombia); Dugar-Zhabon, V.; Garnica, Hernan [Grupo de Fisica y Tecnologia del Plasma (FITEK), Universidad Industrial de Santander, Bucaramanga (Colombia)

    2010-07-01

    AISI-SAE 4140 sample surfaces of different roughness which are implanted by nitrogen ions of 20 keV and 30 keV at a dose of 10{sup 17} ions/cm{sup 2} through a three dimensional ion implantation technique are studied. Crystal phases of nitrogen compositions of the implanted samples, obtained with help of an x-ray diffraction method, are confronted with the data reported by the International Centre for Diffraction Data (ICDD), PDF-2. It is observed that the implanted into the metal nitrogen atoms produce changes in orientation of crystal planes that is manifested as variations of the intensity of the refracted rays and of cell dimensions (a displacement of 2 theta of the maximum intensity position). An analysis for determining nitrogen atoms implanted by high-voltage pulsed discharges at low pressures in the crystal structure of the solid surface was carried out by X-Ray Diffraction due to this technique permits to assess the possibility of formation of new compounds. (author)

  3. Chemical characterization of 4140 steel implanted by nitrogen ions

    International Nuclear Information System (INIS)

    Nino, Ely Dannier V.; Duran, Fernando; Pinto, Jose L.C.; Dugar-Zhabon, V.; Garnica, Hernan

    2010-01-01

    AISI-SAE 4140 sample surfaces of different roughness which are implanted by nitrogen ions of 20 keV and 30 keV at a dose of 10"1"7 ions/cm"2 through a three dimensional ion implantation technique are studied. Crystal phases of nitrogen compositions of the implanted samples, obtained with help of an x-ray diffraction method, are confronted with the data reported by the International Centre for Diffraction Data (ICDD), PDF-2. It is observed that the implanted into the metal nitrogen atoms produce changes in orientation of crystal planes that is manifested as variations of the intensity of the refracted rays and of cell dimensions (a displacement of 2 theta of the maximum intensity position). An analysis for determining nitrogen atoms implanted by high-voltage pulsed discharges at low pressures in the crystal structure of the solid surface was carried out by X-Ray Diffraction due to this technique permits to assess the possibility of formation of new compounds. (author)

  4. Damage and in-situ annealing during ion implantation

    International Nuclear Information System (INIS)

    Sadana, D.K.; Washburn, J.; Byrne, P.F.; Cheung, N.W.

    1982-11-01

    Formation of amorphous (α) layers in Si during ion implantation in the energy range 100 keV-11 MeV and temperature range liquid nitrogen (LN)-100 0 C has been investigated. Cross-sectional transmission electron microscopy (XTEM) shows that buried amorphous layers can be created for both room temperature (RT) and LN temperature implants, with a wider 100 percent amorphous region for the LN cooled case. The relative narrowing of the α layer during RT implantation is attributed to in-situ annealing. Implantation to the same fluence at temperatures above 100 0 C does not produce α layers. To further investigate in situ annealing effects, specimens already containing buried α layers were further irradiated with ion beams in the temperature range RT-400 0 C. It was found that isolated small α zones (less than or equal to 50 diameter) embedded in the crystalline matrix near the two α/c interfaces dissolved into the crystal but the thickness of the 100 percent α layer was not appreciably affected by further implantation at 200 0 C. A model for in situ annealing during implantation is presented

  5. Materials science issues of plasma source ion implantation

    International Nuclear Information System (INIS)

    Nastasi, M.; Faehl, R.J.; Elmoursi, A.A.

    1996-01-01

    Ion beam processing, including ion implantation and ion beam assisted deposition (IBAD), are established surface modification techniques which have been used successfully to synthesize materials for a wide variety of tribological applications. In spite of the flexibility and promise of the technique, ion beam processing has been considered too expensive for mass production applications. However, an emerging technology, Plasma Source Ion Implantation (PSII), has the potential of overcoming these limitations to become an economically viable tool for mass industrial applications. In PSII, targets are placed directly in a plasma and then pulsed-biased to produce a non-line-of-sight process for intricate target geometries without complicated fixturing. If the bias is a relatively high negative potential (20--100 kV) ion implantation will result. At lower voltages (50--1,200 V), deposition occurs. Potential applications for PSII are in low-value-added products such as tools used in manufacturing, orthopedic devices, and the production of wear coatings for hard disk media. This paper will focus on the technology and materials science associated with PSII

  6. Extended defects and hydrogen interactions in ion implanted silicon

    Science.gov (United States)

    Rangan, Sanjay

    The structural and electrical properties of extended defects generated because of ion implantation and the interaction of hydrogen with these defects have been studied in this work. Two distinct themes have been studied, the first where defects are a detrimental and the second where they are useful. In the first scenario, transient enhanced diffusion of boron has been studied and correlated with defect evolution studies due to silicon and argon ion implants. Spreading resistance profiles (SRP) correlated with deep level transient spectroscopy (DLTS) measurements, reveal that a low anneal temperatures (TED at low anneal temperatures (550°C, the effect of hydrogen is lost, due to its out-diffusion. Moreover, due to catastrophic out-diffusion of hydrogen, additional damage is created resulting in deeper junctions in hydrogenated samples, compared to the non-hydrogenated ones. Comparing defect evolution due to Si and Ar ion implants at different anneal temperatures, while the type of defects is the same in the two cases, their (defect) dissolution occurs at lower anneal temperatures (˜850°C) for Si implants. Dissolution for Ar implants seems to occur at higher anneal temperatures. The difference has been attributed to the increased number of vacancies created by Ar to that of silicon implant. In second aspect, nano-cavity formation due to vacancy agglomeration has been studied by helium ion implantation and furnace anneal, where the effect of He dose, implant energy and anneal time have been processing parameters that have been varied. Cavities are formed only when the localized concentration of He is greater than 3 x 1020 cm-3. While at high implant doses, a continuous cavity layer is formed, at low implant doses a discontinuous layer is observed. The formation of cavities at low doses has been observed for the first time. Variation of anneal times reveal that cavities are initially facetted (for short anneal times) and tend to become spherical when annealed for

  7. Channeled-ion implantation of group-III and group-V ions into silicon

    International Nuclear Information System (INIS)

    Furuya, T.; Nishi, H.; Inada, T.; Sakurai, T.

    1978-01-01

    Implantation of group-III and group-V ions along [111] and [110] axes of silicon have been performed using a backscattering technique, and the depth profiles of implanted ions have been measured by the C-V method. The range of channeled Ga ions is the largest among the present data, and a p-type layer of about 6 μm is obtained by implantation at only 150 keV. The carrier profiles of channeled Al and Ga ions with deep ranges do not show any distinguishable channeled peak contrasting with the B, P, and As channeling which gives a well-defined peak. The electronic stopping cross section (S/sub e/) of channeled P ions agree well with the results of Eisen and Reddi, but in B channeling, the discrepancies of 10--20% are observed among S/sub e/ values obtained experimentally by three different groups

  8. Defect-impurity interactions in ion-implanted metals

    International Nuclear Information System (INIS)

    Turos, A.

    1986-01-01

    An overview of defect-impurity interactions in metals is presented. When point defects become mobile they migrate towards the sinks and on the way can be captured by impurity atoms forming stable associations so-called complexes. In some metallic systems complexes can also be formed athermally during ion implantation by trapping point defects already in the collision cascade. An association of a point defect with an impurity atom leads to its displacement from the lattice site. The structure and stability of complexes are strongly temperature dependent. With increasing temperature they dissociate or grow by multiple defect trapping. The appearance of freely migrating point defects at elevated temperatures, due to ion bombardment or thermal annealing, causes via coupling with defect fluxes, important impurity redistribution. Because of the sensitivity of many metal-in-metal implanted systems to radiation damage the understanding of this processes is essential for a proper interpretation of the lattice occupancy measurements and the optimization of implantation conditions. (author)

  9. Plasma effects for heavy ions in implanted silicon detectors

    International Nuclear Information System (INIS)

    Aiello, S.; Anzalone, A.; Campisi, M.G.; Cardella, G.; Cavallaro, Sl.; Filippo, E. De; Geraci, E.; Geraci, M.; Guazzoni, P.; Manno, M.C. Iacono; Lanzalone, G.; Lanzano, G.; Nigro, S. Lo; Pagano, A.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Sambataro, S.; Sperduto, M.L.; Sutera, C.; Zetta, L.

    1999-01-01

    Plasma effects for heavy ions in implanted silicon detectors have been investigated for different detector characteristics as a function of type and energy of the detected particles. A new approach is presented and used to reproduce the effect of the plasma delay in the timing performances. The results are in good agreement with the present data and with previous measurements found in the literature

  10. Buried injector logic, a vertical IIL using deep ion implantation

    NARCIS (Netherlands)

    Mouthaan, A.J.

    1987-01-01

    A vertically integrated alternative for integrated injection logic has been realized, named buried injector logic (BIL). 1 MeV ion implantations are used to create buried layers. The vertical pnp and npn transistors have thin base regions and exhibit a limited charge accumulation if a gate is

  11. Raman microprobe measurements of stress in ion implanted materials

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, K W; Prawer, S; Weiser, P S; Dooley, S P [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1994-12-31

    Raman microprobe measurements of ion implanted diamond and silicon have shown significant shifts in the Raman line due to stresses in the materials. The Raman line shifts to higher energy if the stress is compressive and to lower energy for tensile stress{sup 1}. The silicon sample was implanted in a 60 {mu}m square with 2.56 x 10{sup 17} ions per square centimeter of 2 MeV Helium. This led to the formation of raised squares with the top 370mm above the original surface. In Raman studies of silicon using visible light, the depth of penetration of the laser beam into the sample is much less than one micron. It was found that the Raman line is due to the silicon overlying the damage region. The diamond sample was implanted with 2 x 10{sup 15} ions per square centimeter of 2.8 MeV carbon. It was concluded that the Raman spectrum could provide information concerning both the magnitude and the direction of stress in an ion implanted sample. It was possible in some cases to determine whether the stress direction is parallel or perpendicular to the sample surface. 1 refs., 2 figs.

  12. Raman microprobe measurements of stress in ion implanted materials

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, K.W.; Prawer, S.; Weiser, P.S.; Dooley, S.P. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1993-12-31

    Raman microprobe measurements of ion implanted diamond and silicon have shown significant shifts in the Raman line due to stresses in the materials. The Raman line shifts to higher energy if the stress is compressive and to lower energy for tensile stress{sup 1}. The silicon sample was implanted in a 60 {mu}m square with 2.56 x 10{sup 17} ions per square centimeter of 2 MeV Helium. This led to the formation of raised squares with the top 370mm above the original surface. In Raman studies of silicon using visible light, the depth of penetration of the laser beam into the sample is much less than one micron. It was found that the Raman line is due to the silicon overlying the damage region. The diamond sample was implanted with 2 x 10{sup 15} ions per square centimeter of 2.8 MeV carbon. It was concluded that the Raman spectrum could provide information concerning both the magnitude and the direction of stress in an ion implanted sample. It was possible in some cases to determine whether the stress direction is parallel or perpendicular to the sample surface. 1 refs., 2 figs.

  13. Vacancy supersaturations produced by high-energy ion implantation

    International Nuclear Information System (INIS)

    Venezia, V.C.; Eaglesham, D.J.; Jacobson, D.C.; Gossmann, H.J.

    1998-01-01

    A new technique for detecting the vacancy clusters produced by high-energy ion implantation into silicon is proposed and tested. This technique takes advantage of the fact that metal impurities, such as Au, are gettered near one-half of the projected range (1/2 R p ) of MeV implants. The vacancy clustered region produced by a 2 MeV Si + implant into silicon has been labeled with Au diffused in from the front surface. The trapped Au was detected by Rutherford backscattering spectrometry (RBS) to profile the vacancy clusters. Cross section transmission electron microscopy (XTEM) analysis shows that the Au in the region of vacancy clusters is in the form of precipitates. By annealing MeV implanted samples prior to introduction of the Au, changes in the defect concentration within the vacancy clustered region were monitored as a function of annealing conditions

  14. Very broad beam metal ion source for large area ion implantation application

    International Nuclear Information System (INIS)

    Brown, I.; Anders, S.; Dickinson, M.R.; MacGill, R.A.; Yao, X.

    1993-01-01

    The authors have made and operated a very broad beam version of vacuum arc ion source and used it to carry out high energy metal ion implantation of a particularly large substrate. A multiple-cathode vacuum arc plasma source was coupled to a 50 cm diameter beam extractor (multiple aperture, accel-decel configuration) operated at a net extraction voltage of up to 50 kV. The metal ion species chosen were Ni and Ta. The mean ion charge state for Ni and Ta vacuum arc plasmas is 1.8 and 2.9, respectively, and so the mean ion energies were up to about 90 and 145 keV, respectively. The ion source was operated in a repetitively pulsed mode with pulse length 250 μs and repetition rate several pulses per second. The extracted beam had a gaussian profile with FWHM about 35 cm, giving a nominal beam area of about 1,000 cm 2 . The current of Ni or Ta metal ions in the beam was up to several amperes. The targets for the ion implantation were a number of 24-inch long, highly polished Cu rails from an electromagnetic rail gun. The rails were located about 80 cm away from the ion source extractor grids, and were moved across a diameter of the vessel in such a way as to maximize the uniformity of the implant along the rail. The saturation retained dose for Ta was limited to about 4 x 10 16 cm -2 because of the rather severe sputtering, in accordance with the theoretical expectations for these implantation conditions. Here they describe the ion source, the implantation procedure, and the kinds of implants that can be produced in this way

  15. Biological effect of nitrogen ion implantation on stevia

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Chen Qiufang; Shu Shizhen

    1997-10-01

    Dry seed of stevia were implanted by 35∼150 keV nitrogen ions with various doses. The biological effect in M 1 was studied. The results showed that nitrogen ion beam was able to induce variation on chromosome structure in root tip cells. The rate of cells with chromosome aberration was increased with ion beam energy and dose added, but there was on significant linear regression relationship between ion dose and aberration rate. The results indicated the seedling height reduced with the increasing of dose for ion beam. The biological effect of nitrogen ion beam on M 1 stevia was lower than that of γ-rays. (6 refs., 1 fig., 4 tabs.)

  16. Ion implantation and annealing studies in III-V nitrides

    International Nuclear Information System (INIS)

    Zolper, J.C.; Pearton, S.J.

    1996-01-01

    Ion implantation doping and isolation is expected to play an enabling role for the realization of advanced III-Nitride based devices. In fact, implantation has already been used to demonstrate n- and p-type doping of GaN with Si and Mg or Ca, respectively, as well as to fabricate the first GaN junction field effect transistor. Although these initial implantation studies demonstrated the feasibility of this technique for the III-Nitride materials, further work is needed to realize its full potential. After reviewing some of the initial studies in this field, the authors present new results for improved annealing sequences and defect studies in GaN. First, sputtered AlN is shown by electrical characterization of Schottky and Ohmic contacts to be an effect encapsulant of GaN during the 1,100 C implant activation anneal. The AlN suppresses N-loss from the GaN surface and the formation of a degenerate n + -surface region that would prohibit Schottky barrier formation after the implant activation anneal. Second, they examine the nature of the defect generation and annealing sequence following implantation using both Rutherford Backscattering (RBS) and Hall characterization. They show that for a Si-dose of 1 x 10 16 cm -2 50% electrical donor activation is achieved despite a significant amount of residual implantation-induced damage in the material

  17. Tribological studies of ion-implanted steel constituents

    International Nuclear Information System (INIS)

    Wei, Ronghau.

    1990-01-01

    Tribological properties of ion-implanted ferrite and austenite were studied systematically using a unique oscillating pin-on-disc wear tester. Results show that nitrogen implantation at elevated temperatures to high doses dramatically improves the adhesive wear resistance of ferrite and the critical load at which the adhesive wear mechanism changes from mild to severe for austenite. The wear resistance of nitrogen-implanted ferrite is determined by the nitride formed. Extremely hard solid solutions of nitrogen develop on the implanted austenite surfaces and induce three orders of magnitude reductions in wear rates. The implantation conditions that should be used to produce deep, wear-resistant layers for both steels are discussed in detail. Oscillating pin-on-disc wear tests demonstrate that nitrogen does not diffuse during the wearing process although tests conducted using conventional fixed pin-on-disc test equipment could erroneously suggest this occurs. Taken together, the results show that high-dose-rate implantation at low energies yields very-high-quality implanted surfaces at low cost

  18. Ion implantation planar in targets with semi-cylindrical grooves

    International Nuclear Information System (INIS)

    Filiz, Y.; Demokan, O.

    2002-01-01

    The experimental and numerical investigations suggest that the ion-matrix phase of the sheath evolution plays a crucial role in determining the ion flux to the target surfaces . It can easily be realized that conformal mapping of the target's surface by the sheath is questionable, or even inapplicable in the case of surfaces with fine irregularities or this continuities. The theoretical analysis of such cases is evidently quite complicated. On the other hand, most actual targets fall into this category, and hence, the understanding of the corresponding sheath behavior remains vital for accomplishing uniform implantation. The ion- matrix sheaths have been treated analytically by Conrad for planar, cylindrical and spherical targets successfully. Similar y, Sheridan and Zang et al. have investigated the ion matrix sheath in cylindrical bores, without and with axial electrodes, respectively. All these works assumed targets with infinite areas or length, Zeng et al. and Kwok et al. have started studying implantation into grooves, by carrying out simulations for the inner and outer races of bearings, which are modeled as semi- cylinders of infinite length. Finally, Demokan has presented the first analytic treatment of on matrix sheaths in two- dimensions, by considering targets with rectangular grooves of infinite length, representing a broad range of industrial items. In this work, ion-matrix sheath near infinite length are theoretically analysed. Understanding the sheath formation near such targets is essential for achieving successful ion implantation on the surfaces of a broad range of industrial products, including all types of bearings. The potential profiles both inside and outside the groove are derived and the consequent ion velocity higher plasma densities may improve the uniformity of implantation on the surfaces of such grooves. Furthermore, the sheath edge deformation due to the grooves, the variation of the angle of incidence on the surface of the groove

  19. Inhibition of Aluminium Corrosion in Hydrochloric Acid Using Nizoral and the Effect of Iodide Ion Addition

    Directory of Open Access Journals (Sweden)

    I. B. Obot

    2010-01-01

    Full Text Available The effect of nizoral (NZR on the corrosion inhibition of aluminium alloy AA 1060 in 2 M HCl solution was investigated using the mylius thermometric technique. Results of the study revealed that nizoral acts as corrosion inhibitor for aluminium in the acidic medium. In general, at constant acid concentration, the inhibition efficiency increases with increase in the inhibitor concentration. The addition of KI to the inhibitor enhanced the inhibition efficiency to a considerable extent. The adsorption of nizoral onto the aluminium surface was found to obey the Fruendlich adsorption isotherm. The value of the free energy for the adsorption process shows that the process is spontaneous.

  20. Recent advances in ion implantation. A state of the art review

    International Nuclear Information System (INIS)

    Stone, J.L.; Plunkett, J.C.

    1976-01-01

    The latest advances in ion implantation related to MOS, CMOS, CCDS, I 2 L, and other semiconductor devices are discussed. In addition, the application of ion implantation to superconductivity, integrated optics, compound semiconductors, and magnetic bubbles is considered. The requirements of ion implantation machine technology to fulfill the needs of the production environment are also reviewed. 75 refs

  1. Use of magnesium-aluminium and zinc-aluminium hydroxycompounds as adsorbents of uranium ions in aqueous solutions

    International Nuclear Information System (INIS)

    Maki, Toshio

    1981-01-01

    It was found that precipitates formed by adding NaOH solution to the mixed solutions of MgSO 4 and Al 2 (SO 4 ) 3 with Mg/Al molar ratios of 2 to 4 and to the mixed solution of ZnSO 4 and Al 2 (SO 4 ) 3 with Zn/Al molar ratio of 2, respectively, can be used as efficient adsorbents of [UO 2 (CO 3 ) 3 ] 4- ions in aqueous alkaline carbonate solutions. The ideal structural formulas of the precipitates formed from the mixed Mg-Al solution with Mg/Al ratio of 2.0 and the mixed Zn-Al solution with Zn/Al ratio of 2.0 were estimated to be [Mg 4 Al 2 (OH) 12 ] 2+ [SO 4 .3H 2 O] 2- and [Zn 4 Al 2 (OH) 12 ] 2+ [SO 4 .3H 2 O] 2- , respectively. It has been shown that 0.1 g of the Mg-Al and Zn-Al double hydroxysulphate powders (particle size 70 - 170 μ uptake >97% of the U(VI) ions from 50 ml of an aqueous alkaline carbonate solution containing 100 ppm of U(VI) within 2 h at room temperature. The rates of adsorption of [UO 2 (CO 3 ) 3 ] 4- ions for the Mg-Al and Zn-Al double hydroxysulphate powders were both about 2 times that for the hydrous Ti(IV) oxide powders. Five weight percent sodium bicarbonate solution was found to be effective for the desorption of [UO 2 (CO 3 ) 3 ] 4- ions from the double hydroxysulphate powders. Adsorption capacity of the double hydroxysulphates was discussed in relation to their structure. (author)

  2. EPDM Rubber Modified by Nitrogen Plasma Immersion Ion Implantation.

    Science.gov (United States)

    Kondyurin, Alexey

    2018-04-24

    Ethylene-propylene diene monomer rubber (EPDM) was treated by plasma immersion ion implantation (PIII) with nitrogen ions of 20 keV energy and fluence from 10 13 to 10 16 ions/cm². The Fourier-transform infrared attenuated total reflection spectra, atomic force microscopy and optical microscopy showed significant structure changes of the surface. The analysis of an interface of PIII treated EPDM rubber with polyurethane binder showed a cohesive character of the adhesion joint fracture at the presence of solvent and interpreted as covalent bond network formation between the PIII treated rubber and the adhesive.

  3. EPDM Rubber Modified by Nitrogen Plasma Immersion Ion Implantation

    Directory of Open Access Journals (Sweden)

    Alexey Kondyurin

    2018-04-01

    Full Text Available Ethylene-propylene diene monomer rubber (EPDM was treated by plasma immersion ion implantation (PIII with nitrogen ions of 20 keV energy and fluence from 1013 to 1016 ions/cm2. The Fourier-transform infrared attenuated total reflection spectra, atomic force microscopy and optical microscopy showed significant structure changes of the surface. The analysis of an interface of PIII treated EPDM rubber with polyurethane binder showed a cohesive character of the adhesion joint fracture at the presence of solvent and interpreted as covalent bond network formation between the PIII treated rubber and the adhesive.

  4. Cooperative emission in ion implanted Yb:YAG waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, G V; Desirena, H; De la Rosa, E [Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Flores-Romero, E; Rickards, J; Trejo-Luna, R [Instituto de Fisica, UNAM, Apartado Postal 20364, 01000 Mexico, D. F. (Mexico); Marquez, H, E-mail: gvvazquez@cio.mx [Departamento de Optica, CICESE, Km 107 Carr. Tijuana-Ensenada, 22860 Ensenada, B. C. (Mexico)

    2011-01-01

    In this work, we report the analysis of spectroscopic properties of waveguides fabricated by ion implantation in YAG doped with Yb{sup 3+} ions. Three emission bands were detected in the blue, green and red regions under 970-nm excitation. The strong blue-green emission can be explained by a cooperative process between ytterbium ion pairs, leading to emission centered at 514 nm. The additional blue bands as well as green and red emission bands are attributed to the presence of Tm{sup 3+} and Er{sup 3+} traces. The results include absorption and emission curves as well as decay time rates.

  5. Cooperative emission in ion implanted Yb:YAG waveguides

    International Nuclear Information System (INIS)

    Vazquez, G V; Desirena, H; De la Rosa, E; Flores-Romero, E; Rickards, J; Trejo-Luna, R; Marquez, H

    2011-01-01

    In this work, we report the analysis of spectroscopic properties of waveguides fabricated by ion implantation in YAG doped with Yb 3+ ions. Three emission bands were detected in the blue, green and red regions under 970-nm excitation. The strong blue-green emission can be explained by a cooperative process between ytterbium ion pairs, leading to emission centered at 514 nm. The additional blue bands as well as green and red emission bands are attributed to the presence of Tm 3+ and Er 3+ traces. The results include absorption and emission curves as well as decay time rates.

  6. Magnetoresistive nanojunctions fabricated via focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Stefanescu, E.; Hong, J.; Guduru, R. [Florida International University (United States); Lavrenov, A. [Hitachi Research (United States); Litvinov, D. [University of Houston, Center for Nanomagnetic Systems (United States); Khizroev, S., E-mail: khizroev@fiu.edu [Florida International University (United States)

    2013-01-15

    Focused ion beam (FIB) is used to implant Ga{sup +} ions into a 30-nm thick magnetoresistive element to effectively reduce the track width of the sensor from 1 Micro-Sign m to {approx}80 nm. Through magnetic recording industry-standard spinstand measurements, it is confirmed that a dose of {approx}10{sup 3} ions/cm{sup 2} at a 1-pA FIB current is sufficient to fully 'de-activate' magnetism in the exposed side regions. To record tracks required for spinstand tests, a FIB-trimmed ring type write head is used.

  7. Broad-beam, high current, metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the 'seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs

  8. Methods for obtaining a uniform volume concentration of implanted ions

    International Nuclear Information System (INIS)

    Reutov, V.F.

    1995-01-01

    Three simple practical methods of irradiations with high energy particles providing the conditions for obtaining a uniform volume concentration of the implanted ions in the massive samples are described in the present paper. Realization of the condition of two-sided irradiation of a plane sample during its rotation in the flux of the projectiles is the basis of the first method. The use of free air as a filter with varying absorbent ability due to movement of the irradiated sample along ion beam brought to the atmosphere is at the basis of the second method of uniform ion alloying. The third method for obtaining a uniform volume concentration of the implanted ions in a massive sample consists of irradiation of a sample through the absorbent filter in the shape of a foil curved according to the parabolic law moving along its surface. The first method is the most effective for obtaining a great number of the samples, for example, for mechanical tests, the second one - for irradiation in different gaseous media, and the third one - for obtaining high concentrations of the implanted ions under controlled (regulated) thermal and deformation conditions. 2 refs., 7 figs

  9. Negative-ion current density dependence of the surface potential of insulated electrode during negative-ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Okayama, Yoshio; Toyota, Yoshitaka; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kouji.

    1994-01-01

    Positive ion implantation has been utilized as the method of impurity injection in ultra-LSI production, but the problem of substrate charging cannot be resolved by conventional charge compensation method. It was forecast that by negative ion implantation, this charging problem can be resolved. Recently the experiment on the negative ion implantation into insulated electrodes was carried out, and the effect of negative ion implantation to this problem was proved. However, the dependence of charged potential on the increase of negative ion current at the time of negative ion implantation is a serious problem in large current negative ion implantation hereafter. The charged potential of insulated conductor substrates was measured by the negative ion implantation using the current up to several mA/cm 2 . The experimental method is explained. Medium current density and high current density negative ion implantation and charged potential are reported. Accordingly in negative ion implantation, if current density is optimized, the negative ion implantation without charging can be realized. (K.I.)

  10. Upgraded vacuum arc ion source for metal ion implantation

    International Nuclear Information System (INIS)

    Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.; Brown, I. G.

    2012-01-01

    Vacuum arc ion sources have been made and used by a large number of research groups around the world over the past twenty years. The first generation of vacuum arc ion sources (dubbed ''Mevva,'' for metal vapor vacuum arc) was developed at Lawrence Berkeley National Laboratory in the 1980s. This paper considers the design, performance parameters, and some applications of a new modified version of this kind of source which we have called Mevva-V.Ru. The source produces broad beams of metal ions at an extraction voltage of up to 60 kV and a time-averaged ion beam current in the milliampere range. Here, we describe the Mevva-V.Ru vacuum arc ion source that we have developed at Tomsk and summarize its beam characteristics along with some of the applications to which we have put it. We also describe the source performance using compound cathodes.

  11. Detection and reduction of tungsten contamination in ion implantation processes

    International Nuclear Information System (INIS)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D.

    2016-01-01

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10 10 cm -2 ). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Detection and reduction of tungsten contamination in ion implantation processes

    Energy Technology Data Exchange (ETDEWEB)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D. [STMicroelectronics, Agrate Brianza (Italy)

    2016-12-15

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10{sup 10} cm{sup -2}). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Copper ion implantation of polycarbonate matrices: Morphological and structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Resta, V., E-mail: vincenzo.resta@le.infn.it; Quarta, G.; Maruccio, L.; Calcagnile, L.

    2014-07-15

    The implantation of 1 MeV {sup 63}Cu{sup +} ions in polycarbonate (PC) matrices has been carried out in order to evaluate the morphological and structural modifications induced in the polymer as a function of the ion fluence in the range 5 × 10{sup 13} ions cm{sup −2} to 1 × 10{sup 17} ions cm{sup −2}. Atomic Force Microscopy analysis reveals a significant roughness increase of the polymer surface only for fluences higher than 5 × 10{sup 16} ions cm{sup −2} with the presence of hillock structures which surface density increases with increasing the ion fluence. X-ray Diffraction measurements of PC implanted with fluences in the range between 5 × 10{sup 15} at cm{sup −2} and 5 × 10{sup 16} at cm{sup −2} reveal an increase of the disorder inside the PC matrix, as a consequence of the damaging process induced by the ion irradiation. Evidences about the presence of exotic phase structures ascribed to both cubic Cu{sub 2}O and cubic Cu have been found.

  14. Inhibition of Aluminium Corrosion in Hydrochloric Acid Using Nizoral and the Effect of Iodide Ion Addition

    OpenAIRE

    I. B. Obot; N. O. Obi-Egbedi

    2010-01-01

    The effect of nizoral (NZR) on the corrosion inhibition of aluminium alloy AA 1060 in 2 M HCl solution was investigated using the mylius thermometric technique. Results of the study revealed that nizoral acts as corrosion inhibitor for aluminium in the acidic medium. In general, at constant acid concentration, the inhibition efficiency increases with increase in the inhibitor concentration. The addition of KI to the inhibitor enhanced the inhibition efficiency to a considerable extent. The ad...

  15. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Kai; Wang, Yibo [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-08-15

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.

  16. Lithium ion implantation effects in MgO(100)

    Energy Technology Data Exchange (ETDEWEB)

    Huis, M.A. van; Fedorov, A.V.; Veen, A. van; Labohm, F.; Schut, H.; Mijnarends, P.E. [Interfaculty Reactor Inst., Delft Univ. of Technology, Delft (Netherlands); Kooi, B.J.; Hosson, J.T.M. de [Rijksuniversiteit Groningen (Netherlands). Materials Science Centre

    2001-07-01

    Single crystals of MgO(100) were implanted with 10{sup 16} {sup 6}Li ions cm{sup -2} at an energy of 30 keV. After ion implantation the samples were annealed isochronally in air at temperatures up to 1200K. After implantation and after each annealing step, the defect evolution was monitored with optical absorption spectroscopy and depth-sensitive Doppler Broadening positron beam analysis (PBA). A strong increase in the S-parameter is observed in the implantation layer at a depth of approximately 100 nm. The high value of the S-parameter is ascribed to positron annihilation in small lithium precipitates. The results of 2D-ACAR and X-TEM analysis show evidence of the presence of lithium precipitates. The depth distribution of the implanted {sup 6}Li atoms was monitored with neutron depth profiling (NDP). It was observed that detrapping and diffusion of {sup 6}Li starts at an annealing temperature of 1200K. (orig.)

  17. The compaction of fused silica resulting from ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.M.; Ridgway, M.C. [Australian National Univ., Canberra, ACT (Australia); Leech, P.L. [Telstra Research Laboratories, Clayton, Victoria (Australia)

    1996-12-31

    Ion implantation of fused silica results in compaction and consequently an increase in refractive index. This method of modifying the near-surface region has been shown as a potential means for fabricating single mode channel waveguides. This study has measured the compaction of the implanted regions for Si implantations as a function of dose (2x10{sup 12} - 6x10{sup l6} ions/cm{sup 2}), energy (1-9 MeV) and post-implantation annealing temperature (200-900 degree C). For a given energy, a dose-dependence of the step height (depth of compacted region) is observed for doses less than {approx}10{sup 15} ions/cm{sup 2}. At higher doses the step height saturates. For a given dose, a linear trend is evident for the step height as a function of energy suggesting that the major mechanism for this compaction is electronic stopping. As the annealing temperature increases, the step height gradually decreases from {approx}0.1-0.2 {mu} to -10-20% of the original value. From the annealing data, it is possible to extract an activation energy of 0.08 eV associated with the thermal removal of the compacted region. 4 refs., 4 figs.

  18. The compaction of fused silica resulting from ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C M; Ridgway, M C [Australian National Univ., Canberra, ACT (Australia); Leech, P L [Telstra Research Laboratories, Clayton, Victoria (Australia)

    1997-12-31

    Ion implantation of fused silica results in compaction and consequently an increase in refractive index. This method of modifying the near-surface region has been shown as a potential means for fabricating single mode channel waveguides. This study has measured the compaction of the implanted regions for Si implantations as a function of dose (2x10{sup 12} - 6x10{sup l6} ions/cm{sup 2}), energy (1-9 MeV) and post-implantation annealing temperature (200-900 degree C). For a given energy, a dose-dependence of the step height (depth of compacted region) is observed for doses less than {approx}10{sup 15} ions/cm{sup 2}. At higher doses the step height saturates. For a given dose, a linear trend is evident for the step height as a function of energy suggesting that the major mechanism for this compaction is electronic stopping. As the annealing temperature increases, the step height gradually decreases from {approx}0.1-0.2 {mu} to -10-20% of the original value. From the annealing data, it is possible to extract an activation energy of 0.08 eV associated with the thermal removal of the compacted region. 4 refs., 4 figs.

  19. N and Cr ion implantation of natural ruby surfaces and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K. Sudheendra; Sahoo, Rakesh K.; Dash, Tapan [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013 (India); Magudapathy, P.; Panigrahi, B.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Nayak, B.B.; Mishra, B.K. [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013 (India)

    2016-04-15

    Highlights: • Cr and N ion implantation on natural rubies of low aesthetic quality. • Cr-ion implantation improves colour tone from red to deep red (pigeon eye red). • N-ion implantation at fluence of 3 × 10{sup 17} causes blue coloration on surface. • Certain extent of amorphization is observed in the case of N-ion implantation. - Abstract: Energetic ions of N and Cr were used to implant the surfaces of natural rubies (low aesthetic quality). Surface colours of the specimens were found to change after ion implantation. The samples without and with ion implantation were characterized by diffuse reflectance spectra in ultra violet and visible region (DRS-UV–Vis), field emission scanning electron microscopy (FESEM), selected area electron diffraction (SAED) and nano-indentation. While the Cr-ion implantation produced deep red surface colour (pigeon eye red) in polished raw sample (without heat treatment), the N-ion implantation produced a mixed tone of dark blue, greenish blue and violet surface colour in the heat treated sample. In the case of heat treated sample at 3 × 10{sup 17} N-ions/cm{sup 2} fluence, formation of colour centres (F{sup +}, F{sub 2}, F{sub 2}{sup +} and F{sub 2}{sup 2+}) by ion implantation process is attributed to explain the development of the modified surface colours. Certain degree of surface amorphization was observed to be associated with the above N-ion implantation.

  20. Industrial hygiene and control technology assessment of ion implantation operations

    International Nuclear Information System (INIS)

    Ungers, L.J.; Jones, J.H.

    1986-01-01

    Ion implantation is a process used to create the functional units (pn junctions) of integrated circuits, photovoltaic (solar) cells and other semiconductor devices. During the process, ions of an impurity or a dopant material are created, accelerated and imbedded in wafers of silicon. Workers responsible for implantation equipment are believed to be at risk from exposure to both chemical (dopant compounds) and physical (ionizing radiation) agents. In an effort to characterize the chemical exposures, monitoring for chemical hazards was conducted near eleven ion implanters at three integrated circuit facilities, while ionizing radiation was monitored near four of these units at two of the facilities. The workplace monitoring suggests that ion implantation operators routinely are exposed to low-level concentrations of dopants. Although the exact nature of dopant compounds released to the work environment was not determined, area and personal samples taken during normal operating activities found concentrations of arsenic, boron and phosphorous below OSHA Permissible Exposure Limits (PELs) for related compounds; area samples collected during implanter maintenance activities suggest that a potential exists for more serious exposures. The results of badge dosimetry monitoring for ionizing radiation indicate that serious exposures are unlikely to occur while engineering controls remain intact. All emissions were detected at levels unlikely to result in exposures above the OSHA standard for the whole body (1.25 rems per calendar quarter). The success of existing controls in preventing worker exposures is discussed. Particular emphasis is given to the differential exposures likely to be experienced by operators and maintenance personnel.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Ion implantation and diamond-like coatings of aluminum alloys

    Science.gov (United States)

    Malaczynski, G. W.; Hamdi, A. H.; Elmoursi, A. A.; Qiu, X.

    1997-04-01

    In an attempt to increase the wear resistance of some key automotive components, General Motors Research and Development Center initiated a study to determine the potential of surface modification as a means of improving the tribological properties of automotive parts, and to investigate the feasibility of mass producing such parts. This paper describes the plasma immersion ion implantation system that was designed for the study of various options for surface treatment, and it discusses bench testing procedures used for evaluating the surface-treated samples. In particular, both tribological and microstructural analyses are discussed for nitrogen implants and diamond-like hydrocarbon coatings of some aluminum alloys.

  2. Monitoring Ion Implantation Energy Using Non-contact Characterization Methods

    Science.gov (United States)

    Tallian, M.; Pap, A.; Mocsar, K.; Somogyi, A.; Nadudvari, Gy.; Kosztka, D.; Pavelka, T.

    2011-01-01

    State-of-the-art ultra-shallow junctions are produced using extremely low ion implant energies, down to the range of 1-3 keV. This can be achieved by a variety of production techniques; however there is a significant risk that the actual implantation energy differs from the desired value. To detect this, sensitive measurement methods need to be utilized. Experiments show that both Photomodulated Reflection measurements before anneal and Junction Photovoltage-based sheet resistance measurements after anneal are suitable for this purpose.

  3. The ion implanter of the Institute of Nuclear Physics and its application in the ion engineering; Implantator jonow IFJ i jego wykorzystanie w inzynierii jonowej

    Energy Technology Data Exchange (ETDEWEB)

    Drwiega, M.; Lipinska, E.; Lazarski, S.; Wierba, M.

    1993-09-01

    The device used for ion implantation is described in detail. It is built with the use of electromagnetic ion separator and consists of: ion source, ion beam system, ion mass analyzer and target chamber. The device parameters are also given. 14 refs, 5 figs, 2 tabs.

  4. Theoretical predictions of the lateral spreading of implanted ions

    International Nuclear Information System (INIS)

    Ashworth, D.G.; Oven, R.

    1986-01-01

    The theoretical model and computer program (AAMPITS-3D) of Ashworth and co-workers for the calculation of three-dimensional distributions of implanted ions in multi-element amorphous targets are extended to show that the lateral rest distribution is gaussian in a form with a lateral standard deviation (lateral-spread function) which is a function of depth beneath the target surface. A method is given whereby this function may be accurately determined from a knowledge of the projected range and chord range rest distribution functions. Examples of the lateral-spread function are given for boron, phosphorus and arsenic ions implanted into silicon and a detailed description is given of how the lateral-spread function may be used in conjunction with the projected range rest distribution function to provide a fully three-dimensional rest distribution of ions implanted into amorphous targets. Examples of normalised single ion isodensity contours computed from AMPITS-3D are compared with those obtained using the previous assumption of a lateral standard deviation which was independent of distance beneath the target surface. (author)

  5. Implantation of β-emitters on biomedical implants: 32 P isotropic ion implantation using a coaxial plasma reactor

    International Nuclear Information System (INIS)

    Fortin, M.A.; Paynter, R.W.; Sarkissian, A.; Stansfield, B.L.; Terreault, B.; Dufresne, V.

    2003-01-01

    The development of endovascular brachytherapy and the treatment of certain types of cancers (liver, lung, prostate) often require the use of beta-emitters, sometimes in the form of radioisotope-implanted devices. Among the most commonly used isotopes figures 32 P, a pure beta-emitter (maximum energy: 1.7 MeV), of which the path in biological tissues is of a few cm, restricting the impact of electron bombardment to the immediate environment of the implant. Several techniques and processes have been tried to elaborate surfaces and devices showing strongly bonded, or implanted 32 P. Anodizing, vapor phase deposition, grafting of oligonucleotides, as well as ion implantation processes have been investigated by several research groups as methods to implant beta-radioisotopes into surfaces. A coaxial plasma reactor was developed at INRS to implant radioisotopes into cylindrical metallic objects, such as coronary stents commonly used in angioplasty procedures. The dispersion of 32 P atoms on the interior surfaces of the chamber can be investigated using radiographs, contributing to image the plasma ion transport mechanisms that guide the efficiency of the implantation procedure. The amount of radioactivity on the wall liner, on the internal components, and on the biomedical implants are quantified using a surface barrier detector. A comparative study establishes a relationship between the gray scale of the radiographs, and dose measurements. A program was developed to convert the digitized images into maps showing surface dose density in mCi/cm 2 . An integration process allows the quantification of the doses on the walls and components of the reactor. Finally, the resulting integral of the 32 P dose is correlated to the initial amount of radioactivity inserted inside the implanter before the dismantling procedure. This method could be introduced as a fast and reliable way to test, qualify and assess the amount of radioactivity present on the as-produced implants

  6. High yield antibiotic producing mutants of Streptomyces erythreus induced by low energy ion implantation

    Science.gov (United States)

    Yu, Chen; Zhixin, Lin; Zuyao, Zou; Feng, Zhang; Duo, Liu; Xianghuai, Liu; Jianzhong, Tang; Weimin, Zhu; Bo, Huang

    1998-05-01

    Conidia of Streptomyces erythreus, an industrial microbe, were implanted by nitrogen ions with energy of 40-60 keV and fluence from 1 × 10 11 to 5 × 10 14 ions/cm 2. The logarithm value of survival fraction had good linear relationship with the logarithm value of fluence. Some mutants with a high yield of erythromycin were induced by ion implantation. The yield increment was correlated with the implantation fluence. Compared with the mutation results induced by ultraviolet rays, mutation effects of ion implantation were obvious having higher increasing erythromycin potency and wider mutation spectrum. The spores of Bacillus subtilis were implanted by arsenic ions with energy of 100 keV. The distribution of implanted ions was measured by Rutherford Backscattering Spectrometry (RBS) and calculated in theory. The mechanism of mutation induced by ion implantation was discussed.

  7. Fluorometric determination of aluminium (III) and cadmium (II) by solvent extraction of the ternary complex composed of metal ion, 8-hydroxy-5-quinolinesulfonic acid, and methyltrioctylammonium ion

    International Nuclear Information System (INIS)

    Kondoh, Yukihiro; Kataoka, Masamitsu; Kambara, Tomihito

    1982-01-01

    A fluorometric micro determination of aluminium (III) and cadmium (II) using the formation of metal-8-hydroxy-5-quinolinesulfonic acid-capriquat (methyltrioctylammonium) ternary complex is described. These complexes are easily extracted into chloroform phase and the extract emits a strong fluorescence. Spectra of aluminium (III) and cadmium (II) ternary complexes have the excitation maximum at 396 nm and 400 nm, and emission maximum at 501 nm and 524 nm, respectively. Fluorescence intensity of the aluminium (III) and cadmium (II) ternary complexes extracted into chloroform showed the constant and maximum values in the pH range of aqueous phase from 5.3 to 8.5 and 8.1 to 8.5, respectively. The calibration curves for aluminium (III) and cadmium (II) show good proportionality int the concentration range from 0.5 to 5.0 and 1.0 to 50.0 μg, respectively. The relative standard deviation observed with four measurements was found to be 1.8% for 0.5 μg of aluminium (III) and 1.1% for 10.0 μg of cadmium (II). The effect of diverse ions is studied and a 25-fold amount of Cu(II), Ni(II), Fe(II), Fe(III) in weight gave errors, however, the interferences were easily eliminated by the addition of appropriate masking agent. In the determination of cadmium (II), an equal amount of Co(II), Ni(II), Mn(II), Fe(III) and twice amount of Al(III) gave negative errors, however, the interference of Fe(III) and Al(III) were also eliminated as above. (author)

  8. 4-rod RFQ linac for ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Hiroshi; Hamamoto, Nariaki; Inouchi, Yutaka [Nisshin Electric Co. Ltd., Kyoto (Japan)

    1997-03-01

    A 34 MHz 4-rod RFQ linac system has been upgraded in both its rf power efficiency and beam intensity. The linac is able to accelerate in cw operation 0.83 mA of a B{sup +} ion beam from 0.03 to 0.91 MeV with transmission of 61 %. The rf power fed to the RFQ is 29 kW. The unloaded Q-value of the RFQ has been improved approximately 61 % to 5400 by copper-plating stainless steel cooling pipes in the RFQ cavity. (author)

  9. Long-wavelength germanium photodetectors by ion implantation

    International Nuclear Information System (INIS)

    Wu, I.C.; Beeman, J.W.; Luke, P.N.; Hansen, W.L.; Haller, E.E.

    1990-11-01

    Extrinsic far-infrared photoconductivity in thin high-purity germanium wafers implanted with multiple-energy boron ions has been investigated. Initial results from Fourier transform spectrometer(FTS) measurements have demonstrated that photodetectors fabricated from this material have an extended long-wavelength threshold near 192μm. Due to the high-purity substrate, the ability to block the hopping conduction in the implanted IR-active layer yields dark currents of less than 100 electrons/sec at temperatures below 1.3 K under an operating bias of up to 70 mV. Optimum peak responsivity and noise equivalent power (NEP) for these sensitive detectors are 0.9 A/W and 5 x 10 -16 W/Hz 1/2 at 99 μm, respectively. The dependence of the performance of devices on the residual donor concentration in the implanted layer will be discussed. 12 refs., 4 figs

  10. Sliding behavior of boron ion-implanted 304 stainless steel

    International Nuclear Information System (INIS)

    Shrivastava, S.; Jain, A.; Singh, C.

    1995-01-01

    The authors have studied the influence of boron ion implantation on the friction and wear behavior of 304 stainless steel. The authors find an increase in microhardness following implantation. The authors also observed a reduction in wear and coefficient of friction. They have measured the microhardness, inside the wear tracks and have found a large increase in the values in the unimplanted specimens and only a small increase in the implanted specimens. These observations have thrown light on the change in the wear mechanism between the two cases. The authors have also used Scanning Electron Microscopy and Energy Dispersive Analysis of X-rays, to characterize the differences in the mode of wear. The change in wear behavior is brought about by the ability of boron to prevent the surface from transforming into a hard brittle layer during wear

  11. Lattice damage in ion-implanted silicon-germanium alloys

    International Nuclear Information System (INIS)

    Haynes, T.E.; Holland, O.W.

    1992-08-01

    The damage produced in Si 1-x Ge x alloys (0≤x≤1) by implantation of 70--100 keV 30 Si + has been measured as a function of temperature and fluence by ion channeling. For all compositions, the damage efficiency decreased sharply as the implant temperature was increased between room temperature and 150 degrees C. Furthermore, the damage efficiency in alloys of intermediate compositions (0.34≤x≤0.5) exceeds that in Ge, especially at elevated temperatures, despite the larger cascade energy density in Ge. It is shown that this behavior can be described based on a model in which the point-defect mobility is the dominant factor controlling damage retention, rather than the cascade energy density. This approach provides a framework for understanding other temperature-dependent phenomena related to damage growth in Si-Ge alloys including dose-rate effects and damage saturation in MeV implantation

  12. Plasma ion implantation technology for broad industrial application

    International Nuclear Information System (INIS)

    Deb, D.; Siambis, J.; Symons, R.

    1994-01-01

    The recently invented Plasma Ion Implantation (PII) process (1987) [J. R. Conrad, U.S. Patent No. 764394 (August 16, 1988)] is currently under intense industrial engineering investigation and development. A critical component of PII for broad industrial utilization is the availability of an efficient modulator system that applies the high voltage pulse to the workpiece. A modulator technology assessment and selection is carried out. The requirements of the PII process favor the selection of a hard-tube modulator. The PII process favors the application of beam switch tube technology such as the Litton L-5012 and L-5097. These Litton tubes have already been selected by LANL and utilized in their pilot engineering demonstration experiment with GM and the University of Wisconsin. The performance, physical operation, and potential enhancements of the Litton beam switch tubes L-5012 and L-5097 will be discussed in connection with the requirements of the emerging plasma ion implantation industrial modulator technology

  13. Rapid Thermal annealing of silicon layers amorphized by ion implantation

    International Nuclear Information System (INIS)

    Hasenack, C.M.

    1986-01-01

    The recrystallization behavior and the supression mechanisms of the residual defects of silicon layers amorphized by ion implantation, were investigated. The samples were annealed with the aid of a rapid thermal annealing (RTA) system at temperature range from 850 to 1200 0 C, and annealing time up to 120 s. Random and aligned Rutherford backscattering spectroscopy were used to analyse the samples. Similarities in the recrystallization behavior for layers implanted with ions of the same chemical groups such as As or Sb; Ge, Sn or Pb, In or Ga, are observed. The results show that the effective supression of resisual defects of the recrystallired layers is vinculated to the redistribution of impurities via thermal diffusion. (author) [pt

  14. 1/f Fluctuations in ion implanted metal semiconductor contacts

    International Nuclear Information System (INIS)

    Stojanovic, M.; Marjanovic, N.; Radojevic, B.

    1998-01-01

    Ion implanted Metal-Semiconductor contacts is the most widely used structures in electrical devices. Weather complete devices or some parts are of interest, properties of metal-semiconductor junction strongly influence the quality and external characteristic of electronic devices. That is the reason why special attention is paid to the investigation of factor (noise for example) that could influence given junction. Low frequency 1/f fluctuations (noise) are constantly present in metal-semiconductor junction, so measurement of their level as well as the dependence on factors such as temperature must be taken into account in detailed analysis of electrical characteristics of devices such as contact, nuclear detector with surface barrier etc. In this paper we present the results of low frequency noise level measurements on TiN-Ti-Si structures produced by As + ion implantation. (author)

  15. Synthesis of dilute magnetic semiconductors by ion implantation

    International Nuclear Information System (INIS)

    Braunstein, G.H.; Dresselhaus, G.; Withrow, S.P.

    1986-01-01

    We have synthesized layers of CdMnTe by implantation of Mn into CdTe. Samples of CdTe have been implanted with Mn ions of 60 keV energy to fluences in the range 1 x 10 13 cm -2 to 2 x 10 16 cm -2 resulting in local concentrations of up to 10% at the maximum of the Mn distribution. Rutherford backscattering-channeling analysis has been used to study the radiation damage after implantation and after subsequent rapid thermal annealing (RTA). These experiments reveal that RTA for 15 sec at a temperature T greater than or equal to 700 0 C results in the complete recovery of the lattice order, without affecting the stoichiometry of CdTe. Photoluminescence (PL) measurements of a sample showing complete annealing reveal an increase in the band gap corresponding to the synthesis of very dilute (x approx. = 0.004) Cd/sub 1-x/Mn/sub x/Te. A shift of the excitonic PL peak to lower energies is observed when a magnetic field H less than or equal to 1T is applied. These measurements provide clear evidence for the synthesis of a DMS by ion implantation of Mn into CdTe

  16. Magnetic properties of Kramers rare earth ions in aluminium and gallium garnets; Proprietes magnetiques des ions de kramers des terres rares dans les grenats de terres rares et d'aluminium et les grenats de terres rares et de gallium

    Energy Technology Data Exchange (ETDEWEB)

    Capel, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The magnetic properties of Kramers rare earth ions in aluminium and gallium garnets (MAlG and MGaG) are discussed by means of a molecular field treatment. The symmetry properties of the space group permit to establish a parametrization for the magnetic dipolar and exchange couplings. The magnetic properties of the system can be expressed in terms of these parameters and the g factors of the rare earth ions. We have calculated the transition temperatures, the sub-lattice magnetizations, the susceptibility in the paramagnetic region and the antiferromagnetic susceptibility for a special type of magnetic ordering. The influence of the excited Kramers doublets is described by means of a generalization of the usual g tensor. (authors) [French] Les proprietes magnetiques des ions de Kramers des terres rares dans les grenats de terre rare et d'aluminium et les grenats de terre rare et de gallium sont discutees a l'aide d'un traitement du champ moleculaire. Les proprietes de symmetrie du groupe d'espace permettent d'exprimer les couplages dipolaires et les interactions d'echange en fonction de quelques parametres. Les proprietes magnetiques peuvent etre exprimees en fonction de ces parametres et les facteurs g des ions de terre rare. Nous avons calcule les temperatures de transition, les aimantations des sous-reseaux pour 0ions non de Kramers. (auteurs)

  17. Bubble formation in Zr alloys under heavy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, L. Jr.; Motta, A.T. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Nuclear Engineering; Birtcher, R.C. [Argonne National Lab., IL (United States). Materials Science Div.

    1995-12-01

    Kr ions were used in the HVEM/Tandem facility at ANL to irradiate several Zr alloys, including Zircaloy-2 and -4, at 300-800 C to doses up to 2{times}10{sup 16}ion.cm{sup -2}. Both in-situ irradiation of thin foils as well as irradiation of bulk samples with an ion implanter were used in this study. For the thin foil irradiations, a distribution of small bubbles in the range of 30-100 {angstrom} was found at all temperatures with the exception of the Cr-rich Valloy where 130 {angstrom} bubbles were found. Irradiation of bulk samples at 700-800 C produced large faceted bubbles up to 300 {angstrom} after irradiation to 2{times}10{sup 16}ion.cm{sup -2}. Results are examined in context of existing models for bubble formation and growth in other metals.

  18. Surface modification technique of structural ceramics: ion implantation-assisted multi-arc ion plating

    International Nuclear Information System (INIS)

    Peng Zhijian; Miao Hezhuo; Si Wenjie; Qi Longhao; Li Wenzhi

    2003-01-01

    Through reviewing the advantages and disadvantages of the existed surface modification techniques, a new technique, ion implantation-assisted multi-arc ion plating, was proposed. Using the proposed technique, the surfaces of silicon nitride ceramics were modified by Ti ion implantation, and then three kinds of ternary coatings, (Ti,Al)N, (Ti,Zr)N and (Ti,Cr)N, were deposited on the as-implanted ceramics. The coatings prepared by this technique are of high-hardness and well adhesive to the ceramic substrates. The maximal hardness measured by nanoindentation tests is more than 40 GPa. The maximal critical load by nanoscratch tests is more than 60 mN. The cutting tools prepared by this technique with the presented coatings are of excellent performance in industrial applications. The technique may be promising for the surface modification of structural ceramics. (orig.)

  19. Influence of heavy ion implantation on the microhardness of lif

    CERN Document Server

    Abu-Alazm, S M

    2003-01-01

    The paper presented microhardness measurements for pure lithium fluoride (LiF) implanted with Ar, Kr and Xe at doses ranged from 10 sup 9 up to 10 sup 1 2 ion/cm sup 2. Measurements were also performed for the microhardness after irradiation by electron and gamma rays. The data exhibited a large increase of microhardness of LiF using heavy ions in comparison with the unimplanted and irradiated samples with electrons and gamma rays. The influence of annealing the samples on the microhardness is also studied. The obtained results were interpreted according to the formation of F-centers in LiF.

  20. Radioactive ion implantation as a tool for wear measurements

    International Nuclear Information System (INIS)

    Bagger, C.; Soerensen, G.

    1979-01-01

    The present paper deals with ion implantation of radioactive krypton ions in surfaces with aim of measuring wear of different magnetic materials in sound-heads. The technique is especially suited for a relatively fast comparison of wear-characteristics of materials of varying composition in small inaccessible areas. In the present case utilisation of a 60 KeV accelerator allows determination of a total wear as small as 0.05 μm with an accuracy of 10%. Further the technique yields information of the time dependence of the wear process with an accuracy less than 0.001 μm. (author)

  1. Flash lamp annealing of ion implanted boron profiles

    International Nuclear Information System (INIS)

    Wieser, E.; Syhre, H.; Ruedenauer, F.G.; Steiger, W.

    1983-05-01

    The diffusion behaviour of ion implanted boron profiles (5x10E15 B/cm 2 , 50keV) in silicon at 800 0 C and 900 0 C has been compared for samples with and without foregoing flahs - lamp annealing of the radiation damage. The observed differences are discussed with respect to mechanisms of diffusion inhibition in the high concentration region. (Author) [de

  2. Urinary catheter with polyurethane coating modified by ion implantation

    International Nuclear Information System (INIS)

    Kondyurina, I.; Nechitailo, G.S.; Svistkov, A.L.; Kondyurin, A.; Bilek, M.

    2015-01-01

    A low friction urinary catheter that could be used without a lubricant is proposed in this work. A polyurethane coating was synthesised on the surface of a metal guide wire catheter. Ion implantation was applied to surface modify the polyurethane coating. FTIR ATR, wetting angle, AFM and friction tests were used for analysis. Low friction was found to be provided by the formation of a hard carbonised layer on the polyurethane surface

  3. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    Energy Technology Data Exchange (ETDEWEB)

    Delle Side, D., E-mail: domenico.delleside@le.infn.it [LEAS, Dipartimento di Matematica e Fisica “Ennio de Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare – Sezione di Lecce, Lecce (Italy); Nassisi, V.; Giuffreda, E.; Velardi, L. [LEAS, Dipartimento di Matematica e Fisica “Ennio de Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare – Sezione di Lecce, Lecce (Italy); Alifano, P.; Talà, A.; Tredici, S.M. [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy)

    2014-07-15

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  4. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    Science.gov (United States)

    Delle Side, D.; Nassisi, V.; Giuffreda, E.; Velardi, L.; Alifano, P.; Talà, A.; Tredici, S. M.

    2014-07-01

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  5. Elastic properties of sub-stoichiometric nitrogen ion implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sarmanova, M.F., E-mail: marina.sarmanova@iom-leipzig.de [Leibniz Institute of Surface Modification, D-04318 Leipzig (Germany); Karl, H. [University Augsburg, Institute of Physics, D-86135 Augsburg (Germany); Mändl, S.; Hirsch, D. [Leibniz Institute of Surface Modification, D-04318 Leipzig (Germany); Mayr, S.G.; Rauschenbach, B. [Leibniz Institute of Surface Modification, D-04318 Leipzig (Germany); University Leipzig, Institute for Experimental Physics II, D-04103 Leipzig (Germany)

    2015-04-15

    Elastic properties of sub-stoichiometric nitrogen implanted silicon were measured with nanometer-resolution using contact resonance atomic force microscopy (CR-AFM) as function of ion fluence and post-annealing conditions. The determined range of indentation moduli was between 100 and 180 GPa depending on the annealing duration and nitrogen content. The high indentation moduli can be explained by formation of Si–N bonds, as verified by X-ray photoelectron spectroscopy.

  6. Nanosystems in Ceramic Oxides Created by Means of Ion Implantation

    OpenAIRE

    Van Huis, M.A.

    2003-01-01

    The material properties of nanometer-sized clusters are dependent on the cluster size. Changing the cluster dimensions induces structural phase transformations, metal-insulator transitions, non-linear optical properties and widening of the band gap of semiconductors. In this work, nanoclusters are created by ion implantation followed by thermal annealing. The ceramic oxides MgO and Al2O3 are used as embedding materials because of their stability and optical transparency. All clusters were cre...

  7. Plasma source ion implantation of ammonia into electroplated chromium

    International Nuclear Information System (INIS)

    Scheuer, J.T.; Walter, K.C.; Rej, D.J.; Nastasi, M.; Blanchard, J.P.

    1995-01-01

    Ammonia gas (NH 3 ) has been used as a nitrogen source for plasma source ion implantation processing of electroplated chromium. No evidence was found of increased hydrogen concentrations in the bulk material, implying that ammonia can be used without risking hydrogen embrittlement. The retained nitrogen dose of 2.1 x 10 17 N-at/cm 2 is sufficient to increase the surface hardness of electroplated Cr by 24% and decrease the wear rate by a factor of 4

  8. Swept Line Electron Beam Annealing of Ion Implanted Semiconductors.

    Science.gov (United States)

    1982-07-01

    a pre- liminary study using silicon solar cells. This work was undertaken in cooperation with Dr. J. Eguren of the Instituto De Energia Solar , Madrid...device fabrication has been attempted. To date, resistors, capacitors, diodes, bipolar transistors, MOSFEs, and solar cells have been fabricated with...34 " 48 *Si Solar Cells Ruby PL P+ Ion-Implanted 49 Ruby PL Pulsed Diffused 50 :C

  9. Erbium ion implantation into different crystallographic cuts of lithium niobate

    Czech Academy of Sciences Publication Activity Database

    Nekvindová, P.; Švecová, B.; Cajzl, J.; Macková, Anna; Malinský, Petr; Oswald, Jiří; Kolitsch, A.; Špirková, J.

    2012-01-01

    Roč. 34, č. 4 (2012), s. 652-659 ISSN 0925-3467 R&D Projects: GA MŠk(CZ) LC06041; GA ČR GA106/09/0125; GA ČR(CZ) GAP106/10/1477 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100521 Keywords : Lithium niobate * Erbium * Ion implantation * Luminescence Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.918, year: 2012

  10. Research on ion implantation in MEMS device fabrication by theory, simulation and experiments

    Science.gov (United States)

    Bai, Minyu; Zhao, Yulong; Jiao, Binbin; Zhu, Lingjian; Zhang, Guodong; Wang, Lei

    2018-06-01

    Ion implantation is widely utilized in microelectromechanical systems (MEMS), applied for embedded lead, resistors, conductivity modifications and so forth. In order to achieve an expected device, the principle of ion implantation must be carefully examined. The elementary theory of ion implantation including implantation mechanism, projectile range and implantation-caused damage in the target were studied, which can be regarded as the guidance of ion implantation in MEMS device design and fabrication. Critical factors including implantations dose, energy and annealing conditions are examined by simulations and experiments. The implantation dose mainly determines the dopant concentration in the target substrate. The implantation energy is the key factor of the depth of the dopant elements. The annealing time mainly affects the repair degree of lattice damage and thus the activated elements’ ratio. These factors all together contribute to ions’ behavior in the substrates and characters of the devices. The results can be referred to in the MEMS design, especially piezoresistive devices.

  11. Cell patterning on a glass surface by a mask-assisted ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chan-Hee; Kim, Dong-Ki; Hwang, In-Tae; Lim, Youn-Mook; Kim, Hae-Kyoung; Nho, Young-Chang [Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Choi, Jae-Hak [Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)], E-mail: jaehakchoi@kaeri.re.kr

    2009-04-15

    A simple patterning method of cells on a glass has been developed by using ion implantation. The glass was implanted through a pattern mask with 150 keV Ar ions in the absence or presence of oxygen. Surface properties of the ion-implanted glass were investigated by means of X-ray photoelectron spectroscopy, contact angle measurement and cell culture test. The results showed that more hydrophilic groups were formed on the glass surface implanted in the presence of oxygen. Thus, the glass surface implanted in the presence of oxygen showed lower contact angle compared with the glass surface implanted in the absence of oxygen. The cells were strongly adhered to and proliferated on the ion-implanted regions of the glass. The cell population was found to be the highest on the glass implanted at a fluence of 1 x 10{sup 16} ions/cm{sup 2} in the presence of oxygen.

  12. Mechanical properties of ion-beam-textured surgical implant alloys

    Science.gov (United States)

    Weigand, A. J.

    1977-01-01

    An electron-bombardment Hg ion thruster was used as an ion source to texture surfaces of materials used to make orthopedic and/or dental prostheses or implants. The materials textured include 316 stainless steel, titanium-6% aluminum, 4% vanadium, and cobalt-20% chromium, 15% tungsten. To determine the effect of ion texturing on the ultimate strength and yield strength, stainless steel and Co-Cr-W alloy samples were tensile tested to failure. Three types of samples of both materials were tested. One type was ion-textured (the process also heats each sample to 300 C), another type was simply heated to 300 C in an oven, and the third type was untreated. Stress-strain diagrams, 0.2% offset yield strength data, total elongation data, and area reduction data are presented. Fatigue specimens of ion textured and untextured 316 stainless steel and Ti-6% Al-4% V were tested. Included as an ion textured sample is a Ti-6% Al-4% V sample which was ion machined by means of Ni screen mask so as to produce an array of 140 mu m x 140 mu m x 60 mu m deep pits. Scanning electron microscopy was used to characterize the ion textured surfaces.

  13. Architecture and control of a high current ion implanter system

    International Nuclear Information System (INIS)

    Bayer, E.H.; Paul, L.F.; Kranik, J.R.

    1979-01-01

    The design of an ion implant system for use in production requires that special attention be given to areas of design which normally are not emphasized on research or development type ion implanters. Manually operated, local controls are replaced by remote controls, automatic sequencing, and digital displays. For ease of maintenance and replication the individual components are designed as simply as possible and are contained in modules of separate identities, joined only by the beam line and electrical interconnections. A production environment also imposes requirements for the control of contamination and maintainability of clean room integrity. For that reason the major portion of the hardware is separated from the clean operator area and is housed in a maintenance core area. The controls of a production system should also be such that relatively unskilled technicians are able to operate the system with optimum repeatability and minimum operator intervention. An extensive interlock system is required. Most important, for use in production the ion implant system has to have a relatively high rate of throughput. Since the rate of throughput at a given dose is a function of beam current, pumpdown time and wafer handling capacity, design of components affecting these parameters has been optimized. Details of the system are given. (U.K.)

  14. Ion beam system for implanting industrial products of various shapes

    International Nuclear Information System (INIS)

    Denholm, A.S.; Wittkower, A.

    1985-01-01

    Implantation of metals and ceramics with ions of nitrogen and other species has improved surface properties such as friction, wear and corrosion in numerous industrial applications. Zymet has built a production machine to take advantage of this process which can implant a 2 x 10 17 ions/cm 2 dose of nitrogen ions into a 20 cm x 20 cm area in about 30 min using a 100 keV beam. Treatment is accomplished by mounting the product on a cooled, tiltable, turntable which rotates continuously, or is indexed in 15 0 steps to expose different surfaces in fixed position. Product cooling is accomplished by using a chilled eutectic metal to mount and grip the variously shaped objects. A high voltage supply capable of 10 mA at 100 kV is used, and the equipment is microcomputer controlled via serial light links. All important machine parameters are presented in sequenced displays on a CRT. Uniformity of treatment and accumulated dose are monitored by a Faraday cup system which provides the microprocessor with data for display of time to completion on the process screen. For routine implants the operator requires only two buttons; one for chamber vacuum control, and the other for process start and stop. (orig.)

  15. Homojunction silicon solar cells doping by ion implantation

    Science.gov (United States)

    Milési, Frédéric; Coig, Marianne; Lerat, Jean-François; Desrues, Thibaut; Le Perchec, Jérôme; Lanterne, Adeline; Lachal, Laurent; Mazen, Frédéric

    2017-10-01

    Production costs and energy efficiency are the main priorities for the photovoltaic (PV) industry (COP21 conclusions). To lower costs and increase efficiency, we are proposing to reduce the number of processing steps involved in the manufacture of N-type Passivated Rear Totally Diffused (PERT) silicon solar cells. Replacing the conventional thermal diffusion doping steps by ion implantation followed by thermal annealing allows reducing the number of steps from 7 to 3 while maintaining similar efficiency. This alternative approach was investigated in the present work. Beamline and plasma immersion ion implantation (BLII and PIII) methods were used to insert n-(phosphorus) and p-type (boron) dopants into the Si substrate. With higher throughput and lower costs, PIII is a better candidate for the photovoltaic industry, compared to BL. However, the optimization of the plasma conditions is demanding and more complex than the beamline approach. Subsequent annealing was performed on selected samples to activate the dopants on both sides of the solar cell. Two annealing methods were investigated: soak and spike thermal annealing. Best performing solar cells, showing a PV efficiency of about 20%, was obtained using spike annealing with adapted ion implantation conditions.

  16. Influence of ion implantation on the adhesion and grow of human keratinocytes

    International Nuclear Information System (INIS)

    Walachova, K.; Svorcik, V.; Dvorakova, B.; Vogtova, D.

    1999-01-01

    Interaction of keratinocytes with polymer modified by ion implantation was studied with the possibility of cultivate these cells for regeneration of dermal cover, for example, heavy burned persons. The modification on polyethylene (PE) with 100 μm thickness was processed by implantation the Ar + ions with the energy 63 keV and Xe + ions with the energy 156 keV. Some characteristics of superficial modified layers and influence of ion implantation on the adhesion and proliferation of keratinocytes were studied

  17. Aluminium production

    International Nuclear Information System (INIS)

    Winter, B.; Ayers, J.; Sammer, G.

    2001-01-01

    Aluminium is the most important non-ferrous metal by quantity. Aluminium is produced by electrolysis of aluminium oxide (also known as alumina). Alumina is produced by refining bauxite. The quantity of primary and secondary aluminium production in ECE-countries between 1992 and 1998 is shown. The European aluminium industry employs approximately 200 000 employees. The annual aluminium production in the European Union was 3.58 million tonnes in 1994, of which 44 % was secondary aluminium. In 1996 3.96 million tonnes of aluminium were produced in the EU, of which 44 % was secondary aluminium. (author)

  18. Effects of ion-implanted C on the microstructure and surface mechanical properties of Fe alloys implanted with Ti

    International Nuclear Information System (INIS)

    Follstaedt, D.M.; Knapp, J.A.; Pope, L.E.; Yost, F.G.; Picraux, S.T.

    1984-01-01

    The microstructural and tribological effects of ion implanting C into Ti-implanted, Fe-based alloys are examined and compared to the influence of C introduced by vacuum carburization during Ti implantation alone. The amorphous surface alloy formed by Ti implantation of pure Fe increases in thickness when additional C is implanted at depths containing Ti but beyond the range of carburization. Pin-on-disc tests of 15-5 PH stainless steel show that implantation of both Ti and C reduces friction significantly under conditions where no reduction is obtained by Ti implantation alone; wear depths are also less when C is implanted. All available experimental results can be accounted for by consideration of the thickness and Ti concentration of the amorphous Fe-Ti-C alloy. The thicker amorphous layer on samples implanted with additional C extends tribological benefits to more severe wear regimes

  19. Beam Angular Divergence Effects in Ion Implantation

    International Nuclear Information System (INIS)

    Horsky, T. N.; Hahto, S. K.; Bilbrough, D. G.; Jacobson, D. C.; Krull, W. A.; Goldberg, R. D.; Current, M. I.; Hamamoto, N.; Umisedo, S.

    2008-01-01

    An important difference between monomer ion beams and heavy molecular beams is a significant reduction in beam angular divergence and increased on-wafer angular accuracy for molecular beams. This advantage in beam quality stems from a reduction in space-charge effects within the beam. Such improved angular accuracy has been shown to have a significant impact on the quality and yield of transistor devices [1,12]. In this study, B 18 H x + beam current and angular divergence data collected on a hybrid scanned beam line that magnetically scans the beam across the wafer is presented. Angular divergence is kept below 0.5 deg from an effective boron energy of 200 eV to 3000 eV. Under these conditions, the beam current is shown analytically to be limited by space charge below about 1 keV, but by the matching of the beam emittance to the acceptance of the beam line above 1 keV. In addition, results of a beam transport model which includes variable space charge compensation are presented, in which a drift mode B 18 H x + beam is compared to an otherwise identical boron beam after deceleration. Deceleration is shown to introduce significant space-charge blow up resulting in a large on-wafer angular divergence. The divergence effects introduced by wafer charging are also discussed.

  20. A high current metal vapour vacuum arc ion source for ion implantation studies

    International Nuclear Information System (INIS)

    Evans, P.J.; Noorman, J.T.; Watt, G.C.; Cohen, D.D.; Bailey, G.M.

    1989-01-01

    The main features of the metal vapour vacuum arc(MEVA) as an ion source are presented. The technology utilizes the plasma production capabilities of a vacuum arc cathode. Some of the ions produced in this discharge flow through the anode and the 3 extraction grids to form an extracted ion beam. The high beam current and the potential for generating broad beams, make this technology suitable for implantation of large surface areas. The composition of the vacuum arc cathode determines the particular ions obtained from the MEVA source. 3 refs., 1 tab., 2 figs

  1. Effect of implanted doses of N+-ions on the contact resistance of copper contacts

    International Nuclear Information System (INIS)

    Dubravec, B.; Kovac, P.; Lipka, F.; Padysak, M.

    1997-01-01

    The paper deals with the effect of implanted doses of N + ions on the contact resistance. Dependencies of the contact resistance versus contact force R c =f(F c ) and microhardness of implanted surfaces were measured for three implanted profiles. The influence of the aggressive environs on the contact resistance of implanted contact is given too

  2. Rapid thermal and swift heavy ion induced annealing of Co ion implanted GaN films

    International Nuclear Information System (INIS)

    Baranwal, V.; Pandey, A. C.; Gerlach, J. W.; Rauschenbach, B.; Karl, H.; Kanjilal, D.; Avasthi, D. K.

    2008-01-01

    Thin epitaxial GaN films grown on 6H-SiC(0001) substrates were implanted with 180 keV Co ions at three different fluences. As-implanted samples were characterized with secondary ion mass spectrometry and Rutherford backscattering spectrometry to obtain the Co depth profiles and the maximum Co concentrations. As-implanted samples were annealed applying two different techniques: rapid thermal annealing and annealing by swift heavy ion irradiation. Rapid thermal annealing was done at two temperatures: 1150 deg. C for 20 s and 700 deg. C for 5 min. 200 MeV Ag ions at two fluences were used for annealing by irradiation. Crystalline structure of the pristine, as-implanted, and annealed samples was investigated using x-ray diffraction, and the results were compared. Improvement of the crystalline quality was observed for rapid thermal annealed samples at the higher annealing temperature as confirmed with rocking curve measurements. The results indicate the presence of Co clusters in these annealed samples. Swift heavy ion irradiation with the parameters chosen for this study did not lead to a significant annealing

  3. Target-ion source unit ionization efficiency measurement by method of stable ion beam implantation

    CERN Document Server

    Panteleev, V.N; Fedorov, D.V; Moroz, F.V; Orlov, S.Yu; Volkov, Yu.M

    The ionization efficiency is one of the most important parameters of an on-line used target-ion source system exploited for production of exotic radioactive beams. The ionization efficiency value determination as a characteristic of a target-ion source unit in the stage of its normalizing before on-line use is a very important step in the course of the preparation for an on-line experiment. At the IRIS facility (Petersburg Nuclear Physics Institute, Gatchina) a reliable and rather precise method of the target-ion source unit ionization efficiency measurement by the method of stable beam implantation has been developed. The method worked out exploits an off-line mass-separator for the implantation of the ion beams of selected stable isotopes of different elements into a tantalum foil placed inside the Faraday cup in the focal plane of the mass-separator. The amount of implanted ions has been measured with a high accuracy by the current integrator connected to the Faraday cup. After the implantation of needed a...

  4. Incorporation of transition metal ions and oxygen generation during anodizing of aluminium alloys

    International Nuclear Information System (INIS)

    Habazaki, H.; Konno, H.; Shimizu, K.; Nagata, S.; Skeldon, P.; Thompson, G.E.

    2004-01-01

    Enrichment of nickel at the alloy/film interface and incorporation of nickel species into the anodic film have been examined for a sputtering-deposited Al-1.2at.%Ni alloy in order to assist understanding of oxygen generation in barrier anodic alumina films. Anodizing of the alloy proceeds in two stages similarly to other dilute aluminium alloys, for example Al-Cr and Al-Cu alloys, where the Gibbs free energies per equivalent for formation of alloying element oxide exceeds the value for alumina. In the first stage, a nickel-free alumina film is formed, with nickel enriching in an alloy layer, 2 nm thick, immediately beneath the anodic oxide film. In the second stage, nickel atoms are oxidized together with aluminium, with oxygen generation forming gas bubbles within the anodic oxide film. This stage commences after accumulation of about 5.4 x 10 15 nickel atoms cm -2 in the enriched alloy layer. Oxygen generation also occurs when a thin layer of the alloy, containing about 2.0 x 10 19 nickel atoms m -2 , on electropolished aluminium, is completely anodized, contrasting with thin Al-Cr and Al-Cu alloy layers on electropolished aluminium, for which oxygen generation is essentially absent. A mechanism of oxygen generation, based on electron impurity levels of amorphous alumina and local oxide compositions, is discussed in order to explain the observations

  5. Low energy ion implantation and high energy heavy ion irradiation in C60 films

    International Nuclear Information System (INIS)

    Narayanan, K.L.; Yamaguchi, M.; Dharmarasu, N.; Kojima, N.; Kanjilal, D.

    2001-01-01

    C 60 films have been bombarded with low energy boron ions and high energy swift heavy ions (SHI) of silver and oxygen at different doses. Raman scattering and Fourier transform infrared (FTIR) studies were carried out on the virgin and irradiated films and the results are in good agreement with each other. The films subject to low energy boron ion implantation showed destruction of the bukky balls whereas the films subject to high energy ion irradiation did not show appreciable effects on their structure. These results indicate that C 60 films are more prone to defects by elastic collision and subsequent implantation at lower energy. Irradiation at higher energy was less effective in creating appreciable defects through electronic excitation by inelastic collisions at similar energy density

  6. On the use of thin ion implanted Si detectors in heavy ion experiments

    International Nuclear Information System (INIS)

    Lavergne-Gosselin, L.; Stab, L.; Lampert, M.O.

    1988-10-01

    We present test results on the use of thin ion implanted epitaxial Si detectors for registration of low- and medium energy heavy fragments in nuclear reactions. A linear energy response for very low energy nuclei has been observed. A test of 10 μm + 300 μm telescopes under realistic experimental conditions for heavy ion experiments exhibits the possibilities to use these detectors for the measurements of multifragmentation products. (authors)

  7. Electrochemical corrosion characteristics of aluminium alloy 6061 T6 in demineralized water containing 0.1 % chloride ion

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhammad Daud; Siti Radiah Mohd Kamarudin; Mohd Saari Ripin; Rusni Rejab; Mohd Shariff Sattar

    2012-01-01

    Direct current electrochemical method is one of the techniques has been used to study the corrosion behaviour of metal/alloy in its environment. This paper attempts to investigate the corrosion behaviour of Al 6061 T6 immersed in Reactor TRIGA Mark II pool water containing about 0.1% NaCl content. The result shown that the corrosion rate value of the aluminium 6061 T6 increased with the presence of 0.1 % Ion Chloride content in the demineralized water reactor pool as compared to normal demineralized water. This is due to aggressiveness of chloride ion attack to metal surface. Beside corrosion rate analysis, the further tests such as corrosion behaviour diagram, cyclic polarization have been carried and the results have been reported. (author)

  8. Si-nanoparticle synthesis using ion implantation and MeV ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chulapakorn, T.; Wolff, M.; Primetzhofer, D.; Possnert, G. [Uppsala University, Department of Physics and Astronomy, P.O. Box 516, 751 20 Uppsala (Sweden); Sychugov, I.; Suvanam, S.S.; Linnros, J. [Royal Institute of Technology, School of Information and Communication Technology, P.O. Box Electrum 229, 164 40 Kista (Sweden); Hallen, A. [Uppsala University, Department of Physics and Astronomy, P.O. Box 516, 751 20 Uppsala (Sweden); Royal Institute of Technology, School of Information and Communication Technology, P.O. Box Electrum 229, 164 40 Kista (Sweden)

    2015-12-15

    A dielectric matrix with embedded Si-nanoparticles may show strong luminescence depending on nanoparticles size, surface properties, Si-excess concentration and matrix type. Ion implantation of Si ions with energies of a few tens to hundreds of keV in a SiO{sub 2} matrix followed by thermal annealing was identified as a powerful method to form such nanoparticles. The aim of the present work is to optimize the synthesis of Si-nanoparticles produced by ion implantation in SiO{sub 2} by employing MeV ion irradiation as an additional annealing process. The luminescence properties are measured by spectrally resolved photoluminescence including PL lifetime measurement, while X-ray reflectometry, atomic force microscopy and ion beam analysis are used to characterize the nanoparticle formation process. The results show that the samples implanted at 20%-Si excess atomic concentration display the highest luminescence and that irradiation of 36 MeV {sup 127}I ions affects the luminosity in terms of wavelength and intensity. It is also demonstrated that the nanoparticle luminescence lifetime decreases as a function of irradiation fluence. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. New developments in metal ion implantation by vacuum arc ion sources and metal plasma immersion

    International Nuclear Information System (INIS)

    Brown, I.G.; Anders, A.; Anders, S.

    1996-01-01

    Ion implantation by intense beams of metal ions can be accomplished using the dense metal plasma formed in a vacuum arc discharge embodied either in a vacuum arc ion source or in a metal plasma immersion configuration. In the former case high energy metal ion beams are formed and implantation is done in a more-or-less conventional way, and in the latter case the substrate is immersed in the plasma and repetitively pulse-biased so as to accelerate the ions at the high voltage plasma sheath formed at the substrate. A number of advances have been made in the last few years, both in plasma technology and in the surface modification procedures, that enhance the effectiveness and versatility of the methods, including for example: controlled increase of the in charge states produced; operation in a dual metal-gaseous ion species mode; very large area beam formation; macroparticle filtering; and the development of processing regimes for optimizing adhesion, morphology and structure. These complementary ion processing techniques provide the plasma tools for doing ion surface modification over a very wide parameter regime, from pure ion implantation at energies approaching the MeV level, through ion mixing at energies in the ∼1 to ∼100 keV range, to IBAD-like processing at energies from a few tens of eV to a few keV. Here the authors review the methods, describe a number of recent developments, and outline some of the surface modification applications to which the methods have been put. 54 refs., 9 figs

  10. Nitrogen ion implantation: Barriers to industrial acceptance and prospects for the future

    International Nuclear Information System (INIS)

    Alexander, R.B.

    1989-01-01

    Nitrogen ion implantation has been used to improve the wear and fatigue resistance of metals in industrial applications since the process was developed at the UK Harwell Laboratory in the 1970s. However, implantation service companies like Ion Surface Technology have found so far that the market for nitrogen implantation is limited. Both market and technical barriers exist to more widespread acceptance in industry. Market factors include cost, industrial conservatism, and production priorities in manufacturing. Technical factors include the size of available implanters, the line-of-sight limitation of ion implantation, sputtering, and other process limitations such as shallow penetration depth. Several recent technical developments that should greatly increase market acceptance are described: 1. large-scale nitrogen implanters, 2. the non-line-of-sight plasma source ion implantation process, and 3. ion assisted coating techniques. (orig.)

  11. High-temperature oxidation of ion-implanted tantalum

    International Nuclear Information System (INIS)

    Kaufmann, E.N.; Musket, R.G.; Truhan, J.J.; Grabowski, K.S.; Singer, I.L.; Gossett, C.R.

    1982-01-01

    The oxidation of ion-implanted Ta in two different high temperature regimes has been studied. Oxidations were carried out at 500 0 C in Ar/O 2 mixtures, where oxide growth is known to follow a parabolic rate law in initial stages, and at 1000 0 C in pure O 2 , where a linear-rate behavior obtains. Implanted species include Al, Ce, Cr, Li, Si and Zr at fluences of the order of 10 17 /cm 2 . Oxidized samples were studied using Rutherford backscattering, nuclear reaction analysis, Auger spectroscopy, secondary-ion mass spectroscopy, x-ray diffraction and optical microscopy. Significant differences among the specimens were noted after the milder 500 0 C treatment, specifically, in the amount of oxide formed, the degree of oxygen dissolution in the metal beneath the oxide, and in the redistribution behavior of the implanted solutes. Under the severe 1000 0 C treatment, indications of different solute distributions and of different optical features were found, whereas overall oxidation rate appeared to be unaffected by the presence of the solute. 7 figures

  12. Modeling of interstitial diffusion of ion-implanted boron

    International Nuclear Information System (INIS)

    Velichko, O.I.; Knyazheva, N.V.

    2009-01-01

    A model of the interstitial diffusion of ion-implanted boron during rapid thermal annealing of silicon layers previously amorphized by implantation of germanium has been proposed. It is supposed that the boron interstitials are created continuously during annealing due to generation, dissolution, or rearrangement of the clusters of impurity atoms which are formed in the ion-implanted layers with impurity concentration above the solubility limit. The local elastic stresses arising due to the difference of boron atomic radius and atomic radius of silicon also contribute to the generation of boron interstitials. A simulation of boron redistribution during thermal annealing for 60 s at a temperature of 850 C has been carried out. The calculated profile agrees well with the experimental data. A number of the parameters of interstitial diffusion have been derived. In particular, the average migration length of nonequilibrium boron interstitials is equal to 12 nm. It was also obtained that approximately 1.94% of boron atoms were converted to the interstitial sites, participated in the fast interstitial migration, and then became immobile again transferring into a substitutional position or forming the electrically inactive complexes with crystal lattice defects. (authors)

  13. Titanium Nitride and Nitrogen Ion Implanted Coated Dental Materials

    Directory of Open Access Journals (Sweden)

    David W. Berzins

    2012-07-01

    Full Text Available Titanium nitride and/or nitrogen ion implanted coated dental materials have been investigated since the mid-1980s and considered in various applications in dentistry such as implants, abutments, orthodontic wires, endodontic files, periodontal/oral hygiene instruments, and casting alloys for fixed restorations. Multiple methodologies have been employed to create the coatings, but detailed structural analysis of the coatings is generally lacking in the dental literature. Depending on application, the purpose of the coating is to provide increased surface hardness, abrasion/wear resistance, esthetics, and corrosion resistance, lower friction, as well as greater beneficial interaction with adjacent biological and material substrates. While many studies have reported on the achievement of these properties, a consensus is not always clear. Additionally, few studies have been conducted to assess the efficacy of the coatings in a clinical setting. Overall, titanium nitride and/or nitrogen ion implanted coated dental materials potentially offer advantages over uncoated counterparts, but more investigation is needed to document the structure of the coatings and their clinical effectiveness.

  14. Bimodal distribution of damage morphology generated by ion implantation

    International Nuclear Information System (INIS)

    Mok, K.R.C.; Jaraiz, M.; Martin-Bragado, I.; Rubio, J.E.; Castrillo, P.; Pinacho, R.; Srinivasan, M.P.; Benistant, F.

    2005-01-01

    A nucleation and evolution model of damage based on amorphous pockets (APs) has recently been developed and implemented in an atomistic kinetic Monte Carlo simulator. In the model, APs are disordered structures (I n V m ), which are agglomerates of interstitials (I) and vacancies (V). This model has been used to study the composition and size distribution of APs during different ion implantations. Depending strongly on the dose rate, ion mass and implant temperature, the APs can evolve to a defect population where the agglomerates have a similar number of I and V (n ∼ m), or to a defect population with pure I (m ∼ 0) and pure V (n ∼ 0) clusters, or a mixture of APs and clusters. This behaviour corresponds to a bimodal (APs/clusters) distribution of damage. As the AP have different thermal stability compared to the I and V clusters, the same damage concentration obtained through different implant conditions has a different damage morphology and, consequently, exhibit a different resistance to subsequent thermal treatments

  15. Cellular structure formed by ion-implantation-induced point defect

    International Nuclear Information System (INIS)

    Nitta, N.; Taniwaki, M.; Hayashi, Y.; Yoshiie, T.

    2006-01-01

    The authors have found that a cellular defect structure is formed on the surface of Sn + ion implanted GaSb at a low temperature and proposed its formation mechanism based on the movement of the induced point defects. This research was carried out in order to examine the validity of the mechanism by clarifying the effect of the mobility of the point defects on the defect formation. The defect structure on the GaSb surfaces implanted at cryogenic temperature and room temperature was investigated by scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (TEM) observation. In the sample implanted at room temperature, the sponge-like structure (a pileup of voids) was formed and the cellular structure, as observed at a low temperature, did not develop. This behavior was explained by the high mobility of the vacancies during implantation at room temperature, and the proposed idea that the defect formation process is dominated by the induced point defects was confirmed

  16. Automated Implanter Endstation for Combinatorial Materials Science with Ion Beams

    International Nuclear Information System (INIS)

    Grosshans, I.; Karl, H.; Stritzker, B.

    2003-01-01

    The discovery, understanding and optimization of new complex functional materials requires combinatorial synthesis techniques and fast screening instrumentation for the measurement of the samples. In this contribution the synthesis of buried II-VI compound semiconductor nanocrystals by ion-implantation in SiO2 on silicon will be presented. For that we constructed a computer controlled implanter target end station, in which a 4-inch wafer can be implanted with a lateral pattern of distinct dose, composition or energy combinations. The chemical reaction of the constituents is initiated either during the implantation process or ex-situ by a rapid thermal process, where a reactive atmosphere can be applied. The resulting optical photoluminescence properties of the individual fields of the pattern can then be screened in rapid succession in an optical cryostat into which the whole wafer is mounted and cooled down. In this way, complex interdependences of the physical parameters can be studied on a single wafer and the technically relevant properties optimized

  17. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    International Nuclear Information System (INIS)

    Nikolaev, A.G.; Yushkov, G.Yu.; Oks, E.M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E.S.; Brown, I.G.

    2014-01-01

    Highlights: • Ion implantation. • Anti-bacterial properties. • Textile polymer. • Vacuum arc ion source. - Abstract: Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal–gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the “inverse” concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material

  18. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, A.G., E-mail: nik@opee.hcei.tsc.ru [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Yushkov, G.Yu.; Oks, E.M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Oztarhan, A. [Izmir University, Izmir 35140 (Turkey); Akpek, A.; Hames-Kocabas, E.; Urkac, E.S. [Bioengineering Department, Ege University, Bornova 35100, Izmir (Turkey); Brown, I.G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94708 (United States)

    2014-08-15

    Highlights: • Ion implantation. • Anti-bacterial properties. • Textile polymer. • Vacuum arc ion source. - Abstract: Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal–gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the “inverse” concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  19. Ion beam studies. Part 5 - the computer simulation of composite ion implantation profiles

    International Nuclear Information System (INIS)

    Freeman, J.H.; Booker, D.V.

    1977-01-01

    The computer simulation of composite ion implantation profiles produced by continuous energy programming and by discrete multiple dose doping is described. It is shown that precise matching of the computed profile to various uniform and power-law distributions can be achieved. (author)

  20. The effect of metal ion implantation on the surface mechanical properties of Mylar (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W; Sood, D K [Royal Melbourne Inst. of Tech., VIC (Australia); Yao, X; Brown, I G [California Univ., Berkeley, CA (United States). Lawrence Berkeley Lab.

    1994-12-31

    Ion implantation of polymers leads to the formation of new carbonaceous materials, the revolution during implantation of various species consists of (1) ion beam induced damage: chain scission, crosslinking, molecular emission of volatile elements and compounds, stoichiometric change in the surface layer of pristine polymers; and (2) chemical effect between ion and target materials: microalloying and precipitation. Literature regarding ion implanted polymers shows that the reorganisation of the carbon network after implantation can dramatically modify several properties of pristine polymers solubility, molecular weight, and electrical, optical and mechanical properties. However, ion implantation of polymers is actually a very complex interaction which depends on not only ion species, implantation condition, but also polymer type and specific structure. In this paper the effect of Ag or Ti ions implantation on surface mechanical properties of PET (polyethylenne terephthalate) polymer is reported. There was a clear deterioration in wear resistance after implantation of both Ag and Ti ions. It is suggested that the increment of wear after implantation may result from not only ion damage but also chemical effect between ion and target material. 3 refs., 1 tab., 2 figs.

  1. The effect of metal ion implantation on the surface mechanical properties of Mylar (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W.; Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia); Yao, X.; Brown, I.G. [California Univ., Berkeley, CA (United States). Lawrence Berkeley Lab.

    1993-12-31

    Ion implantation of polymers leads to the formation of new carbonaceous materials, the revolution during implantation of various species consists of (1) ion beam induced damage: chain scission, crosslinking, molecular emission of volatile elements and compounds, stoichiometric change in the surface layer of pristine polymers; and (2) chemical effect between ion and target materials: microalloying and precipitation. Literature regarding ion implanted polymers shows that the reorganisation of the carbon network after implantation can dramatically modify several properties of pristine polymers solubility, molecular weight, and electrical, optical and mechanical properties. However, ion implantation of polymers is actually a very complex interaction which depends on not only ion species, implantation condition, but also polymer type and specific structure. In this paper the effect of Ag or Ti ions implantation on surface mechanical properties of PET (polyethylenne terephthalate) polymer is reported. There was a clear deterioration in wear resistance after implantation of both Ag and Ti ions. It is suggested that the increment of wear after implantation may result from not only ion damage but also chemical effect between ion and target material. 3 refs., 1 tab., 2 figs.

  2. Characterization of low temperature metallic magnetic calorimeters having gold absorbers with implanted $^{163}$Ho ions

    CERN Document Server

    Gastaldo, L.; von Seggern, F.; Porst, J.-P.; Schäfer, S.; Pies, C.; Kempf, S.; Wolf, T.; Fleischmann, A.; Enss, C.; Herlert, A.; Johnston, K.

    2013-01-01

    For the first time we have investigated the behavior of fully micro-fabricated low temperature metallic magnetic calorimeters (MMCs) after undergoing an ion-implantation process. This experiment had the aim to show the possibility to perform a high precision calorimetric measurement of the energy spectrum following the electron capture of $^{163}$Ho using MMCs having the radioactive $^{163}$Ho ions implanted in the absorber. The implantation of $^{163}$Ho ions was performed at ISOLDE-CERN. The performance of a detector that underwent an ion-implantation process is compared to the one of a detector without implanted ions. The results show that the implantation dose of ions used in this experiment does not compromise the properties of the detector. In addition an optimized detector design for future $^{163}$Ho experiments is presented.

  3. Planar transistors and impatt diodes with ion implantation

    International Nuclear Information System (INIS)

    Dorendorf, H.; Glawischnig, H.; Grasser, L.; Hammerschmitt, J.

    1975-03-01

    Low frequency planar npn and pnp transistors have been developed in which the base and emitter have been fabricated using ion implantation of boron and phosphorus by a drive-in diffusion. Electrical parameters of the transistors are comparable with conventionally produced transistors; the noise figure was improved and production tolerances were significantly reduced. Silicon-impatt diodes for the microwave range were also fabricated with implanted pn junctions and tested for their high frequency characteristics. These diodes, made in an improved upside down technology, delivered output power up to 40 mW (burn out power) at 30 GHz. Reverse leakage current and current carrying capability of these diodes were comparable to diffused structures. (orig.) 891 ORU 892 MB [de

  4. Tribological behavior of duplex coating improved by ion implantation

    International Nuclear Information System (INIS)

    Kakas, D.; Skoric, B.; Rakita, M.

    2004-01-01

    In the present paper the tribological behavior of the coatings are discussed. Duplex coatings were applied on cold working steel 100Cr6. Samples were plasma nitrided at different thickness of plasma surface layers. TiN was deposited with a classic BALZERS PVD equipment and subsequent ion implantation. Ion implantation was provided with N 5+ ions. The other samples were produced with IBAD technology in DANFYSIK chamber. Wear resistance and exchanges of friction coefficient were measured with on-line test using special designed tribology equipment. Following the tests, the wear zone morphology and characteristics of surface layer structure as well as important properties were investigated by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Scratch adhesion testing was performed using commercially available equipment. Energy dispersive X-ray analysis (EDAX) of the wear-scars on pins provided essential information on the wear characteristics. In this paper some results related to influence of duplex coating production methodology on tribological behavior for cold working steel was presented

  5. Scanning probe microscopy of single Au ion implants in Si

    International Nuclear Information System (INIS)

    Vines, L.; Monakhov, E.; Maknys, K.; Svensson, B.G.; Jensen, J.; Hallen, A.; Kuznetsov, A. Yu.

    2006-01-01

    We have studied 5 MeV Au 2+ ion implantation with fluences between 7 x 10 7 and 2 x 10 8 cm -2 in Si by deep level transient spectroscopy (DLTS) and scanning capacitance microscopy (SCM). The DLTS measurements show formation of electrically active defects such as the two negative charge states of the divacancy (V 2 (=/-) and V 2 (-/0)) and the vacancy-oxygen (VO) center. It is observed that the intensity of the V 2 (=/-) peak is lower compared to that of V 2 (-/0) by a factor of 5. This has been attributed to a highly localized distribution of the defects along the ion tracks, which results in trapping of the carriers at V 2 (-/0) and incomplete occupancy of V 2 (=/-). The SCM measurements obtained in a plan view show a random pattern of regions with a reduced SCM signal for the samples implanted with fluence above 2 x 10 8 cm -2 . The reduced SCM signal is attributed to extra charges associated with acceptor states, such as V 2 (-/0), formed along the ion tracks in the bulk Si. Indeed, the electron emission rate from the V 2 (-/0) state is in the range of 10 kHz at room temperature, which is well below the probing frequency of the SCM measurements, resulting in 'freezing' of electrons at V 2 (-/0)

  6. Application of ion implantation RBS to the study of electrocatalysis

    International Nuclear Information System (INIS)

    Kelly, E.J.; Vallet, C.E.; White, C.W.

    1990-01-01

    Ir-implanted titanium near-surface alloys were prepared by ion implantation, characterized (Ir concentration/depth profiles) by Rutherford backscattering (RBS), and subsequently anodically oxidized to form electrocatalytically active Ir x Ti 1-x O 2 /Ti electrodes. The electrochemical behavior of the metallic-like Ir 4 Ti 1-x O 2 /Ti electrodes in acidic chloride, sulfate, and perchlorate solutions was investigated, and the results compared with those previously obtained with similarly prepared Ru x Ti 1-x O 2 /Ti electrodes. For both electrodes, M x Ti 1-x O 2 /Ti (M equals Ir or Ru), the Tafel slope for the Cl 2 evolution reaction is 40 mV, i.e.,δE/δlog i equals 2.303 (2RT/3F). The reaction order (n) with respect to chloride ion concentration δlogi/δlog[Cl - ] + 1, where K 9 equals 54.9 dm 3 mol -1 for Ir x Ti 1-x O 2 /Ti and K 9 equals 40 dm 3 mol -1 for Ru x Ti 1-x O 2 /Ti. A modified Volmer-Heyrovsky mechanism, one in which the role of absorbed chloride ions is taken into account, is shown to be consistent with aforementioned diagnostic parameters

  7. Nonlinear optical properties of Sn+ ion-implanted silica glass

    International Nuclear Information System (INIS)

    Takeda, Y.; Hioki, T.; Motohiro, T.; Noda, S.; Kurauchi, T.

    1994-01-01

    The absolute value of the third-order nonlinear optical susceptibility, vertical stroke χ (3) vertical stroke , of Sn + ion-implanted silica glass was found to be similar 10 -6 esu. This value is as large as those reported for semiconductor-doped glasses. Silica glass substrates were implanted with Sn + ions at an acceleration energy of 400 keV to a dose of 2x10 17 ions/cm 2 at room temperature. Metallic Sn microcrystallites of 4-20 nm in diameter were found to be embedded in the silica glass matrix. The average volume fraction of the Sn microcrystallites was evaluated to be 28%. vertical stroke χ (3) vertical stroke and the imaginary part of the dielectric function, Im ε, had peaks at the same wavelength of 500 nm owing to surface plasmon resonance. The peak width of vertical stroke χ (3) vertical stroke was nearly half of that of Im ε, which can be explained by an effective medium theory. ((orig.))

  8. The enhancement in wear resistance of W18Cr4V steel by ion implantation

    International Nuclear Information System (INIS)

    Zhou Ping; Xu Peiguang

    1987-01-01

    Two new methods of ion implantation were adopted in comparison with nitrogen implantation: carbon monoxide was implanted directly into W18Cr4V steel, and nitrogen was implanted into a deposited titanium film about 1000 A thick. It is shown that higher surface hardness and wear resistance have been achieved. The composition and phase structure of the implanted layer was determined in detail. The wear mechanisms were discussed

  9. The influence of ion implantation on the surface properties of metals and alloys

    International Nuclear Information System (INIS)

    Grant, W.A.; Carter, G.

    1975-10-01

    The report falls into three sections: (1) annealing behaviour of high dose rare gas (Ne, Ar, Kr, Xe) implantations into silicon; (2) measurement of projected and lateral range parameters for low energy heavy ions (Ar, Cu, Kr, Cd, Xe, Cs, Dy, W, Au, Pb, Bi) in silicon by Rutherford backscattering; (3) surface chemistry of ion implanted solids (e.g. corrosion, catalysis, oxidation, synthesis of compounds in ion implanted layers). (U.K.)

  10. Ion implantation and ion assisted coatings for wear resistance in metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1986-01-01

    The implantation of electrically accelerated ions of chosen elements into the surface of material provides a method for improving surface properties such as wear resistance. High concentrations of nitrogen implanted into metals create obstacles to dislocation movement, and certain combinations of metallic and non-metallic species will also strengthen the surface. The process is best applied to situations involving mild abrasive wear and operating temperatures that are not too high. Some dramatic increases in life have been reported under such favourable conditions. A more recent development has been the combination of a thin coating with reactive ion bombardment designed to enhance adhesion by ion mixing at the interface and so provide hardness by the formation of finely dispersed nitrides, including cubic boron nitride. These coatings often possess vivid and decorative colours as an added benefit. Developments in the equipment for industrial ion implantation now offer more attractive costs per unit area and a potentially greater throughput of work. A versatile group of related hard vacuum treatments is now emerging, involving the use of intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (author)

  11. Mass and energy deposition effects of implanted ions on solid sodium formate

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiangqin E-mail: clshao@mail.ipp.ac.cn; Shao Chunlin; Yao Jianming; Yu Zengliang

    2000-07-01

    Solid sodium formate was implanted by low energy N{sup +}, H{sup +}, and Ar{sup +} ions. Measured with electron paramagnetic resonance (EPR) and Fourier-transform infrared (FT-IR), it was observed that new -CH{sub 2}-, -CH{sub 3}- groups and COO{sup -} radical ion were produced in the implanted sodium formate. Analyzing with the highly sensitive ninhydrin reaction, it was found that a new -NH{sub 2} functional group was formed upon N{sup +} ion implantation, and its yield increased along with implantation dose but decreased with the ion's energy.

  12. Design for a low temperature ion implantation and luminescence cryostat

    International Nuclear Information System (INIS)

    Noonan, J.R.; Kirkpatrick, C.G.; Myers, D.R.; Streetman, B.G.

    1976-01-01

    Several simple design changes of a conventional liquid helium optical Dewar can significantly improve the cryostat's versatility for use in low temperature particle irradiation. A bellows assembly provides precise sample positioning and allows convenient access for electrical connections. A heat exchanger consisting of thin walled tubing with a 'goose neck' bend provides a simple, effective means of cooling the sample as well as excellent thermal isolation of the sample holder from the coolant reservoir during controlled anneals. The addition of a vane-type vacuum valve, optical windows, and a rotatable tailpiece facilitates the study of optical properties of materials following low temperature ion implantation. (author)

  13. Production of solid deuterium targets by ion implantation

    International Nuclear Information System (INIS)

    Csikai, J.; Szegedi, S.; Olah, L.; El-Megrab, A.M.; Molla, N.I.; Rahman, M.M.; Miah, R.U.; Habbani, F.; Shaddad, I.

    1997-01-01

    Solid metal, semiconductor and metallic glass samples were irradiated with deuteron atomic ions between 60 and 180 keV incident energies. Accumulation rates of deuterons in different targets were recorded by the detection of protons and neutrons via the 2 H(d,p) and 2 H(d,n) reactions. A simple analytical expression is given to describe the kinetics of the accumulation. The dependence of the reaction rate on the deuteron energy gives information on the concentration profile in addition to the neutron flux density spectra. A varying distortion of the implanted deuteron profiles by a change in the beam energy were also observed for different targets. (orig.)

  14. Scaling of ion implanted Si:P single electron devices

    International Nuclear Information System (INIS)

    Escott, C C; Hudson, F E; Chan, V C; Petersson, K D; Clark, R G; Dzurak, A S

    2007-01-01

    We present a modelling study on the scaling prospects for phosphorus in silicon (Si:P) single electron devices using readily available commercial and free-to-use software. The devices comprise phosphorus ion implanted, metallically doped (n + ) dots (size range 50-500 nm) with source and drain reservoirs. Modelling results are compared to measurements on fabricated devices and discussed in the context of scaling down to few-electron structures. Given current fabrication constraints, we find that devices with 70-75 donors per dot should be realizable. We comment on methods for further reducing this number

  15. Surface modification of titanium and titanium alloys by ion implantation.

    Science.gov (United States)

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.

  16. Magnetic insulation of secondary electrons in plasma source ion implantation

    International Nuclear Information System (INIS)

    Rej, D.J.; Wood, B.P.; Faehl, R.J.; Fleischmann, H.H.

    1993-01-01

    The uncontrolled loss of accelerated secondary electrons in plasma source ion implantation (PSII) can significantly reduce system efficiency and poses a potential x-ray hazard. This loss might be reduced by a magnetic field applied near the workpiece. The concept of magnetically-insulated PSII is proposed, in which secondary electrons are trapped to form a virtual cathode layer near the workpiece surface where the local electric field is essentially eliminated. Subsequent electrons that are emitted can then be reabsorbed by the workpiece. Estimates of anomalous electron transport from microinstabilities are made. Insight into the process is gained with multi-dimensional particle-in-cell simulations

  17. Temperature Activated Diffusion of Radicals through Ion Implanted Polymers

    DEFF Research Database (Denmark)

    Wakelin, Edgar A.; Davies, Michael J.; Bilek, Marcela M. M.

    2015-01-01

    Plasma immersion ion implantation (PIII) is a promising technique for immobilizing biomolecules on the surface of polymers. Radicals generated in a subsurface layer by PIII treatment diffuse throughout the substrate, forming covalent bonds to molecules when they reach the surface. Understanding...... to the surface. The model makes useful predictions for the lifetime over which the surface is sufficiently active to covalently immobilize biomolecules and it can be used to determine radical fluence during biomolecule incubation for a range of storage and incubation temperatures so facilitating selection...

  18. Simulation and visualization of ion-implantation in diamond

    International Nuclear Information System (INIS)

    Adler, Joan; Silverman, Amihai; Ierushalmi, Niv; Sorkin, Anastassia; Kalish, Rafi

    2014-01-01

    We have explored aspects of ion implantation in diamonds with molecular dynamics and tightbinding atomistic simulations. Relevant experiments and their potential applications as well as our computer models and computational approaches are described. Our simulations have been designed to answer questions proposed by experimental researchers concerning optimal laboratory schedules for the preparation of samples with potential applications to diamond membranes and NV centers for quantum computers. Simulation and visualization of results enable us to peek inside samples where experimental techniques cannot tread. In order to provide the requisite Brazilian component a new connection between these models and bootstrap percolation is made

  19. Ion Implantation in III-V Compound Semiconductors

    Science.gov (United States)

    1984-09-01

    340 keV H + -0 Ga P  O UES-723-292 !:• (H o>ray *P-K X - rayO Ga-K X -ray iii! RBS * ..I -iO.. 0 10I to1. 01 • .0 -. I0 1 LI =i, O I 0 01 0.J 10...Identity by blo ," pume) Ion Implantation, GaAs, Hall effect, electrical resistivity, Rutherford Backscattering (RBS), channeling, Proton induced x -ray...Mebility (jH) upon Aiinealing Temperature (TA) for 1 X 101 /cm• Dose Samples of GaAs:Mg with Three Different Capping Methods 33 p 14 Dependence of Surface

  20. Scaling of ion implanted Si:P single electron devices

    Energy Technology Data Exchange (ETDEWEB)

    Escott, C C [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Hudson, F E [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Chan, V C [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Petersson, K D [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Clark, R G [Centre for Quantum Computer Technology, School of Physics, UNSW, Sydney, 2052 (Australia); Dzurak, A S [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia)

    2007-06-13

    We present a modelling study on the scaling prospects for phosphorus in silicon (Si:P) single electron devices using readily available commercial and free-to-use software. The devices comprise phosphorus ion implanted, metallically doped (n{sup +}) dots (size range 50-500 nm) with source and drain reservoirs. Modelling results are compared to measurements on fabricated devices and discussed in the context of scaling down to few-electron structures. Given current fabrication constraints, we find that devices with 70-75 donors per dot should be realizable. We comment on methods for further reducing this number.

  1. Application of nitrogen plasma immersion ion implantation to titanium nasal implants with nanonetwork surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ying-Sui; Yang, Wei-En [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Zhang, Lan [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Zhu, Hongqin [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Lan, Ming-Ying [Division of Rhinology, Department of Otolaryngology Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan and School of Medicine, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Sheng-Wei [Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan (China); Huang, Her-Hsiung, E-mail: hhhuang@ym.edu.tw [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung 407, Taiwan (China); Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan (China)

    2016-07-15

    In nasal reconstruction, the response of cells to titanium (Ti) implants is mainly determined by surface features of the implant. In a pilot study, the authors applied electrochemical anodization to Ti surfaces in an alkaline solution to create a network of nanoscale surface structures. This nanonetwork was intended to enhance the responses of primary human nasal epithelial cell (HNEpC) to the Ti surface. In this study, the authors then treated the anodized, nanonetwork-structured Ti surface using nitrogen plasma immersion ion implantation (NPIII) in order to further improve the HNEpC response to the Ti surface. Subsequently, surface characterization was performed to elucidate morphology, roughness, wettability, and chemistry of specimens. Cytotoxicity, blood, and HNEpC responses were also evaluated. Our results demonstrate that NPIII treatment led to the formation of a noncytotoxic TiN-containing thin film (thickness <100 nm) on the electrochemically anodized Ti surface with a nanonetwork-structure. NPIII treatment was shown to improve blood clotting and the adhesion of platelets to the anodized Ti surface as well as the adhesion and proliferation of hNEpC. This research spreads our understanding of the fact that a TiN-containing thin film, produced using NPIII treatment, could be used to improve blood and HNEpC responses to anodized, nanonetwork-structured Ti surfaces in nasal implant applications.

  2. Amorphization and recrystallization in MeV ion implanted InP crystals

    International Nuclear Information System (INIS)

    Xiong, F.; Nieh, C.W.; Jamieson, D.N.; Vreeland, T. Jr.; Tombrello, T.A.

    1988-01-01

    A comprehensive study of MeV- 15 N-ion-implanted InP by a variety of analytical techniques has revealed the physical processes involved in MeV ion implantation into III-V compound semiconductors as well as the influence of post-implantation annealing. It provides a coherent picture of implant distribution, structural transition, crystalline damage, and lattice strain in InP crystals induced by ion implantation and thermal annealing. The experimental results from the different measurements are summarized in this report. Mechanisms of amorphization by implantation and recrystallization through annealing in MeV-ion-implanted InP are proposed and discussed in light of the results obtained

  3. Determination of migration of ion-implanted helium in silica by proton backscattering spectrometry

    International Nuclear Information System (INIS)

    Szakacs, G.; Szilagyi, E.; Paszti, F.; Kotai, E.

    2008-01-01

    Understanding the processes caused by ion implantation of light ions in dielectric materials such as silica is important for developing the diagnostic systems used in fusion and fission environments. Recently, it has been shown that ion-implanted helium is able to escape from SiO 2 films. To study this process in details, helium was implanted into the central part of a buried SiO 2 island up to a fluence of 4 x 10 17 He/cm 2 . The implanted helium could be detected in the SiO 2 island, if the oxide was insulated properly from the vacuum. The shape of the helium depth distributions was far from SRIM simulation because helium distributed in the whole 1 μm thick oxide layer. After the ion implantation, helium was observed only on the implanted spot. After nine months the implanted helium filled out the whole oxide island as it was expected from the high diffusivity

  4. Ion enhanced deposition by dual titanium and acetylene plasma immersion ion implantation

    Science.gov (United States)

    Zeng, Z. M.; Tian, X. B.; Chu, P. K.

    2003-01-01

    Plasma immersion ion implantation and deposition (PIII-D) offers a non-line-of-sight fabrication method for various types of thin films on steels to improve the surface properties. In this work, titanium films were first deposited on 9Cr18 (AISI440) stainless bearing steel by metal plasma immersion ion implantation and deposition (MePIII-D) using a titanium vacuum arc plasma source. Afterwards, carbon implantation and carbon film deposition were performed by acetylene (C2H2) plasma immersion ion implantation. Multiple-layered structures with superior properties were produced by conducting Ti MePIII-D + C2H2 PIII successively. The composition and structure of the films were investigated employing Auger electron spectroscopy and Raman spectroscopy. It is shown that the mixing for Ti and C atoms is much better when the target bias is higher during Ti MePIII-D. A top diamond-like carbon layer and a titanium oxycarbide layer are formed on the 9Cr18 steel surface. The wear test results indicate that this dual PIII-D method can significantly enhance the wear properties and decrease the surface friction coefficient of 9Cr18 steel.

  5. Ion enhanced deposition by dual titanium and acetylene plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Zeng, Z.M.; Tian, X.B.; Chu, P.K.

    2003-01-01

    Plasma immersion ion implantation and deposition (PIII-D) offers a non-line-of-sight fabrication method for various types of thin films on steels to improve the surface properties. In this work, titanium films were first deposited on 9Cr18 (AISI440) stainless bearing steel by metal plasma immersion ion implantation and deposition (MePIII-D) using a titanium vacuum arc plasma source. Afterwards, carbon implantation and carbon film deposition were performed by acetylene (C 2 H 2 ) plasma immersion ion implantation. Multiple-layered structures with superior properties were produced by conducting Ti MePIII-D + C 2 H 2 PIII successively. The composition and structure of the films were investigated employing Auger electron spectroscopy and Raman spectroscopy. It is shown that the mixing for Ti and C atoms is much better when the target bias is higher during Ti MePIII-D. A top diamond-like carbon layer and a titanium oxycarbide layer are formed on the 9Cr18 steel surface. The wear test results indicate that this dual PIII-D method can significantly enhance the wear properties and decrease the surface friction coefficient of 9Cr18 steel

  6. Surface potential measurement of negative-ion-implanted insulators by analysing secondary electron energy distribution

    International Nuclear Information System (INIS)

    Toyota, Yoshitaka; Tsuji, Hiroshi; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki.

    1994-01-01

    The negative ion implantation method we have proposed is a noble technique which can reduce surface charging of isolated electrodes by a large margin. In this paper, the way to specify the surface potential of negative-ion-implanted insulators by the secondary electron energy analysis is described. The secondary electron energy distribution is obtained by a retarding field type energy analyzer. The result shows that the surface potential of fused quartz by negative-ion implantation (C - with the energy of 10 keV to 40 keV) is negatively charged by only several volts. This surface potential is extremely low compared with that by positive-ion implantation. Therefore, the negative-ion implantation is a very effective method for charge-up free implantation without charge compensation. (author)

  7. Implantation of 111In in NTDSi by heavy ion recoil technique

    International Nuclear Information System (INIS)

    Thakare, S.V.; Tomar, B.S.

    1998-01-01

    Heavy ion recoil implantation technique has been used to implant 111 In in n-type silicon using medium energy heavy ion accelerator Pelletron, at TIFR, Colaba, Mumbai. The nuclear reaction used for this purpose was 109 Ag( 7 Li,p4n) 111 In. The beam energy was optimised to be 50 MeV for maximum concentration of the implanted probe atoms. The gamma-ray spectrum of the implanted sample after 24 hours was found to contain only 171 and 245 keV gamma rays of 111 In. The penetration depth of ion is increased to 1.6 μm by heavy ion recoil implantation technique as compared to 0.16 μm with the conventional ion implantation technique. (author)

  8. Effect of ion implantation on the corrosion behavior of lead and a lead-antimony alloy

    International Nuclear Information System (INIS)

    Zhang, S.T.; Kong, F.P.; Muller, R.H.

    1994-01-01

    Ion implantation of different metals in Pb and Pb-4% Sb has been found to improve the open-circuit corrosion resistance of the two metals in 5M H 2 SO 4 . Titanium ions were implanted under different conditions of ion dose and ion energy. Optimum implantation conditions resulted in an up to 72-fold reduction of corrosion currents. The implantation of V, Cr, Ni, and W has been investigated for one implantation condition and has also resulted in decreased corrosion currents. The corrosion behavior was characterized by the current response to small anodic potential steps. Surface analysis and depth profiles have shown the importance of the spatial distribution of the implanted ions for their effects on the anodic and cathodic parts of the corrosion reactions

  9. Ion implantation enhanced metal-Si-metal photodetectors

    Science.gov (United States)

    Sharma, A. K.; Scott, K. A. M.; Brueck, S. R. J.; Zolper, J. C.; Myers, D. R.

    1994-05-01

    The quantum efficiency and frequency response of simple Ni-Si-Ni metal-semiconductor-metal (MSM) photodetectors at long wavelengths are significantly enhanced with a simple, ion-implantation step to create a highly absorbing region approx. 1 micron below the Si surface. The internal quantum efficiency is improved by a factor of approx. 3 at 860 nm (to 64%) and a full factor of ten at 1.06 microns (to 23%) as compared with otherwise identical unimplanted devices. Dark currents are only slightly affected by the implantation process and are as low as 630 pA for a 4.5-micron gap device at 10-V bias. Dramatic improvement in the impulse response is observed, 100 ps vs. 600 ps, also at 10-V bias and 4.5-micron gap, due to the elimination of carrier diffusion tails in the implanted devices. Due to its planar structure, this device is fully VLSI compatible. Potential applications include optical interconnections for local area networks and multi-chip modules.

  10. Modification of magnetic properties of polyethyleneterephthalate by iron ion implantation

    International Nuclear Information System (INIS)

    Lukashevich, M.G.; Batlle, X.; Labarta, A.; Popok, V.N.; Zhikharev, V.A.; Khaibullin, R.I.; Odzhaev, V.B.

    2007-01-01

    Fe + ions (40 keV) were implanted into polyethyleneterephthalate (PET) films with fluences of (0.25-1.5) x 10 17 cm -2 . Magnetic properties of the synthesised Fe:PET composites were studied using superconducting quantum interference device (SQUID) technique in temperature range of 2-300 K. For range of fluences (0.5-0.75) x 10 17 cm -2 the samples reveal superparamagnetic behaviour at room temperature. At fluences above 0.75 x 10 17 cm -2 the strong increase of magnetisation and transition to ferromagnetic properties are registered. Analysis of the magnetic hysteresis loops suggests an easy plane magnetic anisotropy similar to that found for thin magnetic films. Zero-field-cooled (ZFC) and field-cooled (FC) temperature measurements of magnetisation are found to be in agreement with earlier observed formation of Fe nanoparticles (NPs) in the implanted layers. The growth and agglomeration of the NPs forming the quasi-continuous labyrinth-like structure in the polymer film at the highest implantation fluence of 1.5 x 10 17 cm -2 is an origin for the transition to the ferromagnetic properties

  11. Selection of RIB targets using ion implantation at the Holifield radioactive ion beam facility

    International Nuclear Information System (INIS)

    Alton, G.D.; Dellwo, J.

    1995-01-01

    Among several major challenges posed by generating and accelerating adequate intensities of RIBs, selection of the most appropriate target material is perhaps the most difficult because of the requisite fast and selective thermal release of minute amounts of the short-lived product atoms from the ISOL target in the presence of bulk amounts of target material. Experimental studies are under way at the Oak Ridge National Laboratory (ORNL) which are designed to measure the time evolution of implanted elements diffused from refractory target materials which are candidates for forming radioactive ion beams (RIBs) at the Holifield Radioactive Ion Beam Facility (HRIBF). The diffusion coefficients are derived by comparing experimental data with numerical solutions to a one-dimensional form of Fick's second law for ion implanted distributions. In this report, we describe the experimental arrangement, experimental procedures, and provide time release data and diffusion coefficients for releasing ion implanted 37 Cl from Zr 5 Si 3 and 75 As, 79 Br, and 78 Se from Zr 5 Ge 3 and estimates of the diffusion coefficients for 35 Cl, 63 Cu, 65 Cu, 69 Ga and 71 Ga diffused from BN; 35 Cl, 63 Cu, 65 Cu, 69 Ga, 75 As, and 78 Se diffused from C; 35 Cl, 68 Cu, 69 Ga, 75 As, and 78 Se diffused from Ta

  12. Characterization and control of wafer charging effects during high-current ion implantation

    International Nuclear Information System (INIS)

    Current, M.I.; Lukaszek, W.; Dixon, W.; Vella, M.C.; Messick, C.; Shideler, J.; Reno, S.

    1994-02-01

    EEPROM-based sense and memory devices provide direct measures of the charge flow and potentials occurring on the surface of wafers during ion beam processing. Sensor design and applications for high current ion implantation are discussed

  13. Trapping behaviour of deuterium ions implanted into tungsten simultaneously with carbon ions

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Suzuki, Sachiko; Wang, Wanjing; Kurata, Rie; Kida, Katsuya; Oya, Yasuhisa; Okuno, Kenji; Ashikawa, Naoko; Sagara, Akio; Yoshida, Naoaki

    2009-01-01

    The trapping behaviour of deuterium ions implanted into tungsten simultaneously with carbon ions was investigated by thermal desorption spectroscopy (TDS) and x-ray photoelectron spectroscopy (XPS). The D 2 TDS spectrum consisted of three desorption stages, namely desorption of deuterium trapped by intrinsic defects, ion-induced defects and carbon with the formation of the C-D bond. Although the deuterium retention trapped by intrinsic defects was almost constant, that by ion-induced defects increased as the ion fluence increased. The retention of deuterium with the formation of the C-D bond was saturated at an ion fluence of 0.5x10 22 D + m -2 , where the major process was changed from the sputtering of tungsten with the formation of a W-C mixture to the formation of a C-C layer, and deuterium retention as the C-D bond decreased. It was concluded that the C-C layer would enhance the chemical sputtering of carbon with deuterium with the formation of CD x and the chemical state of carbon would control the deuterium retention in tungsten under C + -D 2 + implantation.

  14. The Reduction of TED in Ion Implanted Silicon

    International Nuclear Information System (INIS)

    Jain, Amitabh

    2008-01-01

    The leading challenge in the continued scaling of junctions made by ion implantation and annealing is the control of the undesired transient enhanced diffusion (TED) effect. Spike annealing has been used as a means to reduce this effect and has proven successful in previous nodes. The peak temperature in this process is typically 1050 deg. C and the time spent within 50 deg. C of the peak is of the order of 1.5 seconds. As technology advances along the future scaling roadmap, further reduction or elimination of the enhanced diffusion effect is necessary. We have shown that raising the peak temperature to 1175 deg. C or more and reduction of the anneal time at peak temperature to less than a millisecond is effective in eliminating enhanced diffusion. We show that it is possible to employ a sequence of millisecond anneal followed by spike anneal to obtain profiles that do not exhibit gradient degradation at the junction and have junction depth and sheet resistance appropriate to the needs of future technology nodes. We have implemented millisecond annealing using a carbon dioxide laser to support high-volume manufacturing of 65 nm microprocessors and system-on-chip products. We further show how the use of molecular ion implantation to produce amorphousness followed by laser annealing to produce solid phase epitaxial regrowth results in junctions that meet the shallow depth and abruptness requirements of the 32 nm node.

  15. Industrial plasma immersion ion implanter and its applications

    CERN Document Server

    Tong Hong Hui; Huo Yan Feng; Wang Ke; Mu Li Lan; Feng Tie Min; Zhao Jun; Yan Bing; Geng Man

    2002-01-01

    A new generation industrial plasma immersion ion implanter was developed recently in South-western Institute of Physics and some experimental results are reported. The vacuum chamber with 900 mm in diameter and 1050 mm in height stands vertically. The pumping system includes turbo -pump and mechanical pump and it can be automatically controlled by PLC. The background pressure is less than 4 x 10 sup - sup 4 Pa. The plasma in the chamber can be generated by hot-filament discharge and three high-efficiency magnetic filter metal plasma sources, so that the plasma immersion ion implantation and enhanced deposition can be done. The maximum pulse voltage output is 80 kV, maximum pulse current is 60 A, repetition frequency is 50-500 Hz, and the pulse rise time is less than 2 mu s. The power modulator can operate in the pulse bunching mode if necessary. In general, the plasma density is 10 sup 8 -10 sup 1 sup 0 cm sup - sup 3 , the film deposition rate is 0.1-0.5 nm/s

  16. Dynamic sheath studies in plasma source ion implantation

    International Nuclear Information System (INIS)

    Schever, J.T.; Shamim, M.; Conrad, J.R.

    1990-01-01

    Plasma Source Ion Implantation (PSII) is a non-line-of-sight method for materials processing in which a target is immersed in a plasma and pulse biased to a high negative voltage (∼ 50 kV). A model of the dynamic sheath which forms under these conditions has been developed and applied to planar, cylindrical and spherical geometries. This model assumes that the transient sheath obeys the Child-Langmuir law for space charge limited emission at each instant during the propagation. Ions uncovered by the propagating sheath edge supply the space charge limited current. This yields an equation relating sheath edge velocity to position, which can be integrated to obtain the sheath edge position as a function of time. The same procedure used in cylindrical and spherical geometry results in a similar equation which must be integrated numerically. Comparison of results of experimental measurements, our model and simulation will be presented for the dynamic sheath edge position and target current waveform. Measurements of implanted dose uniformity of wedge shaped targets are also presented

  17. Ion-implantation and analysis for doped silicon slot waveguides

    Directory of Open Access Journals (Sweden)

    McCallum J. C.

    2012-10-01

    Full Text Available We have utilised ion implantation to fabricate silicon nanocrystal sensitised erbium-doped slot waveguide structures in a Si/SiO2/Si layered configuration and photoluminescence (PL and Rutherford backscattering spectrometry (RBS to analyse these structures. Slot waveguide structures in which light is confined to a nanometre-scale low-index region between two high-index regions potentially offer significant advantages for realisation of electrically-pumped Si devices with optical gain and possibly quantum optical devices. We are currently investigating an alternative pathway in which high quality thermal oxides are grown on silicon and ion implantation is used to introduce the Er and Si-ncs into the SiO2 layer. This approach provides considerable control over the Er and Si-nc concentrations and depth profiles which is important for exploring the available parameter space and developing optimised structures. RBS is well-suited to compositional analysis of these layered structures. To improve the depth sensitivity we have used a 1 MeV α beam and results indicate that a layered silicon-Er:SiO2/silicon structure has been fabricated as desired. In this paper structural results will be compared to Er photoluminescence profiles for samples processed under a range of conditions.

  18. Behavior of ion-implanted cesium in silicon dioxide films

    International Nuclear Information System (INIS)

    Fishbein, B.J.

    1988-01-01

    Charged impurities in silicon dioxide can be used to controllably shift the flatband voltage of metal-oxide-semiconductor devices independently of the substrate doping, the gate oxide thickness and the gate-electrode work function. Cesium is particularly well suited for this purpose because it is immobile in SiO 2 at normal device operating temperatures, and because it can be controllably introduced into oxide films by ion implantation. Cesium is positively charged in silicon dioxide, resulting in a negative flatband voltage shift. Possible applications for cesium technology include solar cells, devices operated at liquid nitrogen temperature, and power devices. The goal of this work has been to characterize as many aspects of cesium behavior in silicon dioxide as are required for practical applications. Accordingly, cesium-ion implantation, cesium diffusion, and cesium electrical activation in SiO 2 were studied over a broad range of processing conditions. The electrical properties of cesium-containing oxides, including current-voltage characteristics, interface trap density, and inversion-layer carrier mobility were examined, and several potential applications for cesium technology have been experimentally demonstrated

  19. The Reduction of TED in Ion Implanted Silicon

    Science.gov (United States)

    Jain, Amitabh

    2008-11-01

    The leading challenge in the continued scaling of junctions made by ion implantation and annealing is the control of the undesired transient enhanced diffusion (TED) effect. Spike annealing has been used as a means to reduce this effect and has proven successful in previous nodes. The peak temperature in this process is typically 1050 °C and the time spent within 50 °C of the peak is of the order of 1.5 seconds. As technology advances along the future scaling roadmap, further reduction or elimination of the enhanced diffusion effect is necessary. We have shown that raising the peak temperature to 1175 °C or more and reduction of the anneal time at peak temperature to less than a millisecond is effective in eliminating enhanced diffusion. We show that it is possible to employ a sequence of millisecond anneal followed by spike anneal to obtain profiles that do not exhibit gradient degradation at the junction and have junction depth and sheet resistance appropriate to the needs of future technology nodes. We have implemented millisecond annealing using a carbon dioxide laser to support high-volume manufacturing of 65 nm microprocessors and system-on-chip products. We further show how the use of molecular ion implantation to produce amorphousness followed by laser annealing to produce solid phase epitaxial regrowth results in junctions that meet the shallow depth and abruptness requirements of the 32 nm node.

  20. Heavy ion time-of-flight ERDA of high dose metal implanted germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Evans, P.J.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics; Bunder, J. [New South Wales Univ., Wollongong, NSW (Australia). Wollongong Univ. Coll

    1996-12-31

    With the thick Ge substrates used in ion implantation, RBS can have difficulty in resolving the mass-depth ambiguities when analysing materials composed of mixtures of elements with nearly equal masses. Additional, and complimentary techniques are thus required. This paper reports the use of heavy ion time-of-flight elastic recoil detection analysis (ToF- ERDA), and conventional RBS in the analysis of Ge(100) implanted with high dose Ti and Cu ions from a MEWA ion source . Heavy ion ToF ERDA has been used to resolve, and profile the implanted transition metal species, and also to study any oxygen incorporation into the sample resulting from the implantation, or subsequential reactions with air or moisture. This work is part of a study on high dose metal ion implantation of medium atomic weight semiconductor materials. 13 refs., 6 figs.

  1. Heavy ion time-of-flight ERDA of high dose metal implanted germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N; Evans, P J; Noorman, J T [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Wielunski, L S [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics; Bunder, J [New South Wales Univ., Wollongong, NSW (Australia). Wollongong Univ. Coll

    1997-12-31

    With the thick Ge substrates used in ion implantation, RBS can have difficulty in resolving the mass-depth ambiguities when analysing materials composed of mixtures of elements with nearly equal masses. Additional, and complimentary techniques are thus required. This paper reports the use of heavy ion time-of-flight elastic recoil detection analysis (ToF- ERDA), and conventional RBS in the analysis of Ge(100) implanted with high dose Ti and Cu ions from a MEWA ion source . Heavy ion ToF ERDA has been used to resolve, and profile the implanted transition metal species, and also to study any oxygen incorporation into the sample resulting from the implantation, or subsequential reactions with air or moisture. This work is part of a study on high dose metal ion implantation of medium atomic weight semiconductor materials. 13 refs., 6 figs.

  2. Platelet adhesion and plasma protein adsorption control of collagen surfaces by He+ ion implantation

    International Nuclear Information System (INIS)

    Kurotobi, K.; Suzuki, Y.; Nakajima, H.; Suzuki, H.; Iwaki, M.

    2003-01-01

    He + ion implanted collagen-coated tubes with a fluence of 1 x 10 14 ions/cm 2 were exhibited antithrombogenicity. To investigate the mechanisms of antithrombogenicity of these samples, plasma protein adsorption assay and platelet adhesion experiments were performed. The adsorption of fibrinogen (Fg) and von Willebrand factor (vWf) was minimum on the He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 . Platelet adhesion (using platelet rich plasma) was inhibited on the He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 and was accelerated on the untreated collagen and ion implanted collagen with fluences of 1 x 10 13 , 1 x 10 15 and 1 x 10 16 ions/cm 2 . Platelet activation with washed platelets was observed on untreated collagen and He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 and was inhibited with fluences of 1 x 10 13 , 1 x 10 15 and 1 x 10 16 ions/cm 2 . Generally, platelets can react with a specific ligand inside the collagen (GFOGER sequence). The results of platelets adhesion experiments using washed platelets indicated that there were no ligands such as GFOGER on the He + ion implanted collagen over a fluence of 1 x 10 13 ions/cm 2 . On the 1 x 10 14 ions/cm 2 implanted collagen, no platelet activation was observed due to the influence of plasma proteins. >From the above, it is concluded that the decrease of adsorbed Fg and vWf caused the antithrombogenicity of He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 and that plasma protein adsorption took an important role repairing the graft surface

  3. Development of a simple, low cost, indirect ion beam fluence measurement system for ion implanters, accelerators

    Science.gov (United States)

    Suresh, K.; Balaji, S.; Saravanan, K.; Navas, J.; David, C.; Panigrahi, B. K.

    2018-02-01

    We developed a simple, low cost user-friendly automated indirect ion beam fluence measurement system for ion irradiation and analysis experiments requiring indirect beam fluence measurements unperturbed by sample conditions like low temperature, high temperature, sample biasing as well as in regular ion implantation experiments in the ion implanters and electrostatic accelerators with continuous beam. The system, which uses simple, low cost, off-the-shelf components/systems and two distinct layers of in-house built softwarenot only eliminates the need for costly data acquisition systems but also overcomes difficulties in using properietry software. The hardware of the system is centered around a personal computer, a PIC16F887 based embedded system, a Faraday cup drive cum monitor circuit, a pair of Faraday Cups and a beam current integrator and the in-house developed software include C based microcontroller firmware and LABVIEW based virtual instrument automation software. The automatic fluence measurement involves two important phases, a current sampling phase lasting over 20-30 seconds during which the ion beam current is continuously measured by intercepting the ion beam and the averaged beam current value is computed. A subsequent charge computation phase lasting 700-900 seconds is executed making the ion beam to irradiate the samples and the incremental fluence received by the sampleis estimated usingthe latest averaged beam current value from the ion beam current sampling phase. The cycle of current sampling-charge computation is repeated till the required fluence is reached. Besides simplicity and cost-effectiveness, other important advantages of the developed system include easy reconfiguration of the system to suit customisation of experiments, scalability, easy debug and maintenance of the hardware/software, ability to work as a standalone system. The system was tested with different set of samples and ion fluences and the results were verified using

  4. Effect of disorder and defects in ion-implanted semiconductors electrical and physiochemical characterization

    CERN Document Server

    Willardson, Robert K; Christofides, Constantinos; Ghibaudo, Gerard

    2014-01-01

    Defects in ion-implanted semiconductors are important and will likely gain increased importance in the future as annealing temperatures are reduced with successive IC generations. Novel implant approaches, such as MdV implantation, create new types of defects whose origin and annealing characteristics will need to be addressed. Publications in this field mainly focus on the effects of ion implantation on the material and the modification in the implanted layer afterhigh temperature annealing.Electrical and Physicochemical Characterization focuses on the physics of the annealing kine

  5. Low preveance ion source bridges low and high intensities in ion implantation

    International Nuclear Information System (INIS)

    Orr, F.D.; Mayhall, D.

    1976-01-01

    The Low Perveance Ion Source developed by Accelerators, Inc. offers the Semiconductor Industry the advantage of processing medium to high intensity implants on a system which will also implant 200 to 300 wafers an hour at MOS doses. Stable source beam currents can be varied over three orders of magnitude by variation of a single source parameter. This source uses a new computer designed Low Perveance extraction optics which is completely new to the Ion Implantation Industry. Test data and calculations are shown which define the versatility of this system. Scanned currents from 1 microamp to 400 microamps allow for a variety of production processing. Beam characteristics feature low energy spread (less than 10 eV) and low divergence (less than 3 degrees). Beam control optics consist of a double focusing analyzing magnet and two triplet quadrupoles. The source may be fitted with an oven for feeding of solid materials and analyzed beam currents in the milliamp range for development purposes. The batch processing, hybrid scanning end station is most applicable for high current beams as well as high volume batch processings of MOS Implants. Results of development work toward increased currents using both solid and gas feed material with the Low Perveance source are presented. System improvements including Accel-Decel and a third extraction element are discussed

  6. Structural Changes in Polymer Films by Fast Ion Implantation

    Science.gov (United States)

    Parada, M. A.; Minamisawa, R. A.; Muntele, C.; Muntele, I.; De Almeida, A.; Ila, D.

    2006-11-01

    In applications from food wrapping to solar sails, polymers films can be subjected to intense charged panicle bombardment and implantation. ETFE (ethylenetetrafluoroethylene) with high impact resistance is used for pumps, valves, tie wraps, and electrical components. PFA (tetrafluoroethylene-per-fluoromethoxyethylene) and FEP (tetrafluoroethylene-hexa-fluoropropylene) are sufficiently biocompatible to be used as transcutaneous implants since they resist damage from the ionizing space radiation, they can be used in aerospace engineering applications. PVDC (polyvinyllidene-chloride) is used for food packaging, and combined with others plastics, improves the oxygen barrier responsible for the food preservation. Fluoropolymers are also known for their radiation dosimetry applications, dependent on the type and energy of the radiation, as well as of the beam intensity. In this work ETFE, PFA, FEP and PVDC were irradiated with ions of keV and MeV energies at several fluences and were analyzed through techniques as RGA, OAP, FTIR, ATR and Raman spectrophotometry. CF3 is the main specie emitted from PFA and FEP when irradiated with MeV protons. H and HF are released from ETFE due to the broken C-F and C-H bonds when the polymer is irradiated with keV Nitrogen ions and protons. At high fluence, especially for keV Si and N, damage due to carbonization is observed with the formation of hydroperoxide and polymer dehydroflorination. The main broken bonds in PVDC are C-O and C-Cl, with the release of Cl and the formation of double carbon bonds. The ion fluence that causes damage, which could compromise fluoropolymer film applications, has been determined.

  7. Compare of N-ion implantation effects on Bacillus coagulans by use of two kinds of ion sources

    International Nuclear Information System (INIS)

    Yu Long; Sun Yang; Xie Fei; Liu Yang; An Xiao

    2007-01-01

    As a novel method of mutation breeding, the low energy ion beam implantation has been widely used. The biological effects of Bacillus coagulans implanted by Kaufman source and dual-Panning source have been compared. The results showed that with the same extraction voltage, the genetic stability of the third generation strain implanted by Kaufman source was 30% higher than that implanted by dual-Panning source, while the general mutation rate of the former was 2% lower than the latter. The appropriate ion source should be chosen to meet the requirement of mutation. (authors)

  8. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell

    International Nuclear Information System (INIS)

    Kim, Beom-Su; Kim, Jin Seong; Park, Young Min; Choi, Bo-Young; Lee, Jun

    2013-01-01

    Magnesium (Mg) is one of the most important ions associated with bone osseointegration. The aim of this study was to evaluate the cellular effects of Mg implantation in titanium (Ti) surfaces treated with sand blast using large grit and acid etching (SLA). Mg ions were implanted into the surface via vacuum arc source ion implantation. The surface morphology, chemical properties, and the amount of Mg ion release were evaluated by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and inductively coupled plasma-optical emission spectrometer (ICP-OES). Human mesenchymal stem cells (hMSCs) were used to evaluate cellular parameters such as proliferation, cytotoxicity, and adhesion morphology by MTS assay, live/dead assay, and SEM. Furthermore, osteoblast differentiation was determined on the basis of alkaline phosphatase (ALP) activity and the degree of calcium accumulation. In the Mg ion-implanted disk, 2.3 × 10 16 ions/cm 2 was retained. However, after Mg ion implantation, the surface morphology did not change. Implanted Mg ions were rapidly released during the first 7 days in vitro. The MTS assay, live/dead assay, and SEM demonstrated increased cell attachment and growth on the Mg ion-implanted surface. In particular, Mg ion implantation increased the initial cell adhesion, and in an osteoblast differentiation assay, ALP activity and calcium accumulation. These findings suggest that Mg ion implantation using the plasma source ion implantation (PSII) technique may be useful for SLA-treated Ti dental implants to improve their osseointegration capacity. - Highlights: ► Mg ion was coated onto surface of SLA treated titanium via vacuum arc source ion implantation method. ► The morphological characteristics did not change after Mg ion implantation. ► Mg ion implanted SLA Ti is highly cytocompatible. ► Initial cell adhesion of MSCs is improved by Mg ion implantation. ► Mg ion implantation improved

  9. Magnesium aluminate planar waveguides fabricated by C-ion implantation with different energies and fluences

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hong-Lian; Yu, Xiao-Fei; Zhang, Lian; Wang, Tie-Jun; Qiao, Mei; Zhang, Jing; Liu, Peng; Wang, Xue-Lin, E-mail: xuelinwang@sdu.edu.cn

    2015-11-01

    We report on MgAl{sub 2}O{sub 4} planar waveguides produced using different energies and fluences of C-ion implantation at room temperature. Based on the prism coupling method and end-face coupling measurements, light could propagate in the C-ion-implanted samples. The Raman spectra results indicate that the MgAl{sub 2}O{sub 4} crystal lattice was damaged during the multi-energy C implantation process, whereas the absorption spectra were hardly affected by the C-ion implantation in the visible and infrared bands.

  10. Measurement of electron emission due to energetic ion bombardment in plasma source ion implantation

    Science.gov (United States)

    Shamim, M. M.; Scheuer, J. T.; Fetherston, R. P.; Conrad, J. R.

    1991-11-01

    An experimental procedure has been developed to measure electron emission due to energetic ion bombardment during plasma source ion implantation. Spherical targets of copper, stainless steel, graphite, titanium alloy, and aluminum alloy were biased negatively to 20, 30, and 40 kV in argon and nitrogen plasmas. A Langmuir probe was used to detect the propagating sheath edge and a Rogowski transformer was used to measure the current to the target. The measurements of electron emission coefficients compare well with those measured under similar conditions.

  11. Influence of the ion implantation on the nanoscale intermetallic phases formation in Ni-Ti system

    International Nuclear Information System (INIS)

    Kalashnikov, M.P.; Kurzina, I.A.; Bozhko, I.A.; Kozlov, E.V.; Fortuna, S.V.; Sivin, D.O.; Stepanov, I.B.; Sharkeev, Yu.P.

    2005-01-01

    Full text: The ion implantation at a high intensity mode is an effective method for modification of the surface properties of metals and alloys. Improvement of mechanical and tribological properties of irradiated materials using the high intensity implantation is connected with an element composition and microstructure modification of the surface and subsurface layers. One shows a great interest in intermetallic phase's synthesis by ion implantation, because of unique physical-mechanical properties of the intermetallic compounds. The influence of the irradiation conditions on the structural state and surface properties of implanted materials is not clear enough. The study of the factors influencing on the formation of the surface ion - alloyed layers of metal targets having the high tribological and mechanical properties by high intensity ion implantation is actual. The aim of the present work is a study of the microstructure, phase composition, physical and mechanical properties of the ion-alloyed Ni surfaces formed at high intensity implantation of Ti ions. The implantation Ti ions into Ni samples at high intensity mode was realized using ion source 'Raduga - 5'. The implantation Ti ions into Ni was carried out at accelerating voltage 20 kV for 2 h. The regimes were differed in the samples temperature (580 - 700 K), the distance from the ion implanted samples to the ion source (0.43-0.93 m) and the dose of irradiated ions (0.3·10 18 -2.9·10 18 ion/cm -2 ). The element composition of the implanted samples was analyzed by the electron spectroscopy. The structural-phase state of the Ni ion-modified layers was investigated by the transmission electron microscopy and X-ray diffraction methods. Additionally, the investigation of mechanical and tribological properties of the implanted Ni samples was carried out. It was established that the maximum thickness of the ion-alloyed nickel layers at high intensity mode allows forming the nanoscale intermetallic phases (Ni

  12. The third generation multi-purpose plasma immersion ion implanter for surface modification of materials

    CERN Document Server

    Tang Bao Yin; Wang Xiao Feng; Gan Kong Yin; Wang Song Yan; Chu, P K; Huang Nian Ning; Sun Hong

    2002-01-01

    The third generation multi-purpose plasma immersion ion implantation (PIII) equipment has been successfully used for research and development of surface modification of biomedical materials, metals and their alloys in the Southwest Jiaotong University. The implanter equipped with intense current, pulsed cathodic arc metal plasma sources which have both strong coating function and gas and metal ion implantation function. Its pulse high voltage power supply can provide big output current. It can acquire very good implantation dose uniformity. The equipment can both perform ion implantation and combine ion implantation with sputtering deposition and coating to form many kinds of synthetic surface modification techniques. The main design principles, features of important components and achievement of research works in recent time have been described

  13. Fabrication of micromechanical structures on substrates selectively etched using a micropatterned ion-implantation method

    International Nuclear Information System (INIS)

    Nakano, Shizuka; Nakagawa, Sachiko; Ishikawa, Haruo; Ogiso, Hisato

    2001-01-01

    An advanced micromachining technique using ion implantation to modify materials was studied. Gold ion implantation into silicon decreased the etching rate when the silicon was etched in potassium hydroxide solution after the ion implantation; the implanted region remained, thus forming the microstructure. Observation of the cross-section of the resulting etched structure by transmission electron microscopy showed that the structure was made only from the ion-implanted region, and that gold was precipitated on the surface. To clarify the mechanism involved in the decrease in the etching rate, we varied the etching conditions. Our results show that precipitation of implanted gold on the surface decreased the etching rate, because solubility of gold is lower

  14. Effects on cuytoskeleton system in pollen tube of pinus thunbergii induced by ion beam implantation

    International Nuclear Information System (INIS)

    Huang Qunce; Liang Qiuxia; Li Guopin

    2008-01-01

    The damage of the cytoskeleton system in the pollen and the pollen tube of Pinus thunbergii induced by ion beam implantation were researched. The results showed that the disorganization of the micro-tubules in the pollen tube was produced by N + implantation. The abnormal states of the pollen tube in morphology were very correlative with the abnormality of the cytoskeleton system. N + implantation was responsible for morphological abnormalities in the pollen tubes. There was a distinct correlation between the damage effects and the ion implantation dose. The add of dose caused more obvious damage effects. Furthermore, the state of the cytoskeleton system in the pollen tube was influenced by the ion implantation. The impact grade depended also on the ion implantation dose. (authors)

  15. Combined transmission electron microscope and ion channeling study of metastable metal alloys formed by ion implantation

    International Nuclear Information System (INIS)

    Cullis, A.G.; Borders, J.A.; Hirvonen, J.K.; Poate, J.M.

    1977-01-01

    Recently, ion implantation has been used to produce metastable alloy layers with a range of structures from crystalline substitutional solid solutions to amorphous. The technique offers the possibility of producing metastable metal layers with unique physical properties. Its application in the formation of alloys exhibiting different although complementary types of metastability is described. The metal combinations chosen (Ag-Cu and Ta-Cu) show little mutual solubility under equilibrium conditions

  16. Multi-dimensional microanalysis of masklessly implanted atoms using focused heavy ion beam

    International Nuclear Information System (INIS)

    Mokuno, Yoshiaki; Iiorino, Yuji; Chayahara, Akiyoshi; Kiuchi, Masato; Fujii, Kanenaga; Satou, Mamoru

    1992-01-01

    Multi-dimensional structure fabricated by maskless MeV gold implantation in silicon wafer was analyzed by 3 MeV carbon ion microprobe using a microbeam line developed at GIRIO. The minimum line width of the implanted region was estimated to be about 5 μm. The advantages of heavy ions for microanalysis were demonstrated. (author)

  17. Characterization of ion-implanted aluminum and iron by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Brodkin, J.S.; Franzen, W.; Culbertson, R.J.

    1990-01-01

    The change in the optical constants of aluminum alloy and iron samples caused by implantation with nitrogen and chromium ions has been investigated by spectroscopic ellipsometry. The objective is to develop a method for simple, non-destructive characterization of ion-implanted metals. 5 refs., 6 figs

  18. Single-Ion Implantation for the Development of Si-Based MOSFET Devices with Quantum Functionalities

    Directory of Open Access Journals (Sweden)

    Jeffrey C. McCallum

    2012-01-01

    Full Text Available Interest in single-ion implantation is driven in part by research into development of solid-state devices that exhibit quantum behaviour in their electronic or optical characteristics. Here, we provide an overview of international research work on single ion implantation and single ion detection for development of electronic devices for quantum computing. The scope of international research into single ion implantation is presented in the context of our own research in the Centre for Quantum Computation and Communication Technology in Australia. Various single ion detection schemes are presented, and limitations on dopant placement accuracy due to ion straggling are discussed together with pathways for scale-up to multiple quantum devices on the one chip. Possible future directions for ion implantation in quantum computing and communications are also discussed.

  19. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    International Nuclear Information System (INIS)

    Weis, Christoph D.

    2011-01-01

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  20. Stoichiometric carbon nitride synthesized by ion beam sputtering and post nitrogen ion implantation

    International Nuclear Information System (INIS)

    Valizadeh, R.; Colligon, J.S.; Katardiev, I.V.; Faunce, C.A.; Donnelly, S.E.

    1998-01-01

    Full text: Carbon nitride films have been deposited on Si (100) by ion beam sputtering a vitreous graphite target with nitrogen and argon ions with and without concurrent N2 ion bombardment at room temperature. The sputtering beam energy was 1000 eV and the assisted beam energy was 300 eV with ion / atom arrival ratio ranging from 0.5 to 5. The carbon nitride films were deposited both as single layer directly on silicon substrate and as multilayer between two layers of stoichiometric amorphous silicon nitride and polycrystalline titanium nitride. The deposited films were implanted ex-situ with 30 keV nitrogen ions with various doses ranging from 1E17 to 4E17 ions.cm -2 and 2 GeV xenon ion with a dose of 1E12 ions.cm -2 . The nitrogen concentration of the films was measured with Rutherford Backscattering (RBS), Secondary Neutral Mass Spectrometry (SNMS) and Parallel Electron Energy Loss Spectroscopy (PEELS). The nitrogen concentration for as deposited sample was 34 at% and stoichiometric carbon nitride C 3 N 4 was achieved by post nitrogen implantation of the multi-layered films. Post bombardment of single layer carbon nitride films lead to reduction in the total nitrogen concentration. Carbon K edge structure obtained from PEELS analysis suggested that the amorphous C 3 N 4 matrix was predominantly sp 2 bonded. This was confirmed by Fourier Transforrn Infra-Red Spectroscopy (FTIR) analysis of the single CN layer which showed the nitrogen was mostly bonded with carbon in nitrile (C≡N) and imine (C=N) groups. The microstructure of the film was determined by Transmission Electron Microscopy (TEM) which indicated that the films were amorphous

  1. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Christoph D.

    2011-10-04

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  2. Ion implantation in compound semiconductors for high-performance electronic devices

    International Nuclear Information System (INIS)

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-01-01

    Advanced electronic devices based on compound semiconductors often make use of selective area ion implantation doping or isolation. The implantation processing becomes more complex as the device dimensions are reduced and more complex material systems are employed. The authors review several applications of ion implantation to high performance junction field effect transistors (JFETs) and heterostructure field effect transistors (HFETs) that are based on compound semiconductors, including: GaAs, AlGaAs, InGaP, and AlGaSb

  3. Structural investigations of amorphised iron and nickel by high-fluence metalloid ion implantation

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Otto, G.; Hohmuth, K.; Heera, V.

    1987-01-01

    Boron, phosphorus and arsenic ions have been implanted into evaporated iron and nickel thin films at room temperature, and the implantation-induced microstructure has been investigated by high-voltage electron microscopy and transmission high energy electron diffraction. The metal films were implanted with ions to a constant dose of 1 x 10 17 and 5 x 10 17 ions/cm 2 respectively at energy of 50 keV. An amorphous layer was produced by boron and phosphorus ion implantation. Information on the atomic structure of the amorphous layers was obtained from the elastically diffracted electron intensity. On the basis of the correct scattering curves, the total interference function and the pair correlation function were determined. Finally, the atomic arrangement of the implantation-induced amorphous layers is discussed and structure produced by ion irradiation is compared with amorphous structures formed with other techniques. (author)

  4. Ion implantation reinforcement of the protective efficiency of nickel in artificial sea-water

    International Nuclear Information System (INIS)

    Leroy, L.; Girault, P.; Grosseau-Poussard, J.L.; Dinhut, J.F.

    2002-01-01

    Ni bulk specimens have been implanted with Cr, Cu and Ar ions (4x10 16 ions/cm 2 , 60 keV) in order to distinguish between chemical and radiation damage effects on protection corrosion. The corrosion behaviour in artificial sea-water of ion-implanted and pure Ni has been studied at room temperature by electrochemical impedance spectroscopy (EIS) technique. EIS spectra of ion-implanted Ni exhibit one capacitance loop while in pure Ni two distinct loops are observed. Moreover an important increase in the polarisation resistance is noticed for all implanted ions. Theses changes in EIS behaviour with implantation is related to the increase of the superficial layer density resulting in a decrease of heterogeneity of the passive layer. Equivalent circuits are proposed to fit the impedance spectra and corresponding electrochemical parameters are deduced

  5. Ion implantation reinforcement of the protective efficiency of nickel in artificial sea-water

    CERN Document Server

    Leroy, L; Grosseau-Poussard, J L; Dinhut, J F

    2002-01-01

    Ni bulk specimens have been implanted with Cr, Cu and Ar ions (4x10 sup 1 sup 6 ions/cm sup 2 , 60 keV) in order to distinguish between chemical and radiation damage effects on protection corrosion. The corrosion behaviour in artificial sea-water of ion-implanted and pure Ni has been studied at room temperature by electrochemical impedance spectroscopy (EIS) technique. EIS spectra of ion-implanted Ni exhibit one capacitance loop while in pure Ni two distinct loops are observed. Moreover an important increase in the polarisation resistance is noticed for all implanted ions. Theses changes in EIS behaviour with implantation is related to the increase of the superficial layer density resulting in a decrease of heterogeneity of the passive layer. Equivalent circuits are proposed to fit the impedance spectra and corresponding electrochemical parameters are deduced.

  6. A study on mutagenic effects of antibiotic-producers by ion implantation

    International Nuclear Information System (INIS)

    Xie Liqing; Zhang Yinfen; Chen Ruyi; Zhou Ruiying; Zhang Peiling; Ying Hengfeng; Yang Guorong; Yang Guifang

    1995-01-01

    Mutagenic effects of Streptomyces ribosidificus, Streptomyces kanamyceticus and the phage-resistant culture of Streptomyces kanamyceticus induced by N + and C + ion implantation with different doses have been investigated. The experimental results show that the death rates of antibiotic-producers increase with the increase of ion implantation dose, and the form mutation of the antibiotic-producers is rather obvious. After N + ion implantation, the titer units increase by 10%-25%, 5.2%-12.1% and 2.1%-12.75% for the above three strains respectively; while after C + ion implantation the titer units increase by 10%-16.9%, 1.05%-3.08% and 5%-20% respectively. The selected strains of Micromonospora echimospoora and Streptomyces kanamyceticus after N + ion implantation have been used in the factory. The increase of production is 20% and 12.5% respectively and marked economic benefits are obtained

  7. Electrical conduction in 100 keV Kr+ ion implanted poly (ethylene terephthalate)

    Science.gov (United States)

    Goyal, P. K.; Kumar, V.; Gupta, Renu; Mahendia, S.; Anita, Kumar, S.

    2012-06-01

    Polyethylene terephthalate (PET) samples have been implanted to 100 keV Kr+ ions at the fluences 1×1015-- 1×1016 cm-2. From I-V characteristics, the conduction mechanism was found to be shifted from ohmic to space charge limited conduction (SCLC) after implantation. The surface conductivity of these implanted samples was found to increase with increasing implantation dose. The structural alterations in the Raman spectra of implanted PET samples indicate that such an increase in the conductivity may be attributed to the formation of conjugated double bonded carbonaceous structure in the implanted layer of PET.

  8. Anticorrosion ion implantation of fragments of zirconium fuel can specimens

    International Nuclear Information System (INIS)

    Kalin, B.A.; Osipov, V.V.; Volkov, N.V.; Khernov, V.Yu.

    2001-01-01

    Aimed at the study of specific features of oxide film formation in the initial stage of Eh110 and Eh635 alloy fuel can oxidation the modification of tubular specimen surfaces is performed using an ion mixing technique, and the structure of oxide films produced in a steam-water environment is investigated. Using the method of vacuum vapor deposition the outer surface of specimens is coated with alloying element films irradiated by a polyenergetic Ar + ion beam with a 10 keV mean energy up to radiation doses of (7-10) x 10 17 ion/cm 2 . Monatomic (Al, Fe, Cu, Cr, Mo, Sn) or diatomic (Al-Fe, Al-Mo, Al-Sn, Fe-Cu, Fe-Mo, Fe-Sn, Cr-Mo, Cr-Sn) implantation into a zirconium cladding occurs under irradiation effect. The positive influence of combined intrusion of Al and other elements is revealed. The presence of Al atoms enhances the oxide film structure. The least ZeO 2 film thickness is observed when alloying with molybdenum, Al-Fe, Al-Mo and Al-Sn [ru

  9. Large area diamond-like carbon coatings by ion implantation

    International Nuclear Information System (INIS)

    McCabe, A.R.; Proctor, G.; Jones, A.M.; Bull, S.J.; Chivers, D.J.

    1993-01-01

    Diamond-like Carbon (DLC) coatings have been deposited onto large geometry components in the Harwell Blue Tank ion implantation facility. To modify the substrate surface and to crack the low vapour pressure oil which is evaporated and condensed onto the surface, a 40 Kev nitrogen ion bucket ion source is used. The coating of areas up to 1 metre in diameter is common and with component manipulation larger areas may be coated. Since the component temperature never exceeds 80 o C during the process, a wide range of materials may be coated including specialist tool steels and even certain high density polymers. In order to produce hard wear resistant coatings with extremely low coefficients of friction (0.02-0.15) and a range of mechanical and electrical properties, various oil precursors have been investigated. The production and assessment of such coatings, including measurements of their tribiological performance, is presented. Applications for wear resistance, corrosion protection and electrically conducting coatings are discussed with examples drawn from engineering, electronics and biomedicine. (7 figures, 13 references). (UK)

  10. Boron lattice location in room temperature ion implanted Si crystal

    International Nuclear Information System (INIS)

    Piro, A.M.; Romano, L.; Mirabella, S.; Grimaldi, M.G.

    2005-01-01

    The B lattice location in presence of a Si-self-interstitial (I Si ) supersaturation, controlled by energetic proton bombardment, has been studied by means of ion channelling and massive Monte Carlo simulations. B-doped layers of Si crystals with a B concentration of 1 x 10 2 B/cm 3 were grown by Molecular Beam Epitaxy. Point defect engineering techniques, with light energetic ion implants, have been applied to generate an I Si uniform injection in the electrically active layer. The displacement of B atoms out of substitutional lattice sites was induced by 650 keV proton irradiations at room temperature (R.T.) and the resultant defect configuration was investigated by ion channelling and Nuclear Reaction Analysis (NRA) techniques. Angular scans were measured both through and axes along the (1 0 0) plane using the 11 B(p,α) 8 Be nuclear reaction at 650 keV proton energy. Monte Carlo simulated angular scans were calculated considering a variety of theoretical defect configurations, supported by literature, and compared with experimental data. Our experimental scans can be fitted by a linear combination of small (0.3 A) and large B displacements (1.25 A) along the direction, compatible with the B-dumbbell oriented along as proposed by ab initio calculations

  11. Pure high dose metal ion implantation using the plasma immersion technique

    International Nuclear Information System (INIS)

    Zhang, T.; Tang, B.Y.; Zeng, Z.M.; Kwok, T.K.; Chu, P.K.; Monteiro, O.R.; Brown, I.G.

    1999-01-01

    High energy implantation of metal ions can be carried out using conventional ion implantation with a mass-selected ion beam in scanned-spot mode by employing a broad-beam approach such as with a vacuum arc ion source, or by utilizing plasma immersion ion implantation with a metal plasma. For many high dose applications, the use of plasma immersion techniques offers a high-rate process, but the formation of a surface film along with the subsurface implanted layer is sometimes a severe or even fatal detriment. We describe here an operating mode of the metal plasma immersion approach by which pure implantation can be obtained. We have demonstrated the technique by carrying out Ti and Ta implantations at energies of about 80 and 120 keV for Ti and Ta, respectively, and doses on the order of 1x10 17 ions/cm 2 . Our experiments show that virtually pure implantation without simultaneous surface deposition can be accomplished. Using proper synchronization of the metal arc and sample voltage pulse, the applied dose that deposits as a film versus the part that is energetically implanted (the deposition-to-implantation ratio) can be precisely controlled.copyright 1999 American Institute of Physics

  12. Study of phase transformation processes in steel after phosphor ion implantation and following thermal treatment

    International Nuclear Information System (INIS)

    Zhetbaev, A.K.; Vereshchak, N.F.; Satpaev, K.K.; Dosmagambetov, T.D.; Serikbaeva, Z.T.

    1999-01-01

    In the paper process of phase transformation after phosphor ion implantation in steel-45 and annealing in vacuum at 1000 deg C and irradiation by various doses of phosphor ions with energy 100 keV an accelerator are researched by conversion electron method. The phosphor overall solubility in iron is equal 4.53 %. Implantation dose below 6·10 17 ions/cm 2 allows increase phosphor ions content in implantation region to 35 %. Therefore, iron phosphides (Fe 3 P, Fe 2 P and Fe P) forming are possible. (author)

  13. Surface modification of multi-point cutting tools using ion implantation

    International Nuclear Information System (INIS)

    Sarwar, M.; Ahmed, W.; Ahmed, M.

    1995-01-01

    Ion-implantation has been used to treat multi-point cutting tools using a 'systems approach' in order to improve the performance of these tools in dynamic cutting conditions. The effects of energy, species and system pressure on life and performance of circular saws have been investigated. For both nitrogen and argon ion-implantation an improvement in cutting performance has been observed as compared to untreated edges. As the energy of the nitrogen ions is increased there is a gradual improvement in the performance of the cutting edge. Ion-implanted tools were compared to those coated with TiN and these results are also presented. (author) 5 figs

  14. A one-dimensional collisional model for plasma-immersion ion implantation

    International Nuclear Information System (INIS)

    Vahedi, V.; Lieberman, M.A.; Alves, M.V.; Verboncoeur, J.P.; Birdsall, C.K.

    1991-01-01

    Plasma-immersion ion implantation (also known as plasma-source ion implantation) is a process in which a target is immersed in a plasma and a series of large negative-voltage pulses are applied to it to extract ions from the plasma and implant them into the target. A general one-dimensional model is developed to study this process in different coordinate systems for the case in which the pressure of the neutral gas is large enough that the ion motion in the sheath can be assumed to be highly collisional

  15. A simple ion implanter for material modifications in agriculture and gemmology

    Science.gov (United States)

    Singkarat, S.; Wijaikhum, A.; Suwannakachorn, D.; Tippawan, U.; Intarasiri, S.; Bootkul, D.; Phanchaisri, B.; Techarung, J.; Rhodes, M. W.; Suwankosum, R.; Rattanarin, S.; Yu, L. D.

    2015-12-01

    In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X-Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.

  16. A simple ion implanter for material modifications in agriculture and gemmology

    Energy Technology Data Exchange (ETDEWEB)

    Singkarat, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Wijaikhum, A. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Suwannakachorn, D.; Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Intarasiri, S. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Bootkul, D. [Department of General Science, Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Phanchaisri, B.; Techarung, J. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Rhodes, M.W.; Suwankosum, R.; Rattanarin, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2015-12-15

    In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X–Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.

  17. A simple ion implanter for material modifications in agriculture and gemmology

    International Nuclear Information System (INIS)

    Singkarat, S.; Wijaikhum, A.; Suwannakachorn, D.; Tippawan, U.; Intarasiri, S.; Bootkul, D.; Phanchaisri, B.; Techarung, J.; Rhodes, M.W.; Suwankosum, R.; Rattanarin, S.; Yu, L.D.

    2015-01-01

    In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X–Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.

  18. A heavy ion pre-injector for the ICT-ion implanter

    International Nuclear Information System (INIS)

    Bhattacharya, P.K.; Gaonkar, S.; Wagh, A.G.; Hattangadi, V.A.; Sarma, N.

    1976-01-01

    A cheap and versatile hollow cathode electron bombardment ion source system including its ion extraction-cum-focussing assembly for obtaining intense heavy ion beams of solids and gases is described. The extractor region is designed to include more than 15deg total beam angle of extracted beam for producing focused ion current densities upto 60mA/cm 2 to serve as a pre-injector for the ICT(insulated core transformer) type ion implanter. The extraction-cum-focussing lens is a low aberration strong Einzel lens system of all araldite and metal construction with optical elements of proper quality and location to suit low voltage injection and subsequent ion analysis. The injection can be selected anywhere between 2 to 10 keV for singly charged ions with typical extraction currents of 500/μ, using a ring anode and a source aperture of 20 mil. Einzel lens focussing assembly allows continuous adjustment of the beam convergence to about 5deg and the beam size to approximately 5mm in diameter with about 10 KV central electrode potential. Test results of source characteristics for both the accelerating and decelerating model of beam formation have been made. (author)

  19. Focussed MeV ion beam implanted waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Von Bibra, M L; Roberts, A; Nugent, K; Jamieson, D N [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Single mode buried optical waveguides have been fabricated in fused silica by MeV proton implantation using a focussed hydrogen ion beam. The technique has the potential to direct write waveguide devices and produce multi-layered structures, without the need for intermediate steps such as mask fabrication or layered depositions. A micron resolution Confocal Raman Spectrometer has been used to map the distribution of atomic vacancies that forms the waveguiding region. The results are compared with theoretical calculations. Losses of 3 dB cm{sup -1} have been measured in unannealed samples, which decreases to less than 0.5 dB cm{sup -1} after annealing at 500 degrees Celsius. We describe methods for determining the refractive index distribution of single mode buried waveguides from their output intensity distributions via an inversion of the scalar wave equation. (authors). 5 figs.

  20. Focussed MeV ion beam implanted waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Von Bibra, M.L.; Roberts, A.; Nugent, K.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Single mode buried optical waveguides have been fabricated in fused silica by MeV proton implantation using a focussed hydrogen ion beam. The technique has the potential to direct write waveguide devices and produce multi-layered structures, without the need for intermediate steps such as mask fabrication or layered depositions. A micron resolution Confocal Raman Spectrometer has been used to map the distribution of atomic vacancies that forms the waveguiding region. The results are compared with theoretical calculations. Losses of 3 dB cm{sup -1} have been measured in unannealed samples, which decreases to less than 0.5 dB cm{sup -1} after annealing at 500 degrees Celsius. We describe methods for determining the refractive index distribution of single mode buried waveguides from their output intensity distributions via an inversion of the scalar wave equation. (authors). 5 figs.

  1. Cell adhesion of F{sup +} ion implantation of intraocular lens

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.J. E-mail: dejunli@hotmail.com; Cui, F.Z.; Gu, H.Q

    1999-04-01

    The cell adhesion of ion implanted polymethylmethacrylate (PMMA) intraocular lens was studied using cultured cells in vitro. F{sup +} ion implantation was performed at the energies of 40, 60, 80, 100 keV with the fluences ranging from 5x10{sup 13} to 1x10{sup 15} ions/cm{sup 2} at room temperature. The cell adhesion tests gave interesting results that the number of the neutral granulocytes and the macrophages adhering on surface were reduced significantly after ion implantation. The optimal fluence was about 4x10{sup 14} ions/cm{sup 2}. The hydrophobicity imparted to the lens surface was also enhanced. The results of X-ray photoelectron spectroscopy analysis indicated that ion implantation resulted in the cleavage of some pendant groups, the oxidation of the surface, and the formation of some new chemical bonds, which was probably the main reason for the cell adhesion change.

  2. Development of a keV single-ion-implanter for nanofabrication

    International Nuclear Information System (INIS)

    Yang, C.; Jamieson, D.N.; Hopf, T.; Tamanyan, G.; Spizziri, P.; Pakes, C.; Andresen, S.E.; Hudson, F.; Gauja, E.; Dzurak, A.; Clark, R.G.

    2005-01-01

    Traditional methods of doping semiconductors have a difficulty meeting the demand for high precision doping due to large statistical fluctuations in the numbers of dopant atoms introduced in the ever shrinking volume in micro- and nano-electronics devices, especially when the fabrication process approaches the nanometre scale. The statistical fluctuations in doping semiconductors for the fabrication of devices with a very small feature size may lead to inconsistent and unreliable performance. This paper describes the adaptation of a commercial ion implanter into a single-ion-implantation system for the accurate delivery of dopants into a nanometre or micrometre area in a silicon substrate. All the implanted ions can be accurately counted with near 100% certainty through online detection using the silicon substrate itself as an ion detector. A variety of ion species including B + , N + , P + at the energy range of 10-15 keV can be delivered in the single ion implantation system. (author). 6 refs., 6 figs

  3. Characterization of Nitride Layers Formed by Nitrogen Ion Implantation into Surface Region of Iron

    International Nuclear Information System (INIS)

    Sudjatmoko; Subki, M. Iyos R.

    2000-01-01

    Ion implantation is a convenient means of modifying the physical and chemical properties of the near-surface region of materials. The nitrogen implantation into pure iron has been performed at room temperature with ion dose of 1.310 17 to 1.310 18 ions/cm 2 and ion energy of 20 to 100 keV. The optimum dose of nitrogen ions implanted into pure iron was around 2.2310 17 ions/cm 2 in order to get the maximum wear resistant. SEM micrographs and EDX show that the nitride layers were found on the surface of substrate. The nitrogen concentration profile was measured using EDX in combination with spot technique, and it can be shown that the depth profile of nitrogen implanted into substrate was nearly Gaussian. (author)

  4. Dislocation loops in spinel crystals irradiated successively with deep and shallow ion implants

    International Nuclear Information System (INIS)

    Ai, R.X.; Cooper, E.A.; Sickafus, K.E.; Nastasi, M.; Bordes, N.; Ewing, R.C.

    1993-01-01

    This study examines the influence of microstructural defects on irradiation damage accumulation in the oxide spinel. Single crystals of the compound MgAl 2 O 4 with surface normal [111] were irradiated under cryogenic temperature (100K) either with 50 keV Ne ions (fluence 5.0 x 10 12 /cm 2 ), 400 keV Ne ions (fluence 6.7 x 10 13 /cm 2 ) or successively with 400 keV Ne ions followed by 50 keV Ne ions. The projected range of 50 keV Ne ions in spinel is ∼50 mn (''shallow'') while the projected range of 400 keV Ne ions is ∼500 mn (''deep''). Transmission electron microscopy (TEM) was used to examine dislocation loops/defect clusters formed by the implantation process. Measurements of the dislocation loop size were made using weak-beam imaging technique on cross-sectional TEM ion-implanted specimens. Defect clusters were observed in both deep and shallow implanted specimens, while dislocation loops were observed in the shallow implanted sample that was previously irradiated by 400 keV Ne ions. Cluster size was seen to increase for shallow implants in crystals irradiated with a deep implant (size ∼8.5 nm) as compared to crystals treated only to a shallow implant (size ∼3.1 nm)

  5. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    Science.gov (United States)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-07-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 1017 ions/cm2. The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, CrxCy phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties.

  6. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    International Nuclear Information System (INIS)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-01-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 10 17 ions/cm 2 . The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, Cr x C y phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties

  7. A 2 MV heavy ion Van de Graaff implanter for research and development

    International Nuclear Information System (INIS)

    Hemment, P.L.F.; Sealy, B.J.; Stephens, K.G.; Mynard, J.E.; Jeynes, C.; Browton, M.D.; Wilson, R.J.; Ma, M.X.; Cansell, A.; Mous, D.J.W.; Koudijs, R.

    1993-01-01

    A high energy heavy ion implantation system is described which is based upon a 2 MV High Voltage Engineering Europa Van de Graaff accelerator, which incorporates an ion source rapid exchange mechanism. The design and performance are described with particular reference to the system mass resolution, beam transport and performance of a sputter ion source. The system is used to provide a wide ranging implantation service and also supports material science studies, some of which are described briefly. (orig.)

  8. Ion implantation damage annealing in 4H-SiC monitored by scanning spreading resistance microscopy

    International Nuclear Information System (INIS)

    Suchodolskis, A.; Hallen, A.; Linnarsson, M.K.; Osterman, J.; Karlsson, U.O.

    2006-01-01

    To obtain a better understanding of the damage annealing process and dopant defect incorporation and activation we have implanted epitaxially grown 4H-SiC layers with high doses of Al + ions. Cross-sections of the samples are investigated by scanning spreading resistance microscopy (SSRM) using a commercial atomic force microscopy (AFM). The defects caused by the implanted ions compensate for the doping and decrease the charge carrier mobility. This causes the resistivity to increase in the as-implanted regions. The calculated profile of implanted ions is in good agreement with the measured ones and shows a skewed Gaussian shape. Implanted samples are annealed up to 400 deg. C. Despite these low annealing temperatures we observe a clear improvement of the sample conductivity in the as-implanted region

  9. Effect of disorder and defects in ion-implanted semiconductors optical and photothermal characterization

    CERN Document Server

    Willardson, R K; Christofides, Constantinos; Ghibaudo, Gerard

    1997-01-01

    Defects in ion-implanted semiconductors are important and will likely gain increased importance as annealing temperatures are reduced with successive IC generations. Novel implant approaches, such as MdV implantation, create new types of defects whose origin and annealing characteristics will need to be addressed. Publications in this field mainly focus on the effects of ion implantation on the material and the modification in the implanted layer after high temperature annealing. The editors of this volume and Volume 45 focus on the physics of the annealing kinetics of the damaged layer. An overview of characterization tehniques and a critical comparison of the information on annealing kinetics is also presented. Key Features * Provides basic knowledge of ion implantation-induced defects * Focuses on physical mechanisms of defect annealing * Utilizes electrical, physical, and optical characterization tools for processed semiconductors * Provides the basis for understanding the problems caused by the defects g...

  10. Enhanced wear resistance of production tools and steel samples by implantation of nitrogen and carbon ions

    International Nuclear Information System (INIS)

    Mikkelsen, N.J.; Straede, C.A.

    1992-01-01

    In recent years ion implantation has become a feasible technique for obtaining improved wear resistance of production tools. However, basic knowledge of how and in which cases ion implantation is working at its best is still needed. The present paper discusses structural and tribological investigations of carbon and nitrogen implanted steels. The nitrogen data were obtained mainly from field tests and the investigation of carbon implantations took place mainly in the laboratory. A study was made of how the tribological behaviour of implanted steels changes with different implantation parameters. The tribological laboratory investigations were carried out using pin-on-disc equipment under controlled test conditions, and deal with high dose carbon implantation (approximately (1-2)x10 18 ions cm -2 ). The wear resistance of steels was enhanced dramatically, by up to several orders of magnitude. The field test results cover a broad range of ion implanted production tools, which showed a marked improvement in wear resistance. Nitrogen implanted tools are also compared with carbon and titanium implanted tools. (orig.)

  11. Improvement of in vitro corrosion and cytocompatibility of biodegradable Fe surface modified by Zn ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Henan; Zheng, Yang; Li, Yan, E-mail: liyan@buaa.edu.cn; Jiang, Chengbao

    2017-05-01

    Highlights: • Fe{sub 2}O{sub 3}/ZnO oxides were formed on the surface of Zn implanted pure Fe samples. • The corrosion rate of the pure Fe in SBF was increased after Zn implantation. • Cytocompatibility of the pure Fe was improved by Zn ion implantation. - Abstract: Pure Fe was surface-modified by Zn ion implantation to improve the biodegradable behavior and cytocompatibility. Surface topography, chemical composition, corrosion resistance and cytocompatibility were investigated. Atomic force microscopy, auger electron spectroscopy and X-ray photoelectron spectroscopy results showed that Zn was implanted into the surface of pure Fe in the depth of 40–60 nm and Fe{sub 2}O{sub 3}/ZnO oxides were formed on the outmost surface. Electrochemical measurements and immersion tests revealed an improved degradable behavior for the Zn-implanted Fe samples. An approximately 12% reduction in the corrosion potential (E{sub corr}) and a 10-fold increase in the corrosion current density (i{sub corr}) were obtained after Zn ion implantation with a moderate incident ion dose, which was attributed to the enhanced pitting corrosion. The surface free energy of pure Fe was decreased by Zn ion implantation. The results of direct cell culture indicated that the short-term (4 h) cytocompatibility of MC3T3-E1 cells was promoted by the implanted Zn on the surface.

  12. Investigation of Steel Surfaces Treated by a Hybrid Ion Implantation Technique

    International Nuclear Information System (INIS)

    Reuther, H.; Richter, E.; Prokert, F.; Ueda, M.; Beloto, A. F.; Gomes, G. F.

    2004-01-01

    Implantation of nitrogen ions into stainless steel in combination with oxidation often results in a decrease or even complete removal of the chromium in the nitrogen containing outermost surface layer. While iron nitrides can be formed easily by this method, due to the absence of chromium, the formation of chromium nitrides is impossible and the beneficial influence of chromium in the steel for corrosion resistance cannot be used. To overcome this problem we use the following hybrid technique. A thin chromium layer is deposited on steel and subsequently implanted with nitrogen ions. Chromium can be implanted by recoil into the steel surface and thus the formation of iron/chromium nitrides should be possible. Both beam line ion implantation and plasma immersion ion implantation are used. Due to the variation of the process parameters, different implantation profiles and different compounds are produced. The produced layers are characterized by Auger electron spectroscopy, conversion electron Moessbauer spectroscopy and X-ray diffraction. The obtained results show that due to the variation of the implantation parameters, the formation of iron/chromium nitrides can be achieved and that plasma immersion ion implantation is the most suitable technique for the enrichment of chromium in the outermost surface layer of the steel when compared to the beam line implantation.

  13. Ion implantation artifacts observed in depth profiling boron in silicon by secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Chi, P.; Simons, D.S.

    1987-01-01

    A comparison study of depth profiling by secondary ion mass spectrometry (SIMS) and neutron depth profiling (NDP) was recently conducted. The specimens were portions of 5 cm diameter single crystal silicon slices in which B-10 had been implanted at various fluences and energies. NDP measurements were made on a 13 mm diameter area at the center of the wafers. SIMS measurements were taken from a 60 μm diameter area approximately 16 mm from the center of the wafer. One observation that emerged from this work was an apparent discrepancy between the profiles of B-10 measured by DNP and SIMS. The peaks of the SIMS profiles were typically deeper than those of NDP by as much as 30 nm, which is 10% of the projected range for a 70 keV implant. Moreover, the profiles could not be made to coincide by either a constant shift or a proportional change of one depth scale with respect to the other. The lateral inhomogeneity of boron that these experiments have demonstrated arises from the variable contribution of ion channeling during implantation

  14. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    Science.gov (United States)

    Musket, R. G.

    1989-04-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation, and hydrogen embrittlement. In particular, the results of the reviewed studies are (a) uranium hydriding suppressed by implantation of oxygen and carbon, (b) hydrogen gettered in iron and nickel using implantation of titanium, (c) hydriding of titanium catalyzed by implanted palladium, (d) tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and (e) hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals.

  15. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    International Nuclear Information System (INIS)

    Musket, R.G.

    1989-01-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation and hydrogen embrittlement. In particular, the results of the reviewed studies are 1. uranium hydriding suppressed by implantation of oxygen and carbon, 2. hydrogen gettered in iron and nickel using implantation of titanium, 3. hydriding of titanium catalyzed by implanted palladium, 4. tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and 5. hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals. (orig.)

  16. Nuclear tracks in CR-39 produced by carbon, oxygen, aluminium and titanium ions.

    Science.gov (United States)

    Rickards, J; Romo, V; Golzarri, J I; Espinosa, G

    2002-01-01

    This work describes the response of CR-39 (allyl diglycol polycarbonate) to different ions (C, O, Al and Ti) produced by the Instituto de Fisica 3 MV 9SDH-2 Pelletron accelerator and backscattered from a thin Au film on a C support. The ion energies were chosen in series such that the ranges of the different ions in the detector were 2, 3, 4, 5, 6, 7 and 8 microm respectively for each series. Once exposed, the detectors were etched with a solution of 6.25 M KOH at 60 degrees C, and the reading was carried out using a digital image analysis system. An analysis of the measured track diameters of all the types of ions indicates that, for a given range, track kinetics are independent of type of ion, energy and stopping power.

  17. Heavy doping of CdTe single crystals by Cr ion implantation

    Science.gov (United States)

    Popovych, Volodymyr D.; Böttger, Roman; Heller, Rene; Zhou, Shengqiang; Bester, Mariusz; Cieniek, Bogumil; Mroczka, Robert; Lopucki, Rafal; Sagan, Piotr; Kuzma, Marian

    2018-03-01

    Implantation of bulk CdTe single crystals with high fluences of 500 keV Cr+ ions was performed to achieve Cr concentration above the equilibrium solubility limit of this element in CdTe lattice. The structure and composition of the implanted samples were studied using secondary ion mass spectrometry (SIMS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) to characterize the incorporation of chromium into the host lattice and to investigate irradiation-induced damage build-up. It was found that out-diffusion of Cr atoms and sputtering of the targets alter the depth distribution and limit concentration of the projectile ions in the as-implanted samples. Appearance of crystallographically oriented, metallic α-Cr nanoparticles inside CdTe matrix was found after implantation, as well as a strong disorder at the depth far beyond the projected range of the implanted ions.

  18. Wear life of sputtered MoSx films extended by high energy ion implantation

    International Nuclear Information System (INIS)

    Okazaki, Yasufumi; Fujiura, Hideo; Nishimura, Makoto

    2000-01-01

    The tribological characteristics of sputtered MoSx films have been reportedly improved by inert gas ion implantation. We tried to extend their wear life by introducing indium, carbon and gallium ion implantation. Pin-on-disk testers were used to measure friction coefficient and wear life in a vacuum, dry and humid air. Comparing with the unimplanted films, we found that the indium ion implanted films showed marked improvement in wear life in a vacuum. Carbon ion implanted films showed improvement in wear life in high humid air. Implantation was effective when it was conducted with maximum concentration at the interface between film and substrate rather than at the neighborhood of the interface inside a film. (author)

  19. Surface potential measurement of the insulator with secondary electron caused by negative ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Toyota, Yoshitaka; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kohji.

    1994-01-01

    Ion implantation has the merit of the good controllability of implantation profile and low temperature process, and has been utilized for the impurity introduction in LSI production. However, positive ion implantation is carried out for insulator or insulated conductor substrates, their charged potential rises, which is a serious problem. As the requirement for them advanced, charge compensation method is not the effective means for resolving it. The negative ion implantation in which charging is little was proposed. When the experiment on the negative ion implantation into insulated conductors was carried out, it was verified that negative ion implantation is effective as the implantation process without charging. The method of determining the charged potential of insulators at the time of negative ion implantation by paying attention to the energy distribution of the secondary electrons emitted from substrates at the time was devised. The energy analyzer for measuring the energy distribution of secondary electrons was made, and the measurement of the charged potential of insulators was carried out. The principle of the measurement, the measuring system and the experimental results are reported. (K.I.)

  20. Ion-implanted PLZT ceramics: a new high-sensitivity image storage medium

    International Nuclear Information System (INIS)

    Peercy, P.S.; Land, C.E.

    1980-01-01

    Results were presented of our studies of photoferroelectric (PFE) image storage in H- and He-ion implanted PLZT (lead lanthanum zirconate titanate) ceramics which demonstrate that the photosensitivity of PLZT can be significantly increased by ion implantation in the ceramic surface to be exposed to image light. More recently, implantations of Ar and Ar + Ne into the PLZT surface have produced much greater photosensitivity enhancement. For example, the photosensitivity after implantation with 1.5 x 10 14 350 keV Ar/cm 2 + 1 x 10 15 500 keV Ne/cm 2 is increased by about four orders of magnitude over that of unimplanted PLZT. Measurements indicate that the photosensitivity enhancement in ion-implanted PLZT is controlled by implantation-produced disorder which results in marked decreases in dielectric constant and dark conductivity and changes in photoconductivity of the implanted layer. The effects of Ar- and Ar + Ne-implantation are presented along with a phenomenological model which describes the enhancement in photosensitivity obtained by ion implantation. This model takes into account both light- and implantation-induced changes in conductivity and gives quantitative agreement with the measured changes in the coercive voltage V/sub c/ as a function of near-uv light intensity for both unimplanted and implanted PLZT. The model, used in conjunction with calculations of the profiles of implantation-produced disorder, has provided the information needed for co-implanting ions of different masses, e.g., Ar and Ne, to improve photosensitivity

  1. Fluoride ions sorption of the water using natural and modified hematite with aluminium hydroxide

    International Nuclear Information System (INIS)

    Teutli S, E. A.

    2011-01-01

    Fluorine is a mineral known for its dental benefits, but fluoride ions can cause fluoro sis in excessive quantities. There are many epidemiological studies on possible adverse effects resulting from prolonged ingestion of fluoride through drinking water. These studies demonstrate that fluoride mainly affects the bone tissue (bones and teeth), may produce an adverse effect on tooth enamel and can cause mild dental fluoro sis at concentrations from 0.9 to 1.2 mg/L in drinking water. In several states of Mexico, water contaminated with fluoride ions can be found, such as Aguascalientes, Chihuahua, Coahuila, Durango, Guanajuato, Sonora, Zacatecas, San Luis Potosi and Jalisco, where the fluoride ions levels are higher than 1.5 mg/L, established by the Mexican Official Standard (NOM-127-Ssa-2000) which sets the permissible limits of water for human use and consumption. Currently, several technologies have been proposed to remove fluoride ions from water such as precipitation methods which are based on the addition of chemicals to water and sorption methods to removed fluoride ions by sorption or ion exchange reactions by some suitable substrate capable of regenerate and reuse. In this work, the sorption of fluoride ions using unmodified and modified hematite with aluminum hydroxide to remove fluoride ions from water by bath experiments was studied. The hematite was modified by treating it with aluminum hydroxide, NaOH and Al 2 (SO 4 ) 3 solutions. The characterization of hematite before and after modification with aluminum hydroxide was studied by X-ray diffraction, scanning electron microscopy, EDS and Bet. The effect of ph, contact time, concentration of fluoride ions, and the dose of sorbent on the sorption of fluoride ions by the modified hematite were studied. Equilibrium was reached within 48 hours of contact time and the maximum sorption of fluoride ions were in the range pH eq between 2.3 and 6.2. Sorption capacities of fluoride ions as a function of dose of

  2. Cell adhesion control by ion implantation into extra-cellular matrix

    International Nuclear Information System (INIS)

    Suzuki, Yoshiaki; Kusakabe, Masahiro; Kaibara, Makoto; Iwaki, Masaya; Sasabe, Hiroyuki; Nishisaka, Tsuyoshi

    1994-01-01

    Cell adhesion control of polymer surfaces by ion implantation into polymers and extra-cellular matrix has been studied by means of in vitro adhesion measurements of the carcinoma of the cervix (HeLa cell). The specimens used were polystyrene (PS), oxygen plasma treated polystyrene (PS-O), extra-cellular matrix (Collagen: Type I) coated polystyrene (PS-C), and gelatin coated polystyrene (PS-G). Ne + , Na + , and Ar + implantations were performed with a fluence of 1x10 15 ions/cm 2 at energies of 50, 100 and 150 keV. The chemical and physical structures of ion implanted specimens have been investigated by Fourier transform infrared spectroscopy (FT-IR-ATR), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Ion implanted PS demonstrated a dramatic improvement of adhesion of HeLa cell. HeLa cell adhered only to ion implanted circular domains of a diameter about 0.1 mm on PS. By contrast, ion implanted PS-C, PS-G and PS-O domains inhibited the cell adhesion. These phenomena were observed on Ne + , Na + , and Ar + implanted specimens at energies of 50, 100, and 150 keV. Ion implantation broke the original chemical bonds to form new radicals such as =C=O, condensed rings, C-C, C-O and OH radical. Ion implanted PS had a large amount of new radicals compared with that of PS-C, PS-G and PS-O. Ion implantation broke NH and NH 3 bonds originating from amino acid in PS-C and PS-G. OH and =C=O caused by oxygen treatment in PS-O were also destroyed by ion implantation. It is concluded that cell adhesion to ion implanted PS was caused by carbon structure and new radicals induced by ion implantation. The inhibition of HeLa cell adhesion on PS-C, PS-G and PS-O was caused by the destruction of cell adhesion properties of amino acid, OH and =C=O by radiation effects. ((orig.))

  3. Structure and micro-mechanical properties of helium-implanted layer on Ti by plasma-based ion implantation

    International Nuclear Information System (INIS)

    Ma Xinxin; Li Jinlong; Sun Mingren

    2008-01-01

    The present paper concentrates on structure and micro-mechanical properties of the helium-implanted layer on titanium treated by plasma-based ion implantation with a pulsed voltage of -30 kV and doses of 3, 6, 9 and 12 x 10 17 ions/cm 2 , respectively. X-ray photoelectron spectroscopy and transmission electron microscopy are employed to characterize the structure of the implanted layer. The hardnesses at different depths of the layer were measured by nano-indentation. We found that helium ion implantation into titanium leads to the formation of bubbles with a diameter from a few to more than 10 nm and the bubble size increases with the increase of dose. The primary existing form of Ti is amorphous in the implanted layer. Helium implantation also enhances the ingress of O, C and N and stimulates the formations of TiO 2 , Ti 2 O 3 , TiO, TiC and TiN in the near surface layer. And the amount of the ingressed oxygen is obviously higher than those of nitrogen and carbon due to its higher activity. At the near surface layer, the hardnesses of all implanted samples increases remarkably comparing with untreated one and the maximum hardness has an increase by a factor of up to 3.7. For the samples implanted with higher doses of 6, 9 and 12 x 10 17 He/cm 2 , the local displacement bursts are clearly found in the load-displacement curves. For the samples implanted with a lower dose of 3 x 10 17 He/cm 2 , there is no obvious displacement burst found. Furthermore, the burst width increases with the increase of the dose

  4. In-Situ Photoexcitation-Induced Suppression of Point Defect Generation in Ion Implanted Silicon

    International Nuclear Information System (INIS)

    Cho, C.R.; Rozgonyi, G.A.; Yarykin, N.; Zuhr, R.A.

    1999-01-01

    The formation of vacancy-related defects in n-type silicon has been studied immediately after implantation of He, Si, or Ge ions at 85 K using in-situ DLTS. A-center concentrations in He-implanted samples reach a maximum immediately after implantation, whereas, with Si or Ge ion implanted samples they continuously increase during subsequent anneals. It is proposed that defect clusters, which emit vacancies during anneals, are generated in the collision cascades of Si or Ge ions. An illumination-induced suppression of A-center formation is seen immediately after implantation of He ions at 85 K. This effect is also observed with Si or Ge ions, but only after annealing. The suppression of vacancy complex formation via photoexcitation is believed to occur due to an enhanced recombination of defects during ion implantation, and results in reduced number of vacancies remaining in the defect clusters. In p-type silicon, a reduction in K-center formation and an enhanced migration of defects are concurrently observed in the illuminated sample implanted with Si ions. These observations are consistent with a model where the injection of excess carriers modifies the defect charge state and impacts their diffusion

  5. Improving Passivation Process of Si Nanocrystals Embedded in SiO2 Using Metal Ion Implantation

    Directory of Open Access Journals (Sweden)

    Jhovani Bornacelli

    2013-01-01

    Full Text Available We studied the photoluminescence (PL of Si nanocrystals (Si-NCs embedded in SiO2 obtained by ion implantation at MeV energy. The Si-NCs are formed at high depth (1-2 μm inside the SiO2 achieving a robust and better protected system. After metal ion implantation (Ag or Au, and a subsequent thermal annealing at 600°C under hydrogen-containing atmosphere, the PL signal exhibits a noticeable increase. The ion metal implantation was done at energies such that its distribution inside the silica does not overlap with the previously implanted Si ion . Under proper annealing Ag or Au nanoparticles (NPs could be nucleated, and the PL signal from Si-NCs could increase due to plasmonic interactions. However, the ion-metal-implantation-induced damage can enhance the amount of hydrogen, or nitrogen, that diffuses into the SiO2 matrix. As a result, the surface defects on Si-NCs can be better passivated, and consequently, the PL of the system is intensified. We have selected different atmospheres (air, H2/N2 and Ar to study the relevance of these annealing gases on the final PL from Si-NCs after metal ion implantation. Studies of PL and time-resolved PL indicate that passivation process of surface defects on Si-NCs is more effective when it is assisted by ion metal implantation.

  6. Characterization of low temperature metallic magnetic calorimeters having gold absorbers with implanted 163Ho ions

    Science.gov (United States)

    Gastaldo, L.; Ranitzsch, P. C.-O.; von Seggern, F.; Porst, J.-P.; Schäfer, S.; Pies, C.; Kempf, S.; Wolf, T.; Fleischmann, A.; Enss, C.; Herlert, A.; Johnston, K.

    2013-05-01

    For the first time we have investigated the behavior of fully micro-fabricated low temperature metallic magnetic calorimeters (MMCs) after undergoing an ion-implantation process. This experiment had the aim to show the possibility to perform a high precision calorimetric measurement of the energy spectrum following the electron capture of 163Ho using MMCs having the radioactive 163Ho ions implanted in the absorber. The isotope 163Ho decays through electron capture to 163Dy and features the smallest known QEC value. This peculiarity makes 163Ho a very interesting candidate to investigate the value of the electron neutrino mass by the analysis of the energy spectrum. The implantation of 163Ho ions was performed at ISOLDE-CERN. The performance of a detector that underwent an ion-implantation process is compared to the one of a detector without implanted ions. The results show that the implantation dose of ions used in this experiment does not compromise the properties of the detector. Moreover the performance of the detector prototype having the 163Ho ions implanted in the absorber is already close to the requirements needed for an experiment with sub-eV sensitivity to the electron neutrino mass. Based on these results, an optimized detector design for future 163Ho experiments is presented.

  7. Characterization of low temperature metallic magnetic calorimeters having gold absorbers with implanted 163Ho ions

    International Nuclear Information System (INIS)

    Gastaldo, L.; Ranitzsch, P.C.-O.; Seggern, F. von; Porst, J.-P.; Schäfer, S.; Pies, C.; Kempf, S.; Wolf, T.; Fleischmann, A.; Enss, C.; Herlert, A.; Johnston, K.

    2013-01-01

    For the first time we have investigated the behavior of fully micro-fabricated low temperature metallic magnetic calorimeters (MMCs) after undergoing an ion-implantation process. This experiment had the aim to show the possibility to perform a high precision calorimetric measurement of the energy spectrum following the electron capture of 163 Ho using MMCs having the radioactive 163 Ho ions implanted in the absorber. The isotope 163 Ho decays through electron capture to 163 Dy and features the smallest known Q EC value. This peculiarity makes 163 Ho a very interesting candidate to investigate the value of the electron neutrino mass by the analysis of the energy spectrum. The implantation of 163 Ho ions was performed at ISOLDE-CERN. The performance of a detector that underwent an ion-implantation process is compared to the one of a detector without implanted ions. The results show that the implantation dose of ions used in this experiment does not compromise the properties of the detector. Moreover the performance of the detector prototype having the 163 Ho ions implanted in the absorber is already close to the requirements needed for an experiment with sub-eV sensitivity to the electron neutrino mass. Based on these results, an optimized detector design for future 163 Ho experiments is presented

  8. In-vitro evaluation of corrosion resistance of nitrogen ion implanted titanium simulated body fluid

    International Nuclear Information System (INIS)

    Subbaiyan, M.; Sundararajian, T.; Rajeswari, S.; Kamachi Mudali, U.; Nair, K.G.M.; Thampi, N.S.

    1997-01-01

    Titanium and its alloy Ti6Al4V enjoy widespread use in various biomedical applications because of favourable local tissue response, higher corrosion resistance and fatigue strength than the stainless steels and cobalt-chromium alloy previously used. The study reported in this paper aims to optimize the conditions of nitrogen ion implantation on commercially pure titanium and to correlate the implantation parameters to the corrosion resistance. X-ray photoelectron spectroscopy was used to analyse surface concentration and the implantation processes. An improvement in the electrochemical behaviour of the passive film was shown to occur with nitrogen ion implantation on titanium, in simulated body fluids. (UK)

  9. Lattice location of platinum ions implanted into single crystal zirconia and their annealing behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D X [Royal Melbourne Inst. of Tech., VIC (Australia); Sood, D K [Academia Sinica, Shanghai, SH (China). Shanghai Inst. of Nuclear Research; Brown, I G [Lawrence Berkeley Lab., CA (United States)

    1994-12-31

    Single crystal samples of (100) oriented cubic zirconia stabilised with 9.5 mol % yttria were implanted with platinum ions, using a metal vapour vacuum arc (MEVVA) high current ion implanter, to a nominal dose of 1x10{sup 17} ions/cm{sup 2}. The implanted samples were annealed isothermally in air ambient at 1200 deg C, from 1-24 hours. Rutherford Backscattering Spectrometry and Channeling (RBSC) of 2 MeV He ions are employed to determine depth distributions of ion damage, Pt ions and substitutionality of Pt ions before and after annealing. The damage behaviour, Pt migration and lattice location are discussed in terms of metastable phase formation and solid solubility considerations. 7 refs., 3 figs.

  10. Lattice location of platinum ions implanted into single crystal zirconia and their annealing behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D.X. [Royal Melbourne Inst. of Tech., VIC (Australia); Sood, D.K. [Academia Sinica, Shanghai, SH (China). Shanghai Inst. of Nuclear Research; Brown, I.G. [Lawrence Berkeley Lab., CA (United States)

    1993-12-31

    Single crystal samples of (100) oriented cubic zirconia stabilised with 9.5 mol % yttria were implanted with platinum ions, using a metal vapour vacuum arc (MEVVA) high current ion implanter, to a nominal dose of 1x10{sup 17} ions/cm{sup 2}. The implanted samples were annealed isothermally in air ambient at 1200 deg C, from 1-24 hours. Rutherford Backscattering Spectrometry and Channeling (RBSC) of 2 MeV He ions are employed to determine depth distributions of ion damage, Pt ions and substitutionality of Pt ions before and after annealing. The damage behaviour, Pt migration and lattice location are discussed in terms of metastable phase formation and solid solubility considerations. 7 refs., 3 figs.

  11. Quartz modification by Zn ion implantation and swift Xe ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Privezentsev, Vladimir [Institute of Physics and Technology, Russian Academy of Sciences, Moscow (Russian Federation); Kulikauskas, Vaclav [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University (Russian Federation); Didyk, Alexander; Skuratov, Vladimir [Joint Institute of Nuclear Research, Dubna (Russian Federation); Steinman, Edward; Tereshchenko, Alexey; Kolesnikov, Nikolay [Institute of Solid-State Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation); Trifonov, Alexey; Sakharov, Oleg [National Research University ' ' MIET' ' , Zelenograd, Moscow (Russian Federation); Ksenich, Sergey [National University of Science and Technology ' ' MISiS' ' , Moscow (Russian Federation)

    2017-07-15

    The quartz slides were implanted by {sup 64}Zn{sup +} ions with dose of 5 x 10{sup 16}/cm{sup 2} and energy of 100 keV. After implantation, the amorphous metallic Zn nanoparticles with an average radius of 3.5 nm were created. The sample surface becomes nonuniform, its roughness is increased and its values rise up to 6 nm compared to virgin state, and the roughness maximum is at a value of about 0.8 nm. The surface is made up of valleys and hillocks which have a round shape with an average diameter about 200 nm. At the center of these hillocks are pores with a depth up to 6 nm and a diameter of about 20 nm. After implantation in UV-vis diapason, the optical transmission decreases while PL peak (apparently due to oxygen deficient centers) at wavelength of 400 nm increases. Then the samples were subjected to swift Xe ion irradiation with the fluences of 1 x 10{sup 12}-7.5 x 10{sup 14}/cm{sup 2} and energy of 167 MeV. After Xe irradiation, the sample surface roughness shat down to values of 0.5 nm and the roughness maximum is at a value of about 0.1 nm. Optical transmission in UV-vis diapason increases. The PL peak at wavelength of 400 nm is decreased while a PL peak at wavelength of 660 nm is raised. This peak is presumably due to non-bridging oxygen hole centers or/and NPs with structure Si(core)/SiO{sub 2}(shell). HRTEM image of Zn-implanted quartz subsurface layer. One can see the Zn amorphous nanoparticles, which confirms the electron diffraction pattern (insert). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. TEM study of the ion beam induced damage during 14 kev P+ implantation in silicon

    International Nuclear Information System (INIS)

    Rubanov, S.; Tamanyan, G.; Hudson, F.; Jamieson, D.N.; McCallum, J.C.; Prawer, S.

    2005-01-01

    The proposed silicon-based quantum computer architecture comprises an array of phosphorus donor atoms (qubits) positioned with nanometre accuracy beneath the surface of a semiconductor host, using a single ion implantation technique. The average depth of the implanted ions (the projected range R p ), lateral range R p 1, and the distribution of ions about that depth can be approximated as two-dimensional Gaussian with standard deviation ΔR p and ΔR p 1 (lateral straggle). Using transmission electron microscopy (TEM) we studied ion beam induced damage after 14 keV P + implantation in Si. The TEM images allowed us to compare the depth of the amorphous cluster formation to R p , R p 1, ΔR p 1 calculated from SRIM and hence determine evidence for the limitation on the accuracy of the position of the implanted ions imposed by straggling. (author). 4 refs., 3 figs

  13. Modification of high density polyethylene by gold implantation using different ion energies

    Energy Technology Data Exchange (ETDEWEB)

    Nenadović, M.; Potočnik, J. [INS Vinca, Laboratory of Atomic Physics, University of Belgrade, Mike Alasa 12–14, 11001 Belgrade (Serbia); Mitrić, M. [INS Vinca, Condensed Matter Physics Laboratory, University of Belgrade, Mike Alasa 12–14, 11001 Belgrade (Serbia); Štrbac, S. [ICTM Institute of Electrochemistry, University of Belgrade, Njegoseva 12, 11001 Belgrade (Serbia); Rakočević, Z., E-mail: zlatkora@vinca.rs [INS Vinca, Laboratory of Atomic Physics, University of Belgrade, Mike Alasa 12–14, 11001 Belgrade (Serbia)

    2013-11-01

    High density polyethylene (HDPE) samples were modified by Au{sup +} ion implantation at a dose of 5 × 10{sup 15} ions cm{sup −2}, using energies of 50, 100, 150 and 200 keV. The existence of implanted gold in the near-surface region of HDPE samples was confirmed by X-ray diffraction analysis. Surface roughness and Power Spectral Density analyses based on Atomic Force Microscopy (AFM) images of the surface topography revealed that the mechanism of HDPE modification during gold ion implantation depended on the energy of gold ions. Histograms obtained from phase AFM images indicated a qualitative change in the chemical composition of the surface during implantation with gold ions with different energies. Depth profiles obtained experimentally from cross-sectional Force Modulation Microscopy images and ones obtained from a theoretical simulation are in agreement for gold ions energies lower than 100 keV. The deviation that was observed for higher energies of the gold ions is explained by carbon precipitation in the near surface region of the HDPE, which prevented the penetration of gold ions further into the depth of the sample. - Highlights: • HDPE was implanted by Au{sup +} ions using energies of 50, 100, 150 and 200 keV. • Surface composition was analyzed from phase AFM images. • FMM depth profiles are in agreement with theoretical ones for energies up to 100 keV. • A deviation is observed for higher gold ion energies.

  14. Modification of high density polyethylene by gold implantation using different ion energies

    International Nuclear Information System (INIS)

    Nenadović, M.; Potočnik, J.; Mitrić, M.; Štrbac, S.; Rakočević, Z.

    2013-01-01

    High density polyethylene (HDPE) samples were modified by Au + ion implantation at a dose of 5 × 10 15 ions cm −2 , using energies of 50, 100, 150 and 200 keV. The existence of implanted gold in the near-surface region of HDPE samples was confirmed by X-ray diffraction analysis. Surface roughness and Power Spectral Density analyses based on Atomic Force Microscopy (AFM) images of the surface topography revealed that the mechanism of HDPE modification during gold ion implantation depended on the energy of gold ions. Histograms obtained from phase AFM images indicated a qualitative change in the chemical composition of the surface during implantation with gold ions with different energies. Depth profiles obtained experimentally from cross-sectional Force Modulation Microscopy images and ones obtained from a theoretical simulation are in agreement for gold ions energies lower than 100 keV. The deviation that was observed for higher energies of the gold ions is explained by carbon precipitation in the near surface region of the HDPE, which prevented the penetration of gold ions further into the depth of the sample. - Highlights: • HDPE was implanted by Au + ions using energies of 50, 100, 150 and 200 keV. • Surface composition was analyzed from phase AFM images. • FMM depth profiles are in agreement with theoretical ones for energies up to 100 keV. • A deviation is observed for higher gold ion energies

  15. Surface and local electronic structure modification of MgO film using Zn and Fe ion implantation

    Science.gov (United States)

    Singh, Jitendra Pal; Lim, Weon Cheol; Lee, Jihye; Song, Jonghan; Lee, Ik-Jae; Chae, Keun Hwa

    2018-02-01

    Present work is motivated to investigate the surface and local electronic structure modifications of MgO films implanted with Zn and Fe ions. MgO film was deposited using radio frequency sputtering method. Atomic force microscopy measurements exhibit morphological changes associated with implantation. Implantation of Fe and Zn ions leads to the reduction of co-ordination geometry of Mg2+ ions in host lattice. The effect is dominant at bulk of film rather than surface as the large concentration of implanted ions resides inside bulk. Moreover, the evidences of interaction among implanted ions and oxygen are not being observed using near edge fine structure measurements.

  16. Shape memory effect and superelasticity of titanium nickelide alloys implanted with high ion doses

    International Nuclear Information System (INIS)

    Pogrebnjak, A D; Bratushka, S N; Beresnev, V M; Levintant-Zayonts, N

    2013-01-01

    The state of the art in ion implantation of superelastic NiTi shape memory alloys is analyzed. Various technological applications of the shape memory effect are outlined. The principles and techiques of ion implantation are described. Specific features of its application for modification of surface layers in surface engineering are considered. Key properties of shape memory alloys and problems in utilization of ion implantation to improve the surface properties of shape memory alloys, such as corrosion resistance, friction coefficient, wear resistance, etc. are discussed. The bibliography includes 162 references

  17. Effects of C+ ion implantation on electrical properties of NiSiGe/SiGe contacts

    International Nuclear Information System (INIS)

    Zhang, B.; Yu, W.; Zhao, Q.T.; Buca, D.; Breuer, U.; Hartmann, J.-M.; Holländer, B.; Mantl, S.; Zhang, M.; Wang, X.

    2013-01-01

    We have investigated the morphology and electrical properties of NiSiGe/SiGe contact by C + ions pre-implanted into relaxed Si 0.8 Ge 0.2 layers. Cross-section transmission electron microscopy revealed that both the surface and interface of NiSiGe were improved by C + ions implantation. In addition, the effective hole Schottky barrier heights (Φ Bp ) of NiSiGe/SiGe were extracted. Φ Bp was observed to decrease substantially with an increase in C + ion implantation dose

  18. Calculation of the substitutional fraction of ion-implanted He in an Fe target

    OpenAIRE

    Erhart, Paul; Marian, Jaime

    2010-01-01

    Ion-implantation is a useful technique to study irradiation damage in nuclear materials. To study He effects in nuclear fusion conditions, He is co-implanted with damage ions to reproduce the correct He/dpa ratios in the desired or available depth range. However, the short-term fate of these He ions, i.e over the time scales of their own collisional phase, has not been yet unequivocally established. Here we present an atomistic study of the short-term evolution of He implantation in an Fe sub...

  19. Effect of pulse lasting time of ion implantation on the growth of Hericium ernaceus

    International Nuclear Information System (INIS)

    Yan Tao; Li Guan; Zeng Xianxian

    2007-01-01

    Low energy ion implantation technology was used in mutation breeding of Hericium erinaceus. The growth speed of the Hericium erinaceus hypha is as an index to study the influence of the pulse lasting time of N + ion implantation. The result shows that the growth speed of Hericium erinaceus hypha presents 'saddle shape' curve, which was descend first, then rising up and descend again when the pulse time lasts for longer and longer. It is concluded that the pulse time obviously influence N + ion implantation. When the dosage keeps the same. (authors)

  20. Algorithm for statistical noise reduction in three-dimensional ion implant simulations

    International Nuclear Information System (INIS)

    Hernandez-Mangas, J.M.; Arias, J.; Jaraiz, M.; Bailon, L.; Barbolla, J.

    2001-01-01

    As integrated circuit devices scale into the deep sub-micron regime, ion implantation will continue to be the primary means of introducing dopant atoms into silicon. Different types of impurity profiles such as ultra-shallow profiles and retrograde profiles are necessary for deep submicron devices in order to realize the desired device performance. A new algorithm to reduce the statistical noise in three-dimensional ion implant simulations both in the lateral and shallow/deep regions of the profile is presented. The computational effort in BCA Monte Carlo ion implant simulation is also reduced