Fabrication and characteristics of alumina-iron functionally graded materials
DEFF Research Database (Denmark)
He, Zeming; Ma, J.; Tan, G.E.B.
2009-01-01
. The microstructure and the composition of the prepared component were studied, and its flexural strength, fracture toughness, and fracture energy were tested and evaluated. The relative density and the Vickers hardness of each layer in the graded material were also measured. The correlation between microstructure...
Campos, Cédric M.; Epstein, Marcelo; De León, Manuel
2007-01-01
The notions of uniformity and homogeneity of elastic materials are reviewed in terms of Lie groupoids and frame bundles. This framework is also extended to consider the case Functionally Graded Media, which allows us to obtain some homogeneity conditions.
Mahamood, Rasheedat Modupe
2017-01-01
This book presents the concept of functionally graded materials as well as their use and different fabrication processes. The authors describe the use of additive manufacturing technology for the production of very complex parts directly from the three dimension computer aided design of the part by adding material layer after layer. A case study is also presented in the book on the experimental analysis of functionally graded material using laser metal deposition process.
Functionally Graded Mo sintered steels
Directory of Open Access Journals (Sweden)
Manuel Cisneros-Belmonte
2016-12-01
Full Text Available Functionally graded materials (FGM, the multi-materials, strive to satisfy the numerous requirements demanded of parts in a given combination of compositions and microstructures. The required material compatibility lead the manufacturing process and the achieving of an interface, not always diffuse. Powder metallurgy is one of the techniques used in manufacturing functionally graded materials, in particular the compaction matrix of the possible techniques for forming these materials. In this paper, a process of forming a functionally graded steel based on the use of a high molybdenum steel with cooper and other steel with copper, without molybdenum, is proposed with the aim of concentrating this element to the surface of the workpiece, increasing the mechanical strength. The study is completed with the evaluation of physical properties (density and porosity distribution, mechanical properties (hardness, tensile strength and elongation and microstructural analysis by optical and scanning electron microscopy.
Functionally Graded Adhesives for Composite Joints
Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.
2012-01-01
Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.
Numerical Evaluations of Functionally Graded RC Slabs
Directory of Open Access Journals (Sweden)
M. Mastali
2014-01-01
Full Text Available Nowadays, using fibrous materials is used widely in strengthening applications such as cross-section enlargement and using functionally graded reinforced concrete. Functionally graded reinforced concrete is used as multireinforced concrete layers that can be reinforced by different fiber types. The objective of this research was to address the structural benefits of functionally graded concrete materials by performing analytical simulations. In order to achieve this purpose, in the first stage of this study, three functionally graded reinforced concretes by steel and polypropylene (PP were experimentally tested under flexural loading. Inverse analysis was applied to obtain the used material properties of reinforced concrete by FEMIX software. After obtaining the material properties, to assess the performance of proposed slabs, some other cases were proposed and numerically evaluated under flexural and shear loading. The results showed that increasing steel fiber in reinforced entire cross section led to achieve better shear and flexural performance while the best performance of reinforced functionally graded slabs was achieved for slab at 1% fiber content. In the second stage, nineteen reinforced functionally graded RC slabs with steel bars were simulated and assessed and some other cases were considered which were not experimentally tested.
Functionally graded piezoelectric cantilever beam under load
Energy Technology Data Exchange (ETDEWEB)
Shi, Z.F.; Chen, Y. [Beijing Jiaotong University, School of Civil Engineering, Beijing (China)
2004-12-01
In the present paper, the problem of a functionally graded piezoelectric cantilever beam subjected to different loadings is studied. The piezoelectric beam is characterized by continuously graded properties for one elastic parameter and the material density. A pair of stress and induction functions in the form of polynomials is proposed and determined. Based on these functions, a set of analytical solutions for the beam subjected to different loadings is obtained. As particular cases, series of solutions for some canonical problems can be directly obtained from the solutions of the present paper, such as for the problems of a piezoelectric cantilever beam with constant body force or without body forces, etc. (orig.)
On Torsion of Functionally Graded Elastic Beams
Directory of Open Access Journals (Sweden)
Marina Diaco
2016-01-01
Full Text Available The evaluation of tangential stress fields in linearly elastic orthotropic Saint-Venant beams under torsion is based on the solution of Neumann and Dirichlet boundary value problems for the cross-sectional warping and for Prandtl stress function, respectively. A skillful solution method has been recently proposed by Ecsedi for a class of inhomogeneous beams with shear moduli defined in terms of Prandtl stress function of corresponding homogeneous beams. An alternative reasoning is followed in the present paper for orthotropic functionally graded beams with shear moduli tensors defined in terms of the stress function and of the elasticity of reference inhomogeneous beams. An innovative result of invariance on twist centre is also contributed. Examples of functionally graded elliptic cross sections of orthotropic beams are developed, detecting thus new benchmarks for computational mechanics.
Asymptotic modelling of some functionally graded materials
Wozniak, Czeslaw; Wagrowska, Monika
2010-01-01
International audience; The object of analysis is a multilayered functionally graded laminated heat conductor. Region occupied by this heat conductor is denoted by Ω=(0, L)× Ξ, where Ξ is a region on the 0ξ1ξ2 plane and x∈(0, L). Region Ω is divided into n layers of the same thicknesses λ ...
Functionally graded materials with laser cladding
de Hosson, J.T.M.; Pei, Y.T.; Brebbia, CA
2001-01-01
Al-40 w/o Si functionally graded materials (FGMs) were produced by a onestep laser cladding process on cast Al-alloy substrate as a possible solution for interfacial problems often present in laser coatings. The microstructure of the FGMs consists of a large amount of silicon primary particles surro
Functionally graded materials produced by laser cladding
Pei, Y.T.; Hosson, J.Th.M. De
2000-01-01
AlSi40 functionally graded materials (FGMs) were produced by a one-step laser cladding process on cast Al-alloy substrate as a possible solution for interfacial problems often present in laser coatings. The microstructure of the FGMs consists of a large amount of silicon primary particles surrounded
Functionally Graded Materials Produced by Laser Cladding
Pei, Y.T.; Hosson, J.Th.M. De
2000-01-01
AlSi40 functionally graded materials (FGMs) were produced by a one-step laser cladding process on cast Al-alloy substrate as a possible solution for interfacial problems often present in laser coatings. The microstructure of the FGMs consists of a large amount of silicon primary particles surrounded
Modeling of vibration for functionally graded beams
Directory of Open Access Journals (Sweden)
Yiğit Gülsemay
2016-01-01
Full Text Available In this study, a vibration problem of Euler-Bernoulli beam manufactured with Functionally Graded Material (FGM, which is modelled by fourth-order partial differential equations with variable coefficients, is examined by using the Adomian Decomposition Method (ADM.The method is one of the useful and powerful methods which can be easily applied to linear and nonlinear initial and boundary value problems. As to functionally graded materials, they are composites mixed by two or more materials at a certain rate. This mixture at a certain rate is expressed with an exponential function in order to try to minimize singularities from transition between different surfaces of materials as much as possible. According to the structure of the ADM in terms of initial conditions of the problem, a Fourier series expansion method is used along with the ADM for the solution of simply supported functionally graded Euler-Bernoulli beams. Finally, by choosing an appropriate mixture rate for the material, the results are shown in figures and compared with those of a standard (homogeneous Euler-Bernoulli beam.
Dental implants from functionally graded materials.
Mehrali, Mehdi; Shirazi, Farid Seyed; Mehrali, Mohammad; Metselaar, Hendrik Simon Cornelis; Kadri, Nahrizul Adib Bin; Osman, Noor Azuan Abu
2013-10-01
Functionally graded material (FGM) is a heterogeneous composite material including a number of constituents that exhibit a compositional gradient from one surface of the material to the other subsequently, resulting in a material with continuously varying properties in the thickness direction. FGMs are gaining attention for biomedical applications, especially for implants, owing to their reported superior composition. Dental implants can be functionally graded to create an optimized mechanical behavior and achieve the intended biocompatibility and osseointegration improvement. This review presents a comprehensive summary of biomaterials and manufacturing techniques researchers employ throughout the world. Generally, FGM and FGM porous biomaterials are more difficult to fabricate than uniform or homogenous biomaterials. Therefore, our discussion is intended to give the readers about successful and obstacles fabrication of FGM and porous FGM in dental implants that will bring state-of-the-art technology to the bedside and develop quality of life and present standards of care.
Modeling of functionally graded piezoelectric ultrasonic transducers.
Rubio, Wilfredo Montealegre; Buiochi, Flávio; Adamowski, Julio Cezar; Silva, Emílio Carlos Nelli
2009-05-01
The application of functionally graded material (FGM) concept to piezoelectric transducers allows the design of composite transducers without interfaces, due to the continuous change of property values. Thus, large improvements can be achieved, as reduction of stress concentration, increasing of bonding strength, and bandwidth. This work proposes to design and to model FGM piezoelectric transducers and to compare their performance with non-FGM ones. Analytical and finite element (FE) modeling of FGM piezoelectric transducers radiating a plane pressure wave in fluid medium are developed and their results are compared. The ANSYS software is used for the FE modeling. The analytical model is based on FGM-equivalent acoustic transmission-line model, which is implemented using MATLAB software. Two cases are considered: (i) the transducer emits a pressure wave in water and it is composed of a graded piezoceramic disk, and backing and matching layers made of homogeneous materials; (ii) the transducer has no backing and matching layer; in this case, no external load is simulated. Time and frequency pressure responses are obtained through a transient analysis. The material properties are graded along thickness direction. Linear and exponential gradation functions are implemented to illustrate the influence of gradation on the transducer pressure response, electrical impedance, and resonance frequencies.
Photothermal characterization of functionally graded materials (FGM)
Jumel, J.; Terrien, N.; Arnould, O.; Krapez, J. C.; Lepoutre, F.
2002-05-01
This paper deals with the photothermal characterization of functionally graded materials (FGM) whose thermal properties are varying parallel to the sample surface. Simple experimental configurations and associated inversion procedures are proposed either for thermal mapping or for pitch-catch imaging mode. The photothermally induced periodic temperature field at the sample surface is first calculated using a specific code, then the inversion procedures are checked using a simulated set of data. Preliminary experimental results are presented outlining need of specific filter to cope with experimental noise.
Impact of Functionally Graded Cylinders: Theory
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, S. M. (Technical Monitor)
2001-01-01
This final report summarizes the work funded under the Grant NAG3-2411 during the 04/05/2000-04/04/2001 period. The objective of this one-year project was to generalize the theoretical framework of the two-dimensional higher-order theory for the analysis of cylindrical functionally graded materials/structural components employed in advanced aircraft engines developed under past NASA Glenn funding. The completed generalization significantly broadens the theory's range of applicability through the incorporation of dynamic impact loading capability into its framework. Thus, it makes possible the assessment of the effect of damage due to fuel impurities, or the presence of submicron-level debris, on the life of functionally graded structural components. Applications involving advanced turbine blades and structural components for the reusable-launch vehicle (RLV) currently under development will benefit from the completed work. The theory's predictive capability is demonstrated through a numerical simulation of a one-dimensional wave propagation set up by an impulse load in a layered half-plane. Full benefit of the completed generalization of the higher-order theory described in this report will be realized upon the development of a related computer code.
Modeling Bamboo as a Functionally Graded Material
Silva, Emílio Carlos Nelli; Walters, Matthew C.; Paulino, Glaucio H.
2008-02-01
Natural fibers are promising for engineering applications due to their low cost. They are abundantly available in tropical and subtropical regions of the world, and they can be employed as construction materials. Among natural fibers, bamboo has been widely used for housing construction around the world. Bamboo is an optimized composite material which exploits the concept of Functionally Graded Material (FGM). Biological structures, such as bamboo, are composite materials that have complicated shapes and material distribution inside their domain, and thus the use of numerical methods such as the finite element method and multiscale methods such as homogenization, can help to further understanding of the mechanical behavior of these materials. The objective of this work is to explore techniques such as the finite element method and homogenization to investigate the structural behavior of bamboo. The finite element formulation uses graded finite elements to capture the varying material distribution through the bamboo wall. To observe bamboo behavior under applied loads, simulations are conducted considering a spatially-varying Young's modulus, an averaged Young's modulus, and orthotropic constitutive properties obtained from homogenization theory. The homogenization procedure uses effective, axisymmetric properties estimated from the spatially-varying bamboo composite. Three-dimensional models of bamboo cells were built and simulated under tension, torsion, and bending load cases.
Static Analysis of Functionally Graded Composite Beams
Das, S.; Sarangi, S. K.
2016-09-01
This paper presents a study of functionally graded (FG) composite beam. The FG material for the beam is considered to be composed of different layers of homogeneous material. The fiber volume fraction corresponding to each layer is calculated by considering its variation along the thickness direction (z) according to a power law. Accordingly, the effective properties of the homogeneous layers are estimated and a beam composed of this FG material is modelled using the commercially available ANSYS software. The solid 186 layered structural solid element has been used for discretization of the model of the FG beam. The model developed is validated by comparing the results with those numerical results available in literature. Results are presented for simply supported and fixed boundary conditions for the FG beam. The stress distribution across the thickness of the FG composite beam has also been analyzed.
Engineering functionally graded tissue engineering scaffolds.
Leong, K F; Chua, C K; Sudarmadji, N; Yeong, W Y
2008-04-01
Tissue Engineering (TE) aims to create biological substitutes to repair or replace failing organs or tissues due to trauma or ageing. One of the more promising approaches in TE is to grow cells on biodegradable scaffolds, which act as temporary supports for the cells to attach, proliferate and differentiate; after which the scaffold will degrade, leaving behind a healthy regenerated tissue. Tissues in nature, including human tissues, exhibit gradients across a spatial volume, in which each identifiable layer has specific functions to perform so that the whole tissue/organ can behave normally. Such a gradient is termed a functional gradient. A good TE scaffold should mimic such a gradient, which fulfils the biological and mechanical requirements of the target tissue. Thus, the design and fabrication process of such scaffolds become more complex and the introduction of computer-aided tools will lend themselves well to ease these challenges. This paper reviews the needs and characterization of these functional gradients and the computer-aided systems used to ease the complexity of the scaffold design stage. These include the fabrication techniques capable of building functionally graded scaffolds (FGS) using both conventional and rapid prototyping (RP) techniques. They are able to fabricate both continuous and discrete types of FGS. The challenge in fabricating continuous FGS using RP techniques lies in the development of suitable computer aided systems to facilitate continuous FGS design. What have been missing are the appropriate models that relate the scaffold gradient, e.g. pore size, porosity or material gradient, to the biological and mechanical requirements for the regeneration of the target tissue. The establishment of these relationships will provide the foundation to develop better computer-aided systems to help design a suitable customized FGS.
Functionally Graded Nanophase Beryllium/Carbon Composites
Choi, Michael K.
2003-01-01
Beryllium, beryllium alloys, beryllium carbide, and carbon are the ingredients of a class of nanophase Be/Be2C/C composite materials that can be formulated and functionally graded to suit a variety of applications. In a typical case, such a composite consists of a first layer of either pure beryllium or a beryllium alloy, a second layer of B2C, and a third layer of nanophase sintered carbon derived from fullerenes and nanotubes. The three layers are interconnected through interpenetrating spongelike structures. These Be/Be2C/C composite materials are similar to Co/WC/diamond functionally graded composite materials, except that (1) W and Co are replaced by Be and alloys thereof and (2) diamond is replaced by sintered carbon derived from fullerenes and nanotubes. (Optionally, one could form a Be/Be2C/diamond composite.) Because Be is lighter than W and Co, the present Be/Be2C/C composites weigh less than do the corresponding Co/WC/diamond composites. The nanophase carbon is almost as hard as diamond. WC/Co is the toughest material. It is widely used for drilling, digging, and machining. However, the fact that W is a heavy element (that is, has high atomic mass and mass density) makes W unattractive for applications in which weight is a severe disadvantage. Be is the lightest tough element, but its toughness is less than that of WC/Co alloy. Be strengthened by nanophase carbon is much tougher than pure or alloy Be. The nanophase carbon has an unsurpassed strength-to-weight ratio. The Be/Be2C/C composite materials are especially attractive for terrestrial and aerospace applications in which there are requirements for light weight along with the high strength and toughness of the denser Co/WC/diamond materials. These materials could be incorporated into diverse components, including cutting tools, bearings, rocket nozzles, and shields. Moreover, because Be and C are effective as neutron moderators, Be/Be2C/C composites could be attractive for some nuclear applications.
Design optimization of functionally graded dental implant.
Hedia, H S; Mahmoud, Nemat-Alla
2004-01-01
The continuous increase of man's life span, and the growing confidence in using artificial materials inside the human body necessities introducing more effective prosthesis and implant materials. However, no artificial implant has biomechanical properties equivalent to the original tissue. Recently, titanium and bioceramic materials, such as hydroxyapatite are extensively used as fabrication materials for dental implant due to their high compatibility with hard tissue and living bone. Titanium has reasonable stiffness and strength while hydroxyapatite has low stiffness, low strength and high ability to reach full integration with living bone. In order to obtain good dental implantation of the biomaterial; full integration of the implant with living bone should be satisfied. Minimum stresses in the implant and the bone must be achieved to increase the life of the implant and prevent bone resorption. Therefore, the aim of the current investigation is to design an implant made from functionally graded material (FGM) to achieve the above advantages. The finite element method and optimization technique are used to reach the required implant design. The optimal materials of the FGM dental implant are found to be hydroxyapatite/titanium. The investigations have shown that the maximum stress in the bone for the hydroxyapatite/titanium FGM implant has been reduced by about 22% and 28% compared to currently used titanium and stainless steel dental implants, respectively.
Metallic Functionally Graded Materials: A Specific Class of Advanced Composites
Institute of Scientific and Technical Information of China (English)
Jerzy J.Sobczak; Ludmil Drenchev
2013-01-01
Functionally graded materials,including their characterization,properties and production methods are a new rapidly developing field of materials science.The aims of this review are to systematize the basic production techniques for manufacturing functionally graded materials.Attention is paid to the principles for obtaining graded structure mainly in the metal based functionally graded materials.Several unpublished results obtained by the authors have been discussed briefly.Experimental methods and theoretical analysis for qualitative and quantitative estimation of graded properties have also been presented.The article can be useful for people who work in the field of functionally graded structures and materials,and who need a compact informative review of recent experimental and theoretical activity in this area.
Interfacial adhesion of laser clad functionally graded materials
Ocelik, V.; Pei, Y.T.; de Hosson, J.T.M.; Popoola, O; Dahotre, NB; Midea, SJ; Kopech, HM
2003-01-01
Two functionally graded coatings were prepared by different laser surface engineering techniques. Laser cladding of AlSi40 powder leads to the formation of functionally graded material (FGM) coating on AI-Si cast alloy substrate. Mapping of strain fields near the laser clad track using the digital i
Wave-function reconstruction in a graded semiconductor superlattice
DEFF Research Database (Denmark)
Lyssenko, V. G.; Hvam, Jørn Märcher; Meinhold, D.
2004-01-01
We reconstruct a test wave function in a strongly coupled, graded well-width superlattice by resolving the spatial extension of the interband polarisation and deducing the wave function employing non-linear optical spectroscopy. The graded gap superlattice allows us to precisely control the dista...
Functionally graded mullite coatings for gas turbines
Kulkarni, Tushar
The next generation of heat exchangers and gas turbines require high performance materials as they need to operate at higher temperatures for higher efficiency. SiC and Si3N4 are promising candidates as they have excellent high temperature properties. However, when used in complex combustion environments found in gas-turbine applications, these materials have two major concerns; namely hot-corrosion and recession. It is well established that environmental barrier coatings (EBC) can be utilized to overcome these limitations. Although chemical vapor deposited (CVD) mullite (3Al2O 3.2SiO2) coatings developed before this study have shown promise in protecting Si-based substrates, there is concern that the silica content within the mullite coating itself might be susceptible to hot-corrosion and recession during long term exposure to corrosive atmospheres containing Na/V salts and water vapor. There is thus strong motivation to substantially reduce or even virtually eliminate the silica component from the surfaces of mullite coatings that are in direct contact with atmospheres containing corrosive oxides and steam. In this study, CVD has been used to deposit mullite coatings with potential promise to protect Si-based ceramics for high temperature applications. The composition of these functionally graded mullite coatings was varied from silica-rich close to the coating/substrate (SiC) interface for coefficient of thermal expansion match to alumina-rich towards the outer surface of the coating. In the process, the highest alumina-rich mullite ever reported has been deposited. The phase transformation and hot-corrosion behavior of the coatings was also investigated in this work. The coatings show immense potential to protect Si-based ceramics. It is expected that these coatings will have very broad impact by enabling gas turbines to operate at higher temperatures leading to improved fuel efficiency and reduced emissions.
Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials
Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.
2014-01-01
This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.
An asymptotically exact theory of functionally graded piezoelectric shells
Le, Khanh Chau
2016-01-01
An asymptotically exact two-dimensional theory of functionally graded piezoelectric shells is derived by the variational-asymptotic method. The error estimation of the constructed theory is given in the energetic norm. As an application, analytical solution to the problem of forced vibration of a functionally graded piezoceramic cylindrical shell with thickness polarization fully covered by electrodes and excited by a harmonic voltage is found.
Ceramic/polymer functionally graded material (FGM) lightweight armor system
Energy Technology Data Exchange (ETDEWEB)
Petrovic, J.J.; McClellan, K.J.
1998-12-31
This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Functionally graded material is an enabling technology for lightweight body armor improvements. The objective was to demonstrate the ability to produce functionally graded ceramic-polymer and ceramic-metal lightweight armor materials. This objective involved two aspects. The first and key aspect was the development of graded-porosity boron-carbide ceramic microstructures. The second aspect was the development of techniques for liquid infiltration of lightweight metals and polymers into the graded-porosity ceramic. The authors were successful in synthesizing boron-carbide ceramic microstructures with graded porosity. These graded-porosity boron-carbide hot-pressed pieces were then successfully liquid-infiltrated in vacuum with molten aluminum at 1,300 C, and with liquid polymers at room temperature. Thus, they were able to demonstrate the feasibility of producing boron carbide-aluminum and boron carbide-polymer functionally graded materials.
Hybrid graded element model for transient heat conduction in functionally graded materials
Institute of Scientific and Technical Information of China (English)
Lei-Lei Cao; Qing-Hua Qin; Ning Zhao
2012-01-01
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs).First,a Laplace transform approach is used to handle the time variable.Then,a fundamental solution in Laplace space for FGMs is constructed.Next,a hybrid graded element is formulated based on the obtained fundamental solution and a frame field.As a result,the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field.Further,Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain.Finally,the performance of the proposed method is assessed by several benchmark examples.The results demonstrate well the efficiency and accuracy of the proposed method.
Bending analysis of a functionally graded piezoelectric cantilever beam
Institute of Scientific and Technical Information of China (English)
YU Tao; ZHONG Zheng
2007-01-01
A new analysis based on Airy stress function method is presented for a functionally graded piezoelectric material cantilever beam.Assuming that the mechanical and electric properties of the material have the same variations along the thickness direction,a two-dimensional plane elasticity solution is obtained for the coupling electroelastic fields of the beam under different loadings.This solution will be useful in analyzing FGPM beam with arbitrary variations of material properties.The influences of the functionally graded material properties on the structural response of the beam subjected to different loads are also studied through numerical examples.
Bending analysis of a functionally graded piezoelectric cantilever beam
Institute of Scientific and Technical Information of China (English)
2007-01-01
A new analysis based on Airy stress function method is presented for a functionally graded piezoelectric material cantilever beam. Assuming that the mechanical and electric properties of the material have the same variations along the thickness direction, a two-dimensional plane elasticity solution is obtained for the coupling electroelastic fields of the beam under different loadings. This solution will be useful in analyzing FGPM beam with arbitrary variations of material properties. The influences of the functionally graded material properties on the structural response of the beam subjected to different loads are also studied through numerical examples.
Designing functionally graded materials with superior load-bearing properties.
Zhang, Yu; Sun, Ming-Jie; Zhang, Denzil
2012-03-01
Ceramic prostheses often fail from fracture and wear. We hypothesize that these failures may be substantially mitigated by an appropriate grading of elastic modulus at the ceramic surface. In this study, we elucidate the effect of elastic modulus profile on the flexural damage resistance of functionally graded materials (FGMs), providing theoretical guidelines for designing FGMs with superior load-bearing property. The Young's modulus of the graded structure is assumed to vary in a power-law relation with a scaling exponent n; this is in accordance with experimental observations from our laboratory and elsewhere. Based on the theory for bending of graded beams, we examine the effect of n value and bulk-to-surface modulus ratio (E(b)/E(s)) on stress distribution through the graded layer. Theory predicts that a low exponent (0.15graded materials with various n values and E(b)/E(s) ratios can be fabricated by infiltrating alumina and zirconia with a low-modulus glass. Flexural tests show that graded alumina and zirconia with suitable values of these parameters exhibit superior load-bearing capacity, 20-50% higher than their homogeneous counterparts. Improving load-bearing capacity of ceramic materials could have broad impacts on biomedical, civil, structural, and an array of other engineering applications.
Two-dimensional thermoelasticity solution for functionally graded thick beams
Institute of Scientific and Technical Information of China (English)
Lü; Chaofeng
2006-01-01
[1]Suresh S,Mortensen A.Fundamentals of Functionally Graded Materials.London:IOM Communications,1998[2]Wetherhold R C,Seelman S,Wang J Z.The use of functionally graded materials to eliminate or control thermal deformation.Compos Sci Technol,1996,56:1099―1104[3]Almajid A,Taya M,Hudnut S.Analysis of out-of-plane displacement and stress field in a piezo-composite plate with functionally graded microstructure.Int J Solids Struct,2001,38:3377―3391[4]Wu X H,Chen C Q,Shen Y P,et al.A high order theory for functionally graded piezoelectric shells.Int J Solids Struct,2002,39:5325―5344[5]Ootao Y,Tanigawa Y.Three-dimensional transient piezothermo-elasticity in functional graded rectangular plate bonded to a piezoelectric plate.Int J Solids Struct,2000,37:4377―4401[6]Chen W Q,Ding H J.On free vibration of a functionally graded piezoelectric rectangular plate.Acta Mech,2002,153:207―216[7]Chen W Q,Bian Z G,Lv C F,et al.3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid.Int J Solids Struct,2004,41:947―964[8]Zhong Z,Shang E T.Exact analysis of simply supported functionally graded piezothermoelectric plates.J Intell Mater Syst Struct,2005,16:643―651[9]Sankar B V.An elasticity solution for functionally graded beams.Compos Sci Technol,2001,61:689―696[10]Sankar B V,Tzeng J T.Thermal stresses in functionally graded beams.AIAA J,2002,40:1228―1232[11]Zhu H,Sankar B V.A combined Fourier series-Galerkin method for the analysis of functionally graded beams.J Appl Mech-Trans ASME,2004,71:421―424[12]Chen W Q,Lv C F,Bian Z G.Elasticity solution for free vibration of laminated beams.Compos Struct,2003,62:75―82[13]Nagem R J,Williams J H.Dynamic analysis of large space structures using transfer matrices and joint coupling matrices.Mech Struct Mach,1989,17:349―371[14]Ding H J,Chen W Q,Zhang L C.Elasticity of Transversely Isotropic Materials.Dordrecht:Springer-Verlag,2006[15]Shu C.Differential Quadrature and Its
Elasticity solutions for functionally graded plates in cylindrical bending
Institute of Scientific and Technical Information of China (English)
YANG Bo; DING Hao-jiang; CHEN Wei-qiu
2008-01-01
The plate theory of functionally graded materials suggested by Mian and Spencer is extended to analyze the cylindrical bending problem of a functionally graded rectangular plate subject to uniform load. The expansion formula for displacements is adopted. While keeping the assumption that the material parameters can vary along the thickness direction in an arbitrary fashion, this paper considers orthotropic materials rather than isotropic materials. In addition, the traction-free condition on the top surface is replaced with the condition of uniform load applied on the top surface. The plate theory for the particular case of cylindrical bending is presented by considering an infinite extent in the y-direction. Effects of boundary conditions and material inhomogeneity on the static response of functionally graded plates are investigated through a numerical example.
FRACTURE ANALYSIS OF A FUNCTIONALLY GRADED STRIP UNDER PLANE DEFORMATION
Institute of Scientific and Technical Information of China (English)
Cheng Zhanqi; Zhong Zheng
2006-01-01
In this paper the plane elasticity problem for a functionally graded strip containing a crack is considered. It is assumed that the reciprocal of the shear modulus is a linear function of the thickness-coordinate, while the Possion's ratio keeps constant. By utilizing the Fourier trans formation technique and the transfer matrix method, the mixed boundary problem is reduced to a system of singular integral equations that are solved numerically. The influences of the geometric parameters and the graded parameter on the stress intensity factors and the strain energy release rate are investigated. The numerical results show that the graded parameters, the thickness of the strip and the crack size have significant effects on the stress intensity factors and the strain energy release rate.
Functionally graded materials produced with high power lasers
de Hosson, J.T.M.; Pei, Y.T.; Kumar, A; Chung, YW; Moore, JJ; Doll, GL; Yatsui, K; Misra, DS
2002-01-01
With a well-controlled laser melt injection (LMI) process, for the first time the feasibility is demonstrated to produce SiC particles (SiCp) reinforced Ti6Al4V functionally graded materials (FGMs). SiCp are injected just behind the laser beam into the extended part of the laser melt pool that is fo
Functionally graded materials produced with high power lasers
De Hosson, JTM; Ocelík, Vašek; Chandra, T; Torralba, JM; Sakai, T
2003-01-01
In this keynote paper two examples will be present of functionally graded materials produced with high power Nd:YAG lasers. In particular the conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of A18Si and Ti6Al4V alloys are presented. The formation of
Large deflection of flexible tapered functionally graded beam
Institute of Scientific and Technical Information of China (English)
A.R.Davoodinik; G.H.Rahimi
2011-01-01
In this paper the semi-analytical analyses of the flexible cantilever tapered functionally graded beam under combined inclined end loading and intermediate loading are studied.In order to derive the fully non-linear equations governing the non-linear deformation,a curvilinear coordinate system is introduced.A general non-linear second order differential equation that governs the shape of a deflected beam is derived based on the geometric nonlinearities,infinitesimal local displacements and local rotation concepts with remarkable physical properties of functionally graded materials.The solutions obtained from semi-analytical methods are numerically compared with the existing elliptic integral solution for the case of a flexible uniform cantilever functionally graded beam.The effects of taper ratio,inclined end load angle and material property gradient on large deflection of the beam are evaluated.The Adomian decomposition method will be useful toward the design of tapered functionally graded compliant mechanisms driven by smart actuators.
Interfacial adhesion of laser clad functionally graded materials
Pei, Y. T.; Ocelik, V.; De Hosson, J. T. M.
2003-01-01
Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-situ microstructural observations during straining in a field-emission
Interfacial adhesion of laser clad functionally graded materials
De Hosson, JTM; Pei, YT; Ocelik, [No Value; Sudarshan, TS; Stiglich, JJ; Jeandin, M
2002-01-01
Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-sitit microstructural observations during straining in an FEG-ESEM (fi
A natural functionally graded biocomposite coating--human enamel.
He, Li-Hong; Yin, Zi-Hong; van Vuuren, Ludwig Jansen; Carter, Elizabeth A; Liang, Xiu-Weng
2013-05-01
Human enamel has been found to be a coating with excellent mechanical performance, and has undergone extensive investigation and discussion. However, most of the reported studies consider the enamel as a homogeneous anisotropic biocomposite. The current study illustrated the graded properties of the biocomposite from its functional load-bearing direction. Within the thickness of the enamel, from the outer surface towards the enamel-dentin junction (EDJ), the elastic modulus (E(x)) and hardness (H(x)) of enamel exist in an exponential relationship with normalized thickness (x) as E(x)=111.64x(0.18) (R(2)=0.94) and H(x)=4.41x(0.16) (R(2)=0.87) GPa, respectively. Moreover, the creep ability of enamel increases towards the EDJ. The graded properties of the biocomposite can be explained by both microstructural and compositional changes along the thickness of the material towards the EDJ. Finite element analysis indicates that the graded properties of enamel have important roles in reducing the enamel-dentin interface stresses and maintaining the integrity of the multilayer tooth structure. The results provide a new angle to understand the excellent mechanical behaviour of the multilayer tooth structure and may inspire the development of new functionally graded materials and coating structures.
Higher-Order Theory for Functionally Graded Materials
Aboudi, J.; Pindera, M. J.; Arnold, Steven M.
2001-01-01
Functionally graded materials (FGM's) are a new generation of engineered materials wherein the microstructural details are spatially varied through nonuniform distribution of the reinforcement phase(s). Engineers accomplish this by using reinforcements with different properties, sizes, and shapes, as well as by interchanging the roles of the reinforcement and matrix phases in a continuous manner (ref. 1). The result is a microstructure that produces continuously or discretely changing thermal and mechanical properties at the macroscopic or continuum scale. This new concept of engineering the material's microstructure marks the beginning of a revolution both in the materials science and mechanics of materials areas since it allows one, for the first time, to fully integrate the material and structural considerations into the final design of structural components. Functionally graded materials are ideal candidates for applications involving severe thermal gradients, ranging from thermal structures in advanced aircraft and aerospace engines to computer circuit boards. Owing to the many variables that control the design of functionally graded microstructures, full exploitation of the FGM's potential requires the development of appropriate modeling strategies for their response to combined thermomechanical loads. Previously, most computational strategies for the response of FGM's did not explicitly couple the material's heterogeneous microstructure with the structural global analysis. Rather, local effective or macroscopic properties at a given point within the FGM were first obtained through homogenization based on a chosen micromechanics scheme and then subsequently used in a global thermomechanical analysis.
Fabrication of a Functionally Graded Copper-Zinc Sulfide Phosphor.
Park, Jehong; Park, Kwangwon; Kim, Jongsu; Jeong, Yongseok; Kawasaki, Akira; Kwon, Hansang
2016-03-14
Functionally graded materials (FGMs) are compositionally gradient materials. They can achieve the controlled distribution of the desired characteristics within the same bulk material. We describe a functionally graded (FG) metal-phosphor adapting the concept of the FGM; copper (Cu) is selected as a metal and Cu- and Cl-doped ZnS (ZnS:Cu,Cl) is selected as a phosphor and FG [Cu]-[ZnS:Cu,Cl] is fabricated by a very simple powder process. The FG [Cu]-[ZnS:Cu,Cl] reveals a dual-structured functional material composed of dense Cu and porous ZnS:Cu,Cl, which is completely combined through six graded mediating layers. The photoluminescence (PL) of FG [Cu]-[ZnS:Cu,Cl] is insensitive to temperature change. FG [Cu]-[ZnS:Cu,Cl] also exhibits diode characteristics and photo reactivity for 365 nm -UV light. Our FG metal-phosphor concept can pave the way to simplified manufacturing of low-cost and can be applied to various electronic devices.
Improved SOFC performance with continuously graded anode functional layer
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhenhua; Xu, Ping [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Zhang, Naiqing; Sun, Kening [Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Qiao, Jinshuo [Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Post-doctoral Research Center of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China)
2009-06-15
Continuously graded anode functional layers (CG-AFLs) were fabricated on the Ni-YSZ anode substrates by electrophoretic co-deposition (EPD) technique. The microstructure and composition of the CG-AFLs were investigated. The result showed that uniform and graded structure in AFL was obtained. The single cells were constructed on the basis of CG-AFLs, with a maximum output power density greater than 1.10 W cm{sup -2} obtained at 800 C for the cell with 9.8 {mu}m-thick CG-AFL. Electrochemical impedance spectroscopy (EIS) indicated that the excellent cell performance was contributed to the enlargement of triple phase boundary (TPB) by adding the CG-AFL. (author)
Supersonic flutter analysis of thin cracked functionally graded material plates
Natarajan, S; Bordas, S
2012-01-01
In this paper, the flutter behaviour of simply supported square functionally graded material plates immersed in a supersonic flow is studied. An enriched 4-noded quadrilateral element based on field consistency approach is used for this study and the crack is modelled independent of the underlying mesh. The material properties are assumed to be temperature dependent and graded only in the thickness direction. The effective material properties are estimated using the rule of mixtures. The formulation is based on the first order shear deformation theory and the shear correction factors are evaluated employing the energy equivalence principle. The influence of the crack length, the crack orientation, the flow angle and the gradient index on the aerodynamic pressure and the frequency are numerically studied. The results obtained here reveal that the critical frequency and the critical pressure decreases with increase in crack length and it is minimum when the crack is aligned to the flow angle.
THERMAL POST-BUCKLING OF FUNCTIONALLY GRADED MATERIAL TIMOSHENKO BEAMS
Institute of Scientific and Technical Information of China (English)
LI Shi-rong; ZHANG Jing-hua; ZHAO Yong-gang
2006-01-01
Analysis of thermal post-buckling of FGM (Functionally Graded Material)Timoshenko beams subjected to transversely non-uniform temperature rise is presented.By accurately considering the axial extension and transverse shear deformation in the sense of theory of Timoshenko beam, geometrical nonlinear governing equations including seven basic unknown functions for functionally graded beams subjected to mechanical and thermal loads were formulated. In the analysis, it was assumed that the material properties of the beam vary continuously as a power function of the thickness coordinate. By using a shooting method, the obtained nonlinear boundary value problem was numerically solved and thermal buckling and post-buckling response of transversely non-uniformly heated FGM Timoshenko beams with fixed-fixed edges were obtained. Characteristic curves of the buckling deformation of the beam varying with thermal load and the power law index are plotted. The effects of material gradient property on the buckling deformation and critical temperature of beam were discussed in details. The results show that there exists the tension-bend coupling deformation in the uniformly heated beam because of the transversely non-uniform characteristic of materials.
Thermal Characterization of Functionally Graded Materials: Design of Optimum Experiments
Cole, Kevin D.
2003-01-01
This paper is a study of optimal experiment design applied to the measure of thermal properties in functionally graded materials. As a first step, a material with linearly-varying thermal properties is analyzed, and several different tran- sient experimental designs are discussed. An optimality criterion, based on sen- sitivity coefficients, is used to identify the best experimental design. Simulated experimental results are analyzed to verify that the identified best experiment design has the smallest errors in the estimated parameters. This procedure is general and can be applied to design of experiments for a variety of materials.
Plasma spray forming of functionally graded materials mould
Institute of Scientific and Technical Information of China (English)
ZHAO Zi-yu; FANG Jian-cheng; LI Hong-you
2005-01-01
A new technology of functionally graded materials(FGM) mould fabricated by plasma spraying and arc spraying was developed. According to applied characteristic of plastic mould, the reasonable coatings of FGM were designed and their microstructures were analyzed. At the same time, some key problems were solved including spray mould fabricating, FGM forming and demoulding, etc. The results show that the service performance of the FGM mould is much more excellent than the one composed of the traditional materials, and the life span can also be greatly increased. The technology will have a significant influence on materials development in mould industry.
Thermal performance of functionally graded parabolic annular fins having constant weight
Energy Technology Data Exchange (ETDEWEB)
Gaba, Vivek Kumar; Tiwari, Anil Kumar; Bhowmick, Shubhankar [National Institute of Technology Raipur, Raipur (India)
2014-10-15
The proposed work reports the performance of parabolic annular fins of constant weight made of functionally graded materials. The work involves computation of temperature gradient, efficiency and effectiveness of such fins and compares the performances for different functionally graded parabolic fin profiles obtained by varying grading parameters and profile parameters respectively keeping the weight of the fins constant. The functional grading of thermal conductivity is based on a power function of radial co-ordinate which consists of parameters, namely grading parameters, varying which different grading combinations are studied. A general second order ordinary differential equation has been derived for all the profiles and material grading. The efficiency and effectiveness of the annular fins of different profile and grading combinations have been calculated and plotted and the results reveal the dependence of fin performance on profile and grading parameter.
Love wave propagation in functionally graded piezoelectric material layer.
Du, Jianke; Jin, Xiaoying; Wang, Ji; Xian, Kai
2007-03-01
An exact approach is used to investigate Love waves in functionally graded piezoelectric material (FGPM) layer bonded to a semi-infinite homogeneous solid. The piezoelectric material is polarized in z-axis direction and the material properties change gradually with the thickness of the layer. We here assume that all material properties of the piezoelectric layer have the same exponential function distribution along the x-axis direction. The analytical solutions of dispersion relations are obtained for electrically open or short circuit conditions. The effects of the gradient variation of material constants on the phase velocity, the group velocity, and the coupled electromechanical factor are discussed in detail. The displacement, electric potential, and stress distributions along thickness of the graded layer are calculated and plotted. Numerical examples indicate that appropriate gradient distributing of the material properties make Love waves to propagate along the surface of the piezoelectric layer, or a bigger electromechanical coupling factor can be obtained, which is in favor of acquiring a better performance in surface acoustic wave (SAW) devices.
Dynamic Behavior of Axially Functionally Graded Pipes Conveying Fluid
Directory of Open Access Journals (Sweden)
Chen An
2017-01-01
Full Text Available Dynamic behavior of axially functionally graded (FG pipes conveying fluid was investigated numerically by using the generalized integral transform technique (GITT. The transverse vibration equation was integral transformed into a coupled system of second-order differential equations in the temporal variable. The Mathematica’s built-in function, NDSolve, was employed to numerically solve the resulting transformed ODE system. Excellent convergence of the proposed eigenfunction expansions was demonstrated for calculating the transverse displacement at various points of axially FG pipes conveying fluid. The proposed approach was verified by comparing the obtained results with the available solutions reported in the literature. Moreover, parametric studies were performed to analyze the effects of Young’s modulus variation, material distribution, and flow velocity on the dynamic behavior of axially FG pipes conveying fluid.
Method of lines for temperature field of functionally graded materials
Institute of Scientific and Technical Information of China (English)
DAI Yao; SUN Qi; HAO Gui-xiang; YAN Xiu-fa; LI Yong-dong
2005-01-01
The finite element method (FEM) and the boundary element method (BEM) are often adopted. Howev er, they are not convenient to spatially vary thermal properties of functionally graded material (FGM). Therefore, the method of lines (MOL) is introduced to solve the temperature field of FGM. The basic idea of the method is to semi-discretize the governing equation into a system of ordinary differential equations (ODEs) defined on discrete lines by means of the finite difference method. The temperature field of FGM can be obtained by solving the ODEs. The functions of thermal properties are directly embodied in these equations and these properties are not discretized in the domain. Thus, difficulty of FEM and BEM is overcome by the method. As a numerical example, the temperature field of a plane problem is analyzed for FGMs through varying thermal conductivity coefficient by the MOL.
Applications and functions of food-grade phosphates.
Lampila, Lucina E
2013-10-01
Food-grade phosphates are used in the production of foods to function as buffers, sequestrants, acidulants, bases, flavors, cryoprotectants, gel accelerants, dispersants, nutrients, precipitants, and as free-flow (anticaking) or ion-exchange agents. The actions of phosphates affect the chemical leavening of cakes, cookies, pancakes, muffins, and doughnuts; the even melt of processed cheese; the structure of a frankfurter; the bind and hydration of delicatessen meats; the fluidity of evaporated milk; the distinctive flavor of cola beverages; the free flow of spice blends; the mineral content of isotonic beverages; and the light color of par-fried potato strips. In the United States, food-grade phosphates are generally recognized as safe, but use levels have been defined for some foods by the Code of Federal Regulations, specifically Titles 9 and 21 for foods regulated by the U.S. Department of Agriculture (USDA) and the U.S. Food and Drug Administration (FDA), respectively. Standards for food purity are defined nationally and internationally in sources such as the Food Chemicals Codex and the Joint Food and Agriculture Organization and World Health Organization (FAO/WHO) Expert Committee on Food Additives.
Free flexural vibration of functionally graded size-dependent nanoplates
Natarajan, S; Thangavel, M
2012-01-01
In this paper, the linear free flexural vibration behaviour of functionally graded (FG) size-dependent nanoplates are investigated using the finite element method. The field variables are approximated by non-uniform rational B-splines. The size-dependent FG nanoplate is investigated by using Eringen's differential form of nonlocal elasticity theory. The material properties are assumed to vary only in the thickness direction and the effective properties for FG nanoplate are computed using Mori-Tanaka homogenization scheme. The accuracy of the present formulation is tested considering the problems for which solutions are available. A detailed numerical study is carried out to examine the effect of material gradient index, the characteristic internal length, the plate thickness, the plate aspect ratio and the boundary conditions on the global response of FG nanoplate.
Electromagnetoelastic behaviors of functionally graded piezoelectric solid cylinder and sphere
Institute of Scientific and Technical Information of China (English)
H.L.Dai; Y.M.Fu; J.H.Yang
2007-01-01
Analytical studies on electromagnetoelasticbehaviors are presented for the functionally graded pie-zoelectric material (FGPM) solid cylinder and sphereplaced in a uniform magnetic field and subjected tothe external pressure and electric loading.When themechanical,electric and magnetic properties of thematerial obey an identical power law in the radial direc-tion,the exact displacements,stresses,electric potentialsand perturbations of magnetic field vector in the FGPMsolid cylinder and sphere are obtained by using the infin-itesimal theory of electromagnetoelasticity.Numericalexamples also show the significant influence of materialinhomogeneity.It is interesting to note that selecting aspecific value of inhomogeneity parameter β can opti-mize the electromagnetoelastic responses,which willbe of particular importance in modern engineering designs.
Osteoblast adhesion to functionally graded hydroxyapatite coatings doped with silver.
Sandukas, Stefan; Yamamoto, Akiko; Rabiei, Afsaneh
2011-06-15
Silver-doped functionally graded hydroxyapatite (Ag-FGHA) coatings have been prepared on glass and titanium substrates by ion beam assisted deposition (IBAD) method with in situ heat treatment, and the biological response and dissolution properties of the coatings have been examined. Three Ag-FGHA coatings with different percentages of silver (1, 3, and 6.6 wt % Ag) were compared with pure FGHA (without Ag) as a control. MC 3T3-E1 murine osteoblast cells were cultured on FGHA and Ag-FGHA coating surfaces, and the number of adhered cells after 1, 4, and 7 days was counted. Micromanipulation of live single cells was performed to quantitatively compare cell affinity among the four coating compositions. Results showed that FGHA-Ag1 coating (with 1 wt % Ag) had the highest number of adhered cells after each incubation period, as well as the highest cell affinity after 24-h incubation. Surface profilometry was performed to determine surface roughness average (R(a) ) of coating surfaces before and after immersion in high-purity water, showing that all surfaces initially had roughness averages below 200 nm, while after immersion, roughness average of FGHA-Ag1 surface was significantly increased (R(a) = 404 +/- 100.8 nm), attributed to the highest rate of dissolution. Release rate of Ag+ ions in solution was measured, showing release rates of silver ions for all Ag-doped coatings were initially high and then gradually decreased to a minimum over time, which is the expected dissolution of functionally graded coatings. It is concluded that FGHA-Ag1 coating promoted the highest degree of osteoblast adhesion because of optimal dissolution rate and nontoxic Ag percentage.
AXISYMMETRIC BENDING OF TWO-DIRECTIONAL FUNCTIONALLY GRADED CIRCULAR AND ANNULAR PLATES
Institute of Scientific and Technical Information of China (English)
Guojun Nie; Zheng Zhong
2007-01-01
Assuming the material properties varying with an exponential law both in the thickness and radial directions, axisymmetric bending of two-directional functionally graded circular and annular plates is studied using the semi-analytical numerical method in this paper. The deflections and stresses of the plates are presented. Numerical results show the well accuracy and convergence of the method. Compared with the finite element method, the semi-analytical numerical method is with great advantage in the computational efficiency. Moreover, study on axisymmetric bending of two-directional functionally graded annular plate shows that such plates have better performance than those made of isotropic homogeneous materials or one-directional functionally graded materials. Two-directional functionally graded material is a potential alternative to the one-directional functionally graded material. And the integrated design of materials and structures can really be achieved in two-directional functionally graded materials.
Dynamic fracture of functionally graded magnetoelectroelastic composite materials
Energy Technology Data Exchange (ETDEWEB)
Stoynov, Y. [Faculty of Applied Mathematics and Informatics, Technical University of Sofia (Bulgaria); Dineva, P. [Institute of Mechanics, Bulgarian Academy of Sciences, Sofia (Bulgaria)
2014-11-12
The stress, magnetic and electric field analysis of multifunctional composites, weakened by impermeable cracks, is of fundamental importance for their structural integrity and reliable service performance. The aim is to study dynamic behavior of a plane of functionally graded magnetoelectroelastic composite with more than one crack. The coupled material properties vary exponentially in an arbitrary direction. The plane is subjected to anti-plane mechanical and in-plane electric and magnetic load. The boundary value problem described by the partial differential equations with variable coefficients is reduced to a non-hypersingular traction boundary integral equation based on the appropriate functional transform and frequency-dependent fundamental solution derived in a closed form by Radon transform. Software code based on the boundary integral equation method (BIEM) is developed, validated and inserted in numerical simulations. The obtained results show the sensitivity of the dynamic stress, magnetic and electric field concentration in the cracked plane to the type and characteristics of the dynamic load, to the location and cracks disposition, to the wave-crack-crack interactions and to the magnitude and direction of the material gradient.
Development of polymeric functionally graded scaffolds: a brief review.
Scaffaro, Roberto; Lopresti, Francesco; Maio, Andrea; Sutera, Fiorenza; Botta, Luigi
2016-12-16
Over recent years, there has been a growing interest in multilayer scaffolds fabrication approaches. In fact, functionally graded scaffolds (FGSs) provide biological and mechanical functions potentially similar to those of native tissues. Based on the final application of the scaffold, there are different properties (physical, mechanical, biochemical, etc.) which need to gradually change in space. Therefore, a number of different technologies have been investigated, and often combined, to customize each region of the scaffolds as much as possible, aiming at achieving the best regenerative performance.In general, FGSs can be categorized as bilayered or multilayered, depending on the number of layers in the whole structure. In other cases, scaffolds are characterized by a continuous gradient of 1 or more specific properties that cannot be related to the presence of clearly distinguished layers. Since each traditional approach presents peculiar advantages and disadvantages, FGSs are good candidates to overcome the limitations of current treatment options. In contrast to the reviews reported in the literature, which usually focus on the application of FGS, this brief review provides an overview of the most common strategies adopted to prepare FGS.
Synthesis of functionally graded materials via electrophoretic deposition and sintering
Wang, Xuan
In this research, both the experiments and the modeling aspects of the net-shape fabrication of Functionally Graded Materials (FGM) by Electrophoretic Deposition (EPD) and consecutive sintering have been investigated. In order to obtain FGMs with desired final shape and properties, the issues regarding the shape evolution during sintering, the optimization of initial properties and composition profiles, and the fabrication of green components by EPD have been analyzed. In order to fabricate FGMs by the proposed technological sequence (EPD with the following sintering), the initial shape has to be optimized prior to sintering. In this research, the formulations to simulate sintering of an FGM were developed based on the continuum theory of sintering. A finite element sintering-modeling subroutine has been created and linked to the commercial finite element package ABAQUS. The shape changes of FGM disks during sintering were simulated. In order to obtain the desired final shape after sintering, an inverse modeling methodology was developed to optimize the initial shape. In order to fabricate the optimized initial shape of a green FGM specimen determined by the inverse continuum modeling of sintering, EPD of a number of FGMs was investigated. The FGM green specimens made of Al2O 3 and ZrO2 with the initial shape predicted by the inverse modeling, were deposited using self-designed equipments. The acetone-based suspension with n-butylamine as a particle-charging additive was used. The comparison of the shape between the sintered and the green FGM indicated that the developed experimental-theoretical methodology provided a reliable solution for near net shaping of complex 3-D FGM components. Other applications of EPD, such as in electronic packaging materials and zeolites, were also investigated. In order to fabricate functionally graded materials based on aligned porous structures, unidirectional freezing followed by freeze-drying and sintering has been investigated
THERMAL FRACTURE OF FUNCTIONALLY GRADED PLATE WITH PARALLEL SURFACE CRACKS
Institute of Scientific and Technical Information of China (English)
Yuezhong Feng; Zhihe Jin
2009-01-01
This work examines the fracture behavior of a functionally graded material (FGM) plate containing parallel surface cracks with alternating lengths subjected to a thermal shock. The thermal stress intensity factors (TSIFs) at the tips of long and short cracks are calculated using a singular integral equation technique. The critical thermal shock △T_c that causes crack initiation is calculated using a stress intensity factor criterion. Numerical examples of TSIFs and △T_c for an Al_2O_3/Si_3N_4 FGM plate are presented to illustrate the effects of thermal property gradation, crack spacing and crack length ratio on the TSIFs and △T_c. It is found that for a given crack length ratio, the TSIFs at the tips of both long and short cracks can be reduced significantly and △T_c can be enhanced by introducing appropriate material gradation. The TSIFs also decrease dramatically with a decrease in crack spacing. The TSIF at the tips of short cracks may be higher than that for the long cracks under certain crack geometry conditions. Hence, the short cracks instead of long cracks may first start to grow under the thermal shock loading.
Optimum Weight Design of Functionally Graded Material Gears
Institute of Scientific and Technical Information of China (English)
JING Shikai; ZHANG He; ZHOU Jingtao; SONG Guohua
2015-01-01
Traditional gear weight optimization methods consider gear tooth number, module, face width or other dimension parameters of gear as design variables. However, due to the complicated form and geometric features peculiar to the gear, there will be large amounts of design parameters in gear design, and the influences of gear parameters changing on gear trains, transmission system and the whole equipment have to be taken into account, which increases the complexity of optimization problem. This paper puts forward to apply functionally graded materials (FGMs) to gears and then conduct the optimization. According to the force situation of gears, the material distribution form of FGM gears is determined. Then based on the performance parameters analysis of FGMs and the practical working demands for gears, a multi-objective optimization model is formed. Finally by using the goal driven optimization (GDO) method, the optimal material distribution is achieved, which makes gear weight and the maximum deformation be minimum and the maximum bending stress do not exceed the allowable stress. As an example, the applying of FGM to automotive transmission gear is conducted to illustrate the optimization design process and the result shows that under the condition of keeping the normal working performance of gear, the method achieves in greatly reducing the gear weight. This research proposes a FGM gears design method that is able to largely reduce the weight of gears by optimizing the microscopic material parameters instead of changing the macroscopic dimension parameters of gears, which reduces the complexity of gear weight optimization problem.
Fabrication and Microstructure of W/Cu Functionally Graded Material
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
W/Cu functionally gradient material (FGM) has excellent mech anical properties since it can effectively relax interlayer thermal st resses caused by the mismatch between their thermal expansion coeffici ents. W/Cu FGM combines the advantages of tungsten such as high meltin g point and service strength, with heat conductivity and plasticity of copper at room temperature. Thus it demonstrates satisfactory heat co rrosion and thermal shock resistance and will be a promising candidate as divertor component in thermonuclear device. Owing to the dramatic difference of melting point between tungsten and copper, conventional processes meet great difficulties in fabricating this kind of FGMs. A new approach termed graded sintering under ultra-high pressure (GSUHP) is proposed, with which a near 96% relative density of W/Cu FGM that contains a full distribution spectrum (0€?00%W) has been successfully fabricated. Suitable amount of transition metals (such as nickel, zir conium, vanadium) is employed as additives to activate tungsten's sint ering, enhance phase wettability and bonding strength between W and Cu . Densification effects of different layer of FGM were investigated. M icrostructure morphology and interface elements distribution were obse rved and analyzed. The thermal shock performance of W/Cu FGM was also preliminarily tested.
Thermal post-bunkling analyses of functionally graded material rod
Institute of Scientific and Technical Information of China (English)
ZHAO Feng-qun; WANG Zhong-min; LIU Hong-zhao
2007-01-01
The non-linear governing differential equations of immovably simply supported functionally graded material (FGM) rod subjected to thermal loads were derived.The thermal post-buckling behaviors of FGM rod made of ZrO2 and Ti-6A1-4Vwere analyzed by shooting method. Firstly, the thermal post-buckling equilibrium paths of the FGM rod with different gradient index in the uniform temperature field were plotted,and compared with the behaviors of the homogeneous rods made of ZrO2 and Ti-6A1-4V materials, respectively. For given value of end rotation angles, the influence of gradient index on the thermal post-buckling behaviors of FGM rod was discussed. Secondly, the thermal post-buckling characteristics of the FGM rod were analyzed when the temperature difference parameter is changed while the bottom temperature parameter remains constant, and when the bottom temperature parameter is changed while the temperature difference parameter remains constant, and compared with the characteristics of the two homogeneous material rods.
Bone remodeling induced by dental implants of functionally graded materials.
Lin, Daniel; Li, Qing; Li, Wei; Swain, Michael
2010-02-01
Functionally graded material (FGM) had been developed as a potential implant material to replace titanium for its improved capability of initial osseointegration. The idea behind FGM dental implant is that its properties can be tailored in accordance with the biomechanical needs at different regions adapting to its hosting bony tissues, therefore creating an improved overall integration and stability in the entire restoration. However, there have been very few reports available so far on predicting bone remodeling induced by FGM dental implants. This article aims to evaluate bone remodeling when replacing the titanium with a hydroxyapatite/collagen (HAP/Col) FGM model. A finite element model was constructed in the buccal-lingual section of a dental implant-bone structure generated from in vivo CT scan images. The remodeling simulation was performed over a 4 year healing period. Comparisons were made between the titanium implant and various FGM implants of this model. The FGM implants showed an improved bone remodeling outcome. The study is expected to provide a basis for future development of FGM implants.
Fabrication of Mo-Ti functionally graded material
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
Molybdenum alloys and titanium alloys were sintered at 1473K for 1 h under a pressure of 30 MPa. It was found that the addition of Al can increase evidently the relative density of sintered Mo-Fe alloys. The Fe-Al additives are also suitable for the sintering of titanium alloys, and the Mo alloy and Ti alloy can be densified concurrently with the same additives 3 % Fe-1.5 % Al. The experimental results also showed that during the sintering of Mo-Ti alloys the Fe-Al sintering aids promoted the formation of Mo-Ti solid solution, but the solid solution reaction occurred at the low sintering temperature of 1 473 K is inadequate. Finally, Mo-Ti system functionally graded material has been successfully fabricated. Its density changed gradually from 9.52 g/ cm3 to 4.48 g/cm3 in thickness direction. Such a material can be used in dynamic high-pressure technology.
Functionally Graded Al Alloy Matrix In-Situ Composites
Kumar, S.; Subramaniya Sarma, V.; Murty, B. S.
2010-01-01
In the present work, functionally graded (FG) aluminum alloy matrix in-situ composites (FG-AMCs) with TiB2 and TiC reinforcements were synthesized using the horizontal centrifugal casting process. A commercial Al-Si alloy (A356) and an Al-Cu alloy were used as matrices in the present study. The material parameters (such as matrix and reinforcement type) and process parameters (such as mold temperature, mold speed, and melt stirring) were found to influence the gradient in the FG-AMCs. Detailed microstructural analysis of the composites in different processing conditions revealed that the gradients in the reinforcement modify the microstructure and hardness of the Al alloy. The segregated in-situ formed TiB2 and TiC particles change the morphology of Si particles during the solidification of Al-Si alloy. A maximum of 20 vol pct of reinforcement at the surface was achieved by this process in the Al-4Cu-TiB2 system. The stirring of the melt before pouring causes the reinforcement particles to segregate at the periphery of the casting, while in the absence of such stirring, the particles are segregated at the interior of the casting.
Alumina/Ce-Tzp Functionally Graded Materials by Electrophoretic Deposition
Institute of Scientific and Technical Information of China (English)
C.Zhao, J.Vleugels; O.Van Der Biest
2000-01-01
Cylindrical Al2O3/Ce-TZP functionally graded composites were fabricated by electrophoretic deposition and pressureless sintering in air. A continuous change in composition was realized by changing the composition of the suspension during deposition. In order to achieve full densification, a temperature above 1550℃ was necessary. The resultant FGM cylinder with a diameter of 5.6 mm shows the following structure: a central hole with a diameter less than 0.5 mm, a tough Ce-ZrO2 core with a diameter of about 3 mm, a gradient layer of about 1 mm, and a hard Al2O3-rich surface layer. The Ce-ZrO2 core has a Vickers hardness between 10and 11 GPa and an excellent toughness (＞10 MPa√m). In the gradient layer, hardness and toughness vary continuously along the radius. The surface layer has a hardness of 15.5 GPa and a modest toughness of 2.5MPa√m.
Osteoblast functions in functionally graded Ti-6Al-4 V mesh structures.
Nune, K C; Kumar, A; Misra, R D K; Li, S J; Hao, Y L; Yang, R
2016-03-01
We describe here the combined efforts of engineering and biological sciences as a systemic approach to fundamentally elucidate osteoblast functions in functionally graded Ti-6Al-4 V mesh structures in relation to uniform/monolithic mesh arrays. First, the interconnecting porous architecture of functionally graded mesh arrays was conducive to cellular functions including attachment, proliferation, and mineralization. The underlying reason is that the graded fabricated structure with cells seeded from the large pore size side provided a channel for efficient transfer of nutrients to other end of the structure (small pore size), leading to the generation of mineralized extracellular matrix by differentiating pre-osteoblasts. Second, a comparative and parametric study indicated that gradient mesh structure had a pronounced effect on cell adhesion and mineralization, and strongly influenced the proliferation phase. High intensity and near-uniform distribution of proteins (actin and vinculin) on struts of the gradient mesh structure (cells seeded from large pore side) implied signal transduction during cell adhesion and was responsible for superior cellular activity, in comparison to the uniform mesh structure and non-porous titanium alloy. Cells adhered to the mesh struts by forming a sheet, bridging the pores through numerous cytoplasmic extensions, in the case of porous mesh structures. Intercellular interaction in porous structures provided a pathway for cells to communicate and mature to a differentiated phenotype. Furthermore, the capability of cells to migrate through the interconnecting porous architecture on mesh structures led to colonization of the entire structure. Cells were embedded layer-by-layer in the extracellular matrix as the matrix mineralized. The outcomes of the study are expected to address challenges associated with the treatment of segmental bone defects and bone-remodeling through favorable modulation of cellular response. Moreover, the study
Is the British Army medical grading functional assessment tool effective?
Mackie, Isobel
2015-12-01
Decision Support Aids (DSAs) have been widely used throughout industry and one (known as Table 7) is available to support British Army Medical Officers (MOs) grade soldiers against the Joint Medical Employment Standards. It is unknown how useful this DSA is in practice. An electronic questionnaire was distributed to British Army MOs working within Defence Primary Care facilities enquiring about MOs views on the usefulness of the DSA. Although the response rate was low, informative data were obtained. Between a half and a third of respondents felt that their judgement was affected in the application of the grading system when there were career implications to the grading MOs felt that the DSA allowed subjectivity in the grading. The results of this research suggest that although minor changes to Table 7 may improve service provision, an improvement in training in the application of Table 7 would be of greater benefit to the quality of occupational health service provision in the British Army.
Manufacturing technique and performance of functionally graded concrete segment in shield tunnel
Institute of Scientific and Technical Information of China (English)
Baoguo MA; Dinghua ZOU; Li XU
2009-01-01
The quality of segment is very important to theservice life of shield tunnel. Concerning the complex engineering environment of the Wuhan Yangtze River Shield Tunnel, the principle of functionally graded materials was introduced to design and produce the functionally graded concrete segment (FGCS). Its key manufacturing technique was proposed and its perfor-mance was tested.
The contribution of executive functions to narrative writing in fourth grade children
Drijbooms, E.; Groen, M.A.; Verhoeven, L.T.W.
2015-01-01
The present study investigated the contribution of executive functions to narrative writing in fourth grade children, and evaluated to what extent executive functions contribute differentially to different levels of narrative composition. The written skills of 102 Dutch children in fourth grade were
The Contribution of Executive Functions to Narrative Writing in Fourth Grade Children
Drijbooms, Elise; Groen, Margriet A.; Verhoeven, Ludo
2015-01-01
The present study investigated the contribution of executive functions to narrative writing in fourth grade children, and evaluated to what extent executive functions contribute differentially to different levels of narrative composition. The written skills of 102 Dutch children in fourth grade were assessed using a narrative picture-elicitation…
Bosma, Ingeborg; Douw, Linda; Bartolomei, Fabrice; Heimans, Jan J.; van Dijk, Bob W.; Postma, Tjeerd J.; Stam, Cornelis J.; Reijneveld, Jaap C.; Klein, Martin
2008-01-01
We investigated the mechanisms underlying neurocognitive dysfunction in patients with low-grade glioma (LGG) by relating functional connectivity revealed by magnetoencephalography to neurocognitive function. We administered a battery of standardized neurocognitive tests measuring six neurocognitive
Optimal Design of Functionally Graded Metallic Foam Insulations
Haftka, Raphael T.; Sankar, Bhavani; Venkataraman, Satchi; Zhu, Huadong
2002-01-01
The focus of our work has been on developing an insight into the physics that govern the optimum design of thermal insulation for use in thermal protection systems of launch vehicle. Of particular interest was to obtain optimality criteria for designing foam insulations that have density (or porosity) distributions through the thickness for optimum thermal performance. We investigate the optimum design of functionally graded thermal insulation for steady state heat transfer through the foam. We showed that the heat transfer in the foam has competing modes, of radiation and conduction. The problem assumed a fixed inside temperature of 400 K and varied the aerodynamic surface heating on the outside surface from 0.2 to 1.0 MW/sq m. The thermal insulation develops a high temperature gradient through the thickness. Investigation of the model developed for heat conduction in foams showed that at high temperatures (as on outside wall) intracellular radiation dominates the heat transfer in the foam. Minimizing radiation requires reducing the pore size, which increases the density of the foam. At low temperatures (as on the inside wall), intracellular conduction (of the metal and air) dominates the heat transfer. Minimizing conduction requires increasing the pore size. This indicated that for every temperature there was an optimum value of density that minimized the heat transfer coefficient. Two optimization studies were performed. One was to minimize the heat transmitted though a fixed thickness insulation by varying density profiles. The second was to obtain the minimum mass insulation for specified thickness. Analytical optimality criteria were derived for the cases considered. The optimality condition for minimum heat transfer required that at each temperature we find the density that minimizes the heat transfer coefficient. Once a relationship between the optimum heat transfer coefficient and the temperature was found, the design problem reduced to the solution of a
Application of ANFIS for analytical modeling of tensile strength of functionally graded steels
Directory of Open Access Journals (Sweden)
Ali Nazari
2012-06-01
Full Text Available In the present study, the tensile strength of ferritic and austenitic functionally graded steels produced by electroslag remelting has been modeled. To produce functionally graded steels, two slices of plain carbon steel and austenitic stainless steels were spot welded and used as electroslag remelting electrode. Functionally graded steel containing graded layers of ferrite and austenite may be fabricated via diffusion of alloying elements during remelting stage. Vickers microhardness profile of the specimen has been obtained experimentally and modeled with adaptive network-based fuzzy inference systems (ANFIS. To build the model for graded ferritic and austenitic steels, training, testing and validation using respectively 174 and 120 experimental data were conducted. According to the input parameters, in the ANFIS model, the Vickers microhardness of each layer was predicted. A good fit equation which correlates the Vickers microhardness of each layer to its corresponding chemical composition was achieved by the optimized network for both ferritic and austenitic graded steels. Afterwards; the Vickers microhardness of each layer in functionally graded steels was related to the yield stress of the corresponding layer and by assuming Holloman relation for stress-strain curve of each layer, they were acquired. Finally, by applying the rule of mixtures, tensile strength of functionally graded steels configuration was found through a numerical method. The obtained results from the proposed model are in good agreement with those acquired from the experiments.
Holweger, Nancy; Taylor, Grace
The fifth-grade and eighth-grade science items on a state performance assessment were compared for differential item functioning (DIF) due to gender. The grade 5 sample consisted of 8,539 females and 8,029 males and the grade 8 sample consisted of 7,477 females and 7,891 males. A total of 30 fifth grade items and 26 eighth grade items were…
Neonates with reduced neonatal lung function have systemic low-grade inflammation
Chawes, Bo L.K.; Stokholm, Jakob; Bønnelykke, Klaus; Pedersen, Susanne Brix; Bisgaard, Hans Flinker
2015-01-01
Background: Children and adults with asthma and impaired lung function have been reported to have low-grade systemic inflammation, but it is unknown whether this inflammation starts before symptoms and in particular whether low-grade inflammation is present in asymptomatic neonates with reduced lung function. ObjectiveWe sought to investigate the possible association between neonatal lung function and biomarkers of systemic inflammation. Methods: Plasma levels of high-sensitivity C-reactive p...
Functionally graded TiC-based cermets via combustion synthesis and quasi-isostatic pressing
Martinez Pacheco, M.; Stuivinga, M.E.C.; Carton, E.P.; Katgerman, L.
2004-01-01
Experimental results on the preparation of functionally graded TiC-based cermets obtained by combustion synthesis (also known as Self-Propagating High-Temperature Synthesis, SHS) followed by quasi-isostatic (QIP) pressing in a granulate medium are presented. Pellets of TiC-Fe graded cermets are prod
Institute of Scientific and Technical Information of China (English)
LIU Wuxiang; MA Shaokun; WU Hao
2014-01-01
An orthotropic functionally graded piezoelectric rectangular plate with arbitrarily distributed material properties was studied, which is simply supported and grounded (electrically) on its four lateral edges. The state equations of the functionally graded piezoelectric material were obtained using the state-space approach, and a Peano-Baker series solution was obtained for the coupled electroelastic fields of the functionally graded piezoelectric plate subjected to mechanical and electric loading on its upper and lower surfaces. The influence of different distributions of material properties on the structural response of the plate was studied using the obtained solutions.
FREE VIBRATION OF FUNCTIONALLY GRADED,MAGNETO-ELECTRO-ELASTIC, AND MULTILAYERED PLATES
Institute of Scientific and Technical Information of China (English)
Chen Jiangyi; Chen Hualing; Pan Ernian
2006-01-01
The state-space method is employed to evaluate the modal parameters of functionally graded, magneto-electro-elastic, and multilayered plates. Based on the assumption that the properties of the functionally graded material are exponential, the state equation of structural vibration which takes the displacement and stress of the structure as state variables is derived. The natural frequencies and modal shapes are calculated based on the general solutions of the state equation and boundary conditions given in this paper. The influence of the functionally graded exponential factor on the elastic displacement, electric, and magnetic fields of the structure are discussed by assuming a sandwich plate model with different stacking sequences.
Analysis of a functionally graded piezothermoelastic hollow cylinder
Institute of Scientific and Technical Information of China (English)
CHEN Ying; SHI Zhi-fei
2005-01-01
A long thick-walled hollow cylinder ofpiezothermoelastic materials was studied in this work. The gradient property of the piezoelectric parameter g31 was taken into account. The theory of elasticity was applied to obtain the exact solutions of the cylinder subjected simultaneously to thermal and electric loadings. As an application, these solutions have been successfully used to study the inverse problems of the material. For comparison, numerical results have been carried out for both graded and double-layered cylinders.
National Aeronautics and Space Administration — The objective of the proposed research is to develop functionally graded polyimide foams as light-weight, high performance thermal protection systems (TPS) for...
Institute of Scientific and Technical Information of China (English)
Ali Nazari; Jamshid Aghazadeh Mohandesi; Shadi Riahi
2011-01-01
In the present study, fracture toughness of functionally graded steels in crack divider configuration has been modeled. By utilizing plain carbon and austenitic stainless steels slices with various thicknesses and arrangements as electroslag remelting electrodes, functionally graded steels were produced. The fracture toughness of the functionally graded steels in crack divider configuration has been found to depend on the composites' type together with the volume fraction and the position of the containing phases. According to the area under stress-strain curve of each layer in the functionally graded steels, a mathematical model has been presented for predicting fracture toughness of composites by using the rule of mixtures. The fracture toughness of each layer has been modified according to the position of that layer where for the edge layers, net plane stress condition was supposed and for the central layers, net plane strain condition was presumed. There is a good agreement between experimental results and those acquired from the analytical model.
Finite Element Analysis of Functionally Graded Material to Reduce Crazing in Transparent Armor
2015-09-01
UNCLASSIFIED AD-E403 681 Technical Report ARMET-TR-14042 FINITE ELEMENT ANALYSIS OF FUNCTIONALLY GRADED MATERIAL TO REDUCE...prevent disclosure of its contents or reconstruction of the document. Do not return to the originator. UNCLASSIFIED REPORT DOCUMENTATION PAGE Form...September 2012 to April 2013 4. TITLE AND SUBTITLE FINITE ELEMENT ANALYSIS OF FUNCTIONALLY GRADED MATERIAL TO REDUCE CRAZING IN TRANSPARENT ARMOR
Directory of Open Access Journals (Sweden)
Amin Hadi
2013-01-01
Full Text Available The bending of rectangular plate made of functionally graded material (FGM is investigated by using three-dimensional elasticity theory. The governing equations obtained here are solved with static analysis considering the types of plates, which properties varying exponentially along direction. The value of Poisson’s ratio has been taken as a constant. The influence of different functionally graded variation on the stress and displacement fields was studied through a numerical example. The exact solution shows that the graded material properties have significant effects on the mechanical behavior of the plate.
Sound symbolic naming of novel objects is a graded function.
Thompson, Patrick D; Estes, Zachary
2011-12-01
Although linguistic traditions of the last century assumed that there is no link between sound and meaning (i.e., arbitrariness), recent research has established a nonarbitrary relation between sound and meaning (i.e., sound symbolism). For example, some sounds (e.g., /u/ as in took) suggest bigness whereas others (e.g., /i/ as in tiny) suggest smallness. We tested whether sound symbolism only marks contrasts (e.g., small versus big things) or whether it marks object properties in a graded manner (e.g., small, medium, and large things). In two experiments, participants viewed novel objects (i.e., greebles) of varying size and chose the most appropriate name for each object from a list of visually or auditorily presented nonwords that varied incrementally in the number of "large" and "small" phonemes. For instance, "wodolo" contains all large-sounding phonemes, whereas "kitete" contains all small-sounding phonemes. Participants' choices revealed a graded relationship between sound and size: The size of the object linearly predicted the number of large-sounding phonemes in its preferred name. That is, small, medium, and large objects elicited names with increasing numbers of large-sounding phonemes. The results are discussed in relation to cross-modal processing, gesture, and vocal pitch.
Functionally graded porous scaffolds made of Ti-based agglomerates.
Nazari, Keivan A; Hilditch, Tim; Dargusch, Matthew S; Nouri, Alireza
2016-10-01
Mono- and double-layer porous scaffolds were successfully fabricated using ball-milled agglomerates of Ti and Ti-10Nb-3Mo alloy. For selectively controlling the level of porosity and pore size, the agglomerates were sieved into two different size fractions of 100-300μm and 300-500μm. Compressive mechanical properties were measured on a series of cylindrical sintered compacts with different ratios of solid core diameter to porous layer width. The graded porous scaffolds exhibited stress-strain curves typical for metallic foams with a defined plateau region after yielding. The compressive strengths and elastic moduli ranged from 300 to 700MPa and 14 to 55GPa, respectively, depending on the core diameter and the material used. The obtained properties make these materials suitable for load-bearing implant applications.
Value functions on simple algebras, and associated graded rings
Tignol, Jean-Pierre
2015-01-01
This monograph is the first book-length treatment of valuation theory on finite-dimensional division algebras, a subject of active and substantial research over the last forty years. Its development was spurred in the last decades of the twentieth century by important advances such as Amitsur's construction of noncrossed products and Platonov's solution of the Tannaka-Artin problem. This study is particularly timely because it approaches the subject from the perspective of associated graded structures. This new approach has been developed by the authors in the last few years and has significantly clarified the theory. Various constructions of division algebras are obtained as applications of the theory, such as noncrossed products and indecomposable algebras. In addition, the use of valuation theory in reduced Whitehead group calculations (after Hazrat and Wadsworth) and in essential dimension computations (after Baek and Merkurjev) is showcased. The intended audience consists of graduate students and researc...
Kristo, Gert; Raemaekers, Mathijs; Rutten, Geert Jan; de Gelder, Beatrice; Ramsey, Nick F.
2015-01-01
Despite many claims of functional reorganization following tumour surgery, empirical studies that investigate changes in functional activation patterns are rare. This study investigates whether functional recovery following surgical treatment in patients with a low-grade glioma in the left hemispher
Flutter Characteristic Study of Composite Sandwich Panel with Functionally Graded Foam Core
Directory of Open Access Journals (Sweden)
Peng Jin
2016-01-01
Full Text Available This paper attempts to investigate the flutter characteristic of sandwich panel composed of laminated facesheets and a functionally graded foam core. The macroscopic properties of the foam core change continuously along this direction parallel to the facesheet lamina. The model used in the study is a simple sandwich panel-wing clamped at the root, with three simple types of grading strategies for FGM core: (1 linear grading strategy in the chord-wise direction, (2 linear grading strategy in the span-wise direction, and (3 bilinear grading of properties of foam core across the panel. The results show that use of FGM core has the potential to increase the flutter speed of the sandwich panel. Finally, a minimum weight design of composite sandwich panel with lamination parameters of facesheet and density distribution of foam core as design variables is conducted using particle swarm optimization (PSO.
Nutritional and functional characteristics of seven grades of black tea produced in Turkey.
Serpen, Arda; Pelvan, Ebru; Alasalvar, Cesarettin; Mogol, Burçe Ataç; Yavuz, Havvana Tuba; Gökmen, Vural; Özcan, Nihat; Özçelik, Beraat
2012-08-01
Seven grades of black tea [high-quality black tea (grades 1-3) and low-quality black tea (grades 4-7)], processed by ÇAYKUR Tea Processing Plant (Rize, Turkey), were examined for their proximate composition, dietary fiber, minerals, and water-soluble vitamins as well as total phenolic content, various antioxidant assays, phenolics (flavanols, alkoloids, condensed phenolics, and phenolic acids), chlorophylls, and carotenoids. Some variations, albeit to different extents, were observed (p black tea. With respect to proximate composition, dietary fiber was the predominant compound (ranging from 49.68 to 54.31 g/100 g), followed by protein, carbohydrate, and, to a lesser extent, ash, moisture, and fat. Thirteen minerals, four water-soluble vitamins, six flavanols, two alkoloids, three condensed phenolics, one phenolic acid, two chlorophylls, and two carotenoids were identified in the seven grades of black tea. Total phenol content ranged from 7.52 to 8.29 g of gallic acid equivalents (GAE)/100 g, being lowest in grade 6 and highest in grade 1. With regard to antioxidant activities, a large variation in oxygen radical absorbance capacity (ORAC) values was observed among all grades of black tea (ranging from 777 μmol of trolox equivalents (TE)/g in grade 7 to 1210 μmol of TE/g in grade 3). The present work suggests that high- and low-quality black teas should not be distinguished on the basis of their nutritional and functional characteristics. The combination of nutritional compounds together with functional characteristics renders combination effects that provide the characteristic quality of each grade of black tea.
Maurya, Deepam; Zhou, Yuan; Chen, Bo; Kang, Min-Gyu; Nguyen, Peter; Hudait, Mantu K; Priya, Shashank
2015-10-14
We report the tunable electrical response in functionally graded interfaces in lead-free ferroelectric thin films. Multilayer thin film graded heterostructures were synthesized on platinized silicon substrate with oxide layers of varying thickness. Interestingly, the graded heterostructure thin films exhibited shift of the hysteresis loops on electric field and polarization axes depending upon the direction of an applied bias. A diode-like characteristics was observed in current-voltage behavior under forward and reverse bias. This modulated electrical behavior was attributed to the perturbed dynamics of charge carriers under internal bias (self-bias) generated due to the increased skewness of the potential wells. The cyclic sweeping of voltage further demonstrated memristor-like current-voltage behavior in functionally graded heterostructure devices. The presence of an internal bias assisted the generation of photocurrent by facilitating the separation of photogenerated charges. These novel findings provide opportunity to design new circuit components for the next generation of microelectronic device architectures.
Watanabe, Yoshimi; Shibuya, Masafumi; Sato, Hisashi
2013-03-01
The continuous graded structure of functionally graded materials (FGMs) can be created under a centrifugal force. Centrifugal sintered-casting (CSC) method, proposed by the authors, is one of the fabrication methods of FGM under centrifugal force. This method is a combination of the centrifugal sintering method and centrifugal casting method. In this study, Al/diamond particle FGM was fabricated by the proposed method.
Elastic and viscoelastic solutions to rotating functionally graded hollow and solid cylinders
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Analytical solutions to rotating functionally graded hollow and solid long cylinders are developed. Young's modulus and material density of the cylinder are as* sumed to vary exponentially in the radial direction, and Poisson's ratio is assumed to be constant. A unified governing equation is derived from the equilibrium equations, compat-ibility equation, deformation theory of elasticity and the stress-strain relationship. The governing second-order differential equation is solved in terms of a hypergeometric func-tion for the elastic deformation of rotating functionally graded cylinders. Dependence of stresses in the cylinder on the inhomogeneous parameters, geometry and boundary conditions is examined and discussed. The proposed solution is validated by comparing the results for rotating functionally graded hollow and solid cylinders with the results for rotating homogeneous isotropic cylinders. In addition, a viscoelastic solution to the rotating viscoelastic cylinder is presented, and dependence of stresses in hollow and solid cylinders on the time parameter is examined.
Directory of Open Access Journals (Sweden)
Liying Jiang
2011-12-01
Full Text Available In this work, the problem of a curved functionally graded piezoelectric (FGP actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.
Neonates with reduced neonatal lung function have systemic low-grade inflammation
DEFF Research Database (Denmark)
Chawes, Bo L.K.; Stokholm, Jakob; Bønnelykke, Klaus;
2015-01-01
Background: Children and adults with asthma and impaired lung function have been reported to have low-grade systemic inflammation, but it is unknown whether this inflammation starts before symptoms and in particular whether low-grade inflammation is present in asymptomatic neonates with reduced...... lung function. ObjectiveWe sought to investigate the possible association between neonatal lung function and biomarkers of systemic inflammation. Methods: Plasma levels of high-sensitivity C-reactive protein (hs-CRP), IL-1β, IL-6, TNF-α, and CXCL8 (IL-8) were measured at age 6 months in 300 children...
Kandasamy, Ramkumar; Cui, Fangsen
2016-04-01
In the traditional layered piezoelectric structures, high stress concentrations could cause the structural failure in interlayer surfaces due to repeated strain reversals. To overcome the performance limitations of these structures, the concept of Functionally Graded Materials (FGMs) has been introduced to improve the lifetime, integrity, and reliability of these structures. In this paper, the free and forced vibration of radially polarized Functionally Graded Piezoelectric (FGP) cylinders under different sets of loading are studied. Material properties such as piezoelectric, elastic and permittivity are assumed to change along its thickness, based on a specific gradation function. Four-parameter power law distribution is used to grade the volume fraction of the constituents comprising of PZT-5A and PZT-5H. Material property is assumed to be temperature dependent for a few numerical studies. The present modeling approach is validated by comparing the free and forced vibration of radially polarized Functionally Graded Piezoelectric (FGP) cylinders with those reported in the literature. The effects of material composition, loading and boundary conditions on the dynamic behavior of FGP cylinder are described. Since the modeling of functionally graded piezoelectric systems is challenging, the present study can help in the design and analysis of FGP cylinders.
Functionally Graded Multifunctional Hybrid Composites for Extreme Environments
2010-02-01
1AXn Phases (n = 1, 2 and 3) 211 312 413 Barsoum and El-Raghy, American Scientist 2001 Barsoum and El-Raghy, Met. Mat. Trans., 1999 Jeitschko and...layer Ti2AlC Ti2AlC block after hammer blows Ti3SiC2 1. Barsoum and El-Raghy, American Scientist , 2001 2. www.3one2.com AFOSR-MURI Functionally
Computational Micromechanics of Damage Initiation and Growth in Functionally Graded Composites
DEFF Research Database (Denmark)
Mishnaevsky, Leon; Gross, Dietmar
2008-01-01
The purpose of this work is to investigate the effect of microstructures of functionally graded particle reinforced composites on the strength and damage resistance in the materials. In order to study the microstructure-strength and microstructure-darnage resistance relationships of graded...... for different generic (artificially designed) graded microstructures and compared. It was shown that the flow stress and stiffness of composites increase and failure strain decreases with decreasing property gradient (i.e., when the particles become more localized in some material regions). The damage growth...... in particles in graded composites initiates within particles, which are located in the transition zone between the zone of high particle density and the particle-free regions....
Optimization of functionally graded foam-filled conical tubes under axial impact loading
Energy Technology Data Exchange (ETDEWEB)
Mohammadiha, O.; Beheshti, H. [University of Isfahan, Isfahan (Iran, Islamic Republic of)
2014-05-15
Metallic foams as a filler in thin-walled structures can improve their crash worthiness characteristics. In this article, nonlinear parametric finite element simulations of FGF foam-filled conical tube are developed and the effect of various design parameters such as density grading, number of grading layers and the total mass of FGF tube on resulting mode shapes, specific energy absorption and initial peak load is investigated. Multi design optimization (MDO) technique and the geometrical average method, both are based on FE model are applied to maximize the specific energy absorption and minimize the impact peak force by estimating the best wall thickness and gradient exponential parameter 'm' that controls the variation of foam density. The results obtained from the optimizations indicated that functionally graded foam material, with graded density, is a suitable candidate for enhancing the crash worthiness characteristics of the structure compared to uniform density foam.
Stress concentration analysis in functionally graded plates with elliptic holes under biaxial
Directory of Open Access Journals (Sweden)
Tawakol A. Enab
2014-09-01
Full Text Available Stress concentration factors (SCFs at the root of an elliptic hole in unidirectional functionally graded material (UDFGM plates under uniaxial and biaxial loads are predicted. ANSYS Parametric Design Language (APDL was used to build the finite element models for the plates and to run the analysis. A parametric study is performed for several geometric and material parameters such as the elliptic hole major axis to plate width ratio, the elliptical shape factor, the gradation direction of UDFGM. It is shown that, SCF in the finite plate can be significantly reduced by choosing the proper distribution of the functionally graded materials. The present study may provide designers an efficient way to estimate the hole effect on plate structures made of functionally graded materials.
Basic solution of two parallel Mode-I cracks in functionally graded materials
Institute of Scientific and Technical Information of China (English)
LIANG Jun
2008-01-01
The solution of two parallel cracks in functionally graded materials subjected to a tensile stress loading is derived in this paper. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with coordinate parallel to the crack. The problem is formulated through Fourier transform into four pairs of dual integral equations, in which the unknown variables are jumps of displace- ments across crack surfaces. To solve the dual integral equations, the jumps of displacements across crack surfaces are directly expanded as s series of Jacobi polynomials to obtain the shielding effects of the two parallel cracks in functionally graded materials.
Basic solution of two parallel Mode-I cracks in functionally graded materials
Institute of Scientific and Technical Information of China (English)
2008-01-01
The solution of two parallel cracks in functionally graded materials subjected to a tensile stress loading is derived in this paper. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with coordinate parallel to the crack. The problem is formulated through Fourier transform into four pairs of dual integral equations, in which the unknown variables are jumps of displace-ments across crack surfaces. To solve the dual integral equations, the jumps of displacements across crack surfaces are directly expanded as a series of Jacobi polynomials to obtain the shielding effects of the two parallel cracks in functionally graded materials.
Directory of Open Access Journals (Sweden)
Eskandari Jam Jafar
2014-12-01
Full Text Available In this paper, by using a semi-analytical solution based on multi-layered approach, the authors present the solutions of temperature, displacements, and transient thermal stresses in functionally graded circular hollow cylinders subjected to transient thermal boundary conditions. The cylinder has finite length and is subjected to axisymmetric thermal loads. It is assumed that the functionally graded circular hollow cylinder is composed of N fictitious layers and the properties of each layer are assumed to be homogeneous and isotropic. Time variations of the temperature, displacements, and stresses are obtained by employing series solving method for ordinary differential equation, Laplace transform techniques and a numerical Laplace inversion.
Directory of Open Access Journals (Sweden)
Arefi Mohammad
2015-12-01
Full Text Available Thermo-mechanical analysis of the functionally graded orthotropic rotating hollow structures, subjected to thermo-mechanical loadings is studied in this paper. The relations were derived for both plane strain and plane stress conditions as a cylinder and disk, respectively. Non homogeneity was considered arbitrary through thickness direction for all mechanical and thermal properties. The responses of the system including temperature distribution, radial displacement and radial and circumferential stresses were derived in the general state. As case study, power law gradation was assumed for functionally graded cylinder and the mentioned results were evaluated in terms of parameters of the system such as non-homogeneous index and angular velocity.
Indian Academy of Sciences (India)
Hasan Çallioğlu
2011-02-01
An analytical thermoelasticity solution for a disc made of functionally graded materials (FGMs) is presented. Infinitesimal deformation theory of elasticity and power law distribution for functional gradation are used in the solution procedure. Some relative results for the stress and displacement components along the radius are presented due to internal pressure, external pressure, centrifugal force and steady state temperature. From the results, it is found that the grading indexes play an important role in determining the thermomechanical responses of FG disc and in optimal design of these structures.
Institute of Scientific and Technical Information of China (English)
LI Xiang-yu; DING Hao-jiang; CHEN Wei-qiu
2006-01-01
This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration.And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained.A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).
Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials.
Kiełczyński, P; Szalewski, M; Balcerzak, A; Wieja, K
2016-02-01
This paper presents a theoretical study of the propagation behavior of ultrasonic Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in the mechanics of solids. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved by using two methods: i.e., (1) Finite Difference Method, and (2) Haskell-Thompson Transfer Matrix Method. The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The effect of elastic non-homogeneities on the dispersion curves of Love waves is discussed. Two Love wave waveguide structures are analyzed: (1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and (2) a semi-infinite nonhomogeneous elastic half-space. Obtained in this work, the phase and group velocity dispersion curves of Love waves propagating in the considered nonhomogeneous elastic waveguides have not previously been reported in the scientific literature. The results of this paper may give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials, and can provide theoretical guidance for the design and optimization of Love wave based devices.
Chen, Chun-Cheng; Huang, Tsui-Hsien; Kao, Chia-Tze; Ding, Shinn-Jyh
2006-07-01
Bioceramic coatings like hydroxyapatite (HA) have shown promising bioactive properties in load-bearing implant applications. The aim of this work is to deposit functionally graded HA/Ti layers consisting of an underlying Ti bond coat, the alternating layer, and an HA top-layer on Ti6Al4V substrates using plasma spray to improve the coating-substrate interface properties. The alternating layers were created by means of changing the feeding rate and input power of Ti and HA powders, which gradually decrease Ti content with increasing depth from the Ti bond-coat. The major consideration is to examine the stability of the graded coatings. Experimental results indicated that surface chemistry and morphology of the graded coatings were similar to those of monolithic HA coatings. The bond strength values of the as-sprayed graded coatings were much superior to those of monolithic HA coatings. The cyclic fatigue did have a statistically significant effect on bond strength of monolithic HA coatings, with a decrease of 23%. However, the graded coatings were able to survive 1 million cycles of loading in air without significantly reduced bond strength. The in vitro electrochemical measurement results also indicated that the graded coatings had a more beneficial and desired behavior than monolithic HA coatings after fatigue.
Directory of Open Access Journals (Sweden)
A. M. Zenkour
2009-01-01
Full Text Available The quasistatic bending response is presented for a simply supported functionally graded rectangular plate subjected to a through-the-thickness temperature field under the effect of various theories of generalized thermoelasticity, namely, classical dynamical coupled theory, Lord and Shulman's theory with one relaxation time, and Green and Lindsay's theory with two relaxation times. The generalized shear deformation theory obtained by the first author is used. Material properties of the plate are assumed to be graded in the thickness direction according to a simple exponential law distribution in terms of the volume fractions of the constituents. The numerical illustrations concern quasistatic bending response of functionally graded square plates with two constituent materials are studied using the different theories of generalized thermoelasticity
Directory of Open Access Journals (Sweden)
Chen Peijian
2014-06-01
Full Text Available Roughness effect and adhesion properties are important characteristics to be accessed in the development of functionally graded materials for biological and biomimetic applications, particularly for the hierarchical composition in biomimetic gecko robot. A multi-asperities adhesion model to predict the adhesive forces is presented in this work. The effect of surface roughness and graded material properties, which significantly alter the adhesive strength between contact bodies, can be simultaneously considered in the generalized model. It is found that proper interfacial strength can be controlled by adjusting surface roughness σ / R, graded exponent k and material parameter E*R / Δγ. The results should be helpful in the design of new biomimetic materials and useful in application of micro functional instruments.
Surface Wave Speed of Functionally Graded Magneto-Electro-Elastic Materials with Initial Stresses
Directory of Open Access Journals (Sweden)
Li Li
2014-09-01
Full Text Available The shear surface wave at the free traction surface of half- infinite functionally graded magneto-electro-elastic material with initial stress is investigated. The material parameters are assumed to vary ex- ponentially along the thickness direction, only. The velocity equations of shear surface wave are derived on the electrically or magnetically open circuit and short circuit boundary conditions, based on the equations of motion of the graded magneto-electro-elastic material with the initial stresses and the free traction boundary conditions. The dispersive curves are obtained numerically and the influences of the initial stresses and the material gradient index on the dispersive curves are discussed. The investigation provides a basis for the development of new functionally graded magneto-electro-elastic surface wave devices.
Bich, Dao Huy; Xuan Nguyen, Nguyen
2012-12-01
In the present work, the study of the nonlinear vibration of a functionally graded cylindrical shell subjected to axial and transverse mechanical loads is presented. Material properties are graded in the thickness direction of the shell according to a simple power law distribution in terms of volume fractions of the material constituents. Governing equations are derived using improved Donnell shell theory ignoring the shallowness of cylindrical shells and kinematic nonlinearity is taken into consideration. One-term approximate solution is assumed to satisfy simply supported boundary conditions. The Galerkin method, the Volmir's assumption and fourth-order Runge-Kutta method are used for dynamical analysis of shells to give explicit expressions of natural frequencies, nonlinear frequency-amplitude relation and nonlinear dynamic responses. Numerical results show the effects of characteristics of functionally graded materials, pre-loaded axial compression and dimensional ratios on the dynamical behavior of shells. The proposed results are validated by comparing with those in the literature.
Indian Academy of Sciences (India)
Charu Lata Dube; Yashashri Patil; Shailesh Kanpara; Samir S Khirwadkar; Subhash C Kashyap
2014-12-01
Functionally graded tungsten–copper bimetallic compact with fine microstructure and good mechanical property has been synthesized by employing microwave heating method at a temperature of 800 °C and in a short processing time of 30 min. Scanning electron microscopy and energy dispersive X-ray analysis revealed the graded structure of synthesized sample. The fine microstructure of tungsten in each layer is caused by arrested grain growth because of the short sintering time. The overall relative density of the W/Cu functionally graded sample has reached 87% of the theoretical density. Vickers microhardness measurements, across the length of a compact, show increase in hardness value of the sample with the increase in tungsten content. The experimental hardness values match well with the theoretically calculated hardness values.
Institute of Scientific and Technical Information of China (English)
CHENG Zhanqi; ZHONG Zheng
2006-01-01
In this paper the plane elasticity problem for a functionally graded interfacial zone containing a crack between two dissimilar homogeneous materials has been considered. It is assumed that in the interfacial zone the reciprocal of the shear modulus is a linear function of the coordinate, while Possion's ratio keeps constant. By utilizing the Fourier transformation technique and the transfer matrix method, the mixed boundary problem is reduced to a system of singular integral equations that are solved numerically.The influences of the geometric parameters and the graded parameter on the stress intensity factors are investigated. The numerical results show that the graded parameters,the thickness of interfacial zone, the crack size and location have significant effects on the stress intensity factors.
Institute of Scientific and Technical Information of China (English)
CHEN Jiang-ying; CHEN Wei-qiu
2007-01-01
The analytical solution for an annular plate rotating at a constant angular velocity is derived by means of direct displacement method from the elasticity equations for axisymmetric problems of functionally graded transversely isotropic media.The displacement components are assumed as a linear combination of certain explicit functions of the radial coordinate, with seven undetermined coefficients being functions of the axial coordinate z. Seven equations governing these z-dependent functions are derived and solved by a progressive integrating scheme. The present solution can be degenerated into the solution of a rotating isotropic functionally graded annular plate. The solution also can be degenerated into that for transversely isotropic or isotropic homogeneous materials. Finally, a special case is considered and the effect of the material gradient index on the elastic field is illustrated numerically.
SiCp/Ti6Al4V functionally graded materials produced by laser melt injection
Pei, Y.T.; Ocelik, V.; Hosson, J.Th.M. De
2002-01-01
With a well-controlled laser melt injection (LMI) process, for the first time the feasibility is demonstrated to produce SiC particles (SiCp) reinforced Ti6Al4V functionally graded materials (FGMs). SiCp are injected just behind the laser beam into the extended part of the laser melt pool that is fo
Yang, Jiashi; Jin, Zhihe; Li, Jiangyu
2008-07-01
We show that functionally graded piezoelectric materials can be used to make modal actuators through theoretical analyses of the excitation of extensional motion in an elastic rod and Rayleigh surface waves over an elastic half-plane. The results suggest alternatives with certain advantages for the excitation of bulk and surface acoustic waves.
Five-Fold Branched Si Particles in Laser Clad AlSi Functionally Graded Materials
Pei, Y.T.; Hosson, J.Th.M. De
2001-01-01
Many five-fold branched Si particles (Sip) were observed in Al–40 wt% Si functionally graded materials produced by a single-step laser cladding process on cast Al-alloy substrate. In this paper the five-fold twinning and growth features of Sip are scrutinized with orientation imaging microscopy and
Drijbooms, Elise; Groen, Margriet A.; Verhoeven, Ludo
2017-01-01
The aim of this study was to examine the contribution of transcription skills, oral language skills, and executive functions to growth in narrative writing between fourth and sixth grade. While text length and story content of narratives did not increase with age, syntactic complexity of narratives showed a clear developmental progression. Results…
Biesheuvel, P. Maarten; Verweij, H.
2000-01-01
Functionally graded materials have designed inhomogeneous distributions of different components on the scale of the material. They can be made by suspension processing, in which particles are stacked in a controlled manner. Segregation effects can be used to obtain the required gradient if the parti
Recovery of Graded Index Profile of Planar Waveguide by Cubic Spline Function
Institute of Scientific and Technical Information of China (English)
YANG Yong; CHEN Xian-Feng; LIAO Wei-Jun; XIA Yu-Xing
2007-01-01
A method is proposed to recover the refractive index profile of graded waveguide from the effective indices by a cubic spline interpolation function. Numerical analysis of several typical index distributions show that the refractive index profile can be reconstructed closely to its exact profile by the presented interpolation model.
Masters, Jessica
2012-01-01
A secondary data analysis was conducted using a large dataset from a study related to online professional development for eighth grade teachers of mathematics. Using this data, the paper provides a snapshot of the current state of teachers' knowledge related to proportional reasoning and functions. The paper also considers how teachers' knowledge…
Fan, Tao; Zou, Guangping
2012-04-01
In this paper, the variational principle of functionally graded circular plate is presented by the variational integral method taking temperature change into account. The vibration governing equation is illustrated, which will be benefit for the numerical simulation with finite element method in further investigations. The numerical results show that the natural frequency increases as the graded coefficient increases in the chosen domain. It can be observed that the vibration characteristics are influenced by the temperature changes obviously. Moreover, the natural frequency is larger for thicker FGM circular plates, while it is lower for thinner ones. Furthermore, the first four vibration mode shapes with different thickness of FGM circular plate are illustrated.
Fabrication of Ti/HA composite and functionally graded implant by three-dimensional printing.
Qian, Chao; Zhang, Fuqiang; Sun, Jian
2015-01-01
The aim of this study is to evaluate the feasibility of fabricating titanium(Ti)/hydroxyapatite(HA) composite and functionally graded implant by three-dimensional printing (3DP) technology. Nano-scale Ti and HA powders were mixed at the ratio of 8:2 and prepared with water-soluble binder. The Ti/HA composite CAD model was designed to be in cylinder shape (25 mm in diameter, 20 mm in height) with the 100% bond area in each layer. The functionally graded implant was 25 mm in diameter and 10 mm in height with two segments. The upper segment was composed of 100% Ti in each layer, whereas the lower was composed of 80%Ti/20%HA. The composite and functionally graded implant were fabricated by 3DP and sintered at 1200°C under protective argon atmosphere. There occurred a chemical reaction between Ti and HA, in which new resultants of Ca3(PO4)2, CaTiO3, TiO2 and CaO were created. The sintered Ti/HA composite had the aperture size from 50 to 150 μm and the compressive strength of 184.3±27.1 MPa. The result of this study demonstrated that it was feasible to fabricate Ti/HA composite and functionally graded implant by 3DP technology. The microstructure and mechanical properties of Ti/HA composite and functionally graded implant were conductive to bone cell ingrowth, resulting in the wide application of this biocomposite.
Functionally graded materials for orthopedic applications - an update on design and manufacturing.
Sola, Antonella; Bellucci, Devis; Cannillo, Valeria
2016-01-01
Functionally graded materials (FGMs) are innovative materials whose composition and/or microstructure gradually vary in space according to a designed law. As a result, also the properties gradually vary in space, so as to meet specific non-homogeneous service requirements without any abrupt interface at the macroscale. FGMs are emerging materials for orthopedic prostheses, since the functional gradient can be adapted to reproduce the local properties of the original bone, which helps to minimize the stress shielding effect and, at the same time, to reduce the shear stress between the implant and the surrounding bone tissue, two critical prerequisites for a longer lifespan of the graft. After a brief introduction to the origin of the FGM concept, the review surveys some representative examples of graded systems which are present in nature and, in particular, in the human body, with a focus on bone tissue. Then the rationale for using FGMs in orthopedic devices is discussed more in detail, taking into account both biological and biomechanical requirements. The core of the paper is dedicated to two fundamental topics, which are essential to benefit from the use of FGMs for orthopedic applications, namely (1) the computational tools for materials design and geometry optimization, and (2) the manufacturing techniques currently available to produce FGM-based grafts. This second part, in its turn, is structured to consider the production of functionally graded coatings (FGCs), of functionally graded 3D parts, and of special devices with a gradient in porosity (functionally graded scaffolds). The inspection of the literature on the argument clearly shows that the integration of design and manufacturing remains a critical step to overpass in order to achieve effective FGM-based implants.
Effect of cancellous bone on the functionally graded dental implant concept.
Hedia, H S
2005-01-01
In a previous work by the author [H.S. Hedia and M. Nemat-Alla, Design optimization of functionally graded dental implant, submitted to be published in the J. Bio-Medical Materials and Engineering], a functionally graded material dental implant was designed without cansellous bone in the model. In this investigation the effect of presence cancellous bone as a thin layer around the dental implant was investigated. It is well known that the main inorganic component of natural bone is hydroxyapatite (HAP) and that the main organic component is collagen (Col). Hydroxyapatite HAP implants are not bioabsorbable, and because induction of bone into and around the artificially made HAP is not always satisfactory, loosening or breakage of HAP implants may occur after implantation in the clinical application. The development of a new material which is bioabsorbable and which has osteoconductive activity is needed. Therefore, the aim of the current investigation is to design an implant, in the presence of cancellous bone as a thin layer around it, from functionally graded material. In this study, a novel biomaterial, collagen/hydroxyapatite (Col/HAP) as a functionally graded material (FGM), was developed using the finite element and optimization techniques which are available in the ANSYS package. These materials have a self-organized character similar to that of natural bone. The investigations have shown that the maximum stress in the cortical bone and cancellous bone for the Col/HAP functionally graded implant has been reduced by about 40% and 19% respectively compared to currently used titanium dental implants.
Directory of Open Access Journals (Sweden)
S. N. S. Jamaludin
2014-01-01
Full Text Available The composition of hydroxyapatite (HA as the ceramic phase and titanium (Ti as the metallic phase in HA/Ti functionally graded materials (FGMs shows an excellent combination of high biocompatibility and high mechanical properties in a structure. Because the gradation of these properties is one of the factors that affects the response of the functionally graded (FG plates, this paper is presented to show the domination of the grading parameter on the displacement and stress distribution of the plates. A three-dimensional (3D thermomechanical model of a 20-node brick quadratic element is used in the simulation of the thermoelastic behaviors of HA/Ti FG plates subjected to constant and functional thermal, mechanical, and thermomechanical loadings. The convergence properties of the present results are examined thoroughly in order to assess the accuracy of the theory applied and to compare them with the established research results. Instead of the grading parameter, this study reveals that the loading field distribution can be another factor that reflects the thermoelastic properties of the HA/Ti FG plates. The FG structure is found to be able to withstand the thermal stresses while preserving the high toughness properties and thus shows its ability to operate at high temperature.
Deng, X. D.; Monnier, T.; Guy, P.; Courbon, J.
2013-06-01
Acoustic microscopy of multilayered media as well as functionally graded coatings on substrate necessitates to model acoustic wave propagation in such materials. In particular, we chose to use Stroh formalism and the recursive stiffness matrix method to obtain the reflection coefficient of acoustic waves on these systems because this allows us to address the numerical instability of the conventional transfer matrix method. In addition, remarkable simplification and computational efficiency are obtained. We proposed a modified formulation of the angular spectrum of the transducer based on the theoretical analysis of a line-focus transducer for broadband acoustic microscopy. A thermally sprayed coating on substrate is treated as a functionally graded material along the depth of the coating and is approximately represented by a number of homogeneous elastic layers with exponentially graded elastic properties. The agreement between our experimental and numerical analyses on such thermal sprayed coatings with different thicknesses confirms the efficiency of the method. We proved the ability of the inversion procedure to independently determine both thickness and gradient of elastic properties. The perspective of this work is the opportunity to non-destructively measure these features in functionally graded materials.
Fabrication of metal/metal functionally graded materials with a high melting point difference
Institute of Scientific and Technical Information of China (English)
Zhangjian Zhou; Changchun Ge
2005-01-01
Three kinds of full compositional distribution (from 0 to 100wt%W) W/Cu FGMs (functionally graded materials) with high density is fabricated by resistance sintering under ultra-high pressure. Microstructure analysis showed that the good grading composition of all FGMs has been obtained. The sintering mechanism of W is mainly solid state sintering. Thermal shock test in air demonstrated that the grading at the interface between W and Cu is effective for the reduction of thermal stress, but obvious transverse and vertical cracks occur in the pure W layer. The oxidation of the W60Cu40 layer and the W40Cu60 layer is heavier than that of the other layers.
Emerging role of functional brain MRI in low-grade glioma surgery
DEFF Research Database (Denmark)
Friismose, Ancuta; Traise, Peter; Markovic, Ljubo
Learning objectives 1. To describe the use of functional MRI (fMRI) in cranial surgery planning for patients with low-grade gliomas (LGG). 2. To show the increasing importance of fMRI in the clinical setting. Background LGG include brain tumors classified by the World Health Organization as grade I...... be used to map eloquent cortex areas, thus minimizing postoperative deficits and improving surgical performance. Findings and procedure details Patients diagnosed with low-grade gliomas located in eloquent brain areas undergo fMRI prior to surgery. The exams are performed on a 3T MR system (Achieva TX....... Language comprehension and visual tasks can be added to visualize Wernicke’s area or the visual cortex. Diffusion tensor imaging (DTI) is used to map nerve tract course relative to the tumour. Conclusion FMRI has proven its clinical utility in locating eloquent brain areas with relation to tumor site...
Performance Analysis of Functionally Graded Coatings in Contact with Cylindrical Rollers
Directory of Open Access Journals (Sweden)
Reza Jahedi
2015-01-01
Full Text Available This work presents finite element analysis (FEA and results for rolling contact of a cylindrical roller on an elastic substrate coated by functionally graded material (FGM. The rolling process and the graded coating material property and layers arrangement are modeled using finite element codes which lead to a new methodology. This novel methodology provides a trend in determining surface contact stresses, deformations, contact zones, and energy dissipation through the contact area. Effects of stiffness ratio, friction, and exponentially variation of material property on the contact stresses and deformations are studied. Some of the results are verified with analytical solutions. The study results may be beneficial in graded coated cylindrical components analysis against rolling contact failure and wear.
DEFF Research Database (Denmark)
Bulatova, Regina; Bahl, Christian; Andersen, Kjeld Bøhm;
2015-01-01
variations of solvent and binder system concentrations have a substantial effect on slurry viscosity. Varying these parameters showed that side-by-side tape casting with a well-defined interface area is possible for slurries with viscosities above 3500 mPa s at a casting shear rate of 3.3 s -1......Functionally graded ceramic tapes have been fabricated by a side-by-side tape casting technique. This study shows the possibility and describes the main principles of adjacent coflow of slurries resulting in formation of thin plates of graded ceramic material. Results showed that the small...... of developing this graded ceramic tape casting was applications of these specific magnetocaloric properties within the magnetic refrigeration technology....
Feng, W. J.; Han, X.; Ma, P.
2011-09-01
The flux-pinning-induced stress and magnetostriction of a functionally graded type-II superconductor shaped as a rectangular slab are analyzed. By using the plane strain approach, the exact solution of the three-dimensional (3D) magneto-elastic problem is found. All the stresses, strains, and magnetostriction in the graded direction are first expressed in terms of the flux-density profile in the slab, and all these expressions are valid for any critical-state model jc=jc(B ). Then, based on the Bean model, i.e., jc=const, an extensive analysis is made for three cases of applied magnetic fields, i.e., increasing field, decreasing field, and field cooling. And the emphasis is put on the effects of both the applied magnetic field and the graded index of the slab on the maximum tensile stress and the magnetostriction.
Directory of Open Access Journals (Sweden)
Farzad Akbari
2016-06-01
Full Text Available By virtue of a complete set of two displacement potentials, an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic bi-material full-space was presented. Three-dimensional point-load Green’s functions for stresses and displacements were given in line-integral representations. The formulation included a complete set of transformed stress-potential and displacement-potential relations, with the utilization of Fourier series and Hankel transform. As illustrations, the present Green’s functions were analytically degenerated into special cases, such as exponentially graded half-space and homogeneous full-space bi-material Green’s functions. Owing to the complicated integrand functions, the integrals were evaluated numerically, and in computing the integrals numerically, a robust and effective methodology was laid out which provided the necessary account of the presence of singularities of integration. Some typical numerical examples were also illustrated to demonstrate the general features of the exponentially graded bi-material Green’s functions which will be recognized by the effect of degree of variation of material properties.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly distributed load is investigated, with material parameters being arbitrary functions of the thickness coordinate. The heat conduction problem is treated as a 1D problem through the thickness. Based on the elementary formulations for plane stress problem, the stress function is assumed to be in the form of polynomial of the longitudinal coordinate variable, from which the stresses can be derived.The stress function is then determined completely with the compatibility equation and boundary conditions. A practical example is presented to show the application of the method.
Institute of Scientific and Technical Information of China (English)
HUANG De-jin; DING Hao-jiang; CHEN Wei-qiu
2007-01-01
The bending problem of a functionally graded anisotropic cantilever beam subjected to a linearly distributed load is investigated. The analysis is based on the exact elasticity equations for the plane stress problem. The stress function is introduced and assumed in the form of a polynomial of the longitudinal coordinate. The expressions for stress components are then educed from the stress function by simple differentiation.The stress function is determined from the compatibility equation as well as the boundary conditions by a skilful deduction. The analytical solution is compared with FEM calculation, indicating a good agreement.
Free-edge stress analysis of functionally graded material layered biocomposite laminates.
Huang, Bin; Kim, Heung Soo
2014-10-01
A stress function based theory is proposed to obtain free-edge stress distributions for three-dimensional, orthotropic, linearly elastic rectangular biocomposite laminates with surface-bonded functionally graded materials (FGM). The assumed stress fields automatically satisfy the pointwise equilibrium equation, as well as traction-free and free edge boundary conditions. The complementary virtual work principle, followed by the general eigenvalue solution procedure, is used to obtain 3-D free edge stress states. A typical stacking sequence of composite laminate is used as numerical investigation with surface bonded FGMs. It is shown that with proper exponential factor of FGMs, the interlaminar stresses at the FGM layer interface can be reduced significantly, in return to prevent debonding of FGM layers. This approach can be useful in the design of functionally graded material layered biocomposite structures.
Institute of Scientific and Technical Information of China (English)
YAN Wei; CHEN Weiqiu
2006-01-01
The time-dependent behavior of a simply-supported functionally graded beam bonded with piezoelectric sensors and actuators is studied using the state-space method. The creep behavior of bonding adhesives between piezoelectric layers and beam is characterized by a Kelvin-Voigt viscoelastic model, which is practical in a high temperature circumstance. Both the host elastic functionally graded beam and the piezoelectric layers are orthotropic and in a state of plane stress, with the former being inhomogeneous along the thickness direction. A laminate model is employed to approximate the host beam. Moreover, the coupling effect between the elastic deformation and electric field in piezoelectric layers is considered. Results indicate that the viscoelastic property of interfacial adhesives has a significant effect on the function of bonded actuators and sensors with time elapsing.
Su, Zhu; Jin, Guoyong; Ye, Tiangui
2016-06-01
The paper presents a unified solution for free and transient vibration analyses of a functionally graded piezoelectric curved beam with general boundary conditions within the framework of Timoshenko beam theory. The formulation is derived by means of the variational principle in conjunction with a modified Fourier series which consists of standard Fourier cosine series and supplemented functions. The mechanical and electrical properties of functionally graded piezoelectric materials (FGPMs) are assumed to vary continuously in the thickness direction and are estimated by Voigt’s rule of mixture. The convergence, accuracy and reliability of the present formulation are demonstrated by comparing the present solutions with those from the literature and finite element analysis. Numerous results for FGPM beams with different boundary conditions, geometrical parameters as well as material distributions are given. Moreover, forced vibration of the FGPM beams subjected to dynamic loads and general boundary conditions are also investigated.
A three-dimensional elasticity solution of functionally graded piezoelectric cylindrical panels
Sedighi, M. R.; Shakeri, M.
2009-05-01
This research presents an exact solution of finitely long, simply supported, orthotropic, functionally graded piezoelectric (FGP), cylindrical shell panels under pressure and electrostatic excitation. The FGP cylindrical panel is first divided into linearly inhomogeneous elements (LIEs). The general solution of governing partial differential equations of the LIEs is obtained by separation of variables. The highly coupled partial differential equations are reduced to ordinary differential equations with variable coefficients by means of appropriate trigonometric expansion of displacements and electric potential in circumferential and axial directions. The resulting governing ordinary differential equations are solved by the Galerkin finite element method. In this procedure the quadratic shape function is used in each element. The present method is applied to several benchmark problems. The coupled electromechanical effect on the structural behavior of functionally graded piezoelectric cylindrical shell panels is evaluated. The influence of the material property gradient index on the variables of electric and mechanical fields is studied. Finally some results are compared with published results.
Free Vibration and Stability of Axially Functionally Graded Tapered Euler-Bernoulli Beams
Directory of Open Access Journals (Sweden)
Ahmad Shahba
2011-01-01
Full Text Available Structural analysis of axially functionally graded tapered Euler-Bernoulli beams is studied using finite element method. A beam element is proposed which takes advantage of the shape functions of homogeneous uniform beam elements. The effects of varying cross-sectional dimensions and mechanical properties of the functionally graded material are included in the evaluation of structural matrices. This method could be used for beam elements with any distributions of mass density and modulus of elasticity with arbitrarily varying cross-sectional area. Assuming polynomial distributions of modulus of elasticity and mass density, the competency of the element is examined in stability analysis, free longitudinal vibration and free transverse vibration of double tapered beams with different boundary conditions and the convergence rate of the element is then investigated.
Institute of Scientific and Technical Information of China (English)
H.M.Wang; C.B.Liu; H.J.Ding
2009-01-01
Exact solutions are obtained for transient torsional responses of a finitely long, functionally graded hollow cylinder under three different end conditions, I.e. Free--free, free-fixed and fixed-fixed. The cylinder with its external surface fixed is subjected to a dynamic shearing stress at the internal surface. The material properties are assumed to vary in the radial direction in a power law form, while keep invariant in the axial direction. With expansion in the axial direction in terms of trigonometric series, the governing equations for the unknown functions about the radial coordinate r and time t are deduced. By applying the variable substitution technique, the superposition method and the separation of variables consecutively, series-form solutions of the equations are obtained. Natural frequencies and the transient torsional responses are finally discussed for a functionally graded finite hollow cylinder.
Assessment of hepatic functional reserve by cirrhosis grading and liver volume measurement using CT
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
AIM: To explore a method for quantitative assessment of hepatic functional reserve by combining computed tomography (CT) volumetry with CT grading of liver cirrhosis before liver resection in patients with hepatocellular carcinoma.METHODS: CT images of 55 patients undergoing liver resection were studied prospectively. The degree of liver cirrhosis was referred as "CT grade" and the percentage of remnant liver volume (PRLV) [PRLV = predicted RLV/predicted total liver volume (PTLV) × 100%;PTLV (mL) = 121.75 + 16.49 × body mass (kg)] were calculated by adding slice by slice of CT liver images.The postoperative RLV, pathologic stages of liver fibrosis in non-tumor area and survival time in these cases were analyzed.RESULTS: There was a significant difference in survival time between the group with PRLV ≤ 50% and the group with PRLV ＞ 50% (χ2= 4.988, P = 0.026), and between the group with CT grade 0/1 and the group with CT grade 2/3 (χ2= 5.429, P = 0.026). With combination of the both parameters, an oblique line was identified according to the distribution of 32 survivors versus 23 deceased subjects. The mortality rate above the line was 7.1% (1/14), and that below the line was 53.7% (22/41),indicating a significant difference between the two rates (χ2 = 9.281, P = 0.002, P ＜ 0.05).CONCLUSION: PRLV and CT grades are significantly correlated with hepatic functional reserve. The predicted line using these two parameters is useful in candidates undergoing liver resection for judging hepatic functional reserve.
Energy Technology Data Exchange (ETDEWEB)
Zaki, S.K.; Bretan, P.N.; Go, R.T.; Rehm, P.K.; Streem, S.B.; Novick, A.C. (Cleveland Clinic Foundation, OH (USA))
1990-06-01
Orthoiodohippurate renal scanning has proved to be a reliable, noninvasive method for the evaluation and followup of renal allograft function. However, a standardized system for grading renal function with this test is not available. We propose a simple grading system to distinguish the different functional phases of hippurate scanning in renal transplant recipients. This grading system was studied in 138 patients who were evaluated 1 week after renal transplantation. There was a significant correlation between the isotope renographic functional grade and clinical correlates of allograft function such as the serum creatinine level (p = 0.0001), blood urea nitrogen level (p = 0.0001), urine output (p = 0.005) and need for hemodialysis (p = 0.007). We recommend this grading system as a simple and accurate method to interpret orthoiodohippurate renal scans in the evaluation and followup of renal allograft recipients.
Directory of Open Access Journals (Sweden)
A. E. Alshorbagy
2013-01-01
Full Text Available The first-order shear deformation plate model, accounting for the exact neutral plane position, is exploited to investigate the uncoupled thermomechanical behavior of functionally graded (FG plates. Functionally graded materials are mainly constructed to operate in high temperature environments. Also, FG plates are used in many applications (such as mechanical, electrical, and magnetic, where an amount of heat may be generated into the FG plate whenever other forms of energy (electrical, magnetic, etc. are converted into thermal energy. Several simulations are performed to study the behavior of FG plates, subjected to thermomechanical loadings, and focus the attention on the effect of the heat source intensity. Most of the previous studies have considered the midplane neutral one, while the actual position of neutral plane for functionally graded plates is shifted and should be firstly determined. A comparative study is performed to illustrate the effect of considering the neutral plane position. The volume fraction of the two constituent materials of the FG plate is varied smoothly and continuously, as a continuous power function of the material position, along the thickness of the plate.
Genin, Guy M; Birman, Victor
2009-05-15
Reinforcement of fibrous composites by stiff particles embedded in the matrix offers the potential for simple, economical functional grading, enhanced response to mechanical loads, and improved functioning at high temperatures. Here, we consider laminated plates made of such a material, with spherical reinforcement tailored by layer. The moduli for this material lie within relatively narrow bounds. Two separate moduli estimates are considered: a "two-step" approach in which fibers are embedded in a homogenized particulate matrix, and the Kanaun-Jeulin (2001) approach, which we re-derive in a simple way using the Benveniste (1988) method. Optimal tailoring of a plate is explored, and functional grading is shown to improve the performance of the structures considered. In the example of a square, simply supported, cross-ply laminated panel subjected to uniform transverse pressure, a modest functional grading offers significant improvement in performance. A second example suggests superior blast resistance of the panel achieved at the expense of only a small increase in weight.
Functionally Graded Thermoelectric Material though One Step Band Gap and Dopant Engineering
DEFF Research Database (Denmark)
Jensen, Ellen Marie; Borup, Kasper Andersen; Cederkrantz, Daniel;
For a given doping level a thermoelectric material is optimized for a given temperature. Thermoelectric modules, however, operates over large gradients in temperature. To circumvent this problem we have synthesized a functionally graded thermoelectric material optimized for large temperature...... gradients. It has previously been shown that a large functionally graded thermoelectric single crystal can be synthesized by the Czochralski method (1). Utilizing element gradients inherent to the Czochralski process we have synthesized a Ge1-xSix:B crystal with a continuously varying x, band gap......, and dopant concentration. Parameters relevant to the thermoelectric properties have been determined along the pulling direction. All of these properties exhibit the wanted gradient. It has thereby been shown that engineering of the electrical contributions to the thermoelectric properties of a material...
Energy Technology Data Exchange (ETDEWEB)
Worsley, Marcus A; Baumann, Theodore F; Satcher, Joe H; Olson, Tammy Y; Kuntz, Joshua D; Rose, Klint A
2015-03-03
In one embodiment, an aerogel includes a layer of shaped particles having a particle packing density gradient in a thickness direction of the layer, wherein the shaped particles are characterized by being formed in an electrophoretic deposition (EPD) process using an impurity. In another embodiment, a method for forming a functionally graded porous nanostructure includes adding particles of an impurity and a solution to an EPD chamber, applying a voltage difference across the two electrodes of the EPD chamber to create an electric field in the EPD chamber, and depositing the material onto surfaces of the particles of the impurity to form shaped particles of the material. Other functionally graded materials and methods are described according to more embodiments.
Institute of Scientific and Technical Information of China (English)
Ibrahim A. Abbas
2015-01-01
The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governing equations of fractional order generalized thermoelasticity with three-phase lag model for functionally graded materials (FGM) (i.e., material with spatially varying material properties) are established. The analytical solution in the transform domain is obtained by using the eigenvalue approach. The inversion of Laplace transform is done numerically. The graphical results indicate that the fractional parameter has significant effects on all the physical quantities. Thus, we can consider the theory of fractional order generalized thermoelasticity an improvement on studying elastic materials.
Directory of Open Access Journals (Sweden)
Mohammad Nili Ahmadabadi
2014-05-01
Full Text Available In this paper, the Method of Fundamental Solutions (MFS is extended to solve some special cases of the problem of transient heat conduction in functionally graded mate- rials. First, the problem is transformed to a heat equation with constant coecients using a suitable new transformation and then the MFS together with the Tikhonov regularization method is used to solve the resulting equation
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
A sedimentation method is proposed to fabricate functionally graded materials (FGMs) with the continuous andsmooth variations of composition. The relations between the compositional distribution of deposited body and thepowder characteristics of raw materials as well as settling parameters are derived. Subsequently, the mathematicalmodel of forming FGM based on the co-sedimentation has been established. At last, numerical simulations areconducted to explore the effects of the particle sizes of raw materials and suspension height on the compositionaldistribution of final products.
Sound radiation of a functionally graded material cylindrical shell in water by mobility method
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Based on the fundamental dynamic equations of functionally graded material (FGM) cylindrical shell, this paper investigates the sound radiation of vibrational FGM shell in water by mobility method. This model takes into account the exterior fluid loading due to the sound press radiated by the FGM shell. The FGM cylindrical shell was excited by a harmonic line radial force uniformly distributing along the generator. The FGM shell equations of motion, the Helmholtz equation in the exterior fluid medium and th...
Qu, Yegao; Meng, Guang
2016-08-01
This paper presents a semi-analytical method for the vibro-acoustic analysis of a functionally graded shell of revolution immersed in an infinite light or heavy fluid. The structural model of the shell is formulated on the basis of a modified variational method combined with a multi-segment technique, whereas a spectral Kirchhoff-Helmholtz integral formulation is employed to model the exterior fluid field. The material properties of the shell are estimated by using the Voigt's rule of mixture and the Mori-Tanaka's homogenization scheme. Displacement and sound pressure variables of each segment are expanded in the form of a mixed series using Fourier series and Chebyshev orthogonal polynomials. A set of collocation nodes distributed over the roots of Chebyshev polynomials are employed to establish the algebraic system of the acoustic integral equations, and the non-uniqueness solution is eliminated using a combined Helmholtz integral equation formulation. Loosely and strongly coupled schemes are implemented for the structure-acoustic interaction problem of a functionally graded shell immersed in a light and heavy fluid, respectively. The present method provides a flexible way to account for the individual contributions of circumferential wave modes to the vibration and acoustic responses of functionally graded shells of revolution in an analytical manner. Numerical tests are presented for sound radiation problems of spherical, cylindrical, conical and coupled shells. The individual contributions of the circumferential modes to the radiated sound pressure and sound power of functionally graded shells are observed. Effects of the material profile on the sound radiation of the shells are also investigated.
Energy Technology Data Exchange (ETDEWEB)
Jha, D.K., E-mail: dkjha@barc.gov.in [Civil Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kant, Tarun [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Srinivas, K. [Civil Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Singh, R.K. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)
2013-12-15
Highlights: • We model through-thickness variation of material properties in functionally graded (FG) plates. • Effect of material grading index on deformations, stresses and natural frequency of FG plates is studied. • Effect of higher order terms in displacement models is studied for plate statics. • The benchmark solutions for the static analysis and free vibration of thick FG plates are presented. -- Abstract: Functionally graded materials (FGMs) are the potential candidates under consideration for designing the first wall of fusion reactors with a view to make best use of potential properties of available materials under severe thermo-mechanical loading conditions. A higher order shear and normal deformations plate theory is employed for stress and free vibration analyses of functionally graded (FG) elastic, rectangular, and simply (diaphragm) supported plates. Although FGMs are highly heterogeneous in nature, they are generally idealized as continua with mechanical properties changing smoothly with respect to spatial coordinates. The material properties of FG plates are assumed here to vary through thickness of plate in a continuous manner. Young's modulii and material densities are considered to be varying continuously in thickness direction according to volume fraction of constituents which are mathematically modeled here as exponential and power law functions. The effects of variation of material properties in terms of material gradation index on deformations, stresses and natural frequency of FG plates are investigated. The accuracy of present numerical solutions has been established with respect to exact three-dimensional (3D) elasticity solutions and the other models’ solutions available in literature.
Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong
2015-08-01
Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues.
Finite element analysis on longitudinal and radial functionally graded femoral prosthesis.
Oshkour, Azim Ataollahi; Abu Osman, N A; Davoodi, M M; Yau, Y H; Tarlochan, F; Wan Abas, W A B; Bayat, M
2013-12-01
This study focused on developing a 3D finite element model of functionally graded femoral prostheses to decrease stress shielding and to improve total hip replacement performance. The mechanical properties of the modeled functionally graded femoral prostheses were adjusted in the sagittal and transverse planes by changing the volume fraction gradient exponent. Prostheses with material changes in the sagittal and transverse planes were considered longitudinal and radial prostheses, respectively. The effects of cemented and noncemented implantation methods were also considered in this study. Strain energy and von Mises stresses were determined at the femoral proximal metaphysis and interfaces of the implanted femur components, respectively. Results demonstrated that the strain energy increased proportionally with increasing volume fraction gradient exponent, whereas the interface stresses decreased on the prostheses surfaces. A limited increase was also observed at the surfaces of the bone and cement. The periprosthetic femur with a noncemented prosthesis exhibited higher strain energy than with a cemented prosthesis. Radial prostheses implantation displayed more strain energy than longitudinal prostheses implantation in the femoral proximal part. Functionally graded materials also increased strain energy and exhibited promising potentials as substitutes of conventional materials to decrease stress shielding and to enhance total hip replacement lifespan.
Oshkour, Azim Ataollahi; Talebi, Hossein; Seyed Shirazi, Seyed Farid; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan
2015-02-01
This study aimed to assess the performance of different longitudinal functionally graded femoral prostheses. This study was also designed to develop an appropriate prosthetic geometric design for longitudinal functionally graded materials. Three-dimensional models of the femur and prostheses were developed and analyzed. The elastic modulus of these prostheses in the sagittal plane was adjusted along a gradient direction from the distal end to the proximal end. Furthermore, these prostheses were composed of titanium alloy and hydroxyapatite. Results revealed that strain energy, interface stress, and developed stress in the femoral prosthesis and the bone were influenced by prosthetic geometry and gradient index. In all of the prostheses with different geometries, strain energy increased as gradient index increased. Interface stress and developed stress decreased. The minimum principal stress and the maximum principal stress of the bone slightly increased as gradient index increased. Hence, the combination of the femoral prosthetic geometry and functionally graded materials can be employed to decrease stress shielding. Such a combination can also be utilized to achieve equilibrium in terms of the stress applied on the implanted femur constituents; thus, the lifespan of total hip replacement can be prolonged.
High maneuverability guidewire with functionally graded properties using new superelastic alloys.
Sutou, Y; Yamauchi, K; Suzuki, M; Furukawa, A; Omori, T; Takagi, T; Kainuma, R; Nishida, M; Ishida, K
2006-01-01
Nitinol shape memory alloys (SMAs) are attracting considerable attention as core materials for medical guidewires because of their excellent flexibility and shape retention. However, since Nitinol guidewires possess low rigidity, the pushability and torquability of the guidewires are insufficient. On the other hand, although guidewires made of stainless steel have high pushability, plastic deformation occurs easily. We have developed a new class of superelastic guidewires with functionally graded properties from the tip to the end by using new SMA core materials such as Cu-Al-Mn-based or Ni-free Ti-Mo-Sn SMAs. The tip portion of the guidewire shows excellent superelasticity (SE), while the body portion possesses high rigidity. These functionally graded characteristics can be realized by microstructural control. These guidewires with functionally graded properties show excellent pushability and torquability and are considerably easier to handle than conventional guidewires with Nitinol or stainless steel cores. Moreover, a metallic catheter using a Ni-free Ti-based SMA with high biocompatibility is introduced.
Force and Power Measurements of a Functionally-Graded Chordwise-Flexible Flapping Wing
Mudbhari, Durlav; Erdogan, Malcolm; Moored, Keith
2016-11-01
Flyers and swimmers flap their wings and fins to propel themselves efficiently over long distances. A key element to achieve their high performance is the flexibility of their appendages. While numerous studies have shown that homogeneously flexible wings can enhance force production and efficiency, animals actually have wings with varying flexural rigidity along their chord and span. The goal of this study is to understand and characterize the force production and energetics of functionally-graded, chordwise flexible wings. A flapping wing composed of a rigid and a flexible region, that define a chordwise gradient in flexural rigidity, is used to model functionally-graded materials. By varying the ratio of the lengths of the rigid to flexible regions, the flexural rigidity of the flexible region, and the flapping frequency, the thrust production of a functionally-graded wing is directly measured in a wind tunnel. A novel vacuum chamber apparatus is used in conjunction with the wind tunnel measurements to reliably measure the aerodynamic power input and the propulsive efficiency. Limited flow visualization is performed with particle image velocimetry in order to connect the force production and energetics of the partially-flexible wing with its generated flow structures. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI Grant Number N00014-14-1-0533.
Energy Technology Data Exchange (ETDEWEB)
Shariyat, M., E-mail: m_shariyat@yahoo.co [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Pardis Street, Molla-Sadra Avenue, Vanak Square, P.O. Box: 19395-1999, Tehran 19991 43344 (Iran, Islamic Republic of); Nikkhah, M.; Kazemi, R. [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Pardis Street, Molla-Sadra Avenue, Vanak Square, P.O. Box: 19395-1999, Tehran 19991 43344 (Iran, Islamic Republic of)
2011-02-15
In the present paper, analytical and numerical elastodynamic solutions are developed for long thick-walled functionally graded cylinders subjected to arbitrary dynamic and shock pressures. Both transient dynamic response and elastic wave propagation characteristics are studied in these non-homogeneous structures. Variations of the material properties across the thickness are described according to both polynomial and power law functions. A numerically consistent transfinite element formulation is presented for both functions whereas the exact solution is presented for the power law function. The FGM cylinder is not divided into isotropic sub-cylinders. An approach associated with dividing the dynamic radial displacement expression into quasi-static and dynamic parts and expansion of the transient wave functions in terms of a series of the eigenfunctions is employed to propose the exact solution. Results are obtained for various exponents of the functions of the material properties distributions, various radius ratios, and various dynamic and shock loads.
Zhao, Huaqing
There are two major objectives of this thesis work. One is to study theoretically the fracture and fatigue behavior of both homogeneous and functionally graded materials, with or without crack bridging. The other is to further develop the singular integral equation approach in solving mixed boundary value problems. The newly developed functionally graded materials (FGMs) have attracted considerable research interests as candidate materials for structural applications ranging from aerospace to automobile to manufacturing. From the mechanics viewpoint, the unique feature of FGMs is that their resistance to deformation, fracture and damage varies spatially. In order to guide the microstructure selection and the design and performance assessment of components made of functionally graded materials, in this thesis work, a series of theoretical studies has been carried out on the mode I stress intensity factors and crack opening displacements for FGMs with different combinations of geometry and material under various loading conditions, including: (1) a functionally graded layer under uniform strain, far field pure bending and far field axial loading, (2) a functionally graded coating on an infinite substrate under uniform strain, and (3) a functionally graded coating on a finite substrate under uniform strain, far field pure bending and far field axial loading. In solving crack problems in homogeneous and non-homogeneous materials, a very powerful singular integral equation (SEE) method has been developed since 1960s by Erdogan and associates to solve mixed boundary value problems. However, some of the kernel functions developed earlier are incomplete and possibly erroneous. In this thesis work, mode I fracture problems in a homogeneous strip are reformulated and accurate singular Cauchy type kernels are derived. Very good convergence rates and consistency with standard data are achieved. Other kernel functions are subsequently developed for mode I fracture in
Natarajan, S; Bordas, S; Rabczuk, T; Kerfriden, P
2011-01-01
In this paper, the linear free flexural vibration of cracked functionally graded material plates is studied using the extended finite element method. A 4-noded quadrilateral plate bending element based on field and edge consistency requirement with 20 degrees of freedom per element is used for this study. The natural frequencies and mode shapes of simply supported and clamped square and rectangular plates are computed as a function of gradient index, crack length, crack orientation and crack location. The effect of thickness and influence of multiple cracks is also studied.
Cattini, Andrea; Bellucci, Devis; Sola, Antonella; Pawłowski, Lech; Cannillo, Valeria
2014-04-01
Various bioactive glass/hydroxyapatite (HA) functional coatings were designed by the suspension plasma spraying (SPS) technique. Their microstructure, scratch resistance, and apatite-forming ability in a simulated body fluid (SBF) were compared. The functional coatings design included: (i) composite coating, that is, randomly distributed constituent phases; (ii) duplex coating with glass top layer onto HA layer; and (iii) graded coating with a gradual changing composition starting from pure HA at the interface with the metal substrate up to pure glass on the surface. The SPS was a suitable coating technique to produce all the coating designs. The SBF tests revealed that the presence of a pure glass layer on the working surface significantly improved the reactivity of the duplex and graded coatings, but the duplex coating suffered a relatively low scratch resistance because of residual stresses. The graded coating therefore provided the best compromise between mechanical reliability and apatite-forming ability in SBF. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 551-560, 2014.
A new design of cemented stem using functionally graded materials (FGM).
Hedia, H S; Aldousari, S M; Abdellatif, A K; Fouda, N
2014-01-01
One of the most frequent complications of total hip replacement (THR) is aseptic loosening of femoral component which is primarily due to changes of post-operative stress distribution pattern with respect to intact femur. Stress shielding of the femur is known to be a principal factor in aseptic loosening of hip replacements. Many designers show that a stiff stem shields the surrounding bone from mechanical loading causing stress shielding. Others show that reducing stem stiffness promotes higher proximal interface shear stress which increases the risk of proximal interface failure. Therefore, the task of this investigation is to solve these conflicting problems appeared in the cemented total hip replacement. The finite element method and optimization technique are used in order to find the optimal stem material which gives the optimal available stress distribution between the proximal medial femoral bone and the cement mantle interfaces. The stem is designed using the concept of functionally graded material (FGM) instead of using the conventional most common used stem material. The results showed that there are four feasible solutions from the optimization runs. The best of these designs is to use a cemented stem graded from titanium at the upper stem layer to collagen at the lower stem layer. This new cemented stem design completely eliminates the stress shielding problem at the proximal medial femoral region. The stress shielding using the cemented functionally graded stem is reduced by 98% compared to titanium stem.
Directory of Open Access Journals (Sweden)
Benamar R.
2012-07-01
Full Text Available The purpose of the present paper is to show that the problem of geometrically non linear free vibrations of functionally graded (FG beams with immovable ends can be reduced to that of isotropic homogeneous beams with effective bending stiffness and axial stiffness parameters. The material properties of the functionally graded composites examined are assumed to be graded in the thickness direction and estimated through the rule of mixture. The theoretical model is based on the Euler-Bernouilli beam theory and the Von Kármán geometrical nonlinearity assumptions. An homogenization procedure is developed using the governing axial equation of the beam in which the axial inertia and damping are ignored. Hamilton’s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters, which are found to be in a good agreement with the published results. The non-dimensional curvatures associated to the nonlinear fundamental mode are also given in the case of clamped-clamped FG beams.
Prakash, T.; Sundararajan, N.; Ganapathi, M.
2007-01-01
Here, the dynamic thermal buckling behavior of functionally graded spherical caps is studied considering geometric nonlinearity based on von Karman's assumptions. The formulation is based on first-order shear deformation theory and it includes the in-plane and rotary inertia effects. The material properties are graded in the thickness direction according to the power-law distribution in terms of volume fractions of the material constituents. The effective material properties are evaluated using homogenization method. The governing equations obtained using finite element approach are solved employing the Newmark's integration technique coupled with a modified Newton-Raphson iteration scheme. The pressure load corresponding to a sudden jump in the maximum average displacement in the time history of the shell structure is taken as the dynamic buckling load. The present model is validated against the available isotropic case. A detailed numerical study is carried out to highlight the influences of shell geometries, power law index of functional graded material and boundary conditions on the dynamic buckling load of shallow spherical shells.
Directory of Open Access Journals (Sweden)
Zhong-Qi Yue
2012-01-01
Full Text Available This paper presents the stress and displacement fields in a functionally graded material (FGM caused by a load. The FGM is a graded material of Si3N4-based ceramics and is assumed to be of semi-infinite extent. The load is a distributed loading over a rectangular area that is parallel to the external surface of the FGM and either on its external surface or within its interior space. The point-load analytical solutions or so-called Yue’s solutions are used for the numerical integration over the distributed loaded area. The loaded area is discretized into 200 small equal-sized rectangular elements. The numerical integration is carried out with the regular Gaussian quadrature. Weak and strong singular integrations encountered when the field points are located on the loaded plane, are resolved with the classical methods in boundary element analysis. The numerical integration results have high accuracy.
Linear free flexural vibration of cracked functionally graded plates in thermal environment
Natarajan, S; Ganapathi, M; Kerfriden, P; Bordas, S; 10.1016/j.compstruc.2011.04.002
2011-01-01
In this paper, the linear free flexural vibrations of functionally graded material plates with a through center crack is studied using an 8-noded shear flexible element. The material properties are assumed to be temperature dependent and graded in the thickness direction. The effective material properties are estimated using the Mori-Tanaka homogenization scheme. The formulation is developed based on first-order shear deformation theory. The shear correction factors are evaluated employing the energy equivalence principle. The variation of the plates natural frequency is studied considering various parameters such as the crack length, plate aspect ratio, skew angle, temperature, thickness and boundary conditions. The results obtained here reveal that the natural frequency of the plate decreases with increase in temperature gradient, crack length and gradient index.
Sundararajan, N; Ganapathi, M; 10.1016/j.finel.2005.06.001
2011-01-01
The nonlinear formulation developed based on von Karman's assumptions is employed to study the free vibration characteristics of functionally graded material (FGM) plates subjected to thermal environment. Temperature field is assumed to be a uniform distribution over the plate surface and varied in the thickness direction. The material is assumed to be temperature dependent and graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents. The effective material properties are estimated from the volume fractions and the material properties of the constituents using Mori-Tanaka homogenization method. The nonlinear governing equations obtained using Lagrange's equations of motion are solved using finite element procedure coupled with the direct iteration technique. The variation of nonlinear frequency ratio with amplitude is highlighted considering various parameters such as gradient index, temperature, thickness and aspect ratios, and skew angle. For...
Preparation of Al/Si functionally graded materials using ultrasonic separation method
Directory of Open Access Journals (Sweden)
Zhang Zhongtao
2008-08-01
Full Text Available Functionally graded materials (FGM have been widely used in many industries such as aerospace, energy and electronics. In this experimental study of fabricating FGM, an approach was developed to prepare Al/Si FGM using power ultrasonic separation method. Material sample with continuously changing composition and performance/properties was successfully produced. Results showed that the microstructure of the FGM sample transited, from its top to bottom, from the hypereutectic structure with a large quantity of primary Si gradually to the eutectic, and fi nally to the hypoeutectic with numerous primary Al dendrites. The distribution of primary Si and microhardness of the FGM sample also presented graded characteristics, resulting that the wear resistance of the FGM sample decreased from top to bottom. Preliminary discussion was made on the mechanism of the formation of Al/Si FGM.
Preparation of Al/Si functionally graded materials using ultrasonic separation method
Institute of Scientific and Technical Information of China (English)
Zhang Zhongtao; LI Tingju; Yue Hongyun; Zhang Jian; Li Jie
2008-01-01
Functionally graded materials (FGM) have been widely used in many industries such as aerospace, energy and electronics. In this experimental study of fabricating FGM, an approach was developed to prepare Al/Si FGM using power ultrasonic separation method. Material sample with continuously changing composition and performance/properties was successfully produced. Results showed that the microstructure of the FGM sample transited, from its top to bottom, from the hypereutectic structure with a large quantity of primary Si gradually to the eutectic, and finally to the hypoeutectic with numerous primary AI dendrites. The distribution of primary Si and microhardness of the FGM sample also presented graded characteristics, resulting that the wear resistance of the FGM sample decreased from top to bottom. Preliminary discussion was made on the mechanism of the formation of Al/Si FGM.
Bleustein-Gulyaev waves in a functionally graded piezoelectric material layered structure
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
This work presents a theoretical study of the propagation behavior of Bleustein-Gulyaev waves in a layered structure consisting of a functionally graded piezoelectric material(FGPM) layer and a transversely isotropic piezoelectric substrate. The influence of the graded variation of FGPM coefficients on the dispersion relations of Bleustein-Gulyaev waves in the layered structure is investigated. It is demonstrated that,for a certain frequency range of Bleustein-Gulyaev waves,the mechanical perturbations of the particles are restricted in the FPGM layer and the phase velocity is independent of the electrical boundary conditions at the free surface. Results presented in this study can not only provide further insight on the electromechanical coupling behavior of surface waves in FGPM layered structures,but also lend a theoretical basis for the design of high-performance surface acoustic wave(SAW) devices.
Institute of Scientific and Technical Information of China (English)
Zhanqi Cheng; Danying Gao; Zheng Zhong
2010-01-01
In this paper,a finite crack with constant length(Yoffe type crack)propagating in a functionally graded coating with spatially varying elastic properties bonded to a homoge-neous substrate of finite thickness under anti-plane loading was studied.A multi-layered model is employed to model arbitrary variations of material properties based on two linearly-distributed material compliance parameters.The mixed boundary problem is reduced to a system of singular integral equations that are solved numerically.Some numerical examples are given to demonstrate the accuracy,efficiency and versatility of the model.The numerical results show that the graded parameters,the thicknesses of the interracial layer and the two homogeneous layers,the crack size and speed have significant effects on the dynamic fracture behavior.
Functionally graded Ti-TiC multilayers: the effect of a graded profile on adhesion to substrate
Energy Technology Data Exchange (ETDEWEB)
Dahan, I.; Admon, U.; Sariel, J.; Yahav, B.; Amar, M.; Frage, N.; Dariel, M.P. [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Materials Engineering
1999-10-01
Thin Ti-TiC multilayer coatings on silicon substrates, when sputtered under bias, are in a state of compressive stress due to the incorporation of argon into the deposited layer. Under certain conditions, the compressive stresses lead to spontaneous delamination of the coating. The delamination process takes place by the propagation of a front of concentrated stress that produces local interface separation. The delamination process is characterized by outward buckling of the coating that propagates with relatively well-defined wavelengths of the order of 30 to 70 nm. Ultimately the delamination grows into a complex wrinkling pattern of the coating. The Ti-TiC graded multilayers were deposited with pre-designed composition profiles that affect the state of stress within the coating. The profile reflects the variation of the TiC/Ti ratio along the z-direction, perpendicular to the coating. Elementary composition profiles are characterized by one single parameter, k, that defines whether the TiC/Ti ratio is concave (for k<1) or convex (k>1) with respect to z. Graded multilayers with different values of k display delamination patterns that vary both by their kinetics and by the final morphology of the coating. In particular, graded multilayers with k{>=}3, display long term stability. The results illustrate the potential of graded coatings to reduce intrinsic stresses leading to delamination and failure. (orig.) 4 refs.
Propagation of elastic waves in an anisotropic functionally graded hollow cylinder in vacuum.
Baron, Cécile
2011-02-01
As a non-destructive, non-invasive and non-ionizing evaluation technique for heterogeneous media, the ultrasonic method is of major interest in industrial applications but especially in biomedical fields. Among the unidirectionally heterogeneous media, the continuously varying media are a particular but widespread case in natural materials. The first studies on laterally varying media were carried out by geophysicists on the Ocean, the atmosphere or the Earth, but the teeth, the bone, the shells and the insects wings are also functionally graded media. Some of them can be modeled as planar structures but a lot of them are curved media and need to be modeled as cylinders instead of plates. The present paper investigates the influence of the tubular geometry of a waveguide on the propagation of elastic waves. In this paper, the studied structure is an anisotropic hollow cylinder with elastic properties (stiffness coefficients c(ij) and mass density ρ) functionally varying in the radial direction. An original method is proposed to find the eigenmodes of this waveguide without using a multilayered model for the cylinder. This method is based on the sextic Stroh's formalism and an analytical solution, the matricant, explicitly expressed under the Peano series expansion form. This approach has already been validated for the study of an anisotropic laterally-graded plate (Baron et al., 2007; Baron and Naili, 2010) [6,5]. The dispersion curves obtained for the radially-graded cylinder are compared to the dispersion curves of a corresponding laterally-graded plate to evaluate the influence of the curvature. Preliminary results are presented for a tube of bone in vacuum modelling the in vitro conditions of bone strength evaluation.
Directory of Open Access Journals (Sweden)
S. S. Daimi
2014-08-01
Full Text Available Functionally graded materials (FGMs are microscopically inhomogeneous spatial composite materials, typically composed of a ceramic-metal or ceramic-polymer pair of materials. Therefore, it is important to investigate the behaviors of engineering structures such as beams and plates made from FGMs when they are subjected to thermal loads for appropriate design. Therefore, using an improved third order shear deformation theory (TSDT based on more rigorous kinetics of displacements to predict the behaviors of functionally graded plates is expected to be more suitable than using other theories. In this paper, the improved TSDT is used to investigate thermal buckling of functionally graded plates. Temperature dependent material property solutions are adopted to investigate thermal buckling results of functionally graded plates. To obtain the solutions, the Ritz method using polynomial and trigonometric functions for defining admissible displacements and rotations is applied to solve the governing equations.
Ben Salah, Issam; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi
2012-02-01
An exact approach is used to investigate Rayleigh waves in a functionally graded piezoelectric material (FGPM) layer bonded to a semi infinite homogenous solid. The piezoelectric material is polarized when the six fold symmetry axis is put along the propagation direction x(1). The FGPM character imposes that the material properties change gradually with the thickness of the layer. Contrary to the analytical approach, the adopted numerical methods, including the ordinary differential equation (ODE) and the stiffness matrix method (SMM), treat separately the electrical and mechanical gradients. The influences of graded variations applied to FGPM film coefficients on the dispersion curves of Rayleigh waves are discussed. The effects of gradient coefficients on electromechanical coupling factor, displacement fields, stress distributions and electrical potential, are reported. The obtained deviations in comparison with the ungraded homogenous film are plotted with respect to the dimensionless wavenumber. Opposite effects are observed on the coupling factor when graded variations are applied separately. A particular attention has been devoted to the maximum of the coupling factor and it dependence on the stratification rate and the gradient coefficient. This work provides with a theoretical foundation for the design and practical applications of SAW devices with high performance.
Functionally strain-graded nanoscoops for high power Li-ion battery anodes.
Krishnan, Rahul; Lu, Toh-Ming; Koratkar, Nikhil
2011-02-09
Lithium-ion batteries show poor performance for high power applications involving ultrafast charging/discharging rates. Here we report a functionally strain-graded carbon-aluminum-silicon anode architecture that overcomes this drawback. It consists of an array of nanostructures each comprising an amorphous carbon nanorod with an intermediate layer of aluminum that is finally capped by a silicon nanoscoop on the very top. The gradation in strain arises from graded levels of volumetric expansion in these three materials on alloying with lithium. The introduction of aluminum as an intermediate layer enables the gradual transition of strain from carbon to silicon, thereby minimizing the mismatch at interfaces between differentially strained materials and enabling stable operation of the electrode under high-rate charge/discharge conditions. At an accelerated current density of ∼51.2 A/g (i.e., charge/discharge rate of ∼40C), the strain-graded carbon-aluminum-silicon nanoscoop anode provides average capacities of ∼412 mAh/g with a power output of ∼100 kW/kg(electrode) continuously over 100 charge/discharge cycles.
Optimization design and residual thermal stress analysis of PDC functionally graded materials
Institute of Scientific and Technical Information of China (English)
CAO Pin-lu; LIU Bao-chang; YIN Kun; ZHANG Zu-pei
2006-01-01
The distribution of thermal stresses in functionally graded polycrystalline diamond compact (PDC) and in single coating of PDC are analyzed respectively by thermo-mechanical finite element analysis (FEA). It is shown that they each have a remarkable stress concentration at the edge of the interfaces. The diamond coatings usually suffer premature failure because of spallation, distortion or defects such as cracks near the interface due to these excessive residual stresses. Results showed that the axial tensile stress in FGM coating is reduced from 840 MPa to 229 MPa compared with single coating, and that the shear stress is reduced from 671 MPa to 471 MPa. Therefore, the single coating is more prone to spallation and cracking than the FGM coating.The effects of the volume compositional distribution factor (n) and the number of the graded layers (L) on the thermal stresses in FGM coating are also discussed respectively. Modelling results showed that the optimum value of the compositional distribution factor is 1.2, and that the best number of the graded layers is 6.
Wang, Lugen; Rokhlin, S. I.
2004-11-01
The differential equations governing transfer and stiffness matrices and acoustic impedance for a functionally graded generally anisotropic magneto-electro-elastic medium have been obtained. It is shown that the transfer matrix satisfies a linear 1st order matrix differential equation, while the stiffness matrix satisfies a nonlinear Riccati equation. For a thin nonhomogeneous layer, approximate solutions with different levels of accuracy have been formulated in the form of a transfer matrix using a geometrical integration in the form of a Magnus expansion. This integration method preserves qualitative features of the exact solution of the differential equation, in particular energy conservation. The wave propagation solution for a thick layer or a multilayered structure of inhomogeneous layers is obtained recursively from the thin layer solutions. Since the transfer matrix solution becomes computationally unstable with increase of frequency or layer thickness, we reformulate the solution in the form of a stable stiffness-matrix solution which is obtained from the relation of the stiffness matrices to the transfer matrices. Using an efficient recursive algorithm, the stiffness matrices of the thin nonhomogeneous layer are combined to obtain the total stiffness matrix for an arbitrary functionally graded multilayered system. It is shown that the round-off error for the stiffness-matrix recursive algorithm is higher than that for the transfer matrices. To optimize the recursive procedure, a computationally stable hybrid method is proposed which first starts the recursive computation with the transfer matrices and then, as the thickness increases, transits to the stiffness matrix recursive algorithm. Numerical results show this solution to be stable and efficient. As an application example, we calculate the surface wave velocity dispersion for a functionally graded coating on a semispace.
Directory of Open Access Journals (Sweden)
Antonio Boccaccio
Full Text Available Functionally Graded Scaffolds (FGSs are porous biomaterials where porosity changes in space with a specific gradient. In spite of their wide use in bone tissue engineering, possible models that relate the scaffold gradient to the mechanical and biological requirements for the regeneration of the bony tissue are currently missing. In this study we attempt to bridge the gap by developing a mechanobiology-based optimization algorithm aimed to determine the optimal graded porosity distribution in FGSs. The algorithm combines the parametric finite element model of a FGS, a computational mechano-regulation model and a numerical optimization routine. For assigned boundary and loading conditions, the algorithm builds iteratively different scaffold geometry configurations with different porosity distributions until the best microstructure geometry is reached, i.e. the geometry that allows the amount of bone formation to be maximized. We tested different porosity distribution laws, loading conditions and scaffold Young's modulus values. For each combination of these variables, the explicit equation of the porosity distribution law-i.e the law that describes the pore dimensions in function of the spatial coordinates-was determined that allows the highest amounts of bone to be generated. The results show that the loading conditions affect significantly the optimal porosity distribution. For a pure compression loading, it was found that the pore dimensions are almost constant throughout the entire scaffold and using a FGS allows the formation of amounts of bone slightly larger than those obtainable with a homogeneous porosity scaffold. For a pure shear loading, instead, FGSs allow to significantly increase the bone formation compared to a homogeneous porosity scaffolds. Although experimental data is still necessary to properly relate the mechanical/biological environment to the scaffold microstructure, this model represents an important step towards
THREE-DIMENSIONAL ANALYSIS OF FUNCTIONALLY GRADED PLATE BASED ON THE HAAR WAVELET METHOD
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A three-dimensional analysis of a simply-supported functionally graded rectangular plate with an arbitrary distribution of material properties is made using a simple and effective method based on the Haar wavelet. With good features in treating singularities, Haar series solution converges rapidly for arbitrary distributions, especially for the case where the material properties change rapidly in some regions. Through numerical examples the influences of the ratio of material constants on the top and bottom surfaces and different material gradient distributions on the structural response of the plate to mechanical stimuli are studied.
The edge crack problem for an orthotropic functionally graded strip under concentrated loads
Institute of Scientific and Technical Information of China (English)
果立成; 吴林志; 曾涛
2004-01-01
The plane crack problem of an orthotropic functionally graded strip under concentrated loads is studied. The edge crack is perpendicular to the boundary and the elastic property of the material is assumed to vary depending on thickness. By using an integral transform method, the present problem can be reduced to a single integral equation which is solved numerically. The influences of parameters such as the nonhomogeneity constant and the geometry parameters on the stress intensity factors (SIFs) are studied. It is found that the nonhomogeneity constant has important influences on the SIFs.
Complex dynamics of functionally graded plates with thermal load in 1:2 internal resonance
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Complex dynamics of the simply-supported functionally graded(FG)rectangular plates with thermal load is investigated.Based on Reddy’s third-order shear deformation theory and the von Karman nonlinear strain-displacement relations,ordinary differential equations(ODEs)of the plate’s transversal oscillation are derived by using Hamilton’s principle and Galerkin’s approach.Solutions’classification of the equations in 1:2 internal resonance is analyzed.Particular results of a simplysupported aluminum-alumina rectangular FG plate are given.Effects of temperature and volume fraction on the responses’ stabilities are discussed.
DEFF Research Database (Denmark)
Zajas, Jan Jakub; Heiselberg, Per
2013-01-01
Determination of thermal conductivity of construction materials is essential to estimate their insulation capabilities. In most cases, homogenous materials are used and well developed methods exist for measurements of their thermal conductivity. The task becomes more challenging when dealing...... with non-homogenous materials, where the properties are changing over the volume. In the present study a test procedure is presented to address this problem. The measurement is based on a transient laser flash technique, which is used to determine the local transport properties of heterogeneous samples...... applied to create a map of thermal conductivity of a functionally graded material sample....
Directory of Open Access Journals (Sweden)
Serra Topal
2013-01-01
Full Text Available This paper puts forward two different Jk-integral-based methods, which can be used to perform mixed-mode fracture analysis of orthotropic functionally graded materials subjected to hygrothermal stresses. The first method requires the evaluation of both components of Jk-integral, whereas the second method employs the first component J1 and the asymptotic crack tip displacement fields. Plane orthotropic hygrothermoelasticity is the basic theory behind the Jk-integral formulation, which is carried out by assuming that all material properties are functions of the spatial coordinates. Developed procedures are implemented by means of the finite element method and integrated into a general purpose finite element analysis software. Temperature and specific moisture concentration fields needed in the fracture analyses are also computed through finite element analysis. Each of the developed methods is utilized in conjunction with the superposition technique to calculate the hygrothermal fracture parameters. An inclined crack located in a hygrothermally loaded orthotropic functionally graded layer is examined in parametric analyses. Comparisons of the results generated by the proposed methods do indicate that both methods lead to numerical results of high accuracy and that the developed form of the Jk-integral is domain independent. Further results are presented so as to illustrate the influences of crack inclination angle, crack length, and crack location upon the modes I and II stress intensity factors.
Bottino, Marco C; Thomas, Vinoy; Janowski, Gregg M
2011-01-01
A periodontal membrane with a graded structure allows tailoring of the layer properties to design a material system that will retain its physical, chemical and mechanical characteristics for a period long enough to optimize periodontal regeneration. In this work a novel functionally graded membrane (FGM) was designed and fabricated via sequential multilayer electrospinning. The FGM consists of a core layer (CL) and two functional surface layers (SLs) interfacing with bone (nano-hydroxyapatite, n-HAp) and epithelial (metronidazole, MET) tissues. The CL comprises a neat poly(DL-lactide-co-ε-caprolactone) (PLCL) layer surrounded by two composite layers composed of a protein/polymer ternary blend (PLCL:PLA:GEL). Electrospinning parameters involved in fabrication of the individual layers (i.e. neat PLCL, ternary blend, PLA:GEL+10%n-HAp and PLA:GEL+25%MET) were optimized to obtain fibrous layers free of beads. Morphology, structure and mechanical property studies were carried out on each electrospun layer. The individual fiber morphology and roughness of the functional SLs, which are the n-HAp containing and drug-incorporating layers were evaluated by atomic force microscopy. The CL structure demonstrated higher strength (8.7 MPa) and a more elastic behavior (strain at break 357%) compared with the FGM (3.5 MPa, 297%). Incorporation of n-HAp to enhance osteoconductive behavior and MET to combat periodontal pathogens led to a novel FGM that holds promise at solving the drawbacks of currently available membranes.
SCATTERING OF THE HARMONIC STRESS WAVE BY CRACKS IN FUNCTIONALLY GRADED PIEZOELECTRIC MATERIALS
Institute of Scientific and Technical Information of China (English)
Ma Li; Nie Wu; Wu Linzhi; Zhou Zhengong
2005-01-01
The present paper considers the scattering of the time harmonic stress wave by a single crack and two collinear cracks in functionally graded piezoelectric material (FGPM).It is assumed that the properties of the FGPM vary continuously as an exponential function.By using the Fourier transform and defining the jumps of displacements and electric potential components across the crack surface as the unknown functions, two pairs of dual integral equations are derived. To solve the dual integral equations, the jumps of the displacement and electric potential components across the crack surface are expanded in a series of Jacobi polynomials.Numerical examples are provided to show the influences of material properties on the dynamic stress and the electric displacement intensity factors.
Directory of Open Access Journals (Sweden)
Jeannette A Vizuete
2012-10-01
Full Text Available The balance between excitation and inhibition is considered to be of significant importance for neural computation and cognitive function. Excitatory and inhibitory functional connectivity in intact cortical neuronal networks in wakefulness and graded levels of anesthesia has not been systematically investigated. We compared monosynaptic excitatory and inhibitory spike transmission probabilities using pairwise cross-correlogram analysis. Spikes were measured at 64 sites in the visual cortex of rats with chronically implanted microelectrode arrays during wakefulness and three levels of anesthesia produced by desflurane. Anesthesia decreased the number of active units, the number of functional connections, and the strength of excitatory connections. Connection probability (number of connections per number of active unit pairs was unaffected until the deepest anesthesia level, at which a significant increase in the excitatory to inhibitory ratio of connection probabilities was observed. The results suggest that the excitatory-inhibitory balance is altered at an anesthetic depth associated with unconsciousness.
Static Response of Functionally Graded Material Plate under Transverse Load for Varying Aspect Ratio
Directory of Open Access Journals (Sweden)
Manish Bhandari
2014-01-01
Full Text Available Functionally gradient materials (FGM are one of the most widely used materials in various applications because of their adaptability to different situations by changing the material constituents as per the requirement. Nowadays it is very easy to tailor the properties to serve specific purposes in functionally gradient material. Most structural components used in the field of engineering can be classified as beams, plates, or shells for analysis purposes. In the present study the power law, sigmoid law and exponential distribution, is considered for the volume fraction distributions of the functionally graded plates. The work includes parametric studies performed by varying volume fraction distributions and aspect ratio. The FGM plate is subjected to transverse UDL (uniformly distributed load and point load and the response is analysed.
Wang, Liping; Zhang, Junyan; Zeng, Zhixiang; Lin, Yiming; Hu, Litian; Xue, Qunji
2006-09-28
Nanocrystalline (NC) Ni-Co/CoO functionally graded materials with excellent lubricating, high anti-corrosion and anti-wear performance were fabricated by electrodeposition and subsequent cyclic thermal oxidation and quenching. Transmission electron microscopy and energy dispersive x-ray spectroscopy investigations show that bulk Ni-Co gradient deposits with an average grain size in the range of 13-40 nm demonstrated a graded structure transition from face-centred cubic to hexagonal close packed and graded composition changes from Ni-rich to Co-rich regions with the increase in deposit thickness. X-ray diffraction and x-ray photoelectron spectroscopy analysis indicated the surface layer of NC Ni-Co graded materials to be mainly composed of dense and ultrafine CoO with a (111) preferred orientation. The NC Ni-Co/CoO functionally graded materials exhibited significantly enhanced corrosion resistance in both NaOH and NaCl solutions and remarkably improved wear resistance and dry self-lubricating performance when compared with the NC Ni and Ni-Co graded deposits under dry sliding wear conditions. The higher corrosion and tribological performance of NC Ni-Co/CoO graded materials can be attributed to the graded microstructure within the deposits, the anti-corrosion barrier of a dense oxide layer and the solid lubrication effect of CoO-rich tribo-surface films.
Guo, Xiao; Wei, Peijun; Lan, Man; Li, Li
2016-08-01
The effects of functionally graded interlayers on dispersion relations of elastic waves in a one-dimensional piezoelectric/piezomagnetic phononic crystal are studied in this paper. First, the state transfer equation of the functionally graded interlayer is derived from the motion equation by the reduction of order (from second order to first order). The transfer matrix of the functionally graded interlayer is obtained by solving the state transfer equation with the spatial-varying coefficient. Based on the transfer matrixes of the piezoelectric slab, the piezomagnetic slab and the functionally graded interlayers, the total transfer matrix of a single cell is obtained. Further, the Bloch theorem is used to obtain the resultant dispersion equations of in-plane and anti-plane Bloch waves. The dispersion equations are solved numerically and the numerical results are shown graphically. Five kinds of profiles of functionally graded interlayers between a piezoelectric slab and a piezomagnetic slab are considered. It is shown that the functionally graded interlayers have evident influences on the dispersion curves and the band gaps.
Johnson, Philip J.; Berhane, Sarah; Kagebayashi, Chiaki; Satomura, Shinji; Teng, Mabel; Reeves, Helen L.; O'Beirne, James; Fox, Richard; Skowronska, Anna; Palmer, Daniel; Yeo, Winnie; Mo, Frankie; Lai, Paul; Iñarrairaegui, Mercedes; Chan, Stephen L.; Sangro, Bruno; Miksad, Rebecca; Tada, Toshifumi; Kumada, Takashi; Toyoda, Hidenori
2015-01-01
Purpose Most patients with hepatocellular carcinoma (HCC) have associated chronic liver disease, the severity of which is currently assessed by the Child-Pugh (C-P) grade. In this international collaboration, we identify objective measures of liver function/dysfunction that independently influence survival in patients with HCC and then combine these into a model that could be compared with the conventional C-P grade. Patients and Methods We developed a simple model to assess liver function, based on 1,313 patients with HCC of all stages from Japan, that involved only serum bilirubin and albumin levels. We then tested the model using similar cohorts from other geographical regions (n = 5,097) and other clinical situations (patients undergoing resection [n = 525] or sorafenib treatment for advanced HCC [n = 1,132]). The specificity of the model for liver (dys)function was tested in patients with chronic liver disease but without HCC (n = 501). Results The model, the Albumin-Bilirubin (ALBI) grade, performed at least as well as the C-P grade in all geographic regions. The majority of patients with HCC had C-P grade A disease at presentation, and within this C-P grade, ALBI revealed two classes with clearly different prognoses. Its utility in patients with chronic liver disease alone supported the contention that the ALBI grade was indeed an index of liver (dys)function. Conclusion The ALBI grade offers a simple, evidence-based, objective, and discriminatory method of assessing liver function in HCC that has been extensively tested in an international setting. This new model eliminates the need for subjective variables such as ascites and encephalopathy, a requirement in the conventional C-P grade. PMID:25512453
The Hygroscopic Opening of Sesame Fruits Is Induced by a Functionally Graded Pericarp Architecture
Shtein, Ilana; Elbaum, Rivka; Bar-On, Benny
2016-01-01
To enhance the distribution of their seeds, plants often utilize hygroscopic deformations that actuate dispersal mechanisms. Such movements are based on desiccation-induced shrinkage of tissues in predefined directions. The basic hygroscopic deformations are typically actuated by a bi-layer configuration, in which shrinking of an active tissue layer is resisted by a stiff layer, generating a set of basic movements including bending, coiling, and twisting. In this study, we investigate a new type of functionally graded hygroscopic movement in the fruit (capsule) of sesame (Sesamum indicum L.). Microscopic observations of the capsules showed that the inner stiff endocarp layer is built of a bilayer of transverse (i.e., circumferential) and longitudinal fiber cells with the layers positioned in a semi-circle, one inside the other. The outer mesocarp layer is made of soft parenchyma cells. The thickness of the fibrous layers and of the mesocarp exhibits a graded architecture, with gradual changes in their thickness around the capsule circumference. The cellulose microfibrils in the fiber cell walls are lying parallel to the cell long axis, rendering them stiff. The outer mesocarp layer contracted by 300% as it dried. Removal of this outer layer inhibited the opening movement, indicating that it is the active tissue. A biomechanical hygro-elastic model based on the relative thicknesses of the layers successfully simulated the opening curvature. Our findings suggest that the sesame capsules possess a functionally graded architecture, which promotes a non-uniform double-curvature hygroscopic bending movement. In contrast to other hygroscopic organs described in the literature, the sesame capsule actuating and resisting tissues are not uniform throughout the device, but changing gradually. This newly described mechanism can be exploited in bio-inspired designs of novel actuating platforms. PMID:27777579
Directory of Open Access Journals (Sweden)
Li Ming Zhou
2016-01-01
Full Text Available Based on the finite element software ABAQUS and graded element method, we developed a dummy node fracture element, wrote the user subroutines UMAT and UEL, and solved the energy release rate component of functionally graded material (FGM plates with cracks. An interface element tailored for the virtual crack closure technique (VCCT was applied. Fixed cracks and moving cracks under dynamic loads were simulated. The results were compared to other VCCT-based analyses. With the implementation of a crack speed function within the element, it can be easily expanded to the cases of varying crack velocities, without convergence difficulty for all cases. Neither singular element nor collapsed element was required. Therefore, due to its simplicity, the VCCT interface element is a potential tool for engineers to conduct dynamic fracture analysis in conjunction with commercial finite element analysis codes.
Hydrothermoelastic Stability of Functionally Graded Circular Cylindrical Shells Containing a Fluid
Bochkarev, S. A.; Lekomtsev, S. V.; Matveenko, V. P.
2016-09-01
The thermoelastic and hydroelastic stability of heated circular cylindrical shells made of functionally graded materials and interacting with an internal flow of an ideal compressible fluid was investigated. The effective properties of the material vary across the shell thickness according to a power law and depend on temperature. By way of a mathematical formulation the problem on dynamics the elastic structure, the classical theory of shells and the principle of virtual displacements are used. The radial temperature distribution is determined by solving the one-dimensional heat conduction equation. Behavior of the fluid is described using the potential theory. The corresponding wave equation, together with impermeability and boundary conditions, are transformed to a system of equations with the use of the Bubnov-Galerkin method. The solution of the problem, found by employing a semianalytical version of the finite-element method, is reduced to computing the complex eigenvalues of a coupled system of equations. A comparative analysis of the circular cylindrical shells is carried out at different boundary conditions and for different values of the consistency index of the functionally graded material. The effect of a thermal load on the critical speed of the loss of stability and of flow speed on the thermoelastic stability is estimated. It is shown that a flowing fluid has the greatest effect on the stability boundaries of heated cantilevered shells.
Ansari, R.; Norouzzadeh, A.
2016-10-01
The size-dependent static buckling responses of circular, elliptical and skew nanoplates made of functionally graded materials (FGMs) are investigated in this article based on an isogeometric model. The Eringen nonlocal continuum theory is implemented to capture nonlocal effects. According to the Gurtin-Murdoch surface elasticity theory, surface energy influences are also taken into account by the consideration of two thin surface layers at the top and bottom of nanoplate. The material properties vary in the thickness direction and are evaluated using the Mori-Tanaka homogenization scheme. The governing equations of buckled nanoplate are achieved by the minimum total potential energy principle. To perform the isogeometric analysis as a solution methodology, a novel matrix-vector form of formulation is presented. Numerical examples are given to study the effects of surface stress as well as other important parameters on the critical buckling loads of functionally graded nanoplates. It is found that the buckling configuration of nanoplates at small scales is significantly affected by the surface free energy.
Design of functionally graded dental implant in the presence of cancellous bone.
Hedia, H S
2005-10-01
In a previous work by the author [Hedia HS, Mahmoud NA. Biomed Mater Eng 2004;14(2):133--143], a functionally graded material (FGM) dental implant was designed without cancellous bone in the model. In this investigation, the effect of the presence of cancellous bone as a thin layer around the dental implant was investigated. It is well known that the main inorganic component of natural bone is hydroxyapatite (HAP) and that the main organic component is collagen (Col). HAP implants are not bioabsorbable, and because induction of bone into and around the artificially made HAP is not always satisfactory, loosening or breakage of HAP implants might occur after implantation in the clinical application. The development of a new material that is bioabsorbable and that has osteo-conductive activity is needed. Therefore, the aim of the current investigation was to design an implant, in the presence of cancellous bone as a thin layer around it, from FGM. In this study, a novel biomaterial, Col/HAP, as a FGM, was developed using the finite element and optimization techniques that are available in the ANSYS package. These materials have a self-organized character similar to that of natural bone. The investigations have shown that the maximum stress in the cortical bone and cancellous bone for the Col/HAP functionally graded implant has been reduced by about 40% and 19%, respectively, compared with currently used titanium dental implants.
Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory
Directory of Open Access Journals (Sweden)
B. Sidda Reddy
2013-01-01
Full Text Available The prime aim of the present study is to present analytical formulations and solutions for the buckling analysis of simply supported functionally graded plates (FGPs using higher order shear deformation theory (HSDT without enforcing zero transverse shear stresses on the top and bottom surfaces of the plate. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. Material properties of the plate are assumed to vary in the thickness direction according to a power law distribution in terms of the volume fractions of the constituents. The equations of motion and boundary conditions are derived using the principle of virtual work. Solutions are obtained for FGPs in closed-form using Navier’s technique. Comparison studies are performed to verify the validity of the present results from which it can be concluded that the proposed theory is accurate and efficient in predicting the buckling behavior of functionally graded plates. The effect of side-to-thickness ratio, aspect ratio, modulus ratio, the volume fraction exponent, and the loading conditions on the critical buckling load of FGPs is also investigated and discussed.
The nonlocal theory solution of a Mode-I crack in functionally graded materials
Institute of Scientific and Technical Information of China (English)
LIANG Jun
2009-01-01
The behavior of a Mode-I finite crack in functionally graded materials is investigated using the non-local theory. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with coordinate vertical to the crack. The problem in this paper can be solved through the Fourier transform with the help of two pairs of dual integral equations, in which the unknown variables are jumps of displacements across crack surfaces. To solve dual integral equations, the jumps of displacements across crack surfaces are directly expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solutions yield a finite stress at crack tips, thus allowing us to use the maximum stress as a fracture criterion. Numerical examples are provided to show the effects of the crack length, the parameter describing the functionally graded materials, the lattice parameter of materials and the materials constants upon the stress fields near crack tips.
The nonlocal theory solution of a Mode-I crack in functionally graded materials
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The behavior of a Mode-I finite crack in functionally graded materials is investigated using the non-local theory. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with coordinate vertical to the crack. The problem in this paper can be solved through the Fourier transform with the help of two pairs of dual integral equations, in which the unknown variables are jumps of dis- placements across crack surfaces. To solve dual integral equations, the jumps of displacements across crack surfaces are directly expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solu- tions yield a finite stress at crack tips, thus allowing us to use the maximum stress as a fracture crite- rion. Numerical examples are provided to show the effects of the crack length, the parameter describ- ing the functionally graded materials, the lattice parameter of materials and the materials constants upon the stress fields near crack tips.
Oshkour, A A; Abu Osman, N A; Yau, Y H; Tarlochan, F; Abas, W A B Wan
2013-01-01
This study aimed to develop a three-dimensional finite element model of a functionally graded femoral prosthesis. The model consisted of a femoral prosthesis created from functionally graded materials (FGMs), cement, and femur. The hip prosthesis was composed of FGMs made of titanium alloy, chrome-cobalt, and hydroxyapatite at volume fraction gradient exponents of 0, 1, and 5, respectively. The stress was measured on the femoral prosthesis, cement, and femur. Stress on the neck of the femoral prosthesis was not sensitive to the properties of the constituent material. However, stress on the stem and cement decreased proportionally as the volume fraction gradient exponent of the FGM increased. Meanwhile, stress became uniform on the cement mantle layer. In addition, stress on the femur in the proximal part increased and a high surface area of the femoral part was involved in absorbing the stress. As such, the stress-shielding area decreased. The results obtained in this study are significant in the design and longevity of new prosthetic devices because FGMs offer the potential to achieve stress distribution that more closely resembles that of the natural bone in the femur.
Love waves in functionally graded piezoelectric materials by stiffness matrix method.
Ben Salah, Issam; Wali, Yassine; Ben Ghozlen, Mohamed Hédi
2011-04-01
A numerical matrix method relative to the propagation of ultrasonic guided waves in functionally graded piezoelectric heterostructure is given in order to make a comparative study with the respective performances of analytical methods proposed in literature. The preliminary obtained results show a good agreement, however numerical approach has the advantage of conceptual simplicity and flexibility brought about by the stiffness matrix method. The propagation behaviour of Love waves in a functionally graded piezoelectric material (FGPM) is investigated in this article. It involves a thin FGPM layer bonded perfectly to an elastic substrate. The inhomogeneous FGPM heterostructure has been stratified along the depth direction, hence each state can be considered as homogeneous and the ordinary differential equation method is applied. The obtained solutions are used to study the effect of an exponential gradient applied to physical properties. Such numerical approach allows applying different gradient variation for mechanical and electrical properties. For this case, the obtained results reveal opposite effects. The dispersive curves and phase velocities of the Love wave propagation in the layered piezoelectric film are obtained for electrical open and short cases on the free surface, respectively. The effect of gradient coefficients on coupled electromechanical factor, on the stress fields, the electrical potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the well known heterostructure PZT-5H/SiO(2), the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Love wave propagation behaviour.
Thermal shock resistance behavior of a functionally graded ceramic: Effects of finite cooling rate
Directory of Open Access Journals (Sweden)
Zhihe Jin
2014-01-01
Full Text Available This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC plate with a periodic array of edge cracks. The FGC is assumed to be a thermally heterogeneous material with constant elastic modulus and Poisson's ratio. The cooling rate applied at the FGC surface is modeled using a linear ramp function. An integral equation method and a closed form asymptotic temperature solution are employed to compute the thermal stress intensity factor (TSIF. The thermal shock residual strength and critical thermal shock of the FGC plate are obtained using the SIF criterion. Thermal shock simulations for an Al2O3/Si3N4 FGC indicate that a finite cooling rate leads to a significantly higher critical thermal shock than that under the sudden cooling condition. The residual strength, however, is relatively insensitive to the cooling rate.
Energy Technology Data Exchange (ETDEWEB)
Lee, Kwang Ho [Kyungpook National University, Daegu (Korea, Republic of); Cho, Sang Bong [Kyungnam University, Changwon (Korea, Republic of); Hawong, Jai Sug [Yeungnam University, Gyungsan (Korea, Republic of)
2015-02-15
The stress and displacement fields at the crack tip were studied during the unsteady propagation of a mode Ⅲ crack in a direction that was different from the property graduation direction in functionally graded materials (FGMs). The property graduation in FGMs was assumed based on the linearly varying shear modulus under a constant density and the exponentially varying shear modulus and density. To obtain the solution of the harmonic function, the general partial differential equation of the dynamic equilibrium equation was transformed into a Laplace equation. Based on the Laplace equation, the stress and displacement fields, which depended on the time rates of change in the crack tip speed and stress intensity factor, were obtained through an asymptotic analysis. Using the stress and displacement fields, the effects of the angled property variation on the stresses, displacements, and stress intensity factors are discussed.
An approximate solution to the stress and deformation states of functionally graded rotating disks
Sondhi, Lakshman; Sanyal, Shubhashis; Saha, Kashi Nath; Bhowmick, Shubhankar
2016-07-01
The present work employs variational principle to investigate the stress and deformation states and estimate the limit angular speed of functionally graded high-speed rotating annular disks of constant thickness. Assuming a series approximation following Galerkin's principle, the solution of the governing equation is obtained. In the present study, elasticity modulus and density of the disk material are taken as power function of radius with the gradient parameter ranging between 0.0 and 1.0. Results obtained from numerical solutions are validated with benchmark results and are found to be in good agreement. The results are reported in dimensional form and presented graphically. The results provide a substantial insight in understanding the behavior of FGM rotating disks with constant thickness and different gradient parameter. Furthermore, the stress and deformation state of the disk at constant angular speed and limit angular speed is investigated to explain the existence of optimum gradient parameters.
Directory of Open Access Journals (Sweden)
Ali Nouri
2014-01-01
Full Text Available The maximizing of sound transmission loss (TL across a functionally graded material (FGM cylindrical shell has been conducted using a genetic algorithm (GA. To prevent the softening effect from occurring due to optimization, the objective function is modified based on the first resonant frequency. Optimization is performed over the frequency range 1000–4000 Hz, where the ear is the most sensitive. The weighting constants are chosen here to correspond to an A-weighting scale. Since the weight of the shell structure is an important concern in most applications, the weight of the optimized structure is constrained. Several traditional materials are used and the result shows that optimized shells with aluminum-nickel and aluminum-steel FGM are the most effective at maximizing TL at both stiffness and mass control region, while they have minimum weight.
Shafiei, Navvab; Kazemi, Mohammad; Ghadiri, Majid
2016-09-01
The target of this paper is to present an exhaustive study on the small scale effect on vibrational behavior of a rotary tapered axially functionally graded (AFG) microbeam on the basis of Timoshenko and Euler-Bernoulli beam and modified couple stress theories. The variation of the material properties and cross section along the longitudinal direction of the microbeam are taken into consideration as a linear function. Hamilton's principle is used to derive the equations for cantilever and propped cantilever boundary conditions and the generalized differential quadrature method (GDQM) is employed to solve the equations. By parametric study, the effects of small-scale parameter, rates of cross section change of the microbeam and angular velocity on the fundamental and second frequencies of the microbeam are studied. Also, comparison between the frequencies of Timoshenko and Euler-Bernoulli microbeams are presented. The results can be used in many applications such as micro-robots and biomedical microsystems.
Directory of Open Access Journals (Sweden)
Guang Wei Meng
2015-01-01
Full Text Available A new method using the enriched element-free Galerkin method (EEFGM to model functionally graded piezoelectric materials (FGPMs with cracks was presented. To improve the solution accuracy, extended terms were introduced into the approximation function of the conventional element-free Galerkin method (EFGM to describe the displacement and electric fields near the crack. Compared with the conventional EFGM, the new approach requires smaller domain to describe the crack-tip singular field. Additionally, the domain of the nodes was not affected by the crack. Therefore, the visibility method and the diffraction method were no longer needed. The mechanical response of FGPM was discussed, when its material parameters changed exponentially in a certain direction. The modified J-integrals for FGPM were deduced, whose results were compared with the results of the conventional EFGM and the analytical solution. Numerical example results illustrated that this method is feasible and precise.
TORSIONAL IMPACT RESPONSE OF A PENNY-SHAPED CRACK IN A FUNCTIONAL GRADED STRIP
Institute of Scientific and Technical Information of China (English)
冯文杰; 李向国; 王守东
2004-01-01
The torsional impact response of a penny-shaped crack in a nonhomogeneous strip is considered. The shear modulus is assumed to be functionally graded such that the reduce the problem to solving a Fredholm integral equation. The crack tip stress field is obtained by considering behavior of Bessel function. Explicit expressions of both the dynamic stress intensity factor and the energy density factor were derived. And it is shown that, as crack igated are the effects of material nonhomogeneity and strip's highness on the dynamic fracture behavior.at the peak of the dynamic stress intensity factor can be suppressed by increasing the nonhomogeneity parameter of the shear modulus, and that the ting of the strip' s highness.
A Green's function method for surface acoustic waves in functionally graded materials.
Matsuda, Osamu; Glorieux, Christ
2007-06-01
Acoustic wave propagation in anisotropic media with one-dimensional inhomogeneity is discussed. Using a Green's function approach, the wave equation with inhomogeneous variation of elastic property and mass density is transformed into an integral equation, which is then solved numerically. The method is applied to find the dispersion relation of surface acoustic waves for a medium with continuously or discontinuously varying elastic property and mass density profiles.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Analytical and semi-analytical solutions are presented for anisotropic functionally graded beams subject to an arbitrary load,which can be expanded in terms of sinusoidal series.For plane stress problems,the stress function is assumed to consist of two parts,one being a product of a trigonometric function of the longitudinal coordinate(x) and an undetermined function of the thickness coordinate(y),and the other a linear polynomial of x with unknown coefficients depending on y.The governing equations satisfied by these y-dependent functions are derived.The expressions for stresses,resultant forces and displacements are then deduced,with integral constants determinable from the boundary conditions.While the analytical solution is derived for the beam with material coefficients varying exponentially or in a power law along the thickness,the semi-analytical solution is sought by making use of the sub-layer approximation for the beam with an arbitrary variation of material parameters along the thickness.The present analysis is applicable to beams with various boundary conditions at the two ends.Three numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.
Institute of Scientific and Technical Information of China (English)
HUANG DeJin; DING Haodiang; CHEN WeiQiu
2009-01-01
Analytical and semi-analytical solutions are presented for anisotropic functionally graded beams sub-ject to an arbitrary load, which can be expanded in terms of sinusoidal series. For plane stress prob-lems, the stress function is assumed to consist of two parts, one being a product of a trigonometric function of the longitudinal coordinate (x) and an undetermined function of the thickness coordinate (y), and the other a linear polynomial of x with unknown coefficients depending on y. The governing equa-tions satisfied by these y-dependent functions are derived. The expressions for stresses, resultant forces and displacements are then deduced, with integral constants determinable from the boundary conditions. While the analytical solution is derived for the beam with material coefficients varying exponentially or in a power law along the thickness, the semi-analytical solution is sought by making use of the sub-layer approximation for the beam with an arbitrary variation of material parameters along the thickness. The present analysis is applicable to beams with various boundary conditions at the two ends. Three numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhong-Min, E-mail: wangzhongm@xaut.edu.cn; Liu, Yan-Zhuang
2016-03-15
Highlights: • We investigate the transverse vibration of FGM pipe conveying fluid. • The FGM pipe conveying fluid can be classified into two cases. • The variations between the frequency and the power law exponent are obtained. • “Case 1” is relatively more reasonable than “case 2”. - Abstract: Problems related to the transverse vibration of pipe conveying fluid made of functionally graded material (FGM) are addressed. Based on inside and outside surface material compositions of the pipe, FGM pipe conveying fluid can be classified into two cases. It is hypothesized that the physical parameters of the material along the direction of the pipe wall thickness change in the simple power law. A differential equation of motion expressed in non-dimensional quantities is derived by using Hamilton's principle for systems of changing mass. Using the assuming modal method, the pipe deflection function is expanded into a series, in which each term is expressed to admissible function multiplied by generalized coordinate. Then, the differential equation of motion is discretized into the two order differential equations expressed in the generalized coordinates. Based on symplectic elastic theory and the introduction of dual system and dual variable, Hamilton's dual equations are derived, and the original problem is reduced to eigenvalue and eigenvector problem in the symplectic space. Finally, a symplectic method is employed to analyze the vibration and stability of FGM pipe conveying fluid. For a clamped–clamped FGM pipe conveying fluid in “case 1” and “case 2”, the dimensionless critical flow velocity for first-mode divergence and the critical coupled-mode flutter flow velocity are obtained, and the variations between the real part and imaginary part of dimensionless complex frequency and fluid velocity, mass ratio and the power law exponent (or graded index, volume fraction) for FGM pipe conveying fluid are analyzed.
Directory of Open Access Journals (Sweden)
Dongjiang Wu
2010-01-01
Full Text Available Two patterns of functionally graded materials (FGMs were successfully fabricated whose compositions gradually varied from 100% stainless steel 316L to 100% Inconel718 superalloy using laser engineered net shaping process. The microstructure characterization, composition analysis, and microhardness along the graded direction were investigated. The comparison revealed the distinctions in solidification behavior, microstructure evolution of two patterns. In the end, the abrasive wear resistance of the material was investigated.
Kim, Yong Bok; Kim, GeunHyung
2012-09-01
Functionally graded (FG) composites consisting of polycaprolactone (PCL) and beta-tricalcium phosphate ( β-TCP) particles were fabricated with a multilayered structure using a melt plotter with a two-heating-barrel system. Using this process, the concentration of β-TCP particles varied in each layered strut. Scanning electron microscopy (SEM) and energy dispersive spectroscopy mapping of calcium on the fabricated scaffolds indicated that the β-TCP particles were well distributed in each PCL strut, according to conceptual design. By incorporating β-TCP, the FG-PCL/ β-TCP scaffolds had meaningful increases in water absorption (30 % increase) and showed good mechanical properties, although the mechanical properties are slightly low compared to pure PCL/ β-TCP composite. We performed biological assessments to evaluate the capability of these FG scaffolds to act as a biomaterial for bone tissue regeneration with osteoblast-like cells (MG63). SEM images of cell-seeded FG scaffolds showed that the concentrated β-TCP struts were affected as good cell attachment/proliferation sites. Additionally, calcium deposition on the FG scaffolds was higher than that of normal scaffolds after 14 days. In particular, we observed high levels of mineralization in the highly concentrated β-TCP struts in the FG scaffolds. Based on these results, we believe that the FG scaffolds having various spatially designed structures with graded properties will be widely applicable for hard tissue engineering applications.
Design and Synthesis of Ti-ZrO2 Functionally Graded Materials
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Functionally graded materials (FGMs) based on titanium-zirconia system have been prepared by powder metallurgical method. The graded interlayer number and the compositional distribution have been designed by elastic finite element method. The interfacial microstructure between layers, the combining state of phases between Ti and ZrO2 have been investigated by means of XRD (X-ray diffraction), SEM (scanning electron microscope), EDS (energy dispersive spectrometer) and so on. The co-existing region of Ti and ZrO2 has been determined by thermodynamic calculation to control the sintering atmosphere. The experimental results show that the joint between Ti and ZrO2 phases is physical in this composite and ZrO2 mainly exists as tetragonal phase. The microstructure of Ti-ZrO2 system FGM exhibits a transition from a zirconia particle dispersion in a titanium matrix to an inverse dispersion of titanium in zirconia. The gradient structure of titanium and zirconia can relieve thermal stress.
Energy Technology Data Exchange (ETDEWEB)
Nikolaou, P.; Mina, C.; Constantinou, M.; Koutsokeras, L.E.; Constantinides, G. [Research Unit for Nanostructured Materials Systems, Department of Mechanical Engineering and Materials Science and Engineering, PO Box 50329, 3603 Limassol (Cyprus); Lidorikis, E.; Avgeropoulos, A. [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Kelires, P.C. [Research Unit for Nanostructured Materials Systems, Department of Mechanical Engineering and Materials Science and Engineering, PO Box 50329, 3603 Limassol (Cyprus); Patsalas, P., E-mail: ppats@physics.auth.gr [Physics Department, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)
2015-04-30
In this work, we produce functionally graded nanocomposites consisting of silver (Ag) plasmonic nanoparticles (PNPs) supported in a poly(dimethylsiloxane) (PDMS) matrix. PDMS was selected due to its high optical transparency, nontoxicity and ease of use. The Ag PNPs were formed by annealing sputtered Ag ultra-thin films and were subsequently capped by a spin-coated PDMS layer. We investigate the factors that affect their plasmonic behavior, such as the PNP size, the annealing conditions and the surrounding environment. In order to achieve broadband absorption, we developed PDMS/Ag(PNPs) multilayers with graded PNP size. Thus, we demonstrate the significance of the stacking sequence of various plasmonic layers sandwiched between PDMS layers and its potential for tailoring the plasmonic response of multilayer structure. As a demonstration of this approach, we deposited a specially designed multilayer structure, whose optical extinction resembles the solar emission spectrum. - Highlights: • Elastomers are combined with plasmonic nanoparticles. • The plasmonic effects in stratified media are identified. • Broadband absorption similar to solar emission is achieved.
Energy Technology Data Exchange (ETDEWEB)
Zenkour, Ashraf M., E-mail: zenkour@hotmail.com [Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516 (Egypt); Abbas, Ibrahim A. [Department of Mathematics, Faculty of Science and Arts-Khulais, King Abdulaziz University, Jeddah (Saudi Arabia); Department of Mathematics, Faculty of Science, Sohag University, Sohag (Egypt)
2015-12-01
The electro-magneto-thermo-elastic analysis problem of an infinite functionally graded (FG) hollow cylinder is studied in the context of Green–Naghdi's (G–N) generalized thermoelasticity theory (without energy dissipation). Material properties are assumed to be graded in the radial direction according to a novel power-law distribution in terms of the volume fractions of the metal and ceramic constituents. The inner surface of the FG cylinder is pure metal whereas the outer surface is pure ceramic. The equations of motion and the heat-conduction equation are used to derive the governing second-order differential equations. A finite element scheme is presented for the numerical purpose. The system of differential equations is solved numerically and some plots for displacement, radial and electromagnetic stresses, and temperature are presented. The radial displacement, mechanical stresses and temperature as well as the electromagnetic stress are all investigated along the radial direction of the infinite cylinder. - Highlights: • The electro-magneto-thermo-elastic analysis problem of a FG cylinder is studied. • A finite element scheme is presented for the numerical purpose. • The results are investigated along the radial direction of the infinite cylinder. • It provides interesting information for all researchers working on this subject.
Ni–Fe–Al$_2$O$_3$ electrodeposited nanocomposite coating with functionally graded microstructure
Indian Academy of Sciences (India)
V TORABINEJAD; A SABOUR ROUHAGHDAM; M ALIOFKHAZRAEI; M H ALLAHYARZADEH
2016-06-01
In this study, a Ni–Fe–Al$_2$O$_3$ nanocomposite coating was deposited on the substrate of low-carbon steel by electrodeposition from a sulphate-based bath. The effects of frequency and duty cycle were investigated to producethe functionally graded (FG) coating. For this purpose, first, the coatings with duty cycle-decreased method (DDM) were deposited in eight steps from 88 to 11%. At the second step, frequency-increased method (FIM) was utilized from 50 to 6400 Hz during eight steps. Assessing of coatings was carried out by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), potentiodynamic test, Vickers microhardness test and wear test.Microstructure evaluations gained by SEM and EDS demonstrated that the continuous alterations of duty cycle contribute for manufacturing of FG coatings, so that the maximum particle fraction was in the free surface of the coating and its amount was gradually decreased to the interface. These investigations showed that FIM had no effect on production of graded structure. Corrosion and wear tests indicated high corrosion and wear resistance of DDM coatings in comparison to FIM coatings. Investigating the best coatings obtained from both above methods exhibited 50 and 20% reduction in corrosion current density and wear rate, respectively, for DDM specimen in comparison to FIM sample.
Directory of Open Access Journals (Sweden)
Lin Mu
2016-01-01
Full Text Available This study is interested in assessing a way to analyze fundamental frequency of sandwich beams with functionally graded face sheet and homogeneous core. The face sheet, which is an exponentially graded material (EGM varying smoothly in the thickness direction only, is composed of a mixture of metal and ceramic. The core which is made of foam metal is homogeneous. The classical plate theory (CPT is used to analyze the face sheet and a higher-order theory (HOT is used to analyze the core of sandwich beams, in which both the transverse normal and shear strains of the core are considered. The extended Galerkin method is used to solve the governing equations to obtain the vibration equations of the sandwich beams suitable for numerical analysis. The fundamental frequency obtained by the theoretical model is validated by using the finite element code ABAQUS and comparison with earlier works. The influences of material and geometric properties on the fundamental frequency of the sandwich beams are analyzed.
Mouse Low-Grade Gliomas Contain Cancer Stem Cells with Unique Molecular and Functional Properties
Directory of Open Access Journals (Sweden)
Yi-Hsien Chen
2015-03-01
Full Text Available The availability of adult malignant glioma stem cells (GSCs has provided unprecedented opportunities to identify the mechanisms underlying treatment resistance. Unfortunately, there is a lack of comparable reagents for the study of pediatric low-grade glioma (LGG. Leveraging a neurofibromatosis 1 (Nf1 genetically engineered mouse LGG model, we report the isolation of CD133+ multi-potent low-grade glioma stem cells (LG-GSCs, which generate glioma-like lesions histologically similar to the parent tumor following injection into immunocompetent hosts. In addition, we demonstrate that these LG-GSCs harbor selective resistance to currently employed conventional and biologically targeted anti-cancer agents, which reflect the acquisition of new targetable signaling pathway abnormalities. Using transcriptomic analysis to identify additional molecular properties, we discovered that mouse and human LG-GSCs harbor high levels of Abcg1 expression critical for protecting against ER-stress-induced mouse LG-GSC apoptosis. Collectively, these findings establish that LGG cancer stem cells have unique molecular and functional properties relevant to brain cancer treatment.
DEFF Research Database (Denmark)
Bayat, M.; Sahari, B. B.; Saleem, M.
2012-01-01
In this paper the elastic solutions of a disk composed of FGM – Functionaly Graded Material, is presented.......In this paper the elastic solutions of a disk composed of FGM – Functionaly Graded Material, is presented....
Asemi, K.; Ashrafi, H.; Shariyat, M.
2016-07-01
Static and free vibration analyses of plates with circular holes are performed based on the three-dimensional theory of elasticity. The plates are made of a functionally graded material (FGM), and the volume fractions of the constituent materials vary continuously across the plate. The effective properties of the FGM plate are estimated by using the Mori-Tanaka homogenization method. A graded finite element method based on the Rayleigh-Ritz energy formulation is used to solve the problem. Effects of different volume fractions of the materials and hole sizes on the behavior of FGM plates under uniaxial tension are investigated. Natural frequencies of a fully clamped FGM plate with a circular cutout are derived. The results obtained are compared with available experimental data.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In functionally graded materials (FGM), the problem of interface stability caused by the volume deformation is commonly regarded as the key factor for its performance. Based on test results, in terms of finite element method (FEM) this paper analyzed problems in the shrinkage of functionally graded material interface of shield concrete segment, which was designed and produced by the principle of functionally graded materials. In the analysis model, the total shrinkage of concrete was converted into the thermal shrinkage by means of the method of "Equivalent Temperature Difference". Consequently, the shrinkage stress of interface layer was calculated and compared with the bond strength of interface layer.The results indicated that the volume deformation of two-phase materials of functionally graded concrete (FGC) segment, which were the concrete cover and the concrete structure layer, showed better compatibility and the tension stress of interface layer, which was resulted from the shrinkage of concrete and calculated by ANSYS, was less than the bond strength of interface layer. Therefore, the interface stability of functionally graded concrete segment was good and the sliding deformation of interface layer would not generate.
A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics.
Mohebi, Mohammad Masoud; Evans, Julian R G
2002-01-01
A printer has been designed and built for the preparation of combinatorial libraries of ceramics and for solid freeforming of functionally graded ceramics with three-dimensionally programmable spatial variation in composition. Several ceramic suspensions (as inks) can be subjected to micromixing behind the nozzle and printed at precise positions. Both mixing and positioning are computer-controlled. The machine consists of an XY table to control the geometry, a set of electromagnetic valves that manage the mixing, a combined electromagnetic valve and sapphire nozzle that form the print head, and a computer that controls the whole system. The mixing valves can eject as little as 1 mg/s ink into the mixing chamber. The printer has been controlled, run, calibrated and tested; the composition and geometry of printed mixtures can be controlled precisely. This method for the controlled mixing of powders facilitates the advance of combinatorial methods within the materials sciences.
Bending and vibration of functionally graded material sandwich plates using an accurate theory
Natarajan, S
2012-01-01
In this paper, the bending and the free flexural vibration behaviour of sandwich functionally graded material (FGM) plates are investigated using QUAD-8 shear flexible element developed based on higher order structural theory. This theory accounts for the realistic variation of the displacements through the thickness. The governing equations obtained here are solved for static analysis considering two types of sandwich FGM plates, viz., homogeneous face sheets with FGM core and FGM face sheets with homogeneous hard core. The in-plane and rotary inertia terms are considered for vibration studies. The accuracy of the present formulation is tested considering the problems for which three-dimensional elasticity solutions are available. A detailed numerical study is carried out based on various higher-order models to examine the influence of the gradient index and the plate aspect ratio on the global/local response of different sandwich FGM plates.
Dantz, D; Reimers, W
1999-01-01
The residual stress state in microwave sintered metal-ceramic functionally graded materials (FGM) consisting of 8Y-ZrO/sub 2//Ni and 8Y-ZrO/sub 2//NiCr8020, respectively, was analysed by non- destructive diffraction methods. In $9 order to get knowledge of the complete residual stress state in the near surface region as well as in the interior of the material, complementary methods were applied. Whereas the surface was characterised by X-ray techniques using $9 conventional sources, the stresses within the bulk of the material were investigated by means of high energy synchrotron radiation. The stress state was found to obey the differences in the coefficients of thermal expansion $9 (micro-stresses) on the one hand and the inhomogeneous cooling conditions (macrostresses) on the other hand. (7 refs).
Transverse Vibration of Axially Moving Functionally Graded Materials Based on Timoshenko Beam Theory
Directory of Open Access Journals (Sweden)
Suihan Sui
2015-01-01
Full Text Available The transverse free vibration of an axially moving beam made of functionally graded materials (FGM is investigated using a Timoshenko beam theory. Natural frequencies, vibration modes, and critical speeds of such axially moving systems are determined and discussed in detail. The material properties are assumed to vary continuously through the thickness of the beam according to a power law distribution. Hamilton’s principle is employed to derive the governing equation and a complex mode approach is utilized to obtain the transverse dynamical behaviors including the vibration modes and natural frequencies. Effects of the axially moving speed and the power-law exponent on the dynamic responses are examined. Some numerical examples are presented to reveal the differences of natural frequencies for Timoshenko beam model and Euler beam model. Moreover, the critical speed is determined numerically to indicate its variation with respect to the power-law exponent, axial initial stress, and length to thickness ratio.
Wang, Ji; Yang, Jiashi; Li, Jiangyu
2007-03-01
Energy trapping has important applications in the design of thickness-shear resonators. Considerable efforts have been made for the effective utilization and improvement of energy trapping with variations of plate configurations, such as adding electrodes and contouring. As a new approach in seeking improved energy trapping feature, we analyze thickness-shear vibrations in an elastic plate with functionally graded material (FGM) of in-plane variation of mechanical properties, such as elastic constants and density. A simple and general equation governing the thickness-shear modes is derived from a variational analysis. A plate with piecewise constant material properties is analyzed as an example. It is shown that such a plate can support thickness-shear vibration modes with obvious energy trapping. Bechmann's number for the existence of only one trapped mode also can be determined accordingly.
Stress singularity in a top of composite wedge with internal functionally graded material
Directory of Open Access Journals (Sweden)
Victor V. Tikhomirov
2015-10-01
Full Text Available The antiplane problem of the composite wedge consisting of two homogeneous external wedge-shaped areas and an intermediate zone of the interphase is studied. The interphase material is assumed functionally graded. It is shown that the problem in each area is harmonic within the quadratic law of inhomogeneity of the material in the transverse direction. The influence of the interphase on the stress state at the top of the wedge is analyzed. As compared to the ideal contact of external materials, the presence of the interphase leads both to decrease and increase in the singularity exponent. Moreover, the stress asymptotic may have two singular terms for some values of the composite parameters.
An exact analysis of surface acoustic waves in a plate of functionally graded materials.
Gao, Liming; Wang, Ji; Zhong, Zheng; Du, Jianke
2009-12-01
Some traditional applications of structures and devices with homogeneous materials are being gradually replaced by functionally graded materials (FGM) with spatial variation of properties. The analysis of SAW propagating in FGM structures will be different primarily due to variations of material properties and resulting differential equations with variable coefficients. To provide an effective method and accurate results for the analysis of SAWs in FGM structures, we employed the Frobenius method as the only available method for a detailed analysis of SAW in materials with property variations in a linear pattern. Analytical examples are presented to demonstrate the effectiveness of the method and the effect of FGM on changes of surface displacements in SAW propagation.
Prediction and Control of the Bi-stable Functionally Graded Composites by Temperature Gradient Field
Directory of Open Access Journals (Sweden)
Zheng ZHANG
2015-11-01
Full Text Available The bi-stable cylindrical composites, which are composed of the fiber-through-thickness variation functionally graded material (FGM subjected to a temperature gradient field, studied in the paper. The advantages of both of the FGMs’ adaptability for the temperature field variation and the bi-stability of the un-symmetric and anti-symmetric orthogonal lay-ups are combined, the presented bi-stable structure has a potential application in many fields. The thermal-induced bi-stable FGM un-symmetric and anti-symmetric orthogonal shell is studied by the finite element analysis. The different FGM lay-ups are simulated successfully by the commercial finite element software ABAQUS and its subroutines. The curved shapes, the temperature-load history and stress distributions are also given to understand this bi-stable phenomenon.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9566
Directory of Open Access Journals (Sweden)
Repka M.
2015-11-01
Full Text Available The finite element method (FEM is developed for coupled thermoelastic crack problems if material properties are continuously varying. The weak form is utilized to derive the FEM equations. In conventional fracture theories the state of stress and strain at the crack tip vicinity is characterized by a single fracture parameter, namely the stress intensity factor or its equivalent, J-integral. In the present paper it is considered also the second fracture parameter called as the T-stress. For evaluation of both fracture parameters the quarter-point crack tip element is developed. Simple formulas for both fracture parameters are derived comparing the variation of displacements in the quarter-point element with asymptotic expression of displacement at the crack tip vicinity. The leading terms of the asymptotic expansions of fields in the crack-tip vicinity in a functionally graded material (FGM are the same as in a homogeneous one with material coefficients taken at the crack tip.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A nonlinear finite element method is applied to observe how inclusion shape influence the thermal response of a ceramic-metal functionally graded material (FGM).The elastic and plastic behaviors of the layers which are two-phase isotropic composites consisting of randomly oriented elastic spheroidal inclusions and a ductile matrix are predicted by a mean field method.The prediction results show that inclusion shape has remarkable influence on the overall behavior of the composite.The consequences of the thermal response analysis of the FGM are that the response is dependent on inclusion shape and its composition profile cooperatively and that the plastic behavior of each layer should be taken into account in optimum design of a ceramic-metal FGM.
Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam
Azimi, Majid; Mirjavadi, Seyed Sajad; Shafiei, Navvab; Hamouda, A. M. S.
2017-01-01
The free vibration analysis of rotating axially functionally graded nanobeams under an in-plane nonlinear thermal loading is provided for the first time in this paper. The formulations are based on Timoshenko beam theory through Hamilton's principle. The small-scale effect has been considered using the nonlocal Eringen's elasticity theory. Then, the governing equations are solved by generalized differential quadrature method. It is supposed that the thermal distribution is considered as nonlinear, material properties are temperature dependent, and the power-law form is the basis of the variation of the material properties through the axial of beam. Free vibration frequencies obtained are cantilever type of boundary conditions. Presented numerical results are validated by comparing the obtained results with the published results in the literature. The influences of the nonlocal small-scale parameter, angular velocity, hub radius, FG index and also thermal effects on the frequencies of the FG nanobeams are investigated in detail.
Optimum gradient material for a functionally graded dental implant using metaheuristic algorithms.
Sadollah, Ali; Bahreininejad, Ardeshir
2011-10-01
Despite dental implantation being a great success, one of the key issues facing it is a mismatch of mechanical properties between engineered and native biomaterials, which makes osseointegration and bone remodeling problematical. Functionally graded material (FGM) has been proposed as a potential upgrade to some conventional implant materials such as titanium for selection in prosthetic dentistry. The idea of an FGM dental implant is that the property would vary in a certain pattern to match the biomechanical characteristics required at different regions in the hosting bone. However, matching the properties does not necessarily guarantee the best osseointegration and bone remodeling. Little existing research has been reported on developing an optimal design of an FGM dental implant for promoting long-term success. Based upon remodeling results, metaheuristic algorithms such as the genetic algorithms (GAs) and simulated annealing (SA) have been adopted to develop a multi-objective optimal design for FGM implantation design. The results are compared with those in literature.
Material and Geometric Nonlinear Analysis of Functionally Graded Plate-Shell Type Structures
Moita, J. S.; Araújo, A. L.; Mota Soares, C. M.; Mota Soares, C. A.; Herskovits, J.
2016-08-01
A nonlinear formulation for general Functionally Graded Material plate-shell type structures is presented. The formulation accounts for geometric and material nonlinear behaviour of these structures. Using the Newton-Raphson incremental-iterative method, the incremental equilibrium path is obtained, and in case of snap-through occurrence the automatic arc-length method is used. This simple and fast element model is a non-conforming triangular flat plate/shell element with 24 degrees of freedom for the generalized displacements. It is benchmarked in the solution of some illustrative plate- shell examples and the results are presented and discussed with numerical alternative models. Benchmark tests with material and geometrically nonlinear behaviour are also proposed.
Direct Metal Deposition of Functional Graded Structures in Ti- Al System
Shishkovsky, I.; Missemer, F.; Smurov, I.
A direct laser metal deposition (DLMD) technology with co-axial powder injection is used to fabricate a complex functional graded structure (FGS) fabrication. The aim of the study is to demonstrate the possibility to produce intermetallic phases in the Ti-Al powder systems in the course of a single-step DMD process. Besides, relationships between the main laser cladding parameters and the intermetallic phase structures of the built-up objects have been studied. In our research we applied the optical microscopy, X-ray analysis, microhardness measurement and SEM with EDX analysis of the laser-fabricated intermetallics. The discussion of the mechanisms of Ti x Al y (x,y = 1.3) intermetallic transformations in exothermal reactions is also offered in the report.
2D crack problems in functionally graded magnet-electro-elastic materials
Stoynov, Yonko
2016-12-01
Magneto-electro-elastic composite materials have extensive application in modern smart structures, because they possess good coupling between mechanical, electrical and magnetic fields. This new effect was reported for the first time by Van Suchtelen [1] in 1972. Due to their ceramic structure cracks inevitably exists in these materials. In this study we consider functionally graded magneto-electro-elastic materials subjected to anti-plane time harmonic load. We use Boundary integral equation method (BIEM) to evaluate the dependence of stress concentration near the crack tip on the frequency of the applied external load. For complex crack configurations numerical calculations are tedious and need too much time. Here we present a new analytical approach that will significantly improve the numerical procedure for calculation of stress intensity factors (SIF).
Indian Academy of Sciences (India)
SAHIL GARG; MOHIT PANT
2017-03-01
In the present work, element-free Galerkin method (EFGM) has been extended and implemented to simulate thermal fracture in functionally graded materials. The thermo-elastic fracture problem is decoupled into two separate parts. Initially, the temperature distribution over the domain is obtained by solving the heat transfer problem. The temperature field so obtained is then employed as input for the mechanical problem to determine the displacement and stress fields. The crack surfaces are modelled as non-insulated boundaries; hence the temperature field remains undisturbed by the presence of crack. A modified conservative M-integral technique has been used in order to extract the stress intensity factors for the simulated problems. The present analysisshows that the results obtained by EFGM are in good agreement with those available in the literature.
Lohar, Hareram; Mitra, Anirban; Sahoo, Sarmila
2016-09-01
In the present study non-linear free vibration analysis is performed on a tapered Axially Functionally Graded (AFG) beam resting on an elastic foundation with different boundary conditions. Firstly the static problem is carried out through an iterative scheme using a relaxation parameter and later on the subsequent dynamic problem is solved as a standard eigen value problem. Minimum potential energy principle is used for the formulation of the static problem whereas for the dynamic problem Hamilton's principle is utilized. The free vibrational frequencies are tabulated for different taper profile, taper parameter and foundation stiffness. The dynamic behaviour of the system is presented in the form of backbone curves in dimensionless frequency-amplitude plane.
The axisymmetric torsional contact problem of a functionally graded piezoelectric coated half-space
Su, Jie; Ke, Liao-Liang; Wang, Yue-Sheng; Xiang, Yang
2017-01-01
In this article, we study the axisymmetric torsional contact problem of a half-space coated with functionally graded piezoelectric material (FGPM) and subjected to a rigid circular punch. It is found that, along the thickness direction, the electromechanical properties of FGPMs change exponentially. We apply the Hankel integral transform technique and reduce the problem to a singular integral equation, and then numerically determine the unknown contact stress and electric displacement at the contact surface. The results show that the surface contact stress, surface azimuthal displacement, surface electric displacement, and inner electromechanical field are obviously dependent on the gradient index of the FGPM coating. It is found that we can adjust the gradient index of the FGPM coating to modify the distributions of the electric displacement and contact stress.
Mer, K. K. S.; Ray, S.
2011-12-01
Functionally graded cylindrical ingot of Al-Al2O3 composite synthesized by centrifugal casting shows particle distribution and hardness decreasing radially from the outer radius to inner radius. The progressive decrease in alumina content and hardness from the outer radius towards the center may be attributed to higher centrifugal force acting on relatively denser alumina particles during rotation, as compared to that acting on lighter alloy melt. It is also observed, as one moves down from the top to the bottom of cast ingot the alumina content decreases. This is surprising in view of higher density of alumina particles relative to the melt. The particle settling should have resulted at more particles towards the bottom, but distribution observed is in contradiction.
Optimization of Natural Frequencies and Sound Power of Beams Using Functionally Graded Material
Directory of Open Access Journals (Sweden)
Nabeel T. Alshabatat
2014-01-01
Full Text Available This paper presents a design method to optimize the material distribution of functionally graded beams with respect to some vibration and acoustic properties. The change of the material distribution through the beam length alters the stiffness and the mass of the beam. This can be used to alter a specific beam natural frequency. It can also be used to reduce the sound power radiated from the vibrating beam. Two novel volume fraction laws are used to describe the material volume distributions through the length of the FGM beam. The proposed method couples the finite element method (for the modal and harmonic analysis, Lumped Parameter Model (for calculating the power of sound radiation, and an optimization technique based on Genetic Algorithm. As a demonstration of this technique, the optimization procedure is applied to maximize the fundamental frequency of FGM cantilever and clamped beams and to minimize the sound radiation from vibrating clamped FGM beam at a specific frequency.
On the Effect of Functionally Graded Materials on Resonances of Rotating Beams
Directory of Open Access Journals (Sweden)
Arnaldo J. Mazzei Jr.
2012-01-01
Full Text Available Radially rotating beams attached to a rigid stem occur in several important engineering applications. Some examples include helicopter blades, turbine blades and certain aerospace applications. In most studies the beams have been treated as homogeneous. Here, with a goal of system improvement, non-homogeneous beams made of functionally graded materials are explored. The effects on the natural frequencies of the system are investigated. Euler-Bernoulli theory, including an axial stiffening effect and variations of both Young's modulus and density, is employed. An assumed mode approach is utilized, with the modes taken to be beam characteristic orthogonal polynomials. Results are obtained via Rayleigh-Ritz method and are compared for both the homogeneous and non-homogeneous cases. It was found, for example, that allowing Young's modulus and density to vary by approximately 2.15 and 1.15 times, respectively, leads to an increase of 23% in the lowest bending rotating natural frequency of the beam.
Mechanical analysis of functionally graded plates based on the input data of metallographic diagrams
Institute of Scientific and Technical Information of China (English)
CAO ZhiYuan; TANG ShouGao; CHENG HongMei
2008-01-01
A microelement method for scale-span analysis of material microstructure and member macro re-sponse has been proposed. Instead of material parameter input for traditional mechanical analysis, the method is based on the input of metallographic diagram information. In order to express the material microstructure, this method arranges concentrated microelements in ordinary finite element before calculation, and transfers the node degrees of freedom of each microelement into the ones of the same finite element via compatibility conditions. This method can realize direct transition analysis from ma-terial microstructure to macro responses of members, while computation elements and degrees of freedom are equal to those of ordinary FEM. Based on the complicated microstructure diagrams pro-posed by material metallographic diagram, the mechanics responses of functionally graded plates are calculated and 3-D distributions of macro-mechanical variables and identical stress lines tendency on microstructure are given.
Directory of Open Access Journals (Sweden)
Jamal Zare
2015-01-01
Full Text Available The present research attempts to explain dynamic pull-in instability of functionally graded micro-cantilevers actuated by step DC voltage while the fringing-field effect is taken into account in the vibrational equation of motion. By employing modern asymptotic approach namely Homotopy Perturbation Method with an auxiliary term, high-order frequency-amplitude relation is obtained, then the influences of material properties and actuation voltage on dynamic pull-in behavior are investigated. It is demonstrated that the auxiliary term in the homotopy perturbation method is extremely effective for higher order approximation and two terms in series expansions are sufficient to produce an acceptable solution. The strength of this analytical procedure is verified through comparison with numerical results.
Xu, Tuo; Zhang, Beili
2015-01-01
This article discusses the importance of functional grammar and demonstrates its application to the teaching of reading among graded college students. Functional grammar holds that a discourse is composed of two levels: the interior level and the exterior level. Therefore, reading activities involve both linguistic elements and contexts.…
Energy Technology Data Exchange (ETDEWEB)
Qu, D.D., E-mail: dandna.qu@partner.kit.edu; Basuki, W.W.; Aktaa, J.
2015-10-15
Highlights: • Tungsten coatings with W/EUROFER functional graded (FG) interlayers on EUROFER substrates are investigated by means of finite element (FE) simulations as first wall (FW) application. • The FE simulations consider elasto-perfectly plastic and elasto-viscoplastic material models and the fabrication phase and operation phase. • The effects of FG-interlayers thicknesses on mitigating the residual stress and inelastic strain are studied. • Allowable number of cycles is calculated based on creep damage accumulation. - Abstract: Reduced activation ferritic/martensitic (RAFM) steels, e.g. EUROFER, are to be used as structural material for the first wall (FW) of future fusion power plants. The interaction between the plasma and the FW, especially physical sputtering, will limit the FW lifetime under normal operation. Therefore, a tungsten coating should be selected to protect the FW due to its low sputtering yield, low activation, high melting point and high thermal conductivity. However, the mismatch of thermo-physical properties between W and EUROFER induces large residual thermal stresses and even failure of components. Functionally graded material (FGM) is considered as an appropriate solution to mitigate the high residual stresses. In this work, W coatings on EUROFER substrates with W/EUROFER FG-layer (the coating system) are investigated by means of finite element (FE) simulations considering elasto-perfectly plastic and elasto-viscoplastic material models. For determining optimal parameters of the coating system the vacuum plasma spraying (VPS) fabrication process and the operation phase of the fusion reactor are simulated. Based on the FE results creep assessment of the coating system is performed demonstrating the gain in lifetime to be expected when using a FG-layer and investigating its dependence on the thickness of the FG-layer.
Local properties of a functionally graded interphase between cementum and dentin.
Ho, Sunita P; Balooch, Mehdi; Marshall, Sally J; Marshall, Grayson W
2004-09-01
The study of natural interfaces may provide information necessary to engineer functionally graded biomaterials for bioengineering applications. In this study, the mechanical, structural, and chemical composition variations associated with a region between cementum and dentin were studied with the use of nanoindentation, microindentation, optical microscopy, and Raman microspectroscopy techniques. Three-millimeter-thick transverse sections (N = 5) were obtained from the apical one-third of the roots of sterilized human molars. The samples were ultrasectioned at room temperature with the use of a diamond knife and an ultramicrotome. Longitudinal ground sections of 100 microm thickness were prepared and stained with von Kossa stain to determine the mineralized regions within the molar roots. Raman microspectroscopy was used to determine the relative inorganic content, mainly apatite (PO4(3-)nu1 mode at 960 cm(-1)) and organic content, mainly collagen (C--H stretch at 2940 cm(-1)) between cementum and dentin bulk tissues. The microindentation and nanoindentation results indicated a gradual transition in hardness from cementum to dentin over a width ranging from 100 to 200 microm. However, the variation in hardness data for cementum and dentin by nanoindentation was larger (0.62 +/- 0.21, 0.77 +/- 0.14 GPa) than from microindentation (0.49 +/- 0.03, 0.69 +/- 0.07 GPa). Within the 100 to 200 microm region there was a 10 to 50 microm fibrillar hydrophilic cementum-dentin junction (CDJ) with mechanical properties significantly lower than either the cementum or the dentin side of CDJ. Light microscopy revealed a 100 to 200 microm translucent region between cementum and dentin. Raman microspectroscopy results showed a variation in organic and inorganic composition 80 to 140 microm wide. It was concluded that a morphologically and biomechanically different CDJ lies within a wider cementum-dentin interphase. Hence, cementum, dentin, and the interphase can be classified as a
Static Analysis of Functionally Graded Piezoelectric Beams under Thermo-Electro-Mechanical Loads
Directory of Open Access Journals (Sweden)
Amin Komeili
2011-01-01
Full Text Available This paper presents the analysis of static bending of beams made of functionally graded piezoelectric materials (FGPMs under a combined thermo-electro-mechanical load. The Euler Bernoulli theory (EBT, first-order shear deformation theory (FSDT and third-order shear deformation theory (TSDT were employed to compare the accuracy and the reliability of each theory in applications. The material properties vary continuously through the thickness direction. The material compositions were selected from the PZT family. The governing equations were derived from Hamilton's principle and solved using the finite element method and Fourier series method. Cubic Hermit interpolation shape function was used for estimating the transverse deflection, and the linear interpolation function was used for the axial displacement and the shear rotation as well. Fourier series expansion, based on the boundary conditions, were employed to solve the governing equations analytically. The accuracy of the method was validated by comparing the results with the previous studies. Finite element results were compared with the analytical results presented in this paper. A comprehensive parametric study is conducted to show the influence of the voltage, shear deformation, material composition, end supports, and the slenderness ratio on the thermo-electro-mechanical characteristic.
Shenas, Amin Ghorbani; Malekzadeh, Parviz; Ziaee, Sima
2017-04-01
As a first endeavor, the thermal buckling behavior of pre-twisted functionally graded (FG) beams with temperature-dependent material properties is investigated. The governing stability equations are derived based on the third-order shear deformation theory (TSDT) in conjunction with the adjacent equilibrium state criterion under the von Kármán's nonlinear kinematic assumptions using the Chebyshev-Ritz method. The Chebyshev polynomials multiplied with some suitable boundary functions are used as the basis functions, which allow one to analyze the beams with different boundary conditions. The extracted system of nonlinear algebraic eigenvalue equations is solved iteratively to obtain the critical temperature rise. The convergence behavior together with accuracy of the solution method and the correctness of formulation are demonstrated through different examples. Then, the influences of the linear and nonlinear variation of the angle of twist along the beam axis, the value of twist angle, length-to-thickness ratio, thickness-to-width ratio, material gradient index and temperature dependence of material properties on the critical temperature rise of the pre-twisted FG beams under different boundary conditions are investigated. It is shown that the pre-twist angle increases the thermal buckling resistance of the pre-twisted FG beams, but the temperature dependence of material properties reduces it.
Institute of Scientific and Technical Information of China (English)
泮世东; 周振功; 吴林志
2013-01-01
The Schmidt method is adopted to investigate the fracture problem of mul-tiple parallel symmetric and permeable finite length mode-III cracks in a functionally graded piezoelectric/piezomagnetic material plane. This problem is formulated into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. In order to obtain the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials. The results show that the stress, the electric displacement, and the magnetic flux intensity factors of cracks depend on the crack length, the functionally graded parameter, and the distance among the multiple parallel cracks. The crack shielding effect is also obviously presented in a functionally graded piezoelectric/piezomagnetic material plane with mul-tiple parallel symmetric mode-III cracks.
Energy Technology Data Exchange (ETDEWEB)
Netson, Kelli L. [Department of Psychiatry and Behavioral Sciences, Kansas University School of Medicine—Wichita, Kansas (United States); Conklin, Heather M. [Department of Psychology, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Wu, Shengjie; Xiong, Xiaoping [Department of Biostatistics, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Merchant, Thomas E., E-mail: thomas.merchant@stjude.org [Division of Radiation Oncology, St Jude Children' s Research Hospital, Memphis, Tennessee (United States)
2013-04-01
Purpose: Children treated for brain tumors with conformal radiation therapy experience preserved cognitive outcomes. Early evidence suggests that adaptive functions or independent-living skills may be spared. This longitudinal investigation prospectively examined intellectual and adaptive functioning during the first 5 years following irradiation for childhood craniopharyngioma and low-grade glioma (LGG). The effect of visual impairment on adaptive outcomes was investigated. Methods and Materials: Children with craniopharyngioma (n=62) and LGG (n=77) were treated using conformal or intensity modulated radiation therapy. The median age was 8.05 years (3.21-17.64 years) and 8.09 years (2.20-19.27 years), respectively. Serial cognitive evaluations including measures of intelligence quotient (IQ) and the Vineland Adaptive Behavior Scales (VABS) were conducted at preirradiation baseline, 6 months after treatment, and annually through 5 years. Five hundred eighty-eight evaluations were completed during the follow-up period. Results: Baseline assessment revealed no deficits in IQ and VABS indices for children with craniopharyngioma, with significant (P<.05) longitudinal decline in VABS Communication and Socialization indices. Clinical factors associated with more rapid decline included females and preirradiation chemotherapy (interferon). The only change in VABS Daily Living Skills correlated with IQ change (r=0.34; P=.01) in children with craniopharyngioma. Children with LGG performed below population norms (P<.05) at baseline on VABS Communication, Daily Living Indices, and the Adaptive Behavior Composite, with significant (P<.05) longitudinal decline limited to VABS Communication. Older age at irradiation was a protective factor against longitudinal decline. Severe visual impairment did not independently correlate with poorer adaptive outcomes for either tumor group. Conclusions: There was relative sparing of postirradiation functional outcomes over time in this sample
Institute of Scientific and Technical Information of China (English)
ZHANG Pei-wei; ZHOU Zhen-gong; WANG Biao
2007-01-01
The dynamic interaction oftwo collinear interface cracks between two dislar.functionally graded piezoelectric/piezomagnetic material strips subjected to the anti-plane shear harmonic stress waves was investigated.By using the Fourier transform, unknown variable is jump of displacement across the crack surfaces.These equations are solved using the Schmidt method.Numerical examples are provided to show the effect of the functionally graded parameter,the circular frequency of the incident waves and the thickness of the strip upon stress,electric displacement and magnetic flux intensity factors of cracks.
Institute of Scientific and Technical Information of China (English)
Licheng Guo; Linzhi Wu; Yuguo Sun; Li Ma
2005-01-01
The transient fracture behavior of a functionally graded layered structure subjected to an in-plane impact load is investigated. The studied structure is composed of two homogeneous layers and a functionally graded interlayer with a crack perpendicular to the boundaries. The impact load is applied on the face of the crack. Fourier transform and Laplace transform methods are used to formulate the present problem in terms of a singular integral equation in Laplace transform domain. Considering variations of parameters such as the nonhomogeneity constant, the thickness ratio and the crack length, the dynamic stress intensity factors (DSIFs) in time domain are studied and some meaningful conclusions are obtained.
Seidel, Gary D.; Lagoudas, Dimitris C.; Frankland, Sarah Jane V.; Gates, Thomas S.
2006-01-01
The effective elastic properties of a unidirectional carbon fiber/epoxy lamina in which the carbon fibers are coated with single-walled carbon nanotubes are modeled herein through the use of a multi-scale method involving the molecular dynamics/equivalent continuum and micromechanics methods. The specific lamina representative volume element studied consists of a carbon fiber surrounded by a region of epoxy containing a radially varying concentration of carbon nanotubes which is then embedded in the pure epoxy matrix. The variable concentration of carbon nanotubes surrounding the carbon fiber results in a functionally graded interphase region as the properties of the interphase region vary according to the carbon nanotube volume fraction. Molecular dynamics and equivalent continuum methods are used to assess the local effective properties of the carbon nanotube/epoxy comprising the interphase region. Micromechanics in the form of the Mori-Tanaka method are then applied to obtain the global effective properties of the graded interphase region wherein the carbon nanotubes are randomly oriented. Finally, the multi-layer composite cylinders micromechanics approach is used to obtain the effective lamina properties from the lamina representative volume element. It was found that even very small quantities of carbon nanotubes (0.36% of lamina by volume) coating the surface of the carbon fibers in the lamina can have a significant effect (8% increase) on the transverse properties of the lamina (E22, k23, G23 and G12) with almost no affect on the lamina properties in the fiber direction (E11 and v12).
Zhou, Zhangjian; Li, Jingfeng; Zhang, Lianmeng; Ge, Changchun
2013-03-01
The 12th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials (FGM-2012) was held in Beijing, China, from 22-36 October 2012. This was part of a series of conferences organized every two years endorsed by International Advisory Committee for FGM's, which serves as a forum for scientists, educators, engineers and young students interested in the development of functionally graded materials (FGM). The series continues from the previous international symposium on FGM held in Sendai, Japan (1990), San Francisco, USA (1992), Lausanne, Switzerland (1994), Tsukuba, Japan (1996), Dresden, Germany (1998), Estes Park, USA (2000), Beijing, China (2002), Leuven, Belgium (2004), Hawaii, USA (2006), Sendai, Japan (2008) and Guimaraes, Portugal (2010). Functionally graded materials are non-uniform materials which are designed with embodied continuous spatial variations in composition and microstructure for the specific purpose of adjusting their thermal, structural, mechanical, biological or functional response to specific application conditions. Such multi-phase materials cover a range of space and time scales, and are best understood by means of a comprehensive multiscale, multiphysics approach. These kinds of materials are presently in the forefront of materials research, receiving worldwide attention. They have a broad range of applications including for example, biomedical, biomechanical, automotive, aerospace, mechanical, civil, nuclear, and naval engineering. New applications are continuously being discovered and developed. The objective of the FGM-2012 intends to provide opportunities for exchanging ideas and discussing state-of-the-art theories, techniques and applications in the fields of multiscale, multifunctional and FGM, through invited lectures, oral and poster presentations. FGM-2012 was organized and hosted by University of Science and Technology Beijing, China, together with Tsing-hua University and Wuhan University of
Directory of Open Access Journals (Sweden)
Woo-Young Jung
2013-01-01
Full Text Available Based on a nonlocal elasticity theory, a model for sigmoid functionally graded material (S-FGM nanoscale plate with first-order shear deformation is studied. The material properties of S-FGM nanoscale plate are assumed to vary according to sigmoid function (two power law distribution of the volume fraction of the constituents. Elastic theory of the sigmoid FGM (S-FGM nanoscale plate is reformulated using the nonlocal differential constitutive relations of Eringen and first-order shear deformation theory. The equations of motion of the nonlocal theories are derived using Hamilton’s principle. The nonlocal elasticity of Eringen has the ability to capture the small scale effect. The solutions of S-FGM nanoscale plate are presented to illustrate the effect of nonlocal theory on bending and vibration response of the S-FGM nanoscale plates. The effects of nonlocal parameters, power law index, aspect ratio, elastic modulus ratio, side-to-thickness ratio, and loading type on bending and vibration response are investigated. Results of the present theory show a good agreement with the reference solutions. These results can be used for evaluating the reliability of size-dependent S-FGM nanoscale plate models developed in the future.
Bendine, K.; Boukhoulda, F. B.; Nouari, M.; Satla, Z.
2016-12-01
This paper reports on a study of active vibration control of functionally graded beams with upper and lower surface-bonded piezoelectric layers. The model is based on higher-order shear deformation theory and implemented using the finite element method (FEM). The proprieties of the functionally graded beam (FGB) are graded along the thickness direction. The piezoelectric actuator provides a damping effect on the FGB by means of a velocity feedback control algorithm. A Matlab program has been developed for the FGB model and compared with ANSYS APDL. Using Newmark's method numerical solutions are obtained for the dynamic equations of FGB with piezoelectric layers. Numerical results show the effects of the constituent volume fraction and the influence the feedback control gain on the frequency and dynamic response of FGBs.
Bottino, Marco Cicero
The aging of the global population will lead to a considerable increase in the number of surgical and restorative procedures related to oral rehabilitation or periodontal regeneration. Periodontitis is one of the most aggressive pathologies that concern the integrity of the periodontal system that can lead to the destruction of the periodontium. Guided tissue and guided bone regeneration (GTR/GBR) have been used for the repair and regeneration of periodontal tissues by utilizing an occlusive membrane. The goal of this dissertation is to advance the knowledge in the area of periodontal regeneration by investigating the properties of a commercially available freeze-dried collagen-based graft (AlloDermRTM) and by designing/fabricating a functionally graded membrane (FGM) via multilayer electrospinning. The effects of different rehydration times and of a simultaneous rehydration/crosslinking procedure on the biomechanical properties and matrix stability of the commercially available membrane were investigated. The results revealed that there are significant changes on the biomechanical properties of the graft as rehydration time increases. Moreover, it was demonstrated that the simultaneous rehydration/crosslinking protocol has a synergistic effect in terms of enhancing biomechanical properties. A FGM consisting of a core-layer (CL) and two functional surface-layers (SL) was fabricated via sequential electrospinning. Hydroxyapatite nanoparticles (n-HAp) were incorporated to enhance bone formation (SL facing bone defect), and metronidazole benzoate (MET) was added to prevent bacterial colonization (SL facing the epithelial tissue). Degradation studies performed on both the CL and the FGM confirmed that the design holds promise in terms of providing the required mechanical stability to avoid membrane collapse and, therefore, enhance bone regeneration. Finally, it was demonstrated that MET incorporation into the SL that would face epithelial tissue is effective in
Montes-Fonseca, Silvia Lorena; Sánchez-Ramírez, Blanca; Luna-Velasco, Antonia; Arzate-Quintana, Carlos; Silva-Cazares, Macrina Beatriz; González Horta, Carmen
2015-01-01
Carbon nanotubes (CNTs) are used as carriers in medicine due to their ability to be functionalized with chemical substances. However, cytotoxicity analysis is required prior to use for in vivo models. The aim of this study was to evaluate the cytotoxic effect of CNTs functionalized with a 46 kDa surface protein from Entamoeba histolytica (P46-CNTs) on J774A macrophages. With this purpose, CNTs were synthesized by spray pyrolysis and purified (P-CNTs) using sonication for 48 h. A 46 kDa protein, with a 4.6–5.4 pI range, was isolated from E. histolytica HM1:IMSS strain trophozoites using an OFFGEL system. The P-CNTs were functionalized with the purified 46 kDa protein, classified according to their degree of functionalization, and characterized by Raman and Infrared spectroscopy. In vitro cytotoxicity was evaluated by MTT, apoptosis, and morphological assays. The results demonstrated that P46-CNTs exhibited cytotoxicity dependent upon the functionalized grade. Contrary to what was expected, P46-CNTs with a high grade of functionalization were more toxic to J774 macrophages than P46-CNTs with a low grade of functionalization, than P-CNTs, and had a similar level of toxicity as UP-CNT. This suggests that the nature of the functionalized protein plays a key role in the cytotoxicity of these nanoparticles. PMID:26075262
Directory of Open Access Journals (Sweden)
Silvia Lorena Montes-Fonseca
2015-01-01
Full Text Available Carbon nanotubes (CNTs are used as carriers in medicine due to their ability to be functionalized with chemical substances. However, cytotoxicity analysis is required prior to use for in vivo models. The aim of this study was to evaluate the cytotoxic effect of CNTs functionalized with a 46 kDa surface protein from Entamoeba histolytica (P46-CNTs on J774A macrophages. With this purpose, CNTs were synthesized by spray pyrolysis and purified (P-CNTs using sonication for 48 h. A 46 kDa protein, with a 4.6–5.4 pI range, was isolated from E. histolytica HM1:IMSS strain trophozoites using an OFFGEL system. The P-CNTs were functionalized with the purified 46 kDa protein, classified according to their degree of functionalization, and characterized by Raman and Infrared spectroscopy. In vitro cytotoxicity was evaluated by MTT, apoptosis, and morphological assays. The results demonstrated that P46-CNTs exhibited cytotoxicity dependent upon the functionalized grade. Contrary to what was expected, P46-CNTs with a high grade of functionalization were more toxic to J774 macrophages than P46-CNTs with a low grade of functionalization, than P-CNTs, and had a similar level of toxicity as UP-CNT. This suggests that the nature of the functionalized protein plays a key role in the cytotoxicity of these nanoparticles.
Thermal Buckling and Free Vibration Analysis of Heated Functionally Graded Material Beams
Directory of Open Access Journals (Sweden)
Khalane Sanjay Anandrao
2013-05-01
Full Text Available The effect of temperature dependency of material properties on thermal buckling and free vibration of functionally graded material (FGM beams is studied. The FGM beam is assumed to be at a uniform through thickness temperature, above the ambient temperature. Finite element system of equations based on the first order shear deformation theory is developed. FGM beam with axially immovable ends having the classical boundary conditions is analysed. An exhaustive set of numerical results, in terms of buckling temperatures and frequencies, is presented, considering the temperature independent and temperature dependent material properties. The buckling temperature and fundamental frequency obtained using the temperature independent material properties is higher than that obtained by using the temperature dependent material properties, for all the material distributions, geometrical parameters in terms of length to thickness ratios and the boundary conditions considered. It is also observed that the frequencies of the FGM beam will reduce with the increase in temperature. This observation is applicable for the higher modes of vibration also. The necessity of considering the temperature dependency of material properties in determining thermal buckling and vibration characteristics of FGM beams is clearly demonstrated.Defence Science Journal, 2013, 63(3, pp.315-322, DOI:http://dx.doi.org/10.14429/dsj.63.2370
Rigorous buckling analysis of size-dependent functionally graded cylindrical nanoshells
Sun, Jiabin; Lim, C. W.; Zhou, Zhenhuan; Xu, Xinsheng; Sun, Wei
2016-06-01
This paper presents new analytical solutions for buckling of carbon nanotubes (CNTs) and functionally graded (FG) cylindrical nanoshells subjected to compressive and thermal loads. The model applies Eringen's nonlocal differential constitutive relation to describe the size-dependence of nanoshells. Based on Reddy's higher-order shear deformation theory, governing equations are established and solved by separating the variables. The analysis first re-examines the classical buckling of single-walled CNTs. Accurate solutions are established, and it is found that the buckling stress decreases drastically when the nonlocal parameter reaches a certain value. For CNTs with constant wall-thickness, the buckling stress eventually decreases with enhanced size effect. By comparing with CNTs molecular dynamic simulations, the obtained nonlocal parameters are much smaller than those proposed previously. Subsequently, FG cylindrical nanoshells are analyzed, and it is concluded that similar behavior that has been observed for CNTs is also valid for FG cylindrical nanoshells. The paper further discusses in detail the effects of different geometric parameters, material distribution, and temperature field.
Vibration analysis of nonlocal beams made of functionally graded material in thermal environment
Ebrahimi, Farzad; Reza Barati, Mohammad
2016-08-01
In this paper, thermal vibration behavior of functionally graded (FG) nanobeams exposed to various kinds of thermo-mechanical loading including uniform, linear and non-linear temperature rise embedded in a two-parameter elastic foundation are investigated based on third-order shear deformation beam theory which considers the influence of shear deformation without the need to shear correction factors. Material properties of FG nanobeam are supposed to be temperature-dependent and vary gradually along the thickness according to the Mori-Tanaka homogenization scheme. The influence of small scale is captured based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. The comparison of the obtained results is conducted with those of nonlocal Euler-Bernoulli beam theory and it is demonstrated that the proposed modeling predicts correctly the vibration responses of FG nanobeams. The influences of some parameters including gradient index, nonlocal parameter, mode number, foundation parameters and thermal loading on the thermo-mechanical vibration characteristics of the FG nanobeams are presented.
Comparison of various functionally graded femoral prostheses by finite element analysis.
Oshkour, Azim Ataollahi; Talebi, Hossein; Shirazi, Seyed Farid Seyed; Bayat, Mehdi; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan
2014-01-01
This study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip replacement was implanted. The considered prosthesis is fabricated from a functionally graded material (FGM) comprising a layer of a titanium alloy bonded to a layer of hydroxyapatite. The elastic modulus of the FGM was adjusted in the radial, longitudinal, and longitudinal-radial directions by altering the volume fraction gradient exponent. Four cases were studied, involving two different methods of anchoring the prosthesis to the spongy bone and two cases of applied loading. The results revealed that the FG prostheses provoked more SED to the bone. The FG prostheses carried less stress, while more stress was induced to the bone and cement. Meanwhile, less shear interface stress was stimulated to the prosthesis-bone interface in the noncemented FG prostheses. The cement-bone interface carried more stress compared to the prosthesis-cement interface. Stair climbing induced more harmful effects to the implanted femur components compared to the normal walking by causing more stress. Therefore, stress shielding, developed stresses, and interface stresses in the THR components could be adjusted through the controlling stiffness of the FG prosthesis by managing volume fraction gradient exponent.
Antibacterial effect and cytotoxicity of Ag-doped functionally graded hydroxyapatite coatings.
Bai, Xiao; Sandukas, Stefan; Appleford, Mark; Ong, Joo L; Rabiei, Afsaneh
2012-02-01
Functionally graded hydroxyapatite coatings (FGHA) doped with 1, 3, and 6.5 wt % silver (Ag) have been deposited on Titanium using ion-beam-assisted deposition. Scanning transmission electron microscopy on coating cross sections confirmed the presence of FGHA coating with mostly amorphous layers at the top and mostly crystalline layers toward the coating interface as well as the existence of 10-50 nm Ag particles distributed throughout the thickness of the coatings. Calcium release in phosphate buffered saline solution showed a high release rate of Ca at the beginning of the test, and a gradual decrease in release rate thereafter to a minimum level until day 7. Similarly, the release rate of Ag in ultra pure water was initially high in the first 4 h and then gradually decreased over a 7 days period. Antibacterial tests have shown a reduction in the viability of S. aureus in Ag-doped coatings particularly in samples with higher Ag concentrations of 3 and 6.5 wt %. Cytotoxicity tests using an osteoblast cell line, on the other hand, have demonstrated that the samples with 6.5 wt % Ag have a negative effect on osteoblast cell response, proliferation, and apoptosis as well as a negative effect on protein and osteocalcin production. It is notable that the samples with 3 wt % Ag or less presented minimal cytotoxicity compared with control surfaces. Considering both the antibacterial and cytotoxicity effects, it is suggested that the 3 wt % of Ag in FGHA coatings can be favorable.
Lamb waves propagation in functionally graded piezoelectric materials by Peano-series method.
Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi
2015-01-01
The Peano-series expansion is used to investigate the propagation of the lowest-order symmetric (S0) and antisymmetric (A0) Lamb wave modes in a functionally graded piezoelectric material (FGPM) plate. Aluminum nitride has been retained for illustration, it is polarized along the thickness axis, and at the same time the material properties change gradually perpendicularly to the plate with an exponential variation. The effects of the gradient variation on the phase velocity and the coupling electromechanical factor are obtained. Appropriate curves are given to reflect their behavior with respect to frequency. The highest value of the electromechanical coupling factor has been observed for S0 mode, it is close to six percent, conversely for A0 mode it does not exceed 1.5%. The coupling factor maxima undergo a shift toward the high frequency area when the corresponding gradient coefficient increases. The Peano-series method computed under Matlab software, gives rapid convergence and accurate phase velocity when analysing Lamb waves in FGPM plate. The obtained numerical results can be used to design different sensors with high performance working at different frequency ranges by adjusting the extent of the gradient property.
Rahaman, Mohamed N; Li, Yadong; Bal, B Sonny; Huang, Wenhai
2008-06-01
The coating of magnesia partially stabilized zirconia (Mg-PSZ) with a bioactive glass was investigated for enhancing the bioactivity and bone-bonding ability of Mg-PSZ orthopedic implants. Individual coatings of three different bioactive glasses were prepared by depositing a concentrated suspension of the glass particles on Mg-PSZ substrates, followed by sintering at temperatures between 750 degrees C and 850 degrees C. Two silicate-based glass compositions (designated 13-93 and 6P68), and a borosilicate glass composition (H12) were investigated. The microstructure and adhesive strength of the coatings were characterized, and the in vitro bioactivity of the glasses was compared by measuring their conversion kinetics to hydroxyapatite in an aqueous phosphate solution at 37 degrees C. The 6P68 glass provided the highest adhesive strength (40 +/- 2 MPa) but showed very limited bioactivity, whereas the H12 glass had lower adhesive strength (18 +/- 2 MPa) but the highest bioactivity. A functionally graded coating, consisting of a 6P68 interfacial layer and an H12 surface layer, was developed to provide a coating with high adhesive strength coupled with rapid in vitro bioactivity.
Hangai, Yoshihiko; Morita, Tomoaki; Koyama, Shinji; Kuwazuru, Osamu; Yoshikawa, Nobuhiro
2016-09-01
Functionally graded aluminum foam (FG Al foam) is a new class of Al foam in which the pore structure varies over the foam, resulting in corresponding variations in the mechanical properties of the foam. In this study, FG Al foam plates were fabricated by a friction powder sintering (FPS) process with a traversing tool that is based on a previously developed sintering and dissolution process. The variation of the mechanical properties was realized by setting the volume fraction φ of NaCl in the mixture to 60, 70, and 80%. Long FG Al foam plates were fabricated with a length equal to the tool traversing length with φ varying in the tool traversing direction. From x-ray computed tomography observation, it was shown that the density of the Al foam decreased with increasing φ. In contrast, almost uniform pore structures were obtained in each area. According to the results of compression tests on each area, the plateau stress and energy absorption tended to decrease with increasing φ. Therefore, it was shown that FG Al foam plates with varying mechanical properties can be fabricated by the FPS process with the traversing tool.
Hedia, H S; El-Midany, T T; Shabara, M A N; Fouda, N
2006-09-01
Metal backing has been widely used in acetabular cup design. A stiff backing for a polyethylene liner was initially believed to be mechanically favourable. Yet, recent studies of the load transfer around acetabular cups have shown that a stiff backing causes two problems. It generates higher stress peaks around the acetabular rim than those caused by full polyethylene cups and reduces the stresses transferred to the dome of the acetabulum causing stress shielding. The aim of this study is to overcome these two problems by improving the design of cementless metal-backed acetabular cups using the two-dimensional functionally graded material (FGM) concept through finite-element analysis and optimization techniques. It is found that the optimal 2D FGM model must have three bioactive materials of hydroxyapatite, Bioglass and collagen. This optimal material reduces the stress shielding at the dome of the acetabulum by 40% and 37% compared with stainless steel and titanium metal backing shells, respectively. In addition, using the 2D FGM model reduces the maximum interface shear stress in the bone by 31% compared to the titanium metal backing shell.
Thermal-mechanical study of functionally graded dental implants with the finite element method.
Wang, F; Lee, H P; Lu, C
2007-01-01
This article investigates the thermal-mechanical performance of hydroxyapatite/titanium (HA/Ti) functionally graded (FG) dental implants with the three-dimensional finite element method. The stresses induced by occlusal force for the present HA/Ti FG implant are calculated to compare with the corresponding stresses for the titanium dental implant. Thermal-mechanical effect of temperature variation due to daily oral activity is also studied. The HA/Ti FG dental implant performance is evaluated against the maximum von Mises stress, which is the general performance indicator, the first principal/tensile stress for mechanical failure of implant-bone-bond and the third principal/compressive stress for bone absorption. Simulation results indicate that under the influence of occlusal force only, the FG implants with different HA fraction along the implant length perform almost equally well, while the titanium implant sustains much higher von Mises stress. However, when thermal stress is also considered, the FG implant having HA fraction exponential index of m = 2 with temperature decrease of 20 degrees C yields the highest first principal and von Mises stresses among all the FG and titanium implants.
Akazawa, Toshiyuki; Murata, Masaru; Sasaki, Tomoya; Tazaki, Junichi; Kobayashi, Masayoshi; Kanno, Tohru; Nakamura, Katsuo; Arisue, Makoto
2006-01-01
Bioabsorbable and functionally graded apatite (fg-HAp) ceramics were designed using bovine bone by the calcination and partial dissolution-precipitation methods. The fg-HAp ceramics that were developed had gradual distributions of the degree of crystallinity and the grain size of single-phase hydroxyapatite from the surface layer of the pore wall to the bulk structure region. Calcination at 1073 K gave a specific surface area of 30 m2 x g-1 and porosities of 60-80%. The pore structure of the fg-HAp was classified into two regions: a macro-pore region (100-600 microm) originating from spongy bone and a micro-pore region (10-160 nm) related to body fluid permeation and blood permeability. By implantation in subcutaneous tissue of rat, it was confirmed that body fluid permeated the bulk region of the fg-HAp ceramics through the micro-pores. The volumetric populations occupied by body fluid were 60% at 4 weeks and 68% at 8 weeks in the ceramics explants, indicating drastic bioabsorption, although the body fluid was found to be immunopositive for an albumin as the main serum protein in blood. On the fg-HAp ceramics developed here, the bioabsorption rate could be controlled by careful selection of the calcination temperature. These ceramics can be applied as new biomimetic ceramics exhibiting surface and bulk degradations and cellular absorption by giant cells.
Energy Technology Data Exchange (ETDEWEB)
Ebrahimi, Farzad; Ghadiri, Majid; Salari, Erfan; Shaghaghi, Gholam Reza [Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Hoseini, Seied Amir Hosein [University of Zanjan, Zanjan (Iran, Islamic Republic of)
2015-03-15
In this study, the applicability of differential transformation method (DTM) in investigations on vibrational characteristics of functionally graded (FG) size-dependent nanobeams is examined. The material properties of FG nanobeam vary over the thickness based on the power law. The nonlocal Eringen theory, which takes into account the effect of small size, enables the present model to be effective in the analysis and design of nanosensors and nanoactuators. Governing equations are derived through Hamilton's principle. The obtained results exactly match the results of the presented Navier-based analytical solution as well as those available in literature. The DTM is also demonstrated to have high precision and computational efficiency in the vibration analysis of FG nanobeams. The detailed mathematical derivations are presented and numerical investigations performed with emphasis placed on investigating the effects of several parameters, such as small scale effects, volume fraction index, mode number, and thickness ratio on the normalized natural frequencies of the FG nanobeams. The study also shows explicitly that vibrations of FG nanobeams are significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.
Comparison of Various Functionally Graded Femoral Prostheses by Finite Element Analysis
Directory of Open Access Journals (Sweden)
Azim Ataollahi Oshkour
2014-01-01
Full Text Available This study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip replacement was implanted. The considered prosthesis is fabricated from a functionally graded material (FGM comprising a layer of a titanium alloy bonded to a layer of hydroxyapatite. The elastic modulus of the FGM was adjusted in the radial, longitudinal, and longitudinal-radial directions by altering the volume fraction gradient exponent. Four cases were studied, involving two different methods of anchoring the prosthesis to the spongy bone and two cases of applied loading. The results revealed that the FG prostheses provoked more SED to the bone. The FG prostheses carried less stress, while more stress was induced to the bone and cement. Meanwhile, less shear interface stress was stimulated to the prosthesis-bone interface in the noncemented FG prostheses. The cement-bone interface carried more stress compared to the prosthesis-cement interface. Stair climbing induced more harmful effects to the implanted femur components compared to the normal walking by causing more stress. Therefore, stress shielding, developed stresses, and interface stresses in the THR components could be adjusted through the controlling stiffness of the FG prosthesis by managing volume fraction gradient exponent.
Ballistic Studies on TiB2-Ti Functionally Graded Armor Ceramics
Directory of Open Access Journals (Sweden)
Neha Gupta
2012-11-01
Full Text Available The objective of this paper is to discuss the results of the ballistic testing of the spark plasma sintered TiB2-Ti based functionally graded materials (FGMs with an aim to assess their performance in defeating small-calibre armor piercing projectiles. We studied the efficacy of FGM design and compared its ballistic properties with those of TiB2-based composites as well as other competing ceramic armors. The ballistic properties are critically analyzed in terms of depth of penetration, ballistic efficiency, fractographs of fractured surfaces as well as quantification of the shattered ceramic fragments. It was found that all the investigated ceramic compositions exhibit ballistic efficiency (η of 5.1 -5.9. We also found that by increasing the thickness of FGM from 5mm to 7.8 mm, the ballistic property of the composite degraded. On comparing the results with available armor systems, it has been concluded that TiB2 based composites show better ballistic properties except B4C. SEM analysis of the fragments showed that the FGM fractured by mixed mode of failure.Defence Science Journal, 2012, 62(6, pp.382-389, DOI:http://dx.doi.org/10.14429/dsj.62.2666
A numerical study on the application of the functionally graded materials in the stent design.
Khosravi, Arezoo; Bahreinizad, Hossein; Bani, Milad Salimi; Karimi, Alireza
2017-04-01
Undesirable deformation of the stent can induce a significant amount of injure not only to the blood vessel but also to the plaque. The objective of this study was to reduce/minimize these undesirable deformations by the application of Functionally Graded Materials (FGM). To do this, Finite Element (FE) method was employed to simulate the expansion of a stent and the corresponding displacement of the stenosis plaque. Three hyperelastic plaque types as well as five elastoplastic stents were simulated. Dogboning, foreshortening, maximum stress in the plaque, and the pressure which is needed to fully expand the stent for different stent materials, were acquired. While all FGMs had lower dogboning in comparison to the stents made of the uniform materials, the stent with the lowest heterogeneous index displayed the lowest amount of dogboning. Steel stent showed the lowest foreshortening and fully expansion pressure but the difference was much lower than that the one for dogboning. Therefore, the FGM with the heterogeneous index of 0.5 is expected to exhibit the most suitable results. In addition, the results revealed that the material parameters has crucial effects on the deformation of the stent and, as a result, as a design point of view the FGM parameters can be tailored to achieve the goal of the biomechanical optimization.
Yang, R. B.; Liang, W. F.; Wu, C. H.; Chen, C. C.
2016-05-01
Radar absorbing materials (RAMs) also known as microwave absorbers, which can absorb and dissipate incident electromagnetic wave, are widely used in the fields of radar-cross section reduction, electromagnetic interference (EMI) reduction and human health protection. In this study, the synthesis of functionally graded material (FGM) (CI/Polyurethane composites), which is fabricated with semi-sequentially varied composition along the thickness, is implemented with a genetic algorithm (GA) to optimize the microwave absorption efficiency and bandwidth of FGM. For impedance matching and broad-band design, the original 8-layered FGM was obtained by the GA method to calculate the thickness of each layer for a sequential stacking of FGM from 20, 30, 40, 50, 60, 65, 70 and 75 wt% of CI fillers. The reflection loss of the original 8-layered FGM below -10 dB can be obtained in the frequency range of 5.12˜18 GHz with a total thickness of 9.66 mm. Further optimization reduces the number of the layers and the stacking sequence of the optimized 4-layered FGM is 20, 30, 65, 75 wt% with thickness of 0.8, 1.6, 0.6 and 1.0 mm, respectively. The synthesis and measurement of the optimized 4-layered FGM with a thickness of 4 mm reveal a minimum reflection loss of -25.2 dB at 6.64 GHz and its bandwidth below - 10 dB is larger than 12.8 GHz.
Energy Technology Data Exchange (ETDEWEB)
Hedia, H S; El-Midany, T T; Shabara, M A N; Fouda, N [Production Engineering and M/C Design Department, Faculty of Engineering, Mansoura University, Mansoura (Egypt)
2006-09-15
Metal backing has been widely used in acetabular cup design. A stiff backing for a polyethylene liner was initially believed to be mechanically favourable. Yet, recent studies of the load transfer around acetabular cups have shown that a stiff backing causes two problems. It generates higher stress peaks around the acetabular rim than those caused by full polyethylene cups and reduces the stresses transferred to the dome of the acetabulum causing stress shielding. The aim of this study is to overcome these two problems by improving the design of cementless metal-backed acetabular cups using the two-dimensional functionally graded material (FGM) concept through finite-element analysis and optimization techniques. It is found that the optimal 2D FGM model must have three bioactive materials of hydroxyapatite, Bioglass and collagen. This optimal material reduces the stress shielding at the dome of the acetabulum by 40% and 37% compared with stainless steel and titanium metal backing shells, respectively. In addition, using the 2D FGM model reduces the maximum interface shear stress in the bone by 31% compared to the titanium metal backing shell.
Directory of Open Access Journals (Sweden)
Şeref Doğuşcan Akbaş
2013-01-01
Full Text Available Geometrically nonlinear static analysis of edge cracked cantilever Timoshenko beams composed of functionally graded material (FGM subjected to a nonfollower transversal point load at the free end of the beam is studied with large displacements and large rotations. Material properties of the beam change in the height direction according to exponential distributions. The cracked beam is modeled as an assembly of two subbeams connected through a massless elastic rotational spring. In the study, the finite element of the beam is constructed by using the total Lagrangian Timoshenko beam element approximation. The nonlinear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The convergence study is performed for various numbers of finite elements. In the study, the effects of the location of crack, the depth of the crack, and various material distributions on the nonlinear static response of the FGM beam are investigated in detail. Also, the difference between the geometrically linear and nonlinear analysis of edge cracked FGM beam is investigated in detail.
Energy Technology Data Exchange (ETDEWEB)
Shi, J.; Xue, X.
2011-01-01
A comprehensive 3D CFD model is developed for a bi-electrode supported cell (BSC) SOFC. The model includes complicated transport phenomena of mass/heat transfer, charge (electron and ion) migration, and electrochemical reaction. The uniqueness of the modeling study is that functionally graded porous electrode property is taken into account, including not only linear but nonlinear porosity distributions. Extensive numerical analysis is performed to elucidate the effects of both porous microstructure distributions and operating condition on cell performance. Results indicate that cell performance is strongly dependent on both operating conditions and porous microstructure distributions of electrodes. Using the proposed fuel/gas feeding design, the uniform hydrogen distribution within porous anode is achieved; the oxygen distribution within the cathode is dependent on porous microstructure distributions as well as pressure loss conditions. Simulation results show that fairly uniform temperature distribution can be obtained with the proposed fuel/gas feeding design. The modeling results can be employed to guide experimental design of BSC test and provide pre-experimental analysis, as a result, to circumvent high cost associated with try-and-error experimental design and setup.
Liu, Y. Z.; Hao, Y. X.; Zhang, W.; Chen, J.; Li, S. B.
2015-07-01
The nonlinear vibration of a simply supported FGM cylindrical shell with small initial geometric imperfection under complex loads is studied. The effects of radial harmonic excitation, compressive in-plane force combined with supersonic aerodynamic and thermal loads are considered. The small initial geometric imperfection of the cylindrical shell is characterized in the form of the sine-type trigonometric functions. The effective material properties of this FGM cylindrical shell are graded in the radial direction according to a simple power law in terms of the volume fractions. Based on Reddy's third-order shear deformation theory, von Karman-type nonlinear kinematics and Hamilton's principle, the nonlinear partial differential equation that controls the shell dynamics is derived. Both axial symmetric and driven modes of the cylindrical shell deflection pattern are included. Furthermore, the equations of motion can be reduced into a set of coupled nonlinear ordinary differential equations by applying Galerkin's method. In the study of the nonlinear dynamics responses of small initial geometric imperfect FGM cylindrical shell under complex loads, the 4th order Runge-Kutta method is used to obtain time history, phase portraits, bifurcation diagrams and Poincare maps with different parameters. The effects of external loads, geometric imperfections and volume fractions on the nonlinear dynamics of the system are discussed.
Compressive properties of sandwiches with functionally graded rubber core and jute–epoxy skins
Indian Academy of Sciences (India)
M R Doddamani; S M Kulkarni
2013-04-01
The compressive behaviour of a new class of sandwich composite made up of jute fiber reinforced epoxy skins and piece-wise linear fly ash reinforced functionally graded (FG) rubber core is investigated in flat-wise mode. FG samples are prepared using conventional casting technique. Presence of gradation is quantified physically by weight method. This paper addresses the effect of weight fraction of fly ash, core to thickness ratio (C/H) and orientation of jute on specific compressive modulus and strength. In each trial five replicates are tested with lower amount of fly ash below the upper skin of sandwich (rubber-up). Results of experimentation are subjected to statistical analysis of variance (ANOVA) to find the influential factor governing the compressive behaviour. Furthermore piece-wise linear gradation is modeled in finite element and strength values are compared with experimental results. Sandwich sample with fly ash content of 40%, C/H of 0.4 and orientations of 30°/60° registered better performance. Specific strength is observed to increase upto 30% filler content followed by stabilization. Finite element results for strength match very well with experimental ones.
Thermal stresses in functionally graded materials caused by a laser thermal shock
Energy Technology Data Exchange (ETDEWEB)
Elperin, T.; Rudin, G. [Department of Mechanical Engineering, Pearlstone Center for Aeronautical Engineering Studies Ben-Gurion University of the Negev, Beer-Sheva (Israel)
2002-08-01
Mathematical simulation of a thermal shock method for reliability testing of functionally graded material (FGM) is performed with the end to determine operating parameters of the testing device (power of a laser, laser beam radius, duration of heating) and to investigate the effect of the composition of FGM on a magnitude of thermal stresses in a coating. An analytical method for solution of the thermal elasticity problem is developed whereby the approach of a multilayer plate is used for determining temperature and thermal stresses distributions in a coating. We considered the limiting case of the obtained solution when the thickness of a layer is infinitesimally small and the number of layers tends to infinity. This procedure allowed us to obtain the thermal stresses distribution in a FGM coating. The results for the FGM coating composed of WC (tungsten carbide) ceramics and HS-steel are presented. It is showed that variation of the volume content of ceramics strongly affects thermal stresses in a coating and they decrease significantly in the case of the uniform spatial distribution of ceramics. (orig.)
Interface Oscillation in the Side-by-Side (SBS) Tape Casting of Functionally Graded Ceramics (FGCs)
Jabbari, Masoud; Bulatova, Regina; Hattel, Jesper; Bahl, Christian
2012-11-01
Room temperature magnetic refrigeration is a new highly efficient and environmentally protective technology. Although it has not been maturely developed, it shows great applicable prosperity and seems to be a potential substitute for the traditional vapor compression technology. Tape Casting is a common process in producing multilayer ceramics, which now is used for producing side-by-side (SBS) functionally graded ceramics (FGCs). These FGCs are mostly used in the magnetic refrigeration sectors due to the varying composition of the magnetocaloric materials so that the magnetic transition temperature of the magnetic regenerator varies along the paths. The main goal of this research is to study the multiple material flow in SBS tape casting and analyze its influence on the interface between the stripes. The materials used for the experimental part are La0 . 85 Sr0 . 15 MnO3 and Ce0 . 9 Gd0 . 1O2 ceramic slurries. The rheological behavior of the slurries are extracted from experiments and used in the ANSYS FLUENT commercial code to develop a fluid flow model for the non-Newtonian ceramic slurries and evaluate the interface oscillation between the stripes in SBS tape casting. The Numerical results show reasonable agreement with corresponding experimental results.
Fabrication of Al2O3-W Functionally Graded Materials by Slipcasting Method
Katayama, Tomoyuki; Sukenaga, Sohei; Saito, Noritaka; Kagata, Hajime; Nakashima, Kunihiko
2011-10-01
We have successfully fabricated a functionally graded material (FGM) from tungsten and alumina powders by a slip-casting method. This FGM has applications as a sealing and conducting component for high-intensity discharge lamps (HiDLs) that have a translucent alumina envelope. Two types of W powder, with different oxidizing properties, were used as the raw powders for the Al2O3-W FGM. "Oxidized W" was prepared by heat-treatment at 200 °C for 180 min in air. Alumina and each of the W powders were mixed in ultrapure water by ultrasonic stirring. The slurry was then cast into a cylindrical acrylic mold, which had a base of porous alumina, under controlled pressure. The green compacts were subsequently dried, and then sintered using a vacuum furnace at 1600 °C for a fixed time. The microstructures of the FGMs were observed by scanning electron microscopy (SEM) of the polished section. The Al2O3-W FGM with the "oxidized W" powder resulted in a microscopic compositional gradient. However, the FGM with "as-received W" showed no compositional gradient. This result was mainly attributed to the difference between the ζ-potentials of the W powders with the different oxidizing conditions; basically "oxidized W" powder tends to disperse because of the larger ζ-potential of the oxide layer coated on the W powder core.
Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout
Directory of Open Access Journals (Sweden)
Mostafa Mirzaei
2016-04-01
Full Text Available During the past five years, it has been shown that carbon nanotubes act as an exceptional reinforcement for composites. For this reason, a large number of investigations have been devoted to analysis of fundamental, structural behavior of solid structures made of carbon-nanotube-reinforced composites (CNTRC. The present research, as an extension of the available works on the vibration analysis of CNTRC structures, examines the free vibration characteristics of plates containing a cutout that are reinforced with uniform or nonuniform distribution of carbon nanotubes. The first-order shear deformation plate theory is used to estimate the kinematics of the plate. The solution method is based on the Ritz method with Chebyshev basis polynomials. Such a solution method is suitable for arbitrary in-plane and out-of-plane boundary conditions of the plate. It is shown that through a functionally graded distribution of carbon nanotubes across the thickness of the plate, the fundamental frequency of a rectangular plate with or without a cutout may be enhanced. Furthermore, the frequencies are highly dependent on the volume fraction of carbon nanotubes and may be increased upon using more carbon nanotubes as reinforcement.
Ben Salah, Issam; Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi
2015-08-01
Numerical examples for wave propagation in a three-layer structure have been investigated for both electrically open and shorted cases. The first order differential equations are solved by both methods ODE and Stiffness matrix. The solutions are used to study the effects of thickness and gradient coefficient of soft middle layer on the phase velocity and on the electromechanical coupling factor. We demonstrate that the electromechanical coupling factor is substantially increased when the equivalent thickness is in the order of the wavelength. The effects of gradient coefficients are plotted for the first mode when electrical and mechanical gradient variations are applied separately and altogether. The obtained deviations in comparison with the ungraded homogenous film are plotted with respect to the dimensionless wavenumber. The impact related to the gradient coefficient of the soft middle layer, on the mechanical displacement and the Poynting vector, is carried out. The numericals results are illustrated by a set of appropriate curves related to various profiles. The obtained results set guidelines not only for the design of high-performance surface acoustic wave (SAW) devices, but also for the measurement of material properties in a functionally graded piezoelectric layered system using Love waves.
Ikeda, Noriaki; Xu, Xiaomeng
2014-11-01
Consistent boundary conditions for Alexandrov-Kontsevich-Schwartz-Zaboronsky (AKSZ) sigma models and the corresponding boundary theories are analyzed. As their mathematical structures, we introduce a generalization of differential graded symplectic manifolds, called twisted QP manifolds, in terms of graded symplectic geometry, canonical functions, and QP pairs. We generalize the AKSZ construction of topological sigma models to sigma models with Wess-Zumino terms and show that all the twisted Poisson-like structures known in the literature can actually be naturally realized as boundary conditions for AKSZ sigma models.
Habibi, Meisam K; Samaei, Arash T; Gheshlaghi, Behnam; Lu, Jian; Lu, Yang
2015-04-01
As one of the most renewable resources on Earth, bamboo has recently attracted increasing interest for its promising applications in sustainable structural purposes. Its superior mechanical properties arising from the unique functionally-graded (FG) hierarchical structure also make bamboo an excellent candidate for bio-mimicking purposes in advanced material design. However, despite its well-documented, impressive mechanical characteristics, the intriguing asymmetry in flexural behavior of bamboo, alongside its underlying mechanisms, has not yet been fully understood. Here, we used multi-scale mechanical characterizations assisted with advanced environmental scanning electron microscopy (ESEM) to investigate the asymmetric flexural responses of natural bamboo (Phyllostachys edulis) strips under different loading configurations, during "elastic bending" and "fracture failure" stages, with their respective deformation mechanisms at microstructural level. Results showed that the gradient distribution of the vascular bundles along the thickness direction is mainly responsible for the exhibited asymmetry, whereas the hierarchical fiber/parenchyma cellular structure plays a critical role in alternating the dominant factors for determining the distinctly different failure mechanisms. A numerical model has been likewise adopted to validate the effective flexural moduli of bamboo strips as a function of their FG parameters, while additional experiments on uniaxial loading of bamboo specimens were performed to assess the tension-compression asymmetry, for further understanding of the microstructure evolution of bamboo's outer and innermost layers under different bending states. This work could provide insights to help the processing of novel bamboo-based composites and enable the bio-inspired design of advanced structural materials with desired flexural behavior.
Co-electrodeposition of Functionally Graded Ni-NCZ (Nickel Coated ZrO2) Composite Coating
Bostani, B.; Parvini Ahmadi, N.; Yazdani, S.; Arghavanian, R.
2016-12-01
In this study, functionally NCZ (electroless nickel plated ZrO2) content graded Ni-NCZ composite coating has been successfully co-electrodeposited from a bath with gradually increasing of stirring rate. For this, different composite coatings were electroplated in the same bath with different stirring rates to find the optimum condition. SEM, XRD, EDX and electrochemical studies showed that co-electrodeposition in a bath with stirring rate of 250 rpm results in the maximum co-electrodeposited particle content and the best particle distribution and corrosion resistance. Also, this sample had the highest wear resistance with respect to the other samples. To produce NCZ content graded Ni-NCZ composite coating, the stirring rate was continuously increased from 0 to 250 rpm. The electroplated coating had a continuous gradient increasing of co-electrodeposited NCZ content from substrate toward the surface. This distribution of NCZ particles results in a gradient increasing of the microhardness in the cross section of the coating. Bend test revealed that the functionally graded composite coating shows better adhesion to the substrate compared with the uniformly distributed Ni-NCZ on the same substrate. This result has been attributed to lower mechanical mismatch between coating and substrate in the functionally graded composite coating with respect to the uniformly distributed one.
Indian Academy of Sciences (India)
Nilanjan Coomar; Ravikiran Kadoli
2010-02-01
Internal cooling passages and thermal barrier coatings (TBCs) are presently used to control metal temperatures in gas turbine blades. Functionally graded materials (FGMs), which are typically mixtures of ceramic and metal, have been proposed for use in turbine blades because they possess smooth property gradients thereby rendering them more durable under thermal loads. In the present work, a functionally graded model of an air-cooled turbine blade with airfoil geometry conforming to the NACA0012 is developed which is then used in a ﬁnite element algorithm to obtain a non-linear steady state solution to the heat equation for the blade under convection and radiation boundary conditions. The effects of external gas temperature, coolant temperature, surface emissivity changes and different average ceramic/metal content of the blade on the temperature distributions are examined. Simulations are also carried out to compare cooling effectiveness of functionally graded blades with that of blades having TBC. The results highlight the effect of including radiation in the simulation and also indicate that external gas temperature inﬂuences the blade heat transfer more strongly. It is also seen that graded blades with about 70% ceramic content can deliver better cooling effectiveness than conventional blades with TBC.
Co-electrodeposition of Functionally Graded Ni-NCZ (Nickel Coated ZrO2) Composite Coating
Bostani, B.; Parvini Ahmadi, N.; Yazdani, S.; Arghavanian, R.
2017-02-01
In this study, functionally NCZ (electroless nickel plated ZrO2) content graded Ni-NCZ composite coating has been successfully co-electrodeposited from a bath with gradually increasing of stirring rate. For this, different composite coatings were electroplated in the same bath with different stirring rates to find the optimum condition. SEM, XRD, EDX and electrochemical studies showed that co-electrodeposition in a bath with stirring rate of 250 rpm results in the maximum co-electrodeposited particle content and the best particle distribution and corrosion resistance. Also, this sample had the highest wear resistance with respect to the other samples. To produce NCZ content graded Ni-NCZ composite coating, the stirring rate was continuously increased from 0 to 250 rpm. The electroplated coating had a continuous gradient increasing of co-electrodeposited NCZ content from substrate toward the surface. This distribution of NCZ particles results in a gradient increasing of the microhardness in the cross section of the coating. Bend test revealed that the functionally graded composite coating shows better adhesion to the substrate compared with the uniformly distributed Ni-NCZ on the same substrate. This result has been attributed to lower mechanical mismatch between coating and substrate in the functionally graded composite coating with respect to the uniformly distributed one.
Directory of Open Access Journals (Sweden)
Qingling Huang
Full Text Available BACKGROUND: Brain tumor patients often associated with losses of the small-world configuration and neurocognitive functions before operations. However, few studies were performed on the impairments of frontal lobe low-grade gliomas (LGG after tumor resection using small-world network features. METHODOLOGY/PRINCIPAL FINDINGS: To detect differences in the whole brain topology among LGG patients before and after operation, a combined study of neurocognitive assessment and graph theoretical network analysis of fMRI data was performed. We collected resting-state fMRI data of 12 carefully selected frontal lobe LGG patients before and after operation. We calculated the topological properties of brain functional networks in the 12 LGG, and compared with 12 healthy controls (HCs. We also applied Montreal Cognitive Assessment (MoCA in a subset of patients (n = 12, including before and after operation groups and HCs (n = 12. The resulting functional connectivity matrices were constructed for all 12 patients, and binary network analysis was performed. In the range of 0.05 ≤ Kcos t ≤ 0.35, the functional networks in preoperative LGG and postoperative one both fitted the definition of small-worldness. We proposed Knet = 0.20 as small-world network interval, and the results showed that the topological properties were found to be disrupted in the two LGG groups, meanwhile the global efficiency increased and the local efficiency decreased. Lnet in the two LGG groups both were longer than HCs. Cnet in the LGG groups were smaller than HCs. Compared with the Hcs, MoCA in the two LGG groups were lower than HCs with significant difference, and the disturbed networks in the LGG were negatively related to worse MoCA scores. CONCLUSIONS: Disturbed small-worldness preperty in the two LGG groups was found and widely spread in the strength and spatial organization of brain networks, and the alterated small-world network may be responsible for cognitive
Institute of Scientific and Technical Information of China (English)
2008-01-01
In a homogeneous plate, Rayleigh waves will have a symmetric and anti-symmetric mode regarding to the mid-plane with different phase velocities. If plate properties vary along the thickness, or the plate is of functionally graded material (FGM), the symmetry of modes and frequency behavior will be modified, thus producing dif-ferent features for engineering applications such as amplifying or reducing the velocity and deformation. This kind of effect can also be easily realized by utilizing a layered structure with desired material properties that can produce these effects in terms of velocity and displacements, since Rayleigh waves in a solid with gen-eral material property grading schemes are difficult to analyze with known methods. Solutions from layered structures with exponential and polynomial property grad-ing schemes are obtained from the layered model and comparisons with known analytical results are made to validate the method and examine possible applica-tions of such structures in engineering.
Viterbori, Paola; Usai, M Carmen; Traverso, Laura; De Franchis, Valentina
2015-12-01
This longitudinal study analyzes whether selected components of executive function (EF) measured during the preschool period predict several indices of math achievement in primary school. Six EF measures were assessed in a sample of 5-year-old children (N = 175). The math achievement of the same children was then tested in Grades 1 and 3 using both a composite math score and three single indices of written calculation, arithmetical facts, and problem solving. Using previous results obtained from the same sample of children, a confirmatory factor analysis examining the latent EF structure in kindergarten indicated that a two-factor model provided the best fit for the data. In this model, inhibition and working memory (WM)-flexibility were separate dimensions. A full structural equation model was then used to test the hypothesis that math achievement (the composite math score and single math scores) in Grades 1 and 3 could be explained by the two EF components comprising the kindergarten model. The results indicate that the WM-flexibility component measured during the preschool period substantially predicts mathematical achievement, especially in Grade 3. The math composite scores were predicted by the WM-flexibility factor at both grade levels. In Grade 3, both problem solving and arithmetical facts were predicted by the WM-flexibility component. The results empirically support interventions that target EF as an important component of early childhood mathematics education.
Directory of Open Access Journals (Sweden)
M. Zagrouba
2014-01-01
Full Text Available The present work deals with functionally graded materials (FGM isotropic plates in the neighborhood of the first-order symmetric zero group velocity (S1-ZGV point. The mechanical properties of functionally graded material (FGM are assumed to vary continuously through the thickness of the plate and obey a power law of the volume fraction of the constituents. Governing equations for the problem are derived, and the power series technique (PST is employed to solve the recursive equations. The impact of the FGM basic materials properties on S1-ZGV frequency of FGM plate is investigated. Numerical results show that S1-ZGV frequency is comparatively more sensitive to the shear modulus. The gradient coefficient p does not affect the linear dependence of ZGV frequency fo as function of cut-off frequency fc; only the slope is slightly varied.
Energy Technology Data Exchange (ETDEWEB)
Lherbier, Louis, W.; Novotnak, David, J.; Herling, Darrell, R.; Sears, James, W.
2009-03-23
Hot forming processes such as forging, die casting and glass forming require tooling that is subjected to high temperatures during the manufacturing of components. Current tooling is adversely affected by prolonged exposure at high temperatures. Initial studies were conducted to determine the root cause of tool failures in a number of applications. Results show that tool failures vary and depend on the operating environment under which they are used. Major root cause failures include (1) thermal softening, (2) fatigue and (3) tool erosion, all of which are affected by process boundary conditions such as lubrication, cooling, process speed, etc. While thermal management is a key to addressing tooling failures, it was clear that new tooling materials with superior high temperature strength could provide improved manufacturing efficiencies. These efficiencies are based on the use of functionally graded materials (FGM), a new subset of hybrid tools with customizable properties that can be fabricated using advanced powder metallurgy manufacturing technologies. Modeling studies of the various hot forming processes helped identify the effect of key variables such as stress, temperature and cooling rate and aid in the selection of tooling materials for specific applications. To address the problem of high temperature strength, several advanced powder metallurgy nickel and cobalt based alloys were selected for evaluation. These materials were manufactured into tooling using two relatively new consolidation processes. One process involved laser powder deposition (LPD) and the second involved a solid state dynamic powder consolidation (SSDPC) process. These processes made possible functionally graded materials (FGM) that resulted in shaped tooling that was monolithic, bi-metallic or substrate coated. Manufacturing of tooling with these processes was determined to be robust and consistent for a variety of materials. Prototype and production testing of FGM tooling showed the
Research on Current Status of Fabrication Methods for Functionally Graded Material%功能梯度材料制备方法的研究现状
Institute of Scientific and Technical Information of China (English)
张勇
2012-01-01
介绍了功能梯度材料的基本概念,综述了该材料的制备方法,提出了其发展方向.%The basic concept of functionally graded material was introduced, the different fabrication methods for functionally graded material were described, and the development direction of the material was put forward.
Mehrkash, Milad; Azhari, Mojtaba; Mirdamadi, Hamid Reza
2014-01-01
The importance of elastic wave propagation problem in plates arises from the application of ultrasonic elastic waves in non-destructive evaluation of plate-like structures. However, precise study and analysis of acoustic guided waves especially in non-homogeneous waveguides such as functionally graded plates are so complicated that exact elastodynamic methods are rarely employed in practical applications. Thus, the simple approximate plate theories have attracted much interest for the calculation of wave fields in FGM plates. Therefore, in the current research, the classical plate theory (CPT), first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT) are used to obtain the transient responses of flexural waves in FGM plates subjected to transverse impulsive loadings. Moreover, comparing the results with those based on a well recognized hybrid numerical method (HNM), we examine the accuracy of the plate theories for several plates of various thicknesses under excitations of different frequencies. The material properties of the plate are assumed to vary across the plate thickness according to a simple power-law distribution in terms of volume fractions of constituents. In all analyses, spatial Fourier transform together with modal analysis are applied to compute displacement responses of the plates. A comparison of the results demonstrates the reliability ranges of the approximate plate theories for elastic wave propagation analysis in FGM plates. Furthermore, based on various examples, it is shown that whenever the plate theories are used within the appropriate ranges of plate thickness and frequency content, solution process in wave number-time domain based on modal analysis approach is not only sufficient but also efficient for finding the transient waveforms in FGM plates.
Improved design of cementless hip stems using two-dimensional functionally graded materials.
Hedia, H S; Shabara, M A N; El-Midany, T T; Fouda, N
2006-10-01
Increasingly, it is acknowledged that bone resorption around cementless hip implants may cause future problems. The solution is frequently sought in reducing implant stiffness. However, this confronts the designer with a true design conflict: how to reduce the stiffness without excessively loading the proximal bone/prosthesis interface? The aim of this work is to improve the design of cementless hip stem material, using two-dimensional (2D) functionally graded material (FGM) concept in order to solve the above problems. Two models were used in this analysis, using three materials with different elastic moduli, E(1), E(2), and E(3). In model I, the elastic moduli E(1) and E(2) gradually change along the upper stem surface, while E(3) is maintained constant along all the lower surface of the stem. However, in model II, the elastic moduli E(1) and E(2) gradually change along the lower stem surface, while E(3) is maintained constant all along the upper stem surface. It is found that the recommended model is model I, which has three distinct materials of hydroxyapatite, Bioglass, and collagen. The recommended design of 2D FGM is expected to reduce the stress shielding by 91% and 12%, respectively, compared with titanium stem and model II of FGM. It is found that this new design reduces the maximum interface shear stress at the lateral and medial sides of the femur by about 50%, compared with titanium stem. Furthermore, the maximum interface shear stress is reduced by about 17% and 11% at the lateral and medial sides of the femur, respectively, compared with that of model II of FGM.
Directory of Open Access Journals (Sweden)
R. B. Yang
2016-05-01
Full Text Available Radar absorbing materials (RAMs also known as microwave absorbers, which can absorb and dissipate incident electromagnetic wave, are widely used in the fields of radar-cross section reduction, electromagnetic interference (EMI reduction and human health protection. In this study, the synthesis of functionally graded material (FGM (CI/Polyurethane composites, which is fabricated with semi-sequentially varied composition along the thickness, is implemented with a genetic algorithm (GA to optimize the microwave absorption efficiency and bandwidth of FGM. For impedance matching and broad-band design, the original 8-layered FGM was obtained by the GA method to calculate the thickness of each layer for a sequential stacking of FGM from 20, 30, 40, 50, 60, 65, 70 and 75 wt% of CI fillers. The reflection loss of the original 8-layered FGM below –10 dB can be obtained in the frequency range of 5.12∼18 GHz with a total thickness of 9.66 mm. Further optimization reduces the number of the layers and the stacking sequence of the optimized 4-layered FGM is 20, 30, 65, 75 wt% with thickness of 0.8, 1.6, 0.6 and 1.0 mm, respectively. The synthesis and measurement of the optimized 4-layered FGM with a thickness of 4 mm reveal a minimum reflection loss of –25.2 dB at 6.64 GHz and its bandwidth below – 10 dB is larger than 12.8 GHz.
Godoy, R F; Coathup, M J; Blunn, G W; Alves, A L; Robotti, P; Goodship, A E
2016-04-13
We explored the osseointegration potential of two macroporous titanium surfaces obtained using fast plasma sintering (FPS): Ti macroporous structures with 400-600 µmØ pores (TiMac400) and 850-1000 µmØ pores (TiMac850). They were compared against two surfaces currently in clinical use: Ti-Growth® and air plasma spray (Ti-Y367). Each surface was tested, once placed over a Ti-alloy and once onto a CoCr bulk substrate. Implants were placed in medial femoral condyles in 24 sheep. Samples were explanted at four and eight weeks after surgery. Push-out loads were measured using a material-testing system. Bone contact and ingrowth were assessed by histomorphometry and SEM and EDX analyses. Histology showed early osseointegration for all the surfaces tested. At 8 weeks, TiMac400, TiMac850 and Ti-Growth® showed deep bone ingrowth and extended colonisation with newly formed bone. The mechanical push-out force was equal in all tested surfaces. Plasma spray surfaces showed greater bone-implant contact and higher level of pores colonisation with new bone than FPS produced surfaces. However, the void pore area in FPS specimens was significantly higher, yet the FPS porous surfaces allowed a deeper osseointegration of bone to implant. FPS manufactured specimens showed similar osseointegration potential to the plasma spray surfaces for orthopaedic implants. FPS is a useful technology for manufacturing macroporous titanium surfaces. Furthermore, its capability to combine two implantable materials, using bulk CoCr with macroporous titanium surfaces, could be of interest as it enables designers to conceive and manufacture innovative components. FPS delivers functional graded materials components with macroporous structures optimised for osseointegration.
Birman, Victor; Byrd, Larry W.
2008-02-01
The interest to functionally graded materials (FGM) and structures has been generated by their potential advantages, including enhanced thermal properties, reduced or eliminated delamination concerns, a potential for an improved stress distribution, etc. Various aspects of the processing, design, micromechanics and analysis of FGM have been outlined in a number of reviews, mentioned here are [1-3]. In particular, functionally graded panels may be advantageous compared to their conventional counterparts in numerous applications. However, a typical FGM panel is asymmetric about its middle plane resulting in lower buckling loads and fundamental frequencies as well as higher stresses and deformations than the counterpart with a symmetric distribution of the same constituents. The reduced stiffness of FGM panels can be compensated by reinforcing them with stringers. For example, metallic stringers at the metal-rich surface of a FGM ceramic-metal panel may provide an efficient solution enabling a designer to increase both buckling loads as well as natural frequencies. The list of studies on optimization of FGM is extensive as could be anticipated for such tailored structural elements. For example, recent papers by Batra and his collaborators present optimization of the natural frequencies of a FGM plate through material grading [4] and through the graded fiber orientation [5]. The present paper is concerned with an optimum design of the system of stringers for a specified FGM panel. The task is to design the lightest system of stringers enabling the panel to achieve prescribed buckling loads or fundamental frequency.
The Development and Production of a Functionally Graded Composite for Pb-Bi Service
Energy Technology Data Exchange (ETDEWEB)
Ballinger, Ronald G
2011-08-01
A material that resists lead-bismuth eutectic (LBE) attack and retains its strength at 700°C would be an enabling technology for LBE-cooled reactors. No single alloy currently exists that can economically meet the required performance criteria of high strength and corrosion resistance. A Functionally Graded Composite (FGC) was developed with layers engineered to perform these functions. F91 was chosen as the structural layer of the composite for its strength and radiation resistance. Fe-12Cr-2Si, an alloy developed from previous work in the Fe-Cr-Si system, was chosen as the corrosion-resistant cladding layer because of its chemical similarity to F91 and its superior corrosion resistance in both oxidizing and reducing environments. Fe-12Cr-2Si experienced minimal corrosion due to its self-passivation in oxidizing and reducing environments. Extrapolated corrosion rates are below one micron per year at 700ï°C. Corrosion of F91 was faster, but predictable and manageable. Diffusion studies showed that 17 microns of the cladding layer will be diffusionally diluted during the three year life of fuel cladding. 33 microns must be accounted for during the sixty year life of coolant piping. 5 cm coolant piping and 6.35 mm fuel cladding preforms were produced on a commercial scale by weld-overlaying Fe-12Cr-2Si onto F91 billets and co-extruding them. An ASME certified weld was performed followed by the prescribed quench-and-tempering heat treatment for F91. A minimal heat affected zone was observed, demonstrating field weldability. Finally, corrosion tests were performed on the fabricated FGC at 700ï°C after completely breaching the cladding in a small area to induce galvanic corrosion at the interface. None was observed. This FGC has significant impacts on LBE reactor design. The increases in outlet temperature and coolant velocity allow a large increase in power density, leading to either a smaller core for the same power rating or more power output for the same size
Sliding Wear and Fretting Wear of DLC-Based, Functionally Graded Nanocomposite Coatings
Miyoshi, K.; Pohlchuck, B.; Street, Kenneth W.; Zabinski, J. S.; Sanders, J. H.; Voevodin, A. a.; Wu, R. L. C.
1999-01-01
Improving the tribological functionality of diamondlike carbon (DLC) films--developing, good wear resistance, low friction, and high load-carrying capacity-was the aim of this investigation. Nanocomposite coatings consisting of an amorphous DLC (a-DLC) top layer and a functionally graded titanium-titanium carbon-diamondlike carbon (Ti-Ti(sub x) C(sub y)-DLC) underlayer were produced on AISI 440C stainless steel substrates by the hybrid technique of magnetron sputtering and pulsed-laser deposition. The resultant DLC films were characterized by Raman spectroscopy, scanning electron microscopy, and surface profilometry. Two types of wear experiment were conducted in this investioation: sliding friction experiments and fretting wear experiments. Unidirectional ball-on-disk sliding friction experiments were conducted to examine the wear behavior of an a-DLC/Ti-Ti(sub x) C(sub y)-DLC-coated AISI 440C stainless steel disk in sliding contact with a 6-mm-diameter AISI 440C stainless steel ball in ultrahigh vacuum, dry nitrogen, and humid air. Although the wear rates for both the coating and ball were low in all three environments, the humid air and dry nitrogen caused mild wear with burnishing, in the a-DLC top layer, and the ultrahigh vacuum caused relatively severe wear with brittle fracture in both the a-DLC top layer and the Ti-Ti(sub x) C(sub y)-DLC underlayer. For reference, amorphous hydrogenated carbon (H-DLC) films produced on a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coatings by using an ion beam were also examined in the same manner. The H-DLC films markedly reduced friction even in ultrahigh vacuum without sacrificing wear resistance. The H-DLC films behaved much like the a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coating in dry nitrogen and humid air, presenting low friction and low wear. Fretting wear experiments were conducted in humid air (approximately 50% relative humidity) at a frequency of 80 Hz and an amplitude of 75 micron on an a
Energy Technology Data Exchange (ETDEWEB)
Choi, Joan Young; Hwang, Ji Hye; Kim, Dong Ik; Cho, Young Seok; Lee, Su Jin; Choi, Yong; Choe, Yeam Seong; Lee, Kyung Han; Kim, Byung Tae [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)
2005-07-01
We proposed a new lymphoscintigrpahic functional grade (LGr) system in extremity lymphedema, and investigated the association between the LGr and a long-term response to physical therapy in patients with extremity lymphedema of stage I. The subjects were 20 patients with unilateral extremity lymphedema of stage I, who underwent pre-treatment extremity lymphoscintigraphy using Tc-99m antimony sulfur colloid, and were treated by complex decongestive physical therapy (CDPT). A proposed lymphoscintigrpahic functional grade system consisted of LGr 0 to LGr 4 according to the ilioinguinal nodal uptake, amount of dermal backflow, and uptake pattern of main and collateral lymphatics : LGr 0 = normal, LGr 1 = decreased lymphatic function without dermal backflow, LGr 2 = decreased lymphatic function with dermal backflow, LGr 3 = non - visualization of main lymphatics with dermal backflow, and LGr 4 = no significant lymphatic transport from injection site. LGr 2 was divided into 2A and 2B based on the amount of dermal backflow. A physician who is a lymphedema specialist determined the long-term outcome to CDPT with normalized response (NR), good response (GR) and poor response (PR) based on the change of edema volume reduction, skin status and occurrence of dermatolymphangioadenitis after the clinical follow-up for more than 1 year. Therapeutic responses were NR in 2 patients. GR in 9 patients and PR in 9 patients. Baseline LGrs were 1 in 7 patients, 2A in 4 patients, 2B in 5 patients, 3 in 2 patients, and 4 in 2 patients. There was a significant relationship between therapeutic response and LGr (p=0.003). In other words, 10 of 11 patients (91%) with LGr 1 or 2A showed NR. or GR. On the contrary, 8 of 9 patients (89%) with LGr 2B, 3 or 4 showed PR. Patients with unilateral extremity lymphedema of stage I had different lymphoscintigrpahic functional grades. This grade system may be useful to predict the response to physical therapy in such patients.
Directory of Open Access Journals (Sweden)
Tommaso eNardi
2015-08-01
Full Text Available NNanoindentation tests were carried out on the surface of polymer nanocomposites exhibiting either graded or homogeneous distributions of Fe3O4@silica core-shell nanoparticles in a photocurable polymeric matrix. The results reveal a complex interplay between graded morphology, indentation depth and calculated modulus and hardness values, which was elucidated through numerical simulations. First, it was experimentally shown how for small (1 µm indentations, large increases in modulus (up to +40% and hardness (up to +93% were obtained for graded composites with respect to their homogeneous counterparts, whereas at a larger indentation depth (20 µm the modulus and hardness of the graded and homogeneous composites did not substantially differ from each other and from those of the pure polymer. Then, through a Material Point Method approach, experimental nanoindentation tests were successfully simulated, confirming the importance of the indentation depth and of the associated plastic zone as key factors for a more accurate design of graded polymer nanocomposites whose mechanical properties are able to fulfill the requirements encountered during operational life.
Moolchandani, Vikas; Augsburger, Larry L; Gupta, Abhay; Khan, Mansoor; Langridge, John; Hoag, Stephen W
2015-01-01
The purpose of this work is to characterize thermal, physical and mechanical properties of different grades of lactose and better understand the relationships between these properties and capsule filling performance. Eight grades of commercially available lactose were evaluated: Pharmatose 110 M, 125 M, 150 M, 200 M, 350 M (α-lactose monohydrate), AL (anhydrous lactose containing ∼80% β-AL), DCL11 (spray dried α-lactose monohydrate containing ∼15% amorphous lactose) and DCL15 (granulated α-lactose monohydrate containing ∼12% β-AL). In this study, different lactose grades were characterized by thermal, solid state, physical and mechanical properties and later evaluated using principal component analysis (PCA) to assess the inter-relationships among some of these properties. The lactose grades were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), moisture sorption/desorption isotherms, particle size distribution; the flow was characterized by Carr Index (CI), critical orifice diameter (COD) and angle of friction. Plug mechanical strength was estimated from its diametric crushing strength. The first and second principal components (PC) captured 47.6% and 27.4% of variation in the physical and mechanical property data, respectively. The PCA plot grouped together 110 M, AL, DCL11 and DCL15 on the one side of plot which possessed superior properties for capsule formulation and these grades were selected for future formulation development studies (part II of this work).
Nardi, Tommaso; Hammerquist, Chad; Nairn, John; Karimi, Ayat; Manson, Jan-Anders; Leterrier, Yves
2015-08-01
NNanoindentation tests were carried out on the surface of polymer nanocomposites exhibiting either graded or homogeneous distributions of Fe3O4@silica core-shell nanoparticles in a photocurable polymeric matrix. The results reveal a complex interplay between graded morphology, indentation depth and calculated modulus and hardness values, which was elucidated through numerical simulations. First, it was experimentally shown how for small (1 µm) indentations, large increases in modulus (up to +40%) and hardness (up to +93%) were obtained for graded composites with respect to their homogeneous counterparts, whereas at a larger indentation depth (20 µm) the modulus and hardness of the graded and homogeneous composites did not substantially differ from each other and from those of the pure polymer. Then, through a Material Point Method approach, experimental nanoindentation tests were successfully simulated, confirming the importance of the indentation depth and of the associated plastic zone as key factors for a more accurate design of graded polymer nanocomposites whose mechanical properties are able to fulfill the requirements encountered during operational life.
Institute of Scientific and Technical Information of China (English)
Liang Jun
2007-01-01
In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown is the jump of displacements across the crack surfaces. These equations are solved to obtain the relations between the electric filed, the magnetic flux field and the dynamic stress field near the crack tips using the Schmidt method. Numerical examples are provided to show the effect pf the functionally graded parameter and the circular frequency of the incident waves upon the stress, the electric displacement and the magnetic flux intensity factors of the crack.
Energy Technology Data Exchange (ETDEWEB)
Rastgoo, A. [University of Tehran, Tehran (Iran, Islamic Republic of); Ebrahimi, F. [lmam Khomeini International University, Qazvin (Iran, Islamic Republic of); Kargarnovin, M. H. [Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2008-06-15
In this paper, a free vibration analysis of moderately thick circular functionally graded (FG) plate integrated with two thin piezoelectric (PZT4) layers is presented based on Mindlin plate theory. The material properties of the FG core plate are assumed to be graded in the thickness direction, while the distribution of electric potential field along the thickness of piezoelectric layers is simulated by sinusoidal function. The differential equations of motion are solved analytically for two boundary conditions of the plate: clamped edge and simply supported edge. The analytical solution is validated by comparing the obtained resonant frequencies with those of an isotropic host plate. The emphasis is placed on investigating the effect of varying the gradient index of FG plate on the free vibration characteristics of the structure. Good agreement between the results of this paper and those of the finite element analyses validated the presented approach
Institute of Scientific and Technical Information of China (English)
Sergey Volkov; Sergey Aizikovich; Yue-Sheng Wang; Igor Fedotov
2013-01-01
The paper addresses a contact problem of the theory of elasticity,i.e.,the penetration of a circular indenter with a flat base into a soft functionally graded elastic layer.The elastic properties of a functionally graded layer arbitrarily vary with depth,and the foundation is assumed to be elastic,yet much harder than a layer.Approximated analytical solution is constructed,and it is shown that the solutions are asymptotically exact both for large and small values of characteristic dimensionless geometrical parameter of the problem.Numerical examples are analyzed for the cases of monotonic and nonmonotonic variations of elastic properties.Numerical results for the case of homogeneous layer are compared with the results for nondeformable foundation.
Choi, Kang Hyun; Kim, Hyun-Su; Park, Chang Hyun; Kim, Gon-Ho; Baik, Kyoung Ho; Lee, Sung Ho; Kim, Taehyung; Kim, Hyoung Seop
2016-09-01
Thermal barrier coatings are widely used in aerospace industries to protect exterior surfaces from harsh environments. In this study, functionally graded materials (FGMs) were investigated with the aim to optimize their high temperature resistance and strength characteristics. NiCrAlY bond coats were deposited on Inconel-617 superalloy substrate specimens by the low vacuum plasma spraying technique. Functionally graded Ni-yttria-stabilized zirconia (YSZ) coatings with gradually varying amounts of YSZ (20%-100%) were fabricated from composite powders by vacuum plasma spraying. Heat shield performance tests were conducted using a high- temperature plasma torch. The temperature distributions were measured using thermocouples at the interfaces of the FGM layers during the tests. A model for predicting the temperature at the bond coating-substrate interface was established. The temperature distributions simulated using the finite element method agreed well with the experimental results.
Energy Technology Data Exchange (ETDEWEB)
Velhinho, A. E-mail: ajv@fct.unl.ptajv@engmateriais.eng.uminho.pt; Sequeira, P.D.; Martins, Rui; Vignoles, G.; Braz Fernandes, F.; Botas, J.D.; Rocha, L.A
2003-01-01
The present work refers to an X-ray microtomography experiment aiming at the elucidation of some aspects regarding particle distribution in SiC-particle-reinforced functionally graded aluminium composites. Precursor composites were produced by rheocasting. These were then molten and centrifugally cast to obtain the functionally graded composites. From these, cylindrical samples, around 1 mm in diameter, were extracted, which were then irradiated with a X-ray beam produced at the European Synchrotron Radiation Facility. The 3-D images were obtained in edge-detection mode. A segmentation procedure has been adapted in order to separate the pores and SiC particles from the Al matrix. Preliminary results on the particle and pore distributions are presented.
Velhinho, A.; Sequeira, P. D.; Martins, Rui; Vignoles, G.; Braz Fernandes, F.; Botas, J. D.; Rocha, L. A.
2003-01-01
The present work refers to an X-ray microtomography experiment aiming at the elucidation of some aspects regarding particle distribution in SiC-particle-reinforced functionally graded aluminium composites. Precursor composites were produced by rheocasting. These were then molten and centrifugally cast to obtain the functionally graded composites. From these, cylindrical samples, around 1 mm in diameter, were extracted, which were then irradiated with a X-ray beam produced at the European Synchrotron Radiation Facility. The 3-D images were obtained in edge-detection mode. A segmentation procedure has been adapted in order to separate the pores and SiC particles from the Al matrix. Preliminary results on the particle and pore distributions are presented.
Institute of Scientific and Technical Information of China (English)
LI Lin; ZHOU Zhen-gong; WANG Biao
2006-01-01
The scattering problem of anti-plane shear waves in a functionally graded material strip with an off-center crack is investigated by use of Schmidt method. The crack is vertically to the edge of the strip. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations that the unknown variable is the jump of the displacement across the crack surfaces. To solve the dual integral equations, the jump of the displacement across the crack surfaces was expanded in a series of Jacobi polynomials. Numerical examples were provided to show the effects of the parameter describing the functionally graded materials, the position of the crack and the frequency of the incident waves upon the stress intensity factors of the crack.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The behavior of two parallel symmetry permeable cracks in functionally graded piezoelectric materials subjected to an anti-plane shear loading was investigated. To make the analysis tractable, it was assumed that the material properties varied exponentially with coordinate vertical to the crack. By using the Fourier transform, the problem could be solved with the help of two pairs of dual integral equations, in which the unknown variables were the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the displacement on the crack surfaces expanded in a series of Jacobi polynomials. The normalized stress and electrical displacement intensity factors were determined for different geometric and property parameters for permeable electric boundary conditions. Numerical examples were provided to show the effect of the geometry of the interacting cracks and the functionally graded material parameter upon the stress intensity factors of cracks.
Directory of Open Access Journals (Sweden)
Yin-Cheng Huang
Full Text Available Most meningiomas are benign, but some clinical-aggressive tumors exhibit brain invasion and cannot be resected without significant complications. To identify molecular markers for these clinically-aggressive meningiomas, we performed microarray analyses on 24 primary cultures from 21 meningiomas and 3 arachnoid membranes. Using this approach, increased transglutaminase 2 (TGM2 expression was observed, which was subsequently validated in an independent set of 82 meningiomas by immunohistochemistry. Importantly, the TGM2 expression level was associated with increasing WHO malignancy grade as well as meningioma recurrence. Inhibition of TGM2 function by siRNA or cystamine induced meningioma cell death, which was associated with reduced AKT phosphorylation and caspase-3 activation. Collectively, these findings suggest that TGM2 expression increases as a function of malignancy grade and tumor recurrence and that inhibition of TGM2 reduces meningioma cell growth.
Energy Technology Data Exchange (ETDEWEB)
Dr. Mohit Jain; Dr. Ganesh Skandan; Dr. Gordon E. Khose; Mrs. Judith Maro, Nuclear Reactor Laboratory, MIT
2008-05-01
Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 oC. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with various microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.
Farnoush, Hamidreza; Aghazadeh Mohandesi, Jamshid; Çimenoğlu, Hüseyin
2015-06-01
In the present study, functionally graded coatings of HA/TiO2 nanoparticles and HA-TiO2 nanocomposite coatings with 0, 10 and 20 wt% of TiO2 were fabricated by electrophoretic deposition on Ti-6Al-4V substrate. The functionally graded structure of HA/TiO2 coatings was formed by gradual addition of HA suspension into the deposition cell containing TiO2 nanoparticles. Micro-scratch test results showed the highest critical distances of crack initiation and delamination, normal load before failure and critical contact pressures for functionally graded coating. It was observed that the improvement of adhesion strength and fracture toughness of functionally graded coatings would be due to the reduction of thermal expansion coefficient mismatch between Ti-6Al-4V substrate and HA. The results of potentiodynamic polarization measurements showed that the graded structure of the coating could efficiently increase the corrosion resistance of substrate.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Ultrahigh toughness cementitious composites (UHTCC) obviously show strain hardening property under tensile or bending loading. The failure pattern of the UHTCC components exhibits multiple fine cracks under uniaxial tensile loading with prominent tensile strain capacity in excess of 3%, with merely 60 μm average crack width even corresponding to the ultimate tensile strain state. The approach adopted is based on the concept of functionally-graded concrete, where part of the concrete, which surrounds the main longitudinal reinforcement in a RC (reinforced concrete) member, is strategically replaced with UHTCC with excellent crack-controlling ability. Investigations on bending behavior of functionally-graded composite beam crack controlled by UHTCC has been carried out, including theo- retical analysis, experimental research on long composite beams without web reinforcement, validation and comparison between experimental and theoretical results, and analysis on crack control. In addition to improving bearing capacity, the results indicate that functionally-graded composite beams using UHTCC has been found to be very effective in preventing corrosion-induced damage compared with RC beams. Therefore, durability and service life of the structure could be enhanced. This paper discusses the development of internal force and crack propagation during loading process, and presents analysis of the internal force in different stages, moment-curvature relationship from loading to damage and calculation of mid-span deflection and ductility index. In the end, the theoretical formulae have been validated by experimental results.
Pindera, Marek-Jerzy; Aboudi, Jacob
1998-01-01
The objective of this three-year project was to develop and deliver to NASA Lewis one-dimensional and two-dimensional higher-order theories, and related computer codes, for the analysis, optimization and design of cylindrical functionally graded materials/structural components for use in advanced aircraft engines (e.g., combustor linings, rotor disks, heat shields, blisk blades). To satisfy this objective, a quasi one-dimensional version of the higher-order theory, HOTCFGM-1D, and four computer codes based on this theory, for the analysis, design and optimization of cylindrical structural components functionally graded in the radial direction were developed. The theory is applicable to thin multi-phased composite shell/cylinders subjected to macroscopically axisymmetric thermomechanical and inertial loading applied uniformly along the axial direction such that the overall deformation is characterized by a constant average axial strain. The reinforcement phases are uniformly distributed in the axial and circumferential directions, and arbitrarily distributed in the radial direction, thereby allowing functional grading of the internal reinforcement in this direction.
Directory of Open Access Journals (Sweden)
Benedict Thomas
2013-12-01
Full Text Available This article deals with the finite element modeling and free vibration analysis of functionally graded nanocomposite beams reinforced by randomly oriented straight single-walled carbon nanotubes (SWCNTs. Nanostructural materials can be used to alter mechanical, thermal and electrical properties of polymer-based composite materials, because of their superior properties and perfect atom arrangement. Timoshenko beam theory is used to evaluate dynamic characteristics of the beam. The Eshelby–Mori–Tanaka approach based on an equivalent fiber is used to investigate the material properties of the beam. The equations of motion are derived by using Hamilton’s principle. The finite element method is employed to discretize the model and obtain a numerical approximation of the motion equation. Different SWCNTs distributions in the thickness direction are introduced to improve fundamental natural frequency and dynamic behavior of uniform functionally graded nanocomposite beam. Results are presented in tabular and graphical forms to show the effects of various material distributions, carbon nanotube orientations, shear deformation, slenderness ratios and boundary conditions on the dynamic behavior of the beam. The first five normalized mode shapes for functionally graded carbon nanotube reinforced composite (FG-CNTRC beams with different boundary conditions and different carbon nanotubes (CNTs orientation are presented. The results show that the above mentioned effects play very important role on the dynamic behavior of the beam.
Directory of Open Access Journals (Sweden)
N. Radhika
2016-09-01
Full Text Available Functionally graded LM13 aluminium/10wt% TiS2 composite was fabricated by centrifugal casting method and hollow cylindrical part has the dimension of 150x150x20 mm was obtained. The microstructural evaluation and vicker’s micro-hardness test was carried out on the surfaces at the distance of 1, 6, 12 and 18 mm from the outer surface of functionally graded composites. The microstructural investigation reveals that the TiS2 reinforcement particles concentrated more on the outer periphery and less at the inner periphery of the composite. The hardness of the composite surface increases at the particle rich region of outer periphery and decreases towards inner region. The dry sliding wear experiments were conducted on the composite specimens as per plan of Taguchi’s L16 orthogonal array design. The parameters considered were load, sliding velocity, sliding distance and distance from outer periphery of the composite, varied for four levels. Signal- to- Noise ratio and Analysis of Variance were carried out and the significance test revealed that distance from outer periphery had major impact (43.11 % followed by sliding distance (31.19 %, load (16.59 %, and sliding velocity (7.33 %. Adequacy of model was predicted through regression equation and the error was found to be less than 8 %. The scanning electron microscope analysis carried out for the worn-out surfaces showed maximum wear resistance of the functionally graded composite at outer periphery.
Chronic low-grade inflammation, lipid risk factors and mortality in functionally dependent elderly
Directory of Open Access Journals (Sweden)
Vasović Olga
2010-01-01
Full Text Available Background/Aim. It has been proved that a highly sensitive C-reactive protein (hsCRP can be used as an established marker of chronic inflammation for cardiovascular risk assessment. Since mean values of both low-density cholesterol (LDL-C and high-density lipoprotein cholesterol (HDL-C decrease during aging, the knowledge that increased hsCRP concentration predicts mortality (Mt would influence therapy and treatment outcome. The aim of this study was to examine importance of chronic low grade inflammation and its association with lipid risk factors for all-cause Mt in functionally dependent elderly. Methods. The participants of this longitudinal prospective study were 257 functionally dependent elderly aged 65-99 years. Baseline measurements: anthropometric measurements, blood pressure, fasting plasma total cholesterol (TC, triglyceride (TG, HDL-C, LDL-C, non- HDL-C, hemoglobin A1c (HbA1c were recorded and different lipid ratios were calculated. Inflammation was assessed by the levels of white blood cells, fibrinogen and hsCRP. The participants with hsCRP grater than 10 mg/L were excluded from the study. The residual participants (77.4% women were divided into three groups according to their hsCRP levels: a low (< 1 mg/L, n = 70, average (1 to 3 mg/L, n = 69, and high (3-10 mg/L, n = 69 hsCRP group. Associations of all-cause Mt with different risk factors were examined using logistic regression analysis. Results. The hsCRP level showed a significant positive correlation with waist (r = 0.199, p = 0.004 and hip (r = 0.187, p = 0.007 circumferences, body mass index (r = 0.143, p = 0.040 and serum triglyceride level (r = 0.139, p = 0.045 and significant negative correlation with HDL-C (r = -0.164, p = 0.018. Ratios TC/HDL-C and TG/HDL-C were significantly smaller in the low hsCRP group compared to the average hsCRP group (p = 0.019, p = 0.045, respectively and without significant differences compared with the high hsCRP group. Two years after the
DEFF Research Database (Denmark)
Jabbari, Masoud; Spangenberg, Jon; Hattel, Jesper Henri
2013-01-01
of a graded configuration of the magnetocaloric materials. The Newtonian flow behavior with relatively high viscosity is assumed for each fluid and used in the simulation with a commercial CFD code (ANSYS FLUENT). The results show that the density difference does not affect the interface between the adjacent...
Dave, Eshan V.
2009-01-01
Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative aging of asphalt binder and temperature cycling due to climatic conditions being the major cause of non-homogeneity. Current pavement analysis and simulation procedures dwell on the use of layered approach to account for these non-homogeneities. The conventional…
Energy Technology Data Exchange (ETDEWEB)
Erdemir, Fatih; Canakci, Aykut, E-mail: aykut@ktu.edu.tr; Varol, Temel; Ozkaya, Serdar
2015-09-25
Highlights: • Functionally graded Al2024/SiC composites were produced by hot pressing. • Effect of the number of graded layers was investigated on the corrosion behavior. • Functionally graded composites has the most corrosion resistant than composites. • Wear mechanisms of Al2024/SiC composites were explained. - Abstract: Functionally graded Al2024/SiC composites (FGMs) with varying percentage of SiC (30–60%) were produced by hot pressing and consolidation method. The effects of SiC content and number of layers of Al2024/SiC FGMs on the corrosion and wear behaviors were investigated. The microstructures of these composites were characterized by a scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). The corrosion performances of composites were evaluated by potentiodynamic polarization scans in 3.5% NaCl solution. Corrosion experiments shows that corrosion rate (1109 mpy) of two layered FGMs which containing 50 wt.% SiC were much higher than Al2024 matrix (2569 mpy) and Al2024/50 wt.% SiC composite (2201 mpy). Mechanical properties of these composites were evaluated by microhardness measurements and ball-on-disk wear tests. As the applied load change from 15 to 20 N, the wear rates of the Al2024 increased significantly and wear mechanism transformed from mild to severe wear regime. It has been shown that Al2024/40 wt.% SiC composite has lower wear rate where adhesive and abrasive wear mechanisms play a major role.
Damage tolerant functionally graded materials for advanced wear and friction applications
Prchlik, Lubos
The research work presented in this dissertation focused on processing effects, microstructure development, characterization and performance evaluation of composite and graded coatings used for friction and wear control. The following issues were addressed. (1) Definition of prerequisites for a successful composite and graded coating formation by means of thermal spraying. (2) Improvement of characterization methods available for homogenous thermally sprayed coating and their extension to composite and graded materials. (3) Development of novel characterization methods specifically for FGMs, with a focus on through thickness property measurement by indentation and in-situ curvature techniques. (4) Design of composite materials with improved properties compared to homogenous coatings. (5) Fabrication and performance assessment of FGM with improved wear and impact damage properties. Materials. The materials studied included several material systems relevant to low friction and contact damage tolerant applications: MO-Mo2C, WC-Co cermets as materials commonly used sliding components of industrial machinery and NiCrAlY/8%-Yttria Partially Stabilized Zirconia composites as a potential solution for abradable sections of gas turbines and aircraft engines. In addition, uniform coatings such as molybdenum and Ni5%Al alloy were evaluated as model system to assess the influence of microstructure variation onto the mechanical property and wear response. Methods. The contact response of the materials was investigated through several techniques. These included methods evaluating the relevant intrinsic coating properties such as elastic modulus, residual stress, fracture toughness, scratch resistance and tests measuring the abrasion and friction-sliding behavior. Dry-sand and wet two-body abrasion testing was performed in addition to traditional ball on disc sliding tests. Among all characterization techniques the spherical indentation deserved most attention and enabled to
Energy Technology Data Exchange (ETDEWEB)
Qu, Dandan [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Zhou, Zhangjian, E-mail: zhouzhangjianustb@163.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Tan, Jun [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Aktaa, Jarir [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
2015-02-15
Highlights: • W/Fe functionally graded material (FGM) are fabricated well by resistance sintering under ultra-high pressure (RSUHP). • The whole sintering time is less than 3 min and cost-effective. • We research the W/Fe interface and the formation of intermetallic at the interface. In addition, we explain the possible method to avoid the formation of brittle intermetallic. • Vickers hardness of W/Fe FGM before and after heat treatment are investigated here. - Abstract: W/Fe-based components are considered as primary structural materials for the future fusion reactor. A five-layer W/Fe functional graded material (FGM) with W volume fraction of 0%, 25%, 50%, 75% and 100%, respectively, have been fabricated by a novel sintering method combining resistance sintering with ultra-high pressure. The sintering was carried out under pressures of 9 GPa and an input power of 11 kW for 60 s. The microstructure of cross-section observed by SEM shows a well-graded transition. The relative density of each layer is more than 97%. A brittle phase Fe{sub 7}W{sub 6} is formed at the interface of W particles and Fe particles, and this intermetallic phase coats Fe particles homogeneously with a thickness of 1–5 μm. It is possible to avoid the brittle phase by choosing appropriate particle size and sintering parameters. In addition, Vickers hardness of W/Fe FGM was investigated before and after heat treatment.
Seethaler, Pamela M.; Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.
2016-01-01
The purpose of this study was to assess the added value of dynamic assessment (DA) beyond more conventional static measures for predicting individual differences in year-end 1st-grade calculation (CA) and word-problem (WP) performance, as a function of limited English proficiency (LEP) status. At the start of 1st grade, students (129 LEP; 163…
Pandey, Vibhuti Bhushan; Parashar, Sandeep Kumar
2016-04-01
In the present paper a novel functionally graded piezoelectric (FGP) actuated Poly-Si micro cantilever probe is proposed for atomic force microscope. The shear piezoelectric coefficient d15 has much higher value than coupling coefficients d31 and d33, hence in the present work the micro cantilever beam actuated by d15 effect is utilized. The material properties are graded in the thickness direction of actuator by a simple power law. A three dimensional finite element analysis has been performed using COMSOL Multiphysics® (version 4.2) software. Tip deflection and free vibration analysis for the micro cantilever probe has been done. The results presented in the paper shall be useful in the design of micro cantilever probe and their subsequent utilization in atomic force microscopes.
Ozkan, Seher; Kalyon, Dilhan M; Yu, Xiaojun
2010-03-01
The engineering of biomimetic tissue relies on the ability to develop biodegradable scaffolds with functionally graded physical and chemical properties. In this study, a twin-screw-extrusion/spiral winding (TSESW) process was developed to enable the radial grading of porous scaffolds (discrete and continuous gradations) that were composed of polycaprolactone (PCL), beta-tricalciumphosphate (beta-TCP) nanoparticles, and salt porogens. Scaffolds with interconnected porosity, exhibiting myriad radial porosity, pore-size distributions, and beta-TCP nanoparticle concentration could be obtained. The results of the characterization of their compressive properties and in vitro cell proliferation studies using human fetal osteoblast cells suggest the promising nature of such scaffolds. The significant degree of freedom offered by the TSESW process should be an additional enabler in the quest toward the mimicry of the complex elegance of the native tissues.
Directory of Open Access Journals (Sweden)
R. Patra
2014-01-01
Full Text Available This paper is concerned with an internal crack problem in an infinite functionally graded elastic layer. The crack is opened by an internal uniform pressure p0 along its surface. The layer surfaces are supposed to be acted on by symmetrically applied concentrated forces of magnitude P/2 with respect to the centre of the crack. The applied concentrated force may be compressive or tensile in nature. Elastic parameters λ and μ are assumed to vary along the normal to the plane of crack. The problem is solved by using integral transform technique. The solution of the problem has been reduced to the solution of a Cauchy-type singular integral equation, which requires numerical treatment. The stress-intensity factors and the crack opening displacements are determined and the effects of graded parameters on them are shown graphically.
Functionally graded coating for steels by reaction diffusion using FeAl{sub 3} powder
Energy Technology Data Exchange (ETDEWEB)
Tsuchiya, Y.
2000-10-01
The powder liquid coating method has successfully been applied to a commercially available pure iron and a carbon steel (JIS-545C) using FeAl{sub 3} powder. The coated layer is found well graded in terms of microstructure, chemical compositions and hardness, so that the costed layer is much stronger for thermal shock than that made by a conventional aluminizing method. Changes in the graded microstructure during coating procedures are studied; it is noted that an FeAl/FeAl{sub 2}, eutectoid Structure formed in the coated layer shows 927HV and relatively high toughness. Although the present coating technique needs to heat a sample up to an elevated temperature as high as 1,473 K, the prior austenite grain size of the carbon steel was refined by so-called Grange method, without accompanying any serious damages in the coated layer. (author)
Yang, Jiashi; Jin, Zhihe; Li, Jiangyu
2008-11-01
Recent advances in material processing technologies allow the production of piezoelectric materials with functionally graded material properties. We investigate the implications of functionally graded piezoelectric materials when used as actuators for structural control by examining the distribution of the actuating shear stress under a piezoelectric actuator of a functionally graded material (FGM) on an isotropic elastic half-space. It is shown that FGM materials can be used to adjust the shear stress distribution. In particular, the concentration near the edges of a conventional homogeneous piezoelectric actuator can be significantly reduced in an FGM actuator.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
BACKGROUND: The abnormal posture and motor pattern have not stabilized in children with cerebral palsy at early period, thus timely treatment can establish normal postural reflex and motor pattern, and prevent complications of muscle contracture, ankylosis, skeletal deformity, etc. The clinical factors affecting the rehabilitative efficacy of gross motor function in children with cerebral palsy should be observed.OBJECTIVE: To observe the effects of therapeutic occasion, grading of gross motor function and developmental level on the rehabilitative efficacy in children with cerebral palsy.DESIGN: A case-controlled analysis.SETTING: Qilu Children's Hospital of Shandong University.PARTICIPANTS: Totally 138 children with cerebral palsy, who were hospitalized for 12 months in the Rehabilitation Center of Qilu Children's Hospital, Shandong University, were selected from April 2004 to September 2006, and all the children were diagnosed to be accorded with the standard set by the national seminar on cerebral palsy in 2004. There were 97 males and 41 females, including 55 cases of 0 - 2 years old,47 cases of 2 - 4 years and 36 cases of 4 - 6 years. Informed contents were obtained from relatives of all the children.METHODS: ① Comprehensive rehabilitation treatment: Vojta method was to induce the children to turn over the body and crawl by stimulating reflective turn over and crawling on belly. Bobath method including trainings of head control, turning over body, keeping sitting position, keeping balance, crawling, keeping standing position, and walking, etc.; The children were massaged by using the maneuvers of push, press, rub,pull, wave, etc. according to the sites and types of palsy. Acupuncture was performed mainly at bilateral motor areas, the needle was retained for 1 hour per time, 6 days continuously every week, and followed by a 1-day interval. ② Prognosis assessment: The gross motor functional grading of the children with cerebral palsy at admission was
3D analysis of functionally graded material plates with complex shapes and various holes
Institute of Scientific and Technical Information of China (English)
Zhi-yuan CAO; Shou-gao TANG; Guo-hua CHENG
2009-01-01
In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. Therefore with the parameters of a given FGM plate, problems of FGM plate under various conditions can be solved. The approach uses 1D discretization to obtain 3D solutions, which is proven to be an effective numerical method for the mechanical analyses of FGM structures. Examples of FGM plates with complex shapes and various holes are presented.
Nonlinear Dynamic Behavior of Functionally Graded Truncated Conical Shell Under Complex Loads
Yang, S. W.; Hao, Y. X.; Zhang, W.; Li, S. B.
Nonlinear dynamic behaviors of ceramic-metal graded truncated conical shell subjected to complex loads are investigated. The shell is modeled by first-order shear deformation theory. The nonlinear partial differential governing equation in terms of transverse displacements of the FGM truncated conical shell is derived from the Hamilton's principle. Galerkin's method is then utilized to discretize the partial governing equations to a two-degree-of-freedom nonlinear ordinary differential equation. The temperature-dependent materials properties of the constituents are graded in the radial direction in accordance with a power-law distribution. The aerodynamic pressure can be calculated by using the first-order piston theory. The temperature field is assumed to be a steady-state constant-temperature distribution. Bifurcation diagrams, the maximum Lyapunov exponents, wave forms and phase portraits are obtained by numerical simulation to demonstrate the complex nonlinear dynamics response of the FGM truncated conical shell. The influences of the semi-vertex angle, the material gradient index, in-plane and aerodynamic load on the nonlinear dynamics are studied.
Directory of Open Access Journals (Sweden)
Zhihe Jin
2011-12-01
Full Text Available This work investigates transient heat conduction in a functionally graded plate (FGM plate subjected to gradual cooling/heating at its boundaries. The thermal properties of the FGM are assumed to be continuous and piecewise differentiable functions of the coordinate in the plate thickness direction. A linear ramp function describes the cooling/heating rates at the plate boundaries. A multi-layered material model and Laplace transform are employed to obtain the transformed temperatures at the interfaces between the layers. An asymptotic analysis and an integration technique are then used to obtain a closed form asymptotic solution of the temperature field in the FGM plate for short times. The thermal stress intensity factor (TSIF for an edge crack in the FGM plate calculated based on the asymptotic temperature solution shows that the asymptotic solution can capture the peak TSIFs under the finite cooling rate conditions.
Cole, Graham D; Dhutia, Niti M; Shun-Shin, Matthew J; Willson, Keith; Harrison, James; Raphael, Claire E; Zolgharni, Massoud; Mayet, Jamil; Francis, Darrel P
2015-10-01
Left ventricular function can be evaluated by qualitative grading and by eyeball estimation of ejection fraction (EF). We sought to define the reproducibility of these techniques, and how they are affected by image quality, experience and accreditation. Twenty apical four-chamber echocardiographic cine loops (Online Resource 1-20) of varying image quality and left ventricular function were anonymized and presented to 35 operators. Operators were asked to provide (1) a one-phrase grading of global systolic function (2) an "eyeball" EF estimate and (3) an image quality rating on a 0-100 visual analogue scale. Each observer viewed every loop twice unknowingly, a total of 1400 viewings. When grading LV function into five categories, an operator's chance of agreement with another operator was 50% and with themself on blinded re-presentation was 68%. Blinded eyeball LVEF re-estimates by the same operator had standard deviation (SD) of difference of 7.6 EF units, with the SD across operators averaging 8.3 EF units. Image quality, defined as the average of all operators' assessments, correlated with EF estimate variability (r = -0.616, p visual grading agreement (r = 0.58, p visual grading of LV function and LVEF estimation is dependent on image quality, but individuals cannot themselves identify when poor image quality is disrupting their LV function estimate. Clinicians should not assume that patients changing in grade or in visually estimated EF have had a genuine clinical change.
Muir, Tracey; Bragg, Leicha A.; Livy, Sharyn
2015-01-01
The concept of functional thinking as a foundational idea associated with algebraic thinking is explored by Tracey Muir, Leicha Bragg and Sharyn Livy. They provide ideas for using children's literature as a context to promote functional thinking
Jayakumar, E.; Jacob, Jibin C.; Rajan, T. P. D.; Joseph, M. A.; Pai, B. C.
2016-08-01
Functionally graded materials (FGM) are successfully adopted for the design and fabrication of engineering components with location-specific properties. The present study describes the processing and characterization of A319 Aluminum functionally graded metal matrix composites (FGMMC) with 10 and 15 wt pct SiCp reinforcements. The liquid stir casting method is used for composite melt preparation followed by FGMMC formation by vertical centrifugal casting method. The process parameters used are the mold preheating temperature of 523 K (250 °C), melt pouring temperature of 1013 K (740 °C), and mold rotation speed of 1300 rpm. The study analyzes the distribution and concentration of reinforcement particles in the radial direction of the FGMMC disk along with the effects of gradation on density, hardness, mechanical strength, the variation in coefficient of thermal expansion and the wear resistance properties at different zones. Microstructures of FGMMC reveal an outward radial gradient distribution of reinforcements forming different zones. Namely, matrix-rich inner, transition, particles-rich outer, and chill zone of a few millimeters thick at the outer most periphery of the casting are formed. From 10-FGM, a radial shift in the position of SiCp maxima is observed in 15-FGM casting. The mechanical characterization depicts enhanced properties for the particle-rich zone. The hardness shows a graded nature in correlation with particle concentration and a maximum of 94.4 HRB has been obtained at the particle-rich region of 15-FGM. In the particle-rich zone, the lowest CTE value of 20.1 µm/mK is also observed with a compressive strength of 650 MPa and an ultimate tensile strength of 279 MPa. The wear resistance is higher at the particle-rich zone of the FGMMC.
Directory of Open Access Journals (Sweden)
Kemal Karaağaç
2013-12-01
Full Text Available INTRODUCTION: This study was designed to asses left ventricular functions and its relation with hepatosteatosis grade with conventional and tissue Doppler echocardiography in patients with the non-alcholic fatty liver disease. METHODS: A total of 32 patients (15 males, 17 females; mean age 50±9 years and with ultrasonographically diagnosed non-alcholic fatty liver disease and 22 healty subjects ( 11 female and 11 male; mean age: 50±10 without hepatosteatosis were enrolled in this study. Left ventricular systolic and diastolic functions, myocardial performance index and its relation with HS grade were assessed by conventional and tissue Doppler echocardiography. RESULTS: There were no statistically significant charasteristics difference, chambers diameters, standard Doppler parameters and conventional echocardiography parameters between the patients and control groups. Among tissue Doppler parameters the mitral annulus peak early diastolic velocity and ratio of early to late diastolic velocity were lower in patients group than in controls ( p < 0.001, p < 0.001 respectively. Isovolumetric relaxation time (IVRT and myocardial performance index (MPI were significantly higher ( p = 0.002, p < 0.001 respectively in the patient group. There were no significant differences in mitral annuler late diastolic velocity, deceleration time of early diastolic filling, mitral annuler peak systolic velocity, isovolumetric contraction time and contraction time between the two groups. HS grade was positively correlated with the left ventricle MPI index ( r = 0.57 p = 0.001. DISCUSSION AND CONCLUSION: These results show that left ventricular diastolic dysfunctions in patients with non-alcholic fatty liver disease and degree of hepatosteatosis is associated with left ventricular diastolic dysfunctions.
Developing Essential Understanding of Functions for Teaching Mathematics in Grades 9-12
Lloyd, Gwendolyn; Beckmann, Sybilla; Zbiek, Rose Mary; Cooney, Thomas
2010-01-01
Are sequences functions? What can't the popular "vertical line test" be applied in some cases to determine if a relation is a function? How does the idea of rate of change connect with simpler ideas about proportionality as well as more advanced topics in calculus? Helping high school students develop a robust understanding of functions requires…
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Based on the concept of functionally graded concrete,UHTCC(ultrahigh toughness cementitious composites)material with excellent crack-controlling ability is strategically substituted for part of the concrete,which surrounds the main longitudinal reinforcement in a reinforced concrete member.Investigations on bending behavior of such a functionally graded composite beam crack-controlled by UHTCC(abbreviated as UHTCC-FGC beam)have been carried out.After establishing a theoretical cal-culation model,the paper discusses the results of four-point bending experiment on long composite beams without web reinforcement,and validates the theoretical formulae through experimental results of UHTCC-FGC beams with different thicknesses of UHTCC layer.Besides improving bearing capacity and saving steel reinforcements,the results indicate that UHTCC-FGC beams can also effectively control the deformation and enhance the ductility of members.At last,the optimal thickness of UHTCC layer in UHTCC-FGC beams has been confirmed,which can not only save materials and improve mechanical performance of members,but also be very effective in preventing corrosion-induced damage and enhancing the durability of members by controlling crack width below 0.05mm under service conditions.
Cui, Chang; Sun, Jian
2014-01-01
Due to elastic modulus mismatch between the different layers in all-ceramic dental restorations, high tensile stress concentrates at the interface between the ceramic core and cement. In natural tooth structure, stress concentration is reduced by the functionally graded structure of dentin-enamel junction (DEJ) which interconnects enamel and dentin. Inspired by DEJ, the aim of this study was to explore the optimum design of a bio-inspired functionally graded material (FGM) layer in all-ceramic dental restorations to achieve excellent stress reduction and distribution. Three-dimensional finite element model of a multi-layer structure was developed, which comprised bilayered ceramic, bio-inspired FGM layer, cement, and dentin. Finite element method and first-order optimization technique were used to realize the optimal bio-inspired FGM layer design. The bio-inspired FGM layer significantly reduced stress concentration at the interface between the crown and cement, and stresses were evenly distributed in FGM layer. With the optimal design, an elastic modulus distribution similar to that in DEJ occurred in the FGM layer.
Hazlehurst, K B; Wang, C J; Stanford, M
2013-12-01
The cementless fixation of porous coated femoral stems is a common technique employed for Total Hip Arthroplasty (THA). With the rate of revision surgery appearing to rise and younger more active patients requiring primary surgery it can be thought that alternative methods for increasing implant longevity need to be considered. The stress shielding of periprosthetic bone still remains a contributing factor to implant loosening, caused through a mismatch in stiffness between the implant and the bone. However, the ability to achieve stiffness matching characteristics is being realised through the use of Additive Layer Manufacturing (ALM) technologies and Functionally Graded Materials (FGM). This paper proposes an alternative design methodology for a monoblock Cobalt Chrome Molybdenum (CoCrMo) femoral stem. It hypothesises that a femoral stem suitable for cementless fixation can be manufactured using Laser Melting (LM) technology offering orthotropic functionally graded porous structures with similar mechanical properties to human bone. The structure and mechanical properties of the natural femur have been used as a basis for the design criteria which hypothesises that through a combination of numerical analysis and physical testing, an optimal design can be proposed to provide a lightweight, customised femoral stem that can reduce the risk of implant loosening through stress shielding whilst maintaining bone-implant interface stability.
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.
1995-01-01
A recently developed micromechanical theory for the thermoelastic response of functionally graded composites with nonuniform fiber spacing in the through-thickness direction is further extended to enable analysis of material architectures characterized by arbitrarily nonuniform fiber spacing in two directions. In contrast to currently employed micromechanical approaches applied to functionally graded materials, which decouple the local and global effects by assuming the existence of a representative volume element at every point within the composite, the new theory explicitly couples the local and global effects. The analytical development is based on volumetric averaging of the various field quantities, together with imposition of boundary and interfacial conditions in an average sense. Results are presented that illustrate the capability of the derived theory to capture local stress gradients at the free edge of a laminated composite plate due to the application of a uniform temperature change. It is further shown that it is possible to reduce the magnitude of these stress concentrations by a proper management of the microstructure of the composite plies near the free edge. Thus by an appropriate tailoring of the microstructure it is possible to reduce or prevent the likelihood of delamination at free edges of standard composite laminates.
Pindera, Marek-Jerzy; Dunn, Patrick
1995-01-01
A comparison is presented between the predictions of the finite-element analysis and a recently developed higher-order theory for functionally graded materials subjected to a thorough-thickness temperature gradient. In contrast to existing micromechanical theories that utilize classical (i.e., uncoupled) homogenization schemes to calculate micro-level and macro-level stress and displacement fields in materials with uniform or nonuniform fiber spacing (i.e., functionally graded materials), the new theory explicitly couples the microstructural details with the macrostructure of the composite. Previous thermo-elastic analysis has demonstrated that such coupling is necessary when: the temperature gradient is large with respect to the dimension of the reinforcement; the characteristic dimension of the reinforcement is large relative to the global dimensions of the composite and the number of reinforcing fibers or inclusions is small. In these circumstances, the standard micromechanical analyses based on the concept of the representative volume element used to determine average composite properties produce questionable results. The comparison between the predictions of the finite-element method and the higher-order theory presented herein establish the theory's accuracy in predicting thermal and stress fields within composites with a finite number of fibers in the thickness direction subjected to a thorough-thickness thermal gradient.
Energy Technology Data Exchange (ETDEWEB)
Choi, Y. [Department of Metallurgical and Materials Engineering, Sunmoon University, Asam (Korea, Republic of); Kim, B. G.; Lee, J. W.; Kang, Y. H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2000-07-01
Effect of chloride ion and zirconium hydride on the corrosion and stress corrosion cracking behaviors of functionally graded zirconium alloy was studied to develop an advanced nuclear cladding tubing. The functionally graded zirconium alloy had composition gradient of niobium, which was prepared with a hot pressing followed by cold deformation. The corrosion rates and potentials decreased with increasing FeCl{sub 3} and hydride content. The corrosion potentials before and after hydriding are -4.3 V{sub SHE}, 8.8x10{sup -5} A{sub cm}{sup -2} and -12.5 V{sub SHE}, 3.9x10{sup -4} A{sub cm}{sup -2}, respectively. The stress corrosion cracking susceptibility decreased with elongation rate, indicating the saturation value at 5x10{sup -7} sec{sup -1}. SEM observation showed that brittle fracture with corrosion products and pits were observed on the failed surface of hydrided zirconium alloy, suggesting anodic dissolution occurred during exposure after cracking growth along zirconium hydrides. (author)
Pourmajidian, Maedeh; Akhlaghi, Farshad
2013-12-01
A new process termed here as remelting and sedimentation (RAS) was developed to produce functionally graded Al/SiC composites with a smooth concentration gradient of SiC particles along the height of samples, as opposed to a step change. For this purpose, first settling velocities of different-sized SiC particles in aluminum A356 melt were measured, and the results exhibited a reasonably good agreement with those predicted via the modified Stokes law. Then slices of particulate Al/SiC composites with different SiC contents of 5, 10, 15, and 20 vol.% were stacked in a cast iron mold and heated at 650 °C resulting in remelting and unification of the different composite parts. Considering the preliminary settling experiments, the composite slurry was held at this temperature for three different times to investigate the optimum holding time for obtaining a smooth gradient of SiC concentration along the height of the sample. After quenching, the samples were sectioned and subjected to metallographic studies and hardness measurements. The results confirmed that holding the melt for 60 s provides sufficient settling and redistribution of SiC particles and results in successful production of a functionally graded material.
Wang, Yuewu; Wu, Dafang
2016-10-01
Dynamic response of an axially functionally graded (AFG) beam under thermal environment subjected to a moving harmonic load is investigated within the frameworks of classical beam theory (CBT) and Timoshenko beam theory (TBT). The Lagrange method is employed to derive the equations of thermal buckling for AFG beam, and then with the critical buckling temperature as a parameter the Newmark-β method is adopted to evaluate the dynamic response of AFG beam under thermal environments. Admissible functions denoting transverse displacement are expressed in simple algebraic polynomial forms. Temperature-dependency of material constituent is considered. The rule of mixture (Voigt model) and Mori-Tanaka (MT) scheme are used to evaluate the beam's effective material properties. A ceramic-metal AFG beam with immovable boundary condition is considered as numerical illustration to show the thermal effects on the dynamic behaviors of the beam subjected to a moving harmonic load.
Khosravi, Arezoo; Bani, Milad Salimi; Bahreinizade, Hossein; Karimi, Alireza
2016-01-01
In the present study, three layers of the ascending aorta in respect to the time and space at various blood pressures have been simulated. Two well-known commercial finite element (FE) software have used to be able to provide a range of reliable numerical results while independent on the software type. The radial displacement compared with the time as well as the peripheral stress and von Mises stress of the aorta have calculated. The aorta model was validated using the differential quadrature method (DQM) solution and, then, in order to design functionally graded materials (FGMs) with different heterogeneous indexes for the artificial vessel, two different materials have been employed. Fluid–structure interaction (FSI) simulation has been carried out on the FGM and a natural vessel of the human body. The heterogeneous index defines the variation of the length in a function. The blood pressure was considered to be a function of both the time and location. Finally, the response characteristics of functionally graded biomaterials (FGBMs) models with different values of heterogeneous material parameters were determined and compared with the behaviour of a natural vessel. The results showed a very good agreement between the numerical findings of the FGM materials and that of the natural vessel. The findings of the present study may have implications not only to understand the performance of different FGMs in bearing the stress and deformation in comparison with the natural human vessels, but also to provide information for the biomaterials expert to be able to select a suitable material as an implant for the aorta. PMID:27836981
Khosravi, Arezoo; Bani, Milad Salimi; Bahreinizade, Hossein; Karimi, Alireza
2016-12-01
In the present study, three layers of the ascending aorta in respect to the time and space at various blood pressures have been simulated. Two well-known commercial finite element (FE) software have used to be able to provide a range of reliable numerical results while independent on the software type. The radial displacement compared with the time as well as the peripheral stress and von Mises stress of the aorta have calculated. The aorta model was validated using the differential quadrature method (DQM) solution and, then, in order to design functionally graded materials (FGMs) with different heterogeneous indexes for the artificial vessel, two different materials have been employed. Fluid-structure interaction (FSI) simulation has been carried out on the FGM and a natural vessel of the human body. The heterogeneous index defines the variation of the length in a function. The blood pressure was considered to be a function of both the time and location. Finally, the response characteristics of functionally graded biomaterials (FGBMs) models with different values of heterogeneous material parameters were determined and compared with the behaviour of a natural vessel. The results showed a very good agreement between the numerical findings of the FGM materials and that of the natural vessel. The findings of the present study may have implications not only to understand the performance of different FGMs in bearing the stress and deformation in comparison with the natural human vessels, but also to provide information for the biomaterials expert to be able to select a suitable material as an implant for the aorta.
Directory of Open Access Journals (Sweden)
Vora Urmi
2010-01-01
Full Text Available Background: We evaluated the refractive status and visual function of children with special needs (other handicap in 2010 and compared them with healthy 1 st grade school students in Oman. Materials and Methods: This was a cohort study. Optometrists recorded vision using a logarithm of minimum angle of resolution (LogMAR chart. Preferential looking method was used for testing 31 children. Cycloplegic refraction was performed on all children. Contrast sensitivity was tested using 2.5%, 10%, and 100% contrast charts. Ocular movement, alignment, and anterior segment were also assessed. A pediatrician reviewed the health records of all the children at the time of their enrollment in this study to determine if the child had been diagnosed with a systemic condition or syndromes. The visual functions were assessed by study investigators. We estimated the rates and the risk of different visual function defects in children with special needs. Result: The prevalence of refractive error in 70 children (4.7 ± 0.8 years with special needs (group 1 and 175 normal healthy first grade students (group 2 were 58.5% and 2.9%, respectively. The risk of refractive error was significantly higher in children with special needs [relative risk, 48.1 (95% confidence interval, 17.54-131.8]. Hyperopia (>1.00 D, myopia (≥ 1.00D and astigmatism (≥ ±1.00 D were found in 18.6%, 24.3%, and 27.1%, respectively, in group 1. Six children in this group had defective near vision. Sixteen (80% children with Down syndrome had refractive error. Seven (50% children with developmental disorder showed decreased contrast sensitivity. Conclusion: Prevalence of uncorrected refractive error was much higher in children with special needs. Prevalence of strabismus, nystagmus, and reduced contrast sensitivity was also higher in children with special needs. Early vision screening, visual function assessment, correction of refractive error, and frequent follow-up are recommended.
Sharma, Pankaj; Parashar, Sandeep Kumar
2016-05-01
The priority of this paper is to obtain the exact analytical solution for free flexural vibration of FGPM beam actuated using the d15 effect. In piezoelectric actuators, the potential use of d15 effect has been of particular interest for engineering applications since shear piezoelectric coefficient d15 is much higher than the other piezoelectric coupling constants d31 and d33. The applications of shear actuators are to induce and control the flexural vibrations of beams and plates. In this study, a modified Timoshenko beam theory is used where electric potential is assumed to vary sinusoidaly along the thickness direction. The material properties are assumed to be graded across the thickness in accordance with power law distribution. Hamilton`s principle is employed to obtain the equations of motion along with the associated boundary conditions for FGPM beams. Exact analytical solution is derived thus obtained equations of motion. Results for clamped-clamped and clamped-free boundary conditions are presented. The presented result and method shell serve as benchmark for comparing the results obtained from the other approximate methods.
3D Finite element analysis of functionally graded multilayered dental ceramic cores.
Al-Maqtari, Ali Abdullah; Razak, Abdul Aziz Abdul; Hamdi, Mohd
2014-01-01
This study aimed at investigating and establishing stress distributions in graded multilayered zirconia/alumina ceramic cores and at veneer-core-cement-dentin interfaces, using finite element analysis (FEA), to facilitate the structural design of ceramic cores through computer modeling. An intact maxillary premolar was digitized using CT scanning. An imaging software, Mimics, was used to reconstruct 3D models based on computed tomography (CT) data saved in DICOM format. Eight different 3D models were created for FEA, where each 3D model was meshed and its bottom boundaries constrained. A static load was applied in the oblique direction. The materials were assumed to be isotropic and homogeneous. Highest von Mises stress values were found in areas directly below the load application point, and stress gradually decreased in occlusal loading direction from the external surface toward the dentin. Stress levels occurring at veneer-ceramic core-cement-dentin interfaces were shown to be lower in multilayered ceramic cores than in single-layer models.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The microstructure and composition of TiC-Al2O3/Fe functionally graded materials (FGM) prepared by self-propagating high temperature synthesis and pseudo-hot isostatic pressing (SHS/PHIP) were studied, and the resisting thermal shock behaviors were analyzed. The results show that TiC-Al2O3/Fe FGM has graded composition distribution. No cross-section crack through the layers was found in the tests of thermal shock and fatigue.
Fabrication of ZrO2/Mo-Si/Ni Functionally Graded Material by Dip-Coating
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
A slurry dip-coating technique was developed for fabrication of ZrO2/Mo-Si/Ni functionally graded material (FGM)on the stainless steel substrate. The rheological behavior of ZrO2-Ni-ethanol slurry was characterized by viscositytest. The amount of polyvinyl butyral (PVB) additives, which served as the dispersant and binder in ZrO2-Ni-ethanolslurry, was optimized. The results showed that the characters of mixed slurries with added 9 vol. pct (relativelyto total powders) MoSi2 powders prepared by mechanical alloying changed little. The stainless steel substrate wascoated several times by dipping in the slurries, and followed by drying in air every dipping. After debinding in Arin graphite die, the coated FGM plate was finally hot pressed at 1300℃ for 1 h under the pressure of 5 MPa in Arin the same die. Microstructural observations of the sintered FGM specimens revealed that the graded layers wereformed on the stainless steel substrate, in which no cracks were observed.
Wani, Touseef Ahmed; Shah, Adil Gani; Wani, Sajad Mohd; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad; Nissar, Nazia; Shagoo, Mudasir Ahmad
2016-11-17
Functional foods find a very important place in the modern era, where different types of cancer, diabetes, cardiovascular diseases, etc. are on a high. Irrespective of the abundance of bioactive components in different fruits and vegetables, their low solubility in aqueous solution, vulnerability to destruction in different environmental and gastrointestinal conditions and a low intestinal absorption becomes a concern. Because it is quite difficult to commercialize non food materials for the food encapsulation purposes due to their safety concerns in the human body, scientists in the recent times have come up with the idea of encapsulating the different bioactive components in different food grade materials that are able to safeguard these bioactive components against the different environmental and gastrointestinal conditions and ensure their safe and targeted delivery at their absorption sites. Different food grade encapsulation materials including various oligosaccharides, polysaccharides (starch, cyclodextrins, alginates, chitosan, gum arabic, and carboxymethyl cellulose) and proteins and their suitability for encapsulating various bioactive components like flavonoids (catechins, rutin, curcumin, hesperetin, and vanillin), nonflavonoids (resveratrol), carotenoids (β-carotene, lycopene, and lutein), and fatty acids (fish oil, flaxseed oil, and olive oil) of high medical and nutritional value are reviewed here.
Vasiliev, A. S.; Volkov, S. S.; Aizikovich, S. M.; Mitrin, B. I.
2017-02-01
Plane contact problem of the theory of elasticity on indentation of a non-deformable punch with a flat base into an elastic transversely-isotropic half-plane with a transversely-isotropic functionally graded coating is considered. Elastic moduli of the coating vary with depth according to arbitrary functions. An approximated analytical solution effective for a whole range of geometrical parameter (relative layer thickness) of the problem is constructed. Some properties of the contact normal pressure under the punch are obtained analytically and illustrated by the numerical examples for a transversely-isotropic homogeneous and functionally graded coatings with different types of variation of elastic moduli with depth. The distinctions in distribution of contact normal pressure for homogeneous and functionally graded materials, coated and non-coated bodies are studied analytically and numerically.
DEFF Research Database (Denmark)
Olsen, Niels Vidiendal; Kanstrup, I L; Richalet, J P
1992-01-01
Renal effects of altitude hypoxia are unclear. Renal and hormonal function was investigated in eight males at rest and during graded exercise at sea level (SL) and 48 h after rapid ascent to 4,350 m (HA). HA did not change resting values of effective renal plasma flow (ERPF), glomerular filtration......-intensity exercise, and there were no significant differences between exercise-induced decreases in CLi, CNa, and urine flow at HA compared with SL. Exercise gradually increased plasma norepinephrine, but values were higher at HA during light and moderate exercise. The small changes in the renal response to low......-intensity hypoxic exercise may be secondary to increased adrenosympathetic activity. However, antidiuretic and antinatriuretic effects of exercise were maintained in hypoxia and in both environments seemed to be the consequence of decreased proximal tubular outflow. The results demonstrate that renal glomerular...
Energy Technology Data Exchange (ETDEWEB)
Jeong, Jong-Seol; Shin, Ki-Hoon [Seoul National University of Science and Technology, Seoul (Korea, Republic of)
2014-09-15
The use of functionally graded materials (FGMs) may enhance thermal conductivity without reducing the desired strength in many applications such as injection molds embedding conformal cooling channels and cutting tools with heat sinks (or cooling devices). As a fundamental study for cutting tools having FGM heat sinks between M2 tool steel and Cu, six FGM specimens (M2 and Cu powders were premixed such that the relative compositions of M2 and Cu were 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 wt%) were fabricated by powder metallurgy in this study. The cross sections of these specimens were observed by optical microscopy, and then the material properties (such as thermal conductivity, specific heat, and coefficient of thermal expansion) related to heat transfer were measured and analyzed.
Energy Technology Data Exchange (ETDEWEB)
Giunta, G.; Belouettar, S. [Centre de Recherche Public Henri Tudor, 29, av. John F. Kennedy, L-1855, Luxembourg-Kirchberg, Luxembourg (Belgium)
2015-03-10
In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigations show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.
Directory of Open Access Journals (Sweden)
Dongmei Zhang
2014-01-01
Full Text Available Stability and bifurcation behaviors for a model of simply supported functionally graded materials rectangular plate subjected to the transversal and in-plane excitations are studied by means of combination of analytical and numerical methods. The resonant case considered here is 1 : 1 internal resonances and primary parametric resonance. Two types of degenerated equilibrium points are studied in detail, which are characterized by a double zero and two negative eigenvalues, and a double zero and a pair of pure imaginary eigenvalues. For each case, the stability regions of the initial equilibrium solution and the critical bifurcation curves are obtained in terms of the system parameters which may lead to Hopf bifurcation and 2D torus. With both analytical and numerical methods, bifurcation behaviors on damping parameters and detuning parameters are studied, respectively. A time integration scheme is used to find the numerical solutions for these bifurcation cases, and numerical results agree with the analytic predictions.
Directory of Open Access Journals (Sweden)
Houari M.S.A.
2014-04-01
Full Text Available In this work, the size-dependent buckling behavior of functionally graded (FG nanobeams is investigated on the basis of the nonlocal continuum model. The material properties of FG nanobeams are assumed to vary through the thickness according to the power law. In addition, Poisson’s ratio is assumed constant in the current model. The nanobeams is modelled according to the new first order shear beam theory with small deformation and the equilibrium equations are derived using the Hamilton’s principle. The Naviertype solution is developed for simply-supported boundary conditions, and exact formulas are proposed for the buckling load. The effects of nonlocal parameter, aspect ratio, various material compositions on the stability responses of the FG nanobeams are discussed.
Almasi, Davood; Sadeghi, Maliheh; Lau, Woei Jye; Roozbahani, Fatemeh; Iqbal, Nida
2016-07-01
The present work reviews the current fabrication methods of the functionally graded polymeric material (FGPM) and introduces a novel fabrication method that is versatile in applications as compared to those of existing used methods. For the first time electrophoresis was used to control the distribution of the tetracycline hydrochloride (TC) in a film made of polylactic acid (PLA), aiming to induce antimicrobial effect on the film prepared. The elemental analysis on the film surface showed that by employing electrophoresis force, higher amount of TC was detected near the top surface of the film. Results also showed that the FGPM samples with higher percentage of the TC on the film surface were highly effective to minimize the growth of Escherichia coli. These findings are useful and important to improve dispersion quality of the particles in the composite material and further enhance its antibacterial property.
Energy Technology Data Exchange (ETDEWEB)
Atai, Ali Asghar [University of Tehran, Tehran (Iran, Islamic Republic of); Lak, Davaod [National Iranian Oil Co., Tehran (Iran, Islamic Republic of)
2016-01-15
In this work, the effect of electric potential on the mechanical (Stresses, strains, displacement) and electrical (electrical displacement and intensity) response of a Functionally graded piezoelectric (FGP) hollow sphere is analytically investigated. The sphere is under the action of internal/external pressure and temperature gradient as well. The inhomogeneity is based on power law in radial direction. The analysis is done in two parts: elastic response and plastic response, using Tresca yield criterion. It is shown by illustrative example that under internal pressure and assumed model parameters, the commencement of plastic region is from outside surface towards inside in the plastic zone is extended with the increase of electric potential. Interestingly, radial stress and displacement have an extreme not on the boundaries, but on the inside.
Directory of Open Access Journals (Sweden)
Eri Miura-Fujiwara
2009-12-01
Full Text Available One of the fabrication methods for functionally graded materials (FGMs is a centrifugal solid-particle method, which is an application of the centrifugal casting technique. However, it is the difficult to fabricate FGMs containing nano-particles by the centrifugal solid-particle method. Recently, we proposed a novel fabrication method, which we have named the centrifugal mixed-powder method, by which we can obtain FGMs containing nano-particles. Using this processing method, Cu-based FGMs containing SiC particles and Al-based FGMs containing TiO2 nano-particles on their surfaces have been fabricated. In this article, the microstructure and mechanical property of Cu/SiC and Al/TiO2 FGMs, fabricated by the centrifugal mixed-powder method are reviewed.
Directory of Open Access Journals (Sweden)
Tieliang Yang
2016-01-01
Full Text Available This paper presents an analytical study for sound radiation of functionally graded materials (FGM plate based on the three-dimensional theory of elasticity. The FGM plate is a mixture of metal and ceramic, and its material properties are assumed to have smooth and continuous variation in the thickness direction according to a power-law distribution in terms of volume fractions of the constituents. Based on the three-dimensional theory of elasticity and state space method, the governing equations with variable coefficients of the FGM plate are derived. The sound radiation of the vibration plate is calculated with Rayleigh integral. Comparisons of the present results with those of solutions in the available literature are made and good agreements are achieved. Finally, some parametric studies are carried out to investigate the sound radiation properties of FGM plates.
Visual grading of 2D and 3D functional MRI compared with image-based descriptive measures
Energy Technology Data Exchange (ETDEWEB)
Ragnehed, Mattias [Linkoeping University, Division of Radiological Sciences, Radiology, IMH, Linkoeping (Sweden); Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden); Linkoeping University, Department of Medical and Health Sciences, Division of Radiological Sciences/Radiology, Faculty of Health Sciences, Linkoeping (Sweden); Leinhard, Olof Dahlqvist; Pihlsgaard, Johan; Lundberg, Peter [Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden); Linkoeping University, Division of Radiological Sciences, Radiation Physics, IMH, Linkoeping (Sweden); Wirell, Staffan [Linkoeping University, Division of Radiological Sciences, Radiology, IMH, Linkoeping (Sweden); Linkoeping University Hospital, Department of Radiology, Linkoeping (Sweden); Soekjer, Hannibal; Faegerstam, Patrik [Linkoeping University Hospital, Department of Radiology, Linkoeping (Sweden); Jiang, Bo [Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden); Smedby, Oerjan; Engstroem, Maria [Linkoeping University, Division of Radiological Sciences, Radiology, IMH, Linkoeping (Sweden); Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden)
2010-03-15
A prerequisite for successful clinical use of functional magnetic resonance imaging (fMRI) is the selection of an appropriate imaging sequence. The aim of this study was to compare 2D and 3D fMRI sequences using different image quality assessment methods. Descriptive image measures, such as activation volume and temporal signal-to-noise ratio (TSNR), were compared with results from visual grading characteristics (VGC) analysis of the fMRI results. Significant differences in activation volume and TSNR were not directly reflected by differences in VGC scores. The results suggest that better performance on descriptive image measures is not always an indicator of improved diagnostic quality of the fMRI results. In addition to descriptive image measures, it is important to include measures of diagnostic quality when comparing different fMRI data acquisition methods. (orig.)
Qian, Zheng-Hua; Jin, Feng; Lu, Tianjian; Kishimoto, Kikuo; Hirose, Sohichi
2010-01-01
The effect of initial stress on the propagation behavior of Love waves in a piezoelectric half-space of polarized ceramics carrying a functionally graded material (FGM) layer is analytically investigated in this paper from the three-dimensional equations of linear piezoelectricity. The analytical solutions are obtained for the dispersion relations of Love wave propagating in this kind of structure with initial stress for both electrical open case and electrical short case, respectively. One numerical example is given to graphically illustrate the effect of initial stress on dispersive curve, phase velocity and electromechanical coupling factor of the Love wave propagation. The results reported here are meaningful for the design of surface acoustic wave (SAW) devices with high performance.
Holmgren, Katherine Hayes
2012-01-01
This action research study examines the impact instruction informed by Systemic Functional Linguistics (SFL) with a particular focus on tenor and socio-cultural theory has on sixth, seventh and eighth grade English language learners in an urban school. Over the course of seven and 1/2 months I used Systemic Functional Linguistics with a focus on…
Heringa, S M; van den Berg, E; Reijmer, Y D; Nijpels, G; Stehouwer, C D A; Schalkwijk, C G; Teerlink, T; Scheffer, P G; van den Hurk, K; Kappelle, L J; Dekker, J M; Biessels, G J
2014-02-01
Low-grade inflammation and endothelial dysfunction are related to cognitive decline and dementia, in a complex interplay with vascular factors and aging. We investigated, in an older population, low-grade inflammation and endothelial dysfunction in relation to detailed assessment of cognitive functioning. Furthermore, we explored this association within the context of vascular factors. 377 participants (73 ± 6 years) of the population-based Hoorn Study were included. In plasma samples of 2000-2001 (n=363) and/or 2005-2008 (n=323), biomarkers were determined of low-grade inflammation (CRP, TNF-alpha, IL-6, IL-8, SAA, MPO, and sICAM-1) and endothelial dysfunction (vWF, sICAM-1, sVCAM-1, sTM, sE-selectin). In 2005-2008, all participants underwent neuropsychological examination. Composite z-scores were computed for low-grade inflammation and endothelial dysfunction at both time points, and for six domains of cognitive functioning (abstract reasoning, memory, information processing speed, attention and executive functioning, visuoconstruction, and language). The association between low-grade inflammation and endothelial dysfunction, and cognitive functioning was evaluated with linear regression analysis. In secondary analyses, we explored the relation with vascular risk factors and cardiovascular disease. Low-grade inflammation and endothelial dysfunction were associated with worse performance on information processing speed and attention and executive functioning, in prospective and cross-sectional analyses (standardized betas ranging from -0.20 to -0.10). No significant relation with other cognitive domains was observed. Adjusting for vascular factors slightly attenuated the associations. Low-grade inflammation and endothelial dysfunction accounted for only 2.6% explained variance in cognitive functioning, on top of related vascular risk factors and cardiovascular disease. Bootstrapping analyses show that low-grade inflammation and endothelial dysfunction mediate the
Energy Technology Data Exchange (ETDEWEB)
Yan, Z. [Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Gao, S.W. [College of Civil Engineering, Hebei Institute of Architecture and Civil Engineering, Zhangjiakou 075000 (China); Feng, W.J., E-mail: wjfeng9999@126.com [Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China)
2016-02-15
Highlights: • External circumferential crack problem of superconducting cylinder is investigated. • A functionally graded superconducting cylinder is analyzed. • The magnetically impermeable crack surface condition is applied. • The generalized Irie-Yamafuji critical state model outside the crack region is adopted. - Abstract: In this study, the multiple isoparametric finite element method (MIFEM) is used to investigate external circumferential crack problem of a functionally graded superconducting cylinder subjected to electromagnetic forces. The superconducting cylinder is composed by Bi2223/Ag composite with material parameters varying. A crack reference region is defined to reflect the effects of crack on flux and current densities, and the magnetically impermeable crack surface condition and the generalized Irie–Yamafuji critical state model outside the crack region are adopted. The distributions of magnetic flux density in the superconducting cylinder are obtained analytically for both the zero-field cooling (ZFC) and the field cooling (FC) activation processes. Based on the MIFEM, the stress intensity factors (SIFs) at crack fronts in the process of field ascent and/or descent are then numerically calculated. It is interesting to note from numerical results that for the present crack model in the ZFC activation process, the crack is easily propagate and grow with the applied field increases, and that in the field descent process of either the ZFC case or FC case, the crack generally does not propagate. In addition, in the field ascent process of the ZFC case, the SIFs depend on not only the crack depths and model parameters but also the applied field. The present study should be helpful to the design and application of high-temperature superconductors with external edge cracks.
Fabrication and properties of functionally graded NiAl/Al2O3 composites
Miller, D. P.; Lannutti, J. J.; Noebe, R. D.
1993-01-01
A modified sedimentation process was used in the production of a functionally gradient material (FGM), NiAl/Al2O3. A simple finite element model was used to guide our design and fabrication efforts by estimating residual stress states as a function of composite structure. This approach could lead to tailored designs that enhance or avoid specific residual stress states. Thermal cycling tests were factored into the model to predict time dependent or steady-state internal temperature and stress profiles. Four-point bend tests were conducted to establish the mechanical load-displacement behavior of a single interlayer FGM at room temperature, 800 and 1000 K. Room temperature bend strength of the FGM was 3-4 times that of the base NiAl. At elevated temperatures, composite fracture occurred in a gradual, noncatastrophic mode involving NiAl retardation of a succession of cracks originating in the alumina face.
Neonates with reduced neonatal lung function have systemic low-grade inflammation
DEFF Research Database (Denmark)
Chawes, Bo L.K.; Stokholm, Jakob; Bønnelykke, Klaus
2015-01-01
of the Copenhagen Prospective Study on Asthma in Childhood2000 birth cohort who had completed neonatal lung function testing at age 4 weeks. Associations between neonatal lung function indices and inflammatory biomarkers were investigated by conventional statistics and unsupervised principal component analysis....... Results: The neonatal forced expiratory volume at 0.5 seconds was inversely associated with hs-CRP (β-coefficient, −0.12; 95% CI, −0.21 to −0.04; P component analysis approach, including hs-CRP, IL-6......, TNF-α, and CXCL8, confirmed a uniform upregulated inflammatory profile in children with reduced forced expiratory volume at 0.5 seconds (P = .02). Adjusting for body mass index at birth, maternal smoking, older children in the home, neonatal bacterial airway colonization, infections 14 days before...
Directory of Open Access Journals (Sweden)
Musa Kılıç
2015-12-01
Full Text Available In this study, a functional graded material (FGM consisted of NiTi NiAl and Ni3Al were manufactured by self-propagating high-temperature synthesis (SHS technique. These three different compound powders were mixed in a rotating container after accurately weighed and cold compacted under 200 MPa pressure. These pressed samples were produced for 200, 300 and 400 ° C preheating temperature by igniting with high voltage under argon gas atmosphere. The microstructures of these functional graded materials were examined by microscopy, Scanning Electron Microscopy (SEM and X-Ray Diffraction (XRD. Consequently, functional graded material successful generated by SHS in every three preheating temperature and the metallic desired compounds were obtained but, it was seen that apart from the main phases in the intersection there are other phases with more melting and gaps.
Duffau, H
2015-12-01
The traditional dilemma making surgery for diffuse low-grade gliomas (DLGGs) challenging is underlain by the need to optimize tumor resection in order to significantly increase survival versus the risk of permanent neurological morbidity. Development of neuroimaging led neurosurgeons to achieve tumorectomy according to the oncological limits provided by preoperative or intraoperative structural and metabolic imaging. However, this principle is not coherent, neither with the infiltrative nature of DLGGs nor with the limited resolution of current neuroimaging. Indeed, despite technical advances, MRI still underestimates the actual spatial extent of gliomas, since tumoral cells are present several millimeters to centimeters beyond the area of signal abnormalities. Furthermore, cortical and subcortical structures may be still crucial for brain functions despite their invasion by this diffuse tumoral disease. Finally, the lack of reliability of functional MRI has also been demonstrated. Therefore, to talk about "maximal safe resection" based upon neuroimaging is a non-sense, because oncological MRI does not show the tumor and functional MRI does not show critical neural pathways. This review proposes an original concept in neuro-oncological surgery, i.e. to resect DLGG to the boundaries of brain functions, thanks to intraoperative electrical mapping performed in awake patients. This paradigmatic shift from image-guided resection to functional mapping-guided resection, based upon an accurate study of brain connectomics and neuroplasticity in each patient throughout tumor removal has permitted to solve the classical dilemma, by increasing both survival and quality of life in DLGG patients. With this in mind, brain surgeons should also be neuroscientists.
Giota, Joanna; Gustafsson, Jan-Eric
2016-08-17
The link between perceived demands of school, stress and mental health in relation to gender is complex. The study examined, with two waves of longitudinal data at age 13 and age 16, how changes in perceived academic demands relate to changes in perceived stress, taking into account gender and cognitive ability, and to investigate how these factors affect the level of psychosomatic and depressive symptoms at the age of 16. A nationally representative sample including about 9000 individuals from the Swedish longitudinal Evaluation Through Follow up database born in 1998 was included. A growth modelling approach was applied to examine relations over time. The results show girls to have a considerably higher self-reported level of mental health problems at the end of compulsory school than boys. This gender difference is entirely accounted for by perceived school demands and stress in grades 6 and 9. Students who were stronger in inductive than vocabulary ability reported lower levels of perceived academic demands and less stress in grade 6. There is a need to develop interventions for minimizing the consequences of stress among adolescents and modify those particular aspects of academic demands which cause stress and poor mental health, especially among girls. Copyright © 2016 John Wiley & Sons, Ltd.
Thivillon, L.; Bertrand, Ph.; Laget, B.; Smurov, I.
2009-03-01
Direct metal deposition (DMD) is an automated 3D deposition process arising from laser cladding technology with co-axial powder injection to refine or refurbish parts. Recently DMD has been extended to manufacture large-size near-net-shape components. When applied for manufacturing new parts (or their refinement), DMD can provide tailored thermal properties, high corrosion resistance, tailored tribology, multifunctional performance and cost savings due to smart material combinations. In repair (refurbishment) operations, DMD can be applied for parts with a wide variety of geometries and sizes. In contrast to the current tool repair techniques such as tungsten inert gas (TIG), metal inert gas (MIG) and plasma welding, laser cladding technology by DMD offers a well-controlled heat-treated zone due to the high energy density of the laser beam. In addition, this technology may be used for preventative maintenance and design changes/up-grading. One of the advantages of DMD is the possibility to build functionally graded coatings (from 1 mm thickness and higher) and 3D multi-material objects (for example, 100 mm-sized monolithic rectangular) in a single-step manufacturing cycle by using up to 4-channel powder feeder. Approved materials are: Fe (including stainless steel), Ni and Co alloys, (Cu,Ni 10%), WC compounds, TiC compounds. The developed coatings/parts are characterized by low porosity (<1%), fine microstructure, and their microhardness is close to the benchmark value of wrought alloys after thermal treatment (Co-based alloy Stellite, Inox 316L, stainless steel 17-4PH). The intended applications concern cooling elements with complex geometry, friction joints under high temperature and load, light-weight mechanical support structures, hermetic joints, tubes with complex geometry, and tailored inside and outside surface properties, etc.
Directory of Open Access Journals (Sweden)
J. E. Jam
2013-09-01
Full Text Available In this study, based on the three-dimensional theory of elasticity, free vibration characteristics of nanocomposite cylindrical panels reinforced by single-walled carbon nanotubes are considered. The carbon nanotube reinforced (CNTRC cylindrical panels have smooth variation of carbon nanotube (CNT fraction in the radial direction and the material properties are estimated by the extended rule of mixture. Suitable displacement functions that identically satisfy the boundary conditions at the simply supported edges are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by a generalized differential quadrature (GDQ method. The results show that the kind of distribution and volume fraction of CNT have a significant effect on the normalized natural frequency.
Sladek, J.; Sladek, V.; Zhang, Ch.
2008-02-01
A meshless local Petrov-Galerkin (MLPG) formulation is presented for analysis of shear deformable shallow shells with orthotropic material properties and continuously varying material properties through the shell thickness. Shear deformation of shells described by the Reissner theory is considered. Analyses of shells under static and dynamic loads are given here. For transient elastodynamic case the Laplace-transform is used to eliminate the time dependence of the field variables. A weak formulation with a unit test function transforms the set of the governing equations into local integral equations on local subdomains in the plane domain of the shell. The meshless approximation based on the Moving Least-Squares (MLS) method is employed for the implementation.
Institute of Scientific and Technical Information of China (English)
Abolfazl Khalkhali; Sharif Khakshournia; Parvaneh Saberi
2016-01-01
Carbon nanotube (CNT)/polymer nanocomposites have vast application in industry because of their light mass and high strength. In this work, a cylindrical tube which is made up of functionally graded (FG) PmPV/CNT nanocomposite, is optimally designed for the purpose of torque transmission. The main confining parameters of a rotating shaft in torque transmission process are mass of the shaft, critical speed of rotation and critical buckling torque. It is required to solve a multi-objective optimization problem (MOP) to consider these three targets simultaneously in the process of design. The three-objective optimization problem for this case is defined and solved using a hybrid method of FEM and modified non-dominated sorting genetic algorithm (NSGA-II), by coupling two softwares, MATLAB and ABAQUS. Optimization process provides a set of non-dominated optimal design vectors. Then, two methods, nearest to ideal point (NIP) and technique for ordering preferences by similarity to ideal solution (TOPSIS), are employed to choose trade-off optimum design vectors. Optimum parameters that are obtained from this work are compared with the results of previous studies for similar cylindrical tubes made from composite or a hybrid of aluminum and composite that more than 20% improvement is observed in all of the objective functions.
Xin, Libiao; Yang, Shengyou; Ma, Baoyu; Dui, Guansuo
2015-11-01
A thermoelastic solution for the functionally graded rotating thick-walled tube subjected to axisymmetric mechanical and thermal loads is given in terms of volume fractions of constituents. We assume that the tube consists of two linear elastic constituents and the volume fraction of one phase is a power function varied in the radial direction. By using the assumption of a uniform strain field within the representative volume element, the theoretical solutions of the displacement and the stresses are presented. Based on the relation of the volume average stresses of constituents and the macroscopic stresses of the composite material in micromechanics, the present method can avoid the assumption of the distribution regularities of unknown overall material parameters appeared in existing papers, such as Young's modulus, thermal expansion coefficient, thermal conductivity, and density. The effects of the angular velocity, the volume fraction, the ratio of two thermal expansion coefficients, the ratio of two thermal conductivities, and the ratio of two densities on the displacement and stresses are systematically studied, which should help structural engineers and material scientists optimally design thick-walled tube comprised inhomogeneous materials.
Goldberg, Robert K.; Hopkins, Dale A.
1994-01-01
The boundary element method is utilized in this study to conduct thermal analysis of functionally graded composites, materials in which the internal microstructure or properties are explicitly tailored in order to obtain an optimal response, on the micromechanical (constituent) scale. A unique feature of the boundary element formulations used here is the use of circular shape functions to convert the two-dimensional integrations of the composite fibers to one dimensional integrations. Using the computer code BEST-CMS, the through the thickness temperature profiles are computed for a representative material with varying numbers of fibers and fiber spacing in the thickness direction. The computed temperature profiles are compared to those obtained using an alternate analytical theory which explicitly couples the heterogeneous microstructure to the global analysis. The boundary element results compared favorably to the analytical calculations, with discrepancies that are explainable based on the boundary element formulation. The results serve both to demonstrate the ability of the boundary element method to analyze these types of materials, and to verify the accuracy of the analytical theory.
Bandyopadhyay, Amit; Krishna, B V; Xue, Weichang; Bose, Susmita
2009-12-01
Fabrication of net shape load bearing implants with complex anatomical shapes to meet desired mechanical and biological performance is still a challenge. In this article, an overview of our research activities is discussed focusing on application of Laser Engineered Net Shaping (LENS) toward load bearing implants to increase in vivo life time. We have demonstrated that LENS can fabricate net shape, complex metallic implants with designed porosities up to 70 vol.% to reduce stress-shielding. The effective modulus of Ti, NiTi, and other alloys was tailored to suit the modulus of human cortical bone by introducing 12-42 vol.% porosity. In addition, laser processed porous NiTi alloy samples show a 2-4% recoverable strain, a potentially significant result for load bearing implants. To minimize the wear induced osteolysis, unitized structures with functionally graded Co-Cr-Mo coating on porous Ti6Al4V were also made using LENS, which showed high hardness with excellent bone cell-materials interactions. Finally, LENS is also being used to fabricate porous, net shape implants with a functional gradation in porosity characteristics.
Directory of Open Access Journals (Sweden)
Zhen Qu
2016-01-01
Full Text Available Subsurface damage could affect the service life of structures. In nuclear engineering, nondestructive evaluation and detection of the evaluation of the subsurface damage region are of great importance to ensure the safety of nuclear installations. In this paper, we propose the use of circumferential horizontal shear (SH waves to detect mechanical properties of subsurface regions of damage on cylindrical structures. The regions of surface damage are considered to be functionally graded material (FGM and the cylinder is considered to be a layered structure. The Bessel functions and the power series technique are employed to solve the governing equations. By analyzing the SH waves in the 12Cr-ODS ferritic steel cylinder, which is frequently applied in the nuclear installations, we discuss the relationship between the phase velocities of SH waves in the cylinder with subsurface layers of damage and the mechanical properties of the subsurface damaged regions. The results show that the subsurface damage could lead to decrease of the SH waves’ phase velocity. The gradient parameters, which represent the degree of subsurface damage, can be evaluated by the variation of the SH waves’ phase velocity. Research results of this study can provide theoretical guidance in nondestructive evaluation for use in the analysis of the reliability and durability of nuclear installations.
Directory of Open Access Journals (Sweden)
Peng Liu
2016-01-01
Full Text Available A new model for the free transverse vibration of axially functionally graded (FG tapered Euler-Bernoulli beams is developed through the spline finite point method (SFPM by investigating the effects of the variation of cross-sectional and material properties along the longitudinal directions. In the proposed method, the beam is discretized with a set of uniformly scattered spline nodes along the beam axis instead of meshes, and the displacement field is approximated by the particularly constructed cubic B-spline interpolation functions with good adaptability for various boundary conditions. Unlike traditional discretization and modeling methods, the global structural stiffness and mass matrices for beams of the proposed model are directly generated after spline discretization without needing element meshes, generation, and assembling. The proposed method shows the distinguished features of high modeling efficiency, low computational cost, and convenience for boundary condition treatment. The performance of the proposed method is verified through numerical examples available in the published literature. All results demonstrate that the proposed method can analyze the free vibration of axially FG tapered Euler-Bernoulli beams with various boundary conditions. Moreover, high accuracy and efficiency can be achieved.
Thermal Shock Behaviour of Alumina-Iron Composites
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Thermal shock behaviour was investigated for two morphologically different composites comprising an alumina matrix and 20 vol. pct Fe particles for a wide range of quenching temperature differences (△T=100～800°C) and compared to a monolithic alumina. The retained strength and critical quenching temperature difference, △Tc, of the two composites were a significant improvement over the values for the respective monolithic alumina. Crack lengths and densities were shown to be greater for the alumina than for the two composites at all quenching temperature differences. The thermal shock resistance parameters for monolithic alumina and the two composites were calculated according to their mechanical and physical properties. The calculated results agree well with the experimental one and indicate possible explanations for the differences in thermal shock behaviour.
Directory of Open Access Journals (Sweden)
Lhoucine Boutahar
2016-03-01
Full Text Available Some Functionally Graded Materials contain pores due to the result of processing; this influences their elastic and mechanical properties. Therefore, it may be very useful to examine the vibration behavior of thin Functionally Graded Annular Plates Clamped at both edges including porosities. In the present study, the rule of mixture is modified to take into account the effect of porosity and to approximate the material properties assumed to be graded in the thickness direction of the examined annular plate. A semi-analytical model based on Hamilton’s principle and spectral analysis is adopted using a homogenization procedure to reduce the problem under consideration to that of an equivalent isotropic homogeneous annular plate. The problem is solved by a numerical iterative method. The effects of porosity, material property, and elastic foundations characteristics on the CCFGAP axisymmetric large deflection response are presented and discussed in detail.
Energy Technology Data Exchange (ETDEWEB)
Prat, Orlando; Sanhueza, Felipe [Univ. de Concepcion (Chile). Dept. de Ingenieria de Materiales; Suarez, Sebastian [Saarland Univ., Saarbruecken (Germany). Chair of Functional Materials; Garcia, Jose [AB Sandvik Coromant R and D, Stockholm (Sweden)
2016-11-15
WC-Co bi-layer functionally graded composites were produced by powder metallurgy techniques. The influence of WC particle size and the grain growth inhibitor on the formation of the functionally graded composite was investigated. SEM images show that all sintered samples present a graded microstructure after sintering, with two side regions of extra-coarse and coarse WC-Co and a clear, dense interface without defects or other phases. EBSD results showed a change of WC particle size depending on the processing and the addition of Mo{sub 2}C. Cobalt binder distribution corresponds to WC particle size. Hardness values correlate to WC particle size and binder content. It is shown that tailored hardness/toughness can be produced by adjusting the WC particle size and binder content on both sides of the bi-layer composite.
Directory of Open Access Journals (Sweden)
Li Li
2015-03-01
Full Text Available The propagation behaviour of Love wave in an initially stressed functionally graded magnetic-electric-elastic half-space carrying a homogeneous layer is investigated. The material parameters in the substrate are assumed to vary exponentially along the thickness direction only. The velocity equations of Love wave are derived on the electrically or magnetically open circuit and short circuit boundary conditions, based on the equations of motion of the graded magnetic-electric-elastic mate- rial with the initial stresses and the free traction boundary conditions of surface and the continuous boundary conditions of interface. The dispersive curves are obtained numerically and the influences of the initial stresses and the material gradient index on the dispersive curves are dis- cussed. The investigation provides a basis for the development of new functionally graded magneto-electro-elastic surface wave devices.
Directory of Open Access Journals (Sweden)
Katelin N Townsend
Full Text Available BACKGROUND: When T cells infiltrate the tumor environment they encounter a myriad of metabolic stressors including hypoxia. Overcoming the limitations imposed by an inadequate tumor vasculature that contributes to these stressors may be a crucial step to immune cells mounting an effective anti-tumor response. We sought to determine whether the functional capacity of tumor infiltrating lymphocytes (TIL could be influenced by the tumor vasculature and correlated this with survival in patients with ovarian cancer. METHODOLOGY AND PRINCIPAL FINDINGS: In 196 high-grade serous ovarian tumors, we confirmed that the tumor vascularity as measured by the marker CD31 was associated with improved patient disease-specific survival. We also found that tumors positive for markers of TIL (CD8, CD4 and forkhead box P3 (FoxP3 and T cell function (granzyme B and T-cell restricted intracellular antigen-1 (TIA-1 correlated significantly with elevated vascularity. In vitro, hypoxic CD8 T cells showed reduced cytolytic activity, secreted less effector cytokines and upregulated autophagy. Survival analysis revealed that patients had a significant improvement in disease-specific survival when FoxP3 expressing cells were present in CD31-high tumors compared to patients with FoxP3 expressing cells in CD31-low tumors [HR: 2.314 (95% CI 1.049-5.106; p = 0.0377]. Patients with high vascular endothelial growth factor (VEGF expressing tumors containing granzyme B positive cells had improved survival compared to patients with granzyme B positive cells in VEGF-low tumors [HR: 2.522 (95% CI 1.097-5.799; p = 0.0294]. SIGNIFICANCE: Overall, this data provides a rationale for developing strategies aimed at improving the adaptability and function of TIL to hypoxic tumor conditions.
Proe, Susan; Wade, David
Evaluated was the effectiveness of three training procedures (imitation training, imitation training with praise, and imitation training with points for an art supply contingency) in improving the oral reading accuracy and reading comprehension of a 13-year-old girl whose functional reading was at the second grade level. The procedures were…
Institute of Scientific and Technical Information of China (English)
Dai Haitao; Cheng Wei; Li Mingzhi
2008-01-01
The 3-dimensional couple equations of magneto-electro-elastic structures are derived under Hamiltonian system based on the Hamilton principle. The problem of single sort of variables is converted into the problem of double sorts of variables, and the Hamilton canonical equations are established. The 3-dimensional problem of magneto-electro-elastic structure which is investigated in Euclidean space commonly is converted into symplectic system. At the same time the Lagrange system is converted into Hamiltonlan system. As an example, the dynamic characteristics of the simply supported functionally graded magneto-electro-elastic material (FGMM) plate and pipe are investigated. Finally, the problem is solved by symplectic algorithm. The results show that the physical quantifies of displace-ment, electric potential and magnetic potential etc. change continuously at the interfaces between layers under the transverse pressure while some other physical quantifies such as the stress, electric and magnetic displacement are not continuous. The dynamic stiffness is increased by the piezoelectric effect while decreased by the piezomagnetic effect.
Francis, Lijo
2014-12-01
Poly(vinylidine fluoride) (PVDF) asymmetric hydrophobic hollow fibers were fabricated successfully using dryjet wet spinning. Hydrophobic silver nanoparticles were synthesized and impregnated into the PVDF polymer matrix and functionally graded PVDF-silver nanocomposite hollow fibers are fabricated and tested in the direct contact membrane distillation (DCMD) process. The as-synthesized silver nanoparticles were characterized for Transmission Electron Microscopy (TEM), particle size distribution (PSD) and Ultra Violet (UV) visible spectroscopy. Both the PVDF and PVDF-silver nanocomposite asymmetric hollow fibers were characterized for their morphology, water contact angle and mechanical strength. Addition of hydrophobic silver nanoparticles was found to enhance the hydrophobicity and ~ 2.5 fold increase the mechanical strength of the hollow fibers. A water vapor flux of 31.9kg m-2 h-1 was observed at a feed inlet temperature of 80 °C and at a permeate temperature of 20 °C in the case of hollow fiber membrane modules fabricated using PVDF hollow fibers; the water vapor flux was found to be increased by about 8% and to reach 34.6kg m-2 h-1 for the hollow fiber membrane modules fabricated from the PVDF-silver nanocomposite hollow fibers at the same operating conditions with 99.99% salt rejection.
Ghadiri, Majid; Shafiei, Navvab; Alireza Mousavi, S.
2016-09-01
Due to having difficulty in solving governing nonlinear differential equations of a non-uniform microbeam, a few numbers of authors have studied such fields. In the present study, for the first time, the size-dependent vibration behavior of a rotating functionally graded (FG) tapered microbeam based on the modified couple stress theory is investigated using differential quadrature element method (DQEM). It is assumed that physical and mechanical properties of the FG microbeam are varying along the thickness that will be defined as a power law equation. The governing equations are determined using Hamilton's principle, and DQEM is presented to obtain the results for cantilever and propped cantilever boundary conditions. The accuracy and validity of the results are shown in several numerical examples. In order to display the influence of size on the first two natural frequencies and consequently changing of some important microbeam parameters such as material length scale, rate of cross section, angular velocity and gradient index of the FG material, several diagrams and tables are represented. The results of this article can be used in designing and optimizing elastic and rotary-type micro-electro-mechanical systems like micro-motors and micro-robots including rotating parts.
Sudarmadji, N; Tan, J Y; Leong, K F; Chua, C K; Loh, Y T
2011-02-01
An important requirement for a bone tissue engineering scaffold is a stiffness gradient that mimics that of native bone. Such scaffolds can be achieved by controlling their structure and porosity and are termed functionally graded scaffolds (FGS). Currently, the main challenges in FGS fabrication include the iterative and tedious design process as well as a heavy reliance on the user's CAD/CAM skills. This work aims to bring automated FGS production a step closer by providing a database that correlates scaffold porosity values and the corresponding compressive stiffness and integrating it into the design process. To achieve this goal, scaffolds with different structural configurations were designed using CASTS (Computer Aided System for Tissue Scaffolds), an in-house developed library system consisting of 13 different polyhedral units that can be assembled into scaffold structures. Polycaprolactone (PCL) was chosen as the scaffold material, while selective laser sintering, a powder-based rapid prototyping or additive manufacturing system was employed to fabricate the scaffolds. Mathematical relations correlating scaffold porosity and compressive stiffness readings were formulated and compiled. In addition, cytotoxicity assessment was conducted to evaluate the toxicity of the fabricated PCL scaffolds. Lastly, a brief demonstration of how the formulated relations are used in the FGS design process is presented.
Fabrication of Al-Al3Ti/Ti3Al Functionally Graded Materials under a Centrifugal Force
Directory of Open Access Journals (Sweden)
Yoshimi Watanabe
2010-09-01
Full Text Available Fabrication of Al-Al3Ti functionally graded materials (FGMs under the centrifugal force has recently attracted some attention. The controlled compositional gradient of the fabricated FGMs, the low cost of the process, and the good mold filling, are the main advantages of the centrifugal method (CM. Using the conventional CM techniques such as the centrifugal solid-particle method and centrifugal in-situ method, FGMs rings with gradually distributed properties could be achieved. As a more practical choice, the centrifugal mixed-powder method (CMPM was recently proposed to obtain FGMs containing nano-particles selectively dispersed in the outer surface of the fabricated parts. However, if a control of the particles morphology, compound formulas or sizes, is desired, another CM technique is favored. As a development of CMPM, our novel reaction centrifugal mixed-powder method (RCMPM has been presented. Using RCMPM, Al‑Al3Ti/Ti3Al FGMs with good surface properties and temperature controlled compositional gradient could be achieved. In this short review, this novel method will be discussed in detail and the effect of RCMPM processing temperature on the reinforcement particles morphology, size and distribution through the fabricated samples, will be reviewed.
Directory of Open Access Journals (Sweden)
Hideaki Tsukamoto
2015-03-01
Full Text Available This study numerically investigates cyclic thermal shock behavior of ZrO2/Ti functionally graded thermal barrier coatings (FG TBCs based on a nonlinear mean-field micromechanical approach, which takes into account the time-independent and dependent inelastic deformation, such as plasticity of metals, creep of metals and ceramics, and diffusional mass flow at the ceramic/metal interface. The fabrication processes for the FG TBCs have been also considered in the simulation. The effect of creep and compositional gradation patterns on micro-stress states in the FG TBCs during thermal cycling has been examined in terms of the amplitudes, ratios, maximum and mean values of thermal stresses. The compositional gradation patterns highly affect thermal stress states in case of high creep rates of ZrO2. In comparison with experimental data, maximum thermal stresses, amplitudes and ratios of thermal stresses can be effective parameters for design of such FG TBCs subject to cyclic thermal shock loadings.
Institute of Scientific and Technical Information of China (English)
Qing; Liu; Yao; Shi; Shudong; Zheng; Liqi; Ning; Qing; Ye; Mengna; Tao; Yi; He
2014-01-01
Industrial grade multi-walled carbon nanotubes(IG-MWCNTs) are a low-cost substitute for commercially purified multi-walled carbon nanotubes(P-MWCNTs). In this work, IG-MWCNTs were functionalized with tetraethylenepentamine(TEPA) for CO2capture. The TEPA impregnated IG-MWCNTs were characterized with various experimental methods including N2adsorption/desorption isotherms, elemental analysis, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric analysis. Both the adsorption isotherms of IGMWCNTs-n and the isosteric heats of different adsorption capacities were obtained from experiments. TEPA impregnated IG-MWCNTs were also shown to have high CO2adsorption capacity comparable to that of TEPA impregnated P-MWCNTs. The adsorption capacity of IG-MWCNTs based adsorbents was in the range of 2.145 to 3.088 mmol/g, depending on adsorption temperatures. Having the advantages of low-cost and high adsorption capacity, TEPA impregnated IG-MWCNTs seem to be a promising adsorbent for CO2capture from flue gas.
Daneshjou, K.; Talebitooti, R.; Kornokar, M.
2017-04-01
This paper presents an analytical solution for sound transmission through a multilayered cylindrical shell with bonded-unbonded (BU) configuration. The multilayered cylindrical shell, which is composed of an outer layer of functionally graded material (FGM) and an inner isotropic layer with a poroelastic core and an air gap, is assumed to be infinitely long and is subjected to a plane wave on its external sidewall. To describe the poroelastic core, the extended full method (EFM) is applied based on Biot's theory. Contrary to previous methods, the EFM completely models the poroelastic cylindrical shell in three dimensions. In addition, the motions of both FGM and isotropic shells are described with the first order shear deformation theory (FSDT). Unlike the simplified method, the EFM does not need to identify the frequency ranges where one of the airborne or frame waves is dominant in BU configuration. In fact, utilizing the EFM for BU configuration permits obtaining the sound transmission loss (TL) irrespective of the dominant wave, which significantly reduces the computational work. Moreover, comparing with the previous models, the EFM provides more accurate results as it does not ignore any term in the modeling. Furthermore, the advantages of the BU-FGM shell in enhancing the TL are demonstrated with respect to the BB-isotropic configuration. It is shown that presence of the FGM in addition to the poroelastic material in a structure yields thermal insulation and improves soundproofing characteristics in a broadband frequency range.
Effect of Heat Treatment on the Wear Behaviour of Functionally Graded LM13/B4C Composite
Directory of Open Access Journals (Sweden)
L.V. Priyanka Muddamsetty
2016-03-01
Full Text Available Aluminium alloy reinforced with boron carbide (10 wt.% was fabricated using stir casting method followed by centrifugal casting and the cylindrical specimen with dimension 150 x 150 x 15 mm was obtained. The composite specimens were heat treated at various aging temperatures and aging time for property improvement. Solution treatment was done at 525 ℃ for 5 hrs. Taguchi’s method was used for designing the plan of experiments and L27 orthogonal array was formulated for the analysis of data. The wear test was conducted on the outer periphery of centrifugally cast Functionally Graded composites using pin-on-disc tribometer. Optimization of parameters such as applied load (10 N, 20 N, 30 N, agingtemperature (150 ℃, 175 ℃, 200 ℃ and aging time (2 hrs, 6 hrs, 10 hrs was done using Signal-to-Noise ratio. “Smaller-the-better” criterion was used for analyzing the results. Results ended up with a conclusion that aging time (92.19 % had major influence on tribological behavior followed by aging temperature (5.36 % and applied load (1.95 %. Scanning Electron Microscope (SEM analysis was performed to understand the wear mechanism in heat treated specimens.
Fabrication of Al/Al3Ti Functionally Graded Materials by Reaction Centrifugal Mixed-Powder Method
El-Hadad, Shimaa; Sato, Hisashi; Miura-Fujiwara, Eri; Watanabe, Yoshimi
2011-01-01
Formation of compositional gradient in Al/Al3Ti Functionally graded materials (FGMs) fabricated by the centrifugal method (CM) depends mainly on the centrifugal force and the processing temperature. In this study, a novel centrifugal method, reaction centrifugal mixed-powder method (RCMPM), was proposed to fabricate Al/Al3Ti FGMs under fixed centrifugal force (G=80). The effects of RCMPM processing temperature on the formation of Al3Ti intermetallics, its morphology and its distribution in the fabricated Al/Al3Ti FGMs have been investigated. Fine granular Al3Ti were observed at relatively lower processing temperature while the known coarse platelet-like particles of Al3Ti could be achieved at higher casting temperatures. Moreover, Ti3Al intermetallics compound and unreacted Ti phases are also observed along with Al3Ti particles. In addition, distribution of Al3Ti intermetallics size and their volume fraction showed a significant change when the Al/Al3Ti FGMs processed at different temperatures relative to the liquidus temperature of the master alloy.
Directory of Open Access Journals (Sweden)
F. Tornabene
2016-01-01
Full Text Available The cylindrical bending condition for structural models is very common in the literature because it allows an incisive and simple verification of the proposed plate and shell models. In the present paper, 2D numerical approaches (the Generalized Differential Quadrature (GDQ and the finite element (FE methods are compared with an exact 3D shell solution in the case of free vibrations of functionally graded material (FGM plates and shells. The first 18 vibration modes carried out through the 3D exact model are compared with the frequencies obtained via the 2D numerical models. All the 18 frequencies obtained via the 3D exact model are computed when the structures have simply supported boundary conditions for all the edges. If the same boundary conditions are used in the 2D numerical models, some modes are missed. Some of these missed modes can be obtained modifying the boundary conditions imposing free edges through the direction perpendicular to the direction of cylindrical bending. However, some modes cannot be calculated via the 2D numerical models even when the boundary conditions are modified because the cylindrical bending requirements cannot be imposed for numerical solutions in the curvilinear edges by definition. These features are investigated in the present paper for different geometries (plates, cylinders, and cylindrical shells, types of FGM law, lamination sequences, and thickness ratios.
Tan, Chao; Wang, Guoyu; Ji, Lina; Tong, Yangang; Duan, Xuan-Ming
2016-02-01
316L-W (Tungsten) composite materials were fabricated by spark plasma sintering (SPS) of mechanically alloyed 316L-W powders for the development of functionally graded materials (FGMs). The effect of milling parameters on the morphology of the blended 316L/W powders and its subsequent effect on the transition between 316L and W particles during the SPS process were investigated. Samples were characterized by SEM, EDS and XRD analyses. The results so obtained show that with the increase of milling time, the mechanically activated W powder particles become thinner and smoother, with some broken fragments aggregated or inserted in the severely deformed 316L particles. A further SPS process under the conditions of 1050 °C × 45.5 MPa × 5 min leads to the densification of the powder compact and the formation of a distinguishable gray belt surrounding the retained W particles. Such a belt, which has a width of about 2-8 μm depending on different milling parameters and mainly contains Fe7W6, Fe3W3C and Fe2W phases, is bound to be a transitional region between the retained W particles and the 316L matrix. This favorable behavior with regards to the formation of a transitional belt, is accompanied by a substantial increase in the hardness values of the composite.
Wang, Zhi-Guo; Li, Chuan-Peng; Wang, Hui-Yuan; Zhu, Jia-Ning; Wang, Cheng; Jiang, Qi-Chuan
2017-02-01
Functionally graded 2014Al/SiC composites (FGMs) with varying volume fractions (1-7%) of nano-SiC particulates (n-SiCp) were fabricated by powder metallurgy. The effect of n-SiCp content on corrosion and wear behaviors was studied. The microstructures of composites were characterized by optical microscopy, scanning electron microscopy and transmission electron microscopy. The corrosion behavior of the composites was evaluated by potentiodynamic polarization scans in 3.5 wt.% NaCl solution. Corrosion results show that corrosion current of composite layer with 3 vol.% n-SiC was much lower than that of 2014Al matrix. Mechanical properties of the composites were assessed by microhardness tests and ball-on-disk wear tests. As the applied load changed from 15 to 30 N, wear rates of the composites increased significantly and the wear mechanism transformed from mild to severe wear regime. It also shows that 3 vol.% n-SiCp/2014Al composite layer observed the lowest wear rate where adhesive and abrasive wear mechanisms played a major role. These results suggest that the n-SiCp are effective candidates for fabricating FGMs for the applications demanding a tough core and a hard, wear or corrosion resisting surface.
Institute of Scientific and Technical Information of China (English)
Jun Liang; Shiping Wu; Shanyi Du
2007-01-01
In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material den-sity are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kemel is used instead of a two-dimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform,the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displace-ments across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solu-tions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoret-ical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant param-eters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the fre-quency of the incident waves and the lattice parameter of materials.
Institute of Scientific and Technical Information of China (English)
李世荣; 万泽青; 张静华
2014-01-01
The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by considering the shear deforma-tion and the axial, transversal, rotational, and axial-rotational coupling inertia forces on the assumption that the material properties vary arbitrarily in the thickness direction. By using the numerical shooting method to solve the eigenvalue problem of the coupled ordinary differential equations with different boundary conditions, the natural frequen-cies of the FGM Timoshenko beams are obtained numerically. In a special case of the classical beam theory, a proportional transformation between the natural frequencies of the FGM and the reference homogenous beams is obtained by using the mathematical similarity between the mathematical formulations. This formula provides a simple and useful approach to evaluate the natural frequencies of the FGM beams without dealing with the tension-bending coupling problem. Approximately, this analogous transition can also be extended to predict the frequencies of the FGM Timoshenko beams. The numerical results obtained by the shooting method and those obtained by the analogous transformation are presented to show the effects of the material gradient, the slenderness ratio, and the boundary conditions on the natural frequencies in detail.
Kiviö, Miia; Holappa, Lauri; Louhenkilpi, Seppo; Nakamoto, Masashi; Tanaka, Toshihiro
2016-08-01
In modern materials' applications, versatile, often contradictory requirements are set for properties like high strength, hardness, and toughness. However, e.g., in steel castings, typically only certain surfaces should be hard and wear resistant, whereas the other "bulk" might have only standard properties. Then the critical parts of the surface should be "locally reinforced" to get functionally graded material. Expensive alloying elements are saved, and manufacturing stages are minimized. Titanium carbide is an extremely hard material widely applied in carbide tools. It could be used to reinforce steel castings. When TiC particles are added to liquid steel, wettability, stability, and dissolution are key phenomena that should be understood to better design and control manufacturing processes. In this work, the interfacial phenomena and reactions between TiC and iron/steel melts were examined by wetting experiments with special emphasis on the influence of Cr, Ni, and Mo. No significant effect on wettability was observed by Ni or Mo. High Cr melts showed somewhat higher contact angles. Partial penetration of liquid metal took place in the substrate along the grain boundaries. Ni seemed to promote penetration. During longer experiments, re-precipitation of carbides occurred on the liquid droplet influencing the apparent wetting angle. Cr and Mo promoted carbide formation.
Energy Technology Data Exchange (ETDEWEB)
Perales, F
2005-12-15
This thesis is devoted to the dynamic fracture of functionally graded materials. More particularly, it deals with the toughness of nuclear cladding at high burnup submitted to transient loading. The fracture is studied at local scale using cohesive zone model in a multi body approach. Cohesive zone models include frictional contact to take into account mixed mode fracture. Non smooth dynamics problems are treated within the Non-Smooth Contact Dynamics framework. A multi scale study is necessary because of the dimension of the clad. At microscopic scale, the effective properties of surface law, between each body, are obtained by periodic numerical homogenization. A two fields Finite Element formulation is so written. An extended formulation of the NSCD framework is obtained. The associated software allows to simulate, in finite deformation, from the crack initiation to post-fracture behavior in heterogeneous materials. At microscopic scale, random RVE calculations are made to determine effective properties. At macroscopic scale, calculations of part of clad are made to determine the role of the mean hydrogen concentration and gradient of hydrogen parameters in the toughness of the clad under dynamic loading. (author)
Ghadiri, Majid; Shafiei, Navvab
2016-04-01
In this study, thermal vibration of rotary functionally graded Timoshenko microbeam has been analyzed based on modified couple stress theory considering temperature change in four types of temperature distribution on thermal environment. Material properties of FG microbeam are supposed to be temperature dependent and vary continuously along the thickness according to the power-law form. The axial forces are also included in the model as the thermal and true spatial variation due to the rotation. Governing equations and boundary conditions have been derived by employing Hamiltonian's principle. The differential quadrature method is employed to solve the governing equations for cantilever and propped cantilever boundary conditions. Validations are done by comparing available literatures and obtained results which indicate accuracy of applied method. Results represent effects of temperature changes, different boundary conditions, nondimensional angular velocity, length scale parameter, different boundary conditions, FG index and beam thickness on fundamental, second and third nondimensional frequencies. Results determine critical values of temperature changes and other essential parameters which can be applicable to design micromachines like micromotor and microturbine.
Institute of Scientific and Technical Information of China (English)
YANG Zhong-min; GONG Dao-ren; ZHANG Lian-meng
2004-01-01
In the process of particle settling in a dilute,a density graded distribution of the liquid below the suspension needs to be designed according to the gravity of the suspension prior to sedimentation.In the present paper a compositionally graded W-Mo composite was formed via the settling of the W and Mo particles,with a density gradient distributed in the initial clear liquid along the settling direction.
Energy Technology Data Exchange (ETDEWEB)
Castellano, Antonella; Iadanza, Antonella; Falini, Andrea [San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Neuroradiology Unit and CERMAC, Milano (Italy); Donativi, Marina [University of Salento, Department of Mathematics and Physics ' ' Ennio De Giorgi' ' and A.D.A.M. (Advanced Data Analysis in Medicine), Lecce (Italy); Ruda, Roberta; Bertero, Luca; Soffietti, Riccardo [University of Torino, Department of Neuro-oncology, Turin (Italy); De Nunzio, Giorgio [University of Salento, Department of Mathematics and Physics ' ' Ennio De Giorgi' ' and A.D.A.M. (Advanced Data Analysis in Medicine), Lecce (Italy); INFN (National Institute of Nuclear Physics), Lecce (Italy); Riva, Marco; Bello, Lorenzo [Universita degli Studi di Milano, Milan, and Humanitas Research Hospital, Department of Medical Biotechnology and Translational Medicine, Rozzano, MI (Italy); Rucco, Matteo [University of Camerino, School of Science and Technology, Computer Science Division, Camerino, MC (Italy)
2016-05-15
To explore the role of diffusion tensor imaging (DTI)-based histogram analysis and functional diffusion maps (fDMs) in evaluating structural changes of low-grade gliomas (LGGs) receiving temozolomide (TMZ) chemotherapy. Twenty-one LGG patients underwent 3T-MR examinations before and after three and six cycles of dose-dense TMZ, including 3D-fluid-attenuated inversion recovery (FLAIR) sequences and DTI (b = 1000 s/mm{sup 2}, 32 directions). Mean diffusivity (MD), fractional anisotropy (FA), and tensor-decomposition DTI maps (p and q) were obtained. Histogram and fDM analyses were performed on co-registered baseline and post-chemotherapy maps. DTI changes were compared with modifications of tumour area and volume [according to Response Assessment in Neuro-Oncology (RANO) criteria], and seizure response. After three cycles of TMZ, 20/21 patients were stable according to RANO criteria, but DTI changes were observed in all patients (Wilcoxon test, P ≤ 0.03). After six cycles, DTI changes were more pronounced (P ≤ 0.005). Seventy-five percent of patients had early seizure response with significant improvement of DTI values, maintaining stability on FLAIR. Early changes of the 25th percentiles of p and MD predicted final volume change (R{sup 2} = 0.614 and 0.561, P < 0.0005, respectively). TMZ-related changes were located mainly at tumour borders on p and MD fDMs. DTI-based histogram and fDM analyses are useful techniques to evaluate the early effects of TMZ chemotherapy in LGG patients. (orig.)
Institute of Scientific and Technical Information of China (English)
2007-01-01
In this paper, the dynamic stress field near crack tips in the functionally graded materials subjected to the harmonic anti-plane shear stress waves was investi- gated by means of the non-local theory. The traditional concepts of the non-local theory were extended to solve the fracture problem of functionally graded materials. To make the analysis tractable, it was assumed that the material properties vary exponentially with coordinate parallel to the crack. By use of the Fourier transform, the problem can be solved with the help of a pair of dual integral equations, in which the unknown variable was the displacement on the crack surfaces. To solve the dual integral equations, the displacement on the crack surfaces was expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solutions yield a finite hoop stress at crack tips, thus allowing us to use the maximum stress as a fracture criterion. The magnitude of the finite dynamic stress field depends on the crack length, the parameter describing the functionally graded materials, the circular frequency of the incident waves and the lattice parameter of materials.
Institute of Scientific and Technical Information of China (English)
ZHANG PeiWei; ZHOU ZhenGong; WU LinZhi
2007-01-01
In this paper, the dynamic stress field near crack tips in the functionally graded materials subjected to the harmonic anti-plane shear stress waves was investigated by means of the non-local theory. The traditional concepts of the non-local theory were extended to solve the fracture problem of functionally graded materials.To make the analysis tractable, it was assumed that the material properties vary exponentially with coordinate parallel to the crack. By use of the Fourier transform,the problem can be solved with the help of a pair of dual integral equations, in which the unknown variable was the displacement on the crack surfaces. To solve the dual integral equations, the displacement on the crack surfaces was expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solutions yield a finite hoop stress at crack tips, thus allowing us to use the maximum stress as a fracture criterion. The magnitude of the finite dynamic stress field depends on the crack length, the parameter describing the functionally graded materials, the circular frequency of the incident waves and the lattice parameter of materials.
Lawrenson, K.; Li, Q.; Kar, S.; Seo, J.H.; Tyrer, J.; Spindler, T.J.; Lee, J. van der; Chen, Y; Karst, A.; Drapkin, R.; Aben, K.K.H.; Anton-Culver, H.; Antonenkova, N.; Baker, H.; Bandera, E.V.; Bean, Y.; Beckmann, M.W.; Berchuck, A.; Bisogna, M.; Bjorge, L.; Bogdanova, N.; Brinton, L.A.; Brooks-Wilson, A.; Bruinsma, F.; Butzow, R.; Campbell, I.G.; Carty, K.; Chang-Claude, J.; Chenevix-Trench, G.; Chen, A; Chen, Z.; Cook, L.S.; Cramer, D.W; Cunningham, J.M.; Cybulski, C.; Dansonka-Mieszkowska, A.; Dennis, J.; Dicks, E.; Doherty, J.A.; Dork, T.; Bois, A. du; Durst, M.; Eccles, D.; Easton, D.T.; Edwards, R.P.; Eilber, U.; Ekici, A.B.; Fasching, P.A.; Fridley, B.L.; Gao, Y.T.; Gentry-Maharaj, A.; Giles, G.G.; Glasspool, R.; Goode, E.L.; Goodman, M.T.; Grownwald, J.; Harrington, P.; Harter, P.; Hasmad, H.N.; Hein, A.; Heitz, F.; Hildebrandt, M.A.; Hillemanns, P.; Hogdall, E.; Hogdall, C.; Hosono, S.; Iversen, E.S.; Jakubowska, A.; James, P.; Jensen, A.; Ji, B.T.; Karlan, B.Y.; Kjaer, S. Kruger; Kelemen, L.E.; Kellar, M.; Kelley, J.L.; Kiemeney, L.A.; Krakstad, C.; Kupryjanczyk, J.; Lambrechts, D.; Lambrechts, S.; Le, N.D.; Lee, A.W.; Lele, S.; Leminen, A.; Lester, J.; Levine, D.A.; Liang, D.; Lissowska, J.; Lu, K.; Lubinski, J.; Lundvall, L.; Massuger, L.F.; Matsuo, K.; McGuire, V.; McLaughlin, J.R.; Nevanlinna, H.; McNeish, I.; Menon, U.; Modugno, F.
2015-01-01
Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions associat
Severini, C; Ricci, I; Marone, M; Derossi, A; De Pilli, T
2015-03-01
The changes in chemical attributes and aromatic profile of espresso coffee (EC) were studied taking into account the extraction time and grinding level as independent variables. Particularly, using an electronic nose system, the changes of the global aromatic profile of EC were highlighted. The results shown as the major amounts of organic acids, solids, and caffeine were extracted in the first 8 s of percolation. The grinding grade significantly affected the quality of EC probably as an effect of the particle size distribution and the percolation pathways of water through the coffee cake. The use of an electronic nose system allowed us to discriminate the fractions of the brew as a function of the percolation time and also the regular coffee obtained from different grinding grades. Particularly, the aromatic profile of a regular coffee (25 mL) was significantly affected by the grinding level of the coffee grounds and percolation time, which are two variables under the control of the bar operator.
Budaj, Jan; Salmeron, Raquel; Hubeny, Ivan
2015-01-01
There has been growing observational evidence for the presence of condensates in the atmospheres and/or comet-like tails of extrasolar planets. As a result, systematic and homogeneous tables of dust properties are useful in order to facilitate further observational and theoretical studies. In this paper we present calculations and analysis of non-isotropic phase functions, asymmetry parameter (mean cosine of the scattering angle), absorption and scattering opacities, single scattering albedos, equilibrium temperatures, and radiative accelerations of dust grains relevant for extrasolar planets. Our assumptions include spherical grain shape, Deirmendjian particle size distribution, and Mie theory. We consider several species: corundum/alumina, iron, olivines with 0% and 50% iron content, pyroxenes with 0%, 20% and 60% iron content, carbon at two different temperatures, water ice, liquid water, and ammonia. The presented tables cover the wavelength range of 0.2 to 500 micron and modal particle radii from 0.01 mi...
Institute of Scientific and Technical Information of China (English)
赵凤群; 王忠民; 路小平
2014-01-01
由Hamilton原理建立轴向运动功能梯度Timoshenko梁运动微分方程组，通过引入新未知函数，将方程组化为该函数的四阶偏微分方程。用WDQ（Wavelet Differential Guadreture）法获得简支FGM（Functional Graded Material） Timoshenko梁特征方程及复频率与轴向运动速度变化关系。分析梁随轴向运动速度变化的失稳形式，并与均质材料梁进行比较。分析梯度指标、梁长高比对FGM Timoshenko梁动力稳定性影响。%The governing differential equations of axially moving Timoshenko beam made of functionally graded material were presented based on the Hamilton principle.A single fourth-order partial differential equation was derived by introducing a new unknown function.For simply supported functional graded material (FGM)Timoshenko beam,the characteristic equation was obtained by using wavelet differential guadreture (WDQ)method,and the relation of the first three orders of complex frequencies of the beam with axial movement speed was provided.The instability form of the FGM Timoshenko beam at different axial movement speeds was analyzed in detail,and the results was compared with that of homogeneous material beam.The effects of length-to-height ratio and gradient index on the stability of FGM Timoshenko beam were discussed.
Directory of Open Access Journals (Sweden)
Tjokorda Gde Tirta Nindhia
2006-01-01
Full Text Available This research is intended to produce functionally graded material (FGM of Hydroxyapatite (Hap-silk fibroin by pulse electric current sintering in facing the need in biomaterial application. The sample is created with 4 layers with the thickness for each layer is 0,625 mm, so that the total samples thickness become 2.5mm, with diameter 15 mm. The carbon die is used to compact the sample. The composition of lower layer is 100% silk fibroin, after that 90% silk fibroin +10% Hap, third layer was 80% silk fibroin + 20%Hap, and 70% silk fibroin +30% Hap for the upper layer. The properties of the FGM product was characterized by optical microscope and scanning electron microscope (SEM, three point bend with single-edge beam fracture toughness test (KIC. The grade of the FGM material is proven by using electron probe micro analyzer (EPMA. The value of fracture toughness is 0.45 MPa.m1/2. The sample still can support the load after maximum load is reached. Optical micrograph and SEM, and result from EPMA indicate that the Hap-silk fibroin FGM can be produce perfectly by using the method that is introduced in this research. Abstract in Bahasa Indonesia : Penelitian ini bertujuan memproduksi functionally graded material (FGM dari hydroxyapatite (Hap-serat sutra, melalui teknik pulse electric current sintering untuk memenuhi tantangan kebutuhan akan bahan jenis ini untuk digunakan dibidang biomaterial. Benda uji terdiri dari 4 lapis dengan ketebalan sama untuk tiap lapisnya sehingga tebal total menjadi 2.5 mm dengan diameter 15 mm. Komposisi lapisan paling bawah adalah 100% serat sutra, setelah itu 90% serat sutra + 10% Hap. Lapisan ketiga dengan komposisi 80% serat sutra + 20% Hap, dan 70% serat sutra + 30% Hap untuk lapisan paling atas. Perilaku produk FGM ini dikarakterisasikan dengan mikroskop optik, mikroskop electron, uji ketangguhan retak three point bend with single-edge. Gradasi (grade dari FGM dibuktikan dengan electron probe micro analyzer (EPMA
Institute of Scientific and Technical Information of China (English)
2008-01-01
This paper studies the problem of a functionally graded piezoelectric circular plate subjected to a uniform electric potential difference between the upper and lower surfaces. By assuming the generalized displacements in appropriate forms,five differential equations governing the generalized displacement functions are derived from the equilibrium equations. These displacement functions are then obtained in an explicit form,which still involve four undetermined integral constants,through a step-by-step integration which properly incorporates the boundary conditions at the upper and lower surfaces. The boundary conditions at the cylindrical surface are then used to determine the integral constants. Hence,three-dimen sional analytical solutions for electrically loaded functionally graded piezoelectric circular plates with free or simply-supported edge are completely determined. These solutions can account for an arbitrary material variation along the thickness,and thus can be readily degenerated into those for a homogenous plate. A numerical example is finally given to show the validity of the analysis,and the effect of material inhomogeneity on the elastic and electric fields is discussed.
Seethaler, Pamela M; Fuchs, Lynn S; Fuchs, Douglas; Compton, Donald L
2016-12-01
The purpose of this study was to assess the added value of dynamic assessment (DA) beyond more conventional static measures for predicting individual differences in year-end 1(st)-grade calculation (CA) and word-problem (WP) performance, as a function of limited English proficiency (LEP) status. At the start of 1(st) grade, students (129 LEP; 163 non-LEP) were assessed on a brief static mathematics test, an extended static mathematics test, static tests of domain-general abilities associated with CAs and WPs (vocabulary; reasoning), and DA. Near end of 1(st) grade, they were assessed on CA and WP. Regression analyses indicated that the value of the predictor depends on the predicted outcome and LEP status. In predicting CAs, the extended mathematics test and DA uniquely explained variance for LEP children, with stronger predictive value for the extended mathematics test; for non-LEP children, the extended mathematics test was the only significant predictor. However, in predicting WPs, only DA and vocabulary were uniquely predictive for LEP children, with stronger value for DA; for non-LEP children, the extended mathematics test and DA were comparably uniquely predictive. Neither the brief static mathematics test nor reasoning was significant in predicting either outcome. The potential value of a gated screening process, using an extended mathematics assessment to predict CAs and using DA to predict WPs, is discussed.
Seethaler, Pamela M.; Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.
2015-01-01
The purpose of this study was to assess the added value of dynamic assessment (DA) beyond more conventional static measures for predicting individual differences in year-end 1st-grade calculation (CA) and word-problem (WP) performance, as a function of limited English proficiency (LEP) status. At the start of 1st grade, students (129 LEP; 163 non-LEP) were assessed on a brief static mathematics test, an extended static mathematics test, static tests of domain-general abilities associated with CAs and WPs (vocabulary; reasoning), and DA. Near end of 1st grade, they were assessed on CA and WP. Regression analyses indicated that the value of the predictor depends on the predicted outcome and LEP status. In predicting CAs, the extended mathematics test and DA uniquely explained variance for LEP children, with stronger predictive value for the extended mathematics test; for non-LEP children, the extended mathematics test was the only significant predictor. However, in predicting WPs, only DA and vocabulary were uniquely predictive for LEP children, with stronger value for DA; for non-LEP children, the extended mathematics test and DA were comparably uniquely predictive. Neither the brief static mathematics test nor reasoning was significant in predicting either outcome. The potential value of a gated screening process, using an extended mathematics assessment to predict CAs and using DA to predict WPs, is discussed. PMID:26523068
Energy Technology Data Exchange (ETDEWEB)
Zhang, Kai [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hao, E-mail: yhzhmr@126.com [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Jun-you [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Li, Yan-xia [Department of Materials, North China Institute of Aerospace Engineering, Langfang 065000 (China); Liu, Jian; Zhang, Jia-liang [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)
2015-01-29
In this paper, the microstructure and mechanical property of a graded aluminum silicon alloy were investigated and a new preparation method for the graded material was proposed. The cup-shaped sample was fabricated by the backward extrusion process during the semi-solid state of A390 cast alloy. Characteristics and distribution of the primary particles were assessed by the optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrum (EDS) and image analyzer software. The results showed that the content of primary Si gradually decreased from the bottom region to the upper region. The hardness and wear rate of the samples were measured to evaluate the variation in the mechanical properties corresponding to the variation in microstructure. The hardness values and wear resistance along the axis of the cup-shaped sample gradually increased from the upper region to the bottom region and from the inner region to the outer layer, respectively. The maximum average hardness value is 138.7 HB. The observations of fracture surface were analyzed by scanning electron microscopy to understand the fracture mechanism. The results also indicated that the ultimate tensile strength (UTS) of the graded material after T6 treatment are 275 MPa, increases 32.3% compared to the original backward extrusion alloy. Optical microscopy and electron probe micro-analyzer were used to study the distribution of elements and the microstructure of different intermetallic phases formed. Electron microprobe analysis (EMPA) results showed that the content of the prominent elements (Cu, Fe, Mg) in the upper region was higher than for the bottom part of the cup-shaped specimens.
DEFF Research Database (Denmark)
Daugaard, Anders Egede; Jankova Atanasova, Katja; Bøgelund, J.;
2010-01-01
for the preparation of polystyrene functionalized MWCNT. It was found that pentamethyldiethylenetriamine (PMDETA) gave superior results with higher loading in shorter polymerization time. A comparative study of the method applied on two different grades of nonoxidized MWCNT has been performed, illustrating large...... differences in reactivity and polymer loading, underlining the importance of the choice of MWCNT starting material. In addition to styrene, also poly(ethylene glycol) methacrylate (PEGMA) was shown to polymerize from the surface of the MWCNT. Finally, initial results from composites of polystyrene...
Energy Technology Data Exchange (ETDEWEB)
Queiroz, Marcos S.M. [Sondotecnica Engenharia de Solos S.A., Rio de Janeiro, RJ (Brazil); Roehl, Deane de Mesquita [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)
2008-07-01
This work presents a methodology for design of stiffener sleeve constituted by functionally graded composite materials in offshore pipelines located in extreme-deep waters, where high mechanical resistance allied to an efficient system of thermal isolation is necessary, in view of the excellent thermomechanical behavior of composites. For the case of FGMs, due to continuous variation in its featuring, is necessary to employ an adapted model, based on a model typically adopted for conventional composites (Rule of Mixture), as the model idealized by Tamura, Tomato e Ozawa, the TTO model. In this report, the influence of geometric and materials parameters in mechanical behavior of pipelines under propagating collapse is analyzed. (author)
Directory of Open Access Journals (Sweden)
S.C. Ram
2016-09-01
Full Text Available In present study, the effect of dry sliding wear conditions of A356 alloy/Mg2Sip functionally graded in-situ composites developed by centrifugal casting method has been studied. A pure commercial A356 alloy (Al–7.5Si–0.3Mg was selected to be the matrix of the composites and primary Mg2Sip reinforcing particles were formed by in-situ chemical reaction with an average grain size of 40-47.8 µm. The Al–(Mg2Sip functionally graded metal matrix composites (FGMMC’s were synthesized by centrifugal casting technique with radial geometry, using two different mould rotating speeds ( 1200 and 1600 rpm. The X-ray diffraction (XRD characterization technique was carried out to confirm the in-situ formed Mg2Si particles in composites. Optical microscopy examination was carried out to reveals the grain refinement of Al-rich grains due to in-situ formed Mg2Si particles. Scanning electron microscope (SEM and Energy dispersive X-ray spectroscopy (EDS techniques were carried out to reveal the distribution of phases, morphological characteristics and confirmation of primary Mg2Si particles in the matrix. The sliding wear behavior was studied using a Pin-on-Disc set-up machine with sliding wear parameters: effect of loads (N, effect of sliding distances (m and effect of Mg on wear at room temperature with a high-carbon chromium steel disc (HRC-64 as counter surfaces. A good correlation was evidenced between the dry sliding behaviour of functionally graded in-situ composites and the distribution of Mg2Si reinforcing particles. Beside the above processing conditions, the dominant wear mechanisms of functionally graded in-situ composites have been correlated with the microstructures. The hardness and wear resistance properties of these composites increase with increasing volume percent of reinforced primary Si/Mg2Si particles toward inner zone of cast cylindrical shapes. The objective of this works was to study the tribological characteristics under dry sliding
Cao, Xiaoshan; Shi, Junping; Jin, Feng
2012-06-01
The propagation behavior of Love waves in a layered structure that includes a functionally graded material (FGM) substrate carrying a piezoelectric thin film is investigated. Analytical solutions are obtained for both constant and gradient dielectric coefficients in the FGM substrate. Numerical results show that the gradient dielectric coefficient decreases phase velocity in any mode, and the electromechanical coupling factor significantly increases in the first- and secondorder modes. In some modes, the difference in Love waves' phase velocity between these two types of structure might be more than 1%, resulting in significant differences in frequency of the surface acoustic wave devices.
... Other Funding Find NCI funding for small business innovation, technology transfer, and contracts Training Cancer Training at ... much of the tumor tissue has normal breast (milk) duct structures Nuclear grade : an evaluation of the ...
Energy Technology Data Exchange (ETDEWEB)
Wang, Chaohui [Laboratory of Nano Surface Engineering, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Wang, You, E-mail: wangyou@hit.edu.cn [Laboratory of Nano Surface Engineering, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Fan, Shan; You, Yuan [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Wang, Liang [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899 (China); Yang, Changlong [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Sun, Xiaoguang [National Engineering Research Center for High-speed EMU, CSR Qingdao Sifang Co. Ltd., Qingdao 266111 (China); Li, Xuewei [Laboratory of Nano Surface Engineering, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)
2015-11-15
In this paper, an optimized functionally graded coating (OFGC) was successfully fabricated by suspension plasma spraying (SPS) with feedstocks of the suspension of nanoparticles. La{sub 2}Zr{sub 2}O{sub 7}/8YSZ OFGC with gradual compositional variation along the through-thickness direction is proposed to mitigate spallation and crack formation owing to the high residual stresses caused by frequent thermal cycling for TBCs. The single ceramic layer coatings (SCLC) of LZ and double ceramic layer coatings (DCLC) of LZ/8YSZ were fabricated by SPS as comparison. The phase composition and microstructure of the SCLC, OFGC and DCLC were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Energy Dispersive Spectrometer (EDS). Moreover, the thermal cycling tests were carried out to evaluate their thermal shock behavior. Changes in weight and morphology of specimens were analyzed during thermal cycling tests. The results showed that OFGC has extended lifetime compared with SCLC and DCLC. The failure of DCLC with clear interface between different ceramic layers occurred via delamination mode, as a result of crack initiation and propagation generated by thermal mismatch between LZ and 8YSZ. While the failure of OFGC occurred in thermally grown oxide (TGO) layers, indicating that the gradual compositional variation avoided thermal stress concentration in the top ceramic layers. - Highlights: • Optimized functionally graded coatings and double ceramic layer coatings were deposited by suspension plasma spray. • The graded area of OFGC is continuously changed from inner 8YSZ to outer La{sub 2}Zr{sub 2}O{sub 7} (LZ). • The OFGC shows a more extended thermal cycling life than the LZ SCLC and LZ/8YSZ DCLC. • Various failure mechanisms were proposed to explain thermal cycling behavior.
Van Long, Nguyen; Quoc, Tran Huu; Tu, Tran Minh
2016-12-01
In this paper, a new eight-unknown shear deformation theory is developed for bending and free vibration analysis of functionally graded plates by finite-element method. The theory based on full 12-unknown higher order shear deformation theory simultaneously satisfies zeros transverse stresses at top and bottom surfaces of FG plates. A four-node rectangular element with 16 degrees of freedom per node is used. Poisson's ratios, Young's moduli, and material densities vary continuously in thickness direction according to the volume fraction of constituents which is modeled as power-law functions. Results are verified with available results in the literature. Parametric studies are performed for different power-law indices, side-to-thickness ratios.
Hedia, H S
2005-08-01
Among the factors that have been suggested as contributing to the failure of a total joint replacement are stress shielding and the subsequent bone resorption. Recent studies have shown that when a backing shell made from a Ti alloy is used, high stresses are generated in the cement at the edges of the cup, and low stresses are generated at the dome of the bone in the acetabulum; thus, the bone at the dome suffers stress shielding and the cement edge suffers high stresses. The aim of this study was to investigate the effect of using a functionally graded material (FGM), instead of Ti alloy, for the backing shell (BS) on the stress distribution in the BS-cement-bone system. Finite-element and optimization techniques were used to obtain the optimal distribution of materials in the tangential direction only of the backing (1D FGM) as well as in the tangential and radial directions of the backing (2D FGM). It was found that the stress distribution in the BS-cement-bone system was about the same, regardless of whether the BS was fabricated from a 1D or 2D FGM. The stress-shielding factor in the bone at the dome of the acetabulum and the maximum von Mises stress in cement at the cement interfaces for 1D and 2D FGM were reduced by about 51%, 69%, and 50%, respectively, compared to the case when the shell was fabricated from a Ti alloy. The optimal elastic modulus of the 1D FGM was obtained with the materials graded from HA at the dome of the acetabulum to a Ti alloy at the rim of the shell. The optimal elastic modulus of the 2D FGM was obtained with the materials graded from Ti alloy at the right edge of the rim, to Bioglass 45S5 at the left edge of the rim, and to HA at the dome of the shell.
Directory of Open Access Journals (Sweden)
Vesna Horvatovikj
2015-12-01
Full Text Available Literary-artistic compositions, first of all, have an aesthetic function but when the same are used in the teaching they as well fulfill the cognitive function. The best “angle of view” of one literary-artistic composition in the teaching is through the balanced relation of “dolce” and “utile”. The instructiveness of literary-artistic compositions in the teaching is not ultimate and should not be considered as a task that is to be performed. For the purpose of realization of these basic functions of literary-artistic compositions envisaged in the teaching, the main precondition is their appropriate selection pursuant to the age of the reading audience (the students.
Liu, Hai-Tao; Sang, Jian-Bing; Zhou, Zhen-Gong
2016-10-01
This paper investigates a functionally graded piezoelectric material (FGPM) containing two parallel cracks under harmonic anti-plane shear stress wave based on the non-local theory. The electric permeable boundary condition is considered. To overcome the mathematical difficulty, a one-dimensional non-local kernel is used instead of a two-dimensional one for the dynamic fracture problem to obtain the stress and the electric displacement fields near the crack tips. The problem is formulated through Fourier transform into two pairs of dual-integral equations, in which the unknown variables are jumps of displacements across the crack surfaces. Different from the classical solutions, that the present solution exhibits no stress and electric displacement singularities at the crack tips.
Wang, Bin; Qian, Zhenghua; Li, Nian; Sarraf, Hamid
2016-01-01
We propose the use of thickness-twist (TT) wave modes of an AT-cut quartz crystal plate resonator for measurement of material parameters, such as stiffness, density and material gradient, of a functionally graded material (FGM) layer on its surface, whose material property varies exponentially in thickness direction. A theoretical analysis of dispersion relations for TT waves is presented using Mindlin's plate theory, with displacement mode shapes plotted, and the existence of face-shear (FS) wave modes discussed. Through numerical examples, the effects of material parameters (stiffness, density and material gradient) on dispersion curves, cutoff frequencies and mode shapes are thoroughly examined, which can act as a theoretical reference for measurements of unknown properties of FGM layer.
Institute of Scientific and Technical Information of China (English)
HAN Zhi-hai; WANG Hai-jun; ZHOU Shi-kui; XU Bing-shi
2005-01-01
The functionally graded thermal barrier coatings (FG-TBCs) with 80 % ZrO2-13 % CeO2-7 % Y2 Os ( CYSZ)/NiCoCrAlY were prepared using a recently developed supersonic plasma spraying(S-PS) with dual powder feed ports system. The thermal shock experiment of FG-TBCs specimens was carried out by means of the automatic thermal cycle device, in which the samples were heated to 1 200 ℃ by oxygen-acetylene flame jet then waterquenched to ambient temperature. The temperature-time curves of specimens and photographs can be watched online and recorded by a computer during the test. The results show that the totally 1 mm-thick FG-TBCs have excellent thermal shock resistance due to the fact that the coatings have no any peeling-off after 200 thermal cycles. The microstructures and morphologies of FG-TBCs were characterized and analyzed by SEM.
Institute of Scientific and Technical Information of China (English)
刘翔; 谌继明; 张斧; 许增裕; 葛昌纯; 李江涛
2002-01-01
B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.
Energy Technology Data Exchange (ETDEWEB)
Gingell, A.D.B.; Garat, X. [IRSID (France)
1999-11-01
The mechanisms of sulfide stress cracking (SSC) of grade X60 Iinepipe steels produced by thermomechanical controlled processing (TMCP) have been investigated by applying acoustic emission testing to the NACE TM0177-96 method A tensile test. This method enables the interruption of the test before failure, allowing the observation of the development of subcritical damage as a function of microstructure. The results are interpreted in terms of a correlation between local failure mode and microstructural features, with cracking obeying the kinetics described by acoustic emission. Apart from the successful application of acoustic emission testing to the NACE TM0177-96 method A tensile test, this test method has also been shown to reveal Stress-Oriented Hydrogen Induced Cracking (SOHIC) in susceptible microstructure.
Brisk, Maria Estela; Hodgson-Drysdale, Tracy; O'Connor, Cheryl
2011-01-01
This study examined the teaching of report writing in PreK-5 through the lens of systemic functional linguistics theory. Teachers were part of a university-public school collaboration that included professional development on teaching genres, text organization, and language features. Grounded in this knowledge, teachers explicitly taught report…
DEFF Research Database (Denmark)
Pedersen, Anders Elm; Thorn, M; Gad, M;
2005-01-01
Dendritic cells (DC) are promising candidates for cancer immunotherapy. However, it is not known whether in vitro-generated monocyte-derived DC from cancer patients are altered compared with DC from healthy donors. In a clinical phase I/II study, monocyte-derived DC were generated in vitro...... utilizing granulocyte macrophage colony-stimulating factor and rh-interleukin-4 (IL-4) and used for cancer immunotherapy. In this study, we tested the effect of various maturation cocktails and performed a comparative evaluation of the DC phenotype and functional characteristics. Polyriboinosinic...
Directory of Open Access Journals (Sweden)
Naveed Anwar
2016-08-01
Full Text Available Background: Physiotherapy is an essentialtreatment in the management of Mechanical Neck ache, still there was lack of literature seen supporting the effectiveness of Physiotherapy interventions with their doses targeting specific group of population. The focus of study was to see the effectiveness of Kaltenborn Grade III mobilization, Muscle Energy Techniques and their combination to improve range and functional ability in patients with Mechanical Neck ache. Methods: 72 patients with Mechanical Neck achewere randomly categorized in 3 groups (Mobilization, METs and Combination group. NDI scale and goniometry was used as an assessment tool to measure the outcome before and after treatment (follow up 1 week. Results: According to the results there was significant improvement seen in Combination group (Mobilization and METs in terms of pain, which decreased from 7.70±0.69 to 1.25±1.93 (p=0.00, gain in ROM e.g. Cervical Flexion (27.29±2.38 to 37.54±3.14. Whereas, marked significance (p=0.00 was seen in the NDI score and percentage of Combination group. ANOVA tells us that difference was significant in all three groups in categories of pain (VAS, gain in cervical ranges and NDI score and percentage as p=0.00. Combination group had significant difference within the groups then METs and Mobilization group in all categories of VAS, Cervical ranges, NDI score and percentage. Conclusion: Combination of (Grade III Kaltenborn and METs was seen more effective in terms of improving Mechanical Neck Pain, in smaller treatment session (7 days only.
Directory of Open Access Journals (Sweden)
Yuan Yigao
2016-01-01
Full Text Available Functionally gradient WC-Co composites having a Co depleted surface zone and not comprising the h phase can be manufactured via carburizing process. During carburizing, besides carburizing process parameters, the microstructural parameters of WC-Co materials, such as WC grain size and Co content, also have significant influences on the formation of Co gradient structure. In this study, the effects of WC particle size and Co content on the gradient structure within gradient hardmetals have been studied, based on a series of carburizing experiments of WC-Co materials with different WC particle sizes and cobalt contents. The results show that both the thickness and the amplitude of the gradients within gradient WC-Co materials increase with increasing initial WC particle size and Co content of WC-Co alloys. The reason for this finding is discussed.
DuPaul, George J; Morgan, Paul L; Farkas, George; Hillemeier, Marianne M; Maczuga, Steve
2016-10-01
Children with attention-deficit/hyperactivity disorder (ADHD) are known to exhibit significantly lower academic and social functioning than other children. Yet the field currently lacks knowledge about specific impairment trajectories experienced by children with ADHD, which may constrain early screening and intervention effectiveness. Data were analyzed from a nationally representative U.S. cohort in the Early Childhood Longitudinal Study, Kindergarten Class of 1998-1999 (ECLS-K) for 590 children (72.7 % male) whose parents reported a formal diagnosis of ADHD. Children's math, reading, and interpersonal skills were assessed at 5 time points between kindergarten and fifth grade. Growth mixture model analyses indicated 4 latent trajectory classes for reading, 8 classes for math, and 4 classes for interpersonal skills. Membership in reading and math trajectory classes was strongly related; overlaps with interpersonal skills classes were weaker. Trajectory class membership was correlated with demographic characteristics and behavioral functioning. Children with ADHD display substantial heterogeneity in their reading, math, and interpersonal growth trajectories, with some groups of children especially likely to display relatively severe levels of academic and social impairment over time. Early screening and intervention to address impairment, particularly reading difficulties, among kindergarten students with ADHD is warranted.
Energy Technology Data Exchange (ETDEWEB)
Autissier, E., E-mail: manu.autissier@orange.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Richou, M. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Minier, L. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-UB, 9 Av. Alain Savary, BP 47870, 21078 Dijon Cedex (France); Gardarein, J.-L. [Aix Marseille Univ, IUSTI, UMR CNRS 7343, F-13453 Marseille (France); Bernard, F. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-UB, 9 Av. Alain Savary, BP 47870, 21078 Dijon Cedex (France)
2015-10-15
Highlights: • Different W-Cu powders were sintered by Spark Plasma Sintering. • The relative density increase with the temperature and Cu concentration. • Thermal conductivity of W-Cu samples has been measured in function of density. • Assembly of a three-layer W-Cu between a W block and a CuCrZr block was realized. • 40 min is the minimum time to complete bonding between W and W{sub 80}Cu{sub 20}. - Abstract: The assembly of W block with a CuCrZr block has been produced by adding compliant W-Cu layers. Firstly, three W-Cu powders (W{sub 80}Cu{sub 20}, W{sub 60}Cu{sub 40} and W{sub 40}Cu{sub 60}) were sintered by spark plasma sintering (SPS) to investigate the influences of sintering temperature and pressure on relative density and microstructure. The experimental results indicated that the relative density increases with temperature and Cu concentration, achieving a value of 94.1% for the W{sub 40}Cu{sub 60} sample sintered at 1000 °C and a value of 83.1% for the W{sub 80}Cu{sub 20} sample sintered at the same temperature. Then, a three-layer W-Cu assembly between a W block and a CuCrZr block was fabricated using similar sintering conditions to the W-Cu powders. The sintering temperature was limited at 1000 °C due to the CuCrZr melting temperature (1083 °C). The experimental results indicated that loading time, when the right sintering temperature and pressure are applied, is the most important parameter.
Directory of Open Access Journals (Sweden)
Suresh
2015-10-01
Full Text Available BACKGROUND: Spondylolisthesis is a heterogenous disorder characterised by subluxation of a vertebral body in sagittal plane occuring frequently at l4 - 5 and l5 - S1commonest being isthmic and degenerative variety. While majority are asymptomatic, a subset do produce pain with neurology. Complete decompression of roots is essential, as is the need for solid stabi lization. Several fusion techniques were reported in literature like PLF, TLIF, PLF, ALIF On theoretical grounds, TLIF has been suggested to be safe and result in an improved outcome compared to other techniques. Data to support this view, are lacking. M ETHODS: A total of 21 patients (age range, 27 - 62 years with adult isthmic and degenerative spondylolisthesis were operated. There were 8 males and 13 females with mean age of 46.8 pre - op and 2 - year follow - up, pain (VAS and functional disability were quan tified by Oswestry Disability Index (ODI.Radiological union assessed with xrays by Brantigen and Steffee criteria. The global outcome was excellent in 90%.and 92% fusion. 2 patients presented motor deficit which did not recover. RESULTS: The follow - up was for 2 years. The mean VAS score for low back pain improved from 7.0 preoperatively to 2.1, as did the mean VAS score for leg pain from 6.7 to 1.4 and the mean ODI from 59.5% to 11.3%. CONCLUSION: TLIF does affect the 2 - year outcome of surgical treatment of spondylolisthesis with decreased back pain and ODI’s, with advantages of minimal thecal retraction, restored segmental lordosis and preserved posterior tension band.
Walther, Wolfgang; Schmeer, Marco; Kobelt, Dennis; Baier, Ruth; Harder, Alexander; Walhorn, Volker; Anselmetti, Dario; Aumann, Jutta; Fichtner, Iduna; Schleef, Martin
2013-12-01
The great interest for naked plasmid DNA in gene therapy studies is reflected by the fact that it is currently used in 18% of all gene therapy trials. Therefore, validation of topology and functionality of DNA resulting from its long-term stability is an essential requirement for safe and effective gene transfer. To this aim, we analyzed the stability of good manufacturing practice-grade pCMVβ reporter plasmid DNA by capillary gel electrophoresis, agarose gel electrophoresis, and atomic force microscopy. The plasmid DNA was produced for a clinical gene transfer study started in 2005 and was stored for meanwhile 7 years under continuously monitored conditions at -20 °C. The stability of plasmid DNA was monitored by LacZ transgene expression functional assays performed in vitro and in vivo on the 7-year-old plasmid DNA samples compared with plasmid batches newly produced in similar experimental conditions and quality standards. The analyses revealed that during the overall storage time and conditions, the proportion of open circular and supercoiled or covalently closed circular forms is conserved without linearization or degradation of the plasmid. The in vitro transfection and the in vivo jet-injection of DNA showed unaltered functionality of the long-stored plasmid. In summary, the 7-year-old and the newly produced plasmid samples showed similar topology and expression performance. Therefore, our stable storage conditions are effective to preserve the integrity of the DNA to be used in clinical studies. This is an important prerequisite for the long-term performance of gene transfer materials used in trials of long duration as well as of the reference material used in standardization procedures and assays.
Lehman, Joanne; Breen, Michael J.
1982-01-01
Regular education students (N=125) in grades K-3 were administered the Bender-Gestalt and Beery/Buktenica tests of visual-motor integration. Found significant differences between the mean Bender and Beery age equivalent scores at each grade level. Discusses implications for their utilization in assessing fine motor readiness development.…
Directory of Open Access Journals (Sweden)
Shi-Chao Yi
2017-01-01
Full Text Available Closed-form solution of a special higher-order shear and normal deformable plate theory is presented for the static situations, natural frequencies, and buckling responses of simple supported functionally graded materials plates (FGMs. Distinguished from the usual theories, the uniqueness is the differentia of the new plate theory. Each individual FGM plate has special characteristics, such as material properties and length-thickness ratio. These distinctive attributes determine a set of orthogonal polynomials, and then the polynomials can form an exclusive plate theory. Thus, the novel plate theory has two merits: one is the orthogonality, where the majority of the coefficients of the equations derived from Hamilton’s principle are zero; the other is the flexibility, where the order of the plate theory can be arbitrarily set. Numerical examples with different shapes of plates are presented and the achieved results are compared with the reference solutions available in the literature. Several aspects of the model involving relevant parameters, length-to-thickness, stiffness ratios, and so forth affected by static and dynamic situations are elaborate analyzed in detail. As a consequence, the applicability and the effectiveness of the present method for accurately computing deflection, stresses, natural frequencies, and buckling response of various FGM plates are demonstrated.
Barron, Valerie; Neary, Martin; Mohamed, Khalid Merghani Salid; Ansboro, Sharon; Shaw, Georgina; O'Malley, Grace; Rooney, Niall; Barry, Frank; Murphy, Mary
2016-05-01
Cartilage tissue engineering is a multifactorial problem requiring a wide range of material property requirements from provision of biological cues to facilitation of mechanical support in load-bearing diarthrodial joints. The study aim was to design, fabricate and characterize a template to promote endogenous cell recruitment for enhanced cartilage repair. A polylactic acid poly-ε-caprolactone (PLCL) support structure was fabricated using laser micromachining technology and thermal crimping to create a functionally-graded open pore network scaffold with a compressive modulus of 9.98 ± 1.41 MPa and a compressive stress at 50% strain of 8.59 ± 1.35 MPa. In parallel, rabbit mesenchymal stem cells were isolated and their growth characteristics, morphology and multipotency confirmed. Sterilization had no effect on construct chemical structure and cellular compatibility was confirmed. After four weeks implantation in an osteochondral defect in a rabbit model to assess biocompatibility, there was no evidence of inflammation or giant cells. Moreover, acellular constructs performed better than cell-seeded constructs with endogenous progenitor cells homing through microtunnels, differentiating to form neo-cartilage and strengthening integration with native tissue. These results suggest, albeit at an early stage of repair, that by modulating the architecture of a macroporous scaffold, pre-seeding with MSCs is not necessary for hyaline cartilage repair.
Askari, E; Mehrali, M; Metselaar, I H S C; Kadri, N A; Rahman, Md M
2012-08-01
This study describes the synthesis of Al(2)O(3)/SiC/ZrO(2) functionally graded material (FGM) in bio-implants (artificial joints) by electrophoretic deposition (EPD). A suitable suspension that was based on 2-butanone was applied for the EPD of Al(2)O(3)/SiC/ZrO(2), and a pressureless sintering process was applied as a presintering. Hot isostatic pressing (HIP) was used to densify the deposit, with beneficial mechanical properties after 2 h at 1800 °C in Ar atmosphere. The maximum hardness in the outer layer (90 vol.% Al(2)O(3)+10 vol.% SiC) and maximum fracture toughness in the core layer (75 vol.% Al(2)O(3)+10 vol.% SiC + 15 vol.% ZrO(2)) composite were 20.8±0.3 GPa and 8±0.1 MPa m(1/2), respectively. The results, when compared with results from Al(2)O(3)/ZrO(2) FGM, showed that SiC increased the compressive stresses in the outer layers, while the inner layers were under a residual tensile stress.
Molteni, Erika; Contini, Davide; Caffini, Matteo; Baselli, Giuseppe; Spinelli, Lorenzo; Cubeddu, Rinaldo; Cerutti, Sergio; Bianchi, Anna Maria; Torricelli, Alessandro
2012-05-01
We evaluated frontal brain activation during a mixed attentional/working memory task with graded levels of difficulty in a group of 19 healthy subjects, by means of time-domain functional near-infrared spectroscopy (fNIRS). Brain activation was assessed, and load-related oxy- and deoxy-hemoglobin changes were studied. Generalized linear model (GLM) was applied to the data to explore the metabolic processes occurring during the mental effort and, possibly, their involvement in short-term memorization. GLM was applied to the data twice: for modeling the task as a whole and for specifically investigating brain activation at each cognitive load. This twofold employment of GLM allowed (1) the extraction and isolation of different information from the same signals, obtained through the modeling of different cognitive categories (sustained attention and working memory), and (2) the evaluation of model fitness, by inspection and comparison of residuals (i.e., unmodeled part of the signal) obtained in the two different cases. Results attest to the presence of a persistent attentional-related metabolic activity, superimposed to a task-related mnemonic contribution. Some hemispherical differences have also been highlighted frontally: deoxy-hemoglobin changes manifested a strong right lateralization, whereas modifications in oxy- and total hemoglobin showed a medial localization. The present work successfully explored the capability of fNIRS to detect the two neurophysiological categories under investigation and distinguish their activation patterns.
Eufinger, Harald; Rasche, Christian; Lehmbrock, Jutta; Wehmöller, Michael; Weihe, Stephan; Schmitz, Inge; Schiller, Carsten; Epple, Matthias
2007-01-01
Biodegradable functionally graded skull implants on the basis of polylactides and calcium phosphate/calcium carbonate were prepared in an individual mould using a combination of different processing techniques. A geometrically corresponding resection template was designed to enable a craniectomy and cranioplasty with the prepared implant in the same operation. After various preliminary experiments concerning degradation kinetics, pH evolution during degradation, micromorphology, biocompatibility tests in human osteoblast cell cultures and surgery of cadaver heads, a new large-animal model was developed for long-term in vivo studies. In eight 12-months-old sheep, the surgical templates were used to create 4.5 x 5 cm(2) calvarial defects which were then filled with the corresponding degradable implants in the same operation. The animals were sacrificed after 2, 9, 12 and 18 months, and the implants and the surrounding tissues were analysed by computer tomography (CT), macroscopic examination and microscopy. The new animal model proved to be reliable and very suitable for large individual craniectomies and cranioplasties. The formation of new bone from the dural layer of the meninges corresponded well to the degradation of the porous inner layer of the implants whereas the skull contour was stabilised by the compact outer layer over the follow-up period.
Kaneko, Gen-yo; Kitagawa, Hiroyuki; Hasezaki, Kazuhiro; Ito, Yuji; Kakuda, Hideaki
2008-02-01
Functionally Graded Materials (FGMs) were prepared by spark plasma sintering (SPS) using coal fly ash and NiCr alloy powder. The coal fly ash was produced by the Misumi Coal Thermal Power Station (Chugoku Electric Power Co., Inc.), with 80 wt% nickel and 20 wt% chromium (Fukuda Metal Foil & Powder Co., Ltd.) used as source materials. The sintering temperature in the graphite die was 1000 °C. X-ray diffraction patterns of the sintered coal fly ash materials indicated that mullite (3Al2O3ṡ2SiO2) and silica (SiO2) phases were predominant. Direct joining of coal fly ash and NiCr causes fracture at the interface. This is due to the mismatch in the thermal expansion coefficients (CTE). A crack in the FGM was observed between the two layers with a CTE difference of over 4.86×10-6 K-1, while a crack in the FGM was difficult to detect when the CTE difference was less than 2.77×10-6 K-1.
Energy Technology Data Exchange (ETDEWEB)
Shariyat, M. [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: m_shariyat@yahoo.com
2009-04-15
In the present paper, an algorithm for nonlinear transient behavior analysis of thick functionally graded cylindrical vessels or pipes with temperature-dependent material properties under thermo-mechanical loads is presented. In contrast to researches presented so far, a Hermitian transfinite element method is proposed to improve the accuracy and to prevent artificial interference or cohesion formation at the mutual boundaries of the elements. Time variations of the temperatures, displacements, and stresses are obtained through a numerical Laplace inversion. Another novelty of the present research is using the transfinite element method to solve nonlinear problems. A sensitivity analysis includes investigating effects of the volume fraction index, dimensions, and temperature-dependency of the material properties is performed. Results confirm the efficiency of the present algorithm and reveal the significant effects of the temperature-dependency of the material properties and the elastic wave reflections and interferences on the responses. In comparison to other techniques, the present technique may be used to obtain relatively accurate and stable results in a less computational time.
Rottmayer, Michael; Singh, Raj; Huang, Hong
2016-11-01
The use of microfabricated solid oxide fuel cells (mSOFCs) is a promising technology for a low temperature operation (as low as 300 °C) with reduced start-up time and improved energy density. However, one of the limitations to widespread adoption of this technology has been due to the use of Pt electrodes, which exhibit poor bulk ionic conductivity and suffers from Ostwald ripening. Pt/YSZ is a promising alternative for providing both microstructural and electrochemical stability to the electrode layer. The objective of this research is to investigate the electrochemical performance and long term morphological stability of Pt/YSZ, by tailoring the composition, porosity, thickness, and functional-graded distribution, for use as a high performance mSOFC cathode. The Pt/YSZ cathodes were deposited through a co-sputtering process. An increase in the oxygen reduction reaction (ORR) charge transfer kinetics are observed with the Pt/YSZ cathode versus pure Pt, along with a significantly more stable morphology over a 24hr period. Although the mSOFC performance is found to be sensitive to Pt/YSZ composition at the TPB interface, the mass diffusion of oxygen through the cathode is determined to be the rate limiting step. The increased porosity in the Pt/YSZ led to more efficient oxygen diffusion and higher mSOFC performance.
Watanabe, Yoshimi; Zhou, Qi; Sato, Hisashi; Fujii, Toshiyuki; Inamura, Tomonari
2017-01-01
Methods of fabrication by centrifugal casting for functionally graded materials (FGMs) can be classified into two categories on the basis of the relationship between the process temperature and the liquidus temperature of a master alloy. They are the centrifugal solid-particle method and centrifugal in situ method, which could be carried out at process temperatures lower and higher than the liquidus temperature of the master alloy, respectively. In a previous study, it was found that the microstructures of Al-Al3Ti FGMs fabricated by the centrifugal in situ method processed at 1600 °C were different from those fabricated by the centrifugal solid-particle method processed at 800 °C. Although it is expected that the FGMs fabricated by the centrifugal in situ method processed at approximately the liquidus temperature should show extraordinary microstructures, those microstructures have not been observed. In this study, the microstructures of Al-Al3Ti FGMs fabricated at 1000 °C (centrifugal solid-particle method) and 1200 °C (centrifugal in situ method) were investigated.
Institute of Scientific and Technical Information of China (English)
吴晓; 罗佑新
2011-01-01
The dynamic response of a beam with functionally graded materials was studied with Timoshenko beam correction theory. The neutral plane site of the beam with functionally graded materials was determined with the static equilibrium equations, and the vibration equations of the beam with functionally graded materials were established with Timoshenko beam correction theory, the expression for the natural frequencies of the beam with functionally graded materials and the analytical solution to forced vibration of the beam under the action of harmonic load were obtained. The effect of neutral plane site and gradient index on the dynamic responses of the beam were discussed, and Timoshenko beam correction theory was verified with finite element method. Analysis of examples indicated that the neutral plane site has larger influence on the dynamic responses of the beam with functionally graded materials.%采用Timoshenko梁修正理论研究了功能梯度材料梁的动力响应问题,利用静力方程确定了功能梯度材料梁的中性轴位置,在此基础上应用Timoshenko梁修正理论建立了功能梯度材料梁的振动方程,求得其自振频率表达式及其在简谐荷载作用下强迫振动的解析解.分析了中性面位置、梯度指数等因素对功能梯度材料梁的动力响应的影响,并用有限元法验证Timoshenko梁修正理论.通过实例计算,得到了中性轴位置对功能梯度材料梁动力响应有较大影响.
Gehring, Karin; Stuiver, Martijn; Rutten, Geert-Jan; Taphoorn, Martin; Aaronson, Neil; Sitskoorn, Margriet
2014-01-01
Many patients with gliomas suffer from cognitive deficits. Recent findings indicate that physical exercise is effective in ameliorating cognitive decline, in particular in older adults and select neurological patient populations. Studies of exercise interventions in patients with cancer demonstrated to have beneficial effects on various measures of physical and mental well-being. This pilot randomized controlled trial investigates the efficacy of home-based exercise in improving cognitive functioning and self-reported mental well-being in glioma patients. Clinically stable patients with grade II and III glioma will undergo baseline neuropsychological testing, including questionnaires on cognitive symptoms, fatigue, sleep, mood and quality of life; and cardiorespiratory exercise testing (CPET) to determine room for improvement of physical fitness. Sixty patients will be randomized in a 2:1 ratio to the intervention group or active control group. Patients in the intervention group exercise 3 times per week for 6 months, during 20 to 45 minutes at an increasing intensity of 55 to 85% of their maximum heart rate. CPET-outcome (VO2peak) is used to tailor an individual, home-based exercise program. Participants wear heart rate monitors and are supervised by a physical therapist via internet and telephone. Patients in the active control group are advised to walk regularly. Neuropsychological test performance, physical fitness, and mental well-being are assessed again after 6 months. In November 2014, 30 patients are expected to be accrued. Six-month follow-up data on neuropsychological performance, physical fitness and self-reported mental well-being of the currently included 15 patients (12 intervention; 3 control group) will be available. Mean age of this group is 48.1 (±9.8) years; median time since surgery is 4.1 (0.7-14.7) years. Most of these participants are female (n = 11), and have a grade II glioma (n = 10). To our knowledge, this is the first study that
Ghosh, Koyel Banerjee; Mukhopadhyay, Jayanta; Basu, Rajendra N.
2016-10-01
Functionally graded composite interlayer based on 50% of La0.54Sr0.4Co0.2Fe0.8O3-δ and 50% of La0.54Sr0.4Fe0.2Co0.8O3-δ (CF-1) and cobalt and gadolinium doped ceria (CoCGO) is synthesized varying the mass ratio as CF-1:CoCGO = 80:20(L80-C20), 50:50(L50-C50) and 20:80(L20-C80). Detail study using impedance spectroscopy of symmetrical cell fabricated with CoCGO as electrolyte reveals the lowest electrode polarization 0.04 Ω cm2 at 800 °C for L80-C20 composite. Electrode and ohmic polarization is also evaluated configuring the symmetric cell as CF-1/L80-C20||CoCGO||L80-C20/CF-1. Symmetric cell with varying composition of the composite interlayer (L80-C20/L50-C50/L20-C80||CoCGO||L20-C80/L50-C50/L80-C20) shows considerably low electrode polarization of 0.067 Ω cm2 at 800 °C with activation energy 1.19 eV. Electrochemical performances evaluated using single cell configuration Ni-YSZ||YSZ||CoCGO/L20-C80/L50-C50/L80-C20/CF-1 shows power density as high as 2.03 W cm-2 at 800 °C at 0.7 V. Addition of composite interlayers increases the stability significantly and the voltage degradation is found negligible (0.9%) for first 300 h at a constant load of 0.5 A cm-2 which is further increased to 2.9% for next 300 h. The cell stability is clinically correlated with layer wise elemental 'Sr' mapping in the applied quad interlayers.
Ataollahi Oshkour, Azim; Pramanik, Sumit; Mehrali, Mehdi; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan
2015-09-01
This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application.
Does Grading Affect Educational Attainment? A Longitudinal Study
Klapp, Alli
2015-01-01
The purpose of the study was to investigate how grading in primary school affected students' achievement measured by grades in 7th, 8th and 9th Grade and educational attainment in upper secondary school (12th Grade), and how the effect varied as a function of students' cognitive ability, gender and socio-economic status. The data derived from the…
THERMAL RESIDUAL STRESSES OF FUNCTIONALLY GRADED PIEZOELECTRIC SHELLS%功能梯度压电材料壳体热残余应力
Institute of Scientific and Technical Information of China (English)
舒小平
2012-01-01
Thermal residual phenomenon occurs in functionally graded (FG) piezoelectric structures when workpieces are-cooling and affects their strength. A FG piezoelectric hollow sphere or circular cylinder was divided to a number of layers through its thickness like a composite laminate, each layer with constant material properties. According to the interfacial continuity conditions, a recursive relation was built and the explicit thermal residual solutions with piezothermoelastic coupling were deduced. The solutions were suitable for both multi-layered and continuous FG piezoelectric shells. The solutions are exact for multi-layered FG piezoelectric shells, and approximate for continuous FG piezoelectric shells and converge to the exact solutions when the number of layers increases. The solutions also hold for FG piezoelectric coatings on a substrate. This method is independent of the distribution functions of material properties through thickness and shows its adaptability. The factors to affect thermal residual stresses and interfacial strength were discussed. The thermal residual stresses of a sphere with double curvatures are much bigger than those of a cylinder.%功能梯度压电材料结构成型冷却后会出现热残余现象,影响结构强度.借鉴复合材料层合结构的研究方法,将功能梯度压电材料球壳和圆柱壳沿厚度分为若干层,各层视为均匀材料,根据层间连续条件导出递推关系,得到显式的力—电—热多场耦合热残余解.统一了多层功能梯度压电材料壳体和连续功能梯度压电材料壳体热残余解.对于前者,其解为精确解；对于后者,其解为渐近解,随层数增加而收敛于精确解.其解也适用于功能梯度压电材料涂层.该方法对材料性能的变化方式(函数)没有要求,适应性强.并讨论影响热残余应力和界面强度的因素,球壳因双曲率的影响,热残余应力显著大于柱壳.
Differential Calculus on N-Graded Manifolds
Directory of Open Access Journals (Sweden)
G. Sardanashvily
2017-01-01
Full Text Available The differential calculus, including formalism of linear differential operators and the Chevalley–Eilenberg differential calculus, over N-graded commutative rings and on N-graded manifolds is developed. This is a straightforward generalization of the conventional differential calculus over commutative rings and also is the case of the differential calculus over Grassmann algebras and on Z2-graded manifolds. We follow the notion of an N-graded manifold as a local-ringed space whose body is a smooth manifold Z. A key point is that the graded derivation module of the structure ring of graded functions on an N-graded manifold is the structure ring of global sections of a certain smooth vector bundle over its body Z. Accordingly, the Chevalley–Eilenberg differential calculus on an N-graded manifold provides it with the de Rham complex of graded differential forms. This fact enables us to extend the differential calculus on N-graded manifolds to formalism of nonlinear differential operators, by analogy with that on smooth manifolds, in terms of graded jet manifolds of N-graded bundles.
Decreased group velocity in compositionally graded films.
Gao, Lei
2006-03-01
A theoretical formalism is presented that describes the group velocity of electromagnetic signals in compositionally graded films. The theory is first based on effective medium approximation or the Maxwell-Garnett approximation to obtain the equivalent dielectric function in a z slice. Then the effective dielectric tensor of the graded film is directly determined, and the group velocities for ordinary and extraordinary waves in the film are derived. It is found that the group velocity is sensitively dependent on the graded profile. For a power-law graded profile f(x)=ax(m), increasing m results in the decreased extraordinary group velocity. Such a decreased tendency becomes significant when the incident angle increases. Therefore the group velocity in compositionally graded films can be effectively decreased by our suitable adjustment of the total volume fraction, the graded profile, and the incident angle. As a result, the compositionally graded films may serve as candidate material for realizing small group velocity.
Kokorsky, Eileen A.
A study was conducted at Passaic County Community College (PCCC) to investigate the operation of a grading system which utilized an asterisk (*) grade to indicate progress in a course until a letter grade was assigned. The study sought to determine the persistence of students receiving the "*" grade, the incidence of cases of students receiving…
Vascular grading of angiogenesis
DEFF Research Database (Denmark)
Hansen, S; Grabau, D A; Sørensen, Flemming Brandt;
2000-01-01
was moderately reproduced (kappa = 0.59). Vascular grade was significantly associated with axillary node involvement, tumour size, malignancy grade, oestrogen receptor status and histological type. In univariate analyses vascular grade significantly predicted recurrence free survival and overall survival for all...... patients (P analysis showed that vascular grading contributed with independent prognostic value in all patients (P
功能梯度材料飞轮转子优化设计%Optimum Design of Flywheel Rotor Made of Functionally Graded Materials
Institute of Scientific and Technical Information of China (English)
闫晓磊; 钟志华; 查云飞; 莫旭辉; 孙光永
2011-01-01
Functionally graded materials(FGMs) are new materials whose properties change continuously in the spatial position.Using FGMs instead of uniform materials for high speed energy storage flywheel rotor can reduce stress concentration effectively and give full play to the material properties, thereby improving the rotor performance.In view of the big error of plane stress(PS) solution when the axial thickness of flywheel rotor is big compared to its radius, a three-dimensional semi-analytical solution that is a modified plane stress(MPS) solution of FGMs flywheel rotor is derived by dividing the rotor into finite ring elements with constant thickness and homogeneous material, and then its accuracy is verified by finite element method.At last, by taking thickness, material volume fraction and rotating speed as design variables, and maximized energy storage density of the rotor as objective function, both shape and material distribution are optimized for FGMs flywheel rotor by using sequential quadratic programming(SQP) method, in addition, the effect of material properties on optimization results are also analyzed.Calculation results indicate that rational shape and material distribution can make stress distribution more even, and greatly increase the energy storage performance of flywheel rotor.%功能梯度材料(Functionally graaed materials,FGMs)是一种材料属性在空间位置上连续变化的新型材料.与均匀材料相比,高速储能飞轮转子采用FGMs可以有效地减少应力集中,充分发挥材料性能,从而改善转子的工作性能.针对飞轮转子轴向厚度相对较厚时平面应力方法误差较大的问题,通过将转子离散为有限个等厚匀质微环的方法,推得变厚度FGMs飞轮转子的三维半解析解--修正平面应力(Modified plane stress,MPS)解,并采用有限元法验证其精确性.应用序列二次规划(Sequential quadratic programming,SQP)优化方法,以飞轮转子的厚度、材料体积分数和
Institute of Scientific and Technical Information of China (English)
李华东; 朱锡; 梅志远; 张颖军
2012-01-01
基于Reissner假设,研究了四边简支的功能梯度夹层圆柱曲板在轴向载荷作用下的屈曲问题.首先,根据功能梯度材料的本构方程,得出了芯材和表层的应力、位移及内力表达式;然后,根据曲板的平衡方程和协调方程,引用应力函数,得到了功能梯度夹层圆柱曲板的方程式;最后,将挠度、横向剪力及应力函数用双三角级数展开,给出了功能梯度夹层圆柱曲板轴向屈曲载荷的计算式.在算例中,通过与经典解及有限元解进行比较,证明了本文方法的正确性,并且分析了芯材上下表层弹性模量比及体积分数指数对功能梯度夹层板轴向屈曲载荷的影响.%Based on the Reissner assumptions, the buckling of simply supported functionally graded sandwich cylindrical panels under axial loads was studied. First, according to the constitutive equa- tions of functionally graded materials, the expressions of stresses, displacements and internal forces of the core and surface sheets were presented. Then, according to the equilibrium and compatibility e quations of cylindrical panels, with the introduction of stress function, the equation expressions for functionally graded sandwich cylindrical panels were obtained. Finally, the calculation formula of axial buckling load of functionally graded sanwich cylindrical panels were derived by expanding the deflec- tionw, transverse shearing force and stress functionwith double trigonometric series that satisfy the simply supported boundary conditions. The proposed solution is validated by comparing the results with the classical and finite element solutions, And the effects of the core's top-bottom Youngrs mod- ulus ratio and volume fraction exponent on the axial buckling loads of the functionally graded sandwich panels are examined.
Teunissen-Beekman, Karianna F. M.; Dopheide, Janneke; Geleijnse, Johanna M.; Bakker, Stephan J. L.; Brink, Elizabeth J.; de Leeuw, Peter W.; Schalkwijk, Casper G.; van Baak, Marleen A.
2015-01-01
Endothelial dysfunction (ED) and low-grade inflammation (LGI) have a role in the development of CVD. The two studies reported here explored the effects of dietary proteins and carbohydrates on markers of ED and LGI in overweight/obese individuals with untreated elevated blood pressure. In the first
DEFF Research Database (Denmark)
Lawrenson, Kate; Li, Qiyuan; Kar, Siddhartha
2015-01-01
Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions assoc...
Engineering graded tissue interfaces.
Phillips, Jennifer E; Burns, Kellie L; Le Doux, Joseph M; Guldberg, Robert E; García, Andrés J
2008-08-26
Interfacial zones between tissues provide specialized, transitional junctions central to normal tissue function. Regenerative medicine strategies focused on multiple cell types and/or bi/tri-layered scaffolds do not provide continuously graded interfaces, severely limiting the integration and biological performance of engineered tissue substitutes. Inspired by the bone-soft tissue interface, we describe a biomaterial-mediated gene transfer strategy for spatially regulated genetic modification and differentiation of primary dermal fibroblasts within tissue-engineered constructs. We demonstrate that zonal organization of osteoblastic and fibroblastic cellular phenotypes can be engineered by a simple, one-step seeding of fibroblasts onto scaffolds containing a spatial distribution of retrovirus encoding the osteogenic transcription factor Runx2/Cbfa1. Gradients of immobilized retrovirus, achieved via deposition of controlled poly(L-lysine) densities, resulted in spatial patterns of transcription factor expression, osteoblastic differentiation, and mineralized matrix deposition. Notably, this graded distribution of mineral deposition and mechanical properties was maintained when implanted in vivo in an ectopic site. Development of this facile and robust strategy is significant toward the regeneration of continuous interfacial zones that mimic the cellular and microstructural characteristics of native tissue.
Directory of Open Access Journals (Sweden)
Ameer Jaber
2008-01-01
Full Text Available Problem Statement: Graded commutative ring with unity over an abelian group were introduced by many authors such as T. Y. Lam and C. T. C. Wall, and almost prime ideals over commutative rings with unity were introduced by S.M. Batwadeker and P.K. Sharma, and this forced us to try to extend the theory of almost and n-almost prime ideals to the graded case. Approach: We develop the theory of almost and n-almost prime ideals to the graded case. Results: We extended some basic results about almost and n-almost prime ideals to the graded case, and then we gave a relationship between n-almost graded prime ideals and weakly graded prime ideals. Conclusion: The extended results about almost and n-almost graded prime ideals allow us to classify further properties about almost graded prime ideals. 2000 AMS Mathematics Subject Classification: 13 A 02.
Kristiansen, G; Roth, W; Helpap, B
2016-07-01
The current grading of prostate cancer is based on the classification system of the International Society of Urological Pathology (ISUP) following a consensus conference in Chicago in 2014. The foundations are based on the frequently modified grading system of Gleason. This article presents a brief description of the development to the current ISUP grading system.
New similarity search based glioma grading
Energy Technology Data Exchange (ETDEWEB)
Haegler, Katrin; Brueckmann, Hartmut; Linn, Jennifer [Ludwig-Maximilians-University of Munich, Department of Neuroradiology, Munich (Germany); Wiesmann, Martin; Freiherr, Jessica [RWTH Aachen University, Department of Neuroradiology, Aachen (Germany); Boehm, Christian [Ludwig-Maximilians-University of Munich, Department of Computer Science, Munich (Germany); Schnell, Oliver; Tonn, Joerg-Christian [Ludwig-Maximilians-University of Munich, Department of Neurosurgery, Munich (Germany)
2012-08-15
MR-based differentiation between low- and high-grade gliomas is predominately based on contrast-enhanced T1-weighted images (CE-T1w). However, functional MR sequences as perfusion- and diffusion-weighted sequences can provide additional information on tumor grade. Here, we tested the potential of a recently developed similarity search based method that integrates information of CE-T1w and perfusion maps for non-invasive MR-based glioma grading. We prospectively included 37 untreated glioma patients (23 grade I/II, 14 grade III gliomas), in whom 3T MRI with FLAIR, pre- and post-contrast T1-weighted, and perfusion sequences was performed. Cerebral blood volume, cerebral blood flow, and mean transit time maps as well as CE-T1w images were used as input for the similarity search. Data sets were preprocessed and converted to four-dimensional Gaussian Mixture Models that considered correlations between the different MR sequences. For each patient, a so-called tumor feature vector (= probability-based classifier) was defined and used for grading. Biopsy was used as gold standard, and similarity based grading was compared to grading solely based on CE-T1w. Accuracy, sensitivity, and specificity of pure CE-T1w based glioma grading were 64.9%, 78.6%, and 56.5%, respectively. Similarity search based tumor grading allowed differentiation between low-grade (I or II) and high-grade (III) gliomas with an accuracy, sensitivity, and specificity of 83.8%, 78.6%, and 87.0%. Our findings indicate that integration of perfusion parameters and CE-T1w information in a semi-automatic similarity search based analysis improves the potential of MR-based glioma grading compared to CE-T1w data alone. (orig.)
TWO-STEP CONTROL GRADING METHOD
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The incorrectness of function grading in value engineering has been an essential problem for de- cades. This paper proposes a new method, where the functions under consideration are ranked in queue ac- cording to their importance and then graded quantitatively. By using this method, the reviewers are more aware of the degrees of importance, and therefore will have an easier time grasping the standard and reducing the erroneous grading. In the first step, the sign test is used to discard incorrect data, to count the grading re- sult and to arrange in queue according to the degrees of functional importance. In the second step the queued up functions undergo quantitative grading, where the “average value of fluctuation coefficient” is proposed to determine the control levels and to delete unreasonable data outside the controlled region so as to get more sati- sfactory grading value. The proposed method solves the problem of the incorrectness of function grading in val- ue engineering. It has been proved that the correctness has been raised from the original 70% to over 95% . This new method is not only contributive to the discipline of value engineering but also suitable in the evalu- ation of technical economy.
Clinical grades: upward bound.
Walsh, Catherine M; Seldomridge, Lisa A
2005-04-01
This study examined the relationship of grades earned in paired theory and clinical courses. Data collected during academic years 1997 to 2002 confirmed that grade inflation exists in clinical nursing courses. Problems involved in awarding grades for clinical performance are discussed (e.g., standards of clinical performance, methods used in evaluation of clinical performance, the impossibility of faculty omnipresence, the influence of student effort in grading, the effect of recency, the challenges of keeping good anecdotal records). Solutions to grading problems are proposed, including dividing up performance into agreed-on elements, measurement of these elements on a grading scale that allows for more differentiation of quality in evaluating clinical performance, assigning grades from the beginning of a clinical course, emphasizing all three domains of clinical practice, and evaluating student performance in both laboratory and, clinical settings.
Institute of Scientific and Technical Information of China (English)
张心宇
2015-01-01
Are grades really oppressive? The broad question's answer is of course open: it varies in different condition and in prerequisites. Like in Daily Californian,"Why Grades are Oppressive", the title tells us it standing: yes, grades are oppressive. In the article, the authors (this article was written by 16 students of the class) pointed out that the grading system has had a violent and powerfully destructive effect on our lives. Because grading focuses our attention on class requirements that we have no say in determination. And this makes many students equate their self-worth with the grades they get in exams. Besides, grades are intimately connected with a larger system of control in community, which trains students to be submissive and not to question or challenge it. In the end, the authors conclude that they should take responsibility for evaluating their own learning process.
A Simple Alternative to Grading
Potts, Glenda
2010-01-01
In this article, the author investigates whether an alternative grading system (contract grading) would yield the same final grades as traditional grading (letter grading), and whether or not it would be accepted by students. The author states that this study demonstrated that contract grading was widely, and for the most part, enthusiastically…
Collegiate Grading Practices and the Gender Pay Gap
Directory of Open Access Journals (Sweden)
Alicia C. Dowd
2000-01-01
Full Text Available Extending research findings by R. Sabot and J. Wakeman-Linn (1991, this article presents a theoretical analysis showing that relatively low grading quantitative fields and high grading verbal fields create a disincentive for college women to invest in quantitative study. Pressures on grading practices are modeled using higher education production functions.
Institute of Scientific and Technical Information of China (English)
冯燕; 任达平; 望军
2011-01-01
表面无立方相层梯度硬质合金是一种非常好的涂层刀具基体材料,近年来越来越受到重视.本文主要研究了Ti添加方式对于表面无立方相层梯度硬质合金的影响.研究发现,相对于添加TiN、TiC,添加TiCN得到的表面无立方相层梯度硬质合金综合性能更好.%The functionally graded cemented carbides with cubic carbide free layer is a kind of good substrate material for coating tool. So they were paied more and more attention in recent years. This paper researched the effect of the method of adding Ti on the functionally graded cemented carbides with cubic carbide free layer. It was found that adding TiCN was better than adding TiN and TiC.
Jung, Lee Ann; Guskey, Thomas R.
2010-01-01
Teachers often grapple with the challenge of giving report card grades to students with learning disabilities and English language learners. The authors offer a five-step model that "offers a fair, accurate, and legal way to adapt the grading process for exceptional learners." The model begins with a high-quality reporting system for all students…
Minimum Grading, Maximum Learning
Carey, Theodore; Carifio, James
2011-01-01
Fair and effective schools should assign grades that align with clear and consistent evidence of student performance (Wormeli, 2006), but when a student's performance is inconsistent, traditional grading practices can prove inadequate. Understanding this, increasing numbers of schools have been experimenting with the practice of assigning minimum…
Gammell, P. M.
1981-01-01
Reflections in ultrasonic A-scan signatures of beef carcasses indicate USDA grade. Since reflections from within muscle are determined primarily by fat/muscle interface, richness of signals is direct indication of degree of marbling and quality. Method replaces subjective sight and feel tests by individual graders and is applicable to grade analysis of live cattle.
Shaw, David D.; Pease, Leonard F., III.
2014-01-01
Grading can be accelerated to make time for more effective instruction. This article presents specific time management strategies selected to decrease administrative time required of faculty and teaching assistants, including a multiple answer multiple choice interface for exams, a three-tier grading system for open ended problem solving, and a…
Energy Technology Data Exchange (ETDEWEB)
NONE
1994-10-15
The advanced industrial technologies were introduced which are under research in the Tohoku National Industrial Research Institute. As for the research to grade the ADI function by the temperature gradient type austempering treatment, an ADI was produced which was graded in both hardness and toughness by austenpering-treating a graphite cast iron sphere. As for the research on the lamination by plating, a composite which was high in lamination strength and low in residual stress was produced by plating the base sheet with a thin film, giving a compressive force and heating it in vacuum in order to produce the composite with ceramics-metal or interceramics lamination. As for the research on the removing method of iron ions from the plating solution, a chelate resin was produced which contained multidentate ligands similar to the nitrirotriacetic acid selectively adsorbing the iron ions. As for the research to evaluate the corrosion of steel in the geothermal water, geothermal hot water in Miyagi Prefecture was experimentally evaluated in damaged quantity of carbon steel and stainless steel. Then, the damaged quantity even of carbon steel was shown to be within the usable limits as a construction structural material. 5 refs., 26 figs., 2 tabs.
Starowicz-Filip, Anna; Chrobak, Adrian Andrzej; Milczarek, Olga; Kwiatkowski, Stanisław
2015-12-07
The aim of this study was to specify whether cerebellar lesions cause visuospatial impairments in children. The study sample consisted of 40 children with low-grade cerebellar astrocytoma, who underwent surgical treatment and 40 healthy controls matched with regard to age and sex. Visuospatial abilities were tested using the spatial WISC-R subtests (Block Design and Object Assembly), Rey-Osterrieth Complex Figure, Benton Judgment of Line Orientation Test, PEBL Mental Rotation Task, and Benton Visual Retention Test. To exclude general diffuse intellectual dysfunction, the WISC-R Verbal Intelligence IQ, Performance IQ, and Full-Scale IQ scores were analysed. Post-surgical medical consequences were measured with the International Cooperative Ataxia Rating Scale. Compared to controls, the cerebellar group manifested problems with mental rotation of objects, visuospatial organization, planning, and spatial construction processes which could not be explained by medical complications or general intellectual retardation. The intensity of visuospatial syndrome highly depends on cerebellar lesion side. Patients with left-sided cerebellar lesions display more severe spatial problems than those with right-sided cerebellar lesions. In conclusion, focal cerebellar lesions in children affect their visuospatial ability. The impairments profile is characterized by deficits in complex spatial processes such as visuospatial organization and mental rotation, requiring reconstruction of visual stimuli using the imagination, while elementary sensory analysis and perception as well as spatial processes requiring direct manipulation of objects are relatively better preserved. This pattern is analogous to the one previously observed in adult population and appears to be typical for cerebellar pathology in general, regardless of age.
Paperless Grades and Faculty Development.
Hardy, James C.; Jones, Dennis; Turner, Sandy
2003-01-01
Provides overview of process of switching from paper-based grade reporting to computer-based grading. Authors found that paperless grading decreased number of errors, made student access more immediate, and reduced costs incurred by purchasing and storing grade-scanning sheets. Authors also argue that direct entry grading encourages faculty to…
Characterizations of Graded Distributive Modules
Institute of Scientific and Technical Information of China (English)
Qinghua Chen; Chang'an Li
2002-01-01
In this paper, we give some characterizations of graded distributive modules, prove some interesting results between graded rings (modules) and lattices under finiteness conditions, and investigate the direct sum of graded distributive modules in terms of orders of graded submodules and homomorphisms of graded factor modules.
Mupinga, Emily Evellyne; Garrison, M. E. Betsy; Pierce, Sarah H.
2002-01-01
A study of 151 mothers of elementary students identified relationships between parenting styles (authoritative, authoritarian, permissive) and family functioning (adaptability, cohesion). Families with balanced and moderately balanced levels of adaptability and cohesion had higher levels of authoritative parenting. Midrange balance was associated…
Institute of Scientific and Technical Information of China (English)
张榕京; 黄晨光; 段祝平
2001-01-01
An elasto-plastic finite element method is developed to predict the thermal residual stress of thermal spraying coatings with functionally graded material (FGM) layer. The optimized distribution form and parameter p about the volume fractions of various constituents in the FGM are obtained by the first order optimization method in the AL2O3 -Ni model system. The effects of geometry and material behavior on the optimization results are investigated numerically, including the temperature sensitivity of FGM and substrate material. It is found that the optimization of the constituent contents in FGM reduces the magnitude of residual stresses to a large degree. And the maximum residual stresses shun the weakest part of the coating structure by the optimization designing. When the length of specimen, the thickness of FGM layer and the thermal expansion coefficient of the substrate increase, while the distribution parameter p decreases. The results presented in this paper are useful for the design of thermal spraying coatings.%本文利用有限元方法和优化理论，对含FGM(Functionally Graded Materials)层的热喷涂构件中的残余应力进行了数值分析，并获得了FGM内各组份体积含量分布的最优化形式和参数p。同时，我们也研究了喷涂构件的几何形状、涂层及基底的材料性能对于p的影响规律。在本文的分析中，考虑了基底材料和FGM的塑性变形以及其性能对于温度的依赖。本文的工作将有利于含FGM层的热喷涂构件的设计与生产。
Institute of Scientific and Technical Information of China (English)
游琴秀; 傅春花
2016-01-01
Objective Analysis of coagulation function in patients with cirrhosis of different child-Pugh classification and its significance.Methods Retrospective analysis of the hospital in January 2015 ~ January 2016 in 73 patients with cirrhosis of the liver were divided into Grade A,grade B,grade C 3 groups,respectively,measurement of four patients with coagulation and D- two polymer.Results Cirrhotic patients with child Pugh score increased the four parameters of blood coagulation and D-D levels are different and APTT,Pt,TT and D-D levels,has appeared obviously increased,and FIB level showed a gradual decline.Conclusion The blood of patients with cirrhosis of the liver was low coagulation state,the detection of coagulation function can reflect the blood coagulation status of patients with cirrhosis,as a guide for the treatment of doctors.%目的：分析不同Child-Pugh分级的肝硬化患者凝血功能并探讨其意义。方法回顾性分析我院2015年1月—2016年1月住院的73例肝硬化患者，按Child-Pugh分级分为A级、B级、C级3组，分别测量各组患者凝血四项和D-二聚体。结果肝硬化患者随着Child-Pugh分级积分的增加其凝血四项与D-D水平也有所不同，且APTT、PT、TT与D-D指标水平均有明显上升，而FIB指标水平则呈现逐级下降。结论肝硬化患者的血液呈低凝状态，凝血功能检测可以反映肝硬化患者的出凝血状态，为临床治疗提供依据。