WorldWideScience

Sample records for alters root exudation

  1. Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion.

    Directory of Open Access Journals (Sweden)

    Swarnalee Dutta

    Full Text Available The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs. We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430. There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE, compared to those exposed to groundnut-root exudates (GRE. In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2, in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion.

  2. Artificial Root Exudate System (ARES): a field approach to simulate tree root exudation in soils

    Science.gov (United States)

    Lopez-Sangil, Luis; Estradera-Gumbau, Eduard; George, Charles; Sayer, Emma

    2016-04-01

    The exudation of labile solutes by fine roots represents an important strategy for plants to promote soil nutrient availability in terrestrial ecosystems. Compounds exuded by roots (mainly sugars, carboxylic and amino acids) provide energy to soil microbes, thus priming the mineralization of soil organic matter (SOM) and the consequent release of inorganic nutrients into the rhizosphere. Studies in several forest ecosystems suggest that tree root exudates represent 1 to 10% of the total photoassimilated C, with exudation rates increasing markedly under elevated CO2 scenarios. Despite their importance in ecosystem functioning, we know little about how tree root exudation affect soil carbon dynamics in situ. This is mainly because there has been no viable method to experimentally control inputs of root exudates at field scale. Here, I present a method to apply artificial root exudates below the soil surface in small field plots. The artificial root exudate system (ARES) consists of a water container with a mixture of labile carbon solutes (mimicking tree root exudate rates and composition), which feeds a system of drip-tips covering an area of 1 m2. The tips are evenly distributed every 20 cm and inserted 4-cm into the soil with minimal disturbance. The system is regulated by a mechanical timer, such that artificial root exudate solution can be applied at frequent, regular daily intervals. We tested ARES from April to September 2015 (growing season) within a leaf-litter manipulation experiment ongoing in temperate deciduous woodland in the UK. Soil respiration was measured monthly, and soil samples were taken at the end of the growing season for PLFA, enzymatic activity and nutrient analyses. First results show a very rapid mineralization of the root exudate compounds and, interestingly, long-term increases in SOM respiration, with negligible effects on soil moisture levels. Large positive priming effects (2.5-fold increase in soil respiration during the growing

  3. Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates

    Directory of Open Access Journals (Sweden)

    Fan Ben

    2012-06-01

    Full Text Available Abstract Background Plant root exudates have been shown to play an important role in mediating interactions between plant growth-promoting rhizobacteria (PGPR and their host plants. Most investigations were performed on Gram-negative rhizobacteria, while much less is known about Gram-positive rhizobacteria. To elucidate early responses of PGPR to root exudates, we investigated changes in the transcriptome of a Gram-positive PGPR to plant root exudates. Results Bacillus amyloliquefaciens FZB42 is a well-studied Gram-positive PGPR. To obtain a comprehensive overview of FZB42 gene expression in response to maize root exudates, microarray experiments were performed. A total of 302 genes representing 8.2% of the FZB42 transcriptome showed significantly altered expression levels in the presence of root exudates. The majority of the genes (261 was up-regulated after incubation of FZB42 with root exudates, whereas only 41 genes were down-regulated. Several groups of the genes which were strongly induced by the root exudates are involved in metabolic pathways relating to nutrient utilization, bacterial chemotaxis and motility, and non-ribosomal synthesis of antimicrobial peptides and polyketides. Conclusions Here we present a transcriptome analysis of the root-colonizing bacterium Bacillus amyloliquefaciens FZB42 in response to maize root exudates. The 302 genes identified as being differentially transcribed are proposed to be involved in interactions of Gram-positive bacteria with plants.

  4. Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates

    LENUS (Irish Health Repository)

    Fan, Ben

    2012-06-21

    AbstractBackgroundPlant root exudates have been shown to play an important role in mediating interactions between plant growth-promoting rhizobacteria (PGPR) and their host plants. Most investigations were performed on Gram-negative rhizobacteria, while much less is known about Gram-positive rhizobacteria. To elucidate early responses of PGPR to root exudates, we investigated changes in the transcriptome of a Gram-positive PGPR to plant root exudates.ResultsBacillus amyloliquefaciens FZB42 is a well-studied Gram-positive PGPR. To obtain a comprehensive overview of FZB42 gene expression in response to maize root exudates, microarray experiments were performed. A total of 302 genes representing 8.2% of the FZB42 transcriptome showed significantly altered expression levels in the presence of root exudates. The majority of the genes (261) was up-regulated after incubation of FZB42 with root exudates, whereas only 41 genes were down-regulated. Several groups of the genes which were strongly induced by the root exudates are involved in metabolic pathways relating to nutrient utilization, bacterial chemotaxis and motility, and non-ribosomal synthesis of antimicrobial peptides and polyketides.ConclusionsHere we present a transcriptome analysis of the root-colonizing bacterium Bacillus amyloliquefaciens FZB42 in response to maize root exudates. The 302 genes identified as being differentially transcribed are proposed to be involved in interactions of Gram-positive bacteria with plants.

  5. Effects of Tomato Root Exudates on Meloidogyne incognita.

    Science.gov (United States)

    Yang, Guodong; Zhou, Baoli; Zhang, Xinyu; Zhang, Zijun; Wu, Yuanyuan; Zhang, Yiming; Lü, Shuwen; Zou, Qingdao; Gao, Yuan; Teng, Long

    2016-01-01

    Plant root exudates affect root-knot nematodes egg hatch. Chemicals in root exudates can attract nematodes to the roots or result in repellence, motility inhibition or even death. However, until recently little was known about the relationship between tomato root exudates chemicals and root-knot nematodes. In this study, root exudates were extracted from three tomato rootstocks with varying levels of nematode resistance: Baliya (highly resistant, HR), RS2 (moderately resistant, MR) and L-402 (highly susceptible, T). The effects of the root exudates on Meloidogyne incognita (M. incognita) egg hatch, survival and chemotaxis of second-stage juveniles (J2) were explored. The composition of the root exudates was analysed by gas chromatography/mass spectrometry (GC/MS) prior to and following M. incognita inoculation. Four compounds in root exudates were selected for further analysis and their allopathic effect on M. incognita were investigated. Root exudates from each tomato rootstocks (HR, MR and T strains) suppressed M. incognita egg hatch and increased J2 mortality, with the highest rate being observed in the exudates from the HR plants. Exudate from HR variety also repelled M. incognita J2 while that of the susceptible plant, T, was demonstrated to be attractive. The relative amount of esters and phenol compounds in root exudates from HR and MR tomato rootstocks increased notably after inoculation. Four compounds, 2,6-Di-tert-butyl-p-cresol, L-ascorbyl 2,6-dipalmitate, dibutyl phthalate and dimethyl phthalate increased significantly after inoculation. The egg hatch of M. incognita was suppressed by each of the compound. L-ascorbyl 2,6-dipalmitate showed the most notable effect in a concentration-dependent manner. All four compounds were associated with increased J2 mortality. The greatest effect was observed with dimethyl phthalate at 2 mmol·L-1. Dibutyl phthalate was the only compound observed to repel M. incognita J2 with no effect being detected in the other

  6. Effects of Tomato Root Exudates on Meloidogyne incognita.

    Directory of Open Access Journals (Sweden)

    Guodong Yang

    Full Text Available Plant root exudates affect root-knot nematodes egg hatch. Chemicals in root exudates can attract nematodes to the roots or result in repellence, motility inhibition or even death. However, until recently little was known about the relationship between tomato root exudates chemicals and root-knot nematodes. In this study, root exudates were extracted from three tomato rootstocks with varying levels of nematode resistance: Baliya (highly resistant, HR, RS2 (moderately resistant, MR and L-402 (highly susceptible, T. The effects of the root exudates on Meloidogyne incognita (M. incognita egg hatch, survival and chemotaxis of second-stage juveniles (J2 were explored. The composition of the root exudates was analysed by gas chromatography/mass spectrometry (GC/MS prior to and following M. incognita inoculation. Four compounds in root exudates were selected for further analysis and their allopathic effect on M. incognita were investigated. Root exudates from each tomato rootstocks (HR, MR and T strains suppressed M. incognita egg hatch and increased J2 mortality, with the highest rate being observed in the exudates from the HR plants. Exudate from HR variety also repelled M. incognita J2 while that of the susceptible plant, T, was demonstrated to be attractive. The relative amount of esters and phenol compounds in root exudates from HR and MR tomato rootstocks increased notably after inoculation. Four compounds, 2,6-Di-tert-butyl-p-cresol, L-ascorbyl 2,6-dipalmitate, dibutyl phthalate and dimethyl phthalate increased significantly after inoculation. The egg hatch of M. incognita was suppressed by each of the compound. L-ascorbyl 2,6-dipalmitate showed the most notable effect in a concentration-dependent manner. All four compounds were associated with increased J2 mortality. The greatest effect was observed with dimethyl phthalate at 2 mmol·L-1. Dibutyl phthalate was the only compound observed to repel M. incognita J2 with no effect being detected in

  7. Pea-root exudates and their effect upon root-nodule bacteria

    NARCIS (Netherlands)

    Egeraat, van A.W.S.M.

    1972-01-01

    The main purpose of this investigation was to study the exudation (mechanism, sites) of various compounds by roots of pea seedlings in relation to the growth of Rhizobium leguminosarum.Chapter 1 gives a survey of the literature pertaining to plant-root exudates and their influence upon soil microorg

  8. Mapping Soil Carbon from Cradle to Grave: C Transformations of Root Exudates and Plant Litter

    Science.gov (United States)

    Pett-Ridge, J.; Keiluweit, M.; Nuccio, E.; Bougoure, J.; Weber, P. K.; Brodie, E.; Mayali, X.; Shi, S.; Hwang, M.; Thelen, M.; Firestone, M.; Kleber, M.; Nico, P. S.

    2013-12-01

    Carbon cycling in the rhizosphere is a nexus of biophysical interactions between plant roots, microorganisms, and the soil organo-mineral matrix. Plant roots provide 30-40% of soil organic C inputs, accelerate the rate of organic matter mineralization by ~10X, and support an active microhabitat for microbial transformation of soil C. Our research on how roots influence decomposition of soil organic matter in both simplified and complex microcosms uses geochemical characterization, molecular microbiology, isotope tracing, metabolomics and novel imaging approaches (';ChipSIP' and ';STXM-SIMS') to trace the fate of isotopically labelled root exudates and plant tissues. Our previous work suggests root exudates drive O2 limitation, alter metal chemistry and mineralogy, and influence the availability of SOM. Our most recent experiments using synthetic rhizospheres were designed to identify the role of root exudates on ligno-cellulose decomposition in soils. Cultures of 13C/15N-labeled single plant cells (lignin-rich tracheary elements) were added to rhizosphere microcosm soils, and their decomposition followed under the influence of different root exudates using the dual imaging approach ';STXM-SIMS'. Using this combination of X-ray spectromicroscopy and NanoSIMS, we imaged the deconstruction of 13C/15N-labeled ligno-cellulose in situ, and mapped associations of plant cell-derived decomposition products with specific soil minerals. We've also looked at microbial community function in the more complex rhizospheres surrounding roots of the annual grass Avena fatua. Using an isotope array that allows us to follow root C into bacterial, fungal, and microfaunal communities, we tracked the movement of 13C from labeled exudates and 15N from labeled root litter into the soil microbial community. Our results indicate that the microbial communities involved in litter decomposition differ in rhizosphere versus bulk soils, which may have implications for carbon stabilization in soil.

  9. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming.

    Science.gov (United States)

    Yin, Huajun; Li, Yufei; Xiao, Juan; Xu, Zhenfeng; Cheng, Xinyin; Liu, Qing

    2013-07-01

    Despite the perceived importance of exudation to forest ecosystem function, few studies have attempted to examine the effects of elevated temperature and nutrition availability on the rates of root exudation and associated microbial processes. In this study, we performed an experiment in which in situ exudates were collected from Picea asperata seedlings that were transplanted in disturbed soils exposed to two levels of temperature (ambient temperature and infrared heater warming) and two nitrogen levels (unfertilized and 25 g N m(-2)  a(-1) ). Here, we show that the trees exposed to an elevated temperature increased their exudation rates I (μg C g(-1) root biomass h(-1) ), II (μg C cm(-1)  root length h(-1) ) and III (μg C cm(-2)  root area h(-1) ) in the unfertilized plots. The altered morphological and physiological traits of the roots exposed to experimental warming could be responsible for this variation in root exudation. Moreover, these increases in root-derived C were positively correlated with the microbial release of extracellular enzymes involved in the breakdown of organic N (R(2)  = 0.790; P = 0.038), which was coupled with stimulated microbial activity and accelerated N transformations in the unfertilized soils. In contrast, the trees exposed to both experimental warming and N fertilization did not show increased exudation rates or soil enzyme activity, indicating that the stimulatory effects of experimental warming on root exudation depend on soil fertility. Collectively, our results provide preliminary evidence that an increase in the release of root exudates into the soil may be an important physiological adjustment by which the sustained growth responses of plants to experimental warming may be maintained via enhanced soil microbial activity and soil N transformation. Accordingly, the underlying mechanisms by which plant root-microbe interactions influence soil organic matter decomposition and N cycling should be incorporated

  10. Microbial Products Trigger Amino Acid Exudation from Plant Roots1

    Science.gov (United States)

    Phillips, Donald A.; Fox, Tama C.; King, Maria D.; Bhuvaneswari, T.V.; Teuber, Larry R.

    2004-01-01

    Plants naturally cycle amino acids across root cell plasma membranes, and any net efflux is termed exudation. The dominant ecological view is that microorganisms and roots passively compete for amino acids in the soil solution, yet the innate capacity of roots to recover amino acids present in ecologically relevant concentrations is unknown. We find that, in the absence of culturable microorganisms, the influx rates of 16 amino acids (each supplied at 2.5 μm) exceed efflux rates by 5% to 545% in roots of alfalfa (Medicago sativa), Medicago truncatula, maize (Zea mays), and wheat (Triticum aestivum). Several microbial products, which are produced by common soil microorganisms such as Pseudomonas bacteria and Fusarium fungi, significantly enhanced the net efflux (i.e. exudation) of amino acids from roots of these four plant species. In alfalfa, treating roots with 200 μm phenazine, 2,4-diacetylphloroglucinol, or zearalenone increased total net efflux of 16 amino acids 200% to 2,600% in 3 h. Data from 15N tests suggest that 2,4-diacetylphloroglucinol blocks amino acid uptake, whereas zearalenone enhances efflux. Thus, amino acid exudation under normal conditions is a phenomenon that probably reflects both active manipulation and passive uptake by microorganisms, as well as diffusion and adsorption to soil, all of which help overcome the innate capacity of plant roots to reabsorb amino acids. The importance of identifying potential enhancers of root exudation lies in understanding that such compounds may represent regulatory linkages between the larger soil food web and the internal carbon metabolism of the plant. PMID:15347793

  11. Molecular responses in root-associative rhizospheric bacteria to variations in plant exudates

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2015-04-01

    Plant exudates are a major factor in the interface of plant-soil-microbe interactions and it is well documented that the microbial community structure in the rhizosphere is largely influenced by the particular exudates excreted by various plants. Azospirillum brasilense is a plant growth promoting rhizobacterium that is known to interact with a large number of plants, including important food crops. The regulatory gene flcA has an important role in this interaction as it controls morphological differentiation of the bacterium that is essential for attachment to root surfaces. Being a response regulatory gene, flcA mediates the response of the bacterial cell to signals from the surrounding rhizosphere. This makes this regulatory gene a good candidate for analysis of the response of bacteria to rhizospheric alterations, in this case, variations in root exudates. We will report on our studies on the response of Azospirillum, an ecologically, scientifically and agriculturally important bacterial genus, to variations in the rhizosphere.

  12. A review of the influence of root-associating fungi and root exudates on the success of invasive plants

    Directory of Open Access Journals (Sweden)

    Cindy Bongard

    2012-08-01

    Full Text Available Plant-fungal interactions are essential for understanding the distribution and abundance of plants species. Recently, arbuscular mycorrhizal fungal (AMF partners of non-indigenous invasive plants have been hypothesized to be a critical factor influencing the invasion processes. AMF are known to improve nutrient and moisture uptake, as well as disrupt parasitic and pathogenic microbes in the host plant. Such benefits may enable invaders to establish significant and persistent populations in environments previously dominated by natives. Coupling these findings with studies on invader pathogen-disrupting root exudates is not well documented in the literature describing plant invasion strategies. The interaction effects of altered AMF associations and the impact of invader root exudates would be more relevant than understanding the AMF dynamics or the phytochemistry of successful invaders in isolation, particularly given that AMF and root exudates can have a similar role in pathogen control but function quite differently. One means to achieve this goal is to assess these strategies concurrently by characterizing both the general (mostly pathogens or commensals and AM-specific fungal colonization patterns found in field collected root samples of successful invaders, native plants growing within dense patches of invaders, and native plants growing separately from invaders. In this review I examine the emerging evidence of the ways in which AMF-plant interactions and the production of defensive root exudates provide pathways to invasive plant establishment and expansion, and conclude that interaction studies must be pursued to achieve a more comprehensive understanding of successful plant invasion.

  13. Root Exudation: The Ecological Driver of Hydrocarbon Rhizoremediation

    Directory of Open Access Journals (Sweden)

    Fanny Rohrbacher

    2016-03-01

    Full Text Available Rhizoremediation is a bioremediation technique whereby microbial degradation of organic contaminants occurs in the rhizosphere. It is considered to be an effective and affordable “green technology” for remediating soils contaminated with petroleum hydrocarbons. Root exudation of a wide variety of compounds (organic, amino and fatty acids, carbohydrates, vitamins, nucleotides, phenolic compounds, polysaccharides and proteins provide better nutrient uptake for the rhizosphere microbiome. It is thought to be one of the predominant drivers of microbial communities in the rhizosphere and is therefore a potential key factor behind enhanced hydrocarbon biodegradation. Many of the genes responsible for bacterial adaptation in contaminated soil and the plant rhizosphere are carried by conjugative plasmids and transferred among bacteria. Because root exudates can stimulate gene transfer, conjugation in the rhizosphere is higher than in bulk soil. A better understanding of these phenomena could thus inform the development of techniques to manipulate the rhizosphere microbiome in ways that improve hydrocarbon bioremediation.

  14. Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus

    OpenAIRE

    Karlovsky Petr; Steingrobe Bernd; Ratzinger Astrid; Hettwer Ursula; Khorassani Reza; Claassen Norbert

    2011-01-01

    Abstract Background In soils with a low phosphorus (P) supply, sugar beet is known to intake more P than other species such as maize, wheat, or groundnut. We hypothesized that organic compounds exuded by sugar beet roots solubilize soil P and that this exudation is stimulated by P starvation. Results Root exudates were collected from plants grown in hydroponics under low- and high-P availability. Exudate components were separated by HPLC, ionized by electrospray, and detected by mass spectrom...

  15. Use of Rhizosphere Metabolomics to Investigate Exudation of Phenolics by Arabidopsis Roots

    Science.gov (United States)

    Lee, Yong Jian; Rai, Amit; Reuben, Sheela; Nesati, Victor; Almeida, Reinaldo; Swarup, Sanjay

    2013-04-01

    The rhizosphere is a specialised micro-niche for bacteria that have an active exchange of signals and nutrients with the host plant. Nearly 20% of photosynthates are released as root exudates, which consist of primary metabolites and products of secondary metabolism which are largely phenolic in nature. Previously, using rhizosphere metabolomics, we showed that nearly 50% of organic carbon in the exudates is in the form of phenolic compounds, of which the largest fraction is from the phenylpropanoid synthesis pathway. Using Arabidopsis as a model, we have demonstrated that a biased rhizosphere can be created using plants with varying levels of phenylpropanoids due to mutations in the biosynthetic or regulatory genes. These phenylpropanoids levels are reflected in the exudates, and exudates from lines with regulatory gene mutations, tt8 and ttg, have higher levels of phenylpropanoids, whereas biosynthetic mutant line, tt4, has very low and undetectable levels of phenylpropanoids. The biased rhizosphere of tt8 and ttg lines provides a nutritional advantage to rhizobacteria that can utilize these phenylpropanoids such as quercetin. With such a strategy to increase the competitiveness of plant growth-promoting rhizobacteria (PGPR) such as Pseudomonas putida, this system can be applied to improve plant performance. In order to better understand the metabolic basis of the nutritional advantage behind the competitiveness of the favoured P. putida, we elucidated its quercetin utilization pathway. We have recently cloned the gene for quercetin oxidoreductase (QuoA) and expressed it in transgenic Arabidopsis lines to alter the plant phenylpropanoid metabolism, using a gain of function approach. Since phenylpropanoid biosynthesis in plants involve formation of quercetin from naringenin, we envisaged that QuoA expression in plants will provide us with a genetic tool to "reverse" this biosynthetic step. This perturbation led to a decrease in flavonoids and an increase in lignin

  16. Evaluating the role of root citrate exudation as a mechanism of aluminium resistance in maize genotypes

    NARCIS (Netherlands)

    Mariano, E.D.; Keltjens, W.G.

    2003-01-01

    Organic anion exudation by roots as a mechanism of aluminium (Al) resistance has been intensively studied lately. In the present study, we evaluated qualitative and quantitative aspects of root exudation of organic anions in maize genotypes of distinct sensitivity to Al in response to Al exposure. R

  17. COMPREHENSIVE CHEMICAL PROFILING OF GRAMINEOUS PLANT ROOT EXUDATES USING HIGH-RESOLUTION NMR AND MS. (R825433C007)

    Science.gov (United States)

    Root exudates released into soil have important functions in mobilizing metal micronutrients and for causing selective enrichment of plant beneficial soil micro-organisms that colonize the rhizosphere. Analysis of plant root exudates typically has involved chromatographic meth...

  18. The effects of cotton root exudates on the growth and development of Verticillium dahliae

    Institute of Scientific and Technical Information of China (English)

    Yuxiang WU; Weiping FANG; Shuijin ZHU; Kuiying JIN; Daofan JI

    2008-01-01

    The effects of upland cotton root exudates on the growth and development of Verticillium dahliae were studied, through the compared analysis of the root exudates components between the resistant and suscept-ive cotton materials, using a pair of resistant and sus-ceptive isogenic lines to Verticillium wilt, Z5629 and Z421, as well as 4 other upland cotton cultivars with different resistant levels of Verticillium wilt. The results showed that the amino acids in the root exudates of the resistant cultivars were much less than that of the sus-ceptible ones. Compared with the susceptible ones, there were a lack of aspartic acid, threonine, glutamic acid, alanine, isoleucine, leucine, phenylalanine, lysine and proline in the root exudates from the resistant cul-tivars. On the contrary, arginine was lacking in the sus-ceptive cultivars. The saccharide types in the root exudates were no different between the two kinds of cultivars, but the contents of glucose, fructose and suc-rose in the root exudates of the susceptible varieties were much higher than those in the resistant ones. The experiment of Verticillium dahliae culture showed that the cotton root exudates from resistant cultivars can effectively restrain the spore germination and mycelium growth of Verticillium dahliae, and the argi-nine was the leading amino acid in this inhibitory action, besides the nutrition of the root exudates. However, the cotton root exudates from the susceptive cotton cultivars can improve the growth and develop-ment of Verticillium dahliae effectively; among the amino acid in the exudates, alanine was the most active one in this stimulating function.

  19. Interaction of root exudates with the mineral soil constituents and their effect on mineral weathering

    Science.gov (United States)

    Mimmo, T.; Terzano, R.; Medici, L.; Lettino, A.; Fiore, S.; Tomasi, N.; Pinton, R.; Cesco, S.

    2012-04-01

    Plants release significant amounts of high and low molecular weight organic compounds into the rhizosphere. Among these exudates organic acids (e.g. citric acid, malic acid, oxalic acid), phenolic compounds (e.g. flavonoids), amino acids and siderophores of microbial and/or plant origin strongly influence and modify the biogeochemical cycles of several elements, thus causing changes in their availability for plant nutrition. One class of these elements is composed by the trace elements; some of them are essential for plants even if in small concentrations and are considered micronutrients, such as Fe, Zn, Mn. Their solubility and bioavailability can be influenced, among other factors, by the presence in soil solution of low molecular weight root exudates acting as organic complexing agents that can contribute to the mineral weathering and therefore, to their mobilization in the soil solution. The mobilized elements, in function of the element and of its concentration, can be either important nutrients or toxic elements for plants. The objective of this study was to assess the influence of several root exudates (citric acid, malic acid, oxalic acid, genistein, quercetin and siderophores) on the mineralogy of two different soils (an agricultural calcareous soil and an acidic polluted soil) and to evaluate possible synergic or competitive behaviors. X-ray diffraction (XRD) coupled with Electron Probe Micro Analysis (EPMA) was used to identify the crystalline and amorphous phases which were subjected to mineral alteration when exposed to the action of root exudates. Solubilization of trace metals such as Cu, Zn, Ni, Cr, Pb, Cd as well as of major elements such as Si, Al, Fe and Mn was assessed by means of Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Soil microorganisms have proven to decrease mineral weathering by reducing the concentration of active root exudates in solution. Results obtained are an important cornerstone to better understand the

  20. Compositional differences in simulated root exudates elicit a limited functional and compositional response in soil microbial communities.

    Science.gov (United States)

    Strickland, Michael S; McCulley, Rebecca L; Nelson, Jim A; Bradford, Mark A

    2015-01-01

    Inputs of low molecular weight carbon (LMW-C) to soil - primarily via root exudates- are expected to be a major driver of microbial activity and source of stable soil organic carbon. It is expected that variation in the type and composition of LMW-C entering soil will influence microbial community composition and function. If this is the case then short-term changes in LMW-C inputs may alter processes regulated by these communities. To determine if change in the composition of LMW-C inputs influences microbial community function and composition, we conducted a 90 day microcosm experiment whereby soils sourced from three different land covers (meadows, deciduous forests, and white pine stands) were amended, at low concentrations, with one of eight simulated root exudate treatments. Treatments included no addition of LMW-C, and the full factorial combination of glucose, glycine, and oxalic acid. After 90 days, we conducted a functional response assay and determined microbial composition via phospholipid fatty acid analysis. Whereas we noted a statistically significant effect of exudate treatments, this only accounted for ∼3% of the variation observed in function. In comparison, land cover and site explained ∼46 and ∼41% of the variation, respectively. This suggests that exudate composition has little influence on function compared to site/land cover specific factors. Supporting the finding that exudate effects were minor, we found that an absence of LMW-C elicited the greatest difference in function compared to those treatments receiving any LMW-C. Additionally, exudate treatments did not alter microbial community composition and observable differences were instead due to land cover. These results confirm the strong effects of land cover/site legacies on soil microbial communities. In contrast, short-term changes in exudate composition, at meaningful concentrations, may have little impact on microbial function and composition. PMID:26322029

  1. Bioassay and Identification of Root Exudates of Three Fruit Tree Species

    Institute of Scientific and Technical Information of China (English)

    Jiang-Hong Zhang; Zhi-Quan Mao; Li-Qin Wang; Huai-Rui Shu

    2007-01-01

    A laboratory bioassay was designed to determine the allelopathic potential of root exudates of three fruit tree species on apple germination. The results showed that root exudates of apple (Malus pumila L.) and peach (Prunus persica L.), each at concentrations of 0.02 and 0.2 mg/L, inhibited germination and radicle growth of apple seeds by 56.7%, 60.7%, 51.5%, and 59.3%, respectively. The corresponding shoot growth inhibition rate was 49.5%, 46.7%, 36.4%, and 44%, respectively. Root exudates of jujube (Ziziphus jujuba Mill.) had no significant effect on apple seeds.Qualitative determination of root exudates of apple, peach, and jujube tree was developed with gas chromatography-mass spectrometry. The root exudates of apple seedlings mainly contain organic acids, glycol, esters, and benzenphenol derivatives. Peach root exudates contained phenolic acids and benzenphenol derivatives in addition to two unidentified compounds. The root exudates of jujube did not contain any phenolic acids.

  2. Citrate exudation by maize roots; A possible mechanism of resistance to aluminium

    OpenAIRE

    Mariano, E.D.

    2003-01-01

    Low-molecular-weight organic anions have been intensively studied as possibly involved in a mechanism of Al resistance in plants, due to their involvement in many metabolic processes and to their negative charge, conferring them the capacity to complex metals. The objective of the thesis was to study the root exudation of organic anions as a potential mechanism of Al resistance operating in maize ( Zea mays L.). The effect of Al exposure on root organic anion exudation was studied with roots ...

  3. Overexpression of a Foreign Bt Gene in Cotton Affects the Low-Molecular-Weight Components in Root Exudates

    Institute of Scientific and Technical Information of China (English)

    YAN Wei-Dong; SHI Wei-Ming; LI Bao-Hai; ZHANG Min

    2007-01-01

    Most research in the past using genetically modified crops (GM crops) has focused on the ecological safety of foreign gene (i.e., the gene flow), gene products (for example, Bt (Bacillus thuringiensis) protein), and the safety of transgenic food for humans. In this study, changes in both the species and amounts of low-molecular-weight components in cotton (Gossypium hirsutum L.) root exudates after foreign Bt gene overexpression were investigated under different nutritional conditions. Transgenic cotton containing Bt (Bt-cotton), supplemented with all the mineral nutrients, secreted more organic acids than the wild-type cotton (WT). When nitrogen was removed from the full-nutrient solution, the amount of organic acids secretion of Bt-cotton was lesser than that of WT. The roots of the transgenic cotton secreted lesser amounts of amino acids and soluble sugars than the WT roots in the full-nutrient solution. Deficiencies of P and K caused a large increase in the total amino acid and soluble sugar secretions of both Bt-cotton and WT, with larger increases observed in Bt-cotton. Because transferring the foreign Bt gene into cotton can result in alterations in the components of the root exudates, with the effect varying depending on the nutritional status, the cultivation of genetically modified crops, such as Bt-cotton, in soil environments should be more carefully assessed, and the possible effects as a result of the alterations in the root exudate components should be considered.

  4. The root exudation of grain amaranth and its role in release of mineral potassium

    International Nuclear Information System (INIS)

    Grain amaranth is a pseudo-cereal with big biomass and abundant mineral elements. The genotypic variations of Amaranthus spp. with different K-use efficiency (KUE) were studied in root exudation and the role of root exudate in solubilizing mineral K by use of hydroponics and 14C tracing technique. The results showed that high KUE varieties had strong ability of both CO2 assimilation and exudation of photosynthate. Predominate low-molecular-weight organic acids (IMWOAs) in root exudate of grain amaranth was oxalic acid, accounting for more than 95% of the total LMWOAs tested. Amaranthus spp. differed in the intensity of root exudation with an order as. A. dubis>A. retroflexus>A. cruentus. In the same species, then, high KUE varieties usually had higher power of excretion. K-free treatment promoted excretion of photosynthate, but oxalic acid increased only in high KUE varieties. The root exudate could solubilize K-minerals significantly, and the amount of oxalic acid and its K release were closely correlated, which indicated that oxalic acid exudation is one of the key mechanism for Amaranthus spp. to enrich and take up K from K-minerals

  5. Potential of Root Exudates from Wetland Plants and Their Potential Role for Denitrification and Allelopathic Interactions

    DEFF Research Database (Denmark)

    Zhai, Xu

    Root exudates from wetland plants have both positive and negative interactions among microbe, plants and ecosystems. Wetland species releasing organic carbon into the rhizosphere for providing energy to denitrifying bacteria fuel denitrification for removal nitrogen in subsurface flow constructed...... wetlands. Furthermore, environmental factors such as temperature and light-regime affect the photosynthetic carbon fixation, which continuously influence the compositions and quantity of root exudates released into rhizosphere. Conversely, root exudates from invasive species might contain some phytotoxic...... chemicals to suppress the growth of native species. Phragmites australis is recognized as the most invasive species in wetland ecosystems in North America, and allelopathy has been reported to be involved in the invasion success of the introduced exotic P. australis. The composition of the root exudates may...

  6. Effect of root exudates on sorption, desorption, and transport of phenanthrene in mangrove sediments.

    Science.gov (United States)

    Jia, Hui; Lu, Haoliang; Dai, Minyue; Hong, Hualong; Liu, Jingchun; Yan, Chongling

    2016-08-15

    The effect of root exudates on the environmental behaviors of phenanthrene in mangrove sediments is poorly understood. In order to evaluate their influence, comprehensive laboratory experiments were performed using batch equilibrium and thin-layer chromatography (TLC) analyses. In the presence of root exudates, sorption of phenanthrene was inhibited, whereas desorption and mobility were promoted, and were elevated as root exudate concentrations increased. Among the three representative low molecular weight organic acids (LMWOAs) (citric, oxalic, and acetic acids), citric acid promoted desorption and mobility of phenanthrene more effectively than the other two. In addition, application of artificial root exudates (AREs) enhanced phenanthrene desorption, and mobility was always lower than that with the same concentration of LMWOAs, suggesting that LMWOAs predominantly affected the fate of phenanthrene in sediments. The results of this study could enhance our understanding of the mobility of persistent organic pollutants in sediment-water system. PMID:27293074

  7. Evolutionary Divergences in Root Exudate Composition among Ecologically-Contrasting Helianthus Species.

    Science.gov (United States)

    Bowsher, Alan W; Ali, Rifhat; Harding, Scott A; Tsai, Chung-Jui; Donovan, Lisa A

    2016-01-01

    Plant roots exude numerous metabolites into the soil that influence nutrient availability. Although root exudate composition is hypothesized to be under selection in low fertility soils, few studies have tested this hypothesis in a phylogenetic framework. In this study, we examined root exudates of three pairs of Helianthus species chosen as phylogenetically-independent contrasts with respect to native soil nutrient availability. Under controlled environmental conditions, seedlings were grown to the three-leaf-pair stage, then transferred to either high or low nutrient treatments. After five days of nutrient treatments, we used gas chromatography-mass spectrometry for analysis of root exudates, and detected 37 metabolites across species. When compared in the high nutrient treatment, species native to low nutrient soils exhibited overall higher exudation than their sister species native to high nutrient soils in all three species pairs, providing support for repeated evolutionary shifts in response to native soil fertility. Species native to low nutrient soils and those native to high nutrient soils responded similarly to low nutrient treatments with increased exudation of organic acids (fumaric, citric, malic acids) and glucose, potentially as a mechanism to enhance nutrition acquisition. However, species native to low nutrient soils also responded to low nutrient treatments with a larger decrease in exudation of amino acids than species native to high nutrient soils in all three species pairs. This indicates that species native to low nutrient soils have evolved a unique sensitivity to changes in nutrient availability for some, but not all, root exudates. Overall, these repeated evolutionary divergences between species native to low nutrient soils and those native to high nutrient soils provide evidence for the adaptive value of root exudation, and its plasticity, in contrasting soil environments.

  8. Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture

    Science.gov (United States)

    Wu, Linkun; Wang, Juanying; Huang, Weimin; Wu, Hongmiao; Chen, Jun; Yang, Yanqiu; Zhang, Zhongyi; Lin, Wenxiong

    2015-10-01

    Under consecutive monoculture, the biomass and quality of Rehmannia glutinosa declines significantly. Consecutive monoculture of R. glutinosa in a four-year field trial led to significant growth inhibition. Most phenolic acids in root exudates had cumulative effects over time under sterile conditions, but these effects were not observed in the rhizosphere under monoculture conditions. It suggested soil microbes might be involved in the degradation and conversion of phenolic acids from the monocultured plants. T-RFLP and qPCR analysis demonstrated differences in both soil bacterial and fungal communities during monoculture. Prolonged monoculture significantly increased levels of Fusarium oxysporum, but decreased levels of Pseudomonas spp. Abundance of beneficial Pseudomonas spp. with antagonistic activity against F. oxysporum was lower in extended monoculture soils. Phenolic acid mixture at a ratio similar to that found in the rhizosphere could promote mycelial growth, sporulation, and toxin (3-Acetyldeoxynivalenol, 15-O-Acetyl-4-deoxynivalenol) production of pathogenic F. oxysporum while inhibiting growth of the beneficial Pseudomonas sp. W12. This study demonstrates that extended monoculture can alter the microbial community of the rhizosphere, leading to relatively fewer beneficial microorganisms and relatively more pathogenic and toxin-producing microorganisms, which is mediated by the root exudates.

  9. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation.

    Science.gov (United States)

    Li, Bai; Li, Yu-Ying; Wu, Hua-Mao; Zhang, Fang-Fang; Li, Chun-Jie; Li, Xue-Xian; Lambers, Hans; Li, Long

    2016-06-01

    Plant diversity in experimental systems often enhances ecosystem productivity, but the mechanisms causing this overyielding are only partly understood. Intercropping faba beans (Vicia faba L.) and maize (Zea mays L.) result in overyielding and also, enhanced nodulation by faba beans. By using permeable and impermeable root barriers in a 2-y field experiment, we show that root-root interactions between faba bean and maize significantly increase both nodulation and symbiotic N2 fixation in intercropped faba bean. Furthermore, root exudates from maize promote faba bean nodulation, whereas root exudates from wheat and barley do not. Thus, a decline of soil nitrate concentrations caused by intercropped cereals is not the sole mechanism for maize promoting faba bean nodulation. Intercropped maize also caused a twofold increase in exudation of flavonoids (signaling compounds for rhizobia) in the systems. Roots of faba bean treated with maize root exudates exhibited an immediate 11-fold increase in the expression of chalcone-flavanone isomerase (involved in flavonoid synthesis) gene together with a significantly increased expression of genes mediating nodulation and auxin response. After 35 d, faba beans treated with maize root exudate continued to show up-regulation of key nodulation genes, such as early nodulin 93 (ENOD93), and promoted nitrogen fixation. Our results reveal a mechanism for how intercropped maize promotes nitrogen fixation of faba bean, where maize root exudates promote flavonoid synthesis in faba bean, increase nodulation, and stimulate nitrogen fixation after enhanced gene expression. These results indicate facilitative root-root interactions and provide a mechanism for a positive relationship between species diversity and ecosystem productivity. PMID:27217575

  10. Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus

    Directory of Open Access Journals (Sweden)

    Karlovsky Petr

    2011-08-01

    Full Text Available Abstract Background In soils with a low phosphorus (P supply, sugar beet is known to intake more P than other species such as maize, wheat, or groundnut. We hypothesized that organic compounds exuded by sugar beet roots solubilize soil P and that this exudation is stimulated by P starvation. Results Root exudates were collected from plants grown in hydroponics under low- and high-P availability. Exudate components were separated by HPLC, ionized by electrospray, and detected by mass spectrometry in the range of mass-to-charge ratio (m/z from 100 to 1000. Eight mass spectrometric signals were enhanced at least 5-fold by low P availability at all harvest times. Among these signals, negative ions with an m/z of 137 and 147 were shown to originate from salicylic acid and citramalic acid. The ability of both compounds to mobilize soil P was demonstrated by incubation of pure substances with Oxisol soil fertilized with calcium phosphate. Conclusions Root exudates of sugar beet contain salicylic acid and citramalic acid, the latter of which has rarely been detected in plants so far. Both metabolites solubilize soil P and their exudation by roots is stimulated by P deficiency. These results provide the first assignment of a biological function to citramalic acid of plant origin.

  11. Stress differentially impacts reserve pools and root exudation: implications for ecosystem functioning and carbon balance

    Science.gov (United States)

    Landhäusser, Simon; Karst, Justine; Wiley, Erin; Gaster, Jacob

    2016-04-01

    Environmental stress can influence carbon assimilation and the accumulation and distribution of carbon between growth, reserves, and exudation; however, it is unclear how these processes vary by different stress types. Partitioning of carbon to growth and reserves in plants might also vary between different organs. Roots reserves are of particular interest as they link the plant with the soil carbon cycle through exudation. Simple models of diffusion across concentration gradients predict the more C reserves in roots, the more C should be exuded from roots. However, the mechanisms underlying the accumulation and loss of C from roots may differ depending on the stress experienced by the plants. In a controlled study we tested whether different types of stresses (shade, cold soil, and drought) have differential effects on the distribution, abundance, and form (sugar vs. starch) of carbohydrates in seedlings, and whether these changes alone could explain differences in root exudation between stress types. Non-structural carbohydrate (NSC) concentration and pool sizes varied by stress type and between organs. Mass-specific C exudation increased with fine root sugar concentration; however, stress type affected exudation independently of reserve concentration. Seedlings exposed to cold soils exuded the most C on a per root mass basis followed by shade and drought. Through 13C labeling, we also found that depending on the stress type, aspen seedlings may be less able to control the loss of C to the soil compared with unstressed seedlings, resulting in more C leaked to the rhizosphere. The loss of C beyond that predicted by simple concentration gradients might have important implications for ecosystem functioning and carbon balance. If stressed plants lose proportionally more carbon to the soil, existing interactions between plants and soils may decouple under stress, and may include unexpected C fluxes between trees, soils and the atmosphere with a changing climate.

  12. How far roots and exudates can transform the soil structure and porosity?

    Science.gov (United States)

    Johannes, Alice; Kohler-Milleret, Roxane; Lamy, Frédéric; Boivin, Pascal

    2014-05-01

    Aims The impact of plant-roots on soil physical porosity and structure is still to be deciphered. Recent results revealed root-induced increases in soil pore volume whose magnitude could not be attributed to root-drilling effect, thus suggesting an indirect effect via microbial activity enhanced by root exudates (Milleret et al., 2009, Kholer-Milleret et al., 2013). This is discussed in the present study by quantifying the soil hydro-structural changes induced by root exudates and microorganisms in the absence of roots. Methods The experiment was performed on series of structured repacked samples from two soils previously experimented with plants in mesocosms (Anthrosol and Luvisol). The samples received a daily input of artificial root exudates for three months. The soil structural changes were then assessed using shrinkage analysis and aggregate stability test. Microbial activity was measured with CO2 emanation. Results In agreement with previous findings, root exudates increased microbial activity and aggregate stability. Oppositely, the observed structural changes were contradictory both in magnitude and pattern with those observed in the presence of plant roots. The soil bulk porosity was almost not changed while the small-diameter structural porosity was decreased in the presence of root exudates. Moreover, the hydro-structural stability of the soil decreased while the aggregate stability increased. Conclusions Though the structural changes observed in the presence of roots cannot be attributed to direct root drilling effect, they are not observed when only root exudates are delivered to the soil. Our results suggest that the soil structure is engineered by a complex soil-plant-microbe interaction combining root mechanical effect and micro-aggregate stabilisation effect. Cumulative structural pore volume increase could result from aggregates rearrangements induced by root growth, either by drilling or lever effect, further stabilized by microorganism

  13. Role of root exudates in dissolution of Cd containing iron oxides

    Science.gov (United States)

    Rosenfeld, C.; Martinez, C. E.

    2011-12-01

    Dissolved organic matter (DOM) in the rhizosphere contains organic acids, amino acids and more complex organic molecules that can substantially impact the solubility of soil solid phases. Plant roots and soil microorganisms contribute a large fraction of these organic compounds to DOM, potentially accelerating the transfer of solid phase elements into solution. In highly contaminated soils, heavy metals such as Cd are commonly found coprecipitated with common minerals (e.g. iron oxides). Introducing or changing vegetation on these contaminated soils may increase DOM levels in the soil pore fluids and thus enhance the biological and chemical weathering of soil minerals. Here, we investigate the role of root exudates on mineral dissolution and Cd mobility in contaminated soils. We hypothesize that plant exudates containing nitrogen and sulfur functional groups will dissolve Cd-containing mineral phases to a greater extent than exudates containing only oxygen functional groups, resulting in higher Cd concentrations in solution. Two different iron oxide mineral phases were utilized in a laboratory-scale model study system investigating the effects of low molecular weight, oxygen-, nitrogen-, and sulfur-containing organic compounds on mineral dissolution. Goethite (α-FeOOH) was synthesized in the laboratory with 0, 2.4, 5, and 100 theoretical mol% Cd, and franklinite (ZnFe2O4) was prepared with 0, 10, and 25 theoretical mol% Cd. Phase identity of all minerals was verified with X-ray diffraction (XRD). All minerals were reacted with 0.01 mM solutions containing one of four different organic ligands (oxalic acid, citric acid, histidine or cysteine) and aliquots of these solutions were sampled periodically over 40 days. Results from solution samples suggest that oxalic acid, citric acid, and histidine consistently increase mineral dissolution relative to the control (no organic compound present) while cysteine consistently inhibits dissolution relative to the control in

  14. Two mire species respond differently to enhanced ultraviolet-B radiation: effects on biomass allocation and root exudation

    DEFF Research Database (Denmark)

    Rinnan, Riikka Tiivi Mariisa; Gehrke, Carola; Michelsen, Anders

    2006-01-01

    •  Increased ultraviolet-B (UV-B) radiation arising from stratospheric ozone depletion may influence soil microbial communities via effects on plant carbon allocation and root exudation. •  Eriophorum angustifolium and Narthecium ossifragum plants, grown in peatland mesocosms consisting of Sphagn...... peat, peat pore water and natural microbial communities, were exposed outdoors to enhanced UV-B radiation simulating 15% ozone depletion in southern Scandinavia for 8 wk. •  Enhanced UV-B increased rhizome biomass and tended to decrease the biomass of the largest root fraction of N....... ossifragum and furthermore decreased dissolved organic carbon (DOC) and monocarboxylic acid concentration, which serves as an estimate of net root exudation, in the pore water of the N. ossifragum mesocosms. Monocarboxylic acid concentration was negatively related to the total carbon concentration of N. ossifragum leaves....... •  Increased UV-B radiation appears to alter below-ground biomass of the mire plants in species-specific patterns, which in turn leads to a change in the net efflux of root exudates....

  15. EFFECT OF ROOT EXUDATES OF TAGETES SP. ON EGG HATCHING BEHAVIOR OF MELOIDOGYNE INCOGNITA

    Directory of Open Access Journals (Sweden)

    Iruthaya Kalaiselvam

    2011-10-01

    Full Text Available The effect root exudates of pre-planted marigold intercropped with tomato in regulating the hatching behavior of root-knot nematode - Meloidogyne incognita eggs were investigated. Marigold cultivars Tagetes patula, T. minuta, T. erecta, T. erecta (var. Orange, T. erecta (var. Yellow significantly reduced the numbers of second-stage juveniles (J2s in subsequent tomato compared to the tomato-tomato control. Four different concentrations (25, 50, 75 and 100 % of water soluble extract from the selected varieties of Marigold cultivars were filtered and added to the petri dish and infested with the eggs of M. incognita. Data indicate that egg hatching was significantly affected by root exudates of Tagetes sp. however, nematicidal activity was species dependent. Root exudates of T. erecta were lethal to J2 of M. incognita and were inhibitory to the hatch of eggs at the concentration of 75 % or higher.

  16. The impact of mucilage exudate on root water uptake - Numerical study

    Science.gov (United States)

    Schwartz, N.; Carminati, A.; Javaux, M.

    2015-12-01

    For many years, the rhizosphere, which is the zone of soil in the vicinity of the roots and which is influenced by the roots, is known as a unique soil environment with different physical, biological and chemical properties than those of the bulk soil. Indeed, in recent studies it has been shown that root exudates and especially mucilage alter the hydraulic properties of the soil, and that drying and wetting cycles of mucilage result in non-equilibrium water dynamics in the rhizosphere. While there are experimental evidences and simplified 1D model for those concepts, an integrated model that considers rhizosphere processes with a detailed model for water and roots flow is absent. Therefore, the objective of this work is to develop a 3D physical model of water flow in the soil-plant continuum that take in consideration root architecture and rhizosphere specific properties. We simulate wetting and drying cycles and examine the impact of various rhizosphere processes on water content distribution and root water uptake (RWU). For wetting, the model predict that after infiltration the rate of change in the rhizosphere water content is lower than in the bulk soil (due to non-equilibrium), but over time water infiltrated into the rhizosphere and eventually the water content in the rhizosphere became higher than in the bulk soil. For drying, the high water holding capacity of the rhizosphere, and the non-equilibrium between water content and water potential delay the onset of stress. Furthermore, when continues drying-wetting setup is examined, rhizosphere properties results in a lower fluctuation of the water content around the root. Overall, the model presented here is the first attempt to include rhizosphere specific processes within a detailed soil-plant water flow model. The model provides a tool to examine the impact of different rhizosphere processes on water dynamics and RWU under different irrigation practices.

  17. Effects of maize root exudates and organic acids on the desorption of phenanthrene from soils

    Institute of Scientific and Technical Information of China (English)

    ZHU Yanhong; ZHANG Shuzhen; HUANG Honglin; WEN Bei

    2009-01-01

    The effects of maize root exudates and low-molecular-weight-organic anions (LMWOAs) on the desorption of phenanthrene from eight artificially contaminated soils were evaluated. A significant negative correlation was observed between the amounts of phenanthrene desorbed and the soil organic carbon (SOC) contents (P0.1). Neither maize root exudates nor oxalate and citrate anions influenced desorption of phenanthrene with the addition of NAN3. A faster phenanthrene desorption occurred without the addition of NaN3 in the presence of maize root exudates than oxalate or citrate due to the enhanced degradation by root exudates. Without the addition of NaN3, oxalate or citrate at different concentrations could inhibit phenanthrene desorption to different extents and the inhibiting effect by citrate was more significant than by oxalate. This study leads to the conclusion that maize root exudates can not enhance the desorption under abiotic condition with the addition of NaN3 and can promote the desorption of phenanthrene in soils without the addition of NAN3.

  18. Effects of sorghum (sorghum bicolor L.) root exudates on the cell cycle of the bean plant (phaseolus vulgaris L.) root

    OpenAIRE

    Hallak Angela Maria Gattás; Davide Lisete Chamma; Souza Itamar Ferreira

    1999-01-01

    Two experiments were conducted to test the allelopathic effect of sorghum (Sorghum bicolor L.) root exudates on bean (Phaseolus vulgaris L.) cell division. Research was conducted in the greenhouse of the Wistock Agricultural Research Institute of Minas Gerais State (EPAMIG) and in a laboratory of the Federal University of Lavras (UFLA). Sorghum variety BR-601 and bean variety Carioca MG were used. The exudate, called sorgoleone (SGL), was obtained by methylene chloride and acetic acid extract...

  19. Plant root exudates mediate neighbour recognition and trigger complex behavioural changes.

    Science.gov (United States)

    Semchenko, Marina; Saar, Sirgi; Lepik, Anu

    2014-11-01

    Some plant species are able to distinguish between neighbours of different genetic identity and attempt to pre-empt resources through root proliferation in the presence of unrelated competitors, but avoid competition with kin. However, studies on neighbour recognition have met with some scepticism because the mechanisms by which plants identify their neighbours have remained unclear. In order to test whether root exudates could mediate neighbour recognition in plants, we performed a glasshouse experiment in which plants of Deschampsia caespitosa were subjected to root exudates collected from potential neighbours of different genetic identities, including siblings and individuals belonging to the same or a different population or species. Our results show that root exudates can carry specific information about the genetic relatedness, population origin and species identity of neighbours, and trigger different responses at the whole root system level and at the level of individual roots in direct contact with locally applied exudates. Increased root density was mainly achieved through changes in morphology rather than biomass allocation, suggesting that plants are able to limit the energetic cost of selfish behaviour. This study reveals a new level of complexity in the ability of plants to interpret and react to their surroundings.

  20. [Regulation effects of grafting on cinnamic acid and vanillin in eggplant root exudates].

    Science.gov (United States)

    Chen, Shao-li; Zhou, Bao-li; Wang, Ru-hua; Fu, Ya-wen

    2008-11-01

    Cinnamic acid and vanillin are the allelochemicals commonly existed in eggplant root exudates. With pot culture experiment, the regulation effects of grafting on the cinnamic acid and vanillin in eggplant root exudates were studied, and the results showed that grafting decreased the amount of the two substances, especially of vanillin, in eggplants root system. The maximum reduction amount of cinnamic acid reached 68.96%, and that of vanillin reached 100%. Under the stress of exotic cinnamic acid and vanillin, especially of exotic cinnamic acid, grafting relieved the autotoxicity of the two substances on eggplants. Compared with own-rooted eggplant, grafted eggplant had a higher plant height and a larger stem diameter, its leaf chlorophyll content increased by 5.26%-13.12%, root electric conductivity and MDA content decreased, and root SOD activity enhanced.

  1. Species-dependent effects of border cell and root tip exudates on nematode behavior.

    Science.gov (United States)

    Zhao, X; Schmitt, M; Hawes, M C

    2000-11-01

    ABSTRACT Effects of border cell and root tip exudates on root knot nematode (Meloidogyne incognita) behavior were examined. In whole-plant assays using pea, M. incognita second-stage juveniles (J2) accumulated rapidly around the 1- to 2-mm apical region ensheathed by border cells, but not in the region of elongation. Within 15 to 30 min, J2 which had accumulated within detached clumps of border cells lost motility and entered into a quiescent state. When border cells (and associated root tip exudates) were washed from pea roots prior to challenge with nematodes, no such accumulation and quiescence was induced. Attraction of nematodes by roots was species dependent: no attraction or accumulation occurred in snap bean. Using a quantitative assay, three categories of chemotaxis responses occurred: attraction (pea and alfalfa cv. Thor), repulsion (alfalfa cv. Moapa 69), and no response (snap bean and alfalfa cv. Lahonton). In contrast, total root tip exudates from all three plant species acted as a repellent for M. incognita in the sand assay. An in vitro assay was developed to characterize the induced quiescence response. When total root tip exudate from the tested legumes (as well as corn) was incubated with J2 populations, >80% of the nematodes lost motility. A similar response occurred in Caenorhabditis elegans. Border cell exudates did not induce or contribute to the induction of quiescence. Cocultivation of pea border cells with M. incognita resulted in changes in border cell shape similar to those observed in response to exogenous plant hormones. No such changes occurred in snap bean border cells. Understanding the cell- and host-specific extracellular recognition that occurs between roots and pathogenic nematodes in the early stages before infection occurs could lead to new avenues for disease control.

  2. Effect of soil water content on spatial distribution of root exudates and mucilage in the rhizosphere

    Science.gov (United States)

    Holz, Maire; Zarebanadkouki, Mohsen; Kuzyakov, Yakov; Carminati, Andrea

    2016-04-01

    Water and nutrients are expected to become the major factors limiting food production. Plant roots employ various mechanisms to increase the access to these limited soil resources. Low molecular root exudates released into the rhizosphere increase nutrient availability, while mucilage improves water availability under low moisture conditions. However, studies on the spatial distribution and quantification of exudates in soil are scarce. Our aim was therefore to quantify and visualize root exudates and mucilage distribution around growing roots using neutron radiography and 14C imaging at different levels of water stress. Maize plants were grown in rhizotrons filled with a silty soil and were exposed to varying soil conditions, from optimal to dry. Mucilage distribution around the roots was estimated from the profiles of water content in the rhizosphere - note that mucilage increases the soil water content. The profiles of water content around different root types and root ages were measured with neutron radiography. Rhizosphere extension was approx. 0.7 mm and did not differ between wet and dry treatments. However, water content (i.e. mucilage concentration) in the rhizosphere of plants grown in dry soils was higher than for plants grown under optimal conditions. This effect was particularly pronounced near the tips of lateral roots. The higher water contents near the root are explained as the water retained by mucilage. 14C imaging of root after 14CO2 labeling of shoots (Pausch and Kuzyakov 2011) was used to estimate the distribution of all rhizodeposits. Two days after labelling, 14C distribution was measured using phosphor-imaging. To quantify 14C in the rhizosphere a calibration was carried out by adding given amounts of 14C-glucose to soil. Plants grown in wet soil transported a higher percentage of 14C to the roots (14Croot/14Cshoot), compared to plants grown under dry conditions (46 vs. 36 %). However, the percentage of 14C allocated from roots to

  3. Plasma membrane H+-ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin

    DEFF Research Database (Denmark)

    Tomasi, Nicola; Kretzschmar, Tobias; Espen, Luca;

    2009-01-01

    the rhizosphere.The relationship between acidification and carboxylate exudation is still largely unknown. In the present work,we studied the linkage between organic acids (malate and citrate) and proton exudations in cluster roots of P-deficient white lupin. After the illumination started, citrate exudation......,an activator of the plasmamembrane (PM)H+-ATPase, stimulated citrate exudation, whereas vanadate, an inhibitor of the H+-ATPase, reduced citrate exudation. The burst of citrate exudation was associated with an increase in expression of theLHA1PMH+-ATPase gene,an increased amount of H+-ATPase protein, a shift...... in pH optimum of the enzymeand post-translational modification of an H ++-ATPase protein involving binding of activating 14-3-3 protein.Taken together, our results indicate a close link in cluster roots of P-deficient white lupin between the burst of citrate exudation and PM H+-ATPase-catalysed proton...

  4. Poplar root exudates contain compounds that induce the expression of MiSSP7 in Laccaria bicolor.

    Science.gov (United States)

    Plett, Jonathan M; Martin, Francis

    2012-01-01

    Communication between organisms is crucial for their survival, especially for sessile organisms such as plants that depend upon interactions with mutualistic organisms to maximize their nutrient acquisition. This communication can take the form of the exchange of volatile compounds, metabolites or effectors - small protein signals secreted from the colonizing cell that change the biology of the host cell.  We recently characterized the first mutualistic effector protein from an ectomycorrhizal fungus, a small secreted protein named MiSSP7 encoded by Laccaria bicolor.  Ectomycorrhizal fungi are soil-borne mutualistic organisms whose hyphae wrap around host roots and grow into the root apoplastic space where the fungus exchanges nutrients such as nitrogen and phosphorus in return for plant derived sugars.  The MiSSP7 protein is induced by root exudates and is highly expressed throughout the root colonization process.  Its presence was responsible for alterations to the plant transcriptomic profile, a mechanism by which MiSSP7 may aid in the formation of the symbiotic interface. Here we further discuss the implications of these findings and, further, we demonstrate that the production of MiSSP7 is induced by two flavonoids, rutin and quercitrin, a class of compounds normally found within the exudates of plant roots.  We also consider the interesting similarities between the mechanisms of effector induction and action between pathogenic and mutualistic fungi.  

  5. Extracellular proteins in pea root tip and border cell exudates.

    Science.gov (United States)

    Wen, Fushi; VanEtten, Hans D; Tsaprailis, George; Hawes, Martha C

    2007-02-01

    Newly generated plant tissue is inherently sensitive to infection. Yet, when pea (Pisum sativum) roots are inoculated with the pea pathogen, Nectria haematococca, most newly generated root tips remain uninfected even though most roots develop lesions just behind the tip in the region of elongation. The resistance mechanism is unknown but is correlated spatially with the presence of border cells on the cap periphery. Previously, an array of >100 extracellular proteins was found to be released while border cell separation proceeds. Here we report that protein secretion from pea root caps is induced in correlation with border cell separation. When this root cap secretome was proteolytically degraded during inoculation of pea roots with N. haematococca, the percentage of infected root tips increased from 4% +/- 3% to 100%. In control experiments, protease treatment of conidia or roots had no effect on growth and development of the fungus or the plant. A complex of >100 extracellular proteins was confirmed, by multidimensional protein identification technology, to comprise the root cap secretome. In addition to defense-related and signaling enzymes known to be present in the plant apoplast were ribosomal proteins, 14-3-3 proteins, and others typically associated with intracellular localization but recently shown to be extracellular components of microbial biofilms. We conclude that the root cap, long known to release a high molecular weight polysaccharide mucilage and thousands of living cells into the incipient rhizosphere, also secretes a complex mixture of proteins that appear to function in protection of the root tip from infection.

  6. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions.

    Directory of Open Access Journals (Sweden)

    Jacqueline M Chaparro

    Full Text Available Plant roots constantly secrete compounds into the soil to interact with neighboring organisms presumably to gain certain functional advantages at different stages of development. Accordingly, it has been hypothesized that the phytochemical composition present in the root exudates changes over the course of the lifespan of a plant. Here, root exudates of in vitro grown Arabidopsis plants were collected at different developmental stages and analyzed using GC-MS. Principle component analysis revealed that the composition of root exudates varied at each developmental stage. Cumulative secretion levels of sugars and sugar alcohols were higher in early time points and decreased through development. In contrast, the cumulative secretion levels of amino acids and phenolics increased over time. The expression in roots of genes involved in biosynthesis and transportation of compounds represented in the root exudates were consistent with patterns of root exudation. Correlation analyses were performed of the in vitro root exudation patterns with the functional capacity of the rhizosphere microbiome to metabolize these compounds at different developmental stages of Arabidopsis grown in natural soils. Pyrosequencing of rhizosphere mRNA revealed strong correlations (p<0.05 between microbial functional genes involved in the metabolism of carbohydrates, amino acids and secondary metabolites with the corresponding compounds released by the roots at particular stages of plant development. In summary, our results suggest that the root exudation process of phytochemicals follows a developmental pattern that is genetically programmed.

  7. Clover root exudate produces male-biased sex ratios and accelerates male metamorphic timing in wood frogs.

    Science.gov (United States)

    Lambert, Max R

    2015-12-01

    In amphibians, abnormal metamorph sex ratios and sexual development have almost exclusively been considered in response to synthetic compounds like pesticides or pharmaceuticals. However, endocrine-active plant chemicals (i.e. phytoestrogens) are commonly found in agricultural and urban waterways hosting frog populations with deviant sexual development. Yet the effects of these compounds on amphibian development remain predominantly unexplored. Legumes, like clover, are common in agricultural fields and urban yards and exude phytoestrogen mixtures from their roots. These root exudates serve important ecological functions and may also be a source of phytoestrogens in waterways. I show that clover root exudate produces male-biased sex ratios and accelerates male metamorphosis relative to females in low and intermediate doses of root exudate. My results indicate that root exudates are a potential source of contaminants impacting vertebrate development and that humans may be cultivating sexual abnormalities in wildlife by actively managing certain plant species. PMID:27019728

  8. Determination of Organic Acids in Root Exudates by High Performance Liquid Chromatography:Ⅲ.Effects of Interfering Factors

    Institute of Scientific and Technical Information of China (English)

    SHENJIANBO; ZHANGFUSUO; 等

    1999-01-01

    A solution culture experiment was conducted to investigate the effects of collection time and interfering ions on separation and determination of low-molecular-weight organic acids in root exudates of soybean using the method for directly collecting root exudates.The suitable cooection time of root exudates and the interferiung ions affecting organic acid determination were determined.The method for removing the interfering ions was established and analyzed.The release amount of root exudates increased with the increase of collection time from 0 to 120min but decreased with increasing of collection time from 120to 240min.The maximum exuding amounts of organic acids were observed in root exudates at the collection time of 120min.There was a significant difference of organic acid components between the treatments of collection time of 120min and 240min,Citric acid was founnd only in the treatment of 120min collection time,NO3- was the main interfering ion in organic acid determination and had the same retention time as oxalic acid.Anion exchange resin(SAX)properly treated by HPLC(high performance liquid chromatography)solvent could remove NO3- anion in sample solution of root exudates,thus enhancing the recoveries of organic acids in root exudates.There was no significant effect of the chemicals added into sample solution such as H3PO4,SAX and KNO3 on the retention time of organic acids.

  9. Metabolite fingerprinting of exudates from carrot roots grown under phosphorus stress

    Science.gov (United States)

    To see if differences in the metabolite content of exudates obtained from cultured carrot roots grown in the presence and absence of phosphorus could be detected, crude samples were analyzed via Fourier Transform Ion Cyclotron Mass Spectrometry (FTMS). The highly accurate masses and elemental compo...

  10. Oxalate and root exudates enhance the desorption of p,p'-DDT from soils.

    Science.gov (United States)

    Luo, Lei; Zhang, Shuzhen; Shan, Xiao-Quan; Zhu, Yong-Guan

    2006-05-01

    The abiotic desorption of p,p'-DDT from seven Chinese soils spiked with p,p'-DDT and the effects of oxalate at 0.001-0.1M and the root exudates of maize, wheat, and ryegrass were evaluated using batch experiments. Soil organic carbon played a predominant role in the retention of DDT. Oxalate significantly increased the desorption of p,p'-DDT, with the largest increments ranging from 11% to 54% for different soils. Oxalate addition also resulted in the increased release of dissolved organic carbon and inorganic ions from soils. Root exudates had similar effects to those of oxalate. Root exudates significantly increased DDT desorption from the soils, and the general trend was similar among the plant species studied for all the soils (p > 0.05). Low molecular weight dissolved organic carbon amendments caused partial dissolution of the soil structure, such as the organo-mineral linkages, resulting in the release of organic carbon and metal ions and thus the subsequent enhanced desorption of DDT from the soils. The enhancing effects of oxalate and root exudates on DDT desorption were influenced by the contents of soil organic carbon and dissolved organic carbon in soils. PMID:16307790

  11. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data.

    Science.gov (United States)

    Mönchgesang, Susann; Strehmel, Nadine; Schmidt, Stephan; Westphal, Lore; Taruttis, Franziska; Müller, Erik; Herklotz, Siska; Neumann, Steffen; Scheel, Dierk

    2016-01-01

    Many metabolomics studies focus on aboveground parts of the plant, while metabolism within roots and the chemical composition of the rhizosphere, as influenced by exudation, are not deeply investigated. In this study, we analysed exudate metabolic patterns of Arabidopsis thaliana and their variation in genetically diverse accessions. For this project, we used the 19 parental accessions of the Arabidopsis MAGIC collection. Plants were grown in a hydroponic system, their exudates were harvested before bolting and subjected to UPLC/ESI-QTOF-MS analysis. Metabolite profiles were analysed together with the genome sequence information. Our study uncovered distinct metabolite profiles for root exudates of the 19 accessions. Hierarchical clustering revealed similarities in the exudate metabolite profiles, which were partly reflected by the genetic distances. An association of metabolite absence with nonsense mutations was detected for the biosynthetic pathways of an indolic glucosinolate hydrolysis product, a hydroxycinnamic acid amine and a flavonoid triglycoside. Consequently, a direct link between metabolic phenotype and genotype was detected without using segregating populations. Moreover, genomics can help to identify biosynthetic enzymes in metabolomics experiments. Our study elucidates the chemical composition of the rhizosphere and its natural variation in A. thaliana, which is important for the attraction and shaping of microbial communities. PMID:27363486

  12. [Allelopathic effects of cultured Cucurbita moschata root exudates].

    Science.gov (United States)

    Li, Min; Ma, Yongqin; Shui, Junfeng

    2005-04-01

    By using the techniques of tissue culture, bio-assay and laboratory analysis, this paper studied the effects of the allelopathic chemicals from pumpkin (Cucurbita moschata) roots on the seed germination and seedling growth of pumpkin, wheat (Triticum aestivum), and radish (Raphanus sativus). The pumpkin root was cultured on a sterile B5 media, and the concentrations of macro- and microelements, organic supplements and hormones in the media were adjusted by using an orthogonal design. After culturing, the culture media was filtered and used in a bioassay to test the autotoxicity and allelopathic effects. The results showed that the pumpkin had both autotoxic and allelopathic effects, and the media having been used to culture the pumpkin roots contained the chemicals that significantly inhibited the seedling growth of wheat and radish. The allelopathic effect decreased when the culture media was diluted. The production of allelochemicals seemed to be related to the growth rate of the pumpkin roots. When the root growth was rapid, the concentration of allelochemicals was high. The allelopathic effect was stronger on radish than on wheat. The optimum concentrations of macro- and microelements, vitamins and hormones for culturing pumpkin root were determined, and the effect of pumpkin root nutrition on the production of allelochemicals was tested. The results indicated that pumpkin root nutrition had a significant effect on the production of allelochemicals.

  13. [Effect of phosphorus deficiency on activity of acid phosphatase exuded by wheat roots].

    Science.gov (United States)

    Sun, Haiguo; Zhang, Fusuo

    2002-03-01

    The activity of acid phosphatase exuded by roots, the tissue location of the enzyme, and the relationship between the enzyme activity and phosphorus efficiency of wheat were studied. The results showed that the activity of acid phosphatase exuded by wheat 81(85)5-3-3-3 and NC37 under P-sufficiency treat were lower than those under P-deficiency, and the enzyme activity of the former variety was significantly higher than that of the latter. There was a significant difference in the enzyme activity among 12 wheat genotypes grown under P-deficiency treat. Acid phosphatase was exuded by epidermis cell of root, especially by epidermal cell of root apex. Thus, there was a linear relationship between the enzyme activity and the surface area of root or the number of root apexes. It implied that the enzyme activity was markedly related to the size of root system. The linear relationship between relative grain yield and acid phosphatase activity was significant. It indicates that the enzyme activity could be used as an early indicator to select P-efficient wheat genotypes.

  14. The Extraction, Isolation and Identiifcation of Exudates from the Roots of Flaveria bidentis

    Institute of Scientific and Technical Information of China (English)

    YANG Xing; ZHANG Li-hui; SHI Cui-ping; SHANG Yan; ZHANG Jin-lin; HAN Jian-min; DONG Jin-gao

    2014-01-01

    Large amounts of Flaveria bidentis’s root culturing solution were obtained by using DFT (deep lfow technique) equipment and these solution which was vacuum concentrated (10, 20 mg mL-1) can have a certain inhibition on Triticum aestivum, Cucumis sativus, Raphanus sativus, Amaranthus retrolfexus, Setaria viridis, Chenopodium album, Echinochloa crusgalli and Chloris virgata. This outcome suggested some active compounds in the root exudates of Flaveria bidentis can inhibit the germination, seedling elongation and root length. The dichloromethane extract of root exudates was identiifcated by GC-MS, and 29 kinds of compounds, including esters, hydrocarbons, ketones, thiazole, amines, etc. were obtained and the phthalate n-octyl ester, phthalate 2-ethylhexyl ester were proved to be allelochemicals. The culturing solution of root exudates was separated through the resin column and silica gel column and a component inhibiting seedling height, root length and fresh weight of wheat was got. There were 6 kinds of organic compounds in this component including dioctyl phthalate, 1,2-phthalate, mono(2-ethylhexyl) ester by GC-MS.

  15. Stoichiometry constrains microbial response to root exudation- insights from a model and a field experiment in a temperate forest

    Directory of Open Access Journals (Sweden)

    J. E. Drake

    2013-02-01

    Full Text Available Plant roots release a wide range of chemicals into soils. This process, termed root exudation, is thought to increase the activity of microbes and the exoenzymes they synthesize, leading to accelerated rates of carbon (C mineralization and nutrient cycling in rhizosphere soils relative to bulk soils. The nitrogen (N content of microbial biomass and exoenzymes may introduce a stoichiometric constraint on the ability of microbes to effectively utilize the root exudates, particularly if the exudates are rich in C but low in N. We combined a theoretical model of microbial activity with an exudation experiment to test the hypothesis that the ability of soil microbes to utilize root exudates for the synthesis of additional biomass and exoenzymes is constrained by N availability. The field experiment simulated exudation by automatically pumping solutions of chemicals often found in root exudates ("exudate mimics" containing C alone or C in combination with N (C : N ratio of 10 through microlysimeter "root simulators" into intact forest soils in two 50-day experiments. The delivery of C-only exudate mimics increased microbial respiration but had no effect on microbial biomass or exoenzyme activities. By contrast, experimental delivery of exudate mimics containing both C and N significantly increased microbial respiration, microbial biomass, and the activity of exoenzymes that decompose low molecular weight components of soil organic matter (SOM, e.g., cellulose, amino sugars, while decreasing the activity of exoenzymes that degrade high molecular weight SOM (e.g., polyphenols, lignin. The modeling results were consistent with the experiments; simulated delivery of C-only exudates induced microbial N-limitation, which constrained the synthesis of microbial biomass and exoenzymes. Exuding N as well as C alleviated this stoichiometric constraint in the model, allowing for increased exoenzyme production, the priming of decomposition, and a net release of N

  16. Role of Root Exudates in Adaptative Reactions of Buckwheat Plants in Aluminium-acid Stress

    Directory of Open Access Journals (Sweden)

    A.E. Smirnov

    2014-03-01

    Full Text Available Aliminium toxicity is major limiting factor of crop production in acidic soils. It is known that mechanisms of toxic effects of aluminium are differing in biochemical characters, research of aluminium toxicity complicated by variety of its chemical forms and migration in soil and water ability. The root exudates qualitative composition of common buckwheat was evaluated. Organic complexing agents – oxalic acid and phenolic compounds were revealed. The role of these complexing agents in the buckwheat aluminium resistance under acidic stress, participation in processes of external and internal detoxification was shown. Spectrophometric assay revealed an increase in root secretion of oxalic acid by 2.5 times and decrease in content of phenolic compounds in root exudates solution by 3 times upon aluminium (50 µM treatment. In the meanwhile the same concentration of the metal had induced phenylalanine ammonia-lyase activity by 2 times.

  17. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation.

    Science.gov (United States)

    Kaiser, Christina; Kilburn, Matt R; Clode, Peta L; Fuchslueger, Lucia; Koranda, Marianne; Cliff, John B; Solaiman, Zakaria M; Murphy, Daniel V

    2015-03-01

    Plants rapidly release photoassimilated carbon (C) to the soil via direct root exudation and associated mycorrhizal fungi, with both pathways promoting plant nutrient availability. This study aimed to explore these pathways from the root's vascular bundle to soil microbial communities. Using nanoscale secondary ion mass spectrometry (NanoSIMS) imaging and (13) C-phospho- and neutral lipid fatty acids, we traced in-situ flows of recently photoassimilated C of (13) CO2 -exposed wheat (Triticum aestivum) through arbuscular mycorrhiza (AM) into root- and hyphae-associated soil microbial communities. Intraradical hyphae of AM fungi were significantly (13) C-enriched compared to other root-cortex areas after 8 h of labelling. Immature fine root areas close to the root tip, where AM features were absent, showed signs of passive C loss and co-location of photoassimilates with nitrogen taken up from the soil solution. A significant and exclusively fresh proportion of (13) C-photosynthates was delivered through the AM pathway and was utilised by different microbial groups compared to C directly released by roots. Our results indicate that a major release of recent photosynthates into soil leave plant roots via AM intraradical hyphae already upstream of passive root exudations. AM fungi may act as a rapid hub for translocating fresh plant C to soil microbes.

  18. Organic acid exudation from the roots of Cunninghamia lanceolata and Pinus massoniana seedlings under low phosphorus stress

    Institute of Scientific and Technical Information of China (English)

    Yuanchun YU; Jian YU; Qihua SHAN; Li FANG; Defeng JIANG

    2008-01-01

    Organic acid exudation from the roots of Chinese fir (Cunninghamia lanceolata) and Masson pine (Pinus massoniana) seedlings under low phosphorus stress was studied using the solution culture method. The results revealed that organic acid exudation from the roots of Chinese fir and Masson pine seedlings under low phosphorus stress increased. Compared with P3 (KH2PO4, 0.5 mmol/L), the average organic acid exuda-tion from the root of Masson pine seedlings under P0 (KH2PO4, 0 mmol/L), P1 (KH2PO4, 0.03 mmol/L) and P2(KH2PO4, 0.09 mmol/L) increased by 328.6%, 267.9% and 126.4% respectively. Masson pine from Zhejiang Province in China had the highest organic acid exuda-tion. Under low phosphorus stress, the increase in organic acid exudation from the different provinces of Chinese fir and Masson pine varied. Masson pine from Zhejiang Province mainly increased oxalic acid, tartaric acid, citric acid and malic acid exudation, that from Guangxi Province mainly increased oxalic acid and tartaric acid exudation, and that from Guizhou Province, China mainly increased oxalic acid, tartaric acid and malic acid exudation. Chinese fir mainly increased oxalic acid and tartaric acid exudation.

  19. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates.

    Science.gov (United States)

    Henry, S; Texier, S; Hallet, S; Bru, D; Dambreville, C; Chèneby, D; Bizouard, F; Germon, J C; Philippot, L

    2008-11-01

    To determine to which extent root-derived carbon contributes to the effects of plants on nitrate reducers and denitrifiers, four solutions containing different proportions of sugar, organic acids and amino acids mimicking maize root exudates were added daily to soil microcosms at a concentration of 150 microg C g(-1) of soil. Water-amended soils were used as controls. After 1 month, the size and structure of the nitrate reducer and denitrifier communities were analysed using the narG and napA, and the nirK, nirS and nosZ genes as molecular markers respectively. Addition of artificial root exudates (ARE) did not strongly affect the structure or the density of nitrate reducer and denitrifier communities whereas potential nitrate reductase and denitrification activities were stimulated by the addition of root exudates. An effect of ARE composition was also observed on N(2)O production with an N(2)O:(N(2)O + N(2)) ratio of 0.3 in microcosms amended with ARE containing 80% of sugar and of 1 in microcosms amended with ARE containing 40% of sugar. Our study indicated that ARE stimulated nitrate reduction or denitrification activity with increases in the range of those observed with the whole plant. Furthermore, we demonstrated that the composition of the ARE affected the nature of the end-product of denitrification and could thus have a putative impact on greenhouse gas emissions.

  20. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits.

    Science.gov (United States)

    Wang, Yan-Liang; Almvik, Marit; Clarke, Nicholas; Eich-Greatorex, Susanne; Øgaard, Anne Falk; Krogstad, Tore; Lambers, Hans; Clarke, Jihong Liu

    2015-01-01

    Phosphorus (P) is an important element for crop productivity and is widely applied in fertilizers. Most P fertilizers applied to land are sorbed onto soil particles, so research on improving plant uptake of less easily available P is important. In the current study, we investigated the responses in root morphology and root-exuded organic acids (OAs) to low available P (1 μM P) and sufficient P (50 μM P) in barley, canola and micropropagated seedlings of potato-three important food crops with divergent root traits, using a hydroponic plant growth system. We hypothesized that the dicots canola and tuber-producing potato and the monocot barley would respond differently under various P availabilities. WinRHIZO and liquid chromatography triple quadrupole mass spectrometry results suggested that under low P availability, canola developed longer roots and exhibited the fastest root exudation rate for citric acid. Barley showed a reduction in root length and root surface area and an increase in root-exuded malic acid under low-P conditions. Potato exuded relatively small amounts of OAs under low P, while there was a marked increase in root tips. Based on the results, we conclude that different crops show divergent morphological and physiological responses to low P availability, having evolved specific traits of root morphology and root exudation that enhance their P-uptake capacity under low-P conditions. These results could underpin future efforts to improve P uptake of the three crops that are of importance for future sustainable crop production. PMID:26286222

  1. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits

    Science.gov (United States)

    Wang, Yan-Liang; Almvik, Marit; Clarke, Nicholas; Eich-Greatorex, Susanne; Øgaard, Anne Falk; Krogstad, Tore; Lambers, Hans; Clarke, Jihong Liu

    2015-01-01

    Phosphorus (P) is an important element for crop productivity and is widely applied in fertilizers. Most P fertilizers applied to land are sorbed onto soil particles, so research on improving plant uptake of less easily available P is important. In the current study, we investigated the responses in root morphology and root-exuded organic acids (OAs) to low available P (1 μM P) and sufficient P (50 μM P) in barley, canola and micropropagated seedlings of potato—three important food crops with divergent root traits, using a hydroponic plant growth system. We hypothesized that the dicots canola and tuber-producing potato and the monocot barley would respond differently under various P availabilities. WinRHIZO and liquid chromatography triple quadrupole mass spectrometry results suggested that under low P availability, canola developed longer roots and exhibited the fastest root exudation rate for citric acid. Barley showed a reduction in root length and root surface area and an increase in root-exuded malic acid under low-P conditions. Potato exuded relatively small amounts of OAs under low P, while there was a marked increase in root tips. Based on the results, we conclude that different crops show divergent morphological and physiological responses to low P availability, having evolved specific traits of root morphology and root exudation that enhance their P-uptake capacity under low-P conditions. These results could underpin future efforts to improve P uptake of the three crops that are of importance for future sustainable crop production. PMID:26286222

  2. Effect of root exudates of different resistant varieties of cucumber on fusarium wilt and preliminary studies on their resistance mechanism

    Institute of Scientific and Technical Information of China (English)

    Benli HUANG; Yundong XU; Ye WU; Shunqi ZHANG; Xuchao CHEN

    2008-01-01

    This study investigated the effect of root exudates of cucumber varieties, Jinyan 4 (susceptible variety), Jinchun 4 (resistant variety) and Yinnan Black seed squash on fusa-rium wilt. The results showed that fusarium wilt occurrence of plants treated with the root exudate of Jinyan 4 was earlier. The infection rate was significantly higher 15 days after inoculation, but similar to the control 20 days after inocula-tion. In contrast, the infection rate of plants treated with the root exudate of Jinchun 4 was significantly lower than that of the control. The plant height and fresh weight of Jinyan 4 treated with its own root exudate were lower than those of the control, and the root vigor decreased but the conductance increased. There was no significant effect of the root exudates from Jinchun 4 and Black seed squash on plant height and fresh mass of Jinyan 4. We found that the root exudate of susceptible cucumber variety stimulated the growth of Fusarium oxysporum pathogen, in contrast, that of resistance variety and Black seed squash suppressed the growth.

  3. The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress: metabonomics analysis.

    Science.gov (United States)

    Luo, Qing; Sun, Lina; Hu, Xiaomin; Zhou, Ruiren

    2014-01-01

    Hydroponic experiments were conducted to investigate the variation of root exudates from the hyperaccumulator Sedum alfredii under the stress of cadmium (Cd). S. alfredii was cultured for 4 days in the nutrient solution spiked with CdCl2 at concentrations of 0, 5, 10, 40, and 400 µM Cd after the pre-culture. The root exudates were collected and analyzed by GC-MS, and 62 compounds were identified. Of these compounds, the orthogonal partial least-squares discrimination analysis (OPLS-DA) showed that there were a distinct difference among the root exudates with different Cd treatments and 20 compounds resulting in this difference were found out. Changing tendencies in the relative content of these 20 compounds under the different Cd treatments were analyzed. These results indicated that trehalose, erythritol, naphthalene, d-pinitol and n-octacosane might be closely related to the Cd stabilization, phosphoric acid, tetradecanoic acid, oxalic acid, threonic acid and glycine could be attributed to the Cd mobilization, and mannitol, oleic acid, 3-hydroxybutanoic acid, fructose, octacosanol and ribitol could copy well with the Cd stress. PMID:25545686

  4. The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress: metabonomics analysis.

    Directory of Open Access Journals (Sweden)

    Qing Luo

    Full Text Available Hydroponic experiments were conducted to investigate the variation of root exudates from the hyperaccumulator Sedum alfredii under the stress of cadmium (Cd. S. alfredii was cultured for 4 days in the nutrient solution spiked with CdCl2 at concentrations of 0, 5, 10, 40, and 400 µM Cd after the pre-culture. The root exudates were collected and analyzed by GC-MS, and 62 compounds were identified. Of these compounds, the orthogonal partial least-squares discrimination analysis (OPLS-DA showed that there were a distinct difference among the root exudates with different Cd treatments and 20 compounds resulting in this difference were found out. Changing tendencies in the relative content of these 20 compounds under the different Cd treatments were analyzed. These results indicated that trehalose, erythritol, naphthalene, d-pinitol and n-octacosane might be closely related to the Cd stabilization, phosphoric acid, tetradecanoic acid, oxalic acid, threonic acid and glycine could be attributed to the Cd mobilization, and mannitol, oleic acid, 3-hydroxybutanoic acid, fructose, octacosanol and ribitol could copy well with the Cd stress.

  5. Effects of root exudates on the leachability, distribution, and bioavailability of phenanthrene and pyrene from mangrove sediments.

    Science.gov (United States)

    Jia, Hui; Lu, Haoliang; Liu, Jingchun; Li, Jian; Dai, Minyue; Yan, Chongling

    2016-03-01

    In this study, column leaching experiments were used to evaluate the leachability, distribution and bioavailability of phenanthrene and pyrene by root exudates from contaminated mangrove sediments. We observed that root exudates significantly promoted the release and enhanced the bioavailability of phenanthrene and pyrene from sediment columns. The concentration of phenanthrene and pyrene and cumulative content released from the analyzed sediment samples following root exudate rinsing decreased in the following order: citric acid > oxalic acid > malic acid. After elution, the total concentrations of phenanthrene and pyrene in sediment layers followed a descending order of bottom (9-12 cm) > middle (5-7 cm) > top (0-3 cm). Furthermore, a positive correlation between leachate pH values and PAH concentrations of the leachate was found. Consequently, the addition of root exudates can increase the leachability and bioavailability of phenanthrene and pyrene. PMID:26573317

  6. Distribution of root exudates and mucilage in the rhizosphere: combining 14C imaging with neutron radiography

    Science.gov (United States)

    Holz, Maire; Carminati, Andrea; Kuzyakov, Yakov

    2015-04-01

    Water and nutrients will be the major factors limiting food production in future. Plant roots employ various mechanisms to increase the access to limited soil resources. Low molecular weight organic substances released by roots into the rhizosphere increase nutrient availability by interactions with microorganisms, while mucilage improves water availability under low moisture conditions. Though composition and quality of these substances have intensively been investigated, studies on the spatial distribution and quantification of exudates in soil are scarce. Our aim was to quantify and visualize root exudates and mucilage distribution around growing roots using neutron radiography and 14C imaging depending on drought stress. Plants were grown in rhizotrons well suited for neutron radiography and 14C imaging. Plants were exposed to various soil water contents experiencing different levels of drought stress. The water content in the rhizosphere was imaged during several drying/wetting cycles by neutron radiography. The radiographs taken a few hours after irrigation showed a wet region around the root tips showing the allocation and distribution of mucilage. The increased water content in the rhizosphere of the young root segments was related to mucilage concentrations by parameterization described in Kroener et al. (2014). In parallel 14C imaging of root after 14CO2 labeling of shoots (Pausch and Kuzyakov 2011) showed distribution of rhizodeposits including mucilage. Three days after setting the water content, plants were labeled in 14CO2 atmosphere. Two days later 14C distribution in soil was imaged by placing a phosphor-imaging plate on the rhizobox. To quantify rhizodeposition, 14C activity on the image was related to the absolute 14C activity in the soil and root after destructive sampling. By comparing the amounts of mucilage (neutron radiography) with the amount of total root derived C (14C imaging), we were able to differentiate between mucilage and root

  7. Root Cluster Formation and Citrate Exudation of White Lupin (Lupinus albus L.) as Related to Phosphorus Availability

    Institute of Scientific and Technical Information of China (English)

    Chun-Jian LI; Rui-Xia LIANG

    2005-01-01

    A split-root system was used to investigate whether the external or internal P concentration controls root cluster formation and citrate exudation in white lupin (Lupinus albus L.) grown under controlled conditions. In spite of low P concentrations in the shoots and roots of the -P plant, its dry weight was not reduced compared with the +P plant. Supplying external P (0.25 mmol/L) to one root halfresulted in an increase in P concentration not only in the shoot, but also in the P-deprived root half, indicating P cycling within the plants. Omitting P from both split-root pots stimulated root cluster formation in both root halves,whereas P supply to one root halfstimulated root cluster formation at the beginning of the treatment. Neither P supply to just one root half continuously nor resupply of P to one root half after 19 d of P starvation inhibited root cluster formation on the P-deprived side, although the concentration of P in this root half and shoot increased markedly. The results indicate that root cluster formation in L. albus is controlled by both shoot and root P concentrations. The rates of citrate exudation by both root halves with P deficiency were higher than those of the one root half supplied with P only. In the treatment with one root half supplied with P, the rates of citrate exudation by either the P-supplied or -deprived root halves were almost the same,regardless of P concentration in the roots. The results suggest that internal P concentration controls root cluster formation and citrate exudation in white lupin, but these processes may be regulated by different mechanisms.

  8. Root Exudates, Rhizosphere Zn Fractions, and Zn Accumulation of Ryegrass at Different Soil Zn Levels

    Institute of Scientific and Technical Information of China (English)

    XU Wei-Hong; LIU Huai; MA Qi-Fu; XIONG Zhi-Ting

    2007-01-01

    A glasshouse experiment was conducted using a root-bag technique to study the root exudates, rhizosphere Zn fractions, and Zn concentrations and accumulations of two ryegrass cultivars (Lolium perenne L. cvs. Airs and Tede) at different soil Zn levels (0, 2, 4, 8, and 16 mmol kg-1 soil). Results indicated that plant growth of the two cultivars was not adversely affected at soil Zn level≤8 mmol kg-1. Plants accumulated more Zn as soil Zn levels increased, and Zn concentrations of shoots were about 540 /μg g-1 in Aris and 583.9μg g-1 in Tede in response to 16 mmol Zn kg-1 soil. Zn ratios of shoots to roots across the soil Zn levels were higher in Tede than in Airs, corresponding with higher rhizosphere available Zn fractions (exchangeable, bound to manganese oxides, and bound to organic matter) in Airs than in Tede. Low-molecular-weight (LMW) organic acids (oxalic, tartaric, malic, and succinic acids) and amino acids (proline, threonine, glutamic acid, and aspartic acid, etc.) were detected in root exudates, and the concentrations of LMW organic acids and amino acids increased with addition of 4 mmol Zn kg-1 soil compared with zero Zn addition. Higher rhizosphere concentrations of oxalic acid, glutamic acid, alanine, phenylalanine, leucine, and proline in Tede than in Airs likely resulted in increased Zn uptake from the soil by Tede than by Airs. The results suggested that genotypic differences in Zn accumulations were mainly because of different root exudates and rhizosphere Zn fractions.

  9. Single Root Model for the Impact of Root Exudates on the Fate of Phosphorus in the Rhizosphere

    Science.gov (United States)

    Klepsch, S.; Leitner, D.; Schnepf, A.

    2012-04-01

    Mathematical models are invaluable for the design of rhizotechnologies that help to improve nutrient and water efficiency. In our work, we present a mechanistic one dimensional model accounting for the complex plant-induced chemical processes in soil on single root scale. The equations are based on conservation of mass and the law of mass action and consider interactions between phosphorus, exudates, diverse complexes, including equilibrium and kinetic sorption, transformation, degradation, and decay processes, as well as dispersion in soil. For the numerical solutions, the software packages COMSOL Multiphysics 3.5A and Matlab 7 are used. Sensitivity analysis of the highly parameterised model, accomplished by coupling to the software PEST, provides information on the factors that mostly contribute to the model output variability. On the other hand, it helps to reduce the complexity of the underlying model. We show simulation studies regarding ad- and desorption of phosphorus and citrate that compete for sorption sites, modeled by a Langmuir-type isotherm. We additionally compare phosphorus root uptake for concentration- and time-dependent exudation patterns versus constant exudation. This model will build the basis for three dimensional root-scale simulations of phosphorus uptake (Leitner et al. 2010). Comparison of the parameter sensitivities on both scales should enable to figure out processes that are leveled out or even have more impact on phosphorus efficiency on the higher root system scale. Leitner D, Klepsch S, Bodner G, Schnepf A (2010a) A dynamic root system growth model based on L-systems. Plant and Soil 332:177-192.

  10. Modeling Cesium Partitioning in the Rhizosphere: A Focus on the Role of Root Exudates

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Melinda Ann; Siegel, L. S.; Alshawabkeh, A. N.; Carl D. Palmer

    2003-01-01

    A conceptual model is being developed for prediction of cesium (Cs) partitioning between bound (Csb), aqueous (Csa), and phytoextracted (Csp) phases in the rhizosphere. The model categorizes the processes that impact cesium partitioning into six sub-models: geochemistry, physical factors, root density, microorganisms, nutrients, and root exudates. A seventh sub-model (Cs fate) describes Cs movement between the three phases. Functional relationships and parametric values within and between the submodels are being developed based on literature, field characterization, and laboratory experiments. Sensitivity analyses were conducted to evaluate the effects of root density, microbial population, potassium requirement and concentration, and moisture content on the concentration of root exudates ([E]) and consequently on Cs partitioning. In summary, the model provides a framework for better understanding the fundamental processes that control Cs fate in the rhizosphere. The ability to better understand, predict, and control Cs solubilization could be applied to other metals in the future. Ultimately, the model will be used as a tool for enhancing field implementation of in situ solubilization of metals for a variety of remedial activities.

  11. Enhanced hyphal growth of arbuscular mycorrhizae by root exudates derived from high R/FR treated Lotus japonicus.

    Science.gov (United States)

    Nagata, Maki; Yamamoto, Naoya; Miyamoto, Taro; Shimomura, Aya; Arima, Susumu; Hirsch, Ann M; Suzuki, Akihiro

    2016-06-01

    Red/Far Red (R/FR) sensing positively influences the arbuscular mycorrhizal (AM) symbiosis of both legume and nonlegume plants through jasmonic acid (JA) and strigolactone signaling. We previously reported that root exudates obtained from high R/FR-grown plants contained more strigolactone than low R/FR-grown plants. To determine whether JA and JA derivatives were secreted from roots, we investigated the expression levels of JA-responsive genes in L. japonicus Miyakojima MG20 plants treated with root exudates prepared from either high or low R/FR light-treated plants. The root exudates from high R/FR light-treated plants were found to enhance the expression levels of JA-responsive genes significantly. Moreover, exogenous JA increased AM fungal hyphal elongation as did the root exudates derived from high R/FR-grown L. japonicus plants. We conclude that increased JA accumulation and secretion into root exudates from high R/FR light-grown plants is the best explanation for increased colonization and enhanced mycorrhization under these conditions. PMID:27191935

  12. Influence of Aluminum and Cadmium Stresses on Mineral Nutrition and Root Exudates in Two Barley Cultivars

    Institute of Scientific and Technical Information of China (English)

    QUO Tian-Rong; ZHANG Guo-Ping; ZHOU Mei-Xue; WU Fei-Bo; CHEN Jin-Xin

    2007-01-01

    A hydroponic experiment was carried out to study the effect of aluminum (Al) and cadmium (Cd) on Al and mineral nutrient contents in plants and Al-induced organic acid exudation in two barley varieties with different Al tolerance. Al-sensitive cv. Shang 70-119 had significantly higher Al content and accumulation in plants than Al-tolerant cv. Gebeina, especially in roots, when subjected to low pH (4.0) and Al treatments (100 μmol L-1 Al and 100 μmol L-1 Al +1.0 μmol L-1 Cd). Cd addition increased Al content in plants exposed to Al stress. Both low pH and Al treatments caused marked reduction in Ca and Mg contents in all plant parts, P and K contents in the shoots and leaves, Fe, Zn and Mo contents in the leaves, Zn and B contents in the shoots, and Mn contents both in the roots and leaves. Moreover, changes in nutrient concentrations were greater in the plants exposed to both Al and Cd than in those exposed only to Al treatment. A dramatic enhancement of malate, citrate, and succinate was found in the plants exposed to 100 μmol L-1 Al relative to the control, and the Al-tolerant cultivar had a considerable higher exudation of these organic acids than the Al-sensitive one, indicating that Al-induced enhancement of these organic acids is very likely to be associated with Al tolerance.

  13. Low strigolactone root exudation: a novel mechanism of broomrape (Orobanche and Phelipanche spp.) resistance available for faba bean breeding.

    Science.gov (United States)

    Fernández-Aparicio, Mónica; Kisugi, Takaya; Xie, Xiaonan; Rubiales, Diego; Yoneyama, Koichi

    2014-07-23

    Faba bean yield is severely constrained in the Mediterranean region and Middle East by the parasitic weeds Orobanche crenata, O. foetida, and Phelipanche aegyptiaca. Seed germination of these weeds is triggered upon recognition of host root exudates. Only recently faba bean accessions have been identified with resistance based in low induction of parasitic seed germination, but the underlying mechanism was not identified. Strigolactones are a group of terpenoid lactones involved in the host recognition by parasitic plants. Our LC-MS/MS analysis of root exudates of the susceptible accession Prothabon detected orobanchol, orobanchyl acetate, and a novel germination stimulant. A time course analysis indicated that their concentration increased with plant age. However, low or undetectable amounts of these germination stimulants were detected in root exudates of the resistant lines Quijote and Navio at all plant ages. A time course analysis of seed germination induced by root exudates of each faba bean accession indicated important differences in the ability to stimulate parasitic germination. Results presented here show that resistance to parasitic weeds based on low strigolactone exudation does exist within faba bean germplasm. Therefore, selection for this trait is feasible in a breeding program. The remarkable fact that low induction of germination is similarly operative against O. crenata, O. foetida, and P. aegyptiaca reinforces the value of this resistance.

  14. Isolation and identification of Desmodium root exudates from drought tolerant species used as intercrops against Striga hermonthica

    Science.gov (United States)

    Hooper, A.M.; Caulfield, J.C.; Hao, B.; Pickett, J.A.; Midega, C.A.O.; Khan, Z.R.

    2015-01-01

    Plants from the genus Desmodium, in particular D. uncinatum, are used on sub-Saharan small-holder farms as intercrops to inhibit parasitism of cereal crops by Striga hermonthica and Striga asiatica via an allelopathic mechanism. The search for Desmodium species which are adapted to more arid conditions, and which show resilience to increased drought stress, previously identified D. intortum, D. incanum and D. ramosissimum as potential drought tolerant intercrops. Their potential as intercrops was assessed for resource poor areas of rain-fed cereal production where drought conditions can persist through normal meteorological activity, or where drought may have increasing impact through climate change. The chemical composition of the root exudates were characterised and the whole exudate biological activity was shown to be active in pot experiments for inhibition of Striga parasitism on maize. Furthermore, rain fed plot experiments showed the drought tolerant Desmodium intercrops to be effective for Striga inhibition. This work demonstrates the allelopathic nature of the new drought tolerant intercrops through activity of root exudates and the major compounds seen in the exudates are characterised as being C-glycosylflavonoid. In young plants, the exudates show large qualitative differences but as the plants mature, there is a high degree of convergence of the C-glycosylflavonoid exudate chemical profile amongst active Desmodium intercrops that confers biological activity. This defines the material for examining the mechanism for Striga inhibition. PMID:26164239

  15. Isolation and identification of Desmodium root exudates from drought tolerant species used as intercrops against Striga hermonthica.

    Science.gov (United States)

    Hooper, A M; Caulfield, J C; Hao, B; Pickett, J A; Midega, C A O; Khan, Z R

    2015-09-01

    Plants from the genus Desmodium, in particular D. uncinatum, are used on sub-Saharan small-holder farms as intercrops to inhibit parasitism of cereal crops by Striga hermonthica and Striga asiatica via an allelopathic mechanism. The search for Desmodium species which are adapted to more arid conditions, and which show resilience to increased drought stress, previously identified D. intortum, D. incanum and D. ramosissimum as potential drought tolerant intercrops. Their potential as intercrops was assessed for resource poor areas of rain-fed cereal production where drought conditions can persist through normal meteorological activity, or where drought may have increasing impact through climate change. The chemical composition of the root exudates were characterised and the whole exudate biological activity was shown to be active in pot experiments for inhibition of Striga parasitism on maize. Furthermore, rain fed plot experiments showed the drought tolerant Desmodium intercrops to be effective for Striga inhibition. This work demonstrates the allelopathic nature of the new drought tolerant intercrops through activity of root exudates and the major compounds seen in the exudates are characterised as being C-glycosylflavonoid. In young plants, the exudates show large qualitative differences but as the plants mature, there is a high degree of convergence of the C-glycosylflavonoid exudate chemical profile amongst active Desmodium intercrops that confers biological activity. This defines the material for examining the mechanism for Striga inhibition. PMID:26164239

  16. Membrane-Mediated Decrease in Root Exudation Responsible for Phorphorus Inhibition of Vesicular-Arbuscular Mycorrhiza Formation

    Science.gov (United States)

    Graham, James H.; Leonard, Robert T.; Menge, John A.

    1981-01-01

    The mechanism responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation in sudangrass (Sorghum vulgare Pers.) was investigated in a phosphorus-deficient sandy soil (0.5 micrograms phosphorus per gram soil) amended with increasing levels of phosphorus as superphosphate (0, 28, 56, 228 micrograms per gram soil). The root phosphorus content of 4-week-old plants was correlated with the amount of phosphorus added to the soil. Root exudation of amino acids and reducing sugars was greater for plants grown in phosphorus-deficient soil than for those grown in the phosphorus-treated soils. The increase in exudation corresponded with changes in membrane permeability of phosphorus-deficient roots, as measured by K+ (86Rb) efflux, rather than with changes in root content of reducing sugars and amino acids. The roots of phosphorus-deficient plants inoculated at 4 weeks with Glomus fasciculatus were 88% infected after 9 weeks as compared to less than 25% infection in phosphorus-sufficient roots; these differences were correlated with root exudation at the time of inoculation. For plants grown in phosphorus-deficient soil, infection by vesicular-arbuscular mycorrhizae increased root phosphorus which resulted in a decrease in root membrane permeability and exudation compared to nonmycorrhizal plants. It is proposed that, under low phosphorus nutrition, increased root membrane permeability leads to net loss of metabolites at sufficient levels to sustain the germination and growth of the mycorrhizal fungus during pre- and postinfection. Subsequently, mycorrhizal infection leads to improvement of root phosphorus nutrition and a reduction in membrane-mediated loss of root metabolites. PMID:16661955

  17. Enrichment of specific bacterial and eukaryotic microbes in the rhizosphere of switchgrass (Panicum virgatum L.) through root exudates.

    Science.gov (United States)

    Mao, Yuejian; Li, Xiangzhen; Smyth, Eoghan M; Yannarell, Anthony C; Mackie, Roderick I

    2014-06-01

    Identification of microbes that actively utilize root exudates is essential to understand plant-microbe interactions. To identify active root exudate-utilizing microorganisms associated with switchgrass - a potential bioenergy crop - plants were labelled in situ with (13) CO2 , and 16S and 18S rRNA genes in the (13) C-labelled rhizosphere DNA were pyrosequenced. Multi-pulse labelling for 5 days produced detectable (13) C-DNA, which was well separated from unlabelled DNA. Methylibium from the order Burkholderiales were the most heavily labelled bacteria. Pythium, Auricularia and Galerina were the most heavily labelled eukaryotic microbes. We also identified a Glomus intraradices-like species; Glomus members are arbuscular mycorrhizal fungi that are able to colonize the switchgrass root. All of these heavily labelled microorganisms were also among the most abundant species in the rhizosphere. Species belonging to Methylibium and Pythium were the most heavily labelled and the most abundant bacteria and eukaryotes in the rhizosphere of switchgrass. Our results revealed that nearly all of the dominant rhizosphere bacterial and eukaryotic microbes were able to utilize root exudates. The enrichment of microbial species in the rhizosphere is selective and mostly due to root exudation, which functions as a nutrition source, promoting the growth of these microbes.

  18. Potential Enhancement of Plant Iron Assimilation by Microbial-Induced Root Exudation of Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Cheng Zhou

    2016-03-01

    Full Text Available Iron (Fe deficiency in crop plants is a modern agricultural problem worldwide. Although multiple strategies have been evolved to improve Fe assimilation, some plant species, especially dicots and nongraminaceous monocots (strategy I plants, cannot avoid Fe deficiency in low Fe-availability soils. It is well documented that graminaceous plants (strategy II plants employ the chelationbased Fe acquisition, and the strategy I plants use the reduction-based strategy to take up Fe. Intriguingly, under Fe deficiency the strategy I plants have recently been found to acquire Fe via exudation of phenolic compounds to mobilize Fe, which is much similar to the chelation-based mechanism of strategy II plants. Hitherto, increasing evidence has shown that soil microbes play a cooperative role in plant Fe acquisition. Several beneficial rhizobacteria have been found to increase plant Fe accumulation via activation of the reduction-based strategy. Moreover, microbial-induced root exudation of phenolic compounds can also promote plant Fe absorption by efficient mobilization of Fe, which increases Fe bioavailability in calcareous soils. Here, we briefly review the recent progress on the Fe assimilation strategies of strategy I and II plants, and further discuss the possible mechanisms underlying soil microbes enhance plant Fe acquisition.

  19. Lauric acid in crown daisy root exudate potently regulates root-knot nematode chemotaxis and disrupts Mi-flp-18 expression to block infection.

    Science.gov (United States)

    Dong, Linlin; Li, Xiaolin; Huang, Li; Gao, Ying; Zhong, Lina; Zheng, Yuanyuan; Zuo, Yuanmei

    2014-01-01

    Tomato (Solanum lycopersicum) crops can be severely damaged due to parasitism by the root-knot nematode (RKN) Meloidogyne incognita, but are protected when intercropped with crown daisy (Chrysanthemum coronarium L.). Root exudate may be the determining factor for this protection. An experiment using pots linked by a tube and Petri dish experiments were undertaken to confirm that tomato-crown daisy intercropping root exudate decreased the number of nematodes and alleviated nematode damage, and to determine crown daisy root exudate-regulated nematode chemotaxis. Following a gas chromatography-mass spectrometry assay, it was found that the intercropping protection was derived from the potent bioactivity of a specific root exudate component of crown daisy, namely lauric acid. The Mi-flp-18 gene, encoding an FMRFamide-like peptide neuromodulator, regulated nematode chemotaxis and infection by RNA interference. Moreover, it was shown that lauric acid acts as both a lethal trap and a repellent for M. incognita by specifically regulating Mi-flp-18 expression in a concentration-dependent manner. Low concentrations of lauric acid (0.5-2.0mM) attract M. incognita and consequently cause death, while high concentrations (4.0mM) repel M. incognita. This study elucidates how lauric acid in crown daisy root exudate regulates nematode chemotaxis and disrupts Mi-flp-18 expression to alleviate nematode damage, and presents a general methodology for studying signalling systems affected by plant root exudates in the rhizosphere. This could lead to the development of economical and feasible strategies for controlling plant-parasitic nematodes, and provide an alternative to the use of pesticides in farming systems. PMID:24170741

  20. Assessing bio-availability of metals in biosolid-amended soils: Root exudates and their effects on solubility of metals

    International Nuclear Information System (INIS)

    The existence of root exudates has been known to research scientists for a long time. Their role and function in plant nutrition and soil chemistry have only recently begun to be understood. The primary constituents of root exudates are low molecular weight organic acids that play an essential role in making the sparingly soluble soil Fe, P, and Zn available to plants. While root exudates are reasonably well characterized, the influence of environmental factors on their chemical composition and volume require further investigation. This study was initiated to investigate the role of root exudates on the solubilization and bioavailability of soil-borne heavy metals in biosolid-treated soils. Corn, wheat, canola, Sudan grass, chickpea, and Swiss chard were grown on standard and biosolid-treated sand media to characterize root exudates and evaluate the plants' metal-uptake patterns. Recent results indicate that: (i) the same organic acids were present over a 16-week growing season. However, the primary constituents of exudates from corn grown on standard sand media and biosolid-treated media were different. (ii) Metal concentrations in plant roots were considerably higher than those present in respective plant shoots, and plants grown in the biosolid-treated rooting medium had significantly higher concentrations of metals than those of the standard sand media at all stages of the growth. (iii) Based on mass present in the growth media and absorbed by corn, the phyto-availability of biosolid-borne metals were in the order: Cd > Ni = Zn > Cu = Pb > Cr. The availability of Mo was comparable to that of Cr. (iv) In the biosolidtreated growth medium, the uptake rates of Cd, Pb, and Zn by corn shoots (measured as mg of metal absorbed per g of biomass increment per unit time) were relatively constant over the active growing phase of the plants and were proportional to respective mass input of the metals. Work is in progress to define the role of root exudates on solubility

  1. [Allelopathic effects of phenolic compounds of melon root exudates on Fusarium oxysporum f. sp. melonis].

    Science.gov (United States)

    Yang, Rui-Xiu; Gao, Zeng-Gui; Yao, Yuan; Liu, Xian; Sun, Shu-Qing; Wang, Ying

    2014-08-01

    In this study, the phenolic compounds of melon root exudates were identified by HPLC and seven phenolic compounds including gallic acid, phthalic acid, syringic acid, salicylic acid, ferulic acid, benzoic acid and cinnamic acid were observed. The laboratory experiment showed that ferulic acid, benzoic acid and cinnamic acid of 0.1 and 0.25 mmol x L(-1) could significantly promote the germination of Fusarium oxysporum f. sp. melonis spore while salicylic acid inhibited the spore germination to some degree. Syringic acid and ferulic acid significantly promoted the mycelium growth at the late stage of incubation. The pot experiments demonstrated that cinnamic acid, benzoic acid and ferulic acid enhanced melon infection at concentrations of 0.5, 0.1 and 0.5 mmol x L(-1).

  2. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits

    OpenAIRE

    Wang, Yan-Liang; Almvik, Marit; Clarke, Nicholas; Eich-Greatorex, Susanne; Øgaard, Anne Falk; Krogstad, Tore; Lambers, Hans; Clarke, Jihong Liu

    2015-01-01

    Phosphorus (P) is an important element for crop productivity and is widely applied in fertilizers. Most P fertilizers applied to land are sorbed onto soil particles, so research on improving plant uptake of less easily available P is important. In the current study, we investigated the responses in root morphology and root-exuded organic acids (OAs) to low available P (1 μM P) and sufficient P (50 μM P) in barley, canola and micropropagated seedlings of potato—three important food crops with ...

  3. CONJUGAL GENE TRANSFER IN THE RHIZOSPHERE OF WATER GRASS (ECHINOCHLORA CRUSGALLI): INFLUENCE OF ROOT EXUDATE AND BACTERIAL ACTIVITY

    Science.gov (United States)

    The premise that genetic exchange is primarily localized in niches characterized by dense bacterial populations and high availability of growth substrates was tested by relating conjugal gene transfer of an RP4 derivative to availability of root exudates and bacterial metabolic a...

  4. Simulation of the effect of citrate exudation from roots on the plant availability of phosphate adsorbed on goethite

    NARCIS (Netherlands)

    Geelhoed, J.S.; Riemsdijk, van W.H.; Findenegg, G.R.

    1999-01-01

    Rhizosphere processes strongly influence the availability of phosphorus (P) to plants. Organic ligands that are exuded from the root surface mobilize phosphorus by dissolution of P minerals or by desorption of adsorbed phosphate. We developed a mechanistic model to study the mobilization of phosphat

  5. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere.

    Directory of Open Access Journals (Sweden)

    Andrew L Neal

    Full Text Available Benzoxazinoids, such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H-one (DIMBOA, are secondary metabolites in grasses. In addition to their function in plant defence against pests and diseases above-ground, benzoxazinoids (BXs have also been implicated in defence below-ground, where they can exert allelochemical or antimicrobial activities. We have studied the impact of BXs on the interaction between maize and Pseudomonas putida KT2440, a competitive coloniser of the maize rhizosphere with plant-beneficial traits. Chromatographic analyses revealed that DIMBOA is the main BX compound in root exudates of maize. In vitro analysis of DIMBOA stability indicated that KT2440 tolerance of DIMBOA is based on metabolism-dependent breakdown of this BX compound. Transcriptome analysis of DIMBOA-exposed P. putida identified increased transcription of genes controlling benzoate catabolism and chemotaxis. Chemotaxis assays confirmed motility of P. putida towards DIMBOA. Moreover, colonisation essays in soil with Green Fluorescent Protein (GFP-expressing P. putida showed that DIMBOA-producing roots of wild-type maize attract significantly higher numbers of P. putida cells than roots of the DIMBOA-deficient bx1 mutant. Our results demonstrate a central role for DIMBOA as a below-ground semiochemical for recruitment of plant-beneficial rhizobacteria during the relatively young and vulnerable growth stages of maize.

  6. Effects of Grafting on Root Exudates of Cucumber and Rhizosphere Environment under Copper Stress

    Institute of Scientific and Technical Information of China (English)

    Hua LI; Hongjun HE; Tengfei LI; Xin LI; Zikun ZHANG

    2013-01-01

    [Objective] This study to aimed to investigate the effects of Cu stress on root exudates and microbial activities in rhizosphere of grafted and ungrafted cucum-ber seedlings, and therefore to elucidate the microbial mechanism of grafting for in-creasing cucumber plants tolerance to Cu stress [Method] Four treatments: (1) un-grafted seedlings + test soil (U0); (2) ungrafted seedlings + test soil + CuSO4·5H2O (U1); (3) grafted seedlings + test soil (G0); (4) grafted seedlings + test soil + Cu-SO4·5H2O (G1) were set in the pot culture experiment. The contents of free amino acids, organic acids, phenolic acid and sugars, microbial population and enzyme ac-tivity in the four treatment were measured, respectively. [Result] The secretion of amino acids and organic acids were increased under Cu stress. The amino acids secretions of grafted seedlings roots were obviously higher than ungrafted seedlings except for Phe and Val. At the same time, the secretion of oxalic acid, malic acid, acetic acid, citric acid, cinnamic acid, ρ-hydroxybenzoic acid and benzoic acid of grafted seedlings were significantly higher than ungrafted seedlings as wel . There-fore, more Cu2+ were restricted in soil by chelating, complexing and precipitation with root exudates, and its toxicity was decreased. The soil microbial biomass C and N in grafted cucumber rhizosphere were significantly higher than those in ungrafted cu-cumber rhizosphere, whereas basal respiration and metabolic quotient were signifi-cantly lower. Under Cu stress, the numbers of actinomyces and nitrogen fixing bac-teria decreased and the number of fungi increased significantly, whereas there was no significant difference in amounts of bacteria. The numbers of bacteria, actino-myces, and nitrogen fixing bacteria in grafted cucumber rhizosphere were significant-ly higher than those in ungrafted cucumber rhizosphere, but the number of fungi was opposite. The activities of soil urease, phosphatase, sucrase and catalase in grafted

  7. Degradation of proteins by enzymes exuded by Allium porrum roots - a potentially important strategy for acquiring organic nitrogen by plants.

    Science.gov (United States)

    Adamczyk, Bartosz; Godlewski, Mirosław; Smolander, Aino; Kitunen, Veikko

    2009-10-01

    Nitrogen is one of the crucial elements that regulate plant growth and development. It is well-established that plants can acquire nitrogen from soil in the form of low-molecular-mass compounds, namely nitrate and ammonium, but also as amino acids. Nevertheless, nitrogen in the soil occurs mainly as proteins or proteins complexed with other organic compounds. Proteins are believed not to be available to plants. However, there is increasing evidence to suggest that plants can actively participate in proteolysis by exudation of proteases by roots and can obtain nitrogen from digested proteins. To gain insight into the process of organic nitrogen acquisition from proteins by leek roots (Allium porrum L. cv. Bartek), casein, bovine serum albumin and oxidized B-chain of insulin were used; their degradation products, after exposure to plant culture medium, were studied using liquid chromatography-mass spectrometry (LC-MS). Casein was degraded to a great extent, but the level of degradation of bovine serum albumin and the B-chain of insulin was lower. Proteases exuded by roots cleaved proteins, releasing low-molecular-mass peptides that can be taken up by roots. Various peptide fragments produced by digestion of the oxidized B-chain of insulin suggested that endopeptidase, but also exopeptidase activity was present. After identification, proteases were similar to cysteine protease from Arabidopsis thaliana. In conclusion, proteases exuded by roots may have great potential in the plant nitrogen nutrition.

  8. Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices.

    Science.gov (United States)

    Rangel, Andrés Felipe; Rao, Idupulapati Madhusudana; Braun, Hans-Peter; Horst, Walter Johannes

    2010-02-01

    Two common bean (Phaseolus vulgaris L.) genotypes differing in aluminum (Al) resistance, Quimbaya (Al-resistant) and VAX-1 (Al-sensitive) were grown in hydroponics for up to 25 h with or without Al, and several parameters related to the exudation of organic acids anions from the root apex were investigated. Al treatment enhanced the exudation of citrate from the root tips of both genotypes. However, its dynamic offers the most consistent relationship between Al-induced inhibition of root elongation and Al accumulation in and exclusion from the root apices. Initially, in both genotypes the short-term (4 h) Al-injury period was characterized by the absence of citrate efflux independent of the citrate content of the root apices, and reduction of cytosolic turnover of citrate conferred by a reduced Nicotinamide adenine dinucleotide phosphate-isocitrate dehydrogenase (EC 1.1.1.42) activity. Transient recovery from initial Al stress (4-12 h) was found to be dependent mainly on the capacity to utilize internal citrate pools (Al-resistant genotype Quimbaya) or enhanced citrate synthesis [increased activities of NAD-malate dehydrogenase (EC 1.1.1.37) and ATP-phosphofructokinase (EC 2.7.1.11) in Al-sensitive VAX-1]. Sustained recovery from Al stress through citrate exudation in genotype Quimbaya after 24 h Al treatment relied on restoring the internal citrate pool and the constitutive high activity of citrate synthase (CS) (EC 4.1.3.7) fuelled by high phosphoenolpyruvate carboxylase (EC 4.1.1.31) activity. In the Al-sensitive genotype VAX-1 the citrate exudation and thus Al exclusion and root elongation could not be maintained coinciding with an exhaustion of the internal citrate pool and decreased CS activity. PMID:20053183

  9. Diversity and function of the microbial community on anodes of sediment microbial fuel cells fueled by root exudates

    Energy Technology Data Exchange (ETDEWEB)

    Cabezas da Rosa, Angela

    2010-11-26

    Anode microbial communities are essential for current production in microbial fuel cells. Anode reducing bacteria are capable of using the anode as final electron acceptor in their respiratory chain. The electrons delivered to the anode travel through a circuit to the cathode where they reduce oxygen to water generating an electric current. A novel type of sediment microbial fuel cell (SMFC) harvest energy from photosynthetically derived compounds released through the roots. Nothing is known about anode microbial communities of this type of microbial fuel cell. This work consists of three parts. The first part focuses on the study of bacterial and archaeal community compositions on anodes of SMFCs fueled by rice root exudates. By using terminal restriction fragment length polymorphism (T-RFLP), a profiling technique, and cloning / sequencing of 16S rRNA, we determined that the support type used for the plant (vermiculite, potting soil or rice field soil) is an important factor determining the composition of the microbial community. Finally, by comparing microbial communities of current producing anodes and non-current producing controls we determined that Desulfobulbus- and Geobacter-related populations were probably most important for current production in potting soil and rice field soil SMFCs, respectively. However, {delta}-proteobacterial Anaeromyxobacter spp., unclassified {delta}-proteobacteria and Anaerolineae were also part of the anode biofilm in rice field soil SMFCs and these populations might also play a role in current production. Moreover, distinct clusters of Geobacter and Anaeromyxobacter populations were stimulated by rice root exudates. Regarding Archaea, uncultured Euryarchaea were abundant on anodes of potting soil SMFCs indicating a potential role in current production. In both, rice field soil and potting soil SMFCs, a decrease of Methanosaeta, an acetotrophic methanogen, was detected on current producing anodes. In the second part we focused

  10. Increased root exudation of 14C-compounds by sorghum seedlings inoculated with nitrogen-fixing bacteria

    International Nuclear Information System (INIS)

    Organic components leaked from Sorghum bicolor seedlings ('root exudates') were examined by recovering 14C labelled compounds from root solutions of seedlings inoculated with Azospirillum brasilense, Azotobacter vinelandii or Klebsiella pneumoniae nif-. Up to 3.5% of the total 14C recovered from shoots, roots, and nutrient solutions was found in the root solutions. Inoculation with Azospirillum and Azotobacter increased the amounts of 14C and decreased the amounts of carbohydrates in the root solutions. When sucrose was added as a carbon source for the bacteria, the increase of 14C in the solutions did not occur. Quantities of 14C found in the root solutions were proportional to amounts of mineral nitrogen supplied to the plants. Bacterial growth also was proportional to nitrogen levels. When sorghum plants were grown in soil and labelled with 14CO2, about 15% of the total 14C recovered within 48 hours exposure was found in soil leachates. (orig.)

  11. The dual effects of root-cap exudates on nematodes: from quiescence in plant-parasitic nematodes to frenzy in entomopathogenic nematodes.

    Science.gov (United States)

    Hiltpold, Ivan; Jaffuel, Geoffrey; Turlings, Ted C J

    2015-02-01

    To defend themselves against herbivores and pathogens, plants produce numerous secondary metabolites, either constitutively or de novo in response to attacks. An intriguing constitutive example is the exudate produced by certain root-cap cells that can induce a state of reversible quiescence in plant-parasitic nematodes, thereby providing protection against these antagonists. The effect of such root exudates on beneficial entomopathogenic nematodes (EPNs) remains unclear, but could potentially impair their use in pest management programmes. We therefore tested how the exudates secreted by green pea (Pisum sativum) root caps affect four commercial EPN species. The exudates induced reversible quiescence in all EPN species tested. Quiescence levels varied with the green pea cultivars tested. Notably, after storage in root exudate, EPN performance traits were maintained over time, whereas performances of EPNs stored in water rapidly declined. In sharp contrast to high concentrations, lower concentrations of the exudate resulted in a significant increase in EPN activity and infectiousness, but still reduced the activity of two plant-parasitic nematode species. Our study suggests a finely tuned dual bioactivity of the exudate from green pea root caps. Appropriately formulated, it can favour long-term storage of EPNs and boost their infectiousness, while it may also be used to protect plants from plant-parasitic nematodes.

  12. Quantification and enzyme targets of fatty acid amides from duckweed root exudates involved in the stimulation of denitrification.

    Science.gov (United States)

    Sun, Li; Lu, Yufang; Kronzucker, Herbert J; Shi, Weiming

    2016-07-01

    Fatty acid amides from plant root exudates, such as oleamide and erucamide, have the ability to participate in strong plant-microbe interactions, stimulating nitrogen metabolism in rhizospheric bacteria. However, mechanisms of secretion of such fatty acid amides, and the nature of their stimulatory activities on microbial metabolism, have not been examined. In the present study, collection, pre-treatment, and determination methods of oleamide and erucamide in duckweed root exudates are compared. The detection limits of oleamide and erucamide by gas chromatography (GC) (10.3ngmL(-1) and 16.1ngmL(-1), respectively) are shown to be much lower than those by liquid chromatography (LC) (1.7 and 5.0μgmL(-1), respectively). Quantitative GC analysis yielded five times larger amounts of oleamide and erucamide in root exudates of Spirodela polyrrhiza when using a continuous collection method (50.20±4.32 and 76.79±13.92μgkg(-1) FW day(-1)), compared to static collection (10.88±0.66 and 15.27±0.58μgkg(-1) FW day(-1)). Furthermore, fatty acid amide secretion was significantly enhanced under elevated nitrogen conditions (>300mgL(-1)), and was negatively correlated with the relative growth rate of duckweed. Mechanistic assays were conducted to show that erucamide stimulates nitrogen removal by enhancing denitrification, targeting two key denitrifying enzymes, nitrate and nitrite reductases, in bacteria. Our findings significantly contribute to our understanding of the regulation of nitrogen dynamics by plant root exudates in natural ecosystems. PMID:27152459

  13. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation.

    Science.gov (United States)

    Wang, Xiaojuan; Tang, Caixian; Severi, Julia; Butterly, Clayton R; Baldock, Jeff A

    2016-08-01

    Effects of rhizosphere properties on the rhizosphere priming effect (RPE) are unknown. This study aimed to link species variation in RPE with plant traits and rhizosphere properties. Four C3 species (chickpea, Cicer arietinum; field pea, Pisum sativum; wheat, Triticum aestivum; and white lupin, Lupinus albus) differing in soil acidification and root exudation, were grown in a C4 soil. The CO2 released from soil was trapped using a newly developed NaOH-trapping system. White lupin and wheat showed greater positive RPEs, in contrast to the negative RPE produced by chickpea. The greatest RPE of white lupin was in line with its capacity to release root exudates, whereas the negative RPE of chickpea was attributed to its great ability to acidify rhizosphere soil. The enhanced RPE of field pea at maturity might result from high nitrogen deposition and release of structural root carbon components following root senescence. Root biomass and length played a minor role in the species variation in RPE. Rhizosphere acidification was shown to be an important factor affecting the magnitude and direction of RPE. Future studies on RPE modelling and mechanistic understanding of the processes that regulate RPE should consider the effect of rhizosphere pH. PMID:27101777

  14. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation.

    Science.gov (United States)

    Wang, Xiaojuan; Tang, Caixian; Severi, Julia; Butterly, Clayton R; Baldock, Jeff A

    2016-08-01

    Effects of rhizosphere properties on the rhizosphere priming effect (RPE) are unknown. This study aimed to link species variation in RPE with plant traits and rhizosphere properties. Four C3 species (chickpea, Cicer arietinum; field pea, Pisum sativum; wheat, Triticum aestivum; and white lupin, Lupinus albus) differing in soil acidification and root exudation, were grown in a C4 soil. The CO2 released from soil was trapped using a newly developed NaOH-trapping system. White lupin and wheat showed greater positive RPEs, in contrast to the negative RPE produced by chickpea. The greatest RPE of white lupin was in line with its capacity to release root exudates, whereas the negative RPE of chickpea was attributed to its great ability to acidify rhizosphere soil. The enhanced RPE of field pea at maturity might result from high nitrogen deposition and release of structural root carbon components following root senescence. Root biomass and length played a minor role in the species variation in RPE. Rhizosphere acidification was shown to be an important factor affecting the magnitude and direction of RPE. Future studies on RPE modelling and mechanistic understanding of the processes that regulate RPE should consider the effect of rhizosphere pH.

  15. EFFECT OF ROOT EXUDATES OF SENGON PLANT (Paraserianthes falcataria L. Nielsen) INOCULATED WITH FUNGAL ENDOPHYTE, Nigrospora sp. ON CONTROL OF ROOT-KNOT NEMATODE Meloidogyne spp.???

    OpenAIRE

    Nur, Amin

    2012-01-01

    Endophytic fungi are fungi that live within their host plant tissues without causing any symptoms on the host. A host plant and endophytic fungi living on it have a mutulistic relathionship. The host provides substrate and space for the endophytes to grow while the fungal endophytes promote plant growth and protect the plant hosts from pests and diseases. The research was aimed to determine the effect of different concentrations of root exudates of sengon plant (Paraserianthes falcataria) ...

  16. The Content of Phenolic Compounds in the Pea Seedling Root Exudates Depends on the Size of Their Roots and Inoculation of Bacteria Mutualistic and Antagonistic Type of Interactions

    OpenAIRE

    L.E. Makarova; L.V. Dudareva; I.G. Petrova

    2015-01-01

    The effect of the bacteria Rhizobium and Pseudomonas on total content of phenolic compounds (PC) and their individual components (apigenin, naringenin, dibutyl-ortho-phthalate, pisatin, N-phenyl-2-naphthylamine) in the root exudates of the pea seedlings (Pisum sativum L. ) at two different growth stages was studied . Bacteria have similar affect on the total number of PC and the number of constituent apigenine, phthalate and pisatine. Difference at the impact of these bacteria on the content ...

  17. Root Exudates of Various Host Plants of Rhizobium leguminosarum Contain Different Sets of Inducers of Rhizobium Nodulation Genes.

    Science.gov (United States)

    Zaat, S A; Wijffelman, C A; Mulders, I H; van Brussel, A A; Lugtenberg, B J

    1988-04-01

    Rhizobium promoters involved in the formation of root nodules on leguminous plants are activated by flavonoids in plant root exudate. A series of Rhizobium strains which all contain the inducible Rhizobium leguminosarum nodA promoter fused to the Escherichia coli lacZ gene, and which differ only in the source of the regulatory nodD gene, were recently used to show that the regulatory nodD gene determines which flavonoids are able to activate the nodA promoter (HP Spaink, CA Wijffelman, E Pees, RJH Okker, BJJ Lugtenberg 1987 Nature 328: 337-340). Since these strains therefore are able to discriminate between various flavonoids, they were used to determine whether or not plants that are nodulated by R. leguminosarum produce different inducers. After chromatographic separation of root exudate constituents from Vicia sativa L. subsp. nigra (L.), V. hirsuta (L.) S.F. Gray, Pisum sativum L. cv Rondo, and Trifolium subterraneum L., the fractions were tested with a set of strains containing a nodD gene of R. leguminosarum, R. trifolii, or Rhizobium meliloti, respectively. It appeared that the source of nodD determined whether, and to what extent, the R. leguminosarum nodA promoter was induced. Lack of induction could not be attributed to the presence of inhibitors. Most of the inducers were able to activate the nodA promoter in the presence of one particular nodD gene only. The inducers that were active in the presence of the R. leguminosarum nodD gene were different in each root exudate.

  18. Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity.

    Science.gov (United States)

    Widodo, Basuki; Broadley, Martin R; Rose, Terry; Frei, Michael; Pariasca-Tanaka, Juan; Yoshihashi, Tadashi; Thomson, Michael; Hammond, John P; Aprile, Alessio; Close, Timothy J; Ismail, Abdelbagi M; Wissuwa, Matthias

    2010-04-01

    *Zinc (Zn)-deficient soils constrain rice (Oryza sativa) production and cause Zn malnutrition. The identification of Zn-deficiency-tolerant rice lines indicates that breeding might overcome these constraints. Here, we seek to identify processes underlying Zn-deficiency tolerance in rice at the physiological and transcriptional levels. *A Zn-deficiency-tolerant line RIL46 acquires Zn more efficiently and produces more biomass than its nontolerant maternal line (IR74) at low [Zn](ext) under field conditions. We tested if this was the result of increased expression of Zn(2+) transporters; increased root exudation of deoxymugineic acid (DMA) or low-molecular-weight organic acids (LMWOAs); and/or increased root production. Experiments were performed in field and controlled environment conditions. *There was little genotypic variation in transcript abundance of Zn-responsive root Zn(2+)-transporters between the RIL46 and IR74. However, root exudation of DMA and LMWOA was greater in RIL46, coinciding with increased root expression of putative ligand-efflux genes. Adventitious root production was maintained in RIL46 at low [Zn](ext), correlating with altered expression of root-specific auxin-responsive genes. *Zinc-deficiency tolerance in RIL46 is most likely the result of maintenance of root growth, increased efflux of Zn ligands, and increased uptake of Zn-ligand complexes at low [Zn](ext); these traits are potential breeding targets. PMID:20100202

  19. Quantitative and Qualitative Effects of Phosphorus on Extracts and Exudates of Sudangrass Roots in Relation to Vesicular-Arbuscular Mycorrhiza Formation

    Science.gov (United States)

    Schwab, Suzanne M.; Menge, John A.; Leonard, Robert T.

    1983-01-01

    A comparison was made of water-soluble root exudates and extracts of Sorghum vulgare Pers. grown under two levels of P nutrition. An increase in P nutrition significantly decreased the concentration of carbohydrates, carboxylic acids, and amino acids in exudates, and decreased the concentration of carboxylic acids in extracts. Higher P did not affect the relative proportions of specific carboxylic acids and had little effect on proportions of specific amino acids in both extracts and exudates. Phosphorus amendment resulted in an increase in the relative proportion of arabinose and a decrease in the proportion of fructose in exudates, but did not have a large effect on the proportion of individual sugars in extracts. The proportions of specific carbohydrates, carboxylic acids, and amino acids varied between exudates and extracts. Therefore, the quantity and composition of root extracts may not be a reliable predictor of the availability of substrate for symbiotic vesicular-arbuscular mycorrhizal fungi. Comparisons of the rate of leakage of compounds from roots with the growth rate of vesicular-arbuscular mycorrhizal fungi suggest that the fungus must either be capable of using a variety of organic substrates for growth, or be capable of inducing a much higher rate of movement of specific organic compounds across root cell membranes than occurs through passive exudation as measured in this study. PMID:16663297

  20. Non-targeted profiling of semi-polar metabolites in Arabidopsis root exudates uncovers a role for coumarin secretion and lignification during the local response to phosphate limitation.

    Science.gov (United States)

    Ziegler, Jörg; Schmidt, Stephan; Chutia, Ranju; Müller, Jens; Böttcher, Christoph; Strehmel, Nadine; Scheel, Dierk; Abel, Steffen

    2016-03-01

    Plants have evolved two major strategies to cope with phosphate (Pi) limitation. The systemic response, mainly comprising increased Pi uptake and metabolic adjustments for more efficient Pi use, and the local response, enabling plants to explore Pi-rich soil patches by reorganization of the root system architecture. Unlike previous reports, this study focused on root exudation controlled by the local response to Pi deficiency. To approach this, a hydroponic system separating the local and systemic responses was developed. Arabidopsis thaliana genotypes exhibiting distinct sensitivities to Pi deficiency could be clearly distinguished by their root exudate composition as determined by non-targeted reversed-phase ultraperformance liquid chromatography electrospray ionization quadrupole-time-of-flight mass spectrometry metabolite profiling. Compared with wild-type plants or insensitive low phosphate root 1 and 2 (lpr1 lpr2) double mutant plants, the hypersensitive phosphate deficiency response 2 (pdr2) mutant exhibited a reduced number of differential features in root exudates after Pi starvation, suggesting the involvement of PDR2-encoded P5-type ATPase in root exudation. Identification and analysis of coumarins revealed common and antagonistic regulatory pathways between Pi and Fe deficiency-induced coumarin secretion. The accumulation of oligolignols in root exudates after Pi deficiency was inversely correlated with Pi starvation-induced lignification at the root tips. The strongest oligolignol accumulation in root exudates was observed for the insensitive lpr1 lpr2 double mutant, which was accompanied by the absence of Pi deficiency-induced lignin deposition, suggesting a role of LPR ferroxidases in lignin polymerization during Pi starvation. PMID:26685189

  1. Effect of Soil Moisture on Release of Low-MolecularWeight Organic Acids in Root Exudates and the Accumulation of Iron in Root Apoplasm of Peanut

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A three-compartments rhizobox was designed and used to study the low-molecular-weight organic acids in root exudates and the root apoplastic iron of "lime-induced chlorosis" peanut grown on a calcareous soil in relation to different soil moisture conditions. Results showed that chlorosis of peanuts developed under condition of high soil moisture level (250 g kg-1), while peanuts grew well and chlorosis did not develop when soil moisture was managed to a normal level (150 g kg-1). The malic acid, maleic acid and succinic acid contents of chlorotic peanut increased by 108.723, 0.029 and 22.446μg cm-2, respectively,compared with healthy peanuts. The content of citric acid and fumaric acid also increased in root exudates of chlorotic peanuts. On Days 28 and 42 of peanut growth, the accumulation of root apoplastic iron in chlorotic peanuts was higher than that of healthy peanuts. From Day 28 to Day 42, the mobilization percentages of chlorotic peanuts and healthy peanuts to root apoplastic iron were almost the same, being 52.4% and 52.8%,respectively, indicating that the chlorosis might be caused by the inactivation of iron within peanut plant grown on a calcareous soil under high soil moisture conditions.

  2. Effects of root exudates of bivalent transgenic cotton (Bt+CpTI) plants on antioxidant proteins and growth of conventional cotton (Xinluhan 33).

    Science.gov (United States)

    Wu, Hong-Sheng; Shi, Xue; Li, Ji; Wu, Tian-Yu; Ren, Qian-Qi; Zhang, Zhen-Hua; Wang, Ming-Yan; Shang, Xiao-Xia; Liu, Yan; Xiao, Song-Hua

    2016-01-01

    A greenhouse experiment was conducted to assess the adverse impact of transgenic cotton on ecosystem and environment via effect of transgenic Bt+CpTI cotton root exudates on growth and antioxidant activity of conventional parental cotton. Results showed elevated reductive and oxidative species activities in the leaves of conventional parental cotton seedlings treated with varying concentrations of transgenic cotton root exudates. Compared to control, 14.9% to 39.9% increase in catalase, 8.8% to 114% increase in for peroxidase, 21.3% to 59.7% increase in phenylalanine ammonia-lyase and 5.8 to 19.5 fold in ascorbate specific peroxidase was observed. However, biomass and height of conventional cotton seedlings were not affected by any concentration of transgenic cotton root exudates. These results suggested that cultivation of transgenic Bt+CpTI cotton plants poses little risk to conventional parental cotton based on their root interactions. PMID:26930855

  3. Root-exuded acid phosphatase and 32Pi-uptake kinetics of wheat, rye and triticale under phosphorus starvation

    International Nuclear Information System (INIS)

    A nutrient culture experiment was conducted with cereal species viz., wheat (Triticum aestivum L.) cv. PBW-343), rye (Secale cereale L cv. R-308) and triticale (Triticale octoploide L. cv. DT-46), a hybrid of wheat and rye, to examine the genetic variation in root-exuded acid phosphatase (ACPase) activity and kinetics of 32Pi-uptake under P deficient condition. The ACPase activity was assayed in the extract (intra-) and on surface (extra-cellular) or root, using p-nitrophenyl phosphate as substrate. Significantly higher ACPase activity was observed in wheat followed by rye and triticale both on the root surface and in root extract. In general, root surface ACPase activity was 2.2-fold higher than that in root extract. A strong correlation (r2 = 0.87**) between extra and intra-cellular ACPase activity was observed. In terms of kinetic parameters, it was observed that 32Pi uptake and Imax values were significantly higher in rye while Cmin and Km were lowest compared to wheat and triticale. The dry weights of shoot, root and total plant were significantly higher in rye compared to wheat and triticale. Rye also had higher amount of total plant P content The superiority of rye over wheat and triticale in P uptake was observed mainly due to efficient Pi-uptake system, which needs further studies to ascertain the enhancement of Pi-induced high-affinity P transporter in these cereals. (author)

  4. Effects of sorghum (sorghum bicolor L. root exudates on the cell cycle of the bean plant (phaseolus vulgaris L. root

    Directory of Open Access Journals (Sweden)

    Angela Maria Gattás Hallak

    1999-03-01

    Full Text Available Two experiments were conducted to test the allelopathic effect of sorghum (Sorghum bicolor L. root exudates on bean (Phaseolus vulgaris L. cell division. Research was conducted in the greenhouse of the Wistock Agricultural Research Institute of Minas Gerais State (EPAMIG and in a laboratory of the Federal University of Lavras (UFLA. Sorghum variety BR-601 and bean variety Carioca MG were used. The exudate, called sorgoleone (SGL, was obtained by methylene chloride and acetic acid extraction from sorghum roots seven days after sowing on Petri dishes, and refrigerated until use. Solutions of 0.01, 0.05, 0.10, and 0.15 mM were prepared using Johanson solution as the SGL solvent. Seven-day-old bean seedlings grown in vermiculite in a greenhouse were transplanted to the solution. Seven days after transplantation, the beans did not show any sign of phytotoxicity; however, cytogenetic observations showed that SGL reduced the number of cells in prophase, metaphase, and anaphase stages. Colchicine effects were observed among cells in metaphase on the third and fifth days after treatments and varied with SGL concentrations. By the seventh day, the colchicine effects were inversely proportional to concentration, which varied from 34.3% for 0.01 mM to 6.6% for 0.15 mM. SGL acts as a mitotic inhibitor. It probably depolymerizes the microtubular proteins and induces the formation of colchicine metaphases causing polyploid nuclei. A largest period of SGL treatment also induced chromosome breaks and bridge formation in anaphase and telophase. Although SGL cannot be used as a herbicide for bean cultures, its allelochemical effects on other cultures are the factors that will define the use of sorghum as a natural herbicide.Foram instalados experimentos em casa de vegetação da Empresa Agropecuária de MG (EPAMIG e laboratório da Universidade Federal de Lavras (UFLA em 1994, com o objetivo de testar a ação alelopática de exsudados de raiz de sorgo (sorgoleone

  5. Increased root exudation of /sup 14/C-compounds by sorghum seedlings inoculated with nitrogen-fixing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.J. (Institute of Forest Genetics, Suweon (Republic of Korea)); Gaskins, M.H. (Florida Univ., Gainesville (USA). Dept. of Agriculture)

    1982-01-01

    Organic components leaked from Sorghum bicolor seedlings ('root exudates') were examined by recovering /sup 14/C labelled compounds from root solutions of seedlings inoculated with Azospirillum brasilense, Azotobacter vinelandii or Klebsiella pneumoniae nif-. Up to 3.5% of the total /sup 14/C recovered from shoots, roots, and nutrient solutions was found in the root solutions. Inoculation with Azospirillum and Azotobacter increased the amounts of /sup 14/C and decreased the amounts of carbohydrates in the root solutions. When sucrose was added as a carbon source for the bacteria, the increase of /sup 14/C in the solutions did not occur. Quantities of /sup 14/C found in the root solutions were proportional to amounts of mineral nitrogen supplied to the plants. Bacterial growth also was proportional to nitrogen levels. When sorghum plants were grown in soil and labelled with /sup 14/CO/sub 2/, about 15% of the total /sup 14/C recovered within 48 hours exposure was found in soil leachates.

  6. Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, is an allelochemical against the development of Striga.

    Science.gov (United States)

    Hooper, Antony M; Tsanuo, Muniru K; Chamberlain, Keith; Tittcomb, Kay; Scholes, Julie; Hassanali, Ahmed; Khan, Zeyaur R; Pickett, John A

    2010-06-01

    In East African small-holder farming of maize, the cattle forage legume, Desmodium uncinatum is used as an intercrop due to its allelopathic inhibition of parasitism by Striga hermonthica, an obligate parasitic weed that can devastate the maize crop. Bioassay-guided fractionation of the root extract of D. uncinatum revealed isoschaftoside to be the main compound in the most potent fraction inhibiting growth of germinated S. hermonthica radicles. Bioassays repeated with isoschaftoside isolated from a different plant source, Passiflora incarnata, proved it to be a biologically active component. Analysis of the root exudates produced by hydroponically grown D. uncinatum showed isoschaftoside to be present in the hydroponic media at biologically active concentrations of 10-100 nM. PMID:20211477

  7. Metabolism and root exudation of organic acid anions under aluminium stress

    NARCIS (Netherlands)

    Mariano, E.D.; Jorge, R.A.; Keltjens, W.G.; Menossi, M.

    2005-01-01

    Numerous plant species can release organic acid anions (OA) from their roots in response to toxic aluminium (Al) ions present in the rooting medium. Hypothetically OA complex Al in the root apoplast and/or rhizosphere and thus avoid its interaction with root cellular components and its entry in the

  8. The Content of Phenolic Compounds in the Pea Seedling Root Exudates Depends on the Size of Their Roots and Inoculation of Bacteria Mutualistic and Antagonistic Type of Interactions

    Directory of Open Access Journals (Sweden)

    L.E. Makarova

    2015-09-01

    Full Text Available The effect of the bacteria Rhizobium and Pseudomonas on total content of phenolic compounds (PC and their individual components (apigenin, naringenin, dibutyl-ortho-phthalate, pisatin, N-phenyl-2-naphthylamine in the root exudates of the pea seedlings (Pisum sativum L. at two different growth stages was studied . Bacteria have similar affect on the total number of PC and the number of constituent apigenine, phthalate and pisatine. Difference at the impact of these bacteria on the content of naringenin and N-phenyl-2-naphthylamine was detected, which can be attributed to the peculiarities of the interactions of plants of peas with bacteria-antagonists and mutualists.

  9. Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (Ricinus communis L.) Under Cu stress.

    Science.gov (United States)

    Huang, Guoyong; Guo, Guangguang; Yao, Shiyuan; Zhang, Na; Hu, Hongqing

    2016-01-01

    Ricinus communis L. is a hyperaccumulation plant newly discovered in an abandoned land of Cu mine in China. A hydroponic experiment was then carried out to determine the root exudates in the Cu-tolerant castor (Ricinus communis L.). Plants were grown in nutrient solution with increasing level of Cu doses (0, 100, 250, 500, and 750 μmol/L Cu) in the form of CuSO4. Cu accumulation in the roots and shoots of castor, and root exudates collected from the castor were measured. The results indicated that the castor had a high Cu accumulation capacity and the Cu concentrations in the shoots and roots of the castor treated with 750 μmol/L Cu were 177.1, 14586.7 mg/kg, respectively. Tartaric was the largest in the root exudates in terms of concentrations, which reached up to 329.13 μmol/g (dry plant) in the level of 750 μmol/L Cu. There was a significantly positive linear relationship between the Cu concentration in root and the concentration of succinic (R = 0.92, P < 0.05), tartaric (R = 0.96, P < 0.01), and citric (R = 0.89, P < 0.05). These results indicated that the difference in root exudation from castor could affect their Cu tolerance. What is more, significant is that the high tartaric and citric, the low oxalic and cysteine in the root exudation of castor contributed to toleration of high Cu concentrations.

  10. Aluminum tolerance of two wheat cultivars (Brevor and Atlas66) in relation to their rhizosphere pH and organic acids exuded from roots.

    Science.gov (United States)

    Wang, Ping; Bi, Shuping; Ma, Liping; Han, Weiying

    2006-12-27

    Phytotoxicity of aluminum (Al) has become a serious problem in inhibiting plant growth on acid soils. Under Al stress, the changes of rhizosphere pH, root elongation, absorption of Al by wheat roots, organic acids exuded from roots, and some main factors related to Al-tolerant mechanisms have been studied using hydroponics, fluorescence spectrophotometry, and high performance liquid chromatography (HPLC). Two wheat cultivars, Brevor and Atlas66, differing in Al tolerance are chosen in the study. Accordingly, the rhizosphere pH has a positive effect on Al tolerance. Atlas66 (Al-tolerant) has higher capability to maintain high rhizosphere pH than Brevor (Al-sensitive) does. High pH can reduce Al3+ activity and toxicity, and increase the efficiency of exuding organic acids from the roots. More inhibition of root elongation has been found in Brevor because of the exposure of roots to Al3+ solution at low pH. Brevor accumulate more Al in roots than Atlas66 even at higher pH. Al-induced exudation of malic and citric acids has been found in Atlas66 roots, while no Al-induced organic acids have been found in Brevor. These results indicate that the Al-induced secretion of organic acids from Atlas66 roots has a positive correlation with Al tolerance. Comprehensive treatment of Al3+ and H+ indicates that wheat is adversely influenced by excess Al3+, rather than low pH. PMID:17177538

  11. Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates.

    Science.gov (United States)

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; Alfaro-Cuevas, Ruth; López-Bucio, José

    2014-06-01

    Salt stress is an important constraint to world agriculture. Here, we report on the potential of Trichoderma virens and T. atroviride to induce tolerance to salt in Arabidopsis seedlings. We first characterized the effect of several salt concentrations on shoot biomass production and root architecture of Arabidopsis seedlings. We found that salt repressed plant growth and root development in a dose-dependent manner by blocking auxin signaling. Analysis of the wild type and eir1, aux1-7, arf7arf19, and tir1abf2abf19 auxin-related mutants revealed a key role for indole-3-acetic acid (IAA) signaling in mediating salt tolerance. We also found that T. virens (Tv29.8) and T. atroviride (IMI 206040) promoted plant growth in both normal and saline conditions, which was related to the induction of lateral roots and root hairs through auxin signaling. Arabidopsis seedlings grown under saline conditions inoculated with Trichoderma spp. showed increased levels of abscissic acid, L-proline, and ascorbic acid, and enhanced elimination of Na⁺ through root exudates. Our data show the critical role of auxin signaling and root architecture to salt tolerance in Arabidopsis and suggest that these fungi may enhance the plant IAA level as well as the antioxidant and osmoprotective status of plants under salt stress. PMID:24502519

  12. Determination of Organi Acids in Root Exudates by High Performance Liquid Chromatorgraphy:Ⅰ.Develop—ment and Assessment of Chromatographic Conditions

    Institute of Scientific and Technical Information of China (English)

    SHENJIANBO; ZHANGFUSUO; 等

    1998-01-01

    Methods for determining niene low molecular-weight oragnic acids in root exudates were developed by using reversed-phase high performance liquied chromatography with UV (ultraviolet) detection at 214 nm. The mobile phase was 18 mmol L-1 kH2PO4 adjusted to pH 2.25 with phosporic acid nd the flow rate was 0.3 mL min-1,The analytical column was a reversed-phase silica based C-18 column( shim-pack CLC-ODS).The root exudates were collected through submerging the whole root system into aerated deionized water for 2 hours ,The filtered exudate solutions were concentrated to dryness by rotary evaporation at 40℃,dissolved in 10 mL mobile phase.The chromatoraphic conditions of organic acid determination were analyzed.The results showed that there was a high selectivity and sensitivity in the organic acid determination by reversed-phase high performance liquid chromatography.Coefficients of variation for organic acied determination were lower than 10% except lactic acid .The recoveries were consistently between 80.1% to 108.3% .Detection limits were approximately 0.05 to 4.5 mg L-1 for organic acids except succinic acid with the detection limit of 7.0 mg L-1 .Phosphorus deficiency may contribute to the release of organic acids in soybean root exudates especially malic,lactic and citric acids.

  13. INFLUENCE OF ROOT EXUDATES AND BACTERIAL METABOLIC ACTIVITY ON APPARENT CONJUGAL GENE TRANSFER FREQUENCIES IN THE RHIZOSPHERE OF WATER GRASS (ECHINOCLORA CRUSGALLI)

    Science.gov (United States)

    The premise that genetic exchange is primarily localized in niches characterized by dense bacterial populations and high availability of growth substrates was tested by relating conjugal gene transfer of an RP4 derivative to availability of root exudates and bacterial metabolic a...

  14. Response of root border cells of soybean to cultured Chenopodium ambrosioides root exudates%大豆根边缘细胞对土荆芥组培根分泌物的响应

    Institute of Scientific and Technical Information of China (English)

    李安奇; 王亚男; 张红; 汪利沙; 马丹炜

    2012-01-01

    运用组织培养技术和悬空气培养法,研究了大豆根边缘细胞对土荆芥组培根分泌物的响应.结果表明:在土荆芥组培根分泌物作用下,随处理浓度的升高和处理时间的延长,边缘细胞数量和存活率持续下降.游离的根边缘细胞周围聚集了一些颗粒状物质,根边缘细胞可能螯合土荆芥根系分泌物.土荆芥根系分泌物能促进根冠果胶甲基酯酶活性上调,但是随着处理浓度增大和处理时间延长,这种促进效应降低.这些结果表明土荆芥组培根分泌物对大豆根边缘细胞具有一定的胁迫效应,根边缘细胞通过加速死亡并分泌一些活性物质螯合土荆芥根系分泌物,可在一定范围内缓解根系分泌物的毒害作用.%By using the techniques of tissue culture and aeroponic culture, response of root border cells of soybean ( Gtycine max L.) to cultured Chenopodium ambrosioides root exudates was studied. The results showed the number and activity of root border cells decreased consecutively when treated with cultured C. Ambrosioides root exudates. Some granules gathered around free root border cells would result from chelation between root border cells exudates with that of the cultured root. The cultured root exudates could stimulate the activity of pectin methylesterase of the root cap of soybean, but the effect gradually lowered down along with the increasing of treatment concentration and treatment time. The results suggested that the cultured root exudates had stress on root border cells of soybean and root border cells of soybean alleviated the allelopathic effects of the cultured root exudates on root tips though programmed cell death and chelating.

  15. Effect of 1-naphthaleneacetic acid on organic acid exudation by the roots of white lupin plants grown under phosphorus-deficient conditions.

    Science.gov (United States)

    Gómez, Diego A; Carpena, Ramón O

    2014-09-15

    The effect of NAA (1-naphthaleneacetic acid) on organic acid exudation in white lupin plants grown under phosphorus deficiency was investigated. Plants were sampled periodically for collecting of organic acids (citrate, malate, succinate), and also were used to study the effect on proton extrusion and release of Na(+), K(+), Ca(2+) and Mg(2+). The tissues were later processed to quantify the organic acids in tissues, the phosphorus content and the effects on plant biomass. The exogenous addition of NAA led to an increase in organic acid exudation, but this response was not proportional to the concentration of the dose applied, noticing the largest increments with NAA 10(-8)M. In contrast the increase in root weight was proportional to the dose applied, which shows that with higher doses the roots produced are not of proteoid type. Proton extrusion and the release of cations were related to the NAA dose, the first was proportional to the dose applied and the second inversely proportional. Regarding the analysis of tissues, the results of citrate and phosphorus content in shoots show that the overall status of these parts are the main responsible of the organic acids exuded. NAA served as an enhancer of the organic acid exudation that occurs under phosphorus deficient conditions, with a response that depends on the dose applied, not only in its magnitude, but also in the mechanism of action of the plant hormone.

  16. Influence of season and salinity on the exudation of aliphatic low molecular weight organic acids (ALMWOAs) by Phragmites australis and Halimione portulacoides roots

    Science.gov (United States)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2015-01-01

    Plant roots have the ability to produce and secrete substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere. This phenomenon occurs for several purposes, for instance, the detoxification of pollutants. Nevertheless, knowledge about the exudation of such substances from marsh plants roots is still scarce. This work aimed at studying: 1) the ability of marsh plants, freshly collected in estuarine marshes, to liberate ALMWOAs into the surrounding medium and 2) the influence of the physiological cycle of these plants on the exudation of those substances. In vitro experiments were carried out, in different seasons, with Phragmites australis and Halimione portulacoides (two marsh plants widely distributed in Europe). Root exudates were collected in freshwater to which plant specimens, in different physiological stages, were exposed. Both marsh plants were capable of liberating oxalic and citric acids into the surrounding medium. Formic acid was also released by P. australis roots and acetic acid by H. portulacoides. There was a seasonal effect on the liberation of ALMWOAs by both plant roots. Marked changes were registered in the nature and levels of the ALMWOAs liberated and such changes depended upon the season in which the specimens were collected. In growing season, a significantly higher liberation of oxalic and citric acids (and acetic acid but only in H. portulacoides case) was observed. For P. australis, formic acid was only found in the decaying stage (autumn and winter). The nature of the medium (in particular, salinity) was a feature conditioning the exudation of ALMWOAs. Both plants were shown to contribute for the presence of ALMWOAs in marsh rhizosediments (some ALMWOAs were found in pore waters extracted). The nature and extent of this contribution will be however dependent upon plants' physiological stage, in addition to plant species. Therefore, these features should be taken into consideration in the event of

  17. [Secretion of Phenolic Compounds into Root Exudates of Pea Seedlings upon Inoculation with Rhizobium leguminosarum bv. viceae or Pseudomonas siringae pv. Pisi].

    Science.gov (United States)

    Makarova, L E; Dudareva, L V; Petrova, I G; Vasil'eva, G G

    2016-01-01

    The content of apigenin, naringenin, pisatin, dibutyl-ortho-phthalate, and N-phenyl-2-naphthyl-amine were assayed in root exudates of pea (Pisum sativum L.) seedlings one day after their inoculation with Rhizobium leguminosarum, bv. viceae or Pseudomonas siringae pv. pisi, which represent, respectively, mutualistic and antagonistic strategies of interaction with a host plant. After inoculation with either bacteria, the concentrations of apigenin and pisatin in the root exudates were equal, whereas the concentrations of naringenin and N-phenyl-2-naphthylamine were different and those of dibutyl-o-phthalate were unchanged. A certain role is suggested for the phenolic compounds in an accomplishment of symbiotic relations of bacteria with a host plant. PMID:27266251

  18. [Secretion of Phenolic Compounds into Root Exudates of Pea Seedlings upon Inoculation with Rhizobium leguminosarum bv. viceae or Pseudomonas siringae pv. Pisi].

    Science.gov (United States)

    Makarova, L E; Dudareva, L V; Petrova, I G; Vasil'eva, G G

    2016-01-01

    The content of apigenin, naringenin, pisatin, dibutyl-ortho-phthalate, and N-phenyl-2-naphthyl-amine were assayed in root exudates of pea (Pisum sativum L.) seedlings one day after their inoculation with Rhizobium leguminosarum, bv. viceae or Pseudomonas siringae pv. pisi, which represent, respectively, mutualistic and antagonistic strategies of interaction with a host plant. After inoculation with either bacteria, the concentrations of apigenin and pisatin in the root exudates were equal, whereas the concentrations of naringenin and N-phenyl-2-naphthylamine were different and those of dibutyl-o-phthalate were unchanged. A certain role is suggested for the phenolic compounds in an accomplishment of symbiotic relations of bacteria with a host plant.

  19. 烟草根系分泌物的GC-MS检测%Determination of tobacco root exudates by GC-MS

    Institute of Scientific and Technical Information of China (English)

    于会泳; 申国明; 高欣欣

    2013-01-01

    采用水培试验研究对连作障碍有重大影响的烟草根系分泌物中的化感物质,利用GC-MS检测出了K326和NC89两个烤烟品种移栽后40天根系分泌物中的酸溶性、碱溶性和中溶性组分种类,结果表明,两个烤烟品种共有的根系分泌物中可能是化感物质的种类包括有机酸类、酰胺类、酯类以及甘油和烟碱。%Hydroponic experiments were conducted to study allelochemicals released by tobacco root exudation. Acidic, neutral and alkaline soluble root exudates were extracted, separated and identified 40 days after K326 and NC89 plants were transplanted. Results showed that allelochemicals from root exudates of both cultivars were organic acids, lactam, esters, glycerol and nicotine.

  20. Bioavailable concentrations of germanium and rare earth elements in soil as affected by low molecular weight organic acids and root exudates

    Science.gov (United States)

    Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Tesch, Silke; Heilmeier, Hermann

    2014-05-01

    Availability of elements in soil to plant is generally dependent on the solubility and mobility of elements in soil solution which is controlled by soil, elemental properties and plant-soil interactions. Low molecular organic acids or other root exudates may increase mobility and availability of certain elements for plants as an effect of lowering pH in the rhizosphere and complexation. However, these processes take place in a larger volume in soil, therefore to understand their nature, it is also important to know in which layers of the soil what factors modify these processes. In this work the influence of citric acid and root exudates of white lupin (Lupinus albus L.) on bioavailable concentrations of germanium, lanthan, neodymium, gadolinium and erbium in soil solution and uptake in root and shoot of rape (Brassica napus L.), comfrey (Symphytum officinale L.), common millet (Panicum milliaceum L.) and oat (Avena sativa L.) was investigated. Two different pot experiments were conducted: (1) the mentioned plant species were treated with nutrient solutions containing various amount of citric acid; (2) white lupin was cultivated in mixed culture (0 % lupin, 33 % lupin) with oat (Avena sativa L.) and soil solution was obtained by plastic suction cups placed at various depths. As a result, addition of citric acid significantly increased germanium concentrations in plant tissue of comfrey and rape and increased translocation of germanium, lanthan, neodymium, gadolinium and erbium from root to shoot. The cultivation of white lupin in mixed culture with oat led to significantly higher concentrations of germanium and increasing concentrations of lanthan, neodymium, gadolinium and erbium in soil solution and aboveground plant tissue. In these pots concentrations of citric acid in soil solution were significantly higher than in the control. The results show, that low molecular organic acids exuded by plant roots are of great importance for the mobilization of germanium

  1. 广藿香根系分泌物的化感自毒作用研究%Study on the Allelopathy and the Autotoxicity of Patchouli Root Exudates

    Institute of Scientific and Technical Information of China (English)

    李玲梅; 李明

    2011-01-01

    以组培苗为材料,应用组织培养技术分析广藿香根系分泌物对萝卜、广金钱草和广藿香组培苗生长的影响.结果表明,广藿香根系分泌物抑制广藿香组培苗和广金钱草的生长;低浓度能促进萝卜生长,高浓度抑制其生长.根系分泌物对广藿香的不利影响随浓度的增加而增大,表明根系分泌物可能是导致广藿香连作障碍的主要原因之一.%The effect of root exudates on the growth of radish, Desmodium styracifoliurn and patchouli tissue culture were analyzed using tissue culture method. Results showed that root exudates of patchouli inhibited the growth of the patchouli tissue culture and Desmodium styracifoliurn;The low concentration of root exudates promoted the growth of the radish, the high concentration of root exudates inhibited the growth of the radish. The greater concentration of root exudates in the medium,the more adverse effect it had on the plants.It is concluded that root exudates of patchouli was one of the important factors inducing continuous cropping obstacle in patchouli.

  2. Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Agrogyron elongatum were grown in nutrient solution containing moderate to high amounts of separate heavy metal of Cd, Cu, Ni and Pb in a greenhouse for a 9-day. Cd, Cu, Ni and Pb generally led to decrease in the elongation of roots although the length of seedlings exposed to Cd and Pb at 0,05 and 0.5 mg/L showed to be slightly greater than that of controls. Of the four metals in the experiment, Pb was absorbed and accumulated to the highest level, with the concentrations of 92754 mg/kg dry weight (DW) in roots and 11683 mg/kg DW in shoots. Cd was moderately accumulated in Agrogyron elongatum, but the maximum bioaccumulation coefficients (BCs) for rpots and shoots were observed. The patterns for Cu and Ni uptake and distribution in plants differed from those of Pb and Cd, as it was showed that the shoot accumulation of Cu and Ni was significantly higher than in roots. A. elongatum had the highest Ni concentration in shoots (30261 mg/kg DW)at the external concentration of 250 mg/L. Cu ranked second, with a shoot concentration of 12230 mg/kg DW when 50 mg/L Cu in solution was applied. For the four trace elements tested, the highest concentrations in shoots decreased by the order of Ni > Cu > Pb > Cd (mg/kg DW),and those in roots were Pb > Cd > Ni > Cu (mg/kg DW). Malic, oxalic and citric acids exuded by roots exposed to 1 and 50 mg/L of the metals were detected. Release of organic acids from plants significantly differed among the metal treatments. Cu was most effectively in inducing rpot exudation of the three types of organic acids. Cd, and Ni were also the inducers of secretion of malic and oxalic acids. With reference of Pb,a small amounts of malic and oxalic acids were detected in the root exudates, but few quantities of citric acid were found. However, no orrelation between alternations in root exudation of organic acids and metal accumulation could be established.

  3. Mycorrhiza alters the profile of root hairs in trifoliate orange.

    Science.gov (United States)

    Wu, Qiang-Sheng; Liu, Chun-Yan; Zhang, De-Jian; Zou, Ying-Ning; He, Xin-Hua; Wu, Qing-Hua

    2016-04-01

    Root hairs and arbuscular mycorrhiza (AM) coexist in root systems for nutrient and water absorption, but the relation between AM and root hairs is poorly known. A pot study was performed to evaluate the effects of four different AM fungi (AMF), namely, Claroideoglomus etunicatum, Diversispora versiformis, Funneliformis mosseae, and Rhizophagus intraradices on root hair development in trifoliate orange (Poncirus trifoliata) seedlings grown in sand. Mycorrhizal seedlings showed significantly higher root hair density than non-mycorrhizal seedlings, irrespective of AMF species. AMF inoculation generally significantly decreased root hair length in the first- and second-order lateral roots but increased it in the third- and fourth-order lateral roots. AMF colonization induced diverse responses in root hair diameter of different order lateral roots. Considerably greater concentrations of phosphorus (P), nitric oxide (NO), glucose, sucrose, indole-3-acetic acid (IAA), and methyl jasmonate (MeJA) were found in roots of AM seedlings than in non-AM seedlings. Levels of P, NO, carbohydrates, IAA, and MeJA in roots were correlated with AM formation and root hair development. These results suggest that AMF could alter the profile of root hairs in trifoliate orange through modulation of physiological activities. F. mosseae, which had the greatest positive effects, could represent an efficient AM fungus for increasing fruit yields or decreasing fertilizer inputs in citrus production.

  4. 植物根系分泌物的研究方法%Progress on the Research Methods for Root Exudates

    Institute of Scientific and Technical Information of China (English)

    李汛; 段增强

    2013-01-01

    Root exudate is a general term for a group of organic compounds released from the plant roots to rhizo-sphere, and plays an important role in formation of soil structure, transformation of soil nutrients, absorption of nu-trients by plants, distribution of soil microbe, alleviation the environmental stress, and so on. Furthermore, owing to the degradation by the soil microbe as well as the low concentration and complex composition nature of itself, root exudate and its research methods are always the hot spots and challenges. Recently, several novel experimental tech-niques and research methods have been developed and applied in the research on root exudates. In this paper, the collection, separation, purification and identification of root exudates are reviewed, which will be helpful to re-searchers to choose a feasible, suitable and efficient method to their certain object and purpose.%  根系分泌物是植物根系释放到根际环境中的有机物质的总称,对土壤结构形成、土壤养分转化、植物养分吸收、土壤微生物分布、环境胁迫缓解等方面都具有重要作用。但是,由于土壤中微生物对根系分泌物的降解以及根系分泌物本身含量低、成分复杂,根系分泌物的研究方法一直是植物营养学与土壤科学的研究热点和难点。近年来,一些新的实验技术和研究方法被应用到对植物根系分泌物的研究中。本文对目前在根系分泌物研究中应用较多的以及新发展起来的各种收集、分离和鉴定方法进行了综述,希望有助于相关研究者在针对不同的研究对象和目的时选择出可行、合适、高效的根系分泌物研究方法和技术。

  5. Effect of enhanced UV-B radiation on methane emission in a paddy field and rice root exudation of low-molecular-weight organic acids.

    Science.gov (United States)

    He, Yongmei; Zhan, Fangdong; Li, Yuan; Xu, Weiwei; Zu, Yanqun; Yue, Ming

    2016-06-01

    A local rice variety, "Baijiaolaojing", was grown in a paddy field in the Yuanyang rice terraces under ambient and supplemental levels of ultraviolet-B (UV-B, 280-315 nm) radiation. The effects of enhanced UV-B radiation (5 and 10 kJ m(-2) d(-1)) on methane emissions in the paddy field were evaluated using a closed-chamber gas chromatography-based system, and the contents of low-molecular-weight organic acids (LMWOAs) in root exudates were determined by high-performance liquid chromatography (HPLC). Peaks in methane emissions in the paddy field were detected at 60, 80 and 100 days after rice transplantation. The highest level of cumulative methane emissions occurred at the tillering stage, followed by the jointing-booting and maturity stages. The lowest level was found at the flowering stage. The enhanced UV-B radiation did not change the seasonal variation in methane emissions in the paddy field; however, it induced a significant increase in the flux of methane emissions at the jointing-booting and maturity stages, as well as a significant increase in the cumulative flux of methane emissions throughout the growth period. In addition, the enhanced UV-B radiation caused an increase in the contents of oxalic acid and succinic acid and a decrease in the contents of tartaric acid and malic acid in rice root exudates. Furthermore, a significant positive correlation (r = 0.725, p oxalic acid and the methane emissions in the paddy field. The results indicated that enhanced UV-B radiation promoted methane emissions in the paddy field, which was closely associated with its impact on the exudation of LMWOAs by rice roots. PMID:27194164

  6. Identification of Scirpus triqueter root exudates and the effects of organic acids on desorption and bioavailability of pyrene and lead in co-contaminated wetland soils.

    Science.gov (United States)

    Hou, Yunyun; Liu, Xiaoyan; Zhang, Xinying; Chen, Xiao; Tao, Kaiyun; Chen, Xueping; Liang, Xia; He, Chiquan

    2015-11-01

    Root exudates (REs) of Scirpus triqueter were extracted from the rhizosphere soil in this study. The components in the REs were identified by GC-MS. Many organic acids, such as hexadecanoic acid, pentadecanoic acid, vanillic acid, octadecanoic acid, citric acid, succinic acid, glutaric acid, and so on, were found. Batch simulated experiments were conducted to evaluate the impacts of different organic acids, such as citric acid, artificial root exudates (ARE), succinic acid, and glutaric acid in REs of S. triqueter on desorption of pyrene (PYR) and lead (Pb) in co-contaminated wetland soils. The desorption amount of PYR and Pb increased with the rise in concentrations of organic acids in the range of 0-50 g·L(-1), within shaking time of 2-24 h. The desorption effects of PYR and Pb in soils with various organic acids treatments decreased in the following order: citric acid > ARE > succinic acid > glutaric acid. The desorption rate of PYR and Pb was higher in co-contaminated soil than in single pollution soil. The impacts of organic acids in REs of S. triqueter on bioavailability of PYR and Pb suggested that organic acids enhanced the bioavailability of PYR and Pb in wetland soil, and the bioavailability effects of organic acids generally followed the same order as that of desorption effects. PMID:26154043

  7. Allelopathic effect of Commelina benghalensis root exudates%火柴头根系分泌物的化感效应

    Institute of Scientific and Technical Information of China (English)

    杨田甜; 杜海荣; 陈刚; 邓鹏; 甄伟伟

    2011-01-01

    在农田生态系统中,作物晚发弱苗的部分原因是杂草向作物生长周围环境释放化感物质.本研究以疏水性根渗出液连续收集法(C RETS)收集火柴头根系分泌物,在室内采用培养皿滤纸和砂培法分别研究了火柴头根系分泌物对4种常见农作物种子萌发、幼苗生长的化感作用.结果表明:火柴头根系分泌物对高粱、玉米、绿豆和油菜具有不同程度的化感效应,化感效应响应强度由强到弱的顺序为:油菜>玉米>绿豆>高梁.对种子萌发和幼苗生长也存在明显的浓度效应,总体上呈现出低浓度(≤0.025 g·mL-1)促进,高浓度( ≥0.050 g·mL-1)抑制的现象,且随着处理浓度的增加抑制作用逐渐增强.%In the farmland ecosystem, one reason for the crop's postponed seed germination and weak seedling was attributed to the influence of allelochemicals released from the weeds. The root exudates of Commelina benghalensis were collected with a continuous trapping system. The allelopathic effects of the root exudates from Commelina benghalensis L on four crops - Sorghum vulgare, Zea mays, Vigna radiate and Brassica napus were investigated in seed germination and seedling growth with petri-dish and sand cultivation. The results showed that the root exudates from C. benghalensis had different allelopathic effects on the four crops, and varied with crop species in the descending order of Brassica napus > Zea mays > Vigna radiate > Sorghum vulgare. Allelopathic index of seed germination and seedling growth depended on the concentration of root exudates, that is, when the concentration was lower than 0. 025 g.mL-1 , the germination and seedling growth of acceptors were promoted. While the concentration was over 0. 050 g . mL-1~ , they were inhibited, and the level of inhibition was improved with the increase of the root exudates concentration. In conclusion, Brassica napus was inhibited more strongly than the other species at the same

  8. Effects of root exudates from Johnsongrass on soil bacteria community diversity%假高粱根系分泌物对土壤细菌群落多样性的影响

    Institute of Scientific and Technical Information of China (English)

    刘纯; 黄红娟; 张朝贤; 王茂云; 陈小奇; 王金信

    2013-01-01

    The aim of the present study is to investigate the effects of invasive plant Johnsongrass (Sorghum halepense (L.) Pers) root exudates on soil bacteria. In a greenhouse experiments, activated carbon was used to investigate root exudates of Johnsongrass because it adsorbs and thereby neutralizes root exudates. The experiment consisted of two combined soil treatments:with or without activated carbon. 16S-rDNA-V3-fragnent-base DGGE (denaturing gradient gel electrophoresis) was applied to explore variation of the soil bacterial structure. To calculate the diversity parameter, Shannon algorithm was used. The results showed that activated carbon led to a considerable decrease in the soil bacterial diversity level and abundance compared to the without activated carbon treatments. The Shannon diversity index is 2.54 and 3.24 separately in the 160 days. This indicates that Johnsongrass root exudates alter community structure and increase diversity of soil bacteria in rhizobacterial communities. It is different in the bacterial structure with the growth of the plant. The bacterial community showed a high difference with the 50%Jaccard's index of similarity in the florescence, suggesting that increases in root exudates support an increased soil bacterial population. DGGE analysis results show that Johnsongrass root exudates promoted some kinds of rhizobacterial, and show inhibition to some other kinds of the communities. This study establishes root exudates as a mechanism through which a plant is able to regulate soil bacterial community composition, and could be related to the invasive of exotic invasive plants and the soil microbes in rhizosphere.%为探索外来入侵植物假高粱(Sorghum halepense (L.) Pers)根系分泌物对入侵地土壤细菌群落的影响,在室内采用盆栽模拟试验进行了研究。为消除假高粱根系分泌物对土壤的微生物的影响,实验中分别设计添加活性炭的组以及未添加活性炭的组分别培养。

  9. 大蒜根系分泌物对同属作物的抑制作用%Inhibition Effect of Garlic Root Exudates on the Genus Allium

    Institute of Scientific and Technical Information of China (English)

    刘素慧; 刘世琦; 张自坤; 尉辉; 黄治军; 张宇

    2011-01-01

    [Objective] In order to provide a theoretical basis for solving cropping obstacles of garlic, the inhibition of garlic root exudates on the genus Allium was studied. [Method] In order to avoid interferences from external factors, this paper studied the autotoxicity of garlic root exudates on welsh onion, onion and Chinese leek scallion, by using tissue culture under sterilized condition. [Result] Garlic and receptor crops, such as welsh onion, onion and Chinese leek, are belong to the genus Allium. Root exudates of garlic could inhibit the germination and growth of receptor crops, the inhibitory degree increased progressively and significantly with increasing root exudates concentrations of garlic, and the maximal inhibition rates of germination rate, mean time to germination, embryo and radicle length, embryo and embryo fresh weight were 51.72%, 48.20%, 51.57%, 51.57%, 82.14% and 82.29%, respectively. Garlic root exudates decreased root activity of receptor crops, and significant differences were observed except the lowest concentrations (Tl) on welsh onion and onion, compared to control. Compounds involved in the garlic root exudates were isolated and identified by gas chromatography/mass spectrometer (GC-MS), including 2,2'-methylenebis[6-(l,l-dimethylethyl)-4-methyl-Phenol, mono (2-ethylhexyl) phthalate, eicosanoic acid, ferulic acid, 9-hexadecenoic acid, tetradecanoic acid, diallyl disulphide, etc., ferulic acid and myristic acid which had been identified as growth inhibitory substances. [Conclusion] The germination and growth of receptor crops were inhibited by garlic root exudates, which were released to field year by year and could lead to garlic continuous cropping obstacles.%[目的]研究大蒜根系分泌物对同属作物的抑制作用,为解决大蒜连作障碍提供理论依据.[方法]应用组织培养技术,在无菌条件下研究大蒜根系分泌物对同属作物大葱、洋葱和韭菜的毒害作用.[结果]大蒜根系分泌物对3种同

  10. 2,4-diacetylphloroglucinol alters plant root development.

    Science.gov (United States)

    Brazelton, Jessica N; Pfeufer, Emily E; Sweat, Teresa A; Gardener, Brian B McSpadden; Coenen, Catharina

    2008-10-01

    Pseudomonas fluorescens isolates containing the phlD gene can protect crops from root pathogens, at least in part through production of the antibiotic 2,4-diacetylphloroglucinol (DAPG). However, the action mechanisms of DAPG are not fully understood, and effects of this antibiotic on host root systems have not been characterized in detail. DAPG inhibited primary root growth and stimulated lateral root production in tomato seedlings. Roots of the auxin-resistant diageotropica mutant of tomato demonstrated reduced DAPG sensitivity with regards to inhibition of primary root growth and induction of root branching. Additionally, applications of exogenous DAPG, at concentrations previously found in the rhizosphere of plants inoculated with DAPG-producing pseudomonads, inhibited the activation of an auxin-inducible GH3 promoter::luciferase reporter gene construct in transgenic tobacco hypocotyls. In this model system, supernatants of 17 phlD+ P. fluorescens isolates had inhibitory effects on luciferase activity similar to synthetic DAPG. In addition, a phlD() mutant strain, unable to produce DAPG, demonstrated delayed inhibitory effects compared with the parent wild-type strain. These results indicate that DAPG can alter crop root architecture by interacting with an auxin-dependent signaling pathway. PMID:18785830

  11. Graviresponsiveness of surgically altered primary roots of Zea mays

    Science.gov (United States)

    Maimon, E.; Moore, R.

    1991-01-01

    We examined the gravitropic responses of surgically altered primary roots of Zea mays to determine the route by which gravitropic inhibitors move from the root tip to the elongating zone. Horizontally oriented roots, from which a 1-mm-wide girdle of epidermis plus 2-10 layers of cortex were removed from the apex of the elongating zone, curve downward. However, curvature occurred only apical to the girdle. Filling the girdle with mucilage-like material transmits curvature beyond the girdle. Vertically oriented roots with a half-girdle' (i.e. the epidermis and 2-10 layers of the cortex removed from half of the circumference of the apex of the elongating zone) curve away from the girdle. Inserting the half-girdle at the base of the elongating zone induces curvature towards the girdle. Filling the half-circumference girdles with mucilage-like material reduced curvature significantly. Stripping the epidermis and outer 2-5 layers of cortex from the terminal 1.5 cm of one side of a primary root induces curvature towards the cut, irrespective of the root's orientation to gravity. This effect is not due to desiccation since treated roots submerged in water also curved towards their cut surface. Coating a root's cut surface with a mucilage-like substance minimizes curvature. These results suggest that the outer cell-layers of the root, especially the epidermis, play an important role in root gravicurvature, and the gravitropic signals emanating from the root tip can move apoplastically through mucilage.

  12. 嫁接西瓜根系分泌物的化感效应及其化感物质的鉴定%Allelopathic effects and identification of allelochemicals in root exudates of grafted watermelons

    Institute of Scientific and Technical Information of China (English)

    郑阳霞; 唐海东; 李焕秀; 严泽生; 郭学君

    2011-01-01

    In order to study the allelopathic effects of root exudates from the watermelons grafted with pumpkin and calabash as rootstocks,effects of root exudates from the watermelons grafted on the seed germination and seedling growth of watermelons were researched.The Allelochemicals of root exudates were detected by GC-MS.The results showed that the seed germination and seedling growth of watermelons were increased when the root exudates were in low concentration,but decreased in high concentration.The root exudates promoted the seed germination and seedling growth of watermelons at 2.5 μL·L-1.The root exudates began to restrain the seed germination and seedling growth of watermelons at 10 μL·L-1.When the concentrations were lower,the root exudates from grafted watermelons had more effects on the seed germination and seedling vegetal promotion than own-rooted watermelons.The inhibiting effect of grafted watermelons was less than that of own-rooted watermelon at high concentration of root exudates.And the identification of the allelochemicals in root exudates of grafted watermelons indicated that the categories and the relative contents were different from the own-root plants.The results showed that grafting changed the categories and the relative contents of root exudate components and changed allelopathic effects.Furthermore,there was obvious grafting superiority.So grafting was one of the effective methods for relieving the continuous cropping obstacles caused by autotoxicity.%为了研究嫁接西瓜根系分泌物的化感效应,采用南瓜、葫芦作砧木嫁接西瓜,研究了嫁接西瓜根系分泌物对西瓜种子萌发和幼苗生长的影响,并对嫁接西瓜根系分泌物中的化感物质进行了GC-MS检测。结果表明,各处理对西瓜种子发芽和幼苗生长均呈现出低促高抑的规律。在根系分泌物浓缩液浓度为2.5μL.L-1时,促进西瓜种子的发芽和幼苗的生长。在浓度为10μL.L-1、20μL.L-1

  13. IDENTIFITION AND STUDY ON ALLELOPATHY OF SOYBEAN ROOT EXUDATES%大豆根分泌物的鉴定及其化感作用的初步研究

    Institute of Scientific and Technical Information of China (English)

    韩丽梅; 李国权

    2000-01-01

    采用GC-MS分析法,鉴定了由水培试验方法获得的2周、8周大豆根分泌物的二氯甲烷提取物,并对其化感作用进行了初步研究。结果表明:能被二氯甲烷提取出来的根分泌物有有机酸类、醇类、酯类、酮类、醛类、酚类、苯类、烃类等有机化合物,其中包含一些资料报道过的化感物质。与对照比较,2周、8周大豆根分泌物对大豆种子萌发、8周根分泌物对胚根生长未表现出显著抑制作用,但2周根分泌物对胚根生长却表现出极显著的化感抑制作用。上述结果表明,大豆根分泌物中存在化感物质,2周与8周大豆根分泌物的种类和数量有所不同。本文还探讨了大豆根分泌物的化感作用及大豆根分泌物与大豆连作障碍的关系等问题。%Compounds extracted with dichloromethane from soybean rootexudates for two weeks, eight weeks in water-culture were identified and allelopathy were studied by GC-MS analysis. The results showed that: The soybean root exudates extracted with dichloromethane included organic acide, alcohol, ester, acetone, aldehyde, phenol, pheyl, hydrocarbon and so on. Many of which were reported as allelochemicale. Contrast with control, the influence of the soybean root exudates for two weeks, eight weeks on the germination of soybean seeds, for eight weeks on radicle growth did not show significant allelopathy inhibition. But the allelopathy of the soybean root exudates for two weeks on soybean radicle growth showed significant inhibition. The results showed that the allelochemicals exist in the soybean root exudates. The varieties and quantities of soypean root exudates for two weeks are different with those for eight weeks. In addition, the alleleopathy of soybean root exudates and the relationship between soybean root exudates and barrier on soybean continuous and alternate cropping were discussed.

  14. 铝对茶树根细胞膜透性和根系分泌有机酸的影响%Impacts of Aluminum on Root Cell Membrane Permeability and Organic Acids in Root Exudates of Tea Plant

    Institute of Scientific and Technical Information of China (English)

    刘腾腾; 郜红建; 宛晓春; 张正竹

    2011-01-01

    采用溶液培养法研究了铝浓度对茶树根细胞膜透性和分泌低分子量有机酸的影响.结果表明,低质量浓度铝( 20 mg/L)有利于茶树根细胞膜的稳定,缺铝(0 mg/L,CK)和高铝(100 mg/L)均使根细胞膜透性显著降低.有机酸总量随铝浓度升高呈现先降低后升高的趋势.草酸、苹果酸和柠檬酸是茶树根系分泌的3种主要有机酸,占85%~93%;根系分泌草酸的量与对照相比,低铝和高铝时显著降低了84.7%和34.3%;分泌苹果酸的量与对照相比,低铝时增加了121.0%,高铝时降低了40.9%;铝浓度对柠檬酸的分泌量影响不大.研究结果可为阐明茶树根系的耐铝生理机制提供依据.%The impacts of aluminum (Al) concentration on root cell membrane permeability and components of organic acids in root exudates of tea plant (Camellia, sinensis L.) were investigated by hydroponics. Results showed that 20 mg/L of low Al concentration could enhance the cell membrane stability of tea root, and the membrane permeability was significantly declined with deficiency Al (0 mg/L, CK) and high Al (100 mg/L) treatments. The total organic acids firstly decreased and then increased with the increase of Al concentrations. About 85%~93% of the total organic acids in root exudates of tea plant were oxalic acid, malic acid and citric acid. Compared with CK, the oxalic acid secretion remarkably reduced 84.7% and 34.3% under the low and high Al concentration treatments. Compared with CK, the malic acid of root exudates increased by 121.1% in low Al concentration, and decreased by 40.9% in high Al concentration. There wasn't significant influence on citric acid, containing about 3.5~4.5 mg/g. This result can provide critical data for elucidating tolerance mechanisms of Al stress on tea root.

  15. Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivum

    OpenAIRE

    Talboys, Peter J.; Owen, Darren W; Healey, John R; Withers, Paul JA; Jones, David L.

    2014-01-01

    Background The use of auxin-producing rhizosphere bacteria as agricultural products promises increased root production and therefore greater phosphate (Pi) uptake. Whilst such bacteria promote root production in vitro, the nature of the bacteria-plant interaction in live soil, particularly concerning any effects on nutrient uptake, are not known. This study uses Bacillus amyloliquefaciens FZB42, an auxin-producing rhizobacterium, as a dressing on Triticum aestivum seeds. It then examines the ...

  16. 3种水培植物根系分泌的有机酸对氮循环菌的影响%Effect of organic acids exuded from hydroponic plants roots on nitrogen cycling bacteria

    Institute of Scientific and Technical Information of China (English)

    朱静平; 程凯

    2011-01-01

    通过收集水培吊兰、空心菜和水芹的根系分泌物,采用液相色谱分析了其中有机酸的种类和含量;并研究了根系分泌物中的有机酸对氮循环菌的影响。结果表明3,种植物根系分泌物中的有机酸对氨化细菌和反硝化细菌的生长具有促进作用,对亚硝化细菌和硝化细菌的生长具有抑制作用。%The variety and content of organic acids exuded from hydroponic Chlorophytum comosum roots,hydroponic Ipomoea aquatica roots and hydroponic Oenanthe javanica roots by liquid chromatography were studied,and the effects of organic acid of root exudates on nitrogen cycling bacteria were analysed.The results showed that organic acid of the three hydroponic plants root exudates has promotion effect on ammonifying bacteria and denitrifying bacteria,but has inhibition effect on nitrobacteria and nitrosobacteria.

  17. Inhibitory potential of naphthoquinones leached from leaves and exuded from roots of the invasive plant Impatiens glandulifera.

    Science.gov (United States)

    Ruckli, Regina; Hesse, Katharina; Glauser, Gaetan; Rusterholz, Hans-Peter; Baur, Bruno

    2014-04-01

    Exploring the effects of allelopathic plant chemicals on the growth of native vegetation is essential to understand their ecological roles and importance in exotic plant invasion. Naphthoquinones have been identified as potential growth inhibitors produced by Impatiens glandulifera, an exotic annual plant that recently invaded temperate forests in Europe. However, naphthoquinone release and inhibitory potential have not been examined. We quantified the naphthoquinone content in cotyledons, leaves, stems, and roots from plants of different ages of both the invasive I. glandulifera and native Impatiens noli-tangere as well as in soil extracts and rainwater rinsed from leaves of either plant species by using ultra-high pressure liquid chromatography-mass spectrometry (UHPLC-MS). We identified the compound 2-methoxy-1,4-naphthoquinone (2-MNQ) exclusively in plant organs of I. glandulifera, in resin bags buried into the soil of patches invaded by I. glandulifera, and in rainwater rinsed from its leaves. This indicates that 2-MNQ is released from the roots of I. glandulifera and leached from its leaves by rain. Specific bioassays using aqueous shoot and root extracts revealed a strong inhibitory effect on the germination of two native forest herbs and on the mycelium growth of three ectomycorrhiza fungi. These findings suggest that the release of 2-MNQ may contribute to the invasion success of I. glandulifera and support the novel weapons hypothesis. PMID:24722883

  18. 小麦-蚕豆间作对根系分泌糖和氨基酸的影响%Effect of Wheat and Faba Bean Intercropping on Sugar and Amino Acid Exuded by Roots

    Institute of Scientific and Technical Information of China (English)

    肖靖秀; 郑毅; 汤利; 董艳

    2015-01-01

    根系分泌物在植物-土壤-微生物互作中充当信号物质,其对植物根际过程影响重大。糖和氨基酸是根系分泌物中两类最主要的物质,目前有关这两类分泌物的研究颇多,但在间作系统中尚缺乏系统研究,人们对间作系统中根系碳和氨基酸的分泌特征尚不清楚。为探讨间作对根系糖和氨基酸分泌的影响,通过盆栽试验分析比较了不同生育期单作、间作小麦(Tricumaestivum L.cv. Yunmai42)、蚕豆(Vicia fabaL. cv. Yundou 8363)的根系质量、根冠比、根系中糖和氨基酸的含量及其分泌速率。研究结果表明,(1)与单作小麦相比,间作提高了拔节期(98d)小麦根系总糖和蔗糖含量,分别提高75.78%和114.5%;在拔节期(98d)、孕穗期(120d)和灌浆期(142d),间作提高了根系总糖分泌速率,分别提高126.9%,34.9%和59.8%;其中,3个时期间作蔗糖分泌速率分别是单作的2.37、1.41和2.0倍。间作对蚕豆根系糖含量及糖的分泌没有影响。(2)与单作相比,在蚕豆分枝期(57d)、结荚期(120d)、籽粒膨大期(142d),间作提高了蚕豆氨基酸分泌速率,分别提高了75.9%、41.5%、39.6%;间作对小麦根系氨基酸含量及根系氨基酸分泌无影响。总之,间作种植提高了作物根系糖含量,促进了根系糖和氨基酸的分泌,但作物种类不同、生育期不同,间作对根系分泌影响并不相同。%It is well documented that root exudations act as signals among the interactions of plant-soil-microbial, and root exudations have important role in rhzosphere process. Sugars and amino acids are two mainly components in root exudations, and lots of researches had carried out. However, little studies have conducted in intercropping system, and the characteristic of sugar and amino acids exuded by root in intercropping is still unknown. Pot experiment of wheat (Tricumaestivum L

  19. Effects of Root Exudates from Helianthus annuus on Adsorption of Cd~(2+) on Yellow Earth%向日葵根分泌物对黄壤吸附Cd~(2+)行为的影响

    Institute of Scientific and Technical Information of China (English)

    张道勇; 潘响亮; 黄承玲

    2009-01-01

    从pH的影响、等温吸附、吸附动力学和热动力学4个方面研究了向日葵根分泌物对黄壤吸附Cd~(2+)的行为的影响.随着pH的升高,黄壤对Cd~(2+)的吸附量都升高,而且在pH为3~8的范围内,根分泌物的存在都减少了黄壤对Cd~(2+)的吸附.不论有否根分泌物存在,Langmuir方程和Freundlich方程能满意地描述黄壤对Cd~(2+)的等温吸附行为,黄壤对镉的吸附动力学符合拟二级速率方程,是一个墒减的放热的自发反应.向日葵根分泌物的存在抑制了黄壤对镉的吸附容量和吸附速率,并一定程度上降低了吸附过程的自发性.%The effects of root exudates from Helianthus annuus on Cd~(2+) adsorption to yellow earth were investigated in the present study. It was found that root exudates generally inhibited adsorption of Cd~(2+) onto yellow earth. Cd~(2+) adsorption capacity increased on increasing of solution pH and the presence of root exudates reduced Cd~(2+) adsorption capacity at pH 3 - 8-Cd~(2+) isothermal adsorption could be well represented with both Langmuir and Freundlich equations, and the adsorption kinetics with pseudo-second order equation. Cd~(2+) adsorption capacity to yellow earth is a spontaneous exothermic reaction.The presence of root exudates reduced the adsorption capacity and adsorption rate.

  20. Allelopathy effects of Panax notoginseng root exudates on wheat under different nitrogen levels%不同氮素水平下三七根系分泌物对小麦的化感作用

    Institute of Scientific and Technical Information of China (English)

    拱健婷; 张子龙; 王雄飞

    2014-01-01

    In ordre to explore the allelopathy effect of Panax notoginseng root exudates under different nitrogen levels, the present study using Panax notoginseng seedlings and wheat plants as donor and receptor plants , respectively, was carried out.The results showed that Panax notoginseng root exudates exhibited inhibitory effect on wheat (M3 =-0.04).Compared with seedling growth, seed germination was more likely to be inhibited by the allelopathy effect of Panax notoginseng root exudates.With increased N level, the inhibitory effect on germination index increased in the order of excess N >normal N >deficient N.The shoot growth of wheat seedling was enhanced by allelopathy effect of Panax notoginseng root exudates, while the root growth was inhibited.Besides, it was noticed that the allelopathy effect of Panax notoginseng root exudates on wheat was related to the nitrogen level in solution.%为探讨三七在不同氮素水平下根系分泌物的化感作用,以三七种苗为供体植物,小麦为受体植物进行生物测定。结果表明,三七根系分泌物对小麦表现出化感抑制作用(敏感指数M3=-0.04)。从发育时期来看,小麦种子萌发阶段较幼苗生长阶段更易受化感抑制作用影响,且其发芽指数受抑程度随氮素水平的升高而逐渐增强,即过氮>正常>缺氮;在小麦幼苗生长阶段,三七根系分泌物对其地上部化感作用以促进为主,对根部生长则以抑制作用为主;且三七根系分泌物对小麦的化感作用与培养液氮素水平有关。

  1. Proteomic alterations in root tips of Arabidopsis thaliana seedlings under altered gravity conditions

    Science.gov (United States)

    Zheng, H. Q.; Wang, H.

    Gravity has a profound influence on plant growth and development Removed the influence of gravitational acceleration by spaceflight caused a wide range of cellular changes in plant Whole seedling that germinated and grown on clinostats showed the absent of gravitropism At the cellular level clinostat treatment has specific effects on plant cells such as induce alterations in cell wall composition increase production of heat-soluble proteins impact on the cellular energy metabolism facilitate a uniform distribution of plastids amyloplasts and increase number and volume of nucleoli A number of recent studies have shown that the exposure of Arabidopsis seedlings and callus cells to gravity stimulation hyper g-forces or clinostat rotation induces alterations in gene expression In our previous study the proteome of the Arabidopsis thaliana callus cells were separated by high resolution two-dimensional electrophoresis 2-DE Image analysis revealed that 80 protein spots showed quantitative and qualitative variations after exposure to clinostat rotation treatment We report here a systematic proteomic approach to investigate the altered gravity responsive proteins in root tip of Arabidopsis thaliana cv Landsberg erecta Three-day-old seedlings were exposed for 12h to a horizontal clinostat rotation H simulated weightlessness altered g-forces by centrifugation 7g hypergravity a vertical clinostat rotation V clinostat control or a stationary control grown conditions Total proteins of roots were extracted

  2. Phosphorus Affected Organic Acid Exudation from Soybean Root%磷影响大豆根系分泌有机酸总量和不同根区有机酸量

    Institute of Scientific and Technical Information of China (English)

    苗淑杰; 乔云发; 刘晓冰

    2011-01-01

    采用营养液培养的方法,设置由无磷转化为供磷(0-50)和由供磷转换为无磷(50-0)2个处理,分析了磷转换处理对不同根区有机酸的影响.结果表明:大豆生长对磷素的需求非常迫切,50-0处理根系可溶性磷含量相对较高,而0-50处理地上部可溶性磷含量相对较高;50-0处理根系有机酸分泌量较0-50处理大,而且分泌量随着距离根尖越远越少,50-0处理根区分泌有机酸的变化比0-50处理平缓.%To study the effect of phosphorus on organic acid exudation of soybean root, the phosphorus level changed from 0 to 50 μM and 50 to 0 μM in nutrient solution was carried out. The low-molecular-weight organic acids in root exudates of soybean were determined by high performance liquid chromatography under nutrient solution culture. The dynamics of low-molecular-weight organic acids under different root region were investigated. The influence of P-deficiency on soluble phosphorus content was analyzed. The results showed that the soluble phosphorus content of root in 50-0 treatment was relative higher,while that of shoot in 0-50 treatment was relative higher. Otherwise, organic acid exudation from 50-0 treatment soybean root was larger than 0-50 treatment. The amount of organic acid exudation from soybean root was reduced as far away root tip. The trend of decrease in 50-0 treatment was more slowly than 0-50 treatment.

  3. GC-MS identification of chemicals in lily root exudates%百合根系分泌物的GC-MS鉴定

    Institute of Scientific and Technical Information of China (English)

    程智慧; 徐鹏

    2012-01-01

    【目的】分析百合根系分泌物中的主要物质,为预防百合连作障碍和建立科学栽培制度提供依据。【方法】分别用石油醚、乙醚、乙酸乙酯、氯仿和甲醇分离水培法收集百合根系分泌物,用GC-MS分析经生物检测化感强势组分(甲醇组分、石油醚组分、氯仿组分)中的有机物质。【结果】按照相似度达80%、相对含量达0.20%分析检出物质,从百合根系分泌物甲醇组分中共检出11种物质,主要为苯甲酸酯类衍生物,如邻苯二甲酸二异辛酯(52.11%)和双-2-乙己基邻苯二甲酸酯(40.95%),其他成分含量均在1%以下;从石油醚组分中检出6种苯甲酸酯类衍生物,如邻苯二甲酸二异辛酯(88.04%)、邻苯二甲酸二丁酯(9.06%),其他成分含量均在1%以下;氯仿组分中有机物质丰富,检出的有酯类、醛、酚、烯烃、烷烃等19种,含量在1%以上的有邻苯二甲酸二异辛酯(39.87%)、双-2-乙己基邻苯二甲酸酯(39.62%)、十六烷(1.36%)、2-甲氧基-1-(2-硝乙烯基)-3-苯甲氧基-苯(1.22%)、2,4-二叔丁基苯酚(1.02%)。百合根系分泌物的乙醚和乙酸乙酯组分化感作用不强,未对其中的有机物质做进一步鉴定。【结论】百合根系分泌物的GC-MS检出物主要为酯类物质,不同组分中含量高的均为苯甲酸酯类衍生物,还有少量醛、酚、烯等。%【Objective】 The study was to investigate the main organic chemicals in lily root exudates to provide scientific basis for preventing of continuous cropping obstacles and establishing of lily cropping system.【Method】 Lily root exudates collected by hydroponic culture of lily bulbs was isolated with petroleum ether,diethyl ether,ethyl acetate,chloroform and methanol respectively.The strong allelopathic components selected by bioassay were identified by GC-MS.【Result】 Based on the standard of similar degree no lower than 80% and relative content no

  4. Effectively managing wound exudate.

    Science.gov (United States)

    Chamanga, Edwin

    2015-09-01

    The management of wound exudate remains a clinical challenge despite technological advances in products with better exudate-handling capacities. This clinical challenge is occasionally encountered when thick exudate (viscous exudate) is present, and when most modern dressings do not possess the capabilities to manage the viscosity while enabling exudate absorption. Maceration to the peri-wound area poses another challenge, irrespective of the number of topical barrier application products on the market and the innovation of dressing products that lock exudate away or those that encourage vertical wicking. In addition to all the above, in clinical practice, the assessment and documentation of wound exudate remains sporadic, leading to the challenges of effective wound exudate dressing selection and cost-effective dressings. PMID:26322408

  5. Genotypic variation in the ability of landraces and commercial cereal varieties to avoid manganese deficiency in soils with limited manganese availability: is there a role for root-exuded phytases?

    Science.gov (United States)

    George, Timothy S; French, Andrew S; Brown, Lawrie K; Karley, Alison J; White, Philip J; Ramsay, Luke; Daniell, Tim J

    2014-07-01

    The marginal agricultural-systems of the Machair in the Western Isles of Scotland often have limited micronutrient availability because of alkaline soils. Traditional landraces of oats, barley and rye are thought to be better adapted to cope with the limited manganese (Mn) availability of these soils. When commercial cultivars are grown on the Machair, limited Mn-availability reduces crop yield and quality. We hypothesised that traditional cereal landraces selected on the Machair acquire Mn more effectively and that this could be linked to exudation of phytase from roots which would release Mn complexed with inositol phosphates. Growth and Mn-acquisition of five landraces and three commercial cultivars of barley and oats were determined in Machair soil. In addition, root phytase activities were assayed under Mn-starvation and sufficiency in hydroponics. In Machair soil, landraces had greater capacity for acquiring Mn and a greater ability to achieve maximum yield compared to the commercial cultivars. Under Mn-starvation, root phytase exudation was upregulated in all plants, suggesting that this trait might allow cereals to acquire more Mn when Mn-availability is limited. In the landraces, exuded phytase activity related positively to relative Mn-accumulation, whereas in the commercial cultivars this relationship was negative, suggesting that this trait may be secondary to an efficiency trait that has been lost from commercial germplasm by breeding. This research shows that cereal landraces possess traits that could be useful for improving the Mn-acquisition of commercial varieties. Exploiting the genetic diversity of landraces could improve the sustainability of agriculture on marginal calcareous lands globally.

  6. Ecological effect of plant root exudates and related affecting factors: A review%植物根系分泌物生态效应及其影响因素研究综述

    Institute of Scientific and Technical Information of China (English)

    罗永清; 赵学勇; 李美霞

    2012-01-01

    The formation of plant root exudates is a vital physiological phenomenon in the metabolic processes of plant, and an important link of material turnover in " plant-soil" system. To study the plant root exudates is of significance in understanding the matter and energy flow, carbon and nitrogen balance, and improvement of primary production in terrestrial ecosystems. This paper reviewed the ecological effect of plant root exudates, such as the effect on plant physiological processes, soil microorganisms, soil matter turnover, and degradation of soil organic contaminants, and summarized the related affecting factors, including soil heavy metals and nutrient contents, soil moisture, light, and heat conditions, plant gene type, soil microorganisms, and input of exogenous organic contaminants. Based on the present research status of plant root exudates, the future research directions about the objects, methods, and effect assessment were prospected.%植物根系分泌物的形成是植物体代谢过程中重要的生理现象,为“植物-土壤”体系物质周转的重要环节.研究植物根系分泌物对于了解陆地生态系统质能过程、碳氮收支平衡及提高生态系统的初级生产具有重要意义.本文从植物根系分泌物对植物生理性状、土壤微生物、土壤物质周转及有机污染物降解影响等4个方面对植物根系分泌物的生态效应进行综述,并从重金属含量、营养元素水平、土壤水分和光热条件、物种基因型、土壤微生物状况和外源有机污染物添加的角度综述了影响植物根系分泌物的因素,旨在对植物根系分泌物的生态效应和影响因素进行总结,并根据目前的研究现状,从研究对象、研究方法和效应评估方面进行了展望.

  7. Effects of Cd Contamination on the root exudates of Sonchus asper L. Hill.%镉胁迫对续断菊Sonchus asper L.Hill.根系分泌物的影响

    Institute of Scientific and Technical Information of China (English)

    秦丽; 李元; 祖艳群; 何永美; 王吉秀; 陈建军

    2012-01-01

    通过盆栽试验,研究了不同Cd质量分数(0、50、100、200 mg·kg-1)对续断菊Sonchus asperL.Hill.根系分泌总有机酸、游离氨基酸、可溶性糖的影响,旨在探明根系分泌物对续断菊超积累Cd的影响.结果表明:Cd胁迫下续断菊根系分泌总有机酸、游离氨基酸和可溶性糖的质量浓度显著增加,同时,总有机酸、可溶性糖和游离氨基酸又促进了植株对Cd的吸收.随着Cd处理质量分数的增加,续断菊地上部和根部镉质量分数显著增加,90d时续断菊地上部镉质量分数与可溶性糖、游离氨基酸的质量浓度呈极显著正相关,相关系数分别为0.999(P<0.01)和0.995(P<0.01),根部镉质量分数与可溶性糖、游离氨基酸的质量浓度也呈显著正相关,相关系数分别为0.998(P<0.01)和0.987(P<0.05); Cd对续断菊根系可溶性糖的分泌、游离氨基酸的合成有刺激作用,根系分泌的可溶性糖和游离氨基酸可能在续断菊累积镉的过程中有重要作用.%Pot experiments was carried out to study the effects of four different cadmium levers (0, 50, 100, 200 mg·kg-1) on the root exudates (total organic acids, amino acids and soluble sugar) of Sonchus asper L. Hill, in order to understand the relationship between root exudates and cadmium accumulation in Sonchus asper (L.) Hill. The results showed that with increasing concentration of cadmium, the contents of total organic acids, soluble sugar and dissociative amino acid of root exudates were increased significantly. In the meanwhile, the content of Cd in the shoot and root of Sonchus asper L. Hill was increased significantly, and Cd absorption of Sonchus asper L. Hill, was promoted with the increase of total organic acids, soluble sugar and dissociative amino acid of root exudates. In the 90 th d, there was a significantly positive correlation between shoot Cd contents and the contents of soluble sugar and dissociative amino acid, and the correlation

  8. 地肤根系分泌物对胡麻的化感作用%Ailelopathic effects of different concentration root exudates of Kochia scoparia on oil flax seed germination

    Institute of Scientific and Technical Information of China (English)

    赵利; 牛俊义; 胡冠芳; 党占海

    2012-01-01

    采用生物测定法,对地肤(Kochia scoparia)根系分泌物对胡麻(Linum usitatissimum)的化感作用进行了研究。结果表明,1)不同浓度的地肤根系分泌物对胡麻的发芽势、发芽率、发芽指数和活力指数均有不同程度的抑制作用,且抑制率随着处理浓度的增大而增大。2)不同浓度的地肤根系分泌物对胡麻根长均表现促进作用,对苗高、根鲜质量和苗鲜质量均表现抑制作用,且无论是促进作用还是抑制作用,均随着处理浓度的升高而增大,但与对照间的差异均不显著。说明地肤根系能够释放化感物质,影响周围植物的生长,根系分泌是地肤释放化感物质的一个途径。3)地肤根系分泌物影响胡麻种子萌发主要是其抑制了胡麻种子的活力指数,对幼苗生长的影响主要是使胡麻的根变细变长。%Allelopathic effects of different concentration root exudates of Kochia scoparia on oil flax seed germination were studied by using methods of bioassay. The results showed that: 1) different concentra-tions of K. scoparia root exudates had different degrees of inhibition (or promotion ) on germination ener-gy, germination rate, germination index and vigor index of oil flax seeds, while the inhibition rate increased with the treatment concentration rising. 2) Different concentrations of K. scoparia root exudates showed to promote the root length of oil flax seedlings and inhibit the shoot height, root fresh weight and shoot fresh weight. However, whether it is promotion or inhibition, the effects trended to be increased with the increase of concentration; but there was no significant difference between the treatments and the control. All these results showed that the root system secretion was one of the way in which K. scoparia could release allelochemicals and affect plant growth around them. 3) The reason of K. scoparia root exu-dates affecting flax seed germination was mainly due to

  9. Phosphate Availability Alters Lateral Root Anatomy and Root Architecture of Fraxinus mandshurica Rupr. Seedlings

    Institute of Scientific and Technical Information of China (English)

    Chu WU; Xing WEI; Hai-Long SUN; Zheng-Quan WANG

    2005-01-01

    Plants have evolved some mechanisms to maximize the efficiency of phosphorus acquisition.Changes in root architecture are one such mechanism. When Fraxinus mandshurica Rupr. seedlings were grown under conditions of low phosphorus availability, the length of cells in the meristem zone of the lateral roots was longer, but the length of cells in the elongation and mature zones of the lateral roots was shorter,compared with seedlings grown under conditions of high phosphorus availability. The elongation rates of primary roots increased as phosphorus availability increased, but the elongation rates of the branched zones of the primary roots decreased. The number of lateral root primordia and the length of the lateral roots decreased as phosphorus availability increased. The topological index (altitude slope) decreased as phosphorus availability increased, suggesting that root architecture tended to be herringbone-like when seedlings were grown under conditions of low phosphate availability. Herringbone-like root systems exploit nutrients more efficiently, but they have higher construction costs than root systems with a branching pattern.

  10. Evaluation of the anatomical alterations of lower molars mesial root?s apical third

    Directory of Open Access Journals (Sweden)

    FRÖNER Izabel Cristina

    1999-01-01

    Full Text Available The anatomical apex of the mesial root of the lower molars presents a morphological complexity related to the number and shape of the root canals as well as of the apical foramen and isthmus presence. The knowledge of the complexity of the endodontic system of the molar root area is essencial to select more carefully the best instrumentation and obturation technique, to obtain a more successful endodontic therapy.

  11. Organic acid exudates from roots of Phyllostachys pubescens with aluminum stress%超高效液相色谱测定铝胁迫下水培毛竹根系分泌物中有机酸

    Institute of Scientific and Technical Information of China (English)

    刘颖坤; 蔡莎艺; 喻卫武; 冷华南; 桂仁意

    2011-01-01

    To develop a simple method to determine the organic acids exuded from roots of Phyllostachys pubescens, root exudates were obtained using a water culture method with treatments of 0, 100, 500, 1 000, and 2000 μmol ·L-1 AlCl3 as the culture solution and analyzed through ultra performance liquid chromatography(UPLC) with ultraviolet(UV) detection. The exudate was concentrated in a rotary evaporator, and separation was performed on an ACQUITY (R)UPLC high-strength silica (HSS) T3 C18 column with 3% CH3OH-KH2PO4 (0.01 mol·L-1)(Ph 2.6)(V/V) as the mobile phase of an ACQUITY (R) UPLC system. Analysis included the effect on separation of 4 organic acids (oxalic acid, malic acid, citric acid and succinic acid) using UV detection wavelength, chromatographic column, and the Ph of the mobile phase. Results showed favorable recovery(95%-105%), satisfactory precision (RSD < 2%), and a good linear relationship (0.022-1.100 μg for the 4 organic acids). According to the retention time and the spectrum of the analytes, the organic acids exuded were an oxalic acid and malic acid. The Al3+ ions interacted with organic acid exudates with the strongest interaction when the concentration of AlCl3 was 500 μmol·L-1.%以毛竹Phyllostachys pubescens种子作为实验材料,建立毛竹根系分泌物中有机酸的提取和测定方法,并测定铝胁迫下毛竹根系分泌物中有机酸.以毛竹水培法收集根系分泌物,分别以0,100,500,1 000,2 000 μmol·L-1等5种不同浓度氯化铝溶液作为培养液进行培养,旋转蒸发浓缩、定容;使用ACQUITYTM Ultra Performance LC超高效液相色谱系统,以体积分数为3%的甲醇-磷酸二氢钾(0.01 mol· L-1)(pH 2.6)溶液作流动相,经HSS T3 C18柱分离,考察检测波长、色谱柱、流动相的pH值及分离温度等因素对4种有机酸分离效果的影响.结果表明:样品制备简便,分离效果好,方法的线性范围及精密度、准确度和回收率都能满足毛竹根系分泌物中痕

  12. Allelopathic effects and components analysis of root exudates of faba bean cultivars with different degrees of resistance to Fusarium oxysporum%不同抗性蚕豆品种根系分泌物对枯萎病菌的化感作用及根系分泌物组分分析

    Institute of Scientific and Technical Information of China (English)

    董艳; 董坤; 郑毅; 杨智仙; 汤利; 肖靖秀

    2014-01-01

    Fusarium wilt is one of the most common and destructive soil-borne fungal diseases of faba bean because of continuous monocropping. It has been responsible for severely reduced yield, quality and production of faba bean, especially in Yunnan Province. Numerous studies on soil-borne diseases have mainly focused on changes in soil nutrients, enzyme and microbe. Little has remained known about the relationship between root exudates and soil-borne diseases. In fact, there has been less report confirming the occurrence of fusarium wilt in different cultivars of faba bean affected by different faba bean root exudates. The objectives of this study were to compare the differences in root exudates contents and components of different cultivars of faba bean. The study also aimed to lay the basis for further studies on resistance mechanism of faba bean fusarium wilt, which could in turn lay the basis for ecological control of faba bean fusarium wilt. Cultivars of different resistances to fusarium wilt were used in the experiment -‘89-147’ (high resistant cultivar),‘8363’ (medium resistant cultivar) and‘YD324’ (susceptible cultivar). Root exudates of the three cultivars of faba bean were collected in nutrient solution cultures. The effects of faba bean root exudates on spore germination and mycelia growth of Fusarium oxysporum f. fabae were determined using the culture medium method. The contents and components of organic acids were identified by HPLC while free amino acids were identified by amino acid analyzer. The content of soluble sugar was tested by anthrone colorimetry. The results suggested that compared with the control, root exudates of resistant cultivars inhibited spore germination and mycelia growth of F. oxysporum. Exudates of medium resistant cultivar promoted mycelia growth with the addition of 5 mL of root exudates, it otherwise had no significant effect on mycelia growth. Exudates of susceptible cultivar promoted spore germination and mycelia

  13. Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: effects on plant growth and root exudates.

    Science.gov (United States)

    Chen, Bao; Zhang, Yibin; Rafiq, Muhammad Tariq; Khan, Kiran Yasmin; Pan, Fengshan; Yang, Xiaoe; Feng, Ying

    2014-12-01

    Inoculating endophytic bacteria was proven as a promising way to enhance phytoremediation. By a hydroponic experiment, the role of this study was to clarify the effects of inoculating endophytic bacterium Sphingomonas SaMR12 on phytoremediation, with special emphasis on changes of cadmium uptake, plant growth, root morphology, and organic acids secretion at different cadmium treated levels (0, 5, 50, and 100 μM). The results showed that SaMR12 inoculation improved the accumulation of cadmium as well as plant biomass, length of roots, number of root tips, and root surface area. Root secretion of oxalic, citric, and succinic acids was also increased after inoculated, which may alleviate the cadmium toxicity to plant or inhibit the rising trend of oxidative stress of plant. The major finding of this work suggested that in the root, SaMR12 improves cadmium bioavailability and absorption facility by increasing root-soil contact area and root organic acid secretion; and in the shoot, SaMR12 increases cadmium tolerance by alleviating oxidative stress of plant, so as to enhance the capability of cadmium extraction by plant.

  14. Facilitative root interactions in intercrops

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, H.; Jensen, E.S.

    2005-01-01

    Facilitation takes place when plants ameliorate the environment of their neighbours, and increase their growth and survival. Facilitation occurs in natural ecosystems as well as in agroecosystems. We discuss examples of facilitative root interactions in intercropped agroecosystems; including...... of root architecture, exudation of growth stimulating substances, and biofumigation. Facilitative root interactions are most likely to be of importance in nutrient poor soils and in low-input agroecosystems due to critical interspecific competition for plant growth factors. However, studies from more...... nitrogen transfer between legumes and non-leguminous plants, exploitation of the soil via mycorrhizal fungi and soil-plant processes which alter the mobilisation of plant growth resources such as through exudation of amino acids, extra-cellular enzymes, acidification, competition-induced modification...

  15. Plant exudates promote PCB degradation by a rhodococcal rhizobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Toussaint, Jean-Patrick; Pham, Thi Thanh My; Barriault, Diane; Sylvestre, Michel [Instiut National de la Recherche Scientifique INRS, Laval, QC (Canada). Inst. Armand-Frappier

    2012-09-15

    Rhodococcus erythropolis U23A is a polychlorinated biphenyl (PCB)-degrading bacterium isolated from the rhizosphere of plants grown on a PCB-contaminated soil. Strain U23A bphA exhibited 99% identity with bphA1 of Rhodococcus globerulus P6. We grew Arabidopsis thaliana in a hydroponic axenic system, collected, and concentrated the plant secondary metabolite-containing root exudates. Strain U23A exhibited a chemotactic response toward these root exudates. In a root colonizing assay, the number of cells of strain U23A associated to the plant roots (5.7 x 105 CFU g{sup -1}) was greater than the number remaining in the surrounding sand (4.5 x 104 CFU g{sup -1}). Furthermore, the exudates could support the growth of strain U23A. In a resting cell suspension assay, cells grown in a minimal medium containing Arabidopsis root exudates as sole growth substrate were able to metabolize 2,3,4'- and 2,3',4-trichlorobiphenyl. However, no significant degradation of any of congeners was observed for control cells grown on Luria-Bertani medium. Although strain U23A was unable to grow on any of the flavonoids identified in root exudates, biphenyl-induced cells metabolized flavanone, one of the major root exudate components. In addition, when used as co-substrate with sodium acetate, flavanone was as efficient as biphenyl to induce the biphenyl catabolic pathway of strain U23A. Together, these data provide supporting evidence that some rhodococci can live in soil in close association with plant roots and that root exudates can support their growth and trigger their PCB-degrading ability. This suggests that, like the flagellated Gram-negative bacteria, non-flagellated rhodococci may also play a key role in the degradation of persistent pollutants. (orig.)

  16. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination.

    Science.gov (United States)

    Montiel-Rozas, M M; Madejón, E; Madejón, P

    2016-09-01

    Bioavailability of heavy metals can be modified by different root exudates. Among them, low molecular weight organic acids (LMWOAs) play an important role in this process. Three plant species (Poa annua, Medicago polymorpha and Malva sylvestris), potentially used for phytoremediation, have been assessed for both metal uptake and LMWOAs excretion in contaminated environments with different concentrations of Cd, Cu and Zn. The experiments have been carried out in washed sand and in three contaminated soils where two organic amendments were added (biosolid compost and alperujo compost). The most abundant LMWOAs excreted by all studied plants were oxalic and malic acids, although citric and fumaric acids were also detected. The general tendency was that plants responded to an increase of heavy metal stress releasing higher amounts of LMWOAs. This is an efficient exclusion mechanism reducing the metal uptake and allowing the plant growth at high levels of contamination. In the experiment using wash sand as substrate, the organic acids composition and quantity depended mainly on plant species and metal contamination. M. polymorpha was the species that released the highest concentrations of LMWOAs, both in sand and in soils with no amendment addition, whereas a decrease of these acids was observed with the addition of amendments. Our results established a clear effect of organic matter on the composition and total amount of LMWOAs released. The increase of organic matter and nutrients, through amendments, improved the soil quality reducing phytotoxicity. As a result, organic acids exudates decreased and were solely composed of oxalic acid (except for M. polymorpha). The release of LMWOAs has proved to be an important mechanism against heavy metal stress, unique to each species and modifiable by means of organic amendment addition. PMID:27267743

  17. Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots.

    Science.gov (United States)

    Wang, Wei; Zhao, Xue Qiang; Chen, Rong Fu; Dong, Xiao Ying; Lan, Ping; Ma, Jian Feng; Shen, Ren Fang

    2015-07-01

    The phytotoxicity of aluminium (Al) ions can be alleviated by ammonium (NH4(+)) in rice and this effect has been attributed to the decreased Al accumulation in the roots. Here, the effects of different nitrogen forms on cell wall properties were compared in two rice cultivars differing in Al tolerance. An in vitro Al-binding assay revealed that neither NH4(+) nor NO3(-) altered the Al-binding capacity of cell walls, which were extracted from plants not previously exposed to N sources. However, cell walls extracted from NH4(+)-supplied roots displayed lower Al-binding capacity than those from NO3(-)-supplied roots when grown in non-buffered solutions. Fourier-transform infrared microspectroscopy analysis revealed that, compared with NO3(-)-supplied roots, NH4(+)-supplied roots possessed fewer Al-binding groups (-OH and COO-) and lower contents of pectin and hemicellulose. However, when grown in pH-buffered solutions, these differences in the cell wall properties were not observed. Further analysis showed that the Al-binding capacity and properties of cell walls were also altered by pHs alone. Taken together, our results indicate that the NH4(+)-reduced Al accumulation was attributed to the altered cell wall properties triggered by pH decrease due to NH4(+) uptake rather than direct competition for the cell wall binding sites between Al(3+) and NH4(+).

  18. 镉超富集植物东南景天根系分泌物的代谢组学研究%Metabonomics Study on Root Exudates of Cd Hyperaccumulator Sedum Alfredii

    Institute of Scientific and Technical Information of China (English)

    罗庆; 孙丽娜; 胡筱敏

    2015-01-01

    利用基于气相色谱_质谱联用技术( GC_MS)的代谢组学方法,寻找不同处理条件间差异显著的镉超富集植物东南景天根系分泌物质,并探讨它们对东南景天耐受或超富集镉的可能作用机制。收集0和40μmol/L镉分别处理4和8天后的东南景天根系分泌物样品,通过样品冻干、甲醇溶解、甲氧胺盐酸盐和N_甲基_N_(三甲基硅烷)三氟乙酰胺衍生化处理、GC_MS检测的分析过程,得到根系分泌物的表达谱。主成分分析和正交偏最小二乘判别分析( OPLS_DA)得分图可将不同处理条件间东南景天的根系分泌物质明显区分,运用OPLS_DA载荷图、模型的变量重要性因子和方差分析发现12个根系分泌物质在4组间存在显著性差异。它们的相对含量在不同处理条件间的变化趋势明显不同,表明东南景天可通过调节它们的分泌来耐受或超富集重金属镉。%A metabonomics method based on gas chromatography_mass spectrometry ( GC_MS) was developed for detecting the significant differences of root exudates of the Cd hyperaccumulator Sedum alfredii under different treatments and study the effect mechanism of S. alfredii tolerating or accumulating the heavy metal Cd. The root exudates were collected after treatment for 4 and 8 days with 0 and 40μmol/L Cd. The collected solution was lyophilized and dissolved with methanol, and after derivatization with methoxyamine hydrochloride and N_methyl_N_trifluoroacetamide, the samples were analyzed by GC_MS. Principal component analysis ( PCA) and orthogonal partial least_squares discrimination analysis ( OPLS_DA) were carried out for pattern recognition and a clear separation among the different treatments was achieved. Twelve compounds which caused the separation among the different treatments were found and identified. With the change of treatments, the relative amount of these 12 compounds revealed different trends, which indicated that the Cd

  19. 大蒜根系分泌物化感作用及化感物质的比较%Comparative analysis of allelopathy and allelochemicals of the root exudates in garlic

    Institute of Scientific and Technical Information of China (English)

    周艳丽; 程智慧

    2012-01-01

    【目的】利用生物测定和GC-MS分析方法,研究大蒜根系分泌物的化感作用及化感物质。【方法】采用琼脂培和砂培2种栽培方式收集大蒜根系分泌物,分别采用乙醚、乙酸乙酯、三氯甲烷和正丁醇4种有机溶剂进行萃取分离,对各有机溶剂萃取液进行萝卜种子发芽试验,确定出强化感作用组分,并对其成分进行GC-MS分析。【结果】各有机溶剂萃取液的化感作用强弱顺序依次为:乙酸乙酯萃取液〉三氯甲烷萃取液〉正丁醇和乙醚萃取液,初步确定大蒜根系分泌物中的化感物质为2,6-二异丙基苯酚、2,6-二叔丁基对甲酚和二烯丙基二硫醚。【结论】2种栽培方式收集的大蒜根系分泌物的乙酸乙酯组分中的成分相似,但在含量上差异较大,表现为砂培〉琼脂培。%【Objective】 The allelopathy and major allelochemicals in root exudates of garlic were studied by bioassay and GC-MS methods.【Method】 The root exudates of garlic were collected from agar culture and sand culture in this experiment,and were extracted by ethyl ether,ethyl acetate,chloroform and n-butanol.【Result】 The results showed that allelopathy of ethyl acetate component was the strongest,followed by chloroform component,the allelopathy of ethyl ether component and n-butanol component.The component of ethyl acetate was analyzed by GC-MS,and the main allelochemicals were identified as 2,6-bis(1-methylethyl)-phenol,butylated hydroxytoluene and diallyl disulphide.【Conclusion】 The allelochemicals were similar in ethyl acetate fraction of two cultivation forms,but the quantity was different,and the varieties and quantities of allelochemicals in sand culture were higher than agar culture.

  20. Cytoskeletal components of Beta vulgaris root hairs in altered gravity fields

    Science.gov (United States)

    Shevchenko, G. V.

    Root hairs of Beta vulgaris are protrusions from rhizodermal cells and are characterised by plagiotropic growth. The roles of the cytoskeleton and of gravity in this growth process are being studied with the help of a clinostat. Through the use of immunocytochemical and fluorescent staining methods which reveal microtubules (MTs) and microfilaments (MFs), it was found that these cytoskeletal components of the root hairs of 4-day-old seedlings of B. vulgaris were affected by clinorotation at 2 r.p.m. In control conditions, MTs were found to be distributed evenly throughout the root hair, and an intense fluorescence due to MFs was observed at the tip of the hairs. With clinorotation, however, MTs became distributed at random, though no redistribution of MFs was observed. The latter finding conforms to the idea that MFs are responsible for tip growth. That MTs are more sensitive to altered gravity conditions is presently being tested.

  1. Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot

    OpenAIRE

    Wang, Guang-Long; Que, Feng; Xu, Zhi-Sheng; Wang, Feng; Xiong, Ai-Sheng

    2015-01-01

    Background Gibberellins stimulate cell elongation and expansion during plant growth and development. Carrot is a root plant with great value and undergoes obvious alteration in organ size over the period of plant growth. However, the roles of gibberellins in carrot remain unclear. Results To investigate the effects of gibberelliins on the growth of carrot, we treated carrot plants with gibberellic acid 3 (GA3) or paclobutrazol (a gibberellin inhibitor). The results found that GA3 dramatically...

  2. Allelopathic Effects of Root Exudates from Corn and Soybean on Tuber Germination and Bud Growth of Potato%玉米、大豆根系分泌物对马铃薯块茎萌发和萌芽生长的化感效应

    Institute of Scientific and Technical Information of China (English)

    李翠萍

    2014-01-01

    为了探讨玉米、大豆与马铃薯间作、套种或轮作的生化关系,研究了玉米、大豆根系分泌物对马铃薯块茎萌发和萌芽生长的化感效应。结果表明:玉米、大豆根系分泌物均能促进马铃薯块茎萌发和萌芽生长,但2种根系分泌物及其不同浓度(100%、50%、25%)对马铃薯块茎萌发和萌芽生长的效应不同。高浓度(100%)玉米根系分泌物能显著促进马铃薯块茎萌发,提高马铃薯块茎发芽势,而低浓度(25%)则抑制马铃薯块茎萌发;大豆根系分泌物高、中、低浓度均能显著提高马铃薯块茎的发芽率和发芽势;2种根系分泌物所有浓度处理均显著提高了马铃薯块茎的活力指数,以100%玉米根系分泌物处理提高的幅度最大。玉米和大豆根系分泌物显著增加了马铃薯萌芽的鲜质量、干质量及长度,其中高浓度的根系分泌物表现出较强的促进作用。2种根系分泌物显著提高了马铃薯块茎中的淀粉酶活性,其中高浓度玉米根系分泌物提高的幅度最大,其次是高浓度的大豆根系分泌物。由此可见,玉米和大豆是马铃薯的良好前茬作物,其也可与马铃薯进行间作、套种。%In order to study the biochemical relationships between intercropped crops (corn, soybean and potato),this test investigated allelopathic effects of corn,soybean root exudates on potato tuber germination and bud growth.The results showed that root exudates from corn and soybean were all able to promote tuber germination and bud growth of potato,but different types of root exudates and their different concentrations had different allelopathic effects.High concentrations (100%)of root exudates from corn promoted significantly potato tuber germination, increased tuber germination potential,whereas low concentrations(25%)inhibited germination. Soybean root exudates whether at high concentration or low concentration had a

  3. 连作马铃薯不同生育期根系分泌物的成分检测及其自毒效应%Identification and autotoxicity of root exudates of continuous cropping potato at different growth stages

    Institute of Scientific and Technical Information of China (English)

    张文明; 邱慧珍; 张春红; 刘星; 高怡安; 沈其荣

    2015-01-01

    为探讨马铃薯连作障碍的可能机理,在大田条件下,以轮作为对照(CK),收集连作5年(CP5)马铃薯植株在不同生育期的根系分泌物,采用GC-MS对根系分泌物的主要成分进行了鉴定,并通过生物检测验证了根系分泌物的自毒效应。结果表明:CK和CP5处理的马铃薯在不同生育期的根系分泌物均鉴定出糖类、酸类、胺类、脂类、醇类和嘧啶类等成分,以糖类和酸类物质居多; CP5处理根系分泌物的成分较CK复杂,酸类物质含量有升高的趋势。连作改变了马铃薯根系分泌物的化学组成和含量:CP5处理在苗期、现蕾期和开花期的根系分泌物中均鉴定出邻苯二甲酸二丁酯,相对含量分别为0.16%、0.21%和0.24%, CK 处理未检测到; CP5处理在苗期、现蕾期和开花期的根系分泌物中均鉴定出棕榈酸,相对含量分别为0.34%、1.12%和0.47%, CK处理仅在现蕾期和开花期鉴定出棕榈酸的存在,但相对含量仅为0.56%和0.24%。生物检测试验结果表明,棕榈酸和邻苯二甲酸二丁酯显著抑制了马铃薯生长,1 mmol·L−1棕榈酸和邻苯二甲酸二丁酯对马铃薯生长的抑制作用远远大于0.5 mmol·L−1的抑制作用。棕榈酸和邻苯二甲酸二丁酯是马铃薯根系分泌的自毒物质,但二者未表现出物质的叠加效应。现蕾期马铃薯根系分泌物所含的物质最多,是马铃薯根系分泌物收集的适宜时期。%Potato root exudates were collected from two treatments (CK:potato rotation with other crops;CP5:continuous potato cropping for five years) under field conditions to explore the possible obstacle mechanisms of continuous cropping of potato. The root exudates were collected at three growth stages—seedling, squaring and florescence stages. The chemical composition of the root exudates were determined by the GC-MS method and the autotoxicity of the exudates to potato plants tested in a pot experiment. The results showed

  4. Nature's amazing biopolymer: basic mechanical and hydrological properties of soil affected by plant exudates

    Science.gov (United States)

    Naveed, Muhammad; Roose, Tiina; Raffan, Annette; George, Timothy; Bengough, Glyn; Brown, Lawrie; Keyes, Sam; Daly, Keith; Hallett, Paul

    2016-04-01

    Plant exudates are known to have a very large impact on soil physical properties through changes in mechanical and hydrological processes driven by long-chain polysaccharides and surface active compounds. Whilst these impacts are well known, the basic physical properties of these exudates have only been reported in a small number of studies. We present data for exudates obtained from barley roots and chia seeds, incorporating treatments examining biological decomposition of the exudates. When these exudates were added to a sandy loam soil, contact angle and drop penetration time increased exponentially with increasing exudate concentration. These wetting properties were strongly correlated with both exudate density and zero-shear viscosity, but not with exudate surface tension. Water holding capacity and water repellency of exudate mixed soil tremendously increased with exudate concentration, however they were significantly reduced on decomposition when measured after 14 days of incubation at 16C. Mechanical stability greatly increased with increasing exudate amendment to soils, which was assessed using a rheological amplitude sweep test near saturation, at -50 cm matric potential (field capacity) using indentation test, and at air-dry condition using the Brazilian test. This reflects that exudates not only attenuate plant water stress but also impart mechanical stability to the rhizosphere. These data are highly relevant to the understanding and modelling of rhizosphere development, which is the next phase of our research.

  5. Exudative epidermitis in pigs caused by toxigenic Staphylococcus chromogenes

    DEFF Research Database (Denmark)

    Andresen, Lars Ole; Ahrens, Peter; Daugaard, Lise;

    2005-01-01

    Staphylococcus chromogenes is closely related to Staphylococcus hyicus, which is recognised as the causative agent of exudative epidermitis (EE) in pigs. S. chromogenes is part of the normal skin flora of pigs, cattle and poultry and has so far been considered non-pathogenic to pigs. A strain of S...... alterations, all pigs revealed development of generalized exudative epidermitis. No toxin producing S. hyicus was isolated from the pigs and all ExhB-positive bacterial isolates were identified as S. chromogenes. This confirmed that the disease-causing agent was the inoculated S. chromogenes strain VA654....... The results of this study show that S. chromogenes may cause exudative epidermitis in pigs....

  6. Striga seed-germination activity of root exudates and compounds present in stems of Striga host and nonhost (trap crop) plants is reduced due to root colonization by arbuscular mycorrhizal fungi.

    OpenAIRE

    Lendzemo, V.W.; Kuyper, T. W.; Vierheilig, H.

    2009-01-01

    Root colonization by arbuscular mycorrhizal (AM) fungi reduces stimulation of seed germination of the plant parasite Striga (Orobanchaceae). This reduction can affect not only host plants for Striga, resulting in a lower parasite incidence, but also false hosts or trap crops, which induce suicidal Striga seed germination, thereby diminishing their effectiveness. In order to better understand these AM-induced effects, we tested the influence of root colonization by different AM fungi on the se...

  7. PAEs胁迫对高/低累积品种水稻根系形态及根系分泌低分子有机酸的影响%Effects of PAE Stress on Root Morphology andLow Molecular Weight Organic Acid (LMWOC) in Root Exudates of Rice (Oryza sativa L.) Cultivars with High- and Low-PAE Accumulation

    Institute of Scientific and Technical Information of China (English)

    陈桐; 蔡全英; 吴启堂; 吕辉雄; 曾巧云; 李慧

    2015-01-01

    systems contaminated with PAEs (0, 20, 40, and 80 mg·L-1). Plant samples were collected at tillering and jointing stage, root morphological properties were analyzed by root scanner, low molecular weight organic acids in root exudates were determined by HPLC, and di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) in roots, stems, and leaves of rice were analyzed using gas chromatography coupled with mass spectrometry (GC/MS). The responses of root morphological characteristics (including total root length, root surface area, and root volume) and low molecular weight organic acid (LMWOC) in root exudates were analyzed to investigate the variation factors of high- and low-PAE accumulation of rice cultivars. The results show that, with the increase of PAE concentrations in solution, total root length, root surface area, and root volume of two cultivars increased firstly and then decreased. In the same PAE concentration, root morphological parameters of cultivar Peizataifeng were generally higher than cultivar Fengyousimiao. Change of PAE concentrations in solution was a key factor affecting early growth differences in root morphology of the two rice cultivars. PAE concentrations in the plants of two cultivars increased with PAE concentrations in solution, and those of cultivar Peizataifeng were also higher than cultivar Fengyousimiao. The concentrations of DEHP and DBP in different tissues decrease in the order of roots>leaves≥stems. At tillering stage, PAE concentrations in the plants of two cultivars were significantly correlated with PAE concentrations in solution, but poorly correlated at jointing stage. LMWOC concentrations in root exudates of two cultivars displayed different change trends with PAE concentrations in solution, but concentrations of oxalic acid increased (ranging from 1.11 to 8.13 mg·L-1). Moreover, concentrations of oxalic acid were significantly positively correlated with the concentrations of DBP and DEHP in roots. These results

  8. Effects of Chinese onion's root exudates on cucumber seedlings growth and rhizosphere soil microorganisms%分蘖洋葱根系分泌物对黄瓜幼苗生长及根际土壤微生物的影响

    Institute of Scientific and Technical Information of China (English)

    杨阳; 刘守伟; 潘凯; 吴凤芝

    2013-01-01

    以不同化感潜力分蘖洋葱为供体,黄瓜为受体,研究了分蘖洋葱根系分泌物对黄瓜幼苗生长、根际土壤微生物数量及细菌群落结构的影响.结果表明:不同化感潜力分蘖洋葱根系分泌物对黄瓜幼苗生长均具有促进作用,且随着浓度的升高,促进作用增强,相同浓度下,化感潜力强、弱供体之间差异不显著;不同化感潜力分蘖洋葱根系分泌物均增加了黄瓜根际土壤细菌和放线菌数量,降低了真菌和尖镰孢菌数量,化感潜力强的品种(L-06)效果更显著;不同化感潜力分蘖洋葱根系分泌物均能提高黄瓜根际土壤细菌群落丰富度,差异条带的序列片段经比对推测为3大细菌类群:Actinobacteria(放线菌纲)、Proteobacteria(变形菌纲)和Anaerolineaceae(厌氧绳菌纲),其中厌氧绳菌只出现在化感潜力强(L-06)的处理中.化感潜力强(L-06)、浓度高(10 mL·株-1)的分蘖洋葱根系分泌物更有利于黄瓜根际土壤细菌群落丰富度的提高.%Taking the Chinese onion cultivars with different allelopathy potentials as the donor and cucumber as the accepter, this paper studied the effects of Chinese onion' s root exudates on the seedlings growth of cucumber and the culturable microbial number and bacterial community structure in the seedlings rhizosphere soil. The root exudates of the Chinese onion cultivars could promote the growth of cucumber seedlings, and the stimulatory effect increased with the increasing concentration of the root exudates. However, at the same concentrations of root exudates, the stimulatory effect had no significant differences between the Chinese onion cultivars with strong and weak allelopathy potential. The root exudates of the Chinese onion cultivars increased the individual numbers of bacteria and actinomyces but decreased those of fungi and Fusarium in rhizosphere soil, being more significant for the Chinese onion cultivar with high allelopathy potential (L-06

  9. 铅胁迫下小花南芥与玉米间作对根系分泌物有机酸的影响%Effects of Arabisalpina L. var. parviflora Franch and Zea mays L. intercropping system on root-exudated organic acids under lead stress

    Institute of Scientific and Technical Information of China (English)

    王吉秀; 湛方栋; 李元; 祖艳群; 秦丽; 何永美; 李明锐

    2016-01-01

    为了揭示 Pb 胁迫对间作和单作的超累积植物和作物根系分泌低分子有机酸的影响,研究设置400 mg·L-1 Pb 胁迫,采用水培曝气法试验,以玉米和小花南芥单作为对照处理,研究 Pb 胁迫下玉米和小花南芥间作对植物根系形态、根系分泌有机酸及 Pb 吸收的影响。结果表明:与单作相比,间作小花南芥情况下,玉米根系分泌物检测到乳酸;玉米分根条数、根表面积和根密度与单作相比分别增加60%、15%和42%,地下部和地上部干重生物量分别增加108%和75%,玉米地下部 Pb 含量下降44%;与单作相比,间作玉米条件下,小花南芥根系分泌物检测到乙酸和乳酸,小花南芥根系分泌物量与单作相比增加103%~1700%,小花南芥地下部和地上部 Pb 累积量分别比单作增加49%和75%,转运系数增加22%。相关分析结果表明,单作小花南芥只有地上部Pb 累积量与草酸显著相关,而间作小花南芥地下部和地上部 Pb 累积量与草酸、柠檬酸和苹果酸显著相关。研究表明超富集植物小花南芥与玉米间作体系,根系分泌的有机酸改变了 Pb 在小花南芥和玉米体内的累积特征,促进超累积植物小花南芥累积 Pb,减少农作物玉米植株体内 Pb 含量。Pb 胁迫下超累积植物小花南芥与玉米间作是一种可行的修复模式。%Cultivated soils contamination by heavy metals have become increasingly contentious to decision makers, farmers, consumers and health professionals around the globe. Phytoremediation is a key strategy for decontaminating cultivated soils polluted by heavy metals. Hyperaccumulator plants are limited by their soil occupation rather than agricultural production in China. Intercropping system of hyperaccumulator plants and crops have been recommended for both of remediation and production in the same time. The accumulation of heavy metal in plants is due to root growth and root exudates. However, plant root

  10. 不同品系小麦根系分泌物对黄瓜化感作用的初步研究%Primary Studies about Root Exudates from Different Wheat Cultivars on Cucumber Allelopathy

    Institute of Scientific and Technical Information of China (English)

    马亚飞; 杨平; 吴凤芝

    2011-01-01

    以黑龙江省40个小麦品系为供体,以黄瓜品种津优1号为受体,采用培养皿滤纸生物测试法,初步研究了不同品系小麦根系分泌物对黄瓜幼苗的化感作用.结果表明:不同品系小麦根系分泌物对黄瓜种子发芽率、幼苗根长、胚轴长及幼苗鲜质量的影响存在差异.由综合效应(SE)可以看出,龙辐04-0348对黄瓜幼苗的化感促进作用最强,龙辐17化感抑制作用最强,综合化感效应分别为-15.37%和7.76%.%Taking 40 wheat cultivars in Heilongjiang Province as donor and 'Jinyou No.l' cucumber ( Cucumis sativus L. ) as accepter, allelopathy of root exudates from different wheat cultivars on cucumber seedlings were investigated in petri dish experiment. Results showed that different wheat cultivars had different allelopathy on cucumber germination rate, radicle length, radicle and shoot fresh weight. Judging from synthesize effect (SE) value, 'Longfu 04-0348' had the most significant stimulatory effect, and ‘Longfu 17' had the most significant inhibitory effect, their SE values were -15.37 % and 7.76 %,respectively.

  11. 线辣椒不同生育阶段根系分泌物的组分分析%Component Analysis of the Root Exudates at Different Growth Stages in Chili Pepper

    Institute of Scientific and Technical Information of China (English)

    谢振华; 赵尊练; 武国平; 叶新华; 史联联; 郭建伟

    2012-01-01

    Root exudates are one of the important factors causing continuous cropping obstacles. In order to resolve the problem of continuous cropping obstacles in chili pepper, the composition and content of the root exudates of chili pepper Shaanjiao 2006 with hydroponics in different growth stages were determined by means of GC-MS. The results showed that the chili pepper root exudates various organic compounds. The 21,27 and 31 kinds of organic compounds, of which similarity (or matching) in more than 70%, were determined in seedling 30 d, seedling 60 d and flowering plant 30 d respectively. Among these organic compounds, the relative content of 21, 24 and 29 kinds was more than 0. 20% respectively. The organic compounds from three growth stages can be divided into eight types, i.e. acids, phenols, hydrocarbons, esters, alcohols, amines, ketones, benzene and other heterocy-clic. The esters is the largest proportion and the total relative content in three growth stages is 67.29%, 56.07% and 59. 51%, respectively. There existed 13 kinds of substances in all of three growth stages. There is 3, 5 and 12 kind's unique material in the three growth stages respectively. In the organic compounds determined, 17 kinds have been proved by previous studies to have allelopathic effects. Among these 17 kinds, there are 9 kinds of substances in the 3 stages of growth. There are three kinds of substances in the two growth stages of flowering plant 30 d and seedling 30 d (or seedling 60 d). There are two kinds of unique material in the growth stages of seedling 60 d, and there are three kinds of unique material in the growth stages of flowering plant 30 d.%根系分泌物是引起连作障碍的原因之一.为解决线辣椒栽培中连作障碍问题,以陕西关中地区线辣椒主栽品种陕椒2006为试材,采用水培收集、气质联用仪(GC-MS)检测,分析陕椒2006在不同生长发育阶段根系分泌物的组成成分和相对含量.结果表明,线辣椒根系分泌物

  12. 不同品种小麦与蚕豆间作对蚕豆枯萎病发生、根系分泌物和根际微生物群落功能多样性的影响%Effects of different wheat cultivars intercropped with faba bean on faba bean Fusarium wilt, root exudates and rhizosphere microbial community functional diversity

    Institute of Scientific and Technical Information of China (English)

    杨智仙; 汤利; 郑毅; 董坤; 董艳

    2014-01-01

    Fusarium wilt , root exudates content and rhizosphere microbial community functional diversity .Results show that compared with the faba bean monocropping , the disease index of faba bean Fusarium wilt is significantly decreased by 47.6%in the yunmai 42 intercropped with faba bean system ( YM42//B) and decreased by 33.3%in the yunmai 47 intercropped with faba bean system ( YM47//B) , while the disease index of faba bean Fusarium wilt is not significantly changed in the mianyang 29 intercropped with faba bean system ( MY29//B ) .Compared with the faba bean monocropping , the YM42//B and YM47//B treatments significantly increase the total content of organic acids and significantly reduce the total content of soluble sugars and free amino acids in the root exudates . The total utilization ability of carbon sources is significantly increased and the microbial community structures of faba bean rhizosphere are altered under the YM 42//B and YM47//B treatments, and the YM42//B treatment has more obvious effect than the YM47//B treatment.The MY29//B treatment has no significant effects on substrate utilization, total content of soluble sugars , free amino acids and organic acids in the root exudates and microbial community structures .The rhizosphere microbe of the YM 42//B treatment could use more types of carbon source than the YM47//B treatment , and the carbon source types of sugars , amino acids and carboxylic acids used by rhizosphere microbe of the YM42//B treatment are quite different from the YM47//B treatment.The total content of organic acids in the root exudates is increased under YM 42 and YM47 intercropped with faba bean , thus the rhizosphere microbial activity and diversity are improved , and more carbon sources are utilized by rhizosphere microorganisms .Meanwhile secretion of soluble sugar and free amino acid is inhibited by the YM 42//B and YM47//B treatments.Our result illustrates that the interaction of root exudates and rhizosphere microbes is the main reason

  13. Overexpression of Laccaria bicolor aquaporin JQ585595 alters root water transport properties in ectomycorrhizal white spruce (Picea glauca) seedlings.

    Science.gov (United States)

    Xu, Hao; Kemppainen, Minna; El Kayal, Walid; Lee, Seong Hee; Pardo, Alejandro G; Cooke, Janice E K; Zwiazek, Janusz J

    2015-01-01

    The contribution of hyphae to water transport in ectomycorrhizal (ECM) white spruce (Picea glauca) seedlings was examined by altering expression of a major water-transporting aquaporin in Laccaria bicolor. Picea glauca was inoculated with wild-type (WT), mock transgenic or L. bicolor aquaporin JQ585595-overexpressing (OE) strains and exposed to root temperatures ranging from 5 to 20°C to examine the root water transport properties, physiological responses and plasma membrane intrinsic protein (PIP) expression in colonized plants. Mycorrhization increased shoot water potential, transpiration, net photosynthetic rates, root hydraulic conductivity and root cortical cell hydraulic conductivity in seedlings. At 20°C, OE plants had higher root hydraulic conductivity compared with WT plants and the increases were accompanied by higher expression of P. glauca PIP GQ03401_M18.1 in roots. In contrast to WT L. bicolor, the effects of OE fungi on root and root cortical cell hydraulic conductivities were abolished at 10 and 5°C in the absence of major changes in the examined transcript levels of P. glauca root PIPs. The results provide evidence for the importance of fungal aquaporins in root water transport of mycorrhizal plants. They also demonstrate links between hyphal water transport, root aquaporin expression and root water transport in ECM plants. PMID:25323307

  14. Striga seed-germination activity of root exudates and compounds present in stems of Striga host and nonhost (trap crop) plants is reduced due to root colonization by arbuscular mycorrhizal fungi.

    NARCIS (Netherlands)

    Lendzemo, V.W.; Kuyper, T.W.; Vierheilig, H.

    2009-01-01

    Root colonization by arbuscular mycorrhizal (AM) fungi reduces stimulation of seed germination of the plant parasite Striga (Orobanchaceae). This reduction can affect not only host plants for Striga, resulting in a lower parasite incidence, but also false hosts or trap crops, which induce suicidal S

  15. Evaluation of the morphological alteration of the root surface radiated with a diode laser

    International Nuclear Information System (INIS)

    The diode laser has been studied for periodontal therapy, as much for removal of calculus as for microbial reduction of periodontal pockets, as well as the visible analgesic effects and biomodulation capacity. For this reason the purpose of this study was to evaluate the morphological alteration of the root surface after radiation with the diode laser, 808 nm through analysis by scanning electron microscopy (SEM). Besides this, to verify the temperature variations caused during the radiation, a thermometer put into the dentinal wall of the root canal was used. In all, 18 teeth were used, 15 of which for the SEM study, and the other 3 were used to temperature variation analysis. The 25 samples were scraped on the root surface and planed with manual instruments. The other 5 were not subjected to any type of treatment. This, 6 groups of 5 samples each were formed. Control Group C whose samples had not received any treatment; Control Group C 1 was only scraped and polished conventionally with Hu-Friedy Gracey curettes 5 and 6; the other samples groups L1, L2, L3, L4 were radiated by diode laser using parameters of power 1,0 W; 1,2 W; 1,4 W; and 1,6 W respectively, 2 times for 10 seconds with 20 seconds intervals between each radiation in continuous mode. The results with relation to the increase of temperature in the interior of the root canal demonstrated that there was an increase of more than 5 degree Celsius. The results of the scanning electron microscope analysis of Control Group C demonstrated great irregularity and ridges on the root surface, with the presence of a dentine layer. Control Group C1 presented a similar aspect to Group L 1's, smoother and more homogeneous surface. Groups L2, L3, and L4 presented scratches alternating with smoother areas showing that fiber contacted the surface of the sample. The results reconfirmed the necessity of further studies using diode laser, with a beam of light emitted in an interrupted mode to improve the control of the

  16. Bioavailability of zinc and phosphorus in calcareous soils as affected by citrate exudation

    NARCIS (Netherlands)

    Duffner, A.; Hoffland, E.; Temminghoff, E.J.M.

    2012-01-01

    Aims Zinc (Zn) and phosphorus (P) deficiency often occurs at the same time and limits crop production in many soils. It has been suggested that citrate root exudation is a response of plants to both deficiencies. We used white lupin (Lupinus albus L.) as a model plant to clarify if citrate exuded by

  17. Species-specific fine root biomass distribution alters competition in mixed forests under climate change

    Science.gov (United States)

    Reyer, Christopher; Gutsch, Martin; Lasch, Petra; Suckow, Felicitas; Sterck, Frank; Mohren, Frits

    2010-05-01

    The importance of mixed forests in European silviculture has increased due to forest conversion policies and multifunctional forest management. Concurrently, evidences for substantial impacts of climate change on forest ecosystems accumulate. Projected drier and warmer conditions alter the water relations of tree species, their growth and ultimately their inter-specific competition in mixed stands. Process-based models are scientific tools to study the impact of climate change on and to deepen the understanding of the functioning of these systems based on ecological mechanisms. They allow for long-term, stand-level studies of forest dynamics which could only be addressed with great difficulty in an experimental or empirical setup. We used the process-based forest model 4C to simulate inter-specific competition in mixed stands of Douglas-fir (Pseudotsuga menziesii) and Common beech (Fagus sylvatica) as well as Scots pine (Pinus sylvestris) and Sessile / Pedunculate oak (Quercus petraea and Quercus robur) under a) historical climate for model verification and b) under climate change scenario realizations of the climate model STAR 2.0 in Brandenburg, Germany. Some of the climate change scenario realizations feature a substantially drier and warmer summer climate which decreases the climatic water balance during the growing season. We assumed species-specific fine root biomass distributions which feature broadleaved fine roots in deeper soil layers and coniferous fine roots in upper soil layers according to several root excavation studies from mixed stands. The stands themselves were constructed from yield tables of the contributing species. The model verification provided good results for the basal area predictions under the historical climate. Under climate change, the number of days when the tree water demand exceeded the soil water supply was higher for the coniferous species than for broadleaved species. Furthermore, after 45 simulation years the basal area

  18. UV-B辐射对元阳梯田水稻根系LMWOAs分泌量和根际微生物数量的影响%Effects of UV-B radiation on rice roots-exudated LMWOAs and rhizospheric microorganism quantities in a paddy field of Yuanyang Terraces, Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    何永美; 湛方栋; 吴炯; 高召华; 李元

    2016-01-01

    , fungi, azotobacteria, cellulose-decomposing bacteria, inorganic phosphobacteria and potassium bacteria were found to be the highest at the maturity stage, the next at the jointing-booting stage, and the lowest at the heading-flowering stage. The maximum rhizo-spheric actinomycetes was observed at the jointing-booting stage, the second at the heading-flowering stage, and the lowest at the maturity stage. Elevated UV-B radiation didn′t alter the dynamics of rice rhizospheric microorganism quantities along with the rice growth stages, but induced a significant or very significant increase in the quantities of the 7 microbial groups in the rice rhizosphere. Significant positive cor-relations were found between oxalic acid exudation and the quantities of rhizospheric azotobacteria and cellulose-decomposing bacteria, be-tween succinic acid and azotobacteria;and very significant positive correlations between succinic acid exudation and the quantity of bacteri-a, fungi, cellulose-decomposing bacteria, inorganic phosphobacteria and potassium bacteria. These findings indicate that elevated UV-B ra-diation influences rhizospheric microorganism quantity rice under field, which is closely associated with LMWOAs exudation by rice roots.

  19. Effects of Phosphorus Stress on the Root Morphology and Root Exudates in Different Sugar Beet Genotypes%磷胁迫对不同基因型甜菜根系形态及根分泌物的影响

    Institute of Scientific and Technical Information of China (English)

    周建朝; 王孝纯; 邓艳红; 林晓坤; 王艳

    2011-01-01

    Phosphorus deficiency was induced in sugar beet plants (Beta vulgaris L., ‘var. 14’, ‘var. 17’ and ‘var. 20’ with different resistance ability to phosphorus stress), cultured hydroponically and sandily under standardized environmental conditions, by removing phosphorus from the nutrient supply at the seedling stage.Root morphology, H + excretion and organic acid in rhizosphere were investigated. The main results were showed as following: the average length of roots and the ratio of root to shoot in all genotypes were increased significantly (P<0.05), among which, the decreasing range of ‘var. 14’ was the biggest one; sugar beet root mainly excreted oxalic, lactic, maleic acid and trans-butenedioic acid, among which, the first two kinds of the organic acids were the main ingredient, and the phenomena of the significant increase in the secretion amount of those two kinds acids was only appeared in ‘var. 20’ with higher resistance to phosphorus stress;phosphorus deficiency stimulated the environment changed in root vicinity of sugar beet, and showed as an increase of the H+ secretion in all the genotypes used in the experiment, but the increased amount of H+ were genetic dependent, i.e. ‘var.20’ >‘ var. 17’ > ‘ var. 14’.%选用了3种不同抗磷胁迫能力的基因型甜菜种质材料'品14'、'品17'和'品20',通过液培和沙培法对低磷胁迫下甜菜根长、根冠比、根系H+及有机酸分泌等形态和生理特性进行了研究.结果表明:(1)磷胁迫对甜菜根系的形态特征影响显著,与正常磷营养水平比,各基因型甜菜的根系长度和根冠比均有显著增加(P<0.05),其中抗磷胁迫能力最强的'品20'增加幅度显著高于其他2个基因型;(2)甜菜根系主要分泌草酸、乳酸、马来酸及反丁烯二酸,其中大部分为草酸和乳酸,在低磷胁迫下,只有抗磷胁迫能力最强的'品20'此两种酸的分泌达到显著增加水平;(3)不同基因型甜菜受

  20. Effects of root exudates on the growth and development of male and female Morus alba seedlings%桑树(Morus alba)幼苗根系分泌物对雌雄植株生长发育的影响

    Institute of Scientific and Technical Information of China (English)

    竺诗慧; 董廷发; 刘刚; 肖娟; 朱娟; 曾贞; 陈德甫; 胥晓

    2016-01-01

    以桑树(Morus alba)雌雄幼苗为实验材料,采用水培法种植植株,将同龄单培雌雄植株及混培雌雄植株的根系分泌物水溶液分别倒入不同处理组(对照组不作处理),研究了不同来源的根系分泌物对受体雌雄植株生长和分配的影响。结果显示:桑树单培雌雄植株的根系分泌物促进了异性受体植株的生长和干物质积累,导致受体雌株的株高、基径、叶面积和根、茎、叶生物量以及受体雄株的根、茎生物量显著增加,雌株的增加幅度大于雄株。与对照相比,雌/雄株的株高、基径、叶面积以及根、茎、叶生物量分别增加了107%/31%、164%/41%、94%/31%、349%/52%、216%/53%和86%/43%。除雌株根系生物量和根冠比增加外,混培雌雄植株的根系分泌物对受体雌雄植株大部分生长和生物量性状均无显著影响。这些结果表明,不同来源的根系分泌物对受体桑树雌雄植株生长发育的影响不同。这种由根系分泌物引起的差异可能是雌雄植株间相互作用的一种机制。%To investigate effects on the growth and biomass allocation of male and femaleMorus alba seedlings by its root exudates from different origins, the seedlings were exposed to liquid medium containning the root exudates from single-planted seedlings of opposite sex or companion-planted seedlings (a male and a female), and the group without treatment was the control. All the plants were of the same age. The results show that the growth and dry matter accumulation of male and female seedlings were promoted by the root exudates from the opposite sex. In treatment of the exudates from the opposite sex, height, base diameter, leaf area, and biomasses of roots, stems and leaves of females were signiifcantly increased, and biomasses of stems and roots of males were also significantly increased. Furthermore, the increasing amplitude of females was higher than that of males. Compared with the

  1. The tomato res mutant which accumulates JA in roots in non-stressed conditions restores cell structure alterations under salinity.

    Science.gov (United States)

    Garcia-Abellan, José O; Fernandez-Garcia, Nieves; Lopez-Berenguer, Carmen; Egea, Isabel; Flores, Francisco B; Angosto, Trinidad; Capel, Juan; Lozano, Rafael; Pineda, Benito; Moreno, Vicente; Olmos, Enrique; Bolarin, Maria C

    2015-11-01

    Jasmonic acid (JA) regulates a wide spectrum of plant biological processes, from plant development to stress defense responses. The role of JA in plant response to salt stress is scarcely known, and even less known is the specific response in root, the main plant organ responsible for ionic uptake and transport to the shoot. Here we report the characterization of the first tomato (Solanum lycopersicum) mutant, named res (restored cell structure by salinity), that accumulates JA in roots prior to exposure to stress. The res tomato mutant presented remarkable growth inhibition and displayed important morphological alterations and cellular disorganization in roots and leaves under control conditions, while these alterations disappeared when the res mutant plants were grown under salt stress. Reciprocal grafting between res and wild type (WT) (tomato cv. Moneymaker) indicated that the main organ responsible for the development of alterations was the root. The JA-signaling pathway is activated in res roots prior to stress, with transcripts levels being even higher in control condition than in salinity. Future studies on this mutant will provide significant advances in the knowledge of JA role in root in salt-stress tolerance response, as well as in the energy trade-off between plant growth and response to stress.

  2. Chromosomal and Nuclear Alterations in Root Tip Cells of Allium Cepa L. Induced by Alprazolam

    Science.gov (United States)

    Nefic, Hilada; Musanovic, Jasmin; Metovic, Azra; Kurteshi, Kemajl

    2013-01-01

    ABSTRACT Introduction: Alprazolam is a triazolobenzodiazepine used in panic disorders and other anxiety states. Target organ of Alprazolam is CNS, causing depression of respiration and consciousness. Aim: This study aimed to estimate the genotoxic potential of Alprazolam using Allium cepa test. Methods: Allium cepa is one of the most suitable plants for detecting different types of xenobiotics. The test enables the assessment of different genetic endpoints making possible damage to the DNA of humans to be predicted. Results: Alprazolam induced chromosomal (anaphase bridges, breaks, lagging and stickiness, abnormal spiralisation, multipolarity and polyploidy) and cytological aberrations, especially nuclear alterations (nuclear buds, fragmented nucleus and apoptotic bodies, cells without nucleus, binucleated and micronucleated cells), morphological alterations in shape and size of cells, spindle disturbance and polar deviation in root tip meristem cells of Allium cepa at all tested concentrations. Alprazolam also caused significant inhibition of mitotic index in these cells. Conclusion: These changes in cells are indicators of genotoxic potential of Alprazolam suggesting a need for further in vitro studies on animal and human lymphocytes as well as in vivo studies. PMID:25568504

  3. Altered microRNA expression following sciatic nerve resection in dorsal root ganglia of rats

    Institute of Scientific and Technical Information of China (English)

    Bin Yu; Songlin Zhou; Tianmei Qian; Yongjun Wang; Fei Ding; Xiaosong Gu

    2011-01-01

    MicroRNAs (miRNAs) are a class of small,non-coding RNAs (~22 nucleotides) that negatively regulate gene expression post-transcriptionally,either through translational inhibition or degradation of target mRNAs.We uncovered a previously unknown alteration in the expression of miRNAs in the dorsal root ganglia (DRG) at 1,4,7,and 14 days after resection of the sciatic nerve in rats using microarray analysis.Thirty-two significantly upregulated and 18 downregulated miRNAs were identified in the DRG at four time points following sciatic nerve injury.The expression of four consecutively deregulated miRNAs,analyzed by real-time Taqman polymerase chain reaction,was in agreement with the microarray data (upregulated: miR-21,miR-221; downregulated:miR-500,miR-551b),The potential targets for these miRNAs,altered after sciatic nerve resection,are involved mainly in nervous system development,multi-cellular organismal development,and the regulation of cellular processes.This study demonstrated a different involvement of miRNAs in the DRG after resection of the sciatic nerve in a rat model,and it may also contribute in illustrating the molecular mechanisms responsible for nerve regeneration.

  4. Altered susceptibility to infection by Sinorhizobium meliloti and Nectria haematococca in alfalfa roots with altered cell cycle.

    Science.gov (United States)

    Woo, H-H; Hirsch, A M; Hawes, M C

    2004-07-01

    Most infections of plant roots are initiated in the region of elongation; the mechanism for this tissue-specific localization pattern is unknown. In alfalfa expressing PsUGT1 antisense mRNA under the control of the cauliflower mosaic virus (CaMV) 35S promoter, the cell cycle in roots is completed in 48 h instead of 24 h, and border cell number is decreased by more than 99%. These plants were found to exhibit increased root-tip infection by a fungal pathogen and reduced nodule formation by a bacterial symbiont. Thus, the frequency of infection in the region of elongation by Nectria haematocca was unaffected, but infection of the root tip was increased by more than 90%; early stages of Sinorhizobium meliloti infection and nodule morphology were normal, but the frequency of nodulation was fourfold lower than in wild-type roots. PMID:15042410

  5. Altered susceptibility to infection by Sinorhizobium meliloti and Nectria haematococca in alfalfa roots with altered cell cycle.

    Science.gov (United States)

    Woo, H-H; Hirsch, A M; Hawes, M C

    2004-07-01

    Most infections of plant roots are initiated in the region of elongation; the mechanism for this tissue-specific localization pattern is unknown. In alfalfa expressing PsUGT1 antisense mRNA under the control of the cauliflower mosaic virus (CaMV) 35S promoter, the cell cycle in roots is completed in 48 h instead of 24 h, and border cell number is decreased by more than 99%. These plants were found to exhibit increased root-tip infection by a fungal pathogen and reduced nodule formation by a bacterial symbiont. Thus, the frequency of infection in the region of elongation by Nectria haematocca was unaffected, but infection of the root tip was increased by more than 90%; early stages of Sinorhizobium meliloti infection and nodule morphology were normal, but the frequency of nodulation was fourfold lower than in wild-type roots.

  6. 蚕豆根分泌物对紫色土有效养分及微生物数量的影响%Effects of faba bean (Vicia fabaL.) root exudate on soil available nutrients and microbial population in different purple soils

    Institute of Scientific and Technical Information of China (English)

    袁秀梅; 耿赛男; 郑梦圆; 习向银; 宋大利; 黄伏森

    2016-01-01

    为培育紫色土肥力和合理利用蚕豆资源,本研究首先通过溶液培养法收集到蚕豆根系分泌物后,并通过真空旋转蒸发仪得到浓缩液,然后通过室内土壤培养试验,即分别在3种60 g紫色土(酸性紫色土、碱性紫色土和中性紫色土)添加2个水平[6 mL(低量)和12 mL(高量)]的蚕豆根系分泌物浓缩液,并置于25℃恒温箱中黑暗培养15 d ,从而探索蚕豆根系分泌物对不同紫色土有效养分和微生物数量的影响。结果表明:在3种紫色土上,与对照相比,添加低量和高量蚕豆根系分泌物浓缩液后,土壤碱解氮含量和 pH 均显著降低;而土壤有效磷、速效钾、有效铁、有效锌含量和微生物数量均显著增加,且此趋势随根系分泌物浓缩液添加量增加而增强。与其他两种紫色土相比,酸性紫色土添加蚕豆根系分泌物浓缩液对于土壤碱解氮含量和pH的降低效应最明显,对土壤中细菌和真菌数量增加效应更为显著,与对照相比,增幅分别为-32.00%、-4.51%、3.51倍和9.00倍。与其他两种紫色土相比,碱性紫色土添加高量蚕豆根系分泌物浓缩液对土壤有效磷、速效钾、有效锌和有效铁含量活化效应最强,分别是对照的4.48倍、2.04倍、147.10%和128.00%。在中性紫色土上,添加高量蚕豆根系分泌物浓缩液对以上土壤有效养分和土壤微生物数量的影响介于酸性紫色土和碱性紫色土之间。总之,蚕豆根系分泌物对不同紫色土土壤有效养分(土壤碱解氮和pH除外)和土壤微生物活性有不同促进效应,这对于紫色土肥力培育有深远影响。%AbstractIn order to improve the fertility of purple soil and make reasonable use of faba bean, this study collected faba bean root exudates by solution cultivation and obtained the concentrated solution by vacuum rotary evaporator. Then a soil cultivation experiment was carried out with 2

  7. Water dynamics in the rhizosphere - a new model of coupled water uptake and mucilage exudation

    Science.gov (United States)

    Kroener, Eva; Holz, Maire; Ahmed, Mutez; Zarebanadkouki, Mohsen; Bittelli, Marco; Carminati, Andrea

    2016-04-01

    The flow of water from soil to plant roots is affected by the narrow region of soil close to the roots, the so-called rhizosphere. The rhizosphere is influenced by mucilage, a polymeric gel exuded by roots that alters the hydraulic properties of the rhizosphere. Here we present a model that accounts for: (a) an increase in equilibrium water retention curve caused by the water holding capacity of mucilage, (b) a reduction of hydraulic conductivity at a given water content due to the higher viscosity of mucilage and (c) the swelling and shrinking dynamics by decoupling water content and water potential and introducing a non-equilibrium water retention curve. The model has been tested for mixtures of soil and mucilage and we applied it to simulate observations of previous experiments with real plants growing in soil that show evidences of altered hydraulic dynamics in the rhizosphere. Furthermore we present results about how the parameters of the model depend on soil texture and root age. Finally we couple our hydraulic model to a diffusion model of mucilage into the soil. Opposed to classical solute transport models here the water flow in the rhizosphere is affected by the concentration distribution of mucilage.

  8. The Changes and Degradation of Tobacco Root Exudates in Tobacco Field with Continuous Cropping%连作烟田土壤根系分泌物的变化和分解

    Institute of Scientific and Technical Information of China (English)

    于会泳; 申国明; 高欣欣

    2014-01-01

    We analyzed contents of tobacco root exudates in 0-20 cm and 20-40 cm soil where tobacco had grown for 1 year, 2 years, and 3 years in order to investigate variation of exudates in tobacco field and identify allelochemicals. The results showed that the content of benzoic acid, 4-hydroxyphenylacetic acid, 3-oxygen-4-hydroxyphenylacetic acid and phthalic acid dioctyl ester in tobacco field were high, of which 4-hydroxyphenylacetic acid was the highest, and the content of 4-hydroxybutyric acid and glycerin were low. Hydroxybutyric acid, 3-methyl-2-hydroxy butyric acid, 4-hydroxybutyric acid, cinnamic acid, oleic acid, stearic acid amide and nicotine had no direct allelopathic influence to tobacco. The decomposition rates of cinnamic acid, 3-methoxy-4-hydroxyphenyl acetic acid, phthalic acid, 3-hydroxy benzoic acid, dioctyl phthalate, 4-hydroxyphenyl acetic acid and myristic acid were less than 50%. We proposed that the following acids were allelochemicals, including benzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, lauric acid, oterephthalic acid, 3-methoxy-4-hydroxyphenyl acetic acid, 3,4-dihydroxybenzoic acid, myristic acid, palmitic acid, 9,12-octadecadienoic acid, acrylic acid, scopoletin, cinnamic acid, phthalic acid dioctyl phthalate and 4-hydroxyphenylacetic acid.%为阐明烟田土壤中根系分泌物的变化规律及确定具有化感作用的根系分泌物种类,研究分析了种烟1年、连作2年和连作3年0~20 cm、20~40 cm烟田土壤中根系分泌物的含量变化,并通过室内试验研究了烟草根系分泌物的分解转化。结果表明:(1)烟田土壤中含量较高的根系分泌物种类有苯甲酸、4-羟基苯乙酸、3-甲氧基-4-羟基苯乙酸和邻苯二甲酸二辛酯,其中4-羟基苯乙酸含量最高,含量较低的种类有4-羟基丁酸和甘油;(2)羟基丁酸、3-甲基-2-羟基丁酸、4-羟基丁酸、肉桂酸、油酸、硬脂酸酰胺和烟碱对烟草无直接化感作用;(3)

  9. Copper-induced alteration in sucrose partitioning and its relationship to the root growth of two Elsholtzia haichowensis Sun populations.

    Science.gov (United States)

    Li, Min-Jing; Xiong, Zhi-Ting; Liu, Hui; Kuo, Yi-Ming; Tong, Lei

    2016-10-01

    Hydroponic culture was used to comparatively investigate the copper (Cu)-induced alteration to sucrose metabolism and biomass allocation in two Elsholtzia haichowensis Sun populations with one from a Cu-contaminated site (CS) and the other from a non-contaminated site (NCS). Experimental results revealed that biomass allocation preferred roots over shoots in CS population, and shoots over roots in NCS population under Cu exposure. The difference in biomass allocation was correlated with the difference in sucrose partitioning between the two populations. Cu treatment (45 μM) significantly decreased leaf sucrose content and increased root sucrose content in CS population as a result of the increased activities of leaf sucrose synthesis enzymes (sucrose phosphate synthetase and sucrose synthase) and root sucrose cleavage enzyme (vacuolar invertase), which led to increased sucrose transport from leaves to roots. In contrast, higher Cu treatment increased sucrose content in leaves and decreased sucrose content in roots in NCS population as a result of the decreased activities of root sucrose cleavage enzymes (vacuolar and cell wall invertases) that led to less sucrose transport from leaves to roots. These results provide important insights into carbon resource partitioning and biomass allocation strategies in metallophytes and are beneficial for the implementation of phytoremediation techniques. PMID:27153457

  10. Mapping Soil Carbon from Cradle to Grave: 'Omic and Isotope Based Measurements of Root C Transformations

    Science.gov (United States)

    Pett-Ridge, J.; Nuccio, E. E.; Shi, S.; Neurath, R.; Brodie, E.; Zhou, J.; Lipton, M. S.; Herman, D.; Firestone, M.

    2014-12-01

    Carbon cycling in the rhizosphere is a nexus of biophysical interactions between plant roots, microorganisms, and the soil organo-mineral matrix. Plant roots are the primary inputs of soil organic C; the presence of roots significantly alters rates of organic matter mineralization by soil microbes. Our research on how roots influence decomposition of soil organic matter in both simplified and complex microcosms uses geochemical characterization, molecular microbiology, isotope tracing, 'omics and novel imaging approaches ('ChipSIP' and 'STXM-SIMS') to trace the fate of isotopically labelled root exudates and plant tissues. Our work seeks to understand the genomic basis for how organic C transformation and decomposition in soil is altered by interactions between plant roots and the soil microbial community (bacteria, archaea, fungi, microfauna). We hypothesize that root-exudate stimulation of soil microbial populations results in the altered expression of transcripts and proteins involved in decomposition of macromolecular C compounds. Using an isotope array that allows us to follow root C into bacterial, fungal, and microfaunal communities, we have tracked movement of 13C from labeled exudates and 15N from labeled root litter into the soil microbial community, and linked this data to 16S profiles and community gene transcripts. By integrating stable isotopes as tracers of natural resource utilization (i.e. root litter), and analysis of the functional properties of the communities that respond to those resources, we can identify the molecular pathways that are stimulated in the soil microbiome in response to root litter, living roots, and their interfaces.

  11. 棉花根系分泌物对土壤速效养分和酶活性及微生物数量的影响%Effects of Cotton Root Exudates on Available Soil Nutrition, Enzyme Activity and Microorganism Quantity

    Institute of Scientific and Technical Information of China (English)

    赵小亮; 刘新虎; 贺江舟; 万传星; 龚明福; 张利莉

    2009-01-01

    采用水培法收集棉花根系分泌物,在耕作1年的土壤中添加棉花根系分泌物,培养10 d后测定土壤中速效养分、酶活性及微生物数量.结果显示,(1)棉花根系分泌物能极显著提高土壤中速效K和速效P含量4.31%~15.03%和5.99%~24.31%(P<0.01);高浓度分泌物处理下速效N含量比对照显著提高11.39%(P<0.05),其它处理影响不显著;各浓度分泌物对土壤有机质含量均无显著影响.(2)各浓度棉花根系分泌物均使土壤中转化酶活性显著提高,且随分泌物浓度的增加而显著增强;低浓度分泌物能显著提高土壤中磷酸酶的活性,所有浓度处理对土壤脲酶活性均无显著影响.(3)中、高浓度的棉花根系分泌物能显著增加土壤中细菌的数量,低浓度的分泌物能显著增加土壤中真菌的数量,而不同浓度处理的土壤中放线菌的数量均无显著的变化.研究表明,棉花根系分泌物可通过促进土壤细菌及土壤真菌的繁殖来增强土壤转化酶和磷酸酶活性,提高土壤速效P、速效K及速效N含量,从而对棉花根际微环境产生深刻影响.%Cotton seedlings were cultured in hydroponics,root exudates were collected by concentrating the deionized water,in which the cotton seedlings transferring to.Collected root exudates were subjected to the soil with cotton cultivation for one year.Soil available nutrition contents,enzyme activities and microorganism quantity were determined after ten days incubation of treated soil.The results showed that the root exudates of cotton can significantly enhance the contents of the available K and available P in soil.In three treatments,soil available P significantly increased by 5.99%,13.14% and 24.31% (P<0.01)and available K significantly elevated by 4.31%,8.26% and 15.03% (P<0.01).Only higher input of cotton root exudates improved the content of the available N by 11.39% (P<0.05) in soil.And any influence was observed in soil organic matter in all

  12. Properties of Plasma Membrane from Pea Root Seedlings under Altered Gravity

    Science.gov (United States)

    Klymchuk, D.; Baranenko, V.; Vorobyova, T. V.; Kurylenko, I.; Chyzhykova, O.; Dubovoy, V.

    In this study, the properties of pea (Pisum sativum L.) plasma membrane were examined to determine how the membrane structure and functions are regulated in response to clinorotation (2 rev/min) conditions. Membrane preparations enriched by plasma membrane vesicles were obtained by aqueous two-phase partitioning from 6-day seedling roots. The specific characteristics of H^+-ATPase, lípid composition and peroxidation intensity as well as fluidity of lipid bilayer were analysed. ATP hydrolytic activity was inhibited by ortovanadate and was insensitive to aside and nitrate in sealed plasma membrane vesicles isolated from both clinorotated and control seedlings. Plasma membrane vesicles from clinorotated seedlings in comparison to controls were characterised by increase in the total lipid/protein ratio, ATP hydrolytic activity and intensifying of lipid peroxidation. Sitosterol and campesterol were the predominant free sterol species. Clinorotated seedlings contained a slightly higher level of unsaturated fatty acid than controls. Plasma membrane vesicles were labelled with pyrene and fluorescence originating from monomeric (I_M) molecules and excimeric (I_E) aggregates were measured. The calculated I_E/I_M values were higher in clinorotated seedlings compared with controls reflecting the reduction in membrane microviscosity. The involvement of the changes in plasma membrane lipid content and composition, fluidity and H^+-ATPase activity in response of pea seedlings to altered gravity is discussed.

  13. 缺磷对紫云英根系分泌物产生及难溶性磷活化的影响%Effect of P Deficiency on the Emergence of Astragalus L.Root Exudates and Mobilization of Sparingly Soluble Phosphorus

    Institute of Scientific and Technical Information of China (English)

    兰忠明; 林新坚; 张伟光; 张辉; 吴一群

    2012-01-01

    [目的]探讨紫云英根分泌物对难溶性磷活化、吸收能力,以及不同紫云英基因型对难洛性磷活化差异.[方法]采用Hoagland营养液培养并收集紫云英根分泌物,经旋转蒸发仪减压、浓缩后,进行难溶性磷活化试验,利用高效液相色谱(HPLC)测定分泌物中有机酸成分及含量.[结果]缺磷胁迫下,不同基因型紫云英根半径减少,而根冠比和根比表面积较供磷有显著提高.紫云英根系分泌的有机酸有草酸、酒石酸、柠檬酸、苹果酸等,但主要为草酸;缺磷条件下,不同基因型紫云英分泌草酸存在显著差异,且各有机酸分泌量显著高于供磷时的分泌量.闽紫1号、浙紫5号和闽紫6号分泌的各种有机酸量明显高于余江大叶和弋江籽分泌的量.缺磷和供磷下,紫云英根系分泌物对难溶性A1-P和Fe-P都具有一定的活化能力,其活化值(P)分别为36.40-157.39 μg·g-1、32.20-139.42μg·g-1,缺磷根系分泌物对难溶性磷的活化量高于供磷处理,而且A1-P的活化能力略高于Fe-P.通过活化模拟试验,也证实不同有机酸可活化难洛性A1-P、Fe-P且差异显著.[结论]缺磷胁迫能促进紫云英分泌有机酸,显著增加对难溶性磷的活化效果;基因型之间紫云英对磷的活化效果差异较为明显,显现出紫云英品种间的差异性;栽培紫云英有利于改善南方红壤地区缺磷土壤磷素养分循环.然而科学地评价有机酸对A1-P和Fe-P的活化能力还有待于进一步研究.%[Objective] The objective of this study was to investigate the mobilization and uptake capacity of sparingly soluble phosphorus by root exudate of Astragalus L, and genotypic variation of different Astragalus L. in activation of sparingly soluble phosphorus. [Method] Hoagland nutrient solution culture was carried out to collect root exudate and test the mobilization of sparingly soluble phosphorus via concentrated vacuum rotary evaporator, and the content

  14. Organic fertilization alters the community composition of root associated fungi in Pisum sativum

    DEFF Research Database (Denmark)

    Yu, L.; Nicolaisen, M.; Ravnskov, S.;

    2013-01-01

    Organic fertilization is well known to affect individual functional groups of root associated fungi such as arbuscular mycorrhizal (AM) fungi and root pathogens, but limited information is available on the effect of organic fertilization at the fungal community composition level. The main objecti......, the organic fertilizer Protamylasse clearly affects communities of root associated fungi, which seems to be linked to the life strategy of the different functional groups of root associated fungi. --------------------------------------------------------------------------------......Organic fertilization is well known to affect individual functional groups of root associated fungi such as arbuscular mycorrhizal (AM) fungi and root pathogens, but limited information is available on the effect of organic fertilization at the fungal community composition level. The main objective...... of the present study was to examine the response of communities of root associated fungi in Pisum sativum to Protamylasse, an organic fertilizer used in pea production. Plants were grown in pots with field soil amended with four different levels of Protamylasse. 454 pyrosequencing was employed to examine...

  15. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system.

    Science.gov (United States)

    López-Bucio, José; Hernández-Abreu, Esmeralda; Sánchez-Calderón, Lenin; Nieto-Jacobo, María Fernanda; Simpson, June; Herrera-Estrella, Luis

    2002-05-01

    The postembryonic developmental program of the plant root system is plastic and allows changes in root architecture to adapt to environmental conditions such as water and nutrient availability. Among essential nutrients, phosphorus (P) often limits plant productivity because of its low mobility in soil. Therefore, the architecture of the root system may determine the capacity of the plant to acquire this nutrient. We studied the effect of P availability on the development of the root system in Arabidopsis. We found that at P-limiting conditions (increase in auxin sensitivity in the roots of P-deprived Arabidopsis seedlings. It was also found that the axr1-3, axr2-1, and axr4-1 Arabidopsis mutants have normal responses to low P availability conditions, whereas the iaa28-1 mutant shows resistance to the stimulatory effects of low P on root hair and lateral root formation. Analysis of ethylene signaling mutants and treatments with 1-aminocyclopropane-1-carboxylic acid showed that ethylene does not promote lateral root formation under P deprivation. These results suggest that in Arabidopsis, auxin sensitivity may play a fundamental role in the modifications of root architecture by P availability. PMID:12011355

  16. Does the Presence of Detached Root Border Cells of Zea mays Alter the Activity of the Pathogenic Nematode Meloidogyne incognita?

    Science.gov (United States)

    Rodger, S; Bengough, A G; Griffiths, B S; Stubbs, V; Young, I M

    2003-09-01

    ABSTRACT The root-knot nematode Meloidogyne incognita is a major pathogen of a range of important crops. Currently, control is typically achieved by the use of nematicides. However, recent work suggests that manipulating the ability of roots to slough off border cells, which then act as a decoy to the nematode, can significantly decrease damage to the roots. We investigated the attractiveness of border cells to M. incognita and the response of the nematode to border cells in close proximity. We found very limited attraction, in that nematodes did not preferentially alter direction to move toward the border cells, but a large and significant increase in nematode speed was observed once they were in the immediate vicinity of border cells. We discuss the results in the context of physical and biological mechanisms in relation to the control of pathogenic nematodes.

  17. Morphological and Physiological Alteration of Maize Root Architectures on Drought Stress.

    Science.gov (United States)

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Research experiments were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought s...

  18. Morphological and biological alteration of maize root architectures on drought stress

    Science.gov (United States)

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Studies were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought stress in corn...

  19. KATP channel subunits in rat dorsal root ganglia: alterations by painful axotomy

    Directory of Open Access Journals (Sweden)

    Gemes Geza

    2010-01-01

    Full Text Available Abstract Background ATP-sensitive potassium (KATP channels in neurons mediate neuroprotection, they regulate membrane excitability, and they control neurotransmitter release. Because loss of DRG neuronal KATP currents is involved in the pathophysiology of pain after peripheral nerve injury, we characterized the distribution of the KATP channel subunits in rat DRG, and determined their alterations by painful axotomy using RT-PCR, immunohistochemistry and electron microscopy. Results PCR demonstrated Kir6.1, Kir6.2, SUR1 and SUR2 transcripts in control DRG neurons. Protein expression for all but Kir6.1 was confirmed by Western blots and immunohistochemistry. Immunostaining of these subunits was identified by fluorescent and confocal microscopy in plasmalemmal and nuclear membranes, in the cytosol, along the peripheral fibers, and in satellite glial cells. Kir6.2 co-localized with SUR1 subunits. Kir6.2, SUR1, and SUR2 subunits were identified in neuronal subpopulations, categorized by positive or negative NF200 or CGRP staining. KATP current recorded in excised patches was blocked by glybenclamide, but preincubation with antibody against SUR1 abolished this blocking effect of glybenclamide, confirming that the antibody targets the SUR1 protein in the neuronal plasmalemmal membrane. In the myelinated nerve fibers we observed anti-SUR1 immunostaining in regularly spaced funneled-shaped structures. These structures were identified by electron microscopy as Schmidt-Lanterman incisures (SLI formed by the Schwann cells. Immunostaining against SUR1 and Kir6.2 colocalized with anti-Caspr at paranodal sites. DRG excised from rats made hyperalgesic by spinal nerve ligation exhibited similar staining against Kir6.2, SUR1 or SUR2 as DRG from controls, but showed decreased prevalence of SUR1 immunofluorescent NF200 positive neurons. In DRG and dorsal roots proximal to axotomy SLI were smaller and showed decreased SUR1 immunofluorescence. Conclusions We

  20. Aqueous root extract ofLecaniodiscus cupanioides restores the alterations in testicular parameters of sexually impaired male rats

    Institute of Scientific and Technical Information of China (English)

    Quadri O Nurudeen; Taofeek O Ajiboye

    2012-01-01

    Objective:This study aimed to investigate the effects of aqueous root extract ofLecaniodiscus cupanioides (L.cupanioides)on the alterations in the testicular parameters of paroxetine-treated rats.Methods:Group A rats which is the control received distilled water orally for 5 d. Groups B, C, D, E and F consisted of paroxetine-induced sexual dysfunction rats. In addition, Groups C, D, E and F rats were orally treated with 25, 50 and 100 mg/kg body weight of the extract and 7.14 mg/kg body weight of PowMax once daily for 5 d respectively.Results:Paroxetine-induced sexual dysfunction resulted into significant (P<0.05) reduction in the levels of testicular protein, sialic acid, glycogen and cholesterols. These decrease were dose dependently reversed by aqueous root extract ofL. cupanioides. The decrease in the specific activities of acid and alkaline phosphatases, lactate dehydrogenase and gamma-glutamyl transferase in the testes of paroxetine-treated rats were significantly (P<0.05) reversed. Testicular testosterone level decreased significantly (P<0.05) in sexually impaired rats. This decrease was significantly prevented by aqueous root extract ofL. cupanioides. All these alterations brought about by the administration of the extract (25 and 50 mg/kg body weight) compared significantly (P<0.05) with the reference drug, while the 100 mg/kg body weight of the extract compared significantly (P<0.05) with the control.Conclusions:The results of this study showed that aqueous root extract ofL. cupanioidesrestored the alterations in the testicular function parameters of sexually impaired rats. Thus supporting the use of the plants in the management of sexual dysfunction in the folkloric medicine of Nigeria.

  1. Moth outbreaks alter root-associated fungal communities in subarctic mountain birch forests.

    Science.gov (United States)

    Saravesi, Karita; Aikio, Sami; Wäli, Piippa R; Ruotsalainen, Anna Liisa; Kaukonen, Maarit; Huusko, Karoliina; Suokas, Marko; Brown, Shawn P; Jumpponen, Ari; Tuomi, Juha; Markkola, Annamari

    2015-05-01

    Climate change has important implications on the abundance and range of insect pests in forest ecosystems. We studied responses of root-associated fungal communities to defoliation of mountain birch hosts by a massive geometrid moth outbreak through 454 pyrosequencing of tagged amplicons of the ITS2 rDNA region. We compared fungal diversity and community composition at three levels of moth defoliation (intact control, full defoliation in one season, full defoliation in two or more seasons), replicated in three localities. Defoliation caused dramatic shifts in functional and taxonomic community composition of root-associated fungi. Differentially defoliated mountain birch roots harbored distinct fungal communities, which correlated with increasing soil nutrients and decreasing amount of host trees with green foliar mass. Ectomycorrhizal fungi (EMF) abundance and richness declined by 70-80 % with increasing defoliation intensity, while saprotrophic and endophytic fungi seemed to benefit from defoliation. Moth herbivory also reduced dominance of Basidiomycota in the roots due to loss of basidiomycete EMF and increases in functionally unknown Ascomycota. Our results demonstrate the top-down control of belowground fungal communities by aboveground herbivory and suggest a marked reduction in the carbon flow from plants to soil fungi following defoliation. These results are among the first to provide evidence on cascading effects of natural herbivory on tree root-associated fungi at an ecosystem scale. PMID:25687127

  2. Moth outbreaks alter root-associated fungal communities in subarctic mountain birch forests.

    Science.gov (United States)

    Saravesi, Karita; Aikio, Sami; Wäli, Piippa R; Ruotsalainen, Anna Liisa; Kaukonen, Maarit; Huusko, Karoliina; Suokas, Marko; Brown, Shawn P; Jumpponen, Ari; Tuomi, Juha; Markkola, Annamari

    2015-05-01

    Climate change has important implications on the abundance and range of insect pests in forest ecosystems. We studied responses of root-associated fungal communities to defoliation of mountain birch hosts by a massive geometrid moth outbreak through 454 pyrosequencing of tagged amplicons of the ITS2 rDNA region. We compared fungal diversity and community composition at three levels of moth defoliation (intact control, full defoliation in one season, full defoliation in two or more seasons), replicated in three localities. Defoliation caused dramatic shifts in functional and taxonomic community composition of root-associated fungi. Differentially defoliated mountain birch roots harbored distinct fungal communities, which correlated with increasing soil nutrients and decreasing amount of host trees with green foliar mass. Ectomycorrhizal fungi (EMF) abundance and richness declined by 70-80 % with increasing defoliation intensity, while saprotrophic and endophytic fungi seemed to benefit from defoliation. Moth herbivory also reduced dominance of Basidiomycota in the roots due to loss of basidiomycete EMF and increases in functionally unknown Ascomycota. Our results demonstrate the top-down control of belowground fungal communities by aboveground herbivory and suggest a marked reduction in the carbon flow from plants to soil fungi following defoliation. These results are among the first to provide evidence on cascading effects of natural herbivory on tree root-associated fungi at an ecosystem scale.

  3. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars

    Energy Technology Data Exchange (ETDEWEB)

    Daud, M.K.; Sun, Yuqiang; Dawood, M. [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Hayat, Y. [Institute of Bioinformatics, Zhejiang University, Hangzhou 310029 (China); Variath, M.T.; Wu Yuxiang [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Raziuddin [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Plant Breeding and Genetics Department, NWFP Agricultural University Peshawar, Peshawar (Pakistan); Mishkat, Ullah [Zoological Sciences Division, Pakistan Museum of Natural History, Garden Avenue, Shakarparian, Islamabad 44000 (Pakistan); Salahuddin [District Agriculture Extension Offices, Bannu Road, Dera Ismail Khan (NWFP) (Pakistan); Najeeb, Ullah [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Zhu, Shuijin [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China)], E-mail: shjzhu@zju.edu.cn

    2009-01-15

    The toxic effect of cadmium (Cd) at increasing concentrations was studied with special attention being given to the root morphological and ultrastructural changes in two transgenic cotton cultivars viz. BR001 and GK30 and their wild relative viz. Coker 312. In comparison to their respective controls, low concentration (10 and 100 {mu}M) of Cd greatly stimulated seed germination, while it was inhibited by highest concentration of Cd (1000 {mu}M) in case of two transgenic cultivars. However, in Coker 312 the seed germination percentage progressively decreased over the control at all Cd levels. Various physiological and morphological parameters of the root and whole plant in both transgenic cotton cultivars and their relative wild cotton genotype respond differently towards the Cd toxicity. Bioavailability of Cd was concentration-dependent where seedling root captured more Cd as compared to shoot. BR001 accumulated more Cd followed by GK30, while Coker 312 was less Cd accumulator. The ultrastructural modifications in the root tip cells of both the transgenic cotton cultivars and their wild relative were also dose-dependent. With the increase in Cd levels, the fine structures of their root cells also invariably changed. Increase in plasmolysis of the plasma membrane, greater number of nucleoli and vacuoles and enlarged vacuoles could be observed in both transgenic cotton cultivars. In comparison to them, Coker 312 showed relatively well developed ultrastructures of the root tips except enlarged vacuoles and greater number of mitochondria. Moreover, the accumulation of Cd in the form of electron dense granules and crystals both in vacuoles and attached to cell walls were visible in both transgenic cotton cultivars and their wild relative. These results suggest that both transgenic cotton cultivars and their wild relative cotton genotype responded positively towards Cd stress at seedling stage, the internal Cd-detoxification might be through apoplastic and symplastic

  4. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars

    International Nuclear Information System (INIS)

    The toxic effect of cadmium (Cd) at increasing concentrations was studied with special attention being given to the root morphological and ultrastructural changes in two transgenic cotton cultivars viz. BR001 and GK30 and their wild relative viz. Coker 312. In comparison to their respective controls, low concentration (10 and 100 μM) of Cd greatly stimulated seed germination, while it was inhibited by highest concentration of Cd (1000 μM) in case of two transgenic cultivars. However, in Coker 312 the seed germination percentage progressively decreased over the control at all Cd levels. Various physiological and morphological parameters of the root and whole plant in both transgenic cotton cultivars and their relative wild cotton genotype respond differently towards the Cd toxicity. Bioavailability of Cd was concentration-dependent where seedling root captured more Cd as compared to shoot. BR001 accumulated more Cd followed by GK30, while Coker 312 was less Cd accumulator. The ultrastructural modifications in the root tip cells of both the transgenic cotton cultivars and their wild relative were also dose-dependent. With the increase in Cd levels, the fine structures of their root cells also invariably changed. Increase in plasmolysis of the plasma membrane, greater number of nucleoli and vacuoles and enlarged vacuoles could be observed in both transgenic cotton cultivars. In comparison to them, Coker 312 showed relatively well developed ultrastructures of the root tips except enlarged vacuoles and greater number of mitochondria. Moreover, the accumulation of Cd in the form of electron dense granules and crystals both in vacuoles and attached to cell walls were visible in both transgenic cotton cultivars and their wild relative. These results suggest that both transgenic cotton cultivars and their wild relative cotton genotype responded positively towards Cd stress at seedling stage, the internal Cd-detoxification might be through apoplastic and symplastic binding

  5. PLASMA-MEMBRANE LIPID ALTERATIONS INDUCED BY NACL IN WINTER-WHEAT ROOTS

    NARCIS (Netherlands)

    MANSOUR, MMF; VANHASSELT, PR; KUIPER, PJC

    1994-01-01

    A highly enriched plasma membrane fraction was isolated by two phase partitioning from wheat roots (Triticum aestivum L. cv. Vivant) grown with and without 100 mM NaCl. The lipids of the plasma membrane fraction were extracted and characterized. Phosphatidylcholine and phosphatidylethanolamine were

  6. Tannins Alter Soil Organic Matter Extraction, Solubility of Metals, and Root Physiology

    Science.gov (United States)

    Tannins are common plant-derived polyphenolic compounds that precipitate proteins and react with other biomolecules but knowledge of their effects on soil organic matter, the solubility of metals, and root physiology is incomplete. Soil from forest and pasture systems was treated with tannic acid (...

  7. Bioavailability of zinc and phosphorus in calcareous soils as affected by citrate exudation

    OpenAIRE

    Duffner, A.; Hoffland, E.; Temminghoff, E. J. M.

    2012-01-01

    Aims Zinc (Zn) and phosphorus (P) deficiency often occurs at the same time and limits crop production in many soils. It has been suggested that citrate root exudation is a response of plants to both deficiencies. We used white lupin (Lupinus albus L.) as a model plant to clarify if citrate exuded by roots could increase the bioavailability of Zn and P in calcareous soils. Methods White lupin was grown in nutrient solution and in two calcareous soils in a rhizobox. Rhizosphere soil solution wa...

  8. Cadmium-induced Functional and Ultrastructural Alterations in Roots of Two Transgenic Cotton Cultivars

    Institute of Scientific and Technical Information of China (English)

    DAUD M K; SUN Yu-qiang; ZHU Shui-jin

    2008-01-01

    @@ The toxic effect of cadmium (Cd) at increasing concentrations has been studied with special attention being given to root morphological and ultrastructural changes in two transgenic cotton cultivars viz.BR001 and GK30 and their wild relative cotton genotype viz.Coker 312.In comparison to their respective controls,low concentration (10 and 100 M) of Cd greatly stimulated seed germination,while it was inhibited by highest concentration of Cd (1000 M) in case of two transgenic cultivars.

  9. Cerebroside C increases tolerance to chilling injury and alters lipid composition in wheat roots.

    Directory of Open Access Journals (Sweden)

    Hong-Xia Li

    Full Text Available Chilling tolerance was increased in seed germination and root growth of wheat seedlings grown in media containing 20 µg/mL cerebroside C (CC, isolated from the endophytic Phyllosticta sp. TG78. Seeds treated with 20 µg/mL CC at 4 °C expressed the higher germination rate (77.78%, potential (23.46%, index (3.44 and the shorter germination time (6.19 d; root growth was also significantly improved by 13.76% in length, 13.44% in fresh weight and 6.88% in dry mass compared to controls. During the cultivation process at 4 °C for three days and the followed 24 h at 25 °C, lipid peroxidation, expressed by malondialdehyde (MDA content and relative membrane permeability (RMP was significantly reduced in CC-treated roots; activities of lipoxygenase (LOX, phospholipid C (PLC and phospholipid D (PLD were inhibited by 13.62-62.26%, 13.54-63.93% and 13.90-61.17%, respectively; unsaturation degree of fatty acids was enhanced through detecting the contents of CC-induced linoleic acid, linolenic acid, palmitic acid and stearic acid using GC-MS; capacities of superoxide dismutase (SOD, catalase (CAT and glutathione peroxidase (GSH-Px were individually increased by 7.69-46.06%, 3.37-37.96%, and -7.00-178.07%. These results suggest that increased chilling tolerance may be due, in part, to the reduction of lipid peroxidation and alternation of lipid composition of roots in the presence of CC.

  10. Identification of phenolic acids in tobacco root exudates and their role in the growth of rhizosphere microorganisms%烟草根系分泌物酚酸类物质的鉴定及其对根际微生物的影响

    Institute of Scientific and Technical Information of China (English)

    刘艳霞; 李想; 蔡刘体; 张恒; 石俊雄

    2016-01-01

    [Objectives] Tobacco continuous mono-cropping has caused very serious problems, including soil-borne disease outbreak, tobacco growth suppression, yield reduction and quality decline.Allelopathy comes from tobacco and soil microorganisms may be one of the most important reasons leading to mono-cropping obstacle. Tobacco root exudates ( TRE) play a key role in the plant-microorganism interactions in the rhizosphere.It is of great importance to explore effect of tobacco root exudates on rhizosphere microorganisms.[Methods] In this study, the main phenolic acids were screened and identified by the UPLC-Q-TOF/MS method, and their contents in tobacco root exudates were evaluated.Effect of identified phenolic acids from TRE in liqiud medium on pathogen and its antagonist was investigated by applying exogenous phenolic acids.Besides, the soil was added with the identified phenolic acids and cultured for 3 d.After that, the rhizosphere microbial diversities and counts, especially the population of pathogen Ralstonia solanacearum and its antagonist Brevibacillus brevis in the soil were measured.[Results] 1 ) The tobacco root exudates promote the growth of pathogen by 16.8% and suppress the growth of antagonist by 29.4%.2 ) Two phenolic acids are screened and identified by UPLC-Q-TOF/MS with the concentrations of 0.25 μg/g and 1.15 μg/g dry root, respectively.3 ) When the exogenous phenolic acids were added to the culture media, low concentrations of benzoic acid (≤2 μg/L) and 3-phenylpropanoic acid (≤3μg/L) promote the growth of the pathogen and antagonist, and the 4μg/L benzoic acid does not significantly affect R.solanacearum, whereas the population of antagonist is decreased by 90.2%.The 6 μg/L 3-phenylpropanoic acid promotes the growth of the pathogen while inhibits the growth of antagonist by 81.1%.High concentrations of benzoic acid (≥ 4 μg/L ) and 3-phenylpropanoic acid (≥ 7 μg/L ) significantly suppress the pathogen and antagonist.4) When the soil

  11. Alterations of physiology and gene expression due to long-term magnesium-deficiency differ between leaves and roots of Citrus reticulata.

    Science.gov (United States)

    Jin, Xiao-Lin; Ma, Cui-Lan; Yang, Lin-Tong; Chen, Li-Song

    2016-07-01

    Seedlings of Ponkan (Citrus reticulata) were irrigated with nutrient solution containing 0 (Mg-deficiency) or 1mM MgSO4 (control) every two day for 16 weeks. Thereafter, we examined magnesium (Mg)-deficiency-induced changes in leaf and root gas exchange, total soluble proteins and gene expression. Mg-deficiency lowered leaf CO2 assimilation, and increased leaf dark respiration. However, Mg-deficient roots had lower respiration. Total soluble protein level was not significantly altered by Mg-deficiency in roots, but was lower in Mg-deficient leaves than in controls. Using cDNA-AFLP, we obtained 70 and 71 differentially expressed genes from leaves and roots. These genes mainly functioned in signal transduction, stress response, carbohydrate and energy metabolism, cell transport, cell wall and cytoskeleton metabolism, nucleic acid, and protein metabolisms. Lipid metabolism (Ca(2+) signals)-related Mg-deficiency-responsive genes were isolated only from roots (leaves). Although little difference existed in the number of Mg-deficiency-responsive genes between them both, most of these genes only presented in Mg-deficient leaves or roots, and only four genes were shared by them both. Our data clearly demonstrated that Mg-deficiency-induced alterations of physiology and gene expression greatly differed between leaves and roots. In addition, we focused our discussion on the causes for photosynthetic decline in Mg-deficient leaves and the responses of roots to Mg-deficiency. PMID:27163764

  12. Malate Exudation by Six Aerobic Rice Genotypes Varying in Zinc Uptake Efficiency

    NARCIS (Netherlands)

    Gao, X.; Zhang, F.; Hoffland, E.

    2009-01-01

    Received for publication February 2, 2009. Zinc (Zn) uptake by plant roots from soils low in plant-available Zn may be increased by Zn-mobilizing rhizosphere processes, including exudation of low-molecular-weight organic anions. A rhizotron experiment with a low Zn clay soil and a nutrient solution

  13. Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency

    NARCIS (Netherlands)

    Hoffland, E.; Wei, C.Z.; Wissuwa, M.

    2006-01-01

    The objectives of this paper were to determine (1) if lowland rice (Oryza sativa L.) plants respond similarly to low zinc (Zn) and phosphorus (P) availability by increased root exudation of low-molecular weight organic anions (LMWOAs) and (2) if genotypic variation in tolerance to low soil supply of

  14. Segregation and Alteration of Phenolic and Aliphatic Components of Root and Leaf Litter by Detritivores and Microbes

    Science.gov (United States)

    Filley, T. R.; Altmann, J.; Szlavecz, K. A.; Kalbitz, K.; Gamblin, D.; Nierop, K.

    2012-12-01

    The physical and microbial transformation of plant detritus in the litter layer and soil is accompanied by chemical separation of progressively soluble fractions and their movement into the rhizosphere driving subsequent soil processes. We investigated the combined action of specific detritivores, microbial decay, and leaching on the chemical separation of plant aromatic and aliphatic components from root, wood, and leaf tissue using 13C-TMAH thermochemolysis. This method enabled the simultaneous analysis of hydrolyzable tannin and lignin fragments, substituted fatty acids, and condensed tannin composition and revealed process-specific chemical transformations to plant secondary compounds. Long-term incubation and field sampling demonstrated how plant residues are progressively leached of the water soluble, oxidized fragments generated through decay. The residues appeared only slightly altered, in the case of brown rot wood, or enriched in aliphatic fragments, in the case of leaf and root tissue. Water extractable fractions were always selectively dominated by polyphenolics, either as demethylated lignin or tannins, and nearly devoid of aliphatic materials, despite high concentrations in the starting materials. Additionally, for plant materials with high tannin contents, such as pine needles, consumption and passage through some arthropod guts revealed what appeared to be microbially-mediated methylation of phenols, and a loss of tannins in leachates. These findings are indications for an in-situ phenol detoxification mechanism. This research provides important information regarding the links between biochemical decay and the chemical nature of organic matter removed and remaining in the soil profile.

  15. Micropropagation and Phenolic exudation protocol for Excoecaria agallocha-an important mangrove

    Institute of Scientific and Technical Information of China (English)

    Manickam Arumugam; Rajaram Panneerselvam

    2012-01-01

    Objective: To develop a standard micropropagation protocol for an important vulnerable mangrove Excoecaria agallocha. Methods: Collection of explants, surface sterilization, phenolic exudation and medium was standardized. Shoot induction, shoot multiplication and rooting were carried out in MMS medium supplemented with BAP, Kinetin, Zeatin, 2ip, NAA, IAA and IBA. Hardening was carried out after root well established. Results: The best phenolic exudation removal was resulted in 4 g/L activated charcoal. The maximum shoot induction response showed in MMS medium and better shoot induction was performed in the concentration of BAP (3.9 μmol) and NAA (1.34 μmol). Rooting induction was performed high range at 5.02 μmol of IAA. Well rooted micro-shoots were hardened and acclimatized. Conclusions: From the present investigation, it can be concluded that a standard micropropagation protocol was developed for an important vulnerable mangrove species.

  16. Marsh plant response to metals: Exudation of aliphatic low molecular weight organic acids (ALMWOAs)

    Science.gov (United States)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2016-03-01

    Metal exposure is known to induce the production and secretion of substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere by plant roots. Knowledge on this matter is extensive for soil plants but still considerably scarce regarding marsh plants roots adapted to high salinity media. Phragmites australis and Halimione portulacoides, two marsh plants commonly distributed in European estuarine salt marshes, were used to assess the response of roots of both species, in terms of ALMWOAs exudation, to Cu, Ni and Cd exposure (isolated and in mixture since in natural environment, they are exposed to mixture of metals). As previous studies were carried out in unrealistic and synthetic media, here a more natural medium was selected. Therefore, in vitro experiments were carried out, with specimens of both marsh plants, and in freshwater contaminated with two different Cu, Ni and Cd concentrations (individual metal and in mixture). Both marsh plants were capable of liberating ALMWOAs into the surrounding medium. Oxalic, citric and maleic acids were found in P. australis root exudate solutions and oxalic and maleic acids in H. portulacoides root exudate solutions. ALMWOA liberation by both plants was plant species and metal-dependent. For instance, Cu affected the exudation of oxalic acid by H. portulacoides and of oxalic and citric acids by P. australis roots. In contrast, Ni and Cd did not stimulate any specific response. Regarding the combination of all metals, H. portulacoides showed a similar response to that observed for Cu individually. However, in the P. australis case, at high metal concentration mixture, a synergetic effect led to the increase of oxalic acid levels in root exudate solution and to a decrease of citric acid liberation. A correlation between ALMWOAs exudation and metal accumulation could not be established. P. australis and H. portulacoides are considered suitable metal phytoremediators of estuarine impacted areas

  17. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light.

    Science.gov (United States)

    Buer, Charles S; Muday, Gloria K

    2004-05-01

    We examined whether flavonoids act as endogenous auxin transport regulators during gravity vector and light intensity changes in Arabidopsis thaliana roots. Flavonoid deficient transparent testa4 [tt4(2YY6)] seedlings had elevated root basipetal auxin transport compared with the wild type, consistent with the absence of a negative auxin transport regulator. The tt4(2YY6) roots had delayed gravitropism that was chemically complemented with a flavonoid intermediate. Flavonoid accumulation was found in wild-type columella cells, the site of gravity perception, and in epidermal and cortical cells, the site of differential growth, but flavonoid accumulation was absent in tt4(2YY6) roots. Flavonoid accumulation was higher in gravity-stimulated root tips as compared with vertical controls, with maximum differences coinciding with the timing of gravitropic bending, and was located in epidermal cells. Exogenous indole-3-acetic acid (IAA) also elevated flavonoid accumulation, suggesting that flavonoid changes in response to gravity might be partly as a result of changing IAA distribution. Acropetal IAA transport was also elevated in roots of tt4(2YY6). Flavonoid synthesis was repressed in the dark, as were differences in root acropetal transport in tt4(2YY6). These results are consistent with light- and gravity-induced flavonoid stimulation that alters auxin transport in roots and dependent physiological processes, including gravitropic bending and root development.

  18. Alteration of P2X3 expression in dorsal root ganglia after sciatic nerve ligation

    Institute of Scientific and Technical Information of China (English)

    Guoxing Zhou; Lesi Xie; Qiben Wang; Qingping Yu; Xiaofu Liu; Qiumei Liu; Wei Peng; Zhicheng Zeng

    2007-01-01

    BACKGROUND: The expressions of P2X3 receptor in dorsal root ganglia (DRG) after different peripheral nerve injuries are diverse. It indicates the different roles of P2X3 in different models-caused neuropathologic pains.OBJECTIVE: To observe the expressions of P2X3 in corresponding DRG after sciatic nerve ligation in rats.DESIGN: Controlled observation experiment.SETTING: Department of Morphology, Hunan Traditional Chinese Medical College; Department of Human Anatomy and Neurobiology, Xiangya Medical College, Central South University.MATERIALS: Thirty-five healthy adult SD rats of clean grade an d either gender, weighing (200±20) g,were involved. According to the random digits table, the involved rats were randomized into 3 groups:normal group (n =5), sham-operated group (n =5) and experimental group (n =25). The experimental group were subdivided into 3, 7, 14, 21, 28 days groups according to different surviving time after operation, 5 rats at each time point. Polyclonal rabbit anti-P2X3 antibody (ABCAM company); biotinylated goat anti-rabbit IgG (Zhongshanjingqiao Biotechnical Co., Ltd., Beijing); Motic fluorescence microscope (Motic, Germany).METHODS: The experiments were carried out in the Department of Human Anatomy and Neurobiology,Xiangya Medical College, Central South University from June to December 2006. ① Rats of experimental group were created into models by ligation of right sciatic nerve according to the method of Seltzer et al. Left sciatic nerve was used as self-control. As for rats in the sham-operated group, ligation of sciatic nerve was omitted, but other procedures were the same as those in the experimental group. Rats of normal group were untouched. ② Rats of the normal group and sham-operated group survived for 14 days separately, and those of experimental group survived for corresponding time. After being deeply anesthetized by intraperitoneal injection of over-dose sodium pentobarbital, the rats of experimental group were transcardially

  19. Subretinal lipid exudation associated with untreated choroidal melanoma

    Directory of Open Access Journals (Sweden)

    C K Minija

    2011-01-01

    Full Text Available Subretinal lipid exudation in an untreated choroidal melanoma is very rare. It is seen following plaque radiotherapy in choroidal melanoma. There is only one case report of untreated choroidal melanoma with massive lipid exudation in a patient with metastatic hypernephroma. We report here a rare case of untreated choroidal melanoma with lipid exudation. Subretinal exudation that is rarely seen following plaque brachytherapy was noted at the borders of this untreated tumor. Lipid exudation partially resolved following brachytherapy.

  20. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules

    Directory of Open Access Journals (Sweden)

    Manuella Nóbrega Dourado

    2013-12-01

    Full Text Available Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules and/or by the plant roots (e.g. flavonoids, ethanol and methanol, respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones and plant exudates (including ethanol in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF, adaptation to stressful environment (crtI, phoU and sss, to interactions with plant metabolism compounds (acdS and pathogenicity (patatin and phoU. Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization, which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction.

  1. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules.

    Science.gov (United States)

    Dourado, Manuella Nóbrega; Bogas, Andrea Cristina; Pomini, Armando M; Andreote, Fernando Dini; Quecine, Maria Carolina; Marsaioli, Anita J; Araújo, Welington Luiz

    2013-12-01

    Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically) with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules) and/or by the plant roots (e.g. flavonoids, ethanol and methanol), respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones) and plant exudates (including ethanol) in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF), adaptation to stressful environment (crtI, phoU and sss), to interactions with plant metabolism compounds (acdS) and pathogenicity (patatin and phoU). Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization), which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction. PMID:24688531

  2. Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals.

    Directory of Open Access Journals (Sweden)

    Muhammad Tariq

    Full Text Available Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores, their parasitoids, and a dipteran species (root herbivore.We tested the hypotheses that: (1 high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2 drought stress and root herbivory change the profile of volatile organic chemicals (VOCs emitted by the host plant; (3 parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference, plant volatile emissions, parasitism success (performance, and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40-55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial

  3. Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals.

    Science.gov (United States)

    Tariq, Muhammad; Wright, Denis J; Bruce, Toby J A; Staley, Joanna T

    2013-01-01

    Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40-55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may be

  4. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress

    International Nuclear Information System (INIS)

    The effect of chromium (Cr) stress on the changes of rhizosphere pH, organic acid exudation, and Cr accumulation in plants was studied using two rice genotypes differing in grain Cr accumulation. The results showed that rhizosphere pH increased with increasing level of Cr in the culture solution and with an extended time of Cr exposure. Among the six organic acids examined in this experiment, oxalic and malic acid contents were relatively higher, and had a significant positive correlation with the rhizosphere pH, indicating that they play an important role in changing rhizosphere pH. The Cr content in roots was significantly higher than that in stems and leaves. Cr accumulation in plants was significantly and positively correlated with rhizosphere pH, and the exudation of oxalic, malic and citric acids, suggesting that an increase in rhizosphere pH, and exudation of oxalic, malic and citric acid enhances Cr accumulation in rice plants. - Rhizosphere pH and organic acid exudation of rice roots are markedly affected by chromium level in culture solution

  5. Non-invasive analysis of root-soil interaction using three complementary imaging approaches

    Science.gov (United States)

    Haber-Pohlmeier, Sabina; Tötzke, Christian; Pohlmeier, Andreas; Rudolph-Mohr, Nicole; Kardjilov, Nikolay; Lehmann, Eberhard; Oswald, Sascha E.

    2016-04-01

    Plant roots are known to modify physical, chemical and biological properties of the rhizosphere, thereby, altering conditions for water and nutrient uptake. We aim for capturing the dynamic processes occurring at the soil-root interface in situ. A combination of neutron (NI), magnetic resonance (MRI) and micro-focus X-ray tomography (CT) is applied to monitor the rhizosphere of young plants grown in sandy soil in cylindrical containers (diameter 3 cm). A novel transportable low field MRI system is operated directly at the neutron facility allowing for combined measurements of the very same sample capturing the same hydro-physiological state. The combination of NI, MRI and CT provides three-dimensional access to the root system in respect to structure and hydraulics of the rhizosphere and the transport of dissolved marker substances. The high spatial resolution of neutron imaging and its sensitivity for water can be exploited for the 3D analysis of the root morphology and detailed mapping of three-dimensional water content at the root soil interface and the surrounding soil. MRI has the potential to yield complementary information about the mobility of water, which can be bound in small pores or in the polymeric network of root exudates (mucilage layer). We inject combined tracers (GdDPTA or D2O) to study water fluxes through soil, rhizosphere and roots. Additional CT measurements reveal mechanical impacts of roots on the local microstructure of soil, e.g. showing soil compaction or the formation of cracks. We co-register the NT, MRI and CT data to integrate the complementary information into an aligned 3D data set. This allows, e.g., for co-localization of compacted soil regions or cracks with the specific local soil hydraulics, which is needed to distinguish the contribution of root exudation from mechanical impacts when interpreting altered hydraulic properties of the rhizosphere. Differences between rhizosphere and bulk soil can be detected and interpreted in

  6. Fine-tuning by strigolactones of root response to low phosphate

    Institute of Scientific and Technical Information of China (English)

    Yoram Kapulnik; Hinanit Koltai

    2016-01-01

    Strigolactones are plant hormones that regulate the development of different plant parts. In the shoot, they regulate axillary bud outgrowth and in the root, root architecture and root-hair length and density. Strigolactones are also involved with communication in the rhizosphere, including enhancement of hyphal branching of arbuscular mycorrhizal fungi. Here we present the role and activity of strigolactones under conditions of phosphate deprivation. Under these conditions, their levels of biosynthesis and exudation increase, leading to changes in shoot and root development. At least for the latter, these changes are likely to be associated with alterations in auxin transport and sensitivity. On the other hand, strigolactones may positively affect plant–mycorrhiza interactions and thereby promote phosphate acquisition by the plant. Strigolactones may be a way for plants to fine-tune their growth pattern under phosphate deprivation.

  7. INSECTICIDAL TOXIN IN ROOT EXUDATES FROM BT CORN. (R826107)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals

    OpenAIRE

    Muhammad Tariq; Wright, Denis J.; Bruce, Toby J. A.; Staley, Joanna T.

    2013-01-01

    Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to r...

  9. Contribution of Individual Chemoreceptors to Sinorhizobium meliloti Chemotaxis Towards Amino Acids of Host and Nonhost Seed Exudates.

    Science.gov (United States)

    Webb, Benjamin A; Helm, Richard F; Scharf, Birgit E

    2016-03-01

    Plant seeds and roots exude a spectrum of molecules into the soil that attract bacteria to the spermosphere and rhizosphere, respectively. The alfalfa symbiont Sinorhizobium meliloti utilizes eight chemoreceptors (McpT to McpZ and IcpA) to mediate chemotaxis. Using a modified hydrogel capillary chemotaxis assay that allows data quantification and larger throughput screening, we defined the role of S. meliloti chemoreceptors in sensing its host, Medicago sativa, and a closely related nonhost, Medicago arabica. S. meliloti wild type and most single-deletion strains displayed comparable chemotaxis responses to host or nonhost seed exudate. However, while the mcpZ mutant responded like wild type to M. sativa exudate, its reaction to M. arabica exudate was reduced by 80%. Even though the amino acid (AA) amounts released by both plant species were similar, synthetic AA mixtures that matched exudate profiles contributed differentially to the S. meliloti wild-type response to M. sativa (23%) and M. arabica (37%) exudates, with McpU identified as the most important chemoreceptor for AA. Our results show that S. meliloti is equally attracted to host and nonhost legumes; however, AA play a greater role in attraction to M. arabica than to M. sativa, with McpZ being specifically important in sensing M. arabica. PMID:26713349

  10. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules

    OpenAIRE

    Manuella Nóbrega Dourado; Andrea Cristina Bogas; Pomini, Armando M.; Fernando Dini Andreote; Maria Carolina Quecine; Marsaioli, Anita J.; Welington Luiz Araújo

    2013-01-01

    Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically) with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules) and/or by the plant roots (e.g. flavonoids, ethanol and met...

  11. Genetics Home Reference: familial exudative vitreoretinopathy

    Science.gov (United States)

    ... 2):104-12. Citation on PubMed Robitaille J, MacDonald ML, Kaykas A, Sheldahl LC, Zeisler J, Dubé ... Shukla D, Singh J, Sudheer G, Soman M, John RK, Ramasamy K, Perumalsamy N. Familial exudative vitreoretinopathy ( ...

  12. Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation.

    Science.gov (United States)

    Ahrazem, Oussama; Rubio-Moraga, Angela; Trapero-Mozos, Almudena; Climent, María Fernanda López; Gómez-Cadenas, Aurelio; Gómez-Gómez, Lourdes

    2015-05-01

    Glycosyltransferases play diverse roles in cellular metabolism by modifying the activities of regulatory metabolites. Three stress-regulated UDP-glucosyltransferase-encoding genes have been isolated from the stigmas of saffron, UGT85U1, UGT85U2 and UGT85V1, which belong to the UGT85 family that includes members associated with stress responses and cell cycle regulation. Arabidopsis constitutively expressing UGT85U1 exhibited and increased anchor root development. No differences were observed in the timing of root emergence, in leaf, stem and flower morphology or flowering time. However, salt and oxidative stress tolerance was enhanced in these plants. Levels of glycosylated compounds were measured in these plants and showed changes in the composition of several indole-derivatives. Moreover, auxin levels in the roots were higher compared to wild type. The expression of several key genes related to root development and auxin homeostasis, including CDKB2.1, CDKB2.2, PIN2, 3 and 4; TIR1, SHR, and CYCD6, were differentially regulated with an increase of expression level of SHR, CYCD6, CDKB2.1 and PIN2. The obtained results showed that UGT85U1 takes part in root growth regulation via auxin signal alteration and the modified expression of cell cycle-related genes, resulting in significantly improved survival during oxidative and salt stress treatments.

  13. The presence of nodules on legume root systems can alter phenotypic plasticity in response to internal nitrogen independent of nitrogen fixation.

    Science.gov (United States)

    Goh, Chooi-Hua; Nicotra, Adrienne B; Mathesius, Ulrike

    2016-04-01

    All higher plants show developmental plasticity in response to the availability of nitrogen (N) in the soil. In legumes, N starvation causes the formation of root nodules, where symbiotic rhizobacteria fix atmospheric N2 for the host in exchange for fixed carbon (C) from the shoot. Here, we tested whether plastic responses to internal [N] of legumes are altered by their symbionts. Glasshouse experiments compared root phenotypes of three legumes, Medicago truncatula, Medicago sativa and Trifolium subterraneum, inoculated with their compatible symbiont partners and grown under four nitrate levels. In addition, six strains of rhizobia, differing in their ability to fix N2 in M. truncatula, were compared to test if plastic responses to internal [N] were dependent on the rhizobia or N2 -fixing capability of the nodules. We found that the presence of rhizobia affected phenotypic plasticity of the legumes to internal [N], particularly in root length and root mass ratio (RMR), in a plant species-dependent way. While root length responses of M. truncatula to internal [N] were dependent on the ability of rhizobial symbionts to fix N2 , RMR response to internal [N] was dependent only on initiation of nodules, irrespective of N2 -fixing ability of the rhizobia strains.

  14. Features of the biochemical parameters of blood and exudates during tubercular exudative pleurisy

    Directory of Open Access Journals (Sweden)

    Ye. A. Yuriyeva

    2012-01-01

    Full Text Available Some biochemical indicators of peripheral blood and pleural fluid (level of the total protein, glucose, lactate dehydrogenase activity at patients with various variants of tubercular exudative pleurisy (MBT-positive and MBT-negative for the purpose of definition of possibility of use this indicators as criteria for differential diagnostics of a pleurisy, have been studied. It has been established that tubercular exudative pleurisy is characterized by the expressed changes of the biochemical status of blood and pleural fluid in comparison with that at healthy donors and patients with not tubercular exudative pleurisy, however, this changes in most cases are nonspecific and don't depend on a variant of tubercular exudative pleurisy.

  15. Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots

    OpenAIRE

    Griesser, Michaela; Lawo, Nora Caroline; Crespo-Martinez, Sara; Schoedl-Hummel, Katharina; Wieczorek, Krzysztof; Gorecka, Miroslawa; Liebner, Falk; Zweckmair, Thomas; Stralis Pavese, Nancy; Kreil, David; Forneck, Astrid

    2015-01-01

    Gall forming phylloxera may compete for nutrients with meristematic tissues and develop heterotrophic structures that act as carbon sinks. In this work, we studied the underlying starch metabolism, sink-source translocation of soluble sugars towards and within root galls. We demonstrated that nodosities store carbohydrates by starch accumulation and monitored the expression of genes involved in the starch metabolic. Thereby we proved that the nodosity is symplastically connected to the source...

  16. Influence of coral and algal exudates on microbially mediated reef metabolism

    Directory of Open Access Journals (Sweden)

    Andreas F. Haas

    2013-07-01

    Full Text Available Benthic primary producers in tropical reef ecosystems can alter biogeochemical cycling and microbial processes in the surrounding seawater. In order to quantify these influences, we measured rates of photosynthesis, respiration, and dissolved organic carbon (DOC exudate release by the dominant benthic primary producers (calcifying and non-calcifying macroalgae, turf-algae and corals on reefs of Mo‘orea French Polynesia. Subsequently, we examined planktonic and benthic microbial community response to these dissolved exudates by measuring bacterial growth rates and oxygen and DOC fluxes in dark and daylight incubation experiments. All benthic primary producers exuded significant quantities of DOC (roughly 10% of their daily fixed carbon into the surrounding water over a diurnal cycle. The microbial community responses were dependent upon the source of the exudates and whether the inoculum of microbes included planktonic or planktonic plus benthic communities. The planktonic and benthic microbial communities in the unamended control treatments exhibited opposing influences on DO concentration where respiration dominated in treatments comprised solely of plankton and autotrophy dominated in treatments with benthic plus plankon microbial communities. Coral exudates (and associated inorganic nutrients caused a shift towards a net autotrophic microbial metabolism by increasing the net production of oxygen by the benthic and decreasing the net consumption of oxygen by the planktonic microbial community. In contrast, the addition of algal exudates decreased the net primary production by the benthic communities and increased the net consumption of oxygen by the planktonic microbial community thereby resulting in a shift towards net heterotrophic community metabolism. When scaled up to the reef habitat, exudate-induced effects on microbial respiration did not outweigh the high oxygen production rates of benthic algae, such that reef areas dominated with

  17. Altered Phenylpropanoid Metabolism in the Maize Lc-Expressed Sweet Potato (Ipomoea batatas) Affects Storage Root Development.

    Science.gov (United States)

    Wang, Hongxia; Yang, Jun; Zhang, Min; Fan, Weijuan; Firon, Nurit; Pattanaik, Sitakanta; Yuan, Ling; Zhang, Peng

    2016-01-01

    There is no direct evidence of the effect of lignin metabolism on early storage root development in sweet potato. In this study, we found that heterologous expression of the maize leaf color (Lc) gene in sweet potato increased anthocyanin pigment accumulation in the whole plant and resulted in reduced size with an increased length/width ratio, low yield and less starch content in the early storage roots. RT-PCR analysis revealed dramatic up-regulation of the genes involved in the lignin biosynthesis pathway in developing storage roots, leading to greater lignin content in the Lc transgenic lines, compared to the wild type. This was also evidenced by the enhanced lignification of vascular cells in the early storage roots. Furthermore, increased expression of the β-amylase gene in leaves and storage roots also accelerated starch degradation and increased the sugar use efficiency, providing more energy and carbohydrate sources for lignin biosynthesis in the Lc transgenic sweet potato. Lesser starch accumulation was observed in the developing storage roots at the initiation stage in the Lc plants. Our study provides experimental evidence of the basic carbohydrate metabolism underlying the development of storage roots, which is the transformation of lignin biosynthesis to starch biosynthesis. PMID:26727353

  18. Naturally-assisted metal phytoextraction by Brassica carinata: Role ofroot exudates

    Energy Technology Data Exchange (ETDEWEB)

    Quartacci, Mike F., E-mail: mfquart@agr.unipi.i [Dipartimento di Chimica e Biotecnologie Agrarie, Universita di Pisa, Via del Borghetto 80, 56124 Pisa (Italy); Irtelli, Barbara [Dipartimento di Chimica e Biotecnologie Agrarie, Universita di Pisa, Via del Borghetto 80, 56124 Pisa (Italy); Gonnelli, Cristina; Gabbrielli, Roberto [Dipartimento di Biologia Vegetale, Sezione di Ecologia e Fisiologia Vegetale, Universita di Firenze, Via Micheli 1, 50121 Firenze (Italy); Navari-Izzo, Flavia [Dipartimento di Chimica e Biotecnologie Agrarie, Universita di Pisa, Via del Borghetto 80, 56124 Pisa (Italy)

    2009-10-15

    Due to relatively high chelant dosages and potential environmental risks it is necessary to explore different approaches in the remediation of metal-contaminated soils. The present study focussed on the removal of metals (As, Cd, Cu, Pb and Zn) from a multiple metal-contaminated soil by growing Brassica carinata plants in succession to spontaneous metallicolous populations of Pinus pinaster, Plantago lanceolata and Silene paradoxa. The results showed that the growth of the metallicolous populations increased the extractable metal levels in the soil, which resulted in a higher accumulation of metals in the above-ground parts of B. carinata. Root exudates of the three metallicolous species were analysed to elucidate their possible role in the enhanced metal availability. The presence of metals stimulated the exudation of organic and phenolic acids as well as flavonoids. It was suggested that root exudates played an important role in solubilising metals in soil and in favouring their uptake by roots. - Phytoextraction of metals is enhanced in Brassica carinata grown in succession to metallicolous populations of spontaneous species.

  19. Naturally-assisted metal phytoextraction by Brassica carinata: Role ofroot exudates

    International Nuclear Information System (INIS)

    Due to relatively high chelant dosages and potential environmental risks it is necessary to explore different approaches in the remediation of metal-contaminated soils. The present study focussed on the removal of metals (As, Cd, Cu, Pb and Zn) from a multiple metal-contaminated soil by growing Brassica carinata plants in succession to spontaneous metallicolous populations of Pinus pinaster, Plantago lanceolata and Silene paradoxa. The results showed that the growth of the metallicolous populations increased the extractable metal levels in the soil, which resulted in a higher accumulation of metals in the above-ground parts of B. carinata. Root exudates of the three metallicolous species were analysed to elucidate their possible role in the enhanced metal availability. The presence of metals stimulated the exudation of organic and phenolic acids as well as flavonoids. It was suggested that root exudates played an important role in solubilising metals in soil and in favouring their uptake by roots. - Phytoextraction of metals is enhanced in Brassica carinata grown in succession to metallicolous populations of spontaneous species.

  20. Temperature-Dependent Water and Ion Transport Properties of Barley and Sorghum Roots 1

    Science.gov (United States)

    BassiriRad, Hormoz; Radin, John W.; Matsuda, Kaoru

    1991-01-01

    Root temperature strongly affects shoot growth, possibly via “nonhydraulic messengers” from root to shoot. In short-term studies with barley (Hordeum vulgare L.) and sorghum (Sorghum bicolor L.) seedlings, the optimum root temperatures for leaf expansion were 25° and 35°C, respectively. Hydraulic conductance (Lp) of both intact plants and detached exuding roots of barley increased with increasing root temperature to a high value at 25°C, remaining high with further warming. In sorghum, the Lp of intact plants and of detached roots peaked at 35°C. In both species, root temperature did not affect water potentials of the expanded leaf blade or the growing region despite marked changes in Lp. Extreme temperatures greatly decreased ion flux, particularly K+ and NO3−, to the xylem of detached roots of both species. Removing external K+ did not alter short-term K+ flux to the xylem in sorghum but strongly inhibited flux at high temperature in barley, indicating differences in the sites of temperature effects. Leaf growth responses to root temperature, although apparently “uncoupled” from water transport properties, were correlated with ion fluxes. Studies of putative root messengers must take into account the possible role of ions. PMID:16668404

  1. Leachability of volatile fuel compounds from contaminated soils and the effect of plant exudates: A comparison of column and batch leaching tests.

    Science.gov (United States)

    Balseiro-Romero, María; Kidd, Petra S; Monterroso, Carmen

    2016-03-01

    Volatile fuel compounds such as fuel oxygenates (FO) (MTBE and ETBE) and BTEX (benzene, toluene, ethylbenzene and xylene) are some of the most soluble components of fuel. Characterizing the leaching potential of these compounds is essential for predicting their mobility through the soil profile and assessing the risk of groundwater contamination. Plant root exudates can play an important role in the modification of contaminant mobility in soil-plant systems, and such effects should also be considered in leaching studies. Artificially spiked samples of A and B horizons from an alumi-umbric Cambisol were leached in packed-columns and batch experiments using Milli-Q water and plant root exudates as leaching agents. The leaching potential and rate were strongly influenced by soil-contaminant interactions and by the presence of root exudates. Organic matter in A horizon preferably sorbed the most non-polar contaminants, lowering their leaching potential, and this effect was enhanced by the presence of root exudates. On the other hand, the inorganic components of the B horizon, showed a greater affinity for polar molecules, and the presence of root exudates enhanced the desorption of the contaminants. Column experiments resulted in a more realistic protocol than batch tests for predicting the leaching potential of volatile organic compounds in dissimilar soils. PMID:26619047

  2. Toxicity of canavanine in tomato (Solanum lycopersicum L.) roots is due to alterations in RNS, ROS and auxin levels.

    Science.gov (United States)

    Krasuska, Urszula; Andrzejczak, Olga; Staszek, Paweł; Borucki, Wojciech; Gniazdowska, Agnieszka

    2016-06-01

    Canavanine (CAN) is non-proteinogenic aminoacid and a structural analog of arginine (Arg). Naturally, CAN occurs in legumes e.g. jack bean and is considered as a strong allelochemical. As a selective inhibitor of inducible nitric oxide synthase in mammalians, it could act as a modifier of nitric oxide (NO) concentration in plants. Modifications in the content of endogenous reactive nitrogen species (RNS) and reactive oxygen species (ROS) influence root structure and architecture, being also under hormonal control. The aim of the work was to investigate regulation of root growth in tomato (Solanum lycopersicum L. cv. Malinowy Ożarowski) seedling by application of CAN at concentration (10 and 50 μM) leading to 50% or 100% restriction of root elongation. CAN at higher concentration led to slight DNA fragmentation, increased total RNA and protein level. Decline in total respiration rate after CAN supplementation was not associated with enhanced membrane permeability. Malformations in root morphology (shorter and thicker roots, limited number of lateral roots) were accompanied by modification in NO and ONOO(-) localization; determined mainly in peridermal cells and some border cells. Although, CAN resulted in low RNS production, addition of exogenous NO by usage of NO donors did not reverse its negative effect, nor recovery effect was detected after roots imbibition in Arg. To build up a comprehensive view on mode of action of CAN as root growth inhibitor, it was shown an elevated level of auxin. To summarize, we demonstrated several secondary mode of action of CAN, indicating its toxicity in plants linked to restriction in RNS formation accompanied by simultaneous overaccumulation of ROS.

  3. Toxicity of canavanine in tomato (Solanum lycopersicum L.) roots is due to alterations in RNS, ROS and auxin levels.

    Science.gov (United States)

    Krasuska, Urszula; Andrzejczak, Olga; Staszek, Paweł; Borucki, Wojciech; Gniazdowska, Agnieszka

    2016-06-01

    Canavanine (CAN) is non-proteinogenic aminoacid and a structural analog of arginine (Arg). Naturally, CAN occurs in legumes e.g. jack bean and is considered as a strong allelochemical. As a selective inhibitor of inducible nitric oxide synthase in mammalians, it could act as a modifier of nitric oxide (NO) concentration in plants. Modifications in the content of endogenous reactive nitrogen species (RNS) and reactive oxygen species (ROS) influence root structure and architecture, being also under hormonal control. The aim of the work was to investigate regulation of root growth in tomato (Solanum lycopersicum L. cv. Malinowy Ożarowski) seedling by application of CAN at concentration (10 and 50 μM) leading to 50% or 100% restriction of root elongation. CAN at higher concentration led to slight DNA fragmentation, increased total RNA and protein level. Decline in total respiration rate after CAN supplementation was not associated with enhanced membrane permeability. Malformations in root morphology (shorter and thicker roots, limited number of lateral roots) were accompanied by modification in NO and ONOO(-) localization; determined mainly in peridermal cells and some border cells. Although, CAN resulted in low RNS production, addition of exogenous NO by usage of NO donors did not reverse its negative effect, nor recovery effect was detected after roots imbibition in Arg. To build up a comprehensive view on mode of action of CAN as root growth inhibitor, it was shown an elevated level of auxin. To summarize, we demonstrated several secondary mode of action of CAN, indicating its toxicity in plants linked to restriction in RNS formation accompanied by simultaneous overaccumulation of ROS. PMID:26986929

  4. Alterations in cytosol free calcium in horseradish roots simultaneously exposed to lanthanum(III) and acid rain.

    Science.gov (United States)

    Zhang, Xuanbo; Wang, Lihong; Zhou, Anhua; Zhou, Qing; Huang, Xiaohua

    2016-04-01

    The extensive use of rare earth elements (REEs) has increased their environmental levels. REE pollution concomitant with acid rain in many agricultural regions can affect crop growth. Cytosol free calcium ions (Ca(2+)) play an important role in almost all cellular activities. However, no data have been reported regarding the role of cytosol free Ca(2+) in plant roots simultaneously exposed to REE and acid rain. In this study, the effects of exposures to lanthanum(III) and acid rain, independently and in combination, on cytosol free Ca(2+) levels, root activity, metal contents, biomass, cytosol pH and La contents in horseradish roots were investigated. The simultaneous exposures to La(III) and acid rain increased or decreased the cytosol free Ca(2+) levels, depending on the concentration of La(III), and these effects were more evident than independent exposure to La(III) or acid rain. In combined exposures, cytosol free Ca(2+) played an important role in the regulation of root activity, metal contents and biomass. These roles were closely related to La(III) dose, acid rain strength and treatment mode (independent exposure or simultaneous exposure). A low concentration of La(III) (20 mg L(-1)) could alleviate the adverse effects on the roots caused by acid rain, and the combined exposures at higher concentrations of La(III) and acid rain had synergic effects on the roots. PMID:26720810

  5. Can we manipulate root system architecture to control soil erosion?

    Science.gov (United States)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-09-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  6. Light-induced transpiration alters cell water relations in figleaf gourd (Cucurbita ficifolia) seedlings exposed to low root temperatures.

    Science.gov (United States)

    Lee, Seong Hee; Zwiazek, Janusz J; Chung, Gap Chae

    2008-06-01

    Water relation parameters including elastic modulus (epsilon), half-times of water exchange (T(w)(1/2)), hydraulic conductivity and turgor pressure (P) were measured in individual root cortical and cotyledon midrib cells in intact figleaf gourd (Cucurbita ficifolia) seedlings, using a cell pressure probe. Transpiration rates (E) of cotyledons were also measured using a steady-state porometer. The seedlings were exposed to low ambient (approximately 10 micromol m(-2) s(-1)) or high supplemental irradiance (approximately 300 micromol m(-2) s(-1) PPF density) at low (8 degrees C) or warm (22 degrees C) root temperatures. When exposed to low irradiance, all the water relation parameters of cortical cells remained similar at both root temperatures. The exposure of cotyledons to supplemental light at warm root temperatures, however, resulted in a two- to three-fold increase in T(w)(1/2) values accompanied with the reduced hydraulic conductivity in both root cortical (Lp) and cotyledon midrib cells (Lp(c)). Low root temperature (LRT) further reduced Lp(c) and E, whether it was measured under low or high irradiance levels. The reductions of Lp as the result of respective light and LRT treatments were prevented by the application of 1 microM ABA. Midrib cells required higher concentrations of ABA (2 microM) in order to prevent the reduction in Lp(c). When the exposure of cotyledons to light was accompanied by LRT, however, ABA proved ineffective in reversing the inhibition of Lp. LRT combined with high irradiance triggered a drastic 10-fold reduction in water permeability of cortical and midrib cells and increased epsilon and T(w)(1/2) values. Measurement of E indicated that the increased water demand by the transpiring plants was fulfilled by an increase in the apoplastic pathway as principal water flow route. The importance of water transport regulation by transpiration affecting the hydraulic conductivity of the roots is discussed. PMID:18346079

  7. Cadmium Toxicity Induced Alterations in the Root Proteome of Green Gram in Contrasting Response towards Iron Supplement

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-04-01

    Full Text Available Cadmium signifies a severe threat to crop productivity and green gram is a notably iron sensitive plant which shows considerable variation towards cadmium stress. A gel-based proteomics analysis was performed with the roots of green gram exposed to iron and cadmium combined treatments. The resulting data show that twenty three proteins were down-regulated in iron-deprived roots either in the absence (−Fe/−Cd or presence (−Fe/+Cd of cadmium. These down-regulated proteins were however well expressed in roots under iron sufficient conditions, even in the presence of cadmium (+Fe/+Cd. The functional classification of these proteins determined that 21% of the proteins are associated with nutrient metabolism. The other proteins in higher quantities are involved in either transcription or translation regulation, and the rest are involved in biosynthesis metabolism, antioxidant pathways, molecular chaperones and stress response. On the other hand, several protein spots were also absent in roots in response to iron deprivation either in absence (−Fe/−Cd or presence (−Fe/+Cd of cadmium but were well expressed in the presence of iron (+Fe/+Cd. Results suggest that green gram plants exposed to cadmium stress are able to change the nutrient metabolic balance in roots, but in the mean time regulate cadmium toxicity through iron supplements.

  8. Improvement of Growth and Periplocin Yield of Periploca sepium Adventitious Root Cultures by Altering Nitrogen Source Supply

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian; GAO Wen-yuan; WANG Juan; LI Xing-lin; XIAO Pei-gen

    2011-01-01

    Objective To increase the ultimate yield of periplocin in Periploca sepium adventitious root cultures by a two-stage culture based on nitrogen source.Methods Firstly,the effects of nitrogen source(NH-NO-)at different ratios and different total initial nitrogen amounts on the accumulation of biomass and secondary metabolites in adventitious root cultures of P sepium were investigated,and growth and production media for the two-stage culture based on the above results were established.Results The highest biomass and periplocin content were obtained in the culture medium of 15 mmol/L total nitrogen amount with NH-NO(1:2)and 30 mmol/L total nitrogen amount with nitrate as the sole nitrogen source.By adopting a fed-batch cultivation strategy,the dry weight adventitious root,periplocin content and yield were increased by 136%,108%,and 389%,respectively when compared with those of the control,reaching up to 8.13 g/L,157.15 μg/g,and 1277.63 μg/L,respectively.Furthermore,it was found that in the process of two-stage culture,the adventitious roots grew thicker significantly after they were transferred into production medium directly.Conclusion The ultimate yield of periplocin in P.sepium adventitious root cultures could be significantly increased by a two-stage culture based on nitrogen source.

  9. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke.

    Science.gov (United States)

    Yang, Hui; Hu, Jinxiang; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-01-01

    The interaction between roots and bacterial communities in halophytic species is poorly understood. Here, we used Jerusalem artichoke cultivar Nanyu 1 (NY-1) to characterise root distribution patterns and determine diversity and abundance of bacteria in the rhizosphere soil under variable salinity. Root growth was not inhibited within the salinity range 1.2 to 1.9 g salt/kg, but roots were mainly confined to 0-20 cm soil layer vertically and 0-30 cm horizontally from the plant centre. Root concentrations of K(+), Na(+), Mg(2+) and particularly Ca(2+) were relatively high under salinity stress. High salinity stress decreased soil invertase and catalase activity. Using a next-generation, Illumina-based sequencing approach, we determined higher diversity of bacteria in the rhizosphere soil at high than low salinity. More than 15,500 valid reads were obtained, and Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria predominated in all samples, accounting for >80% of the reads. On a genus level, 636 genera were common to the low and high salinity treatments at 0-5 cm and 5-10 cm depth. The abundance of Steroidobacter and Sphingomonas was significantly decreased by increasing salinity. Higher Shannon and Chao 1 indices with increasing severity of salt stress indicated that high salt stress increased diversity in the bacterial communities. PMID:26852800

  10. Clinical case of exudative pleuritis in stallion

    International Nuclear Information System (INIS)

    A casual exudative pleuritis in 2 years old stallion, Holsteiner breed, has been outlined. The disease is extremely rare in this country. Comprehensive examinations have been made during the period of hospitalization: daily clinical examinations, double renthgenography; regular haematological and biochemical tests; microbiological culture tests with an antibioticogram; laboratory tests of punctate and periodical ultrasound tests. The examinations and tests have been carried out at the Internal Noncontagious Disease Clinic at the Veterinary Faculty of the Thracian University in Stara Zagora

  11. Altered Phenylpropanoid Metabolism in the Maize Lc-Expressed Sweet Potato (Ipomoea batatas) Affects Storage Root Development

    OpenAIRE

    Hongxia Wang; Jun Yang; Min Zhang; Weijuan Fan; Nurit Firon; Sitakanta Pattanaik; Ling Yuan; Peng Zhang

    2016-01-01

    There is no direct evidence of the effect of lignin metabolism on early storage root development in sweet potato. In this study, we found that heterologous expression of the maize leaf color (Lc) gene in sweet potato increased anthocyanin pigment accumulation in the whole plant and resulted in reduced size with an increased length/width ratio, low yield and less starch content in the early storage roots. RT-PCR analysis revealed dramatic up-regulation of the genes involved in the lignin biosy...

  12. Canavanine Alters ROS/RNS Level and Leads to Post-translational Modification of Proteins in Roots of Tomato Seedlings

    Science.gov (United States)

    Krasuska, Urszula; Andrzejczak, Olga; Staszek, Paweł; Bogatek, Renata; Gniazdowska, Agnieszka

    2016-01-01

    Canavanine (CAN), a structural analog of arginine (Arg), is used as a selective inhibitor of inducible NOS in mammals. CAN is incorporated into proteins’ structure in the place of Arg, leading to the formation of aberrant compounds. This non-protein amino acid is found in legumes, e.g., Canavalia ensiformis (L.) DC. or Sutherlandia frutescens (L.) R.Br. and acts as a strong toxin against herbivores or plants. Tomato (Solanum lycopersicum L.) seedlings were treated for 24–72 h with CAN (10 or 50 μM) inhibiting root growth by 50 or 100%, without lethal effect. We determined ROS level/production in root extracts, fluorescence of DAF-FM and APF derivatives corresponding to RNS level in roots of tomato seedlings and linked CAN-induced restriction of root growth to the post-translational modifications (PTMs) of proteins: carbonylation and nitration. Both PTMs are stable markers of nitro-oxidative stress, regarded as the plant’s secondary response to phytotoxins. CAN enhanced H2O2 content and superoxide radicals generation in extracts of tomato roots and stimulated formation of protein carbonyl groups. An elevated level of carbonylated proteins was characteristic for the plants after 72 h of the culture, mainly for the roots exposed to 10 μM CAN. The proteolytic activity was stimulated by tested non-protein amino acid. CAN treatment led to decline of fluorescence of DAF-FM derivatives, and transiently stimulated fluorescence of APF derivatives. Short-term exposure of tomato seedlings to CAN lowered the protein nitration level. Activity of peroxidase, polyamine oxidase and NADPH oxidase, enzymes acting as modulators of H2O2 concentration and governing root architecture and growth were determined. Activities of all enzymes were stimulated by CAN, but no strict CAN concentration dependence was observed. We conclude, that although CAN treatment led to a decline in the nitric oxide level, PTMs observed in roots of plants exposed to CAN are linked rather to the

  13. Canavanine Alters ROS/RNS Level and Leads to Post-translational Modification of Proteins in Roots of Tomato Seedlings.

    Science.gov (United States)

    Krasuska, Urszula; Andrzejczak, Olga; Staszek, Paweł; Bogatek, Renata; Gniazdowska, Agnieszka

    2016-01-01

    Canavanine (CAN), a structural analog of arginine (Arg), is used as a selective inhibitor of inducible NOS in mammals. CAN is incorporated into proteins' structure in the place of Arg, leading to the formation of aberrant compounds. This non-protein amino acid is found in legumes, e.g., Canavalia ensiformis (L.) DC. or Sutherlandia frutescens (L.) R.Br. and acts as a strong toxin against herbivores or plants. Tomato (Solanum lycopersicum L.) seedlings were treated for 24-72 h with CAN (10 or 50 μM) inhibiting root growth by 50 or 100%, without lethal effect. We determined ROS level/production in root extracts, fluorescence of DAF-FM and APF derivatives corresponding to RNS level in roots of tomato seedlings and linked CAN-induced restriction of root growth to the post-translational modifications (PTMs) of proteins: carbonylation and nitration. Both PTMs are stable markers of nitro-oxidative stress, regarded as the plant's secondary response to phytotoxins. CAN enhanced H2O2 content and superoxide radicals generation in extracts of tomato roots and stimulated formation of protein carbonyl groups. An elevated level of carbonylated proteins was characteristic for the plants after 72 h of the culture, mainly for the roots exposed to 10 μM CAN. The proteolytic activity was stimulated by tested non-protein amino acid. CAN treatment led to decline of fluorescence of DAF-FM derivatives, and transiently stimulated fluorescence of APF derivatives. Short-term exposure of tomato seedlings to CAN lowered the protein nitration level. Activity of peroxidase, polyamine oxidase and NADPH oxidase, enzymes acting as modulators of H2O2 concentration and governing root architecture and growth were determined. Activities of all enzymes were stimulated by CAN, but no strict CAN concentration dependence was observed. We conclude, that although CAN treatment led to a decline in the nitric oxide level, PTMs observed in roots of plants exposed to CAN are linked rather to the formation of

  14. Chickenpox Chorioretinitis with Retinal Exudates and Periphlebitis

    Directory of Open Access Journals (Sweden)

    Hirokuni Kitamei

    2012-05-01

    Full Text Available Background: Chickenpox is rarely associated with posterior segment inflammation. We report on a case of unilateral chickenpox chorioretinitis with retinal exudates and periphlebitis. Case Presentation: A 21-year-old healthy man, who suffered from chickenpox 2 weeks prior to symptom development, exhibited mild anterior chamber cells, vitreous opacity, sheathing of retinal veins, and yellow-white exudates in his right eye. Varicella zoster virus DNA was detected by polymerase chain reaction in the aqueous humor. He was treated with intravenous acyclovir followed by oral prednisolone and valaciclovir. Aqueous cells quickly disappeared and retinal exudates diminished within 1 month, leaving faint retinal scarring. Retinal arteritis had never been observed in this patient. Conclusions: Although the ocular findings in this case were similar to acute retinal necrosis (ARN, the clinical features differed from ARN in the following points: (1 mild anterior chamber inflammation, (2 absence of retinal arteritis, and (3 prompt resolution of inflammatory findings. The distinctive clinical features indicated that chorioretinitis associated with chickenpox may not have the same pathological conditions as ARN.

  15. Model system for studies of microbial dynamics at exuding surfaces such as the rhizosphere

    Science.gov (United States)

    Odham, G.; Tunlid, A.; Valeur, A.; Sundin, P.; White, D. C.

    1986-01-01

    An autoclavable all-glass system for studying microbial dynamics at permeable surfaces is described. Standard hydrophobic or hydrophilic membranes (46-mm diameter) of various pore sizes were supported on a glass frit through which nutrient solutions were pumped by a peristaltic pump. The pump provided a precisely controlled flow at speeds of 0.5 to 500 ml of defined or natural cell exudates per h, which passed through the membrane into a receiving vessel. The construction allowed a choice of membranes, which could be modified. The system was tested with a bacterium, isolated from rape plant roots (Brassica napus L.), that was inoculated on a hydrophilic membrane filter and allowed to develop into a biofilm. A defined medium with a composition resembling that of natural rape root exudate was pumped through the membrane at 0.5 ml/h. Scanning electron microscopic examinations indicated that the inoculum formed microcolonies embedded in exopolymers evenly distributed over the membrane surface. The lipid composition and content of poly-beta-hydroxybutyrate in free-living and adhered cells were determined by gas chromatography. The bacterial consumption of amino acids in the exudate was also studied.

  16. Can root-feeders alter the composition of AMF communities? Experimental evidence from the dune grass Ammophila arenaria

    NARCIS (Netherlands)

    Rodriguez-Echeverria, S.; Peña, de la E.; Moens, M.; Freitas, H.; Putten, van der W.H.

    2009-01-01

    Root herbivores and plant mutualists, such as arbuscular mycorrhizal fungi (AMF), have a significant effect on the structure and dynamic of plant communities. Nevertheless, the interactions between the two groups of organisms in natural ecosystems are far from understood. We carried out an inoculati

  17. Phragmites australis response to Cu in terms of low molecular weight organic acids (LMWOAs) exudation: Influence of the physiological cycle

    Science.gov (United States)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2014-06-01

    Plant roots have the ability to produce and secrete substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere for several purposes, including in response to metal contamination. Despite this, little is yet known about the exudation of such substances from marsh plants roots in response to metal exposure. This work aimed at assessing the influence of the physiological cycle of marsh plants on the exudation of ALMWOAs in response to Cu contamination. In vitro experiments were carried out with Phragmites australis specimens, collected in different seasons. Plant roots were exposed to freshwater contaminated with two different Cu concentrations (67 μg/L and 6.9 mg/L), being the ALMWOAs released by the roots measured. Significant differences (both qualitative and quantitative) were observed during the Phragmites australis life cycle. At growing stage, Cu stimulated the exudation of oxalic and formic acids but no significant stimulation was observed for citric acid. At developing stage, exposure to Cu caused inhibition of oxalic acid exudation whereas citric acid liberation was stimulated but only in the media spiked with the lowest Cu concentration tested. At the decaying stage, no significant variation on oxalic acid was observed, whereas the citric and formic acids release increased as a consequence of the plant exposure to Cu. The physiological cycle of Phragmites australis, and probably also of other marsh plants, is therefore an important feature conditioning plants response to Cu contamination, in terms of ALMWOAs exudation. Hence this aspect should be considered when conducting studies on rhizodeposition involving marsh plants exposed to metals and in the event of using marsh plants for phytoremediation purposes in contaminated estuarine areas.

  18. Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices.

    Science.gov (United States)

    Tovkach, Andriy; Ryan, Peter R; Richardson, Alan E; Lewis, David C; Rathjen, Tina M; Ramesh, Sunita; Tyerman, Stephen D; Delhaize, Emmanuel

    2013-02-01

    The TaMATE1B gene (for multidrug and toxic compound extrusion) from wheat (Triticum aestivum) was isolated and shown to encode a citrate transporter that is located on the plasma membrane. TaMATE1B expression in roots was induced by iron deficiency but not by phosphorus deficiency or aluminum treatment. The coding region of TaMATE1B was identical in a genotype showing citrate efflux from root apices (cv Carazinho) to one that lacked citrate efflux (cv Egret). However, sequence upstream of the coding region differed between these two genotypes in two ways. The first difference was a single-nucleotide polymorphism located approximately 2 kb upstream from the start codon in cv Egret. The second difference was an 11.1-kb transposon-like element located 25 bp upstream of the start codon in cv Carazinho that was absent from cv Egret. The influence of these polymorphisms on TaMATE1B expression was investigated using fusions to green fluorescent protein expressed in transgenic lines of rice (Oryza sativa). Fluorescence measurements in roots of rice indicated that 1.5- and 2.3-kb regions upstream of TaMATE1B in cv Carazinho (which incorporated 3' regions of the transposon-like element) generated 20-fold greater expression in the apical 1 mm of root compared with the native promoter in cv Egret. By contrast, fluorescence in more mature tissues was similar in both cultivars. The presence of the single-nucleotide polymorphism alone consistently generated 2-fold greater fluorescence than the cv Egret promoter. We conclude that the transposon-like element in cv Carazinho extends TaMATE1B expression to the root apex, where it confers citrate efflux and enhanced aluminum tolerance.

  19. Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots.

    Science.gov (United States)

    Griesser, Michaela; Lawo, Nora Caroline; Crespo-Martinez, Sara; Schoedl-Hummel, Katharina; Wieczorek, Krzysztof; Gorecka, Miroslawa; Liebner, Falk; Zweckmair, Thomas; Stralis Pavese, Nancy; Kreil, David; Forneck, Astrid

    2015-05-01

    Gall forming phylloxera may compete for nutrients with meristematic tissues and develop heterotrophic structures that act as carbon sinks. In this work, we studied the underlying starch metabolism, sink-source translocation of soluble sugars towards and within root galls. We demonstrated that nodosities store carbohydrates by starch accumulation and monitored the expression of genes involved in the starch metabolic. Thereby we proved that the nodosity is symplastically connected to the source tissues through its development and that the starch metabolism is significantly affected to synthesize and degrade starch within the gall. Genes required for starch biosynthesis and degradation are up-regulated. Among the carbohydrate transporters the expression of a glucose-6-phosphate translocater, one sucrose transporter and two SWEET proteins were increases, whereas hexose transporters, tonoplast monosaccharide transporter and Erd6-like sugar transporters were decreased. We found general evidence for plant response to osmotic stress in the nodosity as previously suggested for gall induction processes. We conclude that nodosities are heterogenous plant organs that accumulate starch to serve as temporary storage structure that is gradually withdrawn by phylloxera. Phylloxera transcriptionally reprograms gall tissues beyond primary metabolism and included downstream secondary processes, including response to osmotic stress. PMID:25804808

  20. Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots.

    Science.gov (United States)

    Griesser, Michaela; Lawo, Nora Caroline; Crespo-Martinez, Sara; Schoedl-Hummel, Katharina; Wieczorek, Krzysztof; Gorecka, Miroslawa; Liebner, Falk; Zweckmair, Thomas; Stralis Pavese, Nancy; Kreil, David; Forneck, Astrid

    2015-05-01

    Gall forming phylloxera may compete for nutrients with meristematic tissues and develop heterotrophic structures that act as carbon sinks. In this work, we studied the underlying starch metabolism, sink-source translocation of soluble sugars towards and within root galls. We demonstrated that nodosities store carbohydrates by starch accumulation and monitored the expression of genes involved in the starch metabolic. Thereby we proved that the nodosity is symplastically connected to the source tissues through its development and that the starch metabolism is significantly affected to synthesize and degrade starch within the gall. Genes required for starch biosynthesis and degradation are up-regulated. Among the carbohydrate transporters the expression of a glucose-6-phosphate translocater, one sucrose transporter and two SWEET proteins were increases, whereas hexose transporters, tonoplast monosaccharide transporter and Erd6-like sugar transporters were decreased. We found general evidence for plant response to osmotic stress in the nodosity as previously suggested for gall induction processes. We conclude that nodosities are heterogenous plant organs that accumulate starch to serve as temporary storage structure that is gradually withdrawn by phylloxera. Phylloxera transcriptionally reprograms gall tissues beyond primary metabolism and included downstream secondary processes, including response to osmotic stress.

  1. Evaluation of the morphological alteration of the root surface radiated with a diode laser; Avaliacao da alteracao morfologica da superficie cimentaria irradiada com laser de diodo

    Energy Technology Data Exchange (ETDEWEB)

    Gulin, Mauricio

    2003-07-01

    The diode laser has been studied for periodontal therapy, as much for removal of calculus as for microbial reduction of periodontal pockets, as well as the visible analgesic effects and biomodulation capacity. For this reason the purpose of this study was to evaluate the morphological alteration of the root surface after radiation with the diode laser, 808 nm through analysis by scanning electron microscopy (SEM). Besides this, to verify the temperature variations caused during the radiation, a thermometer put into the dentinal wall of the root canal was used. In all, 18 teeth were used, 15 of which for the SEM study, and the other 3 were used to temperature variation analysis. The 25 samples were scraped on the root surface and planed with manual instruments. The other 5 were not subjected to any type of treatment. This, 6 groups of 5 samples each were formed. Control Group C whose samples had not received any treatment; Control Group C 1 was only scraped and polished conventionally with Hu-Friedy Gracey curettes 5 and 6; the other samples groups L1, L2, L3, L4 were radiated by diode laser using parameters of power 1,0 W; 1,2 W; 1,4 W; and 1,6 W respectively, 2 times for 10 seconds with 20 seconds intervals between each radiation in continuous mode. The results with relation to the increase of temperature in the interior of the root canal demonstrated that there was an increase of more than 5 degree Celsius. The results of the scanning electron microscope analysis of Control Group C demonstrated great irregularity and ridges on the root surface, with the presence of a dentine layer. Control Group C1 presented a similar aspect to Group L 1's, smoother and more homogeneous surface. Groups L2, L3, and L4 presented scratches alternating with smoother areas showing that fiber contacted the surface of the sample. The results reconfirmed the necessity of further studies using diode laser, with a beam of light emitted in an interrupted mode to improve the control of

  2. Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP) Gene Expression to the Clubroot Disease and Salt Stress

    OpenAIRE

    Sabine Jülke; Jutta Ludwig-Müller

    2015-01-01

    The clubroot disease of Brassicaceae is caused by the obligate biotrophic protist Plasmodiophora brassicae. The disease is characterized by abnormal tumorous swellings of infected roots that result in reduced drought resistance and insufficient distribution of nutrients, leading to reduced crop yield. It is one of the most damaging diseases among cruciferous crops worldwide. The acquisition of nutrients by the protist is not well understood. Gene expression profiles in Arabidopsis thaliana cl...

  3. Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP) Gene Expression to the Clubroot Disease and Salt Stress.

    Science.gov (United States)

    Jülke, Sabine; Ludwig-Müller, Jutta

    2015-01-01

    The clubroot disease of Brassicaceae is caused by the obligate biotrophic protist Plasmodiophora brassicae. The disease is characterized by abnormal tumorous swellings of infected roots that result in reduced drought resistance and insufficient distribution of nutrients, leading to reduced crop yield. It is one of the most damaging diseases among cruciferous crops worldwide. The acquisition of nutrients by the protist is not well understood. Gene expression profiles in Arabidopsis thaliana clubroots indicate that lipid transfer proteins (LTPs) could be involved in disease development or at least in adaptation to the disease symptoms. Therefore, the aim of the study was to examine the role of some, of the still enigmatic LTPs during clubroot development. For a functional approach, we have generated transgenic plants that overexpress LTP genes in a root specific manner or show reduced LTP gene expression. Our results showed that overexpression of some of the LTP genes resulted in reduced disease severity whereas the lipid content in clubs of LTP mutants seems to be unaffected. Additional studies indicate a role for some LTPs during salt stress conditions in roots of A. thaliana. PMID:27135222

  4. Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP Gene Expression to the Clubroot Disease and Salt Stress

    Directory of Open Access Journals (Sweden)

    Sabine Jülke

    2015-12-01

    Full Text Available The clubroot disease of Brassicaceae is caused by the obligate biotrophic protist Plasmodiophora brassicae. The disease is characterized by abnormal tumorous swellings of infected roots that result in reduced drought resistance and insufficient distribution of nutrients, leading to reduced crop yield. It is one of the most damaging diseases among cruciferous crops worldwide. The acquisition of nutrients by the protist is not well understood. Gene expression profiles in Arabidopsis thaliana clubroots indicate that lipid transfer proteins (LTPs could be involved in disease development or at least in adaptation to the disease symptoms. Therefore, the aim of the study was to examine the role of some, of the still enigmatic LTPs during clubroot development. For a functional approach, we have generated transgenic plants that overexpress LTP genes in a root specific manner or show reduced LTP gene expression. Our results showed that overexpression of some of the LTP genes resulted in reduced disease severity whereas the lipid content in clubs of LTP mutants seems to be unaffected. Additional studies indicate a role for some LTPs during salt stress conditions in roots of A. thaliana.

  5. Automated detection of exudates for diabetic retinopathy screening

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Alan D [Biomedical Physics, University of Aberdeen, Aberdeen, AB25 2ZD (United Kingdom); Philip, Sam [Diabetes Retinal Screening Service, David Anderson Building, Foresterhill Road, Aberdeen, AB25 2ZP (United Kingdom); Goatman, Keith A [Biomedical Physics, University of Aberdeen, Aberdeen, AB25 2ZD (United Kingdom); Williams, Graeme J [Diabetes Retinal Screening Service, David Anderson Building, Foresterhill Road, Aberdeen, AB25 2ZP (United Kingdom); Olson, John A [Diabetes Retinal Screening Service, David Anderson Building, Foresterhill Road, Aberdeen, AB25 2ZP (United Kingdom); Sharp, Peter F [Biomedical Physics, University of Aberdeen, Aberdeen, AB25 2ZD (United Kingdom)

    2007-12-21

    Automated image analysis is being widely sought to reduce the workload required for grading images resulting from diabetic retinopathy screening programmes. The recognition of exudates in retinal images is an important goal for automated analysis since these are one of the indicators that the disease has progressed to a stage requiring referral to an ophthalmologist. Candidate exudates were detected using a multi-scale morphological process. Based on local properties, the likelihoods of a candidate being a member of classes exudate, drusen or background were determined. This leads to a likelihood of the image containing exudates which can be thresholded to create a binary decision. Compared to a clinical reference standard, images containing exudates were detected with sensitivity 95.0% and specificity 84.6% in a test set of 13 219 images of which 300 contained exudates. Depending on requirements, this method could form part of an automated system to detect images showing either any diabetic retinopathy or referable diabetic retinopathy.

  6. Automated detection of exudates for diabetic retinopathy screening

    International Nuclear Information System (INIS)

    Automated image analysis is being widely sought to reduce the workload required for grading images resulting from diabetic retinopathy screening programmes. The recognition of exudates in retinal images is an important goal for automated analysis since these are one of the indicators that the disease has progressed to a stage requiring referral to an ophthalmologist. Candidate exudates were detected using a multi-scale morphological process. Based on local properties, the likelihoods of a candidate being a member of classes exudate, drusen or background were determined. This leads to a likelihood of the image containing exudates which can be thresholded to create a binary decision. Compared to a clinical reference standard, images containing exudates were detected with sensitivity 95.0% and specificity 84.6% in a test set of 13 219 images of which 300 contained exudates. Depending on requirements, this method could form part of an automated system to detect images showing either any diabetic retinopathy or referable diabetic retinopathy

  7. Variation among Rice Cultivars in Root Acidification and Its Relation to Cadmium Uptake

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-guo; XU Hai; CAI Guo-liang; QIAN Min; WANG De-ke; ZHU Qing-sen

    2006-01-01

    To understand the mechanisms of Cd uptake and accumulation in rice, soil acidification by root activities was investigated in six rice cultivars differing in Cd accumulation. The results showed a significant difference among the cultivars in pH of pot water and root exudate. Soil acidification abilities varied with rice cultivars. Both pH of pot water and root exudate were lower in indica cultivars than in japonica ones. The difference in root acidification was larger in Cd treated cultivars than the control. Under Cd stress, the pH of pot water and root exudate correlated negatively and significantly with Cd concentrations in rice plants. It was suggested that the soil acidification by root exudates, especially in Cd contaminated soils, may be one of the mechanisms responsible for Cd uptake in rice cultivars.

  8. Automatic Detection of Retinal Exudates using a Support Vector Machine

    OpenAIRE

    Nualsawat HIRANSAKOLWONG; Ekkarat POTHIRUK; Kittipol WISAENG

    2013-01-01

    Retinal exudates are among the preliminary signs of diabetic retinopathy, a major cause of vision loss in diabetic patients. Correct and efficient screening of exudates is very expensive in professional time and may cause human error. Nowadays, the digital retinal image is frequently used to follow-up and diagnoses eye diseases. Therefore, the retinal image is crucial and essential for experts to detect exudates. Unfortunately, it is a normal situation that retinal images in Thailand are poor...

  9. THE CLINICAL APPLICATIONS FOR AUTOMATIC DETECTION OF EXUDATES

    OpenAIRE

    K. Wisaeng; N. Hiransakolwong; E. Pothiruk

    2014-01-01

    Nowadays, the retinal imaging technology has been widely used for segmenting and detecting the exudates in diabetic retinopathy patients. Unfortunately, the retinal images in Thailand are poor-quality images. Therefore, detecting of exudates in a large number by screening programs, are very expensive in professional time and may cause human error. In this study, the clinical applications for detection of exudates from the poor quality retinal image are presented. An application incorporating ...

  10. Altered acetylcholinesterase levels in the spinal cord anterior horn and dorsal root ganglion following sciatic nerve ischemia

    Institute of Scientific and Technical Information of China (English)

    Zhenjun Yang; Pei Wang; Songhe Yang; Jingfeng Xue

    2009-01-01

    BACKGROUND: Peripheral nerve ischemia has been shown to result in ischemic fiber degeneration and axoplasmic transport disturbance. However, the effect on acetylcholinesterase (AChE) expression in relevant cells following sciatic nerve ischemia remains unclear. OBJECTIVE: To observe AChE concentration changes following peripheral nerve ischemia. DESIGN, TIME AND SETTING: The present comparative observation, neuroanatomical experiment was performed at the Central Laboratory Animal of Chengde Medical College between 2006 and 2007. MATERIALS: A total of 20 healthy, adult, Wistar rats were randomized into two groups (n = 10): 8-day ischemia and 14-day ischemia. METHODS: Ischemia injury was induced in the unilateral sciatic nerve (experimental side) through ligation of the common iliac artery. The contralateral side received no intervention, and served as the control side. Rats in the 8-day ischemia and 14-day ischemia groups were allowed to survive for 8 and 14 days, respectively. MAIN OUTCOME MEASURES: The L5 lumbar spinal cord and the L5 dorsal root ganglion were removed from both sides and sectioned utilizing a Leica vibrating slicer. AChE cellular expression was detected using Karnovsky-Root, and the number of AChE-positive cells and average gray value were analyzed using a MiVnt image analysis system. RESULTS: In the 8-day ischemia group, AChE-positive cell numbers were significantly less in the dorsal root ganglion and spinal cord anterior horn of the experimental side, but the average gray value was significantly greater, compared with the control side (P < 0.05). These changes were more significant in the 14-day ischemia group than in the 8-day ischemia group (P < 0.01). CONCLUSION: Peripheral nerve ischemia leads to decreased AChE expression in the associated cells in a time-dependent manner.

  11. Secretion activity of white lupin’s cluster roots influences bacterial abundance, function and community structure

    OpenAIRE

    Weisskopf, Laure; Fromin, Nathalie; Tomasi, Nicola; Aragno, Michel; Martinoia, Enrico

    2007-01-01

    White lupin (Lupinus albus L. cv. Amiga) reacts to phosphate deficiency by producing cluster roots which exude large amounts of organic acids. The detailed knowledge of the excretion physiology of the different root parts makes it a good model plant to study plant-bacteria interaction. Since the effect of the organic acid exudation by cluster roots on the rhizosphere microflora is still poorly understood, we investigated the abundance, diversity and functions of bacteria associated with the c...

  12. Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera.

    Science.gov (United States)

    Prasad, Ram; Kamal, Shwet; Sharma, Pradeep K; Oelmüller, Ralf; Varma, Ajit

    2013-12-01

    Unorganized collections and over exploitation of naturally occurring medicinal plant Bacopa monniera is leading to rapid depletion of germplasm and is posing a great threat to its survival in natural habitats. The species has already been listed in the list of highly threatened plants of India. This calls for micropropagation based multiplication of potential accessions and understanding of their mycorrhizal associations for obtaining plants with enhanced secondary metabolite contents. The co-cultivation of B. monniera with axenically cultivated root endophyte Piriformospora indica resulted in growth promotion, increase in bacoside content, antioxidant activity and nuclear hypertrophy of this medicinal plant.

  13. Altered dendritic arborization of amygdala neurons in young adult rats orally intubated with Clitorea ternatea aqueous root extract.

    Science.gov (United States)

    Rai, Kiranmai S; Murthy, K Dilip; Rao, Muddanna S; Karanth, K Sudhakar

    2005-07-01

    Young adult (60 day old) Wistar rats of either sex were orally intubated with 50 mg/kg body weight and 100 mg/kg body weight of aqueous root extract of Clitoria ternatea (CTR) for 30 days, along with age-matched saline controls. These rats were then subjected to passive avoidance tests and the results from these studies showed a significant increase in passive avoidance learning and retention. Subsequent to the passive avoidance tests, these rats were killed by decapitation. The amygdala was processed for Golgi staining and the stained neurons were traced using a camera lucida and analysed. The results showed a significant increase in dendritic intersections, branching points and dendritic processes arising from the soma of amygdaloid neurons in CTR treated rats especially in the 100 mg/kg group of rats, compared with age-matched saline controls. This improved dendritic arborization of amygdaloid neurons correlates with the increased passive avoidance learning and memory in the CTR treated rats as reported earlier. The results suggest that Clitoria ternatea aqueous root extract enhances memory by increasing the functional growth of neurons of the amygdala. PMID:16161034

  14. Isolated root caps, border cells, and mucilage from host roots stimulate hyphal branching of the arbuscular mycorrhizal fungus, Gigaspora gigantea.

    Science.gov (United States)

    Nagahashi, Gerald; Douds, David D

    2004-09-01

    Unlike previous reports that have shown that water soluble and volatile compounds from roots or root exudates play an important role in precolonization events during arbuscular mycorrhizal (AM) fungus-host root interactions (Bécard & Piché 1989, Giovannetti et al. 1993), the results shown here deal with particulate and viscous fractions isolated from host roots. Root caps and a slow sedimenting particulate fraction (SSPF) were rapidly isolated and separated from Ri T-DNA transformed carrot roots (D. carota) grown in liquid culture. In addition, border cells (BC) and mucilage were isolated from aseptically grown corn seedlings (Zea mays). Root caps, SSPF (composed mainly of small root cap fragments and some BCs), BCs, and mucilage all had an associated AM fungus hyphal branching stimulator. Root caps stored for 5 d at 4 degrees C appeared to either synthesize or slowly release the branching stimulator. Also, isolated root caps from roots grown in the absence of P contained more branch stimulating activity than those isolated from roots grown in the presence of P. Although the branching stimulation activity in particulate fractions was low compared to that of the exudate, the particulate fractions can stick to the root surface at considerable distances from the root tip. This may be significant during the infection and colonization of host roots at sites far removed from the primary location of exudation.

  15. Disappearance of diabetic macular hard exudates after hemodialysis introduction.

    Directory of Open Access Journals (Sweden)

    Matsuo,Toshihiko

    2006-06-01

    Full Text Available

    We report herein the disappearance of macular hard exudates after the introduction of hemodialysis in diabetic patients. A 62-year-old woman and a 52-year-old man with diabetes mellitus showed hard exudates in the macula of the left eyes. Both patients had previously undergone panretinal photocoagulation in both eyes. During the follow-up, hemodialysis was introduced for deteriorating chronic renal failure caused by diabetic nephropathy. Half a year later, macular hard exudates in the left eyes disappeared dramatically in both patients, but the visual acuity remained the same. No additional laser treatment was done during the observation period. Hemodialysis is considered to have accelerated the resolution of macular hard exudates in both patients. The deposition of macular hard exudates in diabetic patients is due in part to concurrent poor renal function.

  16. crinkle, a novel symbiotic mutant that affects the infection thread growth and alters the root hair, trichome, and seed development in Lotus japonicus.

    Science.gov (United States)

    Tansengco, Myra L; Hayashi, Makoto; Kawaguchi, Masayoshi; Imaizumi-Anraku, Haruko; Murooka, Yoshikatsu

    2003-03-01

    To elucidate the mechanisms involved in Rhizobium-legume symbiosis, we examined a novel symbiotic mutant, crinkle (Ljsym79), from the model legume Lotus japonicus. On nitrogen-starved medium, crinkle mutants inoculated with the symbiont bacterium Mesorhizobium loti MAFF 303099 showed severe nitrogen deficiency symptoms. This mutant was characterized by the production of many bumps and small, white, uninfected nodule-like structures. Few nodules were pale-pink and irregularly shaped with nitrogen-fixing bacteroids and expressing leghemoglobin mRNA. Morphological analysis of infected roots showed that nodulation in crinkle mutants is blocked at the stage of the infection process. Confocal microscopy and histological examination of crinkle nodules revealed that infection threads were arrested upon penetrating the epidermal cells. Starch accumulation in uninfected cells and undeveloped vascular bundles were also noted in crinkle nodules. Results suggest that the Crinkle gene controls the infection process that is crucial during the early stage of nodule organogenesis. Aside from the symbiotic phenotypes, crinkle mutants also developed morphological alterations, such as crinkly or wavy trichomes, short seedpods with aborted embryos, and swollen root hairs. crinkle is therefore required for symbiotic nodule development and for other aspects of plant development.

  17. Exudation of organic acids by Lupinus albus and Lupinus angustifolius as affected by phosphorus supply

    Science.gov (United States)

    Hentschel, Werner; Wiche, Oliver

    2016-04-01

    In phytomining and phytoremediation research mixed cultures of bioenergy crops with legumes hold promise to enhance availability of trace metals and metalloids in the soil plant system. This is due to the ability of certain legumes to mobilize trace elements during acquisition of nutrients making these elements available for co-cultured species. The legumes achieve this element mobilization by exudating carboxylates and enzymes as well as by lowering the pH value in the rhizosphere. The aim of our research was to determine characteristics and differences in the exudation of Lupinus albus and Lupinus angustifolius regarding to quantitative as to qualitative aspects. Especially the affection by phosphorus (P) supply was a point of interest. Thus we conducted laboratory batch experiments, wherein the plants were grown over four weeks under controlled light, moisture and nutritional conditions on sand as substrate. Half of the plants were supplied with 12 mg P per kg substrate, the other half were cultivated under a total lack of P. After cultivation the plants were transferred from the cultivation substrate into a 0,05 mmolṡL-1 CaCl2 solution. After two hours the plants were removed, moist and dry mass off shoots and roots were measured together with the root length (Tennants' method). Concentrations of exudated carboxylates in the CaCl2 solution were determined via IC (column: Metrosept OrganicAcids, eluent 0.5 molṡL-1 H2SO4 + 15% acetone, pH=3; 0.5 mLṡmin-1). As a result four different organic acids were identified (citric acid, fumaric acid, tartaric acid, malic acid) in concentration ranges of 0.15 mgṡL-1 (fumaric acid) to 9.21 mgṡL-1 (citric acid). Lupinus angustifolius showed a higher exudation rate (in nmol per cm root length per hour) than Lupinus albus in the presence of phosphorus (e.g. regarding citric acid: 1.99 vs 0.64 nmolṡ(gṡh)-1). However, as the root complexity and length of L. albus were far higher than of L. angustifolius, the total

  18. Controlled release of 6-aminonicotinamide from aligned, electrospun fibers alters astrocyte metabolism and dorsal root ganglia neurite outgrowth

    Science.gov (United States)

    Schaub, Nicholas J.; Gilbert, Ryan J.

    2011-08-01

    Following central nervous system (CNS) injury, activated astrocytes form a glial scar that inhibits the migration of axons ultimately leading to regeneration failure. Biomaterials developed for CNS repair can provide local delivery of therapeutics and/or guidance mechanisms to encourage cell migration into damaged regions of the brain or spinal cord. Electrospun fibers are a promising type of biomaterial for CNS injury since these fibers can direct cellular and axonal migration while slowly delivering therapy to the injury site. In this study, it was hypothesized that inclusion of an anti-metabolite, 6-aminonicotinamide (6AN), within poly-l-lactic acid electrospun fibers could attenuate astrocyte metabolic activity while still directing axonal outgrowth. Electrospinning parameters were varied to produce highly aligned electrospun fibers that contained 10% or 20% (w/w) 6AN. 6AN release from the fiber substrates occurred continuously over 2 weeks. Astrocytes placed onto drug-releasing fibers were less active than those cultured on scaffolds without 6AN. Dorsal root ganglia placed onto control and drug-releasing scaffolds were able to direct neurites along the aligned fibers. However, neurite outgrowth was stunted by fibers that contained 20% 6AN. These results show that 6AN release from aligned, electrospun fibers can decrease astrocyte activity while still directing axonal outgrowth.

  19. Arsenic Induced Phytate Exudation, and Promoted FeAsO4 Dissolution and Plant Growth in As-Hyperaccumulator Pteris vittata.

    Science.gov (United States)

    Liu, Xue; Fu, Jing-Wei; Guan, Dong-Xing; Cao, Yue; Luo, Jun; Rathinasabapathi, Bala; Chen, Yanshan; Ma, Lena Q

    2016-09-01

    Arsenic hyperaccumulator Pteris vittata (PV) is efficient in taking up As and nutrients from As-contaminated soils. We evaluated the mechanisms used by PV to mobilize As and Fe by examining the impacts of As and root exudates on FeAsO4 solubilization, and As and Fe uptake in four plants: As-hyperaccumulators PV and Pteris multifida (PM), nonhyperaccumulator Pteris ensiformis (PE), and angiosperm plant tomato (Solanum lycopersicum). Phytate and oxalate were dominant in fern plants (>93%), which were 50-83, 15-42, and 0-32 mg kg(-1) phytate and 10-15, 7-26, and 4-12 mg kg(-1) oxalate for PV, PM, and PE respectively, with higher As inducing greater phytate exudation and no phytate being detected in tomato exudates. PV treated with phytate+FeAsO4 had higher As and Fe contents and larger biomass than phytate or FeAsO4 treatment, which were 340 vs 20 and 130 mg kg(-1) As in the fronds and 7900 vs 1600 and 4100 mg kg(-1) Fe in the roots. We hypothesized that As-induced phytate exudation helped PV to take up Fe and As from insoluble FeAsO4 and promoted PV growth. Our study suggests that phytate exudation may be special to fern plants, which may play an important role in enhancing As and nutrient uptake by plants, thereby increasing their efficiency in phytoremediation of As-contaminated soils. PMID:27483027

  20. Developmental Alterations in Heart Biomechanics and Skeletal Muscle Function in Desmin Mutants Suggest an Early Pathological Root for Desminopathies

    Directory of Open Access Journals (Sweden)

    Caroline Ramspacher

    2015-06-01

    Full Text Available Desminopathies belong to a family of muscle disorders called myofibrillar myopathies that are caused by Desmin mutations and lead to protein aggregates in muscle fibers. To date, the initial pathological steps of desminopathies and the impact of desmin aggregates in the genesis of the disease are unclear. Using live, high-resolution microscopy, we show that Desmin loss of function and Desmin aggregates promote skeletal muscle defects and alter heart biomechanics. In addition, we show that the calcium dynamics associated with heart contraction are impaired and are associated with sarcoplasmic reticulum dilatation as well as abnormal subcellular distribution of Ryanodine receptors. Our results demonstrate that desminopathies are associated with perturbed excitation-contraction coupling machinery and that aggregates are more detrimental than Desmin loss of function. Additionally, we show that pharmacological inhibition of aggregate formation and Desmin knockdown revert these phenotypes. Our data suggest alternative therapeutic approaches and further our understanding of the molecular determinants modulating Desmin aggregate formation.

  1. Retinoid-like activity and teratogenic effects of cyanobacterial exudates.

    Science.gov (United States)

    Jonas, Adam; Buranova, Veronika; Scholz, Stefan; Fetter, Eva; Novakova, Katerina; Kohoutek, Jiri; Hilscherova, Klara

    2014-10-01

    Retinoic acids and their derivatives have been recently identified by chemical analyses in cyanobacteria and algae. Given the essential role of retinoids for vertebrate development this has raised concerns about a potential risk for vertebrates exposed to retinoids during cyanobacterial blooms. Our study focuses on extracellular compounds produced by phytoplankton cells (exudates). In order to address the capacity for the production of retinoids or compounds with retinoid-like activity we compared the exudates of ten cyanobacteria and algae using in vitro reporter gene assay. Exudates of three cyanobacterial species showed retinoid-like activity in the range of 269-2,265 ng retinoid equivalents (REQ)/L, while there was no detectable activity in exudates of the investigated algal species. The exudates of one green alga (Desmodesmus quadricaudus) and the two cyanobacterial species with greatest REQ levels, Microcystis aeruginosa and Cylindrospermopsis raciborskii, were selected for testing of the potential relation of retinoid-like activity to developmental toxicity in zebrafish embryos. The exudates of both cyanobacteria were indeed provoking diverse teratogenic effects (e.g. tail, spine and mouth deformation) and interference with growth in zebrafish embryos, while such effects were not observed for the alga. Fish embryos were also exposed to all-trans retinoic acid (ATRA) in a range equivalent to the REQ concentrations detected in exudates by in vitro bioassays. Both the phenotypes and effective concentrations of exudates corresponded to ATRA equivalents, supporting the hypothesis that the teratogenic effects of cyanobacterial exudates are likely to be associated with retinoid-like activity. The study documents that some cyanobacteria are able to produce and release retinoid-like compounds into the environment at concentrations equivalent to those causing teratogenicity in zebrafish. Hence, the characterization of retinoid-like and teratogenic potency should be

  2. 水稻氮高效基因型根系分泌物中有机酸和氨基酸的变化特征%Characteristics of organic acid and amino acid in root exudates of rice genotype with high nitrogen efficiency

    Institute of Scientific and Technical Information of China (English)

    戢林; 李廷轩; 张锡洲; 余海英

    2012-01-01

    采用溶液培养试验,研究水稻氮高效基因型在不同供氮水平下,根系分泌物中有机酸和氨基酸种类及含量的变化情况,并探讨其与氮素利用效率之间的关系。结果表明: 1)水稻氮高效基因型氮积累量随着供氮水平的降低明显下降,而氮素利用效率显著提高; 在供氮水平为20 mg/L时,高效基因型具有较高的氮积累量,且氮素利用效率较低效基因型高42.9%(分蘖期)和21.4%(拔节期)。 2)草酸为高效基因型根系分泌的主要有机酸种类,其分泌量占有机酸总量的80%以上,其次是乙酸和柠檬酸; 有机酸分泌总量和草酸分泌量在分蘖期和拔节期随供氮水平的降低而降低,乙酸和柠檬酸分泌量在拔节期也呈相同趋势; 相同供氮水平下,高效基因型有机酸分泌总量均显著低于低效基因型,且在20 mg/L时差异明显。 3)丙氨酸为高效基因型根系分泌的主要氨基酸种类,其分泌量占氨基酸总量的50%以上,其次是丝氨酸、 谷氨酸、 天冬氨酸、 苯丙氨酸、 甘氨酸和苏氨酸,且氨基酸分泌总量和各组分氨基酸分泌量均随供氮水平的降低而降低; 在低氮水平(10 mg/L和20 mg/L)下,高效基因型氨基酸分泌总量均显著低于低效基因型。4)在分蘖期和拔节期,水稻根系分泌有机酸和氨基酸总量与氮素利用效率均呈显著或极显著负相关,有机酸分泌组分中的草酸和氨基酸分泌组分的天冬氨酸分泌量与氮素利用效率也呈显著或极显著负相关。以上结果表明,低氮条件下水稻氮高效基因型氮效率优势明显,高效基因型氮素利用效率高,有利于体内同化物质的合理分配。%Nitrogen plays important roles in promoting plant growth and development. The purpose of this study was to investigate how N nutrient affect the changes in the root exudates under different nitrogen levels and their

  3. Staphylococcus hyicus virulence in relation to exudative epidermitis in pigs

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Andresen, Lars Ole; Bille-Hansen, Vivi

    1993-01-01

    Staphylococcus hyicus strains with different phage types, plasmid profiles, and antibiotic resistance patterns were isolated from piglets with exudative epidermitis. The strains could be divided into virulent strains, producing exudative epidermitis, and avirulent strains, producing no dermal....... It is concluded that crusting reaction of piglet skin is a suitable indicator of virulence in S. hyicus in relation to exudative epidermitis, and that virulent strains produce a 30 kDa protein, absent in concentrated culture supernatants from avirulent strains. This 30 kDa protein might be an exfoliative toxin....

  4. LMWOA (low molecular weight organic acid) exudation by salt marsh plants: Natural variation and response to Cu contamination

    Science.gov (United States)

    Mucha, Ana P.; Almeida, C. Marisa R.; Bordalo, Adriano A.; Vasconcelos, M. Teresa S. D.

    2010-06-01

    This work aimed to evaluate, in vitro, the capability of roots of two salt marsh plants to release low molecular weight organic acids (LMWOAs) and to ascertain whether Cu contamination would stimulate or not organic acids exudation. The sea rush Juncus maritimus and the sea-club rush Scirpus maritimus, both from the lower Douro river estuary (NW Portugal), were used. Plants were collected seasonally, four times a year in 2004, during low tide. After sampling, plant roots were washed for removal of adherent particles and immersed for 2 h in a solution that matched salinity (3) and pH (7.5) of the pore water from the same location to obtain plant exudates. In one of the seasons, similar experiments were carried out but spiking the solution with different amounts of Cu in order to embrace the range between 0 and 1600 nM. In the final solutions as well as in sediment pore water LMWOAs were determined by high performance liquid chromatography. Plants were able to release, in a short period of time, relatively high amounts of LMWOAs (oxalate, citrate, malate, malonate, and succinate). In the sediment pore water oxalate, succinate and acetate were also detected. Therefore, plant roots probably contributed to the presence of some of these organic compounds in pore water. Exudation differed between the plant species and also showed some seasonally variation, particularly for S. maritimus. The release of oxalate by J. maritimus increased with Cu increase in the media. However, exudation of the other LMWOAs did not seem to be stimulated by Cu contamination in the media. This fact is compatible with the existence of alternative internal mechanisms for Cu detoxification, as denoted by the fact that in media contaminated with Cu both plant species accumulated relatively high amounts (29-83%) of the initially dissolved Cu. This study expands our knowledge on the contribution of globally dominant salt marsh plants to the release of LMWOAs into the environment.

  5. Tumor Necrosis Factor-Alpha in Peripical Tissue Exudates of Teeth with Apical Periodontitis

    Directory of Open Access Journals (Sweden)

    Sonja Pezelj-Ribaric

    2007-01-01

    Full Text Available Aim. The aim of this study was to determine tumor necrosis factor-alpha (TNF-α levels in periapical exudates and to evaluate their relationship with radiological findings. Methodology. Periapical exudates were collected from root canals of 60 single-rooted teeth using absorbent paper points. TNF-α levels were determined by enzyme-linked immunosorbent assays. The samples were divided into three groups according to the periapical radiolucent area. Results. Nonparametric Kruskal-Wallis test revealed significant differences between TNF-α concentrations in control group (40, 57±28, 15 pg/mL and group with larger radiolucent areas (2365, 79±582, 95 pg/mL, as well as between control and canals with small radiolucent areas (507, 66±278, 97 (P<.05. Conclusions. The levels of TNF-α increase significantly in teeth with periapical pathosis, from smaller to bigger lesions. This research and its results have shown that objective analysis of the TNF-α levels enables establishment of a relationship between different concentrations of TNF-α and different radiological changes.

  6. Nitrate Protects Cucumber Plants Against Fusarium oxysporum by Regulating Citrate Exudation.

    Science.gov (United States)

    Wang, Min; Sun, Yuming; Gu, Zechen; Wang, Ruirui; Sun, Guomei; Zhu, Chen; Guo, Shiwei; Shen, Qirong

    2016-09-01

    Fusarium wilt causes severe yield losses in cash crops. Nitrogen plays a critical role in the management of plant disease; however, the regulating mechanism is poorly understood. Using biochemical, physiological, bioinformatic and transcriptome approaches, we analyzed how nitrogen forms regulate the interactions between cucumber plants and Fusarium oxysporum f. sp. cucumerinum (FOC). Nitrate significantly suppressed Fusarium wilt compared with ammonium in both pot and hydroponic experiments. Fewer FOC colonized the roots and stems under nitrate compared with ammonium supply. Cucumber grown with nitrate accumulated less fusaric acid (FA) after FOC infection and exhibited increased tolerance to chemical FA by decreasing FA absorption and transportation in shoots. A lower citrate concentration was observed in nitrate-grown cucumbers, which was associated with lower MATE (multidrug and toxin compound extrusion) family gene and citrate synthase (CS) gene expression, as well as lower CS activity. Citrate enhanced FOC spore germination and infection, and increased disease incidence and the FOC population in ammonium-treated plants. Our study provides evidence that nitrate protects cucumber plants against F. oxysporum by decreasing root citrate exudation and FOC infection. Citrate exudation is essential for regulating disease development of Fusarium wilt in cucumber plants.

  7. Nitrate Protects Cucumber Plants Against Fusarium oxysporum by Regulating Citrate Exudation.

    Science.gov (United States)

    Wang, Min; Sun, Yuming; Gu, Zechen; Wang, Ruirui; Sun, Guomei; Zhu, Chen; Guo, Shiwei; Shen, Qirong

    2016-09-01

    Fusarium wilt causes severe yield losses in cash crops. Nitrogen plays a critical role in the management of plant disease; however, the regulating mechanism is poorly understood. Using biochemical, physiological, bioinformatic and transcriptome approaches, we analyzed how nitrogen forms regulate the interactions between cucumber plants and Fusarium oxysporum f. sp. cucumerinum (FOC). Nitrate significantly suppressed Fusarium wilt compared with ammonium in both pot and hydroponic experiments. Fewer FOC colonized the roots and stems under nitrate compared with ammonium supply. Cucumber grown with nitrate accumulated less fusaric acid (FA) after FOC infection and exhibited increased tolerance to chemical FA by decreasing FA absorption and transportation in shoots. A lower citrate concentration was observed in nitrate-grown cucumbers, which was associated with lower MATE (multidrug and toxin compound extrusion) family gene and citrate synthase (CS) gene expression, as well as lower CS activity. Citrate enhanced FOC spore germination and infection, and increased disease incidence and the FOC population in ammonium-treated plants. Our study provides evidence that nitrate protects cucumber plants against F. oxysporum by decreasing root citrate exudation and FOC infection. Citrate exudation is essential for regulating disease development of Fusarium wilt in cucumber plants. PMID:27481896

  8. Reduced germination of Orobanche cumana seeds in the presence of Arbuscular Mycorrhizal fungi or their exudates.

    Science.gov (United States)

    Louarn, Johann; Carbonne, Francis; Delavault, Philippe; Bécard, Guillaume; Rochange, Soizic

    2012-01-01

    Broomrapes (Orobanche and Phelipanche spp) are parasitic plants responsible for important crop losses, and efficient procedures to control these pests are scarce. Biological control is one of the possible strategies to tackle these pests. Arbuscular Mycorrhizal (AM) fungi are widespread soil microorganisms that live symbiotically with the roots of most plant species, and they have already been tested on sorghum for their ability to reduce infestation by witchweeds, another kind of parasitic plants. In this work AM fungi were evaluated as potential biocontrol agents against Orobanche cumana, a broomrape species that specifically attacks sunflower. When inoculated simultaneously with O. cumana seeds, AM fungi could offer a moderate level of protection against the broomrape. Interestingly, this protection did not only rely on a reduced production of parasitic seed germination stimulants, as was proposed in previous studies. Rather, mycorrhizal root exudates had a negative impact on the germination of O. cumana induced by germination stimulants. A similar effect could be obtained with AM spore exudates, establishing the fungal origin of at least part of the active compounds. Together, our results demonstrate that AM fungi themselves can lead to a reduced rate of parasitic seed germination, in addition to possible effects mediated by the mycorrhizal plant. Combined with the other benefits of AM symbiosis, these effects make AM fungi an attractive option for biological control of O. cumana. PMID:23145139

  9. Automatic Detection of Retinal Exudates using a Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Nualsawat HIRANSAKOLWONG

    2013-02-01

    Full Text Available Retinal exudates are among the preliminary signs of diabetic retinopathy, a major cause of vision loss in diabetic patients. Correct and efficient screening of exudates is very expensive in professional time and may cause human error. Nowadays, the digital retinal image is frequently used to follow-up and diagnoses eye diseases. Therefore, the retinal image is crucial and essential for experts to detect exudates. Unfortunately, it is a normal situation that retinal images in Thailand are poor quality images. In this paper, we present a series of experiments on feature selection and exudates classification using the support vector machine classifiers. The retinal images are segmented following key preprocessing steps, i.e., color normalization, contrast enhancement, noise removal and color space selection. On data sets of poor quality images, sensitivity, specificity and accuracy is 94.46%, 89.52% and 92.14%, respectively.

  10. Ubiquitous water-soluble molecules in aquatic plant exudates determine specific insect attraction.

    Directory of Open Access Journals (Sweden)

    Julien Sérandour

    Full Text Available Plants produce semio-chemicals that directly influence insect attraction and/or repulsion. Generally, this attraction is closely associated with herbivory and has been studied mainly under atmospheric conditions. On the other hand, the relationship between aquatic plants and insects has been little studied. To determine whether the roots of aquatic macrophytes release attractive chemical mixtures into the water, we studied the behaviour of mosquito larvae using olfactory experiments with root exudates. After testing the attraction on Culex and Aedes mosquito larvae, we chose to work with Coquillettidia species, which have a complex behaviour in nature and need to be attached to plant roots in order to obtain oxygen. This relationship is non-destructive and can be described as commensal behaviour. Commonly found compounds seemed to be involved in insect attraction since root exudates from different plants were all attractive. Moreover, chemical analysis allowed us to identify a certain number of commonly found, highly water-soluble, low-molecular-weight compounds, several of which (glycerol, uracil, thymine, uridine, thymidine were able to induce attraction when tested individually but at concentrations substantially higher than those found in nature. However, our principal findings demonstrated that these compounds appeared to act synergistically, since a mixture of these five compounds attracted larvae at natural concentrations (0.7 nM glycerol, <0.5 nM uracil, 0.6 nM thymine, 2.8 nM uridine, 86 nM thymidine, much lower than those found for each compound tested individually. These results provide strong evidence that a mixture of polyols (glycerol, pyrimidines (uracil, thymine, and nucleosides (uridine, thymidine functions as an efficient attractive signal in nature for Coquillettidia larvae. We therefore show for the first time, that such commonly found compounds may play an important role in plant-insect relationships in aquatic eco-systems.

  11. Unilateral, recurrent exudative retinal detachment in association with pansinusitis [

    Directory of Open Access Journals (Sweden)

    Osman Saatci, Ali

    2012-11-01

    Full Text Available [english] Aim: To report a patient with unilateral exudative retinal detachment due to pansinusitis.Methods: Case report.Results: A 65-year-old woman with a two-month history of blurred vision, red eye and lid swelling in her left eye was referred to us. Her best-corrected visual acuity was 20/20 in the right eye and 20/200 in the left. Conjunctival vessels were engorged in the OS. Funduscopy revealed a 360° exudative detachment in OS and computerized tomography (CT imaging revealed pansinusitis. Systemic antibiotic treatment was employed and exudative detachment regressed. However, exudative detachment remitted as soon as antibiotic treatment ceased. Finally she underwent sinus surgery and decompression of the orbita. Her visual acuity improved to 20/100 just two days after the surgery, stabilized at 20/30 and no further recurrences occured during the follow-up of 10 months.Conclusion: Since exudative retinal detachment usually accompanies systemic inflammatory or neoplastic diseases, systemic screening and collaboration with other disciplines are mandatory. To the best of our knowledge, this is the first report of a case that developed exudative retinal detachment due to pansinusitis and only recovered after decompression surgery.

  12. Physiological responses in roots of the grapevine rootstock 140 Ruggeri subjected to Fe deficiency and Fe-heme nutrition.

    Science.gov (United States)

    López-Rayo, Sandra; Di Foggia, Michele; Rodrigues Moreira, Erica; Donnini, Silvia; Bombai, Giuseppe; Filippini, Gianfranco; Pisi, Annamaria; Rombolà, Adamo D

    2015-11-01

    Iron (Fe)-heme containing fertilizers can effectively prevent Fe deficiency. This paper aims to investigate root physiological responses after a short period of Fe-heme nutrition and Fe deficiency under two pH conditions (with or without HEPES) in the Fe chlorosis-tolerant grapevine rootstock 140 Ruggeri. Organic acids in root exudates, Fe reduction capacity, both roots and root exudates contributions, together with other physiological parameters associated to plant Fe status were evaluated in plants grown in hydroponics. Analyses of root tips by SEM, and Raman and IR spectra of the precipitates of Fe-heme fertilizers were performed. The physiological responses adopted by the tolerant 140 Ruggeri to the application of Fe-heme indicated an increased Fe reduction capacity of the roots. This is the first report showing oxalic, tartaric, malic and ascorbic as major organic acids in Vitis spp. root exudates. Plants reacted to Fe deficiency condition exuding a higher amount of ascorbic acid in the rhizosphere. The presence of HEPES in the medium favoured the malic acid exudation. The lowest concentration of oxalic acid was found in exudates of plants subjected to Fe-heme and could be associated to a higher accumulation in their root tips visualized by SEM analysis. PMID:26276277

  13. Field performance of Solanum sisymbriifolium, a trap crop for potato cyst nematodes. II. Root characteristics

    NARCIS (Netherlands)

    Timmermans, B.G.H.; Vos, J.; Stomph, T.J.; Nieuwburg, van J.G.W.; Putten, van der P.E.L.

    2007-01-01

    Hatching of potato cyst nematodes is induced by root exudates of Solanaceae, such as Solanum sisymbriifolium, and is therefore related to root length distribution of this crop. A mathematical model was derived to relate the hatching potential to root length density (RLD). A series of field experimen

  14. Vegetable exudates as food for Callithrix spp. (Callitrichidae: exploratory patterns.

    Directory of Open Access Journals (Sweden)

    Talitha Mayumi Francisco

    Full Text Available Marmosets of the genus Callithrix are specialized in the consumption of tree exudates to obtain essential nutritional resource by boring holes into bark with teeth. However, marmoset preferences for particular tree species, location, type, and other suitable factors that aid in exudate acquisition need further research. In the current study, the intensity of exudate use from Anadenanthera peregrina var. peregrina trees by hybrid marmosets Callithrix spp. groups was studied in five forest fragments in Viçosa, in the state of Minas, Brazil. Thirty-nine A. peregrina var. peregrina trees were examined and 8,765 active and non-active holes were analyzed. The trunk of A. peregrina var. peregrina had a lower number of holes than the canopy: 11% were found on the trunk and 89% were found on the canopy. The upper canopy was the preferred area by Callithrix spp. for obtaining exudates. The intensity of tree exploitation by marmosets showed a moderate-to-weak correlation with diameter at breast height (DBH and total tree height. The overall results indicate that Anadenanthera peregrina var. peregrina provides food resources for hybrid marmosets (Callithrix spp. and these animals prefer to explore this resource on the apical parts of the plant, where the thickness, location, and age of the branches are the main features involved in the acquisition of exudates.

  15. THE CLINICAL APPLICATIONS FOR AUTOMATIC DETECTION OF EXUDATES

    Directory of Open Access Journals (Sweden)

    K. Wisaeng

    2014-01-01

    Full Text Available Nowadays, the retinal imaging technology has been widely used for segmenting and detecting the exudates in diabetic retinopathy patients. Unfortunately, the retinal images in Thailand are poor-quality images. Therefore, detecting of exudates in a large number by screening programs, are very expensive in professional time and may cause human error. In this study, the clinical applications for detection of exudates from the poor quality retinal image are presented. An application incorporating function, including retinal color normalization, contrast enhancement, noise removal, color space selection and removal of the optic disc, was also designed to standardize the workflow of retinal analysis. Afterward, detection of exudate based on optimal global thresholding and improved adaptive Otsu’s algorithm was applied. Two experiments were conducted to validate the detection performance with local databases and a publicly available DIARETDB1 database. The first experiment showed the average sensitivity, specificity and accuracy of 93.8, 95.3 and 94.9%, respectively. The cross validation results of the second experiment, 60% (53 of the retinal images were used for training and 40% (36 for testing, the sensitivity, specificity and accuracy are 84.2, 85.9 and 85.2%, respectively. This result indicates the proposed clinical application provides an effective tool in the screening of exudates.

  16. Soil sheaths, photosynthate distribution to roots, and rhizosphere water relations for Opuntia ficus-indica

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.; North, G.B.; Nobel, P.S. (Univ. of California, Los Angeles, CA (United States))

    1993-09-01

    Soil sheaths incorporating aggregated soil particles surround young roots of many species, but the effects of such sheaths on water movement between roots and the soil are largely unknown. The quantity and location of root exudates associated with soil sheath along the entire length of its young roots, except within 1.4 cm of the tip. The soil sheaths, which average 0.7 mm in thickness, were composed of soil particles and root hairs, both of which were covered with exuded mucilaginous material. As determined with a [sup 14]C pulse-labeling technique, 2% of newly fixed [sup 14]C-photosynthate was translocated into the roots at 3d, 6% at 9 d, and 8% at 15 d after labeling. The fraction of insoluble [sup 14]C in the roots increased twofold from 3 d to 15 d. Over the same time period, 6%-9% of the [sup 14]C translocated to the roots was exuded into the soil. The soluble [sup 14]C compounds exuded into the soil were greater in the 3-cm segment at the root tip than elsewhere along the root, whereas mucilage was exuded relatively uniformly along roots 15 cm in length. The volumetric efflux of water increase for both sheathed and unsheathed roots as the soil water potential decreased form -0.1 MPa to -1.0 MPa. The efflux rate was greater for unsheathed roots than for sheathed roots, which were more turgid and had a higher water potential, especially at lower soil water potentials. During drying, soil particles in the sheaths aggregate more tightly, making the sheaths less permeable to water and possibly creating air gaps. The soil sheaths of O. ficus-indica thus reduce water loss from the roots to a drying soil. 34 refs., 6 figs., 1 tab.

  17. Transepithelial chemotaxis of rat peritoneal exudate cells.

    Science.gov (United States)

    Evans, C W; Taylor, J E; Walker, J D; Simmons, N L

    1983-12-01

    The migration of peritoneal exudate (PE) cells into plain Millipore filters mounted in Boyden chambers occurs under random, chemokinetic and chemotactic conditions. Significant migration of such cells in vivo, however, involves both transendothelial and transepithelial penetration and occurs predominantly under pathological conditions where chemotactic agents are presumed to be present in gradient form. When Madin-Darby canine kidney (MDCK) epithelial cells are grown as a confluent monolayer on the Millipore filter of a Boyden chamber, transepithelial migration is seen only under chemotactic conditions thus modelling in vivo behaviour more effectively. The MDCK cell line exists as 2 variant strains which model different regions of the mammalian nephron. Strain I MDCK cells share features of the distal and collecting tubules and have relatively high junctional resistance (greater than 1k omega cm2). Strain II MDCK cells model the proximal segment of the nephron and have relatively low junctional resistance (c. 70 omega cm2). We have found that PE cells penetrate the less resistant strain II MDCK monolayer at a faster rate (as assessed by leading front migration) than they penetrate the tighter strain I monolayer. We have also utilized the electrophysiological features of MDCK monolayers to monitor transepithelial penetration. Our electrophysiological data indicate that rat PE cells penetrate MDCK monolayers of either strain by a transjunctional route with consequent reversible dissolution of the junctional complex. This extracellular path of PE cell migration was confirmed by ultrastructural observations. The extent of junctional dissolution and the delay in re-establishment of monolayer integrity (as assessed by electrophysiological means) are related to the concentration of PE cells added to the MDCK monolayer. Brief treatment (10 min) of the MDCK monolayer with the cation chelating agent EDTA also disrupts monolayer integrity, although its re-establishment is

  18. Rhizosphere wettability decreases with root age: A problem or a strategy to increase water uptake of young roots?

    OpenAIRE

    Andrea eCarminati

    2013-01-01

    As plant roots take up water and the soil dries, water depletion is expected to occur in the vicinity of roots, the so called rhizosphere. However, recent experiments showed that the rhizosphere of lupines was wetter than the bulk soil during the drying period. Surprisingly, the rhizosphere remained temporarily dry after irrigation. Such water dynamics in the rhizosphere can be explained by the drying/wetting dynamics of mucilage exuded by roots. The capacity of mucilage to hold large volumes...

  19. Rhizosphere wettability decreases with root age: a problem or a strategy to increase water uptake of young roots?

    OpenAIRE

    Carminati, Andrea

    2013-01-01

    As plant roots take up water and the soil dries, water depletion is expected to occur in the vicinity of roots, the so called rhizosphere. However, recent experiments showed that the rhizosphere of lupines was wetter than the bulk soil during the drying period. Surprisingly, the rhizosphere remained temporarily dry after irrigation. Such water dynamics in the rhizosphere can be explained by the drying/wetting dynamics of mucilage exuded by roots. The capacity of mucilage to hold large volumes...

  20. AUTOMATIC RETINA EXUDATES SEGMENTATION WITHOUT A MANUALLY LABELLED TRAINING SET

    Energy Technology Data Exchange (ETDEWEB)

    Giancardo, Luca [ORNL; Meriaudeau, Fabrice [ORNL; Karnowski, Thomas Paul [ORNL; Li, Yaquin [University of Tennessee, Knoxville (UTK); Tobin Jr, Kenneth William [ORNL; Chaum, Edward [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Diabetic macular edema (DME) is a common vision threatening complication of diabetic retinopathy which can be assessed by detecting exudates (a type of bright lesion) in fundus images. In this work, two new methods for the detection of exudates are presented which do not use a supervised learning step and therefore do not require ground-truthed lesion training sets which are time consuming to create, difficult to obtain, and prone to human error. We introduce a new dataset of fundus images from various ethnic groups and levels of DME which we have made publicly available. We evaluate our algorithm with this dataset and compare our results with two recent exudate segmentation algorithms. In all of our tests, our algorithms perform better or comparable with an order of magnitude reduction in computational time.

  1. The proteome of liquid Sclerotial exudates from Sclerotinia sclerotiorum.

    Science.gov (United States)

    Liang, Yue; Strelkov, Stephen E; Kav, Nat N V

    2010-06-01

    Sclerotinia sclerotiorum (Lib.) is a necrotrophic plant pathogen that is capable of infecting more than 400 plant species worldwide. The sclerotium plays important roles in the disease and fungal life cycles. The exudation of liquid droplets is a common feature during sclerotial development, but little is known regarding the nature of these exudates. A proteome-level study was performed in order to gain a better understanding of the types of proteins present in the exudates. Fifty-six proteins were identified and classified into several functional categories, including amino acid metabolism, carbohydrate metabolism, lipid and secondary metabolism, as well as energy, signal transduction, and those with unknown functions. The roles of the identified proteins are discussed within the context of sclerotial development and fungal virulence. Our results may facilitate additional studies aimed at characterizing the function of these proteins in the formation of sclerotia and the life cycle of S. sclerotiorum. PMID:20408562

  2. Hard Retinal exudates and visual loss due to papilledema

    Energy Technology Data Exchange (ETDEWEB)

    Rush, J.A.

    1982-02-01

    Bilateral papilledema developed in a patient with a cystic, grade 3 astrocytoma of the right frontal lobe. Despite successful neurosurgical treatment, /sup 60/Co radiotherapy, and oral corticosteroid therapy, progressive visual loss occurred. At examination one year later, visual activity was 20/200 and 20/70, and extensive lipid exudates in the peripapillary retina and central macula of each eye were noted. Retinal lipid exudates rarely complicate the course of surviving patients who had papilledema from intracranial tumor; physicians involved in the multispecialty care of such patients should be aware of the possible ocular residuals of persistent papilledema in an otherwise successfully treated patient.

  3. Long-Term Boron-Excess-Induced Alterations of Gene Profiles in Roots of Two Citrus Species Differing in Boron-Tolerance Revealed by cDNA-AFLP

    Science.gov (United States)

    Guo, Peng; Qi, Yi-Ping; Yang, Lin-Tong; Ye, Xin; Huang, Jing-Hao; Chen, Li-Song

    2016-01-01

    Boron (B) toxicity is observed in some citrus orchards in China. However, limited data are available on the molecular mechanisms of citrus B-toxicity and B-tolerance. Using cDNA-AFLP, we identified 20 up- and 52 down-regulated genes, and 44 up- and 66 down-regulated genes from excess B-treated Citrus sinensis and Citrus grandis roots, respectively, thereby demonstrating that gene expression profiles were more affected in the latter. In addition, phosphorus and total soluble protein concentrations were lowered only in excess B-treated C. grandis roots. Apparently, C. sinensis had higher B-tolerance than C. grandis. Our results suggested that the following several aspects were responsible for the difference in the B-tolerance between the two citrus species including: (a) B-excess induced Root Hair Defective 3 expression in C. sinensis roots, and repressed villin4 expression in C. grandis roots; accordingly, root growth was less inhibited by B-excess in the former; (b) antioxidant systems were impaired in excess B-treated C. grandis roots, hence accelerating root senescence; (c) genes related to Ca2+ signals were inhibited (induced) by B-excess in C. grandis (C. sinensis) roots. B-excess-responsive genes related to energy (i.e., alternative oxidase and cytochrome P450), lipid (i.e., Glycerol-3-phosphate acyltransferase 9 and citrus dioxygenase), and nucleic acid (i.e., HDA19, histone 4, and ribonucleotide reductase RNR1 like protein) metabolisms also possibly accounted for the difference in the B-tolerance between the two citrus species. These data increased our understanding of the mechanisms on citrus B-toxicity and B-tolerance at transcriptional level. PMID:27446128

  4. Neuroprotective cadinane sesquiterpenes from the resinous exudates of Commiphora myrrha.

    Science.gov (United States)

    Xu, Jing; Guo, Yuanqiang; Zhao, Peng; Xie, Chunfeng; Jin, Da-qing; Hou, Wenbin; Zhang, Tiejun

    2011-12-01

    Three new cadinane sesquiterpenes, commiterpenes A-C, were isolated from the resinous exudates of Commiphora myrrha. Their structures and relative configurations were elucidated by spectroscopic methods (IR, ESIMS, HRESIMS, 1D and 2D NMR). All the isolated sesquiterpenes showed neuroprotective effects against MPP+-induced neuronal cell death in SH-SY5Y cells.

  5. The effects of dopamine on root growth and enzyme activity in soybean seedlings.

    Science.gov (United States)

    Guidotti, Bruno Boni; Gomes, Bruno Ribeiro; Siqueira-Soares, Rita de Cássia; Soares, Anderson Ricardo; Ferrarese-Filho, Osvaldo

    2013-09-01

    In the present study, we investigated the effects of dopamine, an allelochemical exuded from the velvetbean (Mucuna pruriens L DC. var utilis), on the growth and cell viability of soybean (Glycine max L. Merrill) roots. We analyzed the effects of dopamine on superoxide dismutase, phenylalanine ammonia-lyase and cell wall-bound peroxidase activities as well as its effects on lignin contents in the roots. Three-day-old seedlings were cultivated in half-strength Hoagland nutrient solution (pH 6.0), without or with 0.25 to 1.0 mM dopamine, in a growth chamber (25°C, 12L:12D photoperiod, irradiance of 280 μmol m(-2) s(-1)) for 24 h. In general, the length, fresh weight and dry weight of roots, cell viability, PAL and POD activities decreased, while SOD activities increased after dopamine treatment. The content of lignin was not altered. The data demonstrate the susceptibility of soybean to dopamine and reinforce the role of this catecholamine as a strong allelochemical. The results also suggest that dopamine-induced inhibition in soybean roots is not related to the production of lignin, but may be related to damage caused by reactive oxygen species. PMID:23838960

  6. A mathematical model for investigating the effect of cluster roots on plant nutrient uptake

    KAUST Repository

    Zygalakis, K. C.

    2012-04-01

    Cluster roots are thought to play an important role in mediating nutrient uptake by plants. In this paper we develop a mathematical model for the transport and uptake of phosphate by a single root. Phosphate is assumed to diffuse in the soil fluid phase and can also solubilised due to citrate exudation. Using multiple scale homogenisation techniques we derive an effective model that accounts for the cumulative effect of citrate exudation and phosphate uptake by cluster roots whilst still retaining all the necessary information about the microscale geometry and effects. © 2012 EDP Sciences and Springer.

  7. A mathematical model for investigating the effect of cluster roots on plant nutrient uptake

    Science.gov (United States)

    Zygalakis, K. C.; Roose, T.

    2012-04-01

    Cluster roots are thought to play an important role in mediating nutrient uptake by plants. In this paper we develop a mathematical model for the transport and uptake of phosphate by a single root. Phosphate is assumed to diffuse in the soil fluid phase and can also solubilised due to citrate exudation. Using multiple scale homogenisation techniques we derive an effective model that accounts for the cumulative effect of citrate exudation and phosphate uptake by cluster roots whilst still retaining all the necessary information about the microscale geometry and effects.

  8. The Nitrification Inhibitor Methyl 3-(4-Hydroxyphenyl)Propionate Modulates Root Development by Interfering with Auxin Signaling via the NO/ROS Pathway.

    Science.gov (United States)

    Liu, Yangyang; Wang, Ruling; Zhang, Ping; Chen, Qi; Luo, Qiong; Zhu, Yiyong; Xu, Jin

    2016-07-01

    Methyl 3-(4-hydroxyphenyl)propionate (MHPP) is a root exudate that functions as a nitrification inhibitor and as a modulator of the root system architecture (RSA) by inhibiting primary root (PR) elongation and promoting lateral root formation. However, the mechanism underlying MHPP-mediated modulation of the RSA remains unclear. Here, we report that MHPP inhibits PR elongation in Arabidopsis (Arabidopsis thaliana) by elevating the levels of auxin expression and signaling. MHPP induces an increase in auxin levels by up-regulating auxin biosynthesis, altering the expression of auxin carriers, and promoting the degradation of the auxin/indole-3-acetic acid family of transcriptional repressors. We found that MHPP-induced nitric oxide (NO) production promoted reactive oxygen species (ROS) accumulation in root tips. Suppressing the accumulation of NO or ROS alleviated the inhibitory effect of MHPP on PR elongation by weakening auxin responses and perception and by affecting meristematic cell division potential. Genetic analysis supported the phenotype described above. Taken together, our results indicate that MHPP modulates RSA remodeling via the NO/ROS-mediated auxin response pathway in Arabidopsis. Our study also revealed that MHPP significantly induced the accumulation of glucosinolates in roots, suggesting the diverse functions of MHPP in modulating plant growth, development, and stress tolerance in plants. PMID:27217493

  9. Growth of AM fungi on in vitro root organ culture of Sorghum vulgare and Saccharum officinarum.

    Science.gov (United States)

    Raman, N; Sahadevan, C; Srinivasan, V

    2001-12-01

    Spores of Gl mosseae and Gig gigantea germinated on minimal medium produced extraradical mycelium. Gl. mosseae infected roots of S. officinarum in in vitro condition were inoculated in M medium with in vitro cultured roots of Sorghum vulgare (test roots). From the infected root of S. officinarum, the mycelium developed and it infected the test roots. The roots developed new mycelia and further the mycelia produced a few hyaline spores. In MS medium combined with soil extract, root exudate, thiamine HCl and inositol combination, spore germination and germ tube growth were higher when compared with other media. PMID:12018527

  10. Bacteria with Phosphate Solubilizing Capacity Alter Mycorrhizal Fungal Growth Both Inside and Outside the Root and in the Presence of Native Microbial Communities.

    Science.gov (United States)

    Ordoñez, Yuli Marcela; Fernandez, Belen Rocio; Lara, Lidia Susana; Rodriguez, Alia; Uribe-Vélez, Daniel; Sanders, Ian R

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing Pseudomonas bacteria (PSB) could potentially interact synergistically because PSB solubilize phosphate into a form that AMF can absorb and transport to the plant. However, very little is known about the interactions between these two groups of microorganisms and how they influence the growth of each other. We tested whether different strains of bacteria, that have the capacity to solubilize phosphate, are able to grow along AMF hyphae and differentially influence the growth of AMF both outside the roots of carrot in in vitro conditions and inside the roots of potato in the presence of a microbial community. We found strong effects of AMF on the growth of the different bacterial strains. Different bacterial strains also had very strong effects on the growth of AMF extraradical hyphae outside the roots of carrot and on colonization of potato roots by AMF. The differential effects on colonization occurred in the presence of a microbial community. Our results show that these two important groups of rhizosphere microorganisms indeed interact with each other. Such interactions could potentially lead to synergistic effects between the two groups but this could depend on whether the bacteria truly solubilize phosphate in the rhizosphere in the presence of microbial communities. PMID:27253975

  11. Bacteria with Phosphate Solubilizing Capacity Alter Mycorrhizal Fungal Growth Both Inside and Outside the Root and in the Presence of Native Microbial Communities

    Science.gov (United States)

    Lara, Lidia Susana; Rodriguez, Alia; Uribe-Vélez, Daniel; Sanders, Ian R.

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing Pseudomonas bacteria (PSB) could potentially interact synergistically because PSB solubilize phosphate into a form that AMF can absorb and transport to the plant. However, very little is known about the interactions between these two groups of microorganisms and how they influence the growth of each other. We tested whether different strains of bacteria, that have the capacity to solubilize phosphate, are able to grow along AMF hyphae and differentially influence the growth of AMF both outside the roots of carrot in in vitro conditions and inside the roots of potato in the presence of a microbial community. We found strong effects of AMF on the growth of the different bacterial strains. Different bacterial strains also had very strong effects on the growth of AMF extraradical hyphae outside the roots of carrot and on colonization of potato roots by AMF. The differential effects on colonization occurred in the presence of a microbial community. Our results show that these two important groups of rhizosphere microorganisms indeed interact with each other. Such interactions could potentially lead to synergistic effects between the two groups but this could depend on whether the bacteria truly solubilize phosphate in the rhizosphere in the presence of microbial communities. PMID:27253975

  12. Bacillus simplex—A Little Known PGPB with Anti-Fungal Activity—Alters Pea Legume Root Architecture and Nodule Morphology When Coinoculated with Rhizobium leguminosarum bv. viciae

    Directory of Open Access Journals (Sweden)

    Ann M. Hirsch

    2013-09-01

    Full Text Available Two strains, 30N-5 and 30VD-1, identified as Bacillus simplex and B. subtilis, were isolated from the rhizospheres of two different plants, a Podocarpus and a palm, respectively, growing in the University of California, Los Angeles (UCLA Mildred E. Mathias Botanical Garden. B. subtilis is a well-known plant-growth promoting bacterial species, but B. simplex is not. B. simplex 30N-5 was initially isolated on a nitrogen-free medium, but no evidence for nitrogen fixation was found. Nevertheless, pea plants inoculated with B. simplex showed a change in root architecture due to the emergence of more lateral roots. When Pisum sativum carrying a DR5::GUSA construct, an indicator for auxin response, was inoculated with either B. simplex 30N-5 or its symbiont Rhizobium leguminosarum bv. viciae 128C53, GUS expression in the roots was increased over the uninoculated controls. Moreover, when pea roots were coinoculated with either B. simplex 30N-5 or B. subtilis 30VD-1 and R. leguminosarum bv. viciae 128C53, the nodules were larger, clustered, and developed more highly branched vascular bundles. Besides producing siderophores and solubilizing phosphate, the two Bacillus spp., especially strain 30VD-1, exhibited anti-fungal activity towards Fusarium. Our data show that combining nodulating, nitrogen-fixing rhizobia with growth-promoting bacteria enhances plant development and strongly supports a coinoculation strategy to improve nitrogen fixation, increase biomass, and establish greater resistance to fungal disease.

  13. Bacteria with Phosphate Solubilizing Capacity Alter Mycorrhizal Fungal Growth Both Inside and Outside the Root and in the Presence of Native Microbial Communities.

    Directory of Open Access Journals (Sweden)

    Yuli Marcela Ordoñez

    Full Text Available Arbuscular mycorrhizal fungi (AMF and phosphate solubilizing Pseudomonas bacteria (PSB could potentially interact synergistically because PSB solubilize phosphate into a form that AMF can absorb and transport to the plant. However, very little is known about the interactions between these two groups of microorganisms and how they influence the growth of each other. We tested whether different strains of bacteria, that have the capacity to solubilize phosphate, are able to grow along AMF hyphae and differentially influence the growth of AMF both outside the roots of carrot in in vitro conditions and inside the roots of potato in the presence of a microbial community. We found strong effects of AMF on the growth of the different bacterial strains. Different bacterial strains also had very strong effects on the growth of AMF extraradical hyphae outside the roots of carrot and on colonization of potato roots by AMF. The differential effects on colonization occurred in the presence of a microbial community. Our results show that these two important groups of rhizosphere microorganisms indeed interact with each other. Such interactions could potentially lead to synergistic effects between the two groups but this could depend on whether the bacteria truly solubilize phosphate in the rhizosphere in the presence of microbial communities.

  14. ASSOCIATION BETWEEN RETINAL HARD EXUDATES AND DYSLIPIDEMIA IN TYPE 2 DIABETIC PATIENTS IN RURAL KARNATAKA

    Directory of Open Access Journals (Sweden)

    Arun Kumar B.

    2015-10-01

    Full Text Available AIM: To evaluate the association of elevated serum lipids with retinal hard exudates in type 2 diabetic patients in rural Karnataka. MATERIAL AND METHODS : Hospital based cross sectional study which included 60 (n=60 type 2 diabetic patients (60 eyes fulfilling the inclusion criteria. Patients were subjected to detailed ocular examination, fundus examination done under full dilatation using indirect ophth almoscope with 20D lens and slit lamp biomicroscope with 90D lens. Fundus photographs were obtained using fundus camera. Grading of retinal hard exudates performed by utilizing modified Airlie House classification. The modified Airlie House Classification used is as follows: Grade 0 - No evidence of hard exudates; Grade 1 : Questionable hard exudates present; Grade 2 : Hard exudates less than standard photograph 3; Grade 3 : Hard exudates greater than or equal to standard photograph 3, but less than standard p hotograph 5; Grade 4 : Hard exudates greater than or equal to standard photograph 5, but less than standard photograph 4 and Grade 5 : Hard exudates greater than or equal to standard photograph 4. These grades were further divided into three groups of patie nt severity as follows: Group 1 (absent or minimal hard exudates included patients with Grade 0, 1 or 2 hard exudates; Group 2 (hard exudates present included patients with Grade 3 or 4 hard exudates and Group 3 (prominent hard exudates included patient s with Grade 5 hard exudates. Fasting lipid profile including serum total cholesterol, low density lipoproteins, very low density lipoproteins, high density lipoproteins and triglycerides was obtained. Association of dyslipidemia with retinal hard exudates was analysed using one way ANOVA test. RESULTS: On statistical analysis with ANOVA test retinal hard exudates were significantly associated with elevated total cholesterol (p= .0001, triglycerides (p= .0001, serum LDL (p=.008, serum VLDL (p=.012, and negative correlation was found

  15. Grassland Degradation Alters Soil Carbon Turnover through Depth

    Science.gov (United States)

    Creamer, C.; Prober, S. M.; Chappell, A.; Farrell, M.; Baldock, J.

    2015-12-01

    Ecosystem degradation is widespread and changes in aboveground plant communities alter belowground soil processes. In Australia, grassy eucalyptus woodlands dominated by kangaroo grasses (Themeda trianda) were widely cleared during European settlement for agriculture, with only fragments remaining of this now threatened ecosystem. As remnant grassland fragments are used for livestock grazing, Themeda transitions through states of degradation, starting with red grasses (Bothriochloa spp) and then proceeding to less productive, increasingly degraded states dominated by either annual exotic weeds or native wallaby grasses (Rytidosperma spp) and spear grasses (Austrastipa spp). The aim of our experiment was to determine how soil organic matter dynamics (including erosion, root biomass, C storage and turnover) have been altered by the transition from deeply-rooted Themeda grass systems to more shallowly-rooted annual exotic weeds and wallaby/spear grass states. We sampled soils in five depth-based increments (0-5, 5-15, 15-30, 30-60, 60-100 cm) across this ecosystem transition at five sites across New South Wales, Australia. Caseium-137 analysis indicated erosion rates were similar among all ecosystems and were consistent with levels for grasslands in the region. Compared to the remnant Themeda grass systems, the degraded states had lower root biomass, lower carbon stocks and C:N ratios in the coarse fraction (> 50 μm), lower fungal : bacterial ratios, higher available phosphate, higher alkyl : O-alkyl C ratios, and faster mineralization of synthetic root-exudate carbon. All these metrics indicate the surprising finding of more microbially processed OM and faster turnover of newly added C in the degraded sites. Compared to one another, the two degraded sites differed in both C and N turnover, with the exotic weeds having higher dissolved organic N, inorganic N, and coarse fraction N, higher fine fraction C stocks, and greater microbial biomass. These differences likely

  16. Spatial characteristics of aluminum uptake and translocation in roots of buckwheat (Fagopyrum esculentum).

    Science.gov (United States)

    Klug, Benjamin; Horst, Walter J

    2010-06-01

    The detoxification of aluminum (Al) in root tips of the Al accumulator buckwheat by exudation of oxalate leading to reduced Al uptake (Al resistance) is difficult to reconcile with the Al accumulation (Al tolerance). The objective of this study was to analyze resistance and tolerance mechanisms at the same time evaluating particularly possible stratification of Al uptake, Al transport and oxalate exudation along the root apex. The use of a minirhizotron made it possible to differentiate between spatial responses to Al along the root apex with regard to Al uptake and organic acid anion exudation, but also to measure at the same time Al and organic acid transport in the xylem. Al accumulates particularly in the 3-mm root apex. The study showed that Al taken up by the 10-mm root apex is rapidly transferred to the xylem which differentiates in the 10 to 15-mm root zone as revealed by a microscopic study. Al induces the release of oxalate from the root apex but particularly from the subapical 6-20 mm root zone even when Al was applied only to the 5-mm root apex suggesting a basipetal signal transduction. Citrate proved to be the most likely ligand for Al in the xylem because Al and citrate transport rates were positively correlated. In conclusion, the data presented show that the Al-induced release of oxalate, and Al uptake as well as Al accumulation are spatially not separated in the root apex.

  17. Ambient ultraviolet radiation in the Arctic reduces root biomass and alters microbial community composition but has no effects on microbial biomass

    DEFF Research Database (Denmark)

    Rinnan, R.; Keinänen, M.M.; Kasurinen, A.;

    2005-01-01

    that microbial community composition was altered by UV reduction. Although the UV responses were slight considering the large dose difference between the treatments (from near-ambient to up to 90% UV-B reduction), we cannot rule out the possibility that the recovery of ozone layer would change the below...

  18. The Impact of Rhizosphere Processes on Water Flow and Root Water Uptake

    Science.gov (United States)

    Schwartz, Nimrod; Kroener, Eva; Carminati, Andrea; Javaux, Mathieu

    2015-04-01

    For many years, the rhizosphere, which is the zone of soil in the vicinity of the roots and which is influenced by the roots, is known as a unique soil environment with different physical, biological and chemical properties than those of the bulk soil. Indeed, in recent studies it has been shown that root exudate and especially mucilage alter the hydraulic properties of the soil, and that drying and wetting cycles of mucilage result in non-equilibrium water dynamics in the rhizosphere. While there are experimental evidences and simplified 1D model for those concepts, an integrated model that considers rhizosphere processes with a detailed model for water and roots flow is absent. Therefore, the objective of this work is to develop a 3D physical model of water flow in the soil-plant continuum that take in consideration root architecture and rhizosphere specific properties. Ultimately, this model will enhance our understanding on the impact of processes occurring in the rhizosphere on water flow and root water uptake. To achieve this objective, we coupled R-SWMS, a detailed 3D model for water flow in soil and root system (Javaux et al 2008), with the rhizosphere model developed by Kroener et al (2014). In the new Rhizo-RSWMS model the rhizosphere hydraulic properties differ from those of the bulk soil, and non-equilibrium dynamics between the rhizosphere water content and pressure head is also considered. We simulated a wetting scenario. The soil was initially dry and it was wetted from the top at a constant flow rate. The model predicts that, after infiltration the water content in the rhizosphere remained lower than in the bulk soil (non-equilibrium), but over time water infiltrated into the rhizosphere and eventually the water content in the rhizosphere became higher than in the bulk soil. These results are in qualitative agreement with the available experimental data on water dynamics in the rhizosphere. Additionally, the results show that rhizosphere processes

  19. Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation.

    Science.gov (United States)

    Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

    2013-01-01

    Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10-11 and 5-13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.

  20. Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation.

    Directory of Open Access Journals (Sweden)

    Yun Sun Lee

    Full Text Available Aloe vera (Asphodeloideae is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10-11 and 5-13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.

  1. Roots Revisited.

    Science.gov (United States)

    Hughes, Barnabas

    1998-01-01

    Offers historical information about square roots. Presents three different methods--Hero's method, visual method, and remainder method--which can be used to teach the finding of square roots and one method for determining cube roots. (ASK)

  2. Relationship Between Root Chemical Signals and Grain Quality of Rice

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-chang; CHANG Er-hua; ZHANG Wen-jie; WANG Zhi-qin; LIU Li-jun

    2007-01-01

    This study was designed to elucidate the relationship between root chemical signals and the quality of rice. Various rice genotypes were used. Zeatin (Z) + zeatin riboside (ZR), abscisic acid (ABA), 1-aminocylopropane -1-carboxylic acid (ACC), and organic acids in roots during grain filling and the appearance quality, cooking/eating quality were investigated. The correlations among them were analyzed. The results showed that Z + ZR concentrations in the roots at mid- and lategrain-filling stages were significantly and positively correlated with the gel consistency and alkali spreading value (r = 0.72* - 0.90**), whereas negatively correlated with the amylose content (r = -0.68* - -0.78**). ABA concentrations in roots at mid- grain-filling stage were significantly and negatively correlated with the gel consistency and alkali spreading value (r = -0.90** - -0.91**), and positively correlated with the amylose content (r = 0.87**). ACC concentrations in root exudates at mid-grain-filling stage were very significantly correlated with the percentage of chalky grains and chalkiness (r = 0.97** -0.98**), and those at late-grain-filling stage Were significantly correlated with chalkiness and chalky size (r = 0.69*-0.96**). The more the malic acid and succinic acid exuded from roots for a cultivar, the greater the breakdown values and the smaller the setback values in the starch profile, and the results were reversed for a cultivar with more tartaric acid and citric acid exuded from roots during the grain-filling period. The cultivar with more lactic acid in exudates had smaller gel consistency and alkali spreading values, but had greater amylose content. When roots were treated with exogenous ZR, ABA, and ACC during grain filling, effects of the chemicals on the rice quality were consistent with the relationships of the endogenous hormones (Z + ZR, ABA, and ACC) with the quality indexes. Using rape cake as organic fertilizer can increase the concentrations of malic acid and

  3. Dynamic change of organic acids secreted from wheat roots in Mn deficiency

    Institute of Scientific and Technical Information of China (English)

    Zheng FANG; Zhenfeng AN; Yingli LI

    2008-01-01

    Through solution culture experiment and liquid chromatogram technique, two wheat (Triticum aestivum L.) genotypes with different tolerances to Mn deficiency were used to study the dynamic change of organic acids secreted from wheat root in the conditions of no Mn, low Mn and normal Mn supply. Nine kinds of organic acids were measured in wheat root exudate. The results showed that there were significant differences of organic acids in root exudate between tolerant genotype and susceptible genotype under Mn-stressed conditions. Tolerant genotype 9023 secreted more organic acids from the plant roots than susceptible genotype CM28. The main organic acid exudate included tartaric acid, malic acid, acetic acid, maleic acid and fumaric acid. Of all these acids, the amounts of tartaric acid and malic acid in root exudate showed significant differences between the tolerant genotype and susceptible genotype under Mn-stressed conditions. The results also indicated that secreting organic acids into root rhizosphere was an active response to Mn deficiency for the tolerant genotype of wheat.

  4. The Acute-Phase Proteins Serum Amyloid A and C Reactive Protein in Transudates and Exudates

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The distinction between exudates and transudates is very important in the patient management. Here we evaluate whether the acute-phase protein serum amyloid A (SAA, in comparison with C reactive protein (CRP and total protein (TP, can be useful in this discrimination. CRP, SAA, and TP were determined in 36 exudate samples (27 pleural and 9 ascitic and in 12 transudates (9 pleural and 3 ascitic. CRP, SAA, and TP were measured. SAA present in the exudate corresponded to 10 % of the amount found in serum, that is, the exudate/serum ratio (E/S was 0.10 ± 0.13 . For comparison, the exudate/serum ratio for CRP and TP was 0.39 ± 0.37 and 0.68 ± 0.15 , respectively. There was a strong positive correlation between serum and exudate SAA concentration ( r = 0.764 ; p < 0.0001 . The concentration of SAA in transudates was low and did not overlap with that found in exudates (0.02-0.21 versus 0.8–360.5un g/mL. SAA in pleural and ascitic exudates results mainly from leakage of the serum protein via the inflamed membrane. A comparison of the E/S ratio of SAA and CRP points SAA as a very good marker in discriminating between exudates and transudates

  5. Exudative Retinal Detachment Treatment in a Patient with Thrombotic Thrombocytopenic Purpura

    Directory of Open Access Journals (Sweden)

    Magali Sampo

    2016-02-01

    Full Text Available Purpose: We report a case of unilateral exudative retinal detachment in a patient with thrombotic thrombocytopenic purpura (TTP, without associated hypertension, successfully treated with plasmapheresis. Case Report: A 46-year-old woman with a medical history of TTP presented with unilateral exudative retinal detachment. Biological and radiological assessment eliminated other causes of exudative retinal detachment, including hypertension. Plasma exchange was performed, followed by a rapid improvement in visual acuity and total disappearance of serous detachment. Conclusion: Exudative unilateral retinal detachment is a rare complication of TTP and can be successfully treated by plasma exchange.

  6. The Acute-Phase Proteins Serum Amyloid A and C Reactive Protein in Transudates and Exudates

    Science.gov (United States)

    Okino, Alessandra M.; Bürger, Cristiani; Cardoso, Jefferson R.; Lavado, Edson L.; Lotufo, Paulo A.; Campa, Ana

    2006-01-01

    The distinction between exudates and transudates is very important in the patient management. Here we evaluate whether the acute-phase protein serum amyloid A (SAA), in comparison with C reactive protein (CRP) and total protein (TP), can be useful in this discrimination. CRP, SAA, and TP were determined in 36 exudate samples (27 pleural and 9 ascitic) and in 12 transudates (9 pleural and 3 ascitic). CRP, SAA, and TP were measured. SAA present in the exudate corresponded to 10% of the amount found in serum, that is, the exudate/serum ratio (E/S) was 0.10 ± 0.13. For comparison, the exudate/serum ratio for CRP and TP was 0.39 ± 0.37 and 0.68 ± 0.15, respectively. There was a strong positive correlation between serum and exudate SAA concentration (r = 0.764;p < 0.0001). The concentration of SAA in transudates was low and did not overlap with that found in exudates (0.02-0.21 versus 0.8–360.5 g/mL). SAA in pleural and ascitic exudates results mainly from leakage of the serum protein via the inflamed membrane. A comparison of the E/S ratio of SAA and CRP points SAA as a very good marker in discriminating between exudates and transudates. PMID:16864904

  7. Automatic Detection of Exudates in Diabetic Retinopathy Images

    Directory of Open Access Journals (Sweden)

    Ekkarat Pothiruk

    2012-01-01

    Full Text Available Problem statement: Diabetic Retinopathy (DR is globally the primary cause of visual impairment and blindness in diabetic patients. Retinal image is essential and crucial for ophthalmologists to diagnose diseases. Many of technique can achieve good performance on retinal feature are clearly visible. Unfortunately, it is a normal situation that the retinal images in Thailand are low-quality images. The existing algorithm cannot detect low-quality image. Therefore, this study is part of a larger effort to develop a new method for detection of exudates in low quality retinal image. Approach: In this study, we presented a new method towards the development for detecting exudates pathologies of DR. The color retinal images are segmented using Fuzzy C-Means (FCM clustering and morphological methods and following key preprocessing step, i.e., color normalization, contrast enhancement, remove noise and color space selection. This enables its difference in our methods compared to other approach and the algorithm can achieve good performance even on low-quality retinal images. Result/Conclusion: The result shows that accuracy values increase when the FCM clustering is combined with morphological methods techniques. If any applications need to detect maximum number of exudates pixels or require execution speed, the FCM clustering technique could be used in isolation. However, if the applications require higher accuracy, the FCM clustering combined with morphological methods should be chosen. This system intends to help ophthalmologists in DR screening process to detect symptoms faster and more easily. This is not a final result application but it can be a preliminary diagnosis tool or decision support system for ophthalmologists. Human ophthalmologists are still needed for the cases where detection results are not very obvious.

  8. Squalamine lactate for exudative age-related macular degeneration.

    Science.gov (United States)

    Connolly, Brian; Desai, Avinash; Garcia, Charles A; Thomas, Edgar; Gast, Michael J

    2006-09-01

    Squalamine lactate inhibits angiogenesis by a long-lived, intracellular mechanism of action. The drug is taken up into activated endothelial cells through caveolae, small invaginations in the cellular membrane. Subsequently, the drug binds to and "chaperones" calmodulin to an intracellular membrane compartment and blocks angiogenesis at several levels. A series of basic investigations, preclinical studies, and human clinical trials have begun to establish the proof of concept, efficacy, and safety parameters for use of squalamine lactate as a therapeutic agent for exudative age-related macular degeneration and several types of malignancies. PMID:16935213

  9. Chemical and spectroscopic studies of Cercidium praecox gum exudate.

    Science.gov (United States)

    León de Pinto, G; Martínez, M; Rivas, C

    1994-07-01

    The structure of the polysaccharide from Cercidium praecox (R&P) Harms gum exudate has been studied by Smith degradation, by sugar and methylation analyses, and by 13C NMR spectroscopy. The results showed a (1-->4)-xylan core. Some xylose residues are substituted at O-2 by alpha-D-glucuronic acid and 4-O-methyl-alpha-D-glucuronic acid residues. beta-D-Glucuronic acid is present, probably as terminal residues. The arabinose is present as alpha-L-furanose and beta-L-pyranose. PMID:8062287

  10. Reversal of neurochemical alterations in the spinal dorsal horn and dorsal root ganglia by Mas-related gene (Mrg) receptors in a rat model of spinal nerve injury.

    Science.gov (United States)

    Wang, Dongmei; Xue, Yaping; Yan, Yanhua; Lin, Minjie; Yang, Jiajia; Huang, Jianzhong; Hong, Yanguo

    2016-07-01

    The rodent Mas-related gene (Mrg) receptor subtype C has been demonstrated to inhibit pathological pain. This study investigated the mechanisms underlying the reversal of pain hypersensitivity by the selective MrgC receptor agonist bovine adrenal medulla 8-22 (BAM8-22) in a rat model of L5 spinal nerve ligation (SNL). Intrathecal (i.t.) administration of BAM8-22 (0.1-10nmol) attenuated mechanical allodynia in a dose-dependent manner on day 10 after SNL. The antiallodynia effect of BAM8-22 was abolished by MrgC receptor antibody, but not by naloxone. I.t. BAM8-22 (10nmol) inhibited SNL-induced upregulation of neuronal nitric oxide synthesis (nNOS) and phosphorylation of cyclic AMP response element-binding protein (p-CREB) in the spinal dorsal horn. The BAM8-22 treatment reversed the SNL-induced astrocyte activation, increase of interleukin-1β (IL-1β) expression and phosphorylation of extracellular signal-regulated kinase (p-ERK) in the spinal cord. BAM8-22 also reversed the upregulation of fractalkine and IL-1β in small- and medium-sized dorsal root ganglion (DRG) neurons. Furthermore, the BAM8-22 exposure suppressed the lipopolysaccharide (LPS)-induced increase of nNOS and IL-1β in the DRG explant cultures and the BAM8-22-induced suppression disappeared in the presence of MrgC receptor antibody. The present study provides evidence that activation of MrgC receptors inhibits nerve injury-induced increase of pronociceptive molecules in DRG neurons, suppressing astrocyte activation, the upregulation of excitatory mediators and phosphorylation of transcription factors in the spinal dorsal horn. As MrgC receptors are unequally expressed in the dorsal root and trigeminal ganglia, this study suggests that targeting MrgC receptors could be a new therapy for neuropathic pain with limited unwanted effects. PMID:27018398

  11. Detection of QTL for exudation rate at ripening stage in rice and its contribution to hydraulic conductance.

    Science.gov (United States)

    Yamamoto, Toshio; Suzuki, Tadafumi; Suzuki, Kenji; Adachi, Shunsuke; Sun, Jian; Yano, Masahiro; Ookawa, Taiichiro; Hirasawa, Tadashi

    2016-01-01

    Dry matter production of crops is determined by how much light they intercept and how efficiently they use it for carbon fixation; i.e., photosynthesis. The high-yielding rice cultivar, Akenohoshi, maintains a high photosynthetic rate in the middle of the day owing to its high hydraulic conductance in comparison with the elite commercial rice cultivar, Koshihikari. We developed 94 recombinant inbred lines derived from Akenohoshi and Koshihikari and measured their exudation rate to calculate hydraulic conductance to osmotic water transport in a paddy field. A quantitative trait locus (QTL) for exudation rate was detected on the long arm of chromosome 2 at the heading and ripening stages. We developed chromosome segment substitution lines which carried Akenohoshi segments in the Koshihikari genetic background, and measured hydraulic conductance to both osmotic and passive water transport. The QTL was confirmed to be located within a region of about 4.2Mbp on the distal end of long arm of chromosome 2. The Akenohoshi allele increased root surface area and hydraulic conductance, but didn't increase hydraulic conductivity of a plant.

  12. Comparison of the effect between pegaptanib and ranibizumab on exudative age-related macular degeneration with small lesion size

    Directory of Open Access Journals (Sweden)

    Fujihara M

    2012-03-01

    Full Text Available Yoshihiro Nishimura1,2, Maiko Taguchi1, Takafumi Nagai1, Masashi Fujihara1,2, Shigeru Honda2, Mamoru Uenishi11Department of Ophthalmology, Mitsubishi Kobe Hospital, Kobe, Japan; 2Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, JapanPurpose: To compare the effect of pegaptanib versus ranibizumab on exudative age-related macular degeneration (AMD with small lesion size.Methods: This is a retrospective study of 81 eyes from 78 patients with exudative AMD treated and followed up over 12 months. Patients with baseline best corrected visual acuity (BCVA under 20/400 and with a greatest linear dimension of lesion over 4500 µm were excluded from the study. Twenty-six eyes from 25 patients were treated with three consecutive intravitreal injections of pegaptanib (IVP group and 55 eyes from 54 patients were treated with three consecutive ranibizumab injections (IVR group. Each therapy was repeated as needed. The alteration in BCVA was evaluated in the IVP and IVR groups.Results: No differences were detected in baseline parameters between the IVP and IVR groups. The mean BCVA (logMAR at month 1, 3, 6 and 12 after the initial treatment was improved from baseline in the IVP group (-0.095, -0.17, -0.18 and -0.18, respectively and in the IVR group (-0.077, -0.15, -0.17 and -0.11, respectively, which was statistically significant. There was no difference in the change in mean BCVA between IVP and IVR groups at the same time periods.Conclusions: The visual outcome of IVP was equivalent with IVR in exudative AMD with small lesion size.Keywords: pegaptanib, ranibizumab, age-related macular degeneration, small lesion size

  13. PHYTOREMEDIATION: PLANT UPTAKE OF ATRAZINE AND THE ROLE OF ROOT EXUDATES. (R825549C060)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. Citrate exudation by maize roots; A possible mechanism of resistance to aluminium

    NARCIS (Netherlands)

    Mariano, E.D.

    2003-01-01

    Low-molecular-weight organic anions have been intensively studied as possibly involved in a mechanism of Al resistance in plants, due to their involvement in many metabolic processes and to their negative charge, conferring them the capacity to complex metals. The objective of the thesis was to stud

  15. TRANSGENIC PLANTS - INSECTICIDAL TOXIN IN ROOT EXUDATES FROM BT CORN. (R826107)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. Alterations in Co2 fixation enzymes, Phosphatase Activity and Endogenous Phytohormones in P-deficient Callus induced from phloem of carrot (Daccus Carota) Roots

    International Nuclear Information System (INIS)

    A carrot callus liquid medium culture experiment was conducted to investigate the effects of P-deficiency on cellular responses separate from the whole plant response. Carrot (Daccus carota L.) callus was induced from the secondary phloem of the tap root. When explants were supplied with one-tenth the amount of Pi supplied to control explants (40 ppm), the concentration of P in callus was reduced by about 68% in a period of three weeks. This reduction in callus P was correlated with 48% reduction in callus fresh and dry weights. This effect was mediated through a reduction in cell number/callus by 48%. Meanwhile, the cell number/mg f.wt. of callus tissue was not affected in P-deficient treatment comparing to P-sufficient one, which might refer to a direct role of P-deficiency on the reduction of cell division. Although total N and soluble protein concentrations were not affected in P-deficient callus, chlorophyll concentration was reduced. In addition higher activity of acid phosphatase was obtained in P-deficient tissue reaching about 41% over its activity in P-sufficient callus which in turn could increase recycling process of P to spare available P for the newly formed cells. This was supported by the higher value of P utilization efficiency (d.wt. produced per unit P taken up) obtained from P-deficient callus

  17. Alterations of the Danger Zone after Preparation of Curved Root Canals Using WaveOne with Reverse Rotation or Reciprocation Movements

    Science.gov (United States)

    Shantiaee, Yazdan; Dianat, Omid; Paymanpour, Payam; Nahvi, Golnaz; Ketabi, Mohammad Ali; Kolahi Ahari, Golbarg

    2015-01-01

    Introduction: The aim of this study was to compare the changes that occur in the danger zone (DZ) after preparation of curved mesiobuccal (MB) canals of mandibular first molars with WaveOne instruments in two different movements [reciprocation (RCP) and counter-clockwise rotation (CCWR)] by means of cone-beam computed tomography (CBCT). Methods and Materials: MB canals of 30 mandibular molars were randomly divided into 2 groups (n=15); WaveOne/RCP and WaveOne/CCWR. Pre- and post-instrumentation CBCT images were assessed for changes in the dentin thickness in DZ (2 and 4 mm below the highest point of the root furcation) in both groups. Data was analyzed using the repeated measures ANOVA test. Results: There was no statistically significant difference between two experimental groups in terms of remaining dentin thickness at 2 and 4 mm levels below the highest point of the furcation (P>0.05). Conclusion: The efficacy of WaveOne instrument on changes of the dentin thickness in the DZ was not affected by different file movements. PMID:26213536

  18. Soil transfers from valley oak (Quercus lobata Nee) stands increase ectomycorrhizal diversity and alter root and shoot growth on valley oak seedlings.

    Science.gov (United States)

    Berman, J T; Bledsoe, C S

    1998-02-01

    Soils from valley oak (Quercus lobata Nee) riparian areas of the Cosumnes River Nature Conservancy Preserve near Sacramento, California were added to growth medium of valley oak seedlings grown in a greenhouse or in agricultural fields at Cosumnes which probably once supported valley oak trees and are now replanted with native riparian vegetation or allowed to revegetate naturally. Agricultural field soil from the Cosumnes River Preserve was presumed to be low or lacking in ectomycorrhizal inoculum. The study was designed to (1) determine whether valley oak stand soil transfer could cause mycorrhizal infection on valley oak seedlings in an agricultural field and in a greenhouse, (2) describe ectomycorrhizal morphological types formed on valley oak seedlings, and (3) determine whether seedling growth is enhanced more by transfer of natural valley oak stand soil than agricultural field soil. In the field study, transfer of forest soil increased average ectomycorrhizal diversity (2.4 types) more than transfer of agricultural field soil (1.2 types). Valley oak seedlings were responsive to ectomycorrhizal infection in the field study. With increase in mycorrhizal infection there was an increase in shoot growth at the expense of root growth. In the greenhouse study, both percent mycorrhizal infection and mycorrhizal diversity were increased more by transfer of oak forest and woodland soils than agricultural field soil. Eight morphotypes occurred on seedlings in forest and woodland soils but only three morphotypes in agricultural soil. This result strongly suggests that the agricultural field also harbors ectomycorrhizal propagules but forest and woodland soils support a more abundant and diverse ectomycorrhizal flora. PMID:24578047

  19. A review of the influence of root-associating fungi and root exudates on the success of invasive plants

    OpenAIRE

    Cindy Bongard

    2012-01-01

    Plant-fungal interactions are essential for understanding the distribution and abundance of plants species. Recently, arbuscular mycorrhizal fungal (AMF) partners of non-indigenous invasive plants have been hypothesized to be a critical factor influencing the invasion processes. AMF are known to improve nutrient and moisture uptake, as well as disrupt parasitic and pathogenic microbes in the host plant. Such benefits may enable invaders to establish significant and persistent populations in e...

  20. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available BACKGROUND: Within-field multiple crop species intercropping is well documented and used for disease control, but the underlying mechanisms are still unclear. As roots are the primary organ for perceiving signals in the soil from neighboring plants, root behavior may play an important role in soil-borne disease control. PRINCIPAL FINDINGS: In two years of field experiments, maize/soybean intercropping suppressed the occurrence of soybean red crown rot, a severe soil-borne disease caused by Cylindrocladium parasiticum (C. parasiticum. The suppressive effects decreased with increasing distance between intercropped plants under both low P and high P supply, suggesting that root interactions play a significant role independent of nutrient status. Further detailed quantitative studies revealed that the diversity and intensity of root interactions altered the expression of important soybean PR genes, as well as, the activity of corresponding enzymes in both P treatments. Furthermore, 5 phenolic acids were detected in root exudates of maize/soybean intercropped plants. Among these phenolic acids, cinnamic acid was released in significantly greater concentrations when intercropped maize with soybean compared to either crop grown in monoculture, and this spike in cinnamic acid was found dramatically constrain C. parasiticum growth in vitro. CONCLUSIONS: To the best of our knowledge, this study is the first report to demonstrate that intercropping with maize can promote resistance in soybean to red crown rot in a root-dependent manner. This supports the point that intercropping may be an efficient ecological strategy to control soil-borne plant disease and should be incorporated in sustainable agricultural management practices.

  1. COLONIZATION OF VIGNA RADIATA ROOTS BY CHROMIUM RESISTANT BACTERIAL STRAINS OF OCHROBACTRUM INTERMEDIUM, BACILLUS CEREUS AND BREVIBA CTERIUM SP.

    Institute of Scientific and Technical Information of China (English)

    MUHAMMAD Faisal; SHAHIDA Hasnain

    2005-01-01

    The present study deals with colonization potential of plant growth promoting bacterial strains ( Ochrobactrum intermedium, Bacillus cereus and Brevibacterium sp. ) on Vigna radiata roots. The roots were heavily colonized with O. intermedium and B. cereus as compared to Brevibacterium sp. O. intermedium mainly colonized rhizoplane while B. cereus occurred both on the rhizoplane and near root zone. O. intermedium and B. cereus were found to be present both on the rhizoplane and near root zone, while Brevibacterium only in the rhizosphere in the form of groups. The cells of B. cereus were found more in the sites where root exudates were existed. From the above results it was observed that the number of O. intermedium cells were large at root exudate site. Fig 2, Tab 1, Ref 15

  2. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed.......The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  3. Square Root +

    Science.gov (United States)

    Frederiksen, John G.

    1969-01-01

    A rational presentation of the so-called long division method for extracting the square root of a number. Diagrams are used to show relationship of this technique to the binomial theorem. Presentation exposes student to many facets of mathematics in addition to the mechanics of funding square root and cube root. Geometry, algebraic statements,…

  4. A Stable-Isotope Mass Spectrometry-Based Metabolic Footprinting Approach to Analyze Exudates from Phytoplankton

    Directory of Open Access Journals (Sweden)

    Mark R. Viant

    2013-10-01

    Full Text Available Phytoplankton exudates play an important role in pelagic ecology and biogeochemical cycles of elements. Exuded compounds fuel the microbial food web and often encompass bioactive secondary metabolites like sex pheromones, allelochemicals, antibiotics, or feeding attractants that mediate biological interactions. Despite this importance, little is known about the bioactive compounds present in phytoplankton exudates. We report a stable-isotope metabolic footprinting method to characterise exudates from aquatic autotrophs. Exudates from 13C-enriched alga were concentrated by solid phase extraction and analysed by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. We used the harmful algal bloom forming dinoflagellate Alexandrium tamarense to prove the method. An algorithm was developed to automatically pinpoint just those metabolites with highly 13C-enriched isotope signatures, allowing us to discover algal exudates from the complex seawater background. The stable-isotope pattern (SIP of the detected metabolites then allowed for more accurate assignment to an empirical formula, a critical first step in their identification. This automated workflow provides an effective way to explore the chemical nature of the solutes exuded from phytoplankton cells and will facilitate the discovery of novel dissolved bioactive compounds.

  5. Mapping of Sugar and Amino Acid Availability in Soil around Roots with Bacterial Sensors of Sucrose and Tryptophan

    OpenAIRE

    Jaeger, C. H.; Lindow, S E; Miller, W.; Clark, E.; Firestone, M K

    1999-01-01

    We developed a technique to map the availability of sugars and amino acids along live roots in an intact soil-root matrix with native microbial soil flora and fauna present. It will allow us to study interactions between root exudates and soil microorganisms at the fine spatial scale necessary to evaluate mechanisms of nitrogen cycling in the rhizosphere. Erwinia herbicola 299R harboring a promoterless ice nucleation reporter gene, driven by either of two nutrient-responsive promoters, was us...

  6. Up-regulation and interaction of the plasma membrane H(+)-ATPase and the 14-3-3 protein are involved in the regulation of citrate exudation from the broad bean (Vicia faba L.) under Al stress.

    Science.gov (United States)

    Chen, Qi; Guo, Chuan-Long; Wang, Ping; Chen, Xuan-Qin; Wu, Kong-Huan; Li, Kui-Zhi; Yu, Yong-Xiong; Chen, Li-Mei

    2013-09-01

    Our previous study showed that citrate excretion coupled with a concomitant release of protons was involved in aluminum (Al) resistance in the broad bean. Furthermore, genes encoding plasma membrane (PM) H(+)-ATPase (vha2) and the 14-3-3 protein (vf14-3-3b) were up-regulated by Al in Al-resistant (YD) broad bean roots. In this study, the roles of PM H(+)-ATPase (E.C. 3.6.3.6) and the 14-3-3 protein in the regulation of citrate secretion were further investigated in Al-resistant (YD) and Al-sensitive (AD) broad bean cultivars under Al stress. The results showed that greater citrate exudation was positively correlated with higher activities of PM H(+)-ATPase in roots of YD than AD. Real-time RT-PCR analysis revealed that vha2 was clearly up-regulated by Al in YD but not in AD roots, whereas the transcription levels of vf14-3-3b were elevated in a time-dependent manner in both YD and AD roots. Immunoprecipitation and Western analysis suggested that phosphorylation and interaction with the vf14-3-3b protein of the VHA2 were enhanced in YD roots but not in AD roots with increasing Al treatment time. Fusicoccin or adenosine 5'-monophosphate increased or decreased the interaction between the phosphorylated VHA2 and the vf14-3-3b protein, followed by an enhancement or reduction of the PM H(+)-ATPase activity and citrate exudation in both cultivars under Al stress conditions, respectively. Taken together, these results suggested that Al enhanced the expression and interaction of the PM H(+)-ATPase and the 14-3-3 protein, which thereby led to higher activity of the PM H(+)-ATPase and more citrate exudation from YD plants.

  7. Light as stress factor to plant roots - case of root halotropism.

    Science.gov (United States)

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives.

  8. Early and exudative age-related macular degeneration is associated with increased plasma levels of soluble TNF receptor II

    DEFF Research Database (Denmark)

    Faber, Carsten; Jehs, Tina; Juel, Helene Baek;

    2015-01-01

    and other proteins implicated in AMD pathogenesis. The purpose of this study was to test whether increased plasma levels of cytokines were present in patients with AMD. METHODS: We conducted a case-control study. Age-related macular degeneration status was assessed using standardized multimodal imaging...... forms of AMD and 74 controls. Significantly increased levels of sTNFRII were observed in patients with early or exudative AMD (p age, sex and smoking history, the level of sTNFRII remained a significant predictor for prevalence of AMD with odds ratios...... at 3.0 in the middle and 3.6 in the highest tertiles. Levels of IL15, IL18 and IFNγ were low and not associated with AMD. CONCLUSIONS: Increased plasma level of sTNFRII is found to be associated with AMD. The data supports the observations of low-grade, systemic inflammatory alterations in patients...

  9. Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana.

    Science.gov (United States)

    Strehmel, Nadine; Mönchgesang, Susann; Herklotz, Siska; Krüger, Sylvia; Ziegler, Jörg; Scheel, Dierk

    2016-01-01

    Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana's roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes. PMID:27399695

  10. Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence.

    Science.gov (United States)

    Gonzalez, Manuel R; Fleuchot, Betty; Lauciello, Leonardo; Jafari, Paris; Applegate, Lee Ann; Raffoul, Wassim; Que, Yok-Ai; Perron, Karl

    2016-01-01

    Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the burn wound

  11. Automatic Detection of Exudates in Retinal Fundus Images using Differential Morphological Profile

    Directory of Open Access Journals (Sweden)

    Shraddha Tripathi

    2013-06-01

    Full Text Available This paper presents an automatic method for exudate detection from colour fundus imagesbased on Differential Morphological Profile (DMP.The detection of exudates is important for the identification of eye diseases such as diabetic retinopathy. The method involves of three main phases. Inthe first phase, pre processing tasks like Gaussian smoothing and contrast enhancement is done. In the second phase, DMP is applied on the pre-processed image. The image obtained from DMP containshighlighted bright regions consisting of exudates and optic disc. In the next phase, feature extraction based on location of optic disc, shape index and area is done to obtain actual exudates. The performance of the proposed method is evaluated by applying it on the DIARETDB1 database. The specificity,sensitivity and PPV of the proposed method were compared with two other methods. The results showthat the proposed method gives better results than the other conventional methods.

  12. [Gum-like exudate from Laguncularia racemosa (white mangrove) as culture media for fungi].

    Science.gov (United States)

    Mesa, L M; León-Pinto, G

    1993-01-01

    Morphological studies of eight species of fungus: Aspergillus flavus Microsporum canis, Epidermophyton floccosum, Curvularia lunata, Cladosporium carrionii, Natrassia mangífera (Edo. Scytalidium), Sporotrix schenckii y Rhizophus oligosporus, which belong to families Mucedinaceae, Dematiaceae and Mucoraceae have been carried out in support medium based in gum exudate from Laguncularia racemosa (mangle blanco). This native polimer contains galactose, arabinose, rhamnose, uronic acid and proteins. Nitrogen calcium and magnesium are microconstituents of the gum. An economical substrate which contained gum exudate (4%) and agar (1.5%) was used in these studies. The results obtained showed that gum exudate-agar medium (EGA) permits an adequate identification of the studied species, therefore, it is a possible substitute for Sabouraud. It is important to know that the gum exudate is a natural product, economical and easy to obtain.

  13. Alterações na qualidade de raízes de mandioca(Manihot esculenta Crantz minimamente processadas Quality alterations in cassava roots (Manihot esculenta Crantz minimally processed

    Directory of Open Access Journals (Sweden)

    Andreia Alves

    2005-04-01

    Full Text Available A conservação pós-colheita das raízes de mandioca tem sido uma preocupação das indústrias e produtores, devido ao curto tempo de estocagem e a alta perecibilidade das raízes. Dois fenômenos são apontados como responsáveis pela deterioração das raízes, um de ordem fisiológica, provocando a perda inicial da qualidade por meio do desenvolvimento da descoloração vascular do tecido parenquimatoso, e o outro, de ordem microbiana, que se segue à fisiologia, responsável pela decomposição do produto. Dessa forma, com o presente trabalho, objetivou-se estudar a conservação das raízes de mandioca (Manihot esculenta Crantz, submetidas à higienização em água clorada e armazenadas em três tipos de embalagens, bandeja de isopor envolta em filme de policloreto de vinila (PVC, embalagem multicamada (poliéster Saram-13,5µ/polietileno-100µ com e sem vácuo e resfriadas (5 ± 0,5°C, mediante análises físico-químicas, microbiológicas, fisiológicas e sensoriais. A conservação de mandioca minimamente processada sob refrigeração para os tratamentos realizados, é possível diferenciando-se o período de armazenamento, sendo que para as amostras armazenadas em bandeja, o período de armazenamento foi de 7 dias, no selado e a vácuo foi de aproximadamente 24 dias, respectivamente.Post harvest of cassava roots has been a great concern in food industries and producers due to the short shelf life and high perishability. Several phenomena have been pointed out as responsible for root deterioration. Among them there are physiological aspects, that lead to losses in initial quality through vascular discoloration of parenchymatous tissue. On the other hand, phenomena from microbial origin, which follow the physiological alterations, are responsible for product decomposition. In this context, this work was aimed at investigating the conservation of cassava roots (Manihot esculenta Crantz submitted to chlorinated water, and stored using

  14. Wheat-Exuded Organic Acids Influence Zinc Release from Calcareous Soils

    Institute of Scientific and Technical Information of China (English)

    M. A. MAQSOOD; S. HUSSAIN; T. AZIZ; M. ASHRAF

    2011-01-01

    Rhizosphere drives plant uptake of sparingly soluble soil zinc (Zn).An investigation with three experiments was conducted to study organic acid exudation by two contrasting wheat genotypes (Sehar-06 and Vatan),Zn fractious in 10 different calcareous soils from Punjab,Pakistan,and release of different soil Zn fractions by organic acids.The two genotypes differed significantly in biomass production and Zn accumulation under deficient and optimum Zn levels in nutrient solution.At a deficient Zn level,Sehar-06 released more maleic acid in the rhizosphere than Vatan.Ten soils used in the present study had very different physicochemical properties; their total Zn and Zn distribution among different fractions varied significantly.Zinc release behaviour was determined by extracting the soils with 0.005 mol L-1 citric acid or maleic acid.The parabolic diffusion model best described Zn release as a function of time.Parabolic diffusion model fitting indicated more maleic acid-driven than citric acid-driven soil Zn mobility from different fractions.Cumulative Zn release in six consecutive extractions during 24 h ranged from 1.85 to 13.58 mg kg-1 using maleic acid and from 0.37 to 11.84 mg kg-1 using citric acid.In the selected calcareous soils,the results of stepwise linear regression indicated significant release of Fe-Mn oxide-bounded soil Zn by maleic acid and its availability to the Zn-efficient genotype.Hence,release of maleic acid by plants roots played an important role in phytoavailability of Zn from calcareous soils.

  15. [THE MORPHOMETRY IN CYTOLOGICAL ANALYSIS OF EXUDATIVE FLUIDS].

    Science.gov (United States)

    Snikhovskaya, K V; Shabalova, I P

    2015-08-01

    The cytological technique takes a leading position in diagnostic of tumor processes according exudative fluids. However, its results depend on large number of subjective factors. The morphometry is one of techniques by virtue of which objectification of data of cytological analysis is possible. The study was carried out to establish differences of morphometric parameters of benign and malignant cells of pleural effusion. The morphometric analysis of cells of mesothelium, breast cancer, adenocarcinoma of lung and adenocarcinoma of stomach was implemented. The parameters characterizing size (area, perimeter) and form (form factor) of nucleus and cell, nucleus-cytoplasm ratio. The results demonstrated that in pleural effusion between cells of proliferating mesothelium and malignant neoplasms exist significant differences in morphometric parameters (p<0.001). The differences between area of nuclei and cells are especially significant. The comparison of data of morphometry of cells of breast cancer; adenocarcinoma of lung and adenocarcinoma of stomach demonstrated that despite of some morphological similarities, analysis of morphometric parameters can provide important data for proper establishment of cytological diagnosis. PMID:26596045

  16. Rheological Modeling and Characterization of Ficus platyphylla Gum Exudates

    Directory of Open Access Journals (Sweden)

    Nnabuk O. Eddy

    2013-01-01

    Full Text Available Ficus platyphylla gum exudates (FP gum have been analyzed for their physicochemical parameters and found to be ionic, mildly acidic, odourless, and yellowish brown in colour. The gum is soluble in water, sparingly soluble in ethanol, and insoluble in acetone and chloroform. The nitrogen (0.39% and protein (2.44% contents of the gum are relatively low. The concentrations of the cations were found to increase according to the following trend, Mn>Fe>Zn>Pb>Cu>Mg>Cd>Ca. Analysis of the FTIR spectrum of the gum revealed vibrations similar to those found in polysaccharides while the scanning electron micrograph indicated that the gum has irregular molecular shapes, arranged randomly. The intrinsic viscosity of FP gum estimated by extrapolating to zero concentrations in Huggins, Kraemer, Schulz-Blaschke, and Martin plots has an average value of 7 dL/g. From the plots of viscosity versus shear rate/speed of rotation and also that of shear stress versus shear rate, FP gum can be classified as a non-Newtonian gum with characteristics-plastic properties. Development of the Master_s curve for FP gum also indicated that the gum prefers to remain in a dilute domain (C

  17. TableCross: Exuding a Shared Space into Personal Spaces to Encourage Its Voluntary Maintenance

    OpenAIRE

    Nishimoto, Kazushi; Ikenoue, Akari; Shimizu, Koji; Tajima, Tomonori; Tanaka, Yuta; Baba, Yutaka; Wang, Xihong

    2011-01-01

    A shared space should be cooperatively maintained by all users. However, due to social loafing, often nobody maintains it and its condition worsens. We propose exudation of a shared space. Part of a shared space is exuded into personal workspaces so that office workers are forced to subjectively experience the atmosphere of the shared space, even while they remain at their personal workspaces. This paper illustrates the first prototype named “TableCross,” which reflects the degree of disorder...

  18. Atypical presentation of ocular toxoplasmosis: A Case report of exudative retinal detachment and choroidal Ischemia

    Directory of Open Access Journals (Sweden)

    Yahya A Al-Zahrani

    2016-01-01

    Full Text Available A 24-year-old healthy male presented with a chief complaint of blurred vision in the right eye for 1-week. Fundus examination indicated right exudative retinal detachment and choroidal ischemia. The patient responded well to anti-toxoplasmosis medications and steroids. Exudative retinal detachment and choroidal ischemia are atypical presentations of ocular toxoplasmosis. However, both conditions responded well to anti.parasitic therapy with steroid.

  19. Tachyphylaxis during ranibizumab treatment of exudative age-related macular degeneration

    Institute of Scientific and Technical Information of China (English)

    Sibel; Doguizi; Sengul; Ozdek; Selcen; Yuksel

    2015-01-01

    <正>Dear Editor,We are intestigators from Turkey primarily studying exudative age-related macular degeneration(AMD).Here we present the results of our retrospective clinical study on tachyphylaxis development during the treatment of exudative AMD with ranibizumab,which,we believe,will form a basis for further prospective studies to predict the drug response in anti-vascular endothelial growth factor

  20. Evaluation of factors influencing root-induced changes of copper fractionation in rhizosphere of a calcareous soil

    International Nuclear Information System (INIS)

    Major factors influencing the root-induced copper fractionation changes within the rhizosphere of maize, wheat, pea, and soybean seedlings were evaluated using a contaminated calcareous soil. The effects of acidification, alkalization, and introduction of root exudates were investigated by addition of acid, alkaline and root exudates from solution cultures, prior to incubation and copper fractionation. Raw and sterilized soils were compared for changes of copper fractionation in the rhizosphere using rhizoboxes with maize, wheat, pea and soybean seedlings. The results indicated that the general trend in considerable changes was similar among the plant species studied. The rhizosphere experienced a depletion of carbonate associated and organic bound copper along with an accumulation of exchangeable and Fe-Mn oxide bound copper. The resulting significant influence of root exudates on copper fractionation appears to have been produced through complexation rather than acidification or alkalization. The increase in exchangeable copper in rhizosphere was strengthened by microorganisms. - Influence of root exudates on copper fractionation appeared to be due to complexation, rather than acidification or alkalisation

  1. Root Associated Bacteria – Friends or Enemies? A Review

    Directory of Open Access Journals (Sweden)

    Gabriela Mihalache

    2015-10-01

    Full Text Available Plant roots, due to their exudates, represent important ecological niches for bacteria, which can influence the plant growth by their both beneficial and deleterious effects. The positive effects of bacteria interaction with the plants roots consist in facilitating the nutrient uptake (N, P, producing phytohormones, enhancing their resistance to biotic and abiotic factors such as pathogenic fungi and bacteria, extreme temperatures, heavy metals, salinity. Regarding the harmful effects of bacteria on plants growth, production of phytotoxins, competition for nutrients or inducing diseases or even plants death represents examples of mechanisms by which bacteria can affect in a negative manner the growth of the plants.

  2. Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants.

    Science.gov (United States)

    Gupta Sood, Sushma

    2003-08-01

    The chemotactic responses of the plant-growth-promoting rhizobacteria Azotobacter chroococcum and Pseudomonas fluorescens to roots of vesicular-arbuscular mycorrhizal (Glomus fasciculatum) tomato plants were determined. A significantly (P=0.05) greater number of bacterial cells of wild strains were attracted towards vesicular-arbuscular mycorrhizal tomato roots compared to non-vesicular-arbuscular mycorrhizal tomato roots. Substances exuded by roots served as chemoattractants for these bacteria. P. fluorescens was strongly attracted towards citric and malic acids, which were predominant constituents in root exudates of tomato plants. A. chroococcum showed a stronger response towards sugars than amino acids, but the response was weakest towards organic acids. The effects of temperature, pH, and soil water matric potential on bacterial chemotaxis towards roots were also investigated. In general, significantly (P=0.05) greater chemotactic responses of bacteria were observed at higher water matric potentials (0, -1, and -5 kPa), slightly acidic to neutral pH (6, 6.5 and 7), and at 20-30 degrees C (depending on the bacterium) than in other environmental conditions. It is suggested that chemotaxis of P. fluorescens and A. chroococcum towards roots and their exudates is one of the several steps in the interaction process between bacteria and vesicular-arbuscular mycorrhizal roots. PMID:19719591

  3. Root patterning

    NARCIS (Netherlands)

    Scheres, Ben; Laskowski, Marta

    2016-01-01

    The mechanisms that pattern lateral root primordial are essential for the elaboration of root system architecture, a trait of key importance for future crop breeding. But which are most important: periodic or local cues? In this issue of Journal of Experimental Botany (pages 1411-1420), Kircher a

  4. Root resorption

    DEFF Research Database (Denmark)

    Kjaer, Inger

    2014-01-01

    -an ectodermal tissue layer (Malassez′s epithelium), a middle layer-composed by the collagen-mesodermal tissue layer, and an innermost root-close innervation layer. Abnormalities in one of these tissue layers are thought to cause inflammatory processes in the periodontal membrane comparable to inflammatory...... formerly been demonstrated how demyelinization of the myelin sheaths in the peripheral nerves close to the root provoke resorption. Accordingly, conditions affecting these tissue layers can be associated not only with different morphologies but also with general symptoms and diseases (e.g., ectodermal...... orthodontic treatment. The Hypothesis: The hypothesis in this paper is that three different tissue layers covering the root in the so-called periroot sheet can explain signs and symptoms of importance for avoiding root resorption during orthodontic treatment. These different tissue layers are; outermost...

  5. INSECTICIDAL TOXIN FROM BACILLUS THURINGIENSIS IS RELEASED FROM ROOTS OF TRANSGENIC BT CORN IN VITRO AND IN SITU. (R826107)

    Science.gov (United States)

    AbstractThe insecticidal toxin encoded by the cry1Ab gene from Bacillus thuringiensis was released in root exudates from transgenic Bt corn during 40 days of growth in soil amended to 0, 3, 6, 9, or 12% (v/v) with montmorillonite or kaolinite in a...

  6. Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance

    Science.gov (United States)

    Aluminum (Al) toxicity is one of the major limiting factors for crop production on acid soils that comprise significant portions of the world’s lands. Al resistance in the cereal crop, Sorghum bicolor, is mainly achieved by Al-activated root apical citrate exudation, which is mediated by the plasma ...

  7. Plants influence on arsenic availability and speciation in the rhizosphere, roots and shoots of three different vegetables

    International Nuclear Information System (INIS)

    The toxicity of arsenic (As) in the environment is controlled by its concentration, availability and speciation. The aims of the study were to evaluate the accumulation and speciation of As in carrot, lettuce and spinach cultivated in soils with various As concentrations and to estimate the concomitant health risks associated with the consumption of the vegetables. Arsenic concentration and speciation in plant tissues and soils was analysed by HPLC, AAS and XANES spectroscopy. To estimate the plants influence in the rhizosphere, organic acids in lettuce root exudates were analysed by ion chromatography. The results showed that the As accumulation was higher in plants cultivated in soil with higher As extractability. Arsenate predominated in the soils, rhizosphere and root exudates of lettuce. Succinic acid was the major organic acid in lettuce root exudates. Ingestion of the tested vegetables may result in an intake of elevated levels of inorganic As. -- Highlights: • In soils with higher arsenic extractability, accumulation in plants was higher. • Arsenate predominated in the soils, rhizosphere and root exudates of lettuce. • Arsenite predominated in the shoots of healthy looking vegetables. -- Regardless of the initial level of extractable As in the soil, the plants almost doubled the extractable As in the rhizosphere soil

  8. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    Science.gov (United States)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models

  9. Multiscale model of a freeze-thaw process for tree sap exudation.

    Science.gov (United States)

    Graf, Isabell; Ceseri, Maurizio; Stockie, John M

    2015-10-01

    Sap transport in trees has long fascinated scientists, and a vast literature exists on experimental and modelling studies of trees during the growing season when large negative stem pressures are generated by transpiration from leaves. Much less attention has been paid to winter months when trees are largely dormant but nonetheless continue to exhibit interesting flow behaviour. A prime example is sap exudation, which refers to the peculiar ability of sugar maple (Acer saccharum) and related species to generate positive stem pressure while in a leafless state. Experiments demonstrate that ambient temperatures must oscillate about the freezing point before significantly heightened stem pressures are observed, but the precise causes of exudation remain unresolved. The prevailing hypothesis attributes exudation to a physical process combining freeze-thaw and osmosis, which has some support from experimental studies but remains a subject of active debate. We address this knowledge gap by developing the first mathematical model for exudation, while also introducing several essential modifications to this hypothesis. We derive a multiscale model consisting of a nonlinear system of differential equations governing phase change and transport within wood cells, coupled to a suitably homogenized equation for temperature on the macroscale. Numerical simulations yield stem pressures that are consistent with experiments and provide convincing evidence that a purely physical mechanism is capable of capturing exudation. PMID:26400199

  10. Analytical studies on the gum exudate from Anogeissus leiocarpus

    International Nuclear Information System (INIS)

    Anogeissus leiocarpus gum samples were collected as natural exudate nodules, from three different location. Physicochemical properties of gum samples were studied. results showed significant differences within each location in most parameters studied except refractive index value which was found to be constant in all samples. The effect of location on the properties of gum samples was also studied and the analysis of variance showed insignificant differences (P≤0.05) in all properties studied except in ash content. Inter nodule variations of gum from two different location were studied individually. Results showed significant differences for each parameter studied except for the refractive index value. The properties studied of all gum samples were as follows: 9.2% moisture, 3.4% ash, 0.72% nitrogen, 4.74% protein, -35.5 specific rotation, 1.68 relative viscosity, 4.2 pH, 1.334 refractive index, 14.3 uronic acid, 0.44% reducing sugar, 1336.0 equivalent weight and 0.68% tannin content. UV absorption spectra of gum samples and gum nodules were determined. Cationic composition of gum samples was also determined and the results showed that (Mg) has highest value in all samples studied followed by Fe, Na, K, Ca, Zn and trace amount of Mn, Co, Ni, Cd and Pb. The water holding capacity was found to be 65.5% and emulsifying stability was found to be 1.008. The component sugars of gum were examined by different methods followed by qualitative and quantitative analysis. Analysis of hydrolysate crude gum sample by HPLC show L-rhamnose (6.82), L-arabinose (48.08), D-galactose (11.26) and two unknown oligosaccharides having values (0.22 and 32.61). Some physicochemical properties were studied. Results showed significant differences in nitrogen and protein contents, specific rotation, relative viscosity, equivalent weight and pH of fractions, where as insignificant differences were observed in uronic acid content and refractive index values

  11. Antimicrobial susceptibility of Staphylococcus hyicus Isolated from exudative epidermitis in pigs

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Watts, J.L.; Salmon, S.A.;

    1994-01-01

    Exudative epidermitis or greasy pig syndrome is caused by the coagulase-variable staphylococcal species Staphylococcus hyicus. Treatment of this disease is problematic because of the limited number of antimicrobial agents available for this purpose. Thirteen antimicrobial agents were evaluated...... for their activities against 100 S. hyicus strains isolated from pigs with exudative epidermitis. Novobiocin was the most active compound tested, with an MIC for 90% of the strains tested (MIC(90)) of less than or equal to 0.06 mu g/ml. Enrofloxacin, ampicillin, and ceftiofur were the next most active compounds...... at ratios of 1:2 (lincomycin to spectinomycin) and 1:8 were more active, with MIC(90)s of 16.0 and 4.0 mu g/ml, respectively. These results indicate that novobiocin and sulfadiazine-trimethoprim were the most active compounds tested against the S. hyicus strains isolated from pigs with exudative epidermitis...

  12. Two cases of exudative retina detachment and uveitis following H1N1 influenza vaccination

    Institute of Scientific and Technical Information of China (English)

    TAO Yong; CHANG Li-bing; ZHAO Min; LI Xiao-xin

    2011-01-01

    Uveitis was a rare adverse event of vaccination.We met two cases of acute uveitis with exudative retinal detachment following vaccination of H1N1 influenza.Case 1 was a 10-year-old boy who was admitted for bilateral blurred vision at 10 days after vaccination of H1N1 influenza.Vitreous opacity was obvious in both eyes.Broad exudative retinal detachment was observed in the right eye.Case 2 was a 47-year-old female who suffered from an acute high fever at 2 days after the vaccination of H1 N1 influenza.Later,she encountered bilateral headache and decreasing vision.In both eyes,mutton fat keratic precipitates,positive Tyndall phenomenon,congestion of optic disc and exudative retinal detachment were observed.

  13. Improvement of the Hard Exudates Detection Method Used For Computer- Aided Diagnosis of Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Feroui Amel

    2012-05-01

    Full Text Available Diabetic retinopathy is a severe and widely spread eye disease. Early diagnosis and timely treatment of these clinical signs such as hard exudates could efficiently prevent blindness. The presence of exudates within the macular region is a main hallmark of diabetic macular edema and allows its detection with high sensitivity. In this paper, we combine the k-means clustering algorithm and mathematical morphology to detect hard exudates (HEs in retinal images of several diabetic patients. This method is tested on a set of 50 ophthalmologic images with variable brightness, color, and forms of HEs. The algorithm obtained a sensitivity of 95.92%, predictive value of 92.28% and accuracy of 99.70% using a lesion-based criterion.

  14. Multiscale model of a freeze-thaw process for tree sap exudation

    CERN Document Server

    Graf, Isabell; Stockie, John M

    2015-01-01

    Sap transport in trees has long fascinated scientists, and a vast literature exists on experimental and modelling studies of trees during the growing season when large negative stem pressures are generated by transpiration from leaves. Much less attention has been paid to winter months when trees are largely dormant but nonetheless continue to exhibit interesting flow behaviour. A prime example is sap exudation, which refers to the peculiar ability of sugar maple (Acer saccharum) and related species to generate positive stem pressure while in a leafless state. Experiments demonstrate that ambient temperatures must oscillate about the freezing point before significantly heightened stem pressures are observed, but the precise causes of exudation remain unresolved. The prevailing hypothesis attributes exudation to a physical process combining freeze-thaw and osmosis, which has some support from experimental studies but remains a subject of active debate. We address this knowledge gap by developing the first math...

  15. Clinical efficacy of dressings for treatment of heavily exuding chronic wounds

    Directory of Open Access Journals (Sweden)

    Wieg

    2015-06-01

    Full Text Available Cornelia Wiegand, Jörg Tittelbach, Uta-Christina Hipler, Peter Elsner Department of Dermatology, University Hospital Jena, Jena, Germany Abstract: The treatment of chronic ulcers is a complex issue and presents an increasing problem for caregivers everywhere. This is especially true in Germany, where more than 4 million chronic wounds are treated each year. Therapeutic decisions must be patient-centered and reflect wound etiology, localization, and healing status. The practice of using the same wound dressing during the entire healing period is no longer reasonable. Instead, multiple types of dressings may be needed for a single wound over its healing trajectory. Selection of the most appropriate dressing should be based on wound phase, depth, signs of infection, and level of exudate. Moisture balance is critical in wound care; dryness will hamper epithelial cell migration while excessive generation of fluid causes maceration at the wound margins. Hence, exudate management is a key issue in chronic wound therapy, particularly given that exudate from chronic wounds has a composition different from that of acute wound fluid. Several studies have shown that exudates from non-healing wounds contain significantly elevated levels of protease activity, increased formation of free radicals, and abundant amounts of proinflammatory cytokines, while concentrations of growth factors and protease inhibitors are markedly decreased. Application of dressings that remove and sequester excess amounts of wound fluid may not only help in restoring the correct balance of moisture, but also support the wound healing process by preventing tissue deterioration caused by abundant protease activity. Several types of dressings, such as hydrogels, hydrocolloids, alginates, hydrofibers, foams, and superabsorbent dressings, are reviewed here and evaluated with regard to their efficacy for highly exuding wounds. Keywords: chronic wounds, exuding, dressings, clinical efficacy 

  16. Antiplasmodial activity of compounds from the surface exudates of Senecio roseiflorus.

    Science.gov (United States)

    Kerubo, Leonidah Omosa; Midiwo, Jacob Ogweno; Derese, Solomon; Langat, Moses K; Akala, Hosea M; Waters, Norman C; Peter, Martin; Heydenreich, Matthias

    2013-02-01

    From the surface exudates of Senecio roseiflorus fourteen known methylated flavonoids and one phenol were isolated and characterized. The structures of these compounds were determined on the basis of their spectroscopic analysis. The surface exudate and the flavonoids isolated showed moderate to good antiplasmodial activity with 5,4'-dihydroxy-7-dimethoxyflavanone having the highest activity against chloroquine-sensitive (D6) and resistant (W2) strains of Plasmodium falciparum, with IC50 values of 3.2 +/- 0.8 and 4.4 +/- 0.01 microg/mL respectively. PMID:23513721

  17. Zinc-resistance gene CzrC identified in methicillin-resistant Staphylococcus hyicus isolated from pigs with exudative epidermitis.

    Science.gov (United States)

    Slifierz, Mackenzie J; Park, Jeonghwa; Friendship, Robert M; Weese, J Scott

    2014-05-01

    Methicillin-resistant Staphylococcus hyicus (MRSH) was investigated for czrC, a gene conferring zinc-resistance. The czrC gene was identified in 50% (14/28) of MRSH isolates, representing 14 pigs with exudative epidermitis from 8 farms. Newly weaned pigs, which are particularly susceptible to exudative epidermitis, are commonly fed high levels of zinc oxide. PMID:24790238

  18. Root canal

    Science.gov (United States)

    Endodontic therapy ... the root of a tooth. Generally, there is pain and swelling in the area. The infection can ... You may have some pain or soreness after the procedure. An over-the-counter anti-inflammatory drug, such as ibuprofen or naproxen, can help relieve ...

  19. Phosphorylation and Interaction with the 14-3-3 Protein of the Plasma Membrane H+-ATPase are Involved in the Regulation of Magnesium-Mediated Increases in Aluminum-Induced Citrate Exudation in Broad Bean (Vicia faba. L).

    Science.gov (United States)

    Chen, Qi; Kan, Qi; Wang, Ping; Yu, Wenqian; Yu, Yuzhen; Zhao, Yan; Yu, Yongxiong; Li, Kunzhi; Chen, Limei

    2015-06-01

    Several studies have shown that external application of micromolar magnesium (Mg) can increase the resistance of legumes to aluminum (Al) stress by enhancing Al-induced citrate exudation. However, the exact mechanism underlying this regulation remains unknown. In this study, the physiological and molecular mechanisms by which Mg enhances Al-induced citrate exudation to alleviate Al toxicity were investigated in broad bean. Micromolar concentrations of Mg that alleviated Al toxicity paralleled the stimulation of Al-induced citrate exudation and increased the activity of the plasma membrane (PM) H(+)-ATPase. Northern blot analysis shows that a putative MATE-like gene (multidrug and toxic compound extrusion) was induced after treatment with Al for 4, 8 and 12 h, whereas the mRNA abundance of the MATE-like gene showed no significant difference between Al plus Mg and Al-only treatments during the entire treatment period. Real-time reverse transcription-PCR (RT-PCR) and Western blot analyses suggest that the transcription and translation of the PM H(+)-ATPase were induced by Al but not by Mg. In contrast, immunoprecipitation suggests that Mg enhanced the phosphorylation levels of VHA2 and its interaction with the vf14-3-3b protein under Al stress. Taken together, our results suggest that micromolar concentrations of Mg can alleviate the Al rhizotoxicity by increasing PM H(+)-ATPase activity and Al-induced citrate exudation in YD roots. This enhancement is likely to be attributable to Al-induced increases in the expression of the MATE-like gene and vha2 and Mg-induced changes in the phosphorylation levels of VHA2, thus changing its interaction with the vf14-3-3b protein.

  20. A novel method for retinal exudate segmentation using signal separation algorithm.

    Science.gov (United States)

    Imani, Elaheh; Pourreza, Hamid-Reza

    2016-09-01

    Diabetic retinopathy is one of the major causes of blindness in the world. Early diagnosis of this disease is vital to the prevention of visual loss. The analysis of retinal lesions such as exudates, microaneurysms and hemorrhages is a prerequisite to detect diabetic disorders such as diabetic retinopathy and macular edema in fundus images. This paper presents an automatic method for the detection of retinal exudates. The novelty of this method lies in the use of Morphological Component Analysis (MCA) algorithm to separate lesions from normal retinal structures to facilitate the detection process. In the first stage, vessels are separated from lesions using the MCA algorithm with appropriate dictionaries. Then, the lesion part of retinal image is prepared for the detection of exudate regions. The final exudate map is created using dynamic thresholding and mathematical morphologies. Performance of the proposed method is measured on the three publicly available DiaretDB, HEI-MED and e-ophtha datasets. Accordingly, the AUC of 0.961 and 0.948 and 0.937 is achieved respectively, which are greater than most of the state-of-the-art methods. PMID:27393810

  1. Lactoferrin, myeloperoxidase, lysozyme and eosinophil cationic protein in exudate in delayed type hypersensitivity

    DEFF Research Database (Denmark)

    Lerche, A; Bisgaard, H; Christensen, J D;

    1988-01-01

    allergic patients with nickel challenge in the chamber medium showed a time-dependent increase of mononuclear cells, eosinophils and basophils and a concomitant decrease of polymorphonuclear granulocytes, characteristic of a combined specific and unspecific inflammation. The morphology of the exudate...

  2. Influence of aluminum on growth, mineral nutrition and organic acid exudation of rambutan (Nephelium lappaceum)

    Science.gov (United States)

    A randomized complete block design experiment with six aluminum (Al) concentrations was carried out to evaluate the effect of aluminum on nutrient content, plant growth, dry matter production and Al-induced organic acid exudation in rambutan (Nephelium lappaceum). One rambutan cultivar was grown in...

  3. A stable-isotope mass spectrometry-based metabolic footprinting approach to analyze exudates from phytoplankton

    DEFF Research Database (Denmark)

    Weber, Ralf J. M.; Selander, Erik; Sommer, Ulf;

    2013-01-01

    , allowing us to discover algal exudates from the complex seawater background. The stable-isotope pattern (SIP) of the detected metabolites then allowed for more accurate assignment to an empirical formula, a critical first step in their identification. This automated workflow provides an effective way...

  4. Study on the antibiosis of exudate JK-91-b against rice sheath blight (SHB)

    Institute of Scientific and Technical Information of China (English)

    CHENZhiyi; YINShangzhi; GAOXianting

    1994-01-01

    Antagonistic bacterial strain 91-b possessed stronger antagonistic ability against SHB infection. The control effects of the bacterization against SHB were 58.1% in greenhouse and 45.1% in paddy. The effect of antibiosis JK-91-b exudated by strain 91-b was studied in the present research.

  5. Decision support system for the detection and grading of hard exudates from color fundus photographs

    Science.gov (United States)

    Jaafar, Hussain F.; Nandi, Asoke K.; Al-Nuaimy, Waleed

    2011-11-01

    Diabetic retinopathy is a major cause of blindness, and its earliest signs include damage to the blood vessels and the formation of lesions in the retina. Automated detection and grading of hard exudates from the color fundus image is a critical step in the automated screening system for diabetic retinopathy. We propose novel methods for the detection and grading of hard exudates and the main retinal structures. For exudate detection, a novel approach based on coarse-to-fine strategy and a new image-splitting method are proposed with overall sensitivity of 93.2% and positive predictive value of 83.7% at the pixel level. The average sensitivity of the blood vessel detection is 85%, and the success rate of fovea localization is 100%. For exudate grading, a polar fovea coordinate system is adopted in accordance with medical criteria. Because of its competitive performance and ability to deal efficiently with images of variable quality, the proposed technique offers promising and efficient performance as part of an automated screening system for diabetic retinopathy.

  6. Impact of roots and rhizomes on wetland archaeology

    DEFF Research Database (Denmark)

    Tjelldén, Anna Katarina Ejgreen; Kristiansen, Søren Munch; Matthiesen, Henning;

    2015-01-01

    species that can damage site stratigraphy and artefacts. However, reviews on the types and degree of damage caused by vegetation to archaeological remains preserved in situ in wetlands have hitherto only been sporadically treated in the literature. Thus, this paper provides an overview of the adverse...... demonstrate that cultural heritage site management may unintentionally introduce deep-rooted or exudate aggressive plants by invoking change in hydrological conditions. Moreover, the implementation of biomass energy utilization and agricultural root depth optimization on a worldwide basis stresses the need...... for more research within root and rhizome impact on archaeological remains in wetlands. In conclusion, the worst-case scenario may be in situ deterioration instead of preservation, and one essential threat to archaeological wetland sites is the impact of wetland vegetation....

  7. Mevalonate-derived quinonemethide triterpenoid from in vitro roots of Peritassa laevigata and their localization in root tissue by MALDI imaging

    Science.gov (United States)

    Pina, Edieidia S.; Silva, Denise B.; Teixeira, Simone P.; Coppede, Juliana S.; Furlan, Maysa; França, Suzelei C.; Lopes, Norberto P.; Pereira, Ana Maria S.; Lopes, Adriana A.

    2016-03-01

    Biosynthetic investigation of quinonemethide triterpenoid 22β-hydroxy-maytenin (2) from in vitro root cultures of Peritassa laevigata (Celastraceae) was conducted using 13C-precursor. The mevalonate pathway in P. laevigata is responsible for the synthesis of the quinonemethide triterpenoid scaffold. Moreover, anatomical analysis of P. laevigata roots cultured in vitro and in situ showed the presence of 22β-hydroxy-maytenin (2) and maytenin (1) in the tissues from transverse or longitudinal sections with an intense orange color. MALDI-MS imaging confirmed the distribution of (2) and (1) in the more distal portions of the root cap, the outer cell layers, and near the vascular cylinder of P. laevigata in vitro roots suggesting a role in plant defense against infection by microorganisms as well as in the root exudation processes.

  8. Macromolecular composition of phloem exudate from white lupin (Lupinus albus L.

    Directory of Open Access Journals (Sweden)

    Mann Anthea J

    2011-02-01

    Full Text Available Abstract Background Members of the legume genus Lupinus exude phloem 'spontaneously' from incisions made to the vasculature. This feature was exploited to document macromolecules present in exudate of white lupin (Lupinus albus [L.] cv Kiev mutant, in particular to identify proteins and RNA molecules, including microRNA (miRNA. Results Proteomic analysis tentatively identified 86 proteins from 130 spots collected from 2D gels analysed by partial amino acid sequence determination using MS/MS. Analysis of a cDNA library constructed from exudate identified 609 unique transcripts. Both proteins and transcripts were classified into functional groups. The largest group of proteins comprised those involved in metabolism (24%, followed by protein modification/turnover (9%, redox regulation (8%, cell structural components (6%, stress and defence response (6% with fewer in other groups. More prominent proteins were cyclophilin, ubiquitin, a glycine-rich RNA-binding protein, a group of proteins that comprise a glutathione/ascorbate-based mechanism to scavenge oxygen radicals, enzymes of glycolysis and other metabolism including methionine and ethylene synthesis. Potential signalling macromolecules such as transcripts encoding proteins mediating calcium level and the Flowering locus T (FT protein were also identified. From around 330 small RNA clones (18-25 nt 12 were identified as probable miRNAs by homology with those from other species. miRNA composition of exudate varied with site of collection (e.g. upward versus downward translocation streams and nutrition (e.g. phosphorus level. Conclusions This is the first inventory of macromolecule composition of phloem exudate from a species in the Fabaceae, providing a basis to identify systemic signalling macromolecules with potential roles in regulating development, growth and stress response of legumes.

  9. Rhizosphere wettability decreases with root age: A problem or a strategy to increase water uptake of young roots?

    Directory of Open Access Journals (Sweden)

    Andrea eCarminati

    2013-08-01

    Full Text Available As plant roots take up water and the soil dries, water depletion is expected to occur in the vicinity of roots, the so called rhizosphere. However, recent experiments showed that the rhizosphere of lupines was wetter than the bulk soil during the drying period. Surprisingly, the rhizosphere remained temporarily dry after irrigation. Such water dynamics in the rhizosphere can be explained by the drying/wetting dynamics of mucilage exuded by roots. The capacity of mucilage to hold large volumes of water at negative water potential may favor root water uptake. However, mucilage hydrophobicity after drying may temporarily limit the local water uptake after irrigation. The effects of such rhizosphere dynamics are not yet understood. In particular, it is not known how the rhizosphere dynamics vary along roots and as a function of soil water content. My hypothesis was that the rewetting rate of the rhizosphere is primarily function of root age. Neutron radiography was used to monitor how the rhizosphere water dynamics vary along the root systems of lupines during drying/wetting cycles of different duration. The radiographs showed a fast and almost immediate rewetting of the rhizosphere of the distal root segments, in contrast to a slow rewetting of the rhizosphere of the proximal segments. The rewetting rate of the rhizosphere was not function of the water content before irrigation, but it was function of time. It is concluded that rhizosphere hydrophobicity is not uniform along roots, but it covers only the older and proximal root segments, while the young root segments are hydraulically well connected to the soil. I included these rhizosphere dynamics in a microscopic model of root water uptake. In the model, the relation between water content and water potential in the rhizosphere is not unique and it varies over time, and the rewetting rate of the rhizosphere decreases with time. The rhisosphere variability seems an optimal adaptation strategy to

  10. High-Resolution Imaging by Adaptive Optics Scanning Laser Ophthalmoscopy Reveals Two Morphologically Distinct Types of Retinal Hard Exudates.

    Science.gov (United States)

    Yamaguchi, Muneo; Nakao, Shintaro; Kaizu, Yoshihiro; Kobayashi, Yoshiyuki; Nakama, Takahito; Arima, Mitsuru; Yoshida, Shigeo; Oshima, Yuji; Takeda, Atsunobu; Ikeda, Yasuhiro; Mukai, Shizuo; Ishibashi, Tatsuro; Sonoda, Koh-Hei

    2016-01-01

    Histological studies from autopsy specimens have characterized hard exudates as a composition of lipid-laden macrophages or noncellular materials including lipid and proteinaceous substances (hyaline substances). However, the characteristics of hard exudates in living patients have not been examined due to insufficient resolution of existing equipment. In this study, we used adaptive optics scanning laser ophthalmoscopy (AO-SLO) to examine the characteristics of hard exudates in patients with retinal vascular diseases. High resolution imaging using AO-SLO enables morphological classification of retinal hard exudates into two types, which could not be distinguished either on fundus examination or by spectral domain optical coherence tomography (SD-OCT). One, termed a round type, consisted of an accumulation of spherical particles (average diameter of particles: 26.9 ± 4.4 μm). The other, termed an irregular type, comprised an irregularly shaped hyper-reflective deposition. The retinal thickness in regions with round hard exudates was significantly greater than the thickness in regions with irregular hard exudates (P = 0.01 →0.02). This differentiation of retinal hard exudates in patients by AO-SLO may help in understanding the pathogenesis and clinical prognosis of retinal vascular diseases. PMID:27641223

  11. High-Resolution Imaging by Adaptive Optics Scanning Laser Ophthalmoscopy Reveals Two Morphologically Distinct Types of Retinal Hard Exudates

    Science.gov (United States)

    Yamaguchi, Muneo; Nakao, Shintaro; Kaizu, Yoshihiro; Kobayashi, Yoshiyuki; Nakama, Takahito; Arima, Mitsuru; Yoshida, Shigeo; Oshima, Yuji; Takeda, Atsunobu; Ikeda, Yasuhiro; Mukai, Shizuo; Ishibashi, Tatsuro; Sonoda, Koh-hei

    2016-01-01

    Histological studies from autopsy specimens have characterized hard exudates as a composition of lipid-laden macrophages or noncellular materials including lipid and proteinaceous substances (hyaline substances). However, the characteristics of hard exudates in living patients have not been examined due to insufficient resolution of existing equipment. In this study, we used adaptive optics scanning laser ophthalmoscopy (AO-SLO) to examine the characteristics of hard exudates in patients with retinal vascular diseases. High resolution imaging using AO-SLO enables morphological classification of retinal hard exudates into two types, which could not be distinguished either on fundus examination or by spectral domain optical coherence tomography (SD-OCT). One, termed a round type, consisted of an accumulation of spherical particles (average diameter of particles: 26.9 ± 4.4 μm). The other, termed an irregular type, comprised an irregularly shaped hyper-reflective deposition. The retinal thickness in regions with round hard exudates was significantly greater than the thickness in regions with irregular hard exudates (P = 0.01 →0.02). This differentiation of retinal hard exudates in patients by AO-SLO may help in understanding the pathogenesis and clinical prognosis of retinal vascular diseases. PMID:27641223

  12. Locally Finite Root Supersystems

    OpenAIRE

    YOUSOFZADEH, Malihe

    2013-01-01

    We introduce the notion of locally finite root supersystems as a generalization of both locally finite root systems and generalized root systems. We classify irreducible locally finite root supersystems.

  13. Alterações morfológicas no sistema radicular do milho induzidas por fungos micorrízicos e fósforo Morphological alterations on root system of maize induced by mycorrhizal fungi and phosphorus

    Directory of Open Access Journals (Sweden)

    Wellington Bressan

    2002-04-01

    Full Text Available O objetivo deste trabalho, conduzido em casa de vegetação, foi avaliar os efeitos da inoculação de fungos micorrízicos arbusculares (Glomus etunicatum e Glomus clarum e da adição de níveis de P (0, 50, 100 e 200 mg/kg de solo sobre a morfologia do sistema radicular do milho (Zea mays L., cultivar BR 201, e a concentração de P na planta, em duas épocas de colheita (18 e 104 dias após semeadura em solo Latossolo Vermelho-Escuro distrófico desinfestado com Bromex. O experimento foi realizado na Embrapa-Centro Nacional de Pesquisa de Milho e Sorgo, Sete Lagoas, MG. A inoculação de fungos micorrízicos aumentou o peso das raízes secas, o número de raízes laterais primárias e secundárias, e o teor de P na planta, porém reduziu a relação peso das raízes secas/peso da parte aérea seca e o número de pêlos radiculares. Esses efeitos foram dependentes das doses de P aplicadas ao solo e da espécie de fungo micorrízico. O peso das raízes secas das plantas micorrizadas mostrou correlação significativa (PThe objective of this research, carried out under greenhouse conditions was to evaluate the effect of mycorrhizal fungi (Glomus etunicatum and Glomus clarum inoculation and P levels (0, 50, 100 e 200 mg/kg of soil on maize (Zea mays L. root system morphology, cultivar BR 201, and P plant concentration in two harvest period (18 and 104 days after sowing in disinfested dystrophic Dark-Red Latosol. The experiment was carried out under greenhouse conditions at Embrapa-Centro Nacional de Pesquisa de Milho e Sorgo, in Sete Lagoas, Minas Gerais, Brazil. Inoculation with mycorrhizal fungi increased root dry weight, number of first and second order lateral roots and P concentration in the plant, but decreased root/shoot dry weight ratio and number of root hairs. These effects were affected by P concentration in the soil and by mycorrhizal fungi species. Root dry weight of inoculated plants showed significative (P<=0.05 correlation to

  14. Identification and localization of bioactive naphthoquinones in the roots and rhizosphere of Paterson's curse (Echium plantagineum), a noxious invader.

    Science.gov (United States)

    Zhu, Xiaocheng; Skoneczny, Dominik; Weidenhamer, Jeffrey D; Mwendwa, James M; Weston, Paul A; Gurr, Geoff M; Callaway, Ragan M; Weston, Leslie A

    2016-06-01

    Bioactive plant secondary products are frequently the drivers of complex rhizosphere interactions, including those with other plants, herbivores and microbiota. These chemically diverse molecules typically accumulate in a highly regulated manner in specialized plant tissues and organelles. We studied the production and localization of bioactive naphthoquinones (NQs) in the roots of Echium plantagineum, an invasive endemic weed in Australia. Roots of E. plantagineum produced red-coloured NQs in the periderm of primary and secondary roots, while seedling root hairs exuded NQs in copious quantities. Confocal imaging and microspectrofluorimetry confirmed that bioactive NQs were deposited in the outer layer of periderm cells in mature roots, resulting in red colouration. Intracellular examination revealed that periderm cells contained numerous small red vesicles for storage and intracellular transport of shikonins, followed by subsequent extracellular deposition. Periderm and root hair extracts of field- and phytotron-grown plants were analysed by UHPLC/Q-ToF MS (ultra high pressure liquid chromatography coupled to quadrupole time of flight mass spectrometry) and contained more than nine individual NQs, with dimethylacrylshikonin, and phytotoxic shikonin, deoxyshikonin and acetylshikonin predominating. In seedlings, shikonins were first found 48h following germination in the root-hypocotyl junction, as well as in root hair exudates. In contrast, the root cortices of both seedling and mature root tissues were devoid of NQs. SPRE (solid phase root zone extraction) microprobes strategically placed in soil surrounding living E. plantagineum plants successfully extracted significant levels of bioactive shikonins from living roots, rhizosphere and bulk soil surrounding roots. These findings suggest important roles for accumulation of shikonins in the root periderm and subsequent rhizodeposition in plant defence, interference, and invasion success. PMID:27194735

  15. Rhizosphere biophysics and root water uptake

    Science.gov (United States)

    Carminati, Andrea; Zarebanadkouki, Mohsen; Ahmed, Mutez A.; Passioura, John

    2016-04-01

    The flow of water into the roots and the (putative) presence of a large resistance at the root-soil interface have attracted the attention of plant and soil scientists for decades. Such resistance has been attributed to a partial contact between roots and soil, large gradients in soil matric potential around the roots, or accumulation of solutes at the root surface creating a negative osmotic potential. Our hypothesis is that roots are capable of altering the biophysical properties of the soil around the roots, the rhizosphere, facilitating root water uptake in dry soils. In particular, we expect that root hairs and mucilage optimally connect the roots to the soil maintaining the hydraulic continuity across the rhizosphere. Using a pressure chamber apparatus we measured the relation between transpiration rate and the water potential difference between soil and leaf xylem during drying cycles in barley mutants with and without root hairs. The samples were grown in well structured soils. At low soil moistures and high transpiration rates, large drops in water potential developed around the roots. These drops in water potential recovered very slowly, even after transpiration was severely decreased. The drops in water potential were much bigger in barley mutants without root hairs. These mutants failed to sustain high transpiration rates in dry conditions. To explain the nature of such drops in water potential across the rhizosphere we performed high resolution neutron tomography of the rhizosphere of the barleys with and without root hairs growing in the same soil described above. The tomograms suggested that the hydraulic contact between the soil structures was the highest resistance for the water flow in dry conditions. The tomograms also indicate that root hairs and mucilage improved the hydraulic contact between roots and soil structures. At high transpiration rates and low water contents, roots extracted water from the rhizosphere, while the bulk soil, due its

  16. Automatic differentiation of color fundus images containing drusen or exudates using a contextual spatial pyramid approach.

    Science.gov (United States)

    van Grinsven, Mark J J P; Theelen, Thomas; Witkamp, Leonard; van der Heijden, Job; van de Ven, Johannes P H; Hoyng, Carel B; van Ginneken, Bram; Sánchez, Clara I

    2016-03-01

    We developed an automatic system to identify and differentiate color fundus images containing no lesions, drusen or exudates. Drusen and exudates are lesions with a bright appearance, associated with age-related macular degeneration and diabetic retinopathy, respectively. The system consists of three lesion detectors operating at pixel-level, combining their outputs using spatial pooling and classification with a random forest classifier. System performance was compared with ratings of two independent human observers using human-expert annotations as reference. Kappa agreements of 0.89, 0.97 and 0.92 and accuracies of 0.93, 0.98 and 0.95 were obtained for the system and observers, respectively.

  17. A two-scale Stefan problem arising in a model for tree sap exudation

    CERN Document Server

    Konrad, Isabell; Stockie, John M

    2016-01-01

    The study of tree sap exudation, in which a (leafless) tree generates elevated stem pressure in response to repeated daily freeze-thaw cycles, gives rise to an interesting multi-scale problem involving heat and multiphase liquid/gas transport. The pressure generation mechanism is a cellular-level process that is governed by differential equations for sap transport through porous cell membranes, phase change, heat transport, and generation of osmotic pressure. By assuming a periodic cellular structure based on an appropriate reference cell, we derive an homogenized heat equation governing the global temperature on the scale of the tree stem, with all the remaining physics relegated to equations defined on the reference cell. We derive a corresponding strong formulation of the limit problem and use it to design an efficient numerical solution algorithm. Numerical simulations are then performed to validate the results and draw conclusions regarding the phenomenon of sap exudation, which is of great importance in...

  18. Determination of Organic Acids in Root Exudates by High Performance Liquid Chromatography:Ⅱ.Influence of Several Testing COnditions

    Institute of Scientific and Technical Information of China (English)

    SHENJIANBO; ZHANGFUSUO; 等

    1999-01-01

    Effects of column temperature and flow rate on separation of organic acids were studied by determining nine low-molecular-weight organic acids on reversed-phase C18 column using high performace liquid chromatography(HPLC) with a wavelength of UV(ultraviolet)214 nm and a mobile phase of 18 mmol L-1 KH2PO4 buffer solution (pH2.1).The thermal stabiltiy of organic acids was determined by comparing the recoveries of organic acids in different temperature treatments.The relationships between column temperature,flow rate or solvent pH and retention time were analyzed.At low solvent pH,separatioin efficiency of organic acids was increased by raising the flow rate of the solvent because of lowering the retention time or organic acids.High column temperature was unfavorable for the separation of organic acids.The separating effect can be enhanced through reducing column temperature in organic acid determination due to increasing retention time.High thermal stability of organic acids with low concentrations was observed at temperature of 40℃-45℃,Sensitivity and separation effect of organic acid determination by HPLC were clearly improved by a combination of raising flow rate and lowering column temperature at low solvent pH.

  19. Extraction and identification of ginseng root exudates%人参根系分泌物的提取及鉴定

    Institute of Scientific and Technical Information of China (English)

    张爱华; 彭洪利; 雷锋杰; 张连学

    2014-01-01

    [目的]鉴定人参根系分泌物中的化学物质,为研究人参化感作用的发生及其连作障碍提供科学依据.[方法]采用灭菌复合基质复配无土栽培人参,对人参根系分泌物进行原位收集,依次用蒸馏水和乙醇提取人参根系分泌物,合并后用有机溶剂萃取,获得水层及有机相石油醚层和乙酸乙酯层,用HPLC和GC-MS检测水层和2层有机相的物质组成.[结果]人参根系分泌物石油醚层中含有1,3-二氧戊环,4-甲基,4-乙基-2-十五烷、乙基柠檬酸、棕榈酸乙酯和二十五烷等20种化合物,其中,烷烃类物质占46.56%,有机酸酯类物质占22.75%,酚酸类物质占13.78%,烷烃衍生物占3.59%,吡喃类物质占5.39%.乙酸乙酯层中含有丁基柠檬酸、邻苯甲二酸二丁酯和单(2-乙基己基)邻苯二甲酸酯等9种化合物,其中,烷烃类物质占22.77%,有机酸酯类物质占63.71%,酚酸类物质占13.52%.人参根系分泌物水层中含有微量人参皂苷.[结论]采用无土栽培基质可避免人参栽培中微生物的干扰,能很好地培养收集人参根系分泌物,人参根系分泌物中含有人参皂苷及烷烃类物质、有机酸酯类物质和酚酸类物质.

  20. BT TOXIN IS RELEASED IN ROOT EXUDATES FROM 12 TRANSGENIC CORN HYBRIDS REPRESENTING THREE TRANSFORMATION EVENTS. (R826107)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. Isolation and identification of Desmodium root exudates from drought tolerant species used as intercrops against Striga hermonthica

    OpenAIRE

    Hooper, A.M.; Caulfield, J.C.; Hao, B; Pickett, J.A.; Midega, C.A.O.; Khan, Z.R.

    2015-01-01

    Plants from the genus Desmodium, in particular D. uncinatum, are used on sub-Saharan small-holder farms as intercrops to inhibit parasitism of cereal crops by Striga hermonthica and Striga asiatica via an allelopathic mechanism. The search for Desmodium species which are adapted to more arid conditions, and which show resilience to increased drought stress, previously identified D. intortum, D. incanum and D. ramosissimum as potential drought tolerant intercrops. Their potential as intercrops...

  2. Multiscale model of a freeze-thaw process for tree sap exudation

    OpenAIRE

    Graf, Isabell; Ceseri, Maurizio; Stockie, John M.

    2015-01-01

    Sap transport in trees has long fascinated scientists, and a vast literature exists on experimental and modelling studies of trees during the growing season when large negative stem pressures are generated by transpiration from leaves. Much less attention has been paid to winter months when trees are largely dormant but nonetheless continue to exhibit interesting flow behaviour. A prime example is sap exudation, which refers to the peculiar ability of sugar maple (Acer saccharum) and related ...

  3. Roles of antibody and complement in the bactericidal activity of mouse peritoneal exudate neutrophils.

    OpenAIRE

    Hart, P. H.; Spencer, L. K.; Hill, N L; McDonald, P J; Finlay-Jones, J. J.

    1987-01-01

    The contributions of complement and antibody to phagocytosis and, as a separate process, intracellular killing of Proteus mirabilis, were investigated using mouse peritoneal exudate neutrophils. Phagocytosis of P. mirabilis was promoted by both immune mouse (IMS) and normal mouse (NMS) sera. Opsonization by IMS promoted significantly greater phagocytosis than did NMS, as did NMS compared with heated IMS (HIMS). The ability of NMS to opsonize P. mirabilis for both phagocytosis and phagocytic k...

  4. Sesquiterpenoids from the resinous exudates of Commiphora myrrha and their neuroprotective effects.

    Science.gov (United States)

    Xu, Jing; Guo, Yuanqiang; Li, Yushan; Zhao, Peng; Liu, Cuizhou; Ma, Yonggang; Gao, Jie; Hou, Wenbin; Zhang, Tiejun

    2011-12-01

    Ten new furanosesquiterpenoids, myrrhterpenoids A-J (1- 10), together with eight known analogues (11- 18), were isolated from the resinous exudates of COMMIPHORA MYRRHA. Their structures and relative configurations were elucidated by spectroscopic methods (IR, ESIMS, HRESIMS, 1D and 2D NMR) and by the ChemDraw 3D modeling using MM2. All isolated furanosesquiterpenes showed neuroprotective effects against MPP (+)-induced neuronal cell death in SH-SY5Y cells.

  5. Exudative retinal detachment following strabismus surgery in Sturge-Weber syndrome

    Directory of Open Access Journals (Sweden)

    Yu Cheol Kim

    2015-01-01

    Full Text Available A 15-year-old boy with Sturge-Weber syndrome underwent strabismus surgery (oculus sinister [OS] for the treatment of exotropia. The patient′s visual acuity (OS decreased to hand motion 10 days after the surgery. One month after the surgery, the patient′s visual acuity decreased to light perception, and a fundus examination showed total exudative retinal detachment (OS.

  6. Differing Organic Acid Exudation Pattern Explains Calcifuge and Acidifuge Behaviour of Plants

    OpenAIRE

    Tyler, Germund; Ström, Lena

    1995-01-01

    Many vascular plant species are unable to colonize calcareous sites. Thus, the floristic composition of adjacent limestone and acid silicate soils differs greatly. The inability of calcifuge plants to establish in limestone sites seems related to a low capacity of such plants to solubilize and absorb Fe or phosphate from these soils. Until now, mechanisms regulating this differing ability of plants to colonize limestone sites have not been elucidated. We propose that contrasting exudation of ...

  7. Effect of Bark Extract and Gum Exudate of Commiphora Caudata on Aspirin Induced Ulcer in Rats

    OpenAIRE

    R Nanthakumar; Ambrose S Stephen; E Sriram; Babu, G.; K Chitra; C Uma maheswara Reddy

    2009-01-01

    Commiphora caudata is used in Indian folk medicine as an antiulcerogenic agent. Despite of its promising use, there has been no scientific report present regarding its antiulcer activity. Therefore, this study was designed to evaluate the antiulcer activity of bark extract and gum exudate of commiphora caudata on aspirin induced ulcer in rats. Acute toxicity study was performed and 200 mg/kg was selected as an effective dose. Four groups of Albino Swiss rats were included in this study. Aspir...

  8. Antigenic evidence for host origin of exudative fluids in lesions of Treponema pallidum-infected rabbits.

    OpenAIRE

    Wos, S M; Wicher, K.

    1985-01-01

    Mucoid fluid accumulating within syphilitic lesions has been considered to be of Treponema pallidum origin. To test this assumption, we examined testicular exudative fluids from T. pallidum-infected rabbits for the presence of T. pallidum antigens by various sensitive immunochemical methods, including Western blot analysis. Antigenic analysis of these fluids revealed host components but not treponemal antigens. Prolonged immunization of rabbits, guinea pigs, and a goat with this material in c...

  9. D-Root: a system for cultivating plants with the roots in darkness or under different light conditions.

    Science.gov (United States)

    Silva-Navas, Javier; Moreno-Risueno, Miguel A; Manzano, Concepción; Pallero-Baena, Mercedes; Navarro-Neila, Sara; Téllez-Robledo, Bárbara; Garcia-Mina, Jose M; Baigorri, Roberto; Gallego, Francisco Javier; del Pozo, Juan C

    2015-10-01

    In nature roots grow in the dark and away from light (negative phototropism). However, most current research in root biology has been carried out with the root system grown in the presence of light. Here, we have engineered a device, called Dark-Root (D-Root), to grow plants in vitro with the aerial part exposed to the normal light/dark photoperiod while the roots are in the dark or exposed to specific wavelengths or light intensities. D-Root provides an efficient system for cultivating a large number of seedlings and easily characterizing root architecture in the dark. At the morphological level, root illumination shortens root length and promotes early emergence of lateral roots, therefore inducing expansion of the root system. Surprisingly, root illumination also affects shoot development, including flowering time. Our analyses also show that root illumination alters the proper response to hormones or abiotic stress (e.g. salt or osmotic stress) and nutrient starvation, enhancing inhibition of root growth. In conclusion, D-Root provides a growing system closer to the natural one for assaying Arabidopsis plants, and therefore its use will contribute to a better understanding of the mechanisms involved in root development, hormonal signaling and stress responses.

  10. The Role of Prophylactic Ibuprofen and N-Acetylcysteine on the Level of Cytokines in Periapical Exudates and the Post-Treatment Pain

    Directory of Open Access Journals (Sweden)

    Seyyed Mohsen Aghajanpour Mir

    2012-09-01

    Full Text Available Background Periapical lesions are inflammatory diseases that result in periapical bone destruction because of host defensive-microbial disturbances. Objective:To evaluate the role of prophylactic ibuprofen and N-acetylcysteine (NAC on the levels of tumor necrosis factor alpha (TNF- alpha, interleukin- 6(IL-6 and IL-17 and post-treatment pain level in chronic periapical lesions. Materials and methods Eighty patients with chronic apical lesions less than 1 cm were randomly assigned to receive NAC tablets (400 mg, ibuprofen tablets (400 mg, NAC (400 mg/ibuprofen (200 mg combination and placebo 90 minutes prior to sampling. Periapical exudates were collected from root canals. TNF- alpha, IL-6 and IL-17 levels were determined by ELISA and posttreatment pain was assessed using a visual analog scale (VAS. Results:There was a significant difference in IL-6 level between ibuprofen group and placebo (p = 0.019. Significant difference in IL-17 level was observed between NAC/ibuprofen combination group and placebo (p = 0.043. Four hours after treatment, a significant difference was observed in VAS pain score between ibuprofen group and placebo (p = 0.017. Eight hours post-treatment, VAS pain score for NAC group was statistically lower than placebo group (p = 0.033. After 12 hours VAS pain score showed a significant decrease in NAC group compared to placebo (p = 0.049. Conclusion:The prophylactic ibuprofen and NAC failed to clearly reflect their effect on cytokines levels in exudates of chronic periapical lesions. On the other hand it seems that NAC can be a substitute for ibuprofen in the management of post endodontic pain

  11. The role of prophylactic ibuprofen and N-acetylcysteine on the level of cytokines in periapical exudates and the post-treatment pain

    Directory of Open Access Journals (Sweden)

    Ehsani Maryam

    2012-09-01

    Full Text Available Abstract Background Periapical lesions are inflammatory diseases that result in periapical bone destruction because of host defensive–microbial disturbances. Objective To evaluate the role of prophylactic ibuprofen and N-acetylcysteine (NAC on the levels of tumor necrosis factor alpha (TNF- α, interleukin- 6(IL-6 and IL-17 and post-treatment pain level in chronic periapical lesions. Materials and methods Eighty patients with chronic apical lesions less than 1 cm were randomly assigned to receive NAC tablets (400 mg, ibuprofen tablets (400 mg, NAC (400 mg/ibuprofen (200 mg combination and placebo 90 minutes prior to sampling. Periapical exudates were collected from root canals. TNF- α, IL-6 and IL-17 levels were determined by ELISA and post-treatment pain was assessed using a visual analog scale (VAS. Results There was a significant difference in IL-6 level between ibuprofen group and placebo (p = 0.019. Significant difference in IL-17 level was observed between NAC/ibuprofen combination group and placebo (p = 0.043. Four hours after treatment, a significant difference was observed in VAS pain score between ibuprofen group and placebo (p = 0.017. Eight hours post-treatment, VAS pain score for NAC group was statistically lower than placebo group (p = 0.033. After 12 hours VAS pain score showed a significant decrease in NAC group compared to placebo (p = 0.049. Conclusion The prophylactic ibuprofen and NAC failed to clearly reflect their effect on cytokines levels in exudates of chronic periapical lesions. On the other hand it seems that NAC can be a substitute for ibuprofen in the management of post endodontic pain.

  12. Phytochemical screening of the exudate of Aloe otallensis and its effect on Leishmania donovani

    Directory of Open Access Journals (Sweden)

    Zerihun Tesfaye Nigusse

    2016-06-01

    Full Text Available Objective: To evaluate the antileishmanial activity of methanolic extract of Aloe otallensis (A. otallensis on the promastigote stage of Leishmania donovani (L. donovani as compared to standard drugs and to screen its phytochemical constituents. Methods: Phytochemical screening was done by using the method mentioned by Evans and Trease on methanolic extract of the exudates of Aloe otallensis leaves. The extract was also evaluated for in vitro antileishmanial activity against L. donavani which is found from the Parasitology Unit of Black Lion Hospital. The result was compared to standard drugs of sodium stibogluconate, milfostin and paramomycin. Results: The extract has a good antileishmanial activity with an IC50 of 0.1230 μg/mL on L. donovani (AM 563. The experimental data showed that relatively it had better activity than paramomycin and milfostin but less activity than sodium stibogluconate. The data analyses were done by GraphPad Prism version 5 software after it was read by ELISA reader at the wave length of 650 nm. The phytochemical screening of the exudates of A. otallensis showed the presence of phenol, alkaloid and saponin. Conclusions: The methanol extract of the exudates of A. otallensis has a good antileishmaniasis activity and this may be attributed to phenol, alkaloid and saponin present in the plant. But it needs further analysis for the conformation of which constituent presents in high concentration to know which one has the strongest effect.

  13. Phytochemical screening of the exudate of Aloe otallensis and its effect on Leishmania donovani

    Institute of Scientific and Technical Information of China (English)

    Zerihun Tesfaye Nigusse; WoldeaAbebe Wondifraw; Sefinew MigbaruAbate

    2016-01-01

    Objective: To evaluate the antileishmanial activity of methanolic extract of Aloe otallensis (A. otallensis) on the promastigote stage of Leishmania donovani (L. donovani) as compared to standard drugs and to screen its phytochemical constituents. Methods: Phytochemical screening was done by using the method mentioned by Evans and Trease on methanolic extract of the exudates of Aloe otallensis leaves. The extract was also evaluated for in vitro antileishmanial activity against L. donavani which is found from the Parasitology Unit of Black Lion Hospital. The result was compared to standard drugs of sodium stibogluconate, milfostin and paramomycin. Results: The extract has a good antileishmanial activity with an IC50 of 0.1230 μg/mL on L. donovani (AM 563). The experimental data showed that relatively it had better activity than paramomycin and milfostin but less activity than sodium stibogluconate. The data analyses were done by GraphPad Prism version 5 software after it was read by ELISA reader at the wave length of 650 nm. The phytochemical screening of the exudates of A. otallensis showed the presence of phenol, alkaloid and saponin. Conclusions: The methanol extract of the exudates of A. otallensis has a good anti-leishmaniasis activity and this may be attributed to phenol, alkaloid and saponin present in the plant. But it needs further analysis for the conformation of which constituent presents in high concentration to know which one has the strongest effect.

  14. Effect of Bark Extract and Gum Exudate of Commiphora Caudata on Aspirin Induced Ulcer in Rats

    Directory of Open Access Journals (Sweden)

    R Nanthakumar

    2009-01-01

    Full Text Available Commiphora caudata is used in Indian folk medicine as an antiulcerogenic agent. Despite of its promising use, there has been no scientific report present regarding its antiulcer activity. Therefore, this study was designed to evaluate the antiulcer activity of bark extract and gum exudate of commiphora caudata on aspirin induced ulcer in rats. Acute toxicity study was performed and 200 mg/kg was selected as an effective dose. Four groups of Albino Swiss rats were included in this study. Aspirin suspended in 0.5 % carboxymethyl cellulose (CMC was given orally to group 1 rats as a negative control group. Group 2 and group 3 animals received methanolic extract and gum exudate of commiphora caudata respectively. Sucralfate was given orally to group 4 animals as a positive control. The methanolic extract of commiphora caudata has been found to reduce total acidity as much as by sucralfate. However, it has not changed the fluid secretion. The gum preparation not only reduced the total acidity but also considerably reduce the gastric fluid secretion. In case of ulcer score sucralfate, methanolic extract and the gum have produced the low ulcer score compared to aspirin. Increased gastric mucosal protective mechanism by bark extract and gum exudate is probably due to the presence of some active principles present in the plant. However, further investigations are required to elucidate their exact mechanism of anti-ulcer activity.

  15. Afrokoko Roots

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Give us a little background information about Afrokoko Roots.How long have you been performing together?It's an international Afrobeat outfit that I founded in Beijing three years ago.I founded it in order to show Chinese people that Africa is beyond what they see and hear on TV.For the purpose of cultural exchange,I hope it can help the Chinese learn about African culture,music,fashion,history and much more.Our band features two dancers,two backup singers,two percussionists,four brass players,a keyboard player,a guitar player and a drummer- and me as the lead vocal,drummer and dancer,which makes for live performances that are equally exciting sonically as they are visually.We have been traveling around,and so far,we have toured and performed in many Chinese cities such as Dalian (Liaoning Province),Hohhot (Inner Mongolia Autonomous Region) and Haikou (Hainan Province).

  16. Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis. [Poncirus trifoliata L. Raf. x Citrus sinensis L. Osbeck; Glomus intraradices Schenk and Smith

    Energy Technology Data Exchange (ETDEWEB)

    Douds, D.D. Jr.; Johnson, C.R.; Koch, K.E. (Univ. of Florida, Gainesville (USA))

    1988-02-01

    Translocation of {sup 14}C-photosynthates to mycorrhizal (++), half mycorrhizal (0+), and nonmycorrhizal (00) split-root systems was compared to P accumulation in leaves of the host plant. Carrizo citrange seedlings (Poncirus trifoliata (L.) Raf. {times} Citrus sinensis (L.) Osbeck) were inoculated with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith. Plants were exposed to {sup 14}CO{sub 2} for 10 minutes and ambient air for 2 hours. Three to 4% of recently labeled photosynthate was allocated to metabolism of the mycorrhiza in each inoculated root half independent of shoot P concentration, growth response, and whether one or both root halves were colonized. Nonmycorrhizal roots respired more of the label translocated to them than did mycorrhizal roots. Label recovered in the potting medium due to exudation or transport into extraradical hyphae was 5 to 6 times greater for (++) versus (00) plants. In low nutrient media, roots of (0+) and (++) plants transported more P to leaves per root weight than roots of (00) plants. However, when C translocated to roots utilized for respiration, exudation, etc., as well as growth is considered, (00) plant roots were at least as efficient at P uptake (benefit) per C utilized (cost) as (0+) and (++) plants. Root systems of (++) plants did not supply more P to leaves than (0+) plants in higher nutrient media, yet they still allocated twice the {sup 14}C-photosynthate to the mycorrhiza as did (0+) root systems.

  17. Water percolation through the root-soil interface

    Science.gov (United States)

    Benard, Pascal; Kroener, Eva; Vontobel, Peter; Kaestner, Anders; Carminati, Andrea

    2016-04-01

    Plant roots exude a significant fraction of the carbon assimilated via photosynthesis into the soil. The mucilaginous fraction of root exudates affects the hydraulic properties of the soil near the roots, the so called rhizosphere, in a remarkable and dynamic way. After drying, mucilage becomes hydrophobic and limits the rewetting of the rhizosphere. Here, we aim to find a quantitative relation between rhizosphere rewetting, particle size, soil matric potential and mucilage concentration. We used a pore-network model in which mucilage was randomly distributed in a cubic lattice. The general idea was that the mucilage concentration per solid soil surface increases the contact angle between the liquid and solid phases consequently limiting the rewetting of pores covered with dry mucilage. We used the Young-Laplace equation to calculate the mucilage concentration at which pores are not wettable for varying particle sizes and matric potentials. Then, we simulated the percolation of water across a cubic lattice. Our simulations predicted that above a critical mucilage concentration water could not flow through the porous medium. The critical mucilage concentration decreased with increasing particle size and decreasing matric potential. The model was compared with experiments of capillary rise in soils of different particle size and mucilage concentration. The experiments confirmed the percolation behaviour of the rhizosphere rewetting. Mucilage turned hydrophobic at concentrations above 0.1 mg/cm². The critical mucilage concentration at matric potential of -2.5 hPa was ca. 1% [g/g] for fine sand and 0.1 % [g/g] for coarse sand. Our conceptual model is a first step towards a better understanding of the water dynamics in the rhizosphere during rewetting and it can be used to predict in what soil textures rhizosphere water repellency becomes a critical issue for root water uptake.

  18. Water percolation through the root-soil interface

    Science.gov (United States)

    Benard, Pascal; Kroener, Eva; Vontobel, Peter; Kaestner, Anders; Carminati, Andrea

    2016-09-01

    Plant roots exude a significant fraction of the carbon assimilated via photosynthesis into the soil. The mucilaginous fraction of root exudates affects the hydraulic properties of the soil near the roots, the so called rhizosphere, in a remarkable and dynamic way. After drying, mucilage becomes hydrophobic and limits the rewetting of the rhizosphere. Here, we aim to find a quantitative relation between rhizosphere rewetting, particle size, soil matric potential and mucilage concentration. We used a pore-network model in which mucilage was randomly distributed in a cubic lattice. The general idea was that the mucilage concentration per solid soil surface increases the contact angle between the liquid and solid phases consequently limiting the rewetting of pores covered with dry mucilage. We used the Young-Laplace equation to calculate the mucilage concentration at which pores are not wettable for varying particle sizes and matric potentials. Then, we simulated the percolation of water across a cubic lattice. Our simulations predicted that above a critical mucilage concentration water could not flow through the porous medium. The critical mucilage concentration decreased with increasing particle size and decreasing matric potential. The model was compared with experiments of capillary rise in soils of different particle size and mucilage concentration. The experiments confirmed the percolation behaviour of the rhizosphere rewetting. Mucilage turned hydrophobic at concentrations above 0.1 mg/cm2. The critical mucilage concentration at matric potential of -2.5 hPa was ca. 1% [g/g] for fine sand and 0.1 % [g/g] for coarse sand. Our conceptual model is a first step towards a better understanding of the water dynamics in the rhizosphere during rewetting and it can be used to predict in what soil textures rhizosphere water repellency becomes a critical issue for root water uptake.

  19. Investigations into rhizosphere microflora. IV. Fungal association in different root regions of some rainy-season crops

    OpenAIRE

    V. B. Srivastava

    2015-01-01

    Non-rhizosphere, rhizosphere and rhizoplane microflora of the crown and distal regions of Echinochloa crusgalli (L.) Beauv. and Paspalum scrobiculatum L. were studied from seedling stage to the harvest. The variation in bacterial and fungal flora in relation to host species, stage of development and żonę of the rhizosphere were studied. The differences between fungal and bacterial flora are described. The relation between rhizosphere microflora and roots exudates is described.

  20. Investigations into rhizosphere microflora. IV. Fungal association in different root regions of some rainy-season crops

    Directory of Open Access Journals (Sweden)

    V. B. Srivastava

    2015-05-01

    Full Text Available Non-rhizosphere, rhizosphere and rhizoplane microflora of the crown and distal regions of Echinochloa crusgalli (L. Beauv. and Paspalum scrobiculatum L. were studied from seedling stage to the harvest. The variation in bacterial and fungal flora in relation to host species, stage of development and żonę of the rhizosphere were studied. The differences between fungal and bacterial flora are described. The relation between rhizosphere microflora and roots exudates is described.

  1. Determination of proline concentration, an abiotic stress marker, in root exudates of excised root cultures of fruit tree rootstocks under salt stress

    OpenAIRE

    Marín Velázquez, Juan Antonio; Andreu Puyal, Pilar; A. Carrasco; Arbeloa Matute, Arancha

    2010-01-01

    6 páginas, 4 figuras.-- Trabajo presentado Actes du 3º Meeting International "Aridoculture et Cultures Oasisennes: Gestion et Valorisation des Ressources et Applications Biotechnologiques dans les Agrosystèmes Arides et Sahariens" celebrado en Jerba (Túnez) del 15 al 17 de Diciembre de 2009. 15-16-17/12/2009

  2. Degradation of Surfactants in Hydroponic Wheat Root Zones

    Science.gov (United States)

    Monje, Oscar; McCoy, Lashelle; Flanagan, Aisling

    Hygiene water recycling in recirculating hydroponic systems can be enhanced by plant roots by providing a substrate and root exudates for bacterial growth. However, reduced plant growth can occur during batch mode additions of high concentrations of surfactant. An analog hygiene water stream containing surfactants (Steol CS330, Mirataine CB) was added to a hydroponically-grown wheat plant root zone. The plants were grown at 700 mol mol-1 CO2, a photosynthetic photon flux of 300 mol m-2 s-1, and a planting density of 380 plants m-2. Volumetric oxygen mass transfer coefficients were determined using the fermentative/dynamic outgassing method to maintain adequate oxygen mass transfer rates in the root zone. This analysis suggested an optimal flow rate of the hydroponic solution of 5 L min-1. The hydroponic system was inoculated with biofilm from a bioreactor and rates of surfactant degradation were measured daily based on reduction in chemical oxygen demand (COD). The COD decreased from 400 to 100 mg L-1 after 2 days following batch addition of the analog hygiene water to the hydroponic system. Measurements of dissolved oxygen concentration and solution temperature suggest that the root zone was provided adequate aeration to meet both oxygen demands from plant and microbial respiration during the degradation of the surfactant. Results from this study show that hydroponic systems can be used to enhance rates of hygiene water processing.

  3. Gelation of Soy Milk with Hagfish Exudate Creates a Flocculated and Fibrous Emulsion- and Particle Gel.

    Directory of Open Access Journals (Sweden)

    Lukas Böni

    Full Text Available Hagfish slime is an ultra dilute, elastic and cohesive hydrogel that deploys within milliseconds in cold seawater from a glandularly secreted exudate. The slime is made of long keratin-like fibers and mucin-like glycoproteins that span a network which entraps water and acts as a defense mechanism against predators. Unlike other hydrogels, the slime only confines water physically and is very susceptible to mechanical stress, which makes it unsuitable for many processing operations and potential applications. Despite its huge potential, little work has been done to improve and functionalize the properties of this hydrogel. To address this shortcoming, hagfish exudate was mixed with a soy protein isolate suspension (4% w/v and with a soy emulsion (commercial soy milk to form a more stable structure and combine the functionalities of a suspension and emulsion with those of the hydrogel. Hagfish exudate interacted strongly with the soy systems, showing a markedly increased viscoelasticity and water retention. Hagfish mucin was found to induce a depletion and bridging mechanism, which caused the emulsion and suspension to flocculate, making "soy slime", a cohesive and cold-set emulsion- and particle gel. The flocculation network increases viscoelasticity and substantially contributes to liquid retention by entrapping liquid in the additional confinements between aggregated particles and protein fibers. Because the mucin-induced flocculation resembles the salt- or acid-induced flocculation in tofu curd production, the soy slime was cooked for comparison. The cooked soy slime was similar to conventional cooked tofu, but possessed a long-range cohesiveness from the fibers. The fibrous, cold-set, and curd-like structure of the soy slime represents a novel way for a cold coagulation and fiber incorporation into a suspension or emulsion. This mechanism could be used to efficiently gel functionalized emulsions or produce novel tofu-like structured food

  4. Hyperbaric oxygen increases plasma exudation in rat trachea: involvement of nitric oxide

    Science.gov (United States)

    Bernareggi, M; Radice, S; Rossoni, G; Oriani, G; Chiesara, E; Berti, F

    1999-01-01

    This study investigates the microvascular permeability changes in tracheal tissue of rats exposed to hyperbaric oxygen (HBO). Rats, following exposure to HBO or ambient air (control animals) for 1.5, 3 and 6 h, were prepared for recording of nitric oxide exhaled (FENO) in air using a chemiluminescence analyser. The level of FENO was not statistically different in the two groups. Plasma exudation, evaluated by measuring the leakage of Evans blue (EB) dye into the tracheal tissue, was significantly elevated (48, 86 and 105% at 1.5, 3 and 6 h, respectively) in HBO-treated rats. Plasma exudation in the trachea of control rats was significantly increased (42%, P<0.05) by NG-nitro-L-arginine methyl ester (L-NAME), whereas it was significantly reduced (31%, P<0.05) in rats exposed to HBO for 3 h. N-acetylcysteine (NAC) and flunisolide significantly prevented the increase in plasma leakage in HBO-treated rats. In contrast, indomethacin was devoid of anti-exudative activity in these experiments. Western immunoblot showed a significant increase in the level of inducible nitric oxide synthase (iNOS) protein in the tracheal homogenates of HBO-treated rats, as compared to basal levels. These results indicate that nitric oxide (NO) is involved in the maintenance of microvascular permeability in tracheal tissue of rats. The protective effect observed with the steroid seems to support this hypothesis. Furthermore, the beneficial action of NAC underlines that reactive oxygen species participate in the microvascular permeability changes observed in tracheal tissue of rats exposed to HBO. PMID:10188993

  5. Urinary albumin excretion rate: a risk factor for retinal hard exudates in macular region in type 2 diabetic patients

    Institute of Scientific and Technical Information of China (English)

    Wang Shaocheng; Lin Siyong; Cao Xi; Zheng Yuezhong; Wang Jinyang; Lu Na; Yang Jinkui

    2014-01-01

    Background The various risk factors for retinal hard exudates are still poorly understood in type 2 diabetic patients.The aim of this study was to determine the association between urinary albumin excretion rate (UAER) and hard exudates in macular region in north Chinese patients.Methods A total of 272 patients (272 eyes) were enrolled for this study,including 154 subjects from group 1 (mild hard exudates),91 subjects from group 2 (moderate hard exudates) and 27 subjects from group 3 (severe hard exudates) confirmed using colour fundus photography,optical coherence tomography (OCT) as well as slit-lamp biomicroscopy with 78 diopter (D) lens.Each participant underwent a comprehensive assessment that included biochemical,clinical characteristics test and detailed ophthalmic evaluation.One-way analysis of variance (ANOVA) test and chi-square test were performed to analyze the fasting blood glucose (FBG),glycated hemoglobin (HbA1c),total cholesterol (TC),low density lipoprotein (LDL),high density lipoprotein (HDL),triglycerides (TG),full blood counts,urinary albumin excretion rate (UAER),blood creatinine (CREA),duration of diabetes,body mass index (BMI),systolic blood pressures (SBP) and diastolic blood pressures (DBP) between groups.Ordinal logistic regression analysis was further performed in order to eliminating the possible confounding factors.Results Three groups were matched in terms of age and gender.Risk factors which showed significant difference between groups include FBG (P <0.001),HbA1c (P <0.001),LDL (P <0.001),UAER (P <0.001),duration of diabetes (P=0.001),TC (P=0.005),SBP (P=0.026),CREA (P=0.004) and haemoglobin (Hb) (P=0.012).There was no significant difference between groups for the TG,HDL,DBP,platelet,total white blood cells and BMI.Using ordinal Logistic regression analyses,of all the variables,HbA1c,LDL and UAER which were independent risk factor for hard exudates showed a significantly odds ratio of 1.25,3.07,and 1.39,respectively

  6. Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan

    Science.gov (United States)

    Jaeger; Lindow; Miller; Clark; Firestone

    1999-06-01

    We developed a technique to map the availability of sugars and amino acids along live roots in an intact soil-root matrix with native microbial soil flora and fauna present. It will allow us to study interactions between root exudates and soil microorganisms at the fine spatial scale necessary to evaluate mechanisms of nitrogen cycling in the rhizosphere. Erwinia herbicola 299R harboring a promoterless ice nucleation reporter gene, driven by either of two nutrient-responsive promoters, was used as a biosensor. Strain 299RTice exhibits tryptophan-dependent ice nucleation activity, while strain 299R(p61RYice) expresses ice nucleation activity proportional to sucrose concentration in its environment. Both biosensors exhibited up to 100-fold differences in ice nucleation activity in response to varying substrate abundance in culture. The biosensors were introduced into the rhizosphere of the annual grass Avena barbata and, as a control, into bulk soil. Neither strain exhibited significant ice nucleation activity in the bulk soil. Both tryptophan and sucrose were detected in the rhizosphere, but they showed different spatial patterns. Tryptophan was apparently most abundant in soil around roots 12 to 16 cm from the tip, while sucrose was most abundant in soil near the root tip. The largest numbers of bacteria (determined by acridine orange staining and direct microscopy) occurred near root sections with the highest apparent sucrose or tryptophan exudation. High sucrose availability at the root tip is consistent with leakage of photosynthate from immature, rapidly growing root tissues, while tryptophan loss from older root sections may result from lateral root perforation of the root epidermis. PMID:10347061

  7. pH of exudate test in the physiological quality of crambe seeds

    OpenAIRE

    Charline Zaratin Alves; Lennis Afraire Rodrigues; Carlos Henrique Queiroz Rego; Josué Bispo da Silva

    2016-01-01

    ABSTRACT: Crambe is a rapeseed with high oil content and can be used as a winter cover or as a source of raw material for the production of biodiesel, however espite the growing interest in the culture, research on the subject is still incipient, especially concerning the seed production and analysis technology. The purpose of this study is to evaluate the physiological quality of crambe seeds, 'FMS Brilhante' cultivar, by testing the pH of exudate. Five seed lots were submitted to the determ...

  8. A case of von Hippel-Lindau disease with exudative maculopathy

    Directory of Open Access Journals (Sweden)

    Basel T Ba′arah

    2009-01-01

    Full Text Available Von Hippel-Lindau (VHL disease is a rare multisystem familial tumor syndrome of autosomal dominant inheritance. Hallmark lesions include retinal, cerebellum and spinal cord hemangioblastomas, renal cell carcinomas, adrenal pheochromocytomas, angiomatous or cystic lesions of the kidneys, pancreas, and epididymis. We report a case of VHL disease in a 26-year-old patient who presented with exudative macular edema. Ocular and systemic studies revealed the presence of retinal and central nervous system hemangioblastomas, adrenal pheochromocytoma, multiple pancreatic, and kidney cysts. The retinal angiomas were successfully treated with argon laser photocoagulation and cryotherapy.

  9. Use of a hydrocapillary dressing in the management of highly exuding ulcers: a comparative study

    DEFF Research Database (Denmark)

    Norkus, A; Dargis, V; Thomsen, J K;

    2005-01-01

    was conducted on 97 patients with an ankle brachial pressure index > or = 0.8 and a highly exuding leg ulcer. Ulcer duration was at least four weeks.Treatment continued until healing or for a maximum of 12 months. RESULTS: There was no statistically significant difference in healing time or wound area reduction...... between the two treatment protocols. The test dressing (Alione Hydrocapillary) had better absorption capacity and was more comfortable for the patients than the comparator dressings (Tielle/Tielle Plus) and adhered less to the wound bed.Also, more patients preferred the test dressing to their previous...

  10. Vitrectomy for circumscribed choroidal hemangioma with exudative retinal detachment refractory to transpupillary thermotherapy

    Directory of Open Access Journals (Sweden)

    Shukla Dhananjay

    2007-01-01

    Full Text Available We report successful surgical management of a circumscribed choroidal hemangioma with exudative retinal detachment refractory to transpupillary thermotherapy (TTT. A 33-year-old man with symptomatic serous macular detachment in the left eye (Snellen acuity: 20/200 secondary to a paramacular choroidal hemangioma was treated with TTT. The nonresponsive detachment was subsequently managed by vitrectomy, endophotocoagulation and silicon-oil tamponade. It resulted in complete resolution of the tumor and the detachment. Silicon oil was removed at four months. Visual acuity improved to 20/80 by the last follow-up visit at 10 months without any recurrence.

  11. Status of Exudative Pleural Effusion in Adults of South Khorasan Province, Northeast Iran: Pleural Tuberculosis Tending toward Elderly

    Science.gov (United States)

    Mortazavi-Moghaddam, Sayyed Gholam Reza; Sharifzadeh, Gholam Reza; Rezvani, Mohammad Reza

    2016-01-01

    The causes and situation of exudative pleural effusion vary from one area to another. A cross-sectional study was conducted on 327 patients with exudative pleural effusion in South Khorasan province (Iran). The patients were older than 12 years and comprised 172 (52.6%) males and 155 (47.4%) females. The study commenced in 2007 with seven years duration. The Light’s criteria were used to define exudative effusion. Procedures including pleural fluid analysis, microbiological study, pleural biopsy, and systemic investigations were conducted to determine the special cause of pleural effusion. The mean age of the patients was 63.4±18.4 years. Malignancies, tuberculosis, and parapneumonia pleural exudation were diagnosed in 125 (38.2%), 48 (14.7%), and 45 (13.8%) cases, respectively. Among malignant effusions, metastasis from lung cancer made 48 (38.4%) of the cases. The origin of metastasis was not determined in 44 (35.2%) patients. The mean age of patients was not significantly different between malignant (66.9±14.3 years) and tuberculosis (63.9±19.7 years) cases (P=0.16). The older age of tuberculosis patients could be a new discussion point on the overall impression created on the subject of tuberculosis pleural exudation (TB-PLE) occurring in young people. PMID:27365554

  12. Root phenology in a changing climate.

    Science.gov (United States)

    Radville, Laura; McCormack, M Luke; Post, Eric; Eissenstat, David M

    2016-06-01

    Plant phenology is one of the strongest indicators of ecological responses to climate change, and altered phenology can have pronounced effects on net primary production, species composition in local communities, greenhouse gas fluxes, and ecosystem processes. Although many studies have shown that aboveground plant phenology advances with warmer temperatures, demonstration of a comparable association for belowground phenology has been lacking because the factors that influence root phenology are poorly understood. Because roots can constitute a large fraction of plant biomass, and root phenology may not respond to warming in the same way as shoots, this represents an important knowledge gap in our understanding of how climate change will influence phenology and plant performance. We review studies of root phenology and provide suggestions to direct future research. Only 29% of examined studies approached root phenology quantitatively, strongly limiting interpretation of results across studies. Therefore, we suggest that researchers emphasize quantitative analyses in future phenological studies. We suggest that root initiation, peak growth, and root cessation may be under different controls. Root initiation and cessation may be more constrained by soil temperature and the timing of carbon availability, whereas the timing of peak root growth may represent trade-offs among competing plant sinks. Roots probably do not experience winter dormancy in the same way as shoots: 89% of the studies that examined winter phenology found evidence of growth during winter months. More research is needed to observe root phenology, and future studies should be careful to capture winter and early season phenology. This should be done quantitatively, with direct observations of root growth utilizing rhizotrons or minirhizotrons. PMID:26931171

  13. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Grondin, Alexandre; Mauleon, Ramil; Vadez, Vincent; Henry, Amelia

    2016-02-01

    Aquaporin activity and root anatomy may affect root hydraulic properties under drought stress. To better understand the function of aquaporins in rice root water fluxes under drought, we studied the root hydraulic conductivity (Lpr) and root sap exudation rate (Sr) in the presence or absence of an aquaporin inhibitor (azide) under well-watered conditions and following drought stress in six diverse rice varieties. Varieties varied in Lpr and Sr under both conditions. The contribution of aquaporins to Lpr was generally high (up to 79% under well-watered conditions and 85% under drought stress) and differentially regulated under drought. Aquaporin contribution to Sr increased in most varieties after drought, suggesting a crucial role for aquaporins in osmotic water fluxes during drought and recovery. Furthermore, root plasma membrane aquaporin (PIP) expression and root anatomical properties were correlated with hydraulic traits. Three chromosome regions highly correlated with hydraulic traits of the OryzaSNP panel were identified, but did not co-locate with known aquaporins. These results therefore highlight the importance of aquaporins in the rice root radial water pathway, but emphasize the complex range of additional mechanisms related to root water fluxes and drought response.

  14. SOR1, a gene associated with bioherbicide production in sorghum root hairs.

    Science.gov (United States)

    Yang, Xiaohan; Scheffler, Brian E; Weston, Leslie A

    2004-10-01

    Sorghum [Sorghum bicolor (L.) Moench] roots exude a potent bioherbicide known as sorgoleone, which is produced in living root hairs and is phytotoxic to broadleaf and grass weeds at concentrations as low as 10 microM. Differential gene expression was studied in sorghum (S. bicolorxS. sudanense) cv. SX17 between roots with abundant root hairs and those without root hairs using a modified differential display approach. A differentially expressed gene, named SOR1, was cloned by using Rapid Amplification of the 5' ends of cDNA (5'-RACE). Real-time PCR analysis of multiple tissues of sorghum SX17 revealed that the SOR1 transcript level in root hairs was more than 1000 times higher than that of other tissues evaluated, including immature leaf, mature leaf, mature stem, panicle, and roots with hairs removed. Semi-quantitative RT-PCR revealed that SOR1 was expressed in the sorgoleone-producing roots of sorghum SX17, shattercane [S. bicolor (L.) Moench], and johnsongrass [S. halepense (L.) Pers.], but not in the shoots of sorghum or in the roots of sweet corn (Zea mays L.) 'Summer Flavor 64Y', in which sorgoleone production was not detected by HPLC analysis. Similarity searches indicated that SOR1 probably encodes a novel desaturase, which might be involved in the formation of a unique and specific double bonding pattern within the long hydrocarbon tail of sorgoleone.

  15. Assessment of Ustilago maydis as a fungal model for root infection studies.

    Science.gov (United States)

    Mazaheri-Naeini, Mahta; Sabbagh, Seyed Kazem; Martinez, Yves; Séjalon-Delmas, Nathalie; Roux, Christophe

    2015-03-01

    Ustilago maydis is a fungus infecting aerial parts of maize to form smutted galls. Due to its interest as a genetic tool in plant pathology, we evaluated its ability to penetrate into plant roots. The fungus can penetrate between epidermic root cells, forming inter and intracellular pseudohyphae. Root infection didn't provoke gall formation on the maize lines tested, and targeted PCR detection showed that U. maydis, unlike the other maize smut fungus Sporisorium reilianum, has a weak aptitude to grow from the roots up to the aerial part of maize. We also observed that U. maydis can infect Medicago truncatula hairy roots as an alternative host. This plant species is a model host to study root symbiosis, and this pathosystem can provide new insights on root-microbe interactions. Considering that U. maydis could be a soil fungus, we tested its responsiveness to GR24, a strigolactone analogue. Strigolactones are root exuded molecules which activate mitochondrial metabolism of arbuscular mycorrhizal (AM) fungi. Physiologic and molecular analysis revealed that GR24 also increases cell respiration of U. maydis. This result points out that strigolactones could have an incidence on several rhizospheric microbes. These data provide evidences that the biotrophic pathogen U. maydis has to be considered for studying root infection.

  16. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Grondin, Alexandre; Mauleon, Ramil; Vadez, Vincent; Henry, Amelia

    2016-02-01

    Aquaporin activity and root anatomy may affect root hydraulic properties under drought stress. To better understand the function of aquaporins in rice root water fluxes under drought, we studied the root hydraulic conductivity (Lpr) and root sap exudation rate (Sr) in the presence or absence of an aquaporin inhibitor (azide) under well-watered conditions and following drought stress in six diverse rice varieties. Varieties varied in Lpr and Sr under both conditions. The contribution of aquaporins to Lpr was generally high (up to 79% under well-watered conditions and 85% under drought stress) and differentially regulated under drought. Aquaporin contribution to Sr increased in most varieties after drought, suggesting a crucial role for aquaporins in osmotic water fluxes during drought and recovery. Furthermore, root plasma membrane aquaporin (PIP) expression and root anatomical properties were correlated with hydraulic traits. Three chromosome regions highly correlated with hydraulic traits of the OryzaSNP panel were identified, but did not co-locate with known aquaporins. These results therefore highlight the importance of aquaporins in the rice root radial water pathway, but emphasize the complex range of additional mechanisms related to root water fluxes and drought response. PMID:26226878

  17. Adjustment of Forest Ecosystem Root Respiration as Temperature Warms

    Institute of Scientific and Technical Information of China (English)

    Andrew J. Burton; Jerry M. Melillo; Serita D. Frey

    2008-01-01

    Adjustment of ecosystem root respiration to warmer climatic conditions can alter the autotrophic portion of soil respiration and influence the amount of carbon available for biomass production. We examined 44 published values of annual forest root respiration and found an increase in ecosystem root respiration with increasing mean annual temperature (MAT),but the rate of this cross-ecosystem increase (Q10 = 1.6) is less than published values for short-term responses of root respiration to temperature within ecosystems (Q10 = 2-3). When specific root respiration rates and root biomass values were examined, there was a clear trend for decreasing root metabolic capacity (respiration rate at a standard temperature) with increasing MAT. There also were tradeoffs between root metabolic capacity and root system biomass, such that there were no instances of high growing season respiration rates and high root biomass occurring together. We also examined specific root respiration rates at three soil warming experiments at Harvard Forest, USA, and found decreases in metabolic capacity for roots from the heated plots. This decline could be due to either physiological acclimation or to the effects of co-occurring drier soils on the measurement date. Regardless of the cause, these findings clearly suggest that modeling efforts that allow root respiration to increase exponentially with temperature, with Qt0 values of 2 or more, may over-predict root contributions to ecosystem CO2 efflux for future climates and underestimate the amount of C available for other uses,including net primary productivity.

  18. Effect of Root Surface Iron Plaque on Se Translocation and Uptake by Fe-Deficient Rice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Under anaerobic conditions, ferric hydroxide deposits on the surface of rice roots and affects uptake and translocation of certain nutrients. In the present study, rice plants were cultured in Fe-deficient or sufficient solutions and placed in a medium containing selenium (Se) for 2 h. Then, FeSO4 was added at the various concentrations of 0, 10, 40, or 70mg L-1 to induce varying levels of iron plaque on the root surfaces and subsequent uptake of Se was monitored. The uptake of Se was inhibited by the iron plaque, with the effect proportional to the amount of plaque induced. The activity of cysteine synthase was decreased with increasing amounts of iron plaque on the roots. This may be the important reason for iron plaque inhibition of Se translocation. At each level of iron plaque, Fe-deficient rice had more Se than Fe-sufficient rice. Furthermore, with plaque induced by 20 mg Fe L-1, plants from Fe-deficient media accumulated more Se than those from Fe-sufficient media, as the Se concentration was increased from 10 to 30 or 50 mg L-1. We found that phytosiderophores, highly effective iron chelating agents, could desorb selenite from ferrihydrite. Root exudates of the Fe-deficient rice, especially phytosiderophores in the exudates, could enhance Se uptake by rice plants with iron plaque.

  19. Root canal irrigants

    OpenAIRE

    Kandaswamy Deivanayagam; Venkateshbabu Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are...

  20. The Root Cap Determines Ethylene-Dependent Growth and Development in Maize Roots

    Institute of Scientific and Technical Information of China (English)

    Achim Hahn; Roman Zimmermann; Dierk Wanke; Klaus Harter; Hans G.Edelmann

    2008-01-01

    Besides providing protection against mechanical damage to the root tip,the root cap is involved in the perception and processing of diverse external and internal stimuli resulting in altered growth and development.The transduction of these stimuli includes hormonal signaling pathways such as those of auxin,ethylene and cytokinin.Here,we show that the root cap is essential for the ethylene-induced regulation of elongation growth and root hair formation in maize.Exogenously applied ethylene is no longer able to inhibit elongation growth when the root cap has been surgically removed prior to hormone treatment.Reconstitution of the cap positively correlates with the developing capacity of the roots to respond to ethylene again.In contrast,the removal of the root cap does not per se affect growth inhibition controlled by auxin and cytokinin.Furthermore,our semi-quantitative RT-PCR results support earlier findings that the maize root cap is a site of high gene expression activity with respect to sensing and responding to hormones such as ethylene.From these data,we propose a novel function of the root cap which is the establishment of competence to respond to ethylene in the distal zones of the root.

  1. Use of a new silver barrier dressing, ALLEVYN Ag in exuding chronic wounds.

    LENUS (Irish Health Repository)

    Kotz, Paula

    2009-06-01

    Recognising and managing wounds at risk of infection is vital in wound management. ALLEVYN Ag dressings have been designed to manage exudate in chronic wounds that are at risk of infection; are displaying signs of local infection; or where a suspected increase in bacterial colonisation is delaying healing. They combine an absorbent silver sulfadiazine containing hydrocellular foam layer, with a perforated wound contact layer and highly breathable top film. The results presented are from a multi-centre clinical evaluation of 126 patients conducted to assess the performance of ALLEVYN Ag (Adhesive, Non Adhesive and Sacrum dressings) in a range of indications. Clinicians rated the dressings as acceptable for use in various wound types in 88% of patients. The majority of clinical signs of infection reduced between the initial and the final assessment. The condition of wound tissue and surrounding skin was observed to improve, and there was significant evidence of a reduction in the level of exudate from initial to final assessment (p < 0.001). Clinicians rated ALLEVYN Ag as satisfying or exceeding expectations in over 90% of patients. The evaluation showed the dressings to offer real benefits to patients and clinicians across multiple indications when used in conjunction with local protocols.

  2. Exudate-based diabetic macular edema detection in fundus images using publicly available datasets

    Energy Technology Data Exchange (ETDEWEB)

    Giancardo, Luca [ORNL; Meriaudeau, Fabrice [ORNL; Karnowski, Thomas Paul [ORNL; Li, Yaquin [University of Tennessee, Knoxville (UTK); Garg, Seema [University of North Carolina; Tobin Jr, Kenneth William [ORNL; Chaum, Edward [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Diabetic macular edema (DME) is a common vision threatening complication of diabetic retinopathy. In a large scale screening environment DME can be assessed by detecting exudates (a type of bright lesions) in fundus images. In this work, we introduce a new methodology for diagnosis of DME using a novel set of features based on colour, wavelet decomposition and automatic lesion segmentation. These features are employed to train a classifier able to automatically diagnose DME through the presence of exudation. We present a new publicly available dataset with ground-truth data containing 169 patients from various ethnic groups and levels of DME. This and other two publicly available datasets are employed to evaluate our algorithm. We are able to achieve diagnosis performance comparable to retina experts on the MESSIDOR (an independently labelled dataset with 1200 images) with cross-dataset testing (e.g., the classifier was trained on an independent dataset and tested on MESSIDOR). Our algorithm obtained an AUC between 0.88 and 0.94 depending on the dataset/features used. Additionally, it does not need ground truth at lesion level to reject false positives and is computationally efficient, as it generates a diagnosis on an average of 4.4 s (9.3 s, considering the optic nerve localization) per image on an 2.6 GHz platform with an unoptimized Matlab implementation.

  3. Inf luence of Spirulina platensis exudates on the endocrine and nervous systems of a mammalian model

    Institute of Scientific and Technical Information of China (English)

    Samah; Mamdouh; Mohamed; Fathy; Ashraf; Mohamed; Mohamed; Essa

    2015-01-01

    Objective: To investigate the ef ect of intra-peritoneal injection of purii ed exudates of axenic Spirulina platensis on the mammalian endocrine and nervous systems. Methods: The intra-peritoneal injection of the cyanobacterial exudates in mice was applied. Sex hormonal levels of testosterone and progesterone were measured using radioimmunoassay while the follicular stimulating hormone and luteinizing hormone were evaluated by direct chemiluminescence. In addition, superoxide dismutase, catalase and glutathione peroxidase were monitored in the hippocampus region using spectrophotometric method. The levels of the hippocampal monoamines, dopamine, noradrenaline and serotonin were analyzed by high performance liquid chromatography while the acetyl choline neurotransmitter was measured by colorimetric method using choline/acetylcholine assay kit. Results: A sharp disruption in the sex hormones levels of testosterone, progesterone, follicular stimulating hormone and luteinizing hormone was demonstrated in the serum of the treated mice. At the same time, a signii cant reduction in the endogenous antioxidant defense enzymes, superoxide dismutase, catalase and glutathione peroxidase was observed in the hippocampus region of the injected mice. Moreover, levels of dopamine, noradrenaline, serotonin and acetyl choline neurotransmitter in the same region were signii cantly af ected as a result of the treatment with Spirulina i ltrate. The gas chromatography-mass spectrometer and liquid chromatography mass spectrometry/mass spectrometry analysis showed the presence of some sterol-like compounds in the cyanobacterial i ltrate. Conclusions: This study demonstrated the capability of Spirulina to release detrimental bioactive metabolites into their surrounding that can disrupt the mammalian endocrine and nervous systems.

  4. Dipeptidyl peptidase-IV (DPP-IV inhibitory activity of parotid exudate of Bufo melanostictus

    Directory of Open Access Journals (Sweden)

    Allenki Venkatesham

    2009-01-01

    Full Text Available Type 2 diabetes arises as a result of β-cell failure combined with concomitant insulin resistance. Glucagon-like peptide-1 is a gastrointestinal hormone that is released postprandially from the L cells of the gut and exerts a glucose- dependent and direct insulinotropic effect on the pancreatic β cell. Which activate adenylate cyclase and enhances insulin secretion. GLP-1 is rapidly degraded by DPP-IV to GLP-1(9-37 amide following release from gut L cells. GLP-1 directly enhances glucose-dependent insulin secretion via an increase in β-cell cAMP. Dipeptidyl peptidase IV (DPP-IV is a plasma membrane glycoprotein ectopeptidase. In mammals, DPP-IV was widely expressed on the surface of endothelial and epithelial cells and highest levels in humans have been reported to occur in the intestine, bone marrow and kidney. Inhibiting DPP-IV reduces its rapid degradation of GLP-1, increasing circulating levels of the active hormone in vivo and prolonging its beneficial effects. The IC 50 value of parotid exudate was found to be 9.4 μg/ml. The maximum % inhibition (61.8 was showed at a concentration of 12μg/ml. Parotid exudate through inhibition of DPP-IV, improves glucose tolerance and enhances insulin secretion. DPP-IV inhibitors are a novel class of oral hypoglycemic agents with a potential to improve pancreatic beta cell function and the clinical course of type 2 diabetes.

  5. Characteristics of Indocyanine Green Angiography in Exudative Age—related Macular Degeneration

    Institute of Scientific and Technical Information of China (English)

    WuDZ; WenF

    1999-01-01

    Objective:To observe the characteristics of indocyanine green angiography(ICGA)in exudative age-related macular degeneration(AMD).Methods:Thirty-one cases(39 eyes)were diagnosed as exudative AMD by ocular examination,fundus color photography,fundus fluorescein angiography(FFA)and ICGA.Their ages ranged from 50 to 82 years and visual acuities from FC/30cm to 0.7.We analyzed and compared the characteristics of ICGA and FFA in these patients.Results:of 26 eyes with ccult choroidal neovascularization (CNV)by FFA,15(57.7%)had classic CNV by ICGA.Of 4 eyes with serous retinal pigment epithelial detachment(PED)without CNV by FFA,1 had serous PED with classic CNV by ICGA.The hyperfluorescence of the scar staining was detecfed by ICGA.Conclusion:ICGA adds clinically useful information and is an important adjunct in the evaluation,classification,and laser treatment of patients with occult CNV in AMD.

  6. AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca(2+) increase.

    Science.gov (United States)

    Francia, Doriana; Chiltz, Annick; Lo Schiavo, Fiorella; Pugin, Alain; Bonfante, Paola; Cardinale, Francesca

    2011-09-01

    The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapid and transient increase in free cytosolic Ca(2+) in Nicotiana plumbaginifolia and tobacco cells, and pre-treatment with a Ca(2+)-channel blocker (La(3+)) showed that in these cells, MAPK activation was dependent on the cytosolic Ca(2+) increase. A partial dependence of MAPK activity on the common Sym pathway could be demonstrated for a cell line of L. japonicus defective for LjSym4 and hence unable to establish an AM symbiosis. Our results show that MAPK activation is triggered by an FE-induced cytosolic Ca(2+) transient, and that a Sym genetic determinant acts to modulate the intensity and duration of this activity.

  7. The diagnostic value of pleural effusion ferritin and the ratio of it to serum ferritin in differentiating exudates from transudates

    International Nuclear Information System (INIS)

    To explore the diagnostic value of measuring the level of ferritin in pleural and peritoneal effusion for differentiating exudates from transudates, 128 effusion samples were initially detected for differentiating exudates from transudates by traditional method and Light's criteria. Ferritin in the effusions and serum ferritin were detected simultaneously, and the ratio of effusion ferritin (PFt) to serum ferritin (SFt) was counted. Based on the clinical data, the samples were divided into four groups and PFt and PFt/SFt were compared. At the same time, the sensitivity and specificity of PFt and PFt/SFt in differentiating exudates from transudates were compared with traditional method and Light's criteria. The results showed that in the groups of tuberculous pleurisy, non-tuberculous, benign pleurisy, and malignant tumor, the concentration of Ft in the effusions was significantly higher than that in the group of congestive heart failure and cirrhosis; and the Ft in exudates was significantly higher than that in transudates (P0.05). If the cut-off value was set up for Ft in the effusion as 100 μg/L and PFt/SFt ratio as 0.5, respectively, the differentiating sensitivity and specificity were 94.2% and 87.0%, respectively. Conclusion was that the concentration of PFt and PFt/SFt in exudates are higher than 100 μg/L and 0.5, respectively. On the contrary, they are lower than the cut-off level in transudates. PFt and PFt/SFt have high sensitivity and high specificity in differentiating exudates from transudates, and have great diagnostic value

  8. Antibiotic-resistance and plasmids in Staphylococcus-hyicus isolated from pigs with exudative eperdermitis and from healthy pigs

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Schwarz, S.

    1993-01-01

    A total of 100 S. hyicus strains isolated from healthy piglets and piglets with exudative epidermitis originating from 100 different herds was examined for drug-resistance and prevalence of plasmids. Resistance to macrolide/lincosamide antibiotics could be related to plasmids in 55 (93%) of the 59......% of the strains isolated from healthy piglets. Despite its higher prevalence in strains from piglets with EE, the 11.5 kb plasmid could not be shown to encode production of capsule or exfoliative substances: factors which might play a role in the development of exudative epidermitis in piglets....

  9. Plant-Microbe Communication Enhances Auxin Biosynthesis by a Root-Associated Bacterium, Bacillus amyloliquefaciens SQR9.

    Science.gov (United States)

    Liu, Yunpeng; Chen, Lin; Zhang, Nan; Li, Zunfeng; Zhang, Guishan; Xu, Yu; Shen, Qirong; Zhang, Ruifu

    2016-04-01

    Mechanisms by which beneficial rhizobacteria promote plant growth include tryptophan-dependent indole-3-acetic acid (IAA) synthesis. The abundance of tryptophan in the rhizosphere, however, may influence the level of benefit provided by IAA-producing rhizobacteria. This study examined the cucumber-Bacillus amyloliquefaciens SQR9 system and found that SQR9, a bacterium previously shown to enhance the growth of cucumber, increased root secretion of tryptophan by three- to fourfold. Using a split-root system, SQR9 colonization of roots in one chamber not only increased tryptophan secretion from the noninoculated roots but also increased the expression of the cucumber tryptophan transport gene but not the anthranilate synthesis gene in those roots. The increased tryptophan in isolated rhizosphere exudates was sufficient to support increased IAA production by SQR9. Moreover, SQR9 colonization of roots in one chamber in the split-root system resulted in sufficient tryptophan production by the other roots to upregulate SQR9 IAA biosynthesis genes, including a 27-fold increase in the indole-3-acetonitrilase gene yhcX during subsequent colonization of those roots. Deletion of yhcX eliminated SQR9-mediated increases in root surface area, likely by reducing IAA-stimulated lateral root growth. This study demonstrates a chemical dialogue between B. amyloliquefaciens and cucumber in which this communication contributes to bacteria-mediated plant-growth enhancement.

  10. How tree roots respond to drought

    Directory of Open Access Journals (Sweden)

    Ivano eBrunner

    2015-07-01

    Full Text Available The ongoing climate change is characterised by increased temperatures and altered precipitation patterns. In addition, there has been an increase in both the frequency and intensity of extreme climatic events such as drought. Episodes of drought induce a series of interconnected effects, all of which have the potential to alter the carbon balance of forest ecosystems profoundly at different scales of plant organisation and ecosystem functioning. During recent years, considerable progress has been made in the understanding of how aboveground parts of trees respond to drought and how these responses affect carbon assimilation. In contrast, processes of belowground parts are relatively underrepresented in research on climate change. In this review, we describe current knowledge about responses of tree roots to drought. Tree roots are capable of responding to drought through a variety of strategies that enable them to avoid and tolerate stress. Responses include root biomass adjustments, anatomical alterations, and physiological acclimations. The molecular mechanisms underlying these responses are characterized to some extent, and involve stress signalling and the induction of numerous genes, leading to the activation of tolerance pathways. In addition, mycorrhizas seem to play important protective roles. The current knowledge compiled in this review supports the view that tree roots are well equipped to withstand drought situations and maintain morphological and physiological functions as long as possible. Further, the reviewed literature demonstrates the important role of tree roots in the functioning of forest ecosystems and highlights the need for more research in this emerging field.

  11. Root responses to soil physical conditions; growth dynamics from field to cell.

    Science.gov (United States)

    Bengough, A Glyn; Bransby, M Fraser; Hans, Joachim; McKenna, Stephen J; Roberts, Tim J; Valentine, Tracy A

    2006-01-01

    Root growth in the field is often slowed by a combination of soil physical stresses, including mechanical impedance, water stress, and oxygen deficiency. The stresses operating may vary continually, depending on the location of the root in the soil profile, the prevailing soil water conditions, and the degree to which the soil has been compacted. The dynamics of root growth responses are considered in this paper, together with the cellular responses that underlie them. Certain root responses facilitate elongation in hard soil, for example, increased sloughing of border cells and exudation from the root cap decreases friction; and thickening of the root relieves stress in front of the root apex and decreases buckling. Whole root systems may also grow preferentially in loose versus dense soil, but this response depends on genotype and the spatial arrangement of loose and compact soil with respect to the main root axes. Decreased root elongation is often accompanied by a decrease in both cell flux and axial cell extension, and recent computer-based models are increasing our understanding of these processes. In the case of mechanical impedance, large changes in cell shape occur, giving rise to shorter fatter cells. There is still uncertainty about many aspects of this response, including the changes in cell walls that control axial versus radial extension, and the degree to which the epidermis, cortex, and stele control root elongation. Optical flow techniques enable tracking of root surfaces with time to yield estimates of two-dimensional velocity fields. It is demonstrated that these techniques can be applied successfully to time-lapse sequences of confocal microscope images of living roots, in order to determine velocity fields and strain rates of groups of cells. In combination with new molecular approaches this provides a promising way of investigating and modelling the mechanisms controlling growth perturbations in response to environmental stresses.

  12. Evaluating the potential of a novel oral lesion exudate collection method coupled with mass spectrometry-based proteomics for oral cancer biomarker discovery

    Directory of Open Access Journals (Sweden)

    Kooren Joel A

    2011-09-01

    Full Text Available Abstract Introduction Early diagnosis of Oral Squamous Cell Carcinoma (OSCC increases the survival rate of oral cancer. For early diagnosis, molecular biomarkers contained in samples collected non-invasively and directly from at-risk oral premalignant lesions (OPMLs would be ideal. Methods In this pilot study we evaluated the potential of a novel method using commercial PerioPaper absorbent strips for non-invasive collection of oral lesion exudate material coupled with mass spectrometry-based proteomics for oral cancer biomarker discovery. Results Our evaluation focused on three core issues. First, using an "on-strip" processing method, we found that protein can be isolated from exudate samples in amounts compatible with large-scale mass spectrometry-based proteomic analysis. Second, we found that the OPML exudate proteome was distinct from that of whole saliva, while being similar to the OPML epithelial cell proteome, demonstrating the fidelity of our exudate collection method. Third, in a proof-of-principle study, we identified numerous, inflammation-associated proteins showing an expected increase in abundance in OPML exudates compared to healthy oral tissue exudates. These results demonstrate the feasibility of identifying differentially abundant proteins from exudate samples, which is essential for biomarker discovery studies. Conclusions Collectively, our findings demonstrate that our exudate collection method coupled with mass spectrometry-based proteomics has great potential for transforming OSCC biomarker discovery and clinical diagnostics assay development.

  13. Arbuscular mycorrhiza: the mother of plant root endosymbioses.

    Science.gov (United States)

    Parniske, Martin

    2008-10-01

    Arbuscular mycorrhiza (AM), a symbiosis between plants and members of an ancient phylum of fungi, the Glomeromycota, improves the supply of water and nutrients, such as phosphate and nitrogen, to the host plant. In return, up to 20% of plant-fixed carbon is transferred to the fungus. Nutrient transport occurs through symbiotic structures inside plant root cells known as arbuscules. AM development is accompanied by an exchange of signalling molecules between the symbionts. A novel class of plant hormones known as strigolactones are exuded by the plant roots. On the one hand, strigolactones stimulate fungal metabolism and branching. On the other hand, they also trigger seed germination of parasitic plants. Fungi release signalling molecules, in the form of 'Myc factors' that trigger symbiotic root responses. Plant genes required for AM development have been characterized. During evolution, the genetic programme for AM has been recruited for other plant root symbioses: functional adaptation of a plant receptor kinase that is essential for AM symbiosis paved the way for nitrogen-fixing bacteria to form intracellular symbioses with plant cells.

  14. In situ stimulation vs. bioaugmentation: Can microbial inoculation of plant roots enhance biodegradation of organic compounds?

    Energy Technology Data Exchange (ETDEWEB)

    Kingsley, M.T.; Metting, F.B. Jr.; Fredrickson, J.K. [Pacific Northwest Lab., Richland, WA (United States); Seidler, R.J. [Environmental Protection Agency, Corvallis, OR (United States). Environmental Research Lab.

    1993-06-01

    The use of plant roots and their associated rhizosphere bacteria for biocontainment and biorestoration offers several advantages for treating soil-dispersed contaminants and for application to large land areas. Plant roots function as effective delivery systems, since root growth transports bacteria vertically and laterally along the root in the soil column (see [ 1,2]). Movement of microbes along roots and downward in the soil column can be enhanced via irrigation [1-4]. For example, Ciafardini et al. [3] increased the nodulation and the final yield of soybeans during pod filling by including Bradyrhizobium japonicum in the irrigation water. Using rhizosphere microorganisms is advantageous for biodegradation of compounds that are degraded mainly by cometabolic processes, e.g., trichloroethylene (TCE). The energy source for bacterial growth and metabolism is supplied by the plant in the form of root exudates and other sloughed organic material. Plants are inexpensive, and by careful choice of species that possess either tap or fibrous root growth patterns, they can be used to influence mass transport of soil contaminants to the root surface via the transpiration stream [5]. Cropping of plants to remove heavy metals from contaminated soils has been proposed as a viable, low-cost, low-input treatment option [6]. The interest in use of plants as a remediation strategy has even reached the popular press [7], where the use of ragweed for the reclamation of sites contaminated with tetraethyl lead and other heavy metals was discussed.

  15. X-ray computed tomography uncovers root-root interactions: quantifying spatial relationships between interacting root systems in three dimensions

    Directory of Open Access Journals (Sweden)

    Alexander Martin Paya

    2015-04-01

    Full Text Available Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen and Picea mariana (black spruce seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for two months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals and paired seedlings (inter- or intra-specific, than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.

  16. Smectite alteration

    International Nuclear Information System (INIS)

    This report contains the proceedings of a second workshop in Washington DC December 8-9, 1983 on the alteration of smectites intended for use as buffer materials in the long-term containment of nuclear wastes. It includes extended summaries of all presentations and a transcript of the detailed scientific discussion. The discussions centered on three main questions: What is the prerequisite for and what is the precise mechanism by which smectite clays may be altered to illite. What are likly sources of potassium with respect to the KBS project. Is it likely that the conversion of smectite to illite will be of importance in the 10 5 to the 10 6 year time frame. The workshop was convened to review considerations and conclusions in connection to these questions and also to broaden the discussion to consider the use of smectite clays as buffer materials for similar applications in different geographical and geological settings. SKBF/KBS technical report 83-03 contains the proceedings from the first workshop on these matters that was held at the State University of New York, Buffalo May 26-27, 1982. (Author)

  17. The role of physical rehabilitation in the treatment of exudative pleurisy

    Directory of Open Access Journals (Sweden)

    Milojević Momir

    2004-01-01

    Full Text Available INTRODUCTION Exudates are due to a variety of diseases, the major and most common ones being tuberculosis, nonspecific inflammation and malignancy. They are usually treated conservatively, sometimes combined with surgery and physical treatment. Physical the-rapy includes positional exercises, breathing exercises and biostimulation. Aim of the study The study was aimed to find out the following: 1 Is lung function improved by physical therapy; 2 Can adhesions be diminished and mobility of the affected hemidiaphragm improved by physical treatment; 3 Is there a direct positive correlation between physical treatment and obtained improvement, or the same can be achieved in patients receiving medicamentous treatment only; 4 What are the effects of some factors we cannot influence (sex, age, effusion level, position of adhesions on lung function and diaphragm mobility improvement, that is on the efficiency of physical treatment; 5 How do the factors we can influence (the time interval before initiating the treatment and its duration affect improvement of the same lung function parameters, that is treatment efficacy? Material and methods Physical treatment of patients with exudative pleurisy was accomplished at the Department of Rehabilitation in our Institute and it consisted of directed breathing exercises and laser biostimulation. Its effects were examined in a group of 175 patients, who received both conservative and physical treatment, and results were compared with the control group patients, treated only conservatively (with antibiotics, antituberculotics, corticosteroids. RESULTS Comparative analysis confirmed a significant improvement of lung function parameters (VC, FEV1, PEF as well as of hemidiaphragm mobility on the affected side of the thorax in favour of the examined group. The severity of the lung function and diaphragm mobility impairments have been found to be in correlation with the localization of adhesions, whereas the degree of

  18. Activity of two catabolic enzymes of the phosphogluconate pathway in mesquite roots inoculated with Azospirillum brasilense Cd.

    Science.gov (United States)

    Leyva, Luis A; Bashan, Yoav

    2008-10-01

    The mesquite amargo (Prosopis articulate), one of the main nurse trees of the Sonoran Desert in Mexico, is responsible for major, natural re-vegetation processes. It exudes gluconic acid in root exudates, a favorite carbon source for the plant growth-promoting bacterium Azospirillum brasilense. Two enzymes, gluconokinase (EC 2.7.1.12) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44), participating in the phosphogluconate pathway, are active in the bacteria. Bacterial 6-phosphogluconate dehydrogenase is a constitutive enzyme, while gluconokinase is induced upon exposure to gluconic acid. Both enzymes are active in young, non-inoculated mesquite seedlings growing under hydroponic conditions. When A. brasilense Cd bacteria are inoculated on the root system, the roots exhibit much higher activity of gluconokinase, but not 6-phosphogluconate dehydrogenase. Mesquite roots exhibit high levels of root colonization by the inoculating bacteria. At the same time, and also for plants growing under sand culture conditions, the seedlings grew taller, greener, had longer leaves, and were heavier.

  19. Differential inactivation of seed exudate stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species.

    Science.gov (United States)

    Kageyama, Koji; Nelson, Eric B

    2003-02-01

    This study was initiated to understand whether differential biological control efficacy of Enterobacter cloacae on various plant species is due to differences in the ability of E. cloacae to inactivate the stimulatory activity of seed exudates to Pythium ultimum sporangium germination. In biological control assays, E. cloacae was effective in controlling Pythium damping-off when placed on the seeds of carrot, cotton, cucumber, lettuce, radish, tomato, and wheat but failed to protect corn and pea from damping-off. Seeds from plants such as corn and pea had high rates of exudation, whereas cotton and cucumber seeds had much lower rates of exudation. Patterns of seed exudation and the release of P. ultimum sporangium germination stimulants varied among the plants tested. Seed exudates of plants such as carrot, corn, lettuce, pea, radish, and wheat were generally more stimulatory to P. ultimum than were the exudates of cotton, cucumber, sunflower, and tomato. However, this was not directly related to the ability of E. cloacae to inactivate the stimulatory activity of the exudate and reduce P. ultimum sporangium germination. In the spermosphere, E. cloacae readily reduced the stimulatory activity of seed exudates from all plant species except corn and pea. Our data have shown that the inability of E. cloacae to protect corn and pea seeds from Pythium damping-off is directly related to its ability to inactivate the stimulatory activity of seed exudates. On all other plants tested, E. cloacae was effective in suppressing damping-off and inactivating the stimulatory activity of seed exudates. PMID:12571037

  20. Root Graded Lie Superalgebras

    OpenAIRE

    Yousofzadeh, Malihe

    2015-01-01

    We define root graded Lie superalgebras and study their connection with centerless cores of extended affine Lie superalgebras; our definition generalizes the known notions of root graded Lie superalgebras.

  1. Using Square Roots

    Science.gov (United States)

    Wilson, William Wynne

    1976-01-01

    This article describes techniques which enable the user of a comparatively simple calculator to perform calculations of cube roots, nth roots, trigonometric, and inverse trigonometric functions, logarithms, and exponentials. (DT)

  2. Conservative Management of Unset Mineral Trioxide Aggregate Root-End Filling: A Case Report.

    Science.gov (United States)

    Parirokh, Masoud; Farzaneh, Sedigheh; Hallajmofrad, Ali Reza

    2016-01-01

    This case report presents conservative management of unset mineral trioxide aggregate (MTA) after being placed as a root-end filling material following periapical surgery. Periapical surgery was indicated for a maxillary lateral incisor of a 15-year-old male due to persistent exudate and a large periapical lesion. During surgery Angelus MTA was placed as root-end filling. The next session it was noticed that MTA had failed to completely set. In an orthograde approach, calcium-enriched mixture (CEM) cement was used to obturate the root canal space. The patient was followed up for 27 months and did not exhibit any clinical signs and symptoms. Radiographic images showed complete healing of the lesion. PMID:27471540

  3. Diagnostic value of phage typing, antibiogram typing and plasmid profiling of Staphylococcus hyicus from piglets with exudative epidermitis

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar

    1993-01-01

    A total of 989 isolates of S. hyicus were recovered from the skin of 103 piglets (9.6 isolates per piglet) with exudative epidermitis (EE), and phage typed. Phage patterns of 806 typable isolates (81 %) could be divided into 44 distinct phage types. From 1 to 6 different phage types were found...

  4. Trends in antimicrobial susceptibility and presence of resistance genes in Staphylococcus hyicus isolated from exudative epidermitis in pigs

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Jensen, L. B.

    2002-01-01

    From 1996 to 2001 a total of 467 Staphylococcus hyicus isolates from exudative epidermitis (EE) in pigs in Denmark were examined for susceptibility to 13 different antimicrobial agents. The presence of selected genes encoding macrolide (erm(A), erm(B) and erm(C)), penicillin (blaZ), streptogramin...

  5. Measurement of vancomycin hydrochloride concentration in the exudate from wounds receiving negative pressure wound therapy: a pilot study.

    Science.gov (United States)

    Ida, Yukiko; Matsumura, Hajime; Onishi, Masami; Ono, Sayaka; Imai, Ryutaro; Watanabe, Katsueki

    2016-04-01

    It has been reported that negative pressure wound therapy (NPWT) is effective in the treatment of contaminated wounds. We hypothesised that systemically administered antibiotics migrate to wound site effectively by NPWT, which provides the antibacterial effect. We measured and compared the concentrations of vancomycin in the exudate and blood serum. Eight patients with skin ulcers or skin defect wounds who were treated with NPWT and were administered an intravenous drip of vancomycin were enrolled in this study. The wound surfaces were muscle, muscle fascia or adipose tissue. We administered vancomycin intravenously to NPWT patients (1-3 g/day). The exudate was obtained using 500 ml V.A.C. ATS canisters without gel. Three days later, the concentrations of vancomycin were measured. The mean concentration of vancomycin in the exudate from NPWT was 67% of the serum vancomycin concentration. We found that concentrations of vancomycin in NPWT exudates are higher than the previously reported concentrations in soft tissue without NPWT. The proactive use of NPWT might be considered in cases of suspected wound contamination when a systemic antibiotic is administered. PMID:24674131

  6. WHY ROOTING FAILS.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,M.

    2007-07-30

    I explore the origins of the unphysical predictions from rooted staggered fermion algorithms. Before rooting, the exact chiral symmetry of staggered fermions is a flavored symmetry among the four 'tastes.' The rooting procedure averages over tastes of different chiralities. This averaging forbids the appearance of the correct 't Hooft vertex for the target theory.

  7. The Root Canal Biofilm

    NARCIS (Netherlands)

    Sluis, van der L.W.M.; Boutsioukis, C.; Jiang, L.M.; Macedo, R.; Verhaagen, B.; Versluis, M.; Chávez de Paz, E.; Sedgley, C.M.; Kishen, A.

    2015-01-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm), and their products from the root canal wall, their removal out of the root cana

  8. Root canal irrigation

    NARCIS (Netherlands)

    L. van der Sluis; C. Boutsioukis; L.M. Jiang; R. Macedo; B. Verhaagen; M. Versluis

    2015-01-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm), and their products from the root canal wall, their removal out of the root cana

  9. A highly pathogenic strain of Staphylococcus sciuri caused fatal exudative epidermitis in piglets.

    Directory of Open Access Journals (Sweden)

    Shixi Chen

    Full Text Available Staphylococcus sciuri are important human pathogens responsible for endocarditis, peritonitis, septic shock, urinary tract infection, pelvic inflammatory disease and wound infections. However, little information is known regarding the pathogenicity of S. sciuri to animals. From the pericardial fluid of a diseased piglet with exudative epidermitis (EE, we isolated a strain of Staphylococcus in pure culture. Surprisingly, this isolate was a member of S. sciuri rather than S. hyicus as identified by its biochemical traits and also by analysis of 23S ribosomal DNA using Internal Transcribed Spacer PCR. In addition, inoculation of newborn piglets with 1x10(10 CFU of the isolate by oral feeding or intra-muscular injection successfully reproduced EE in piglets, which suggested that the oral intake of the pathogen by the animals is one of the major routes of exposure. These unexpected findings prioritized S. sciuri as important zoonotic agents, which may have ramifications for human medicine.

  10. Improving transport container design to reduce broiler chicken PSE (pale, soft, exudative) meat in Brazil.

    Science.gov (United States)

    Spurio, Rafael S; Soares, Adriana L; Carvalho, Rafael H; Silveira Junior, Vivaldo; Grespan, Moisés; Oba, Alexandre; Shimokomaki, Massami

    2016-02-01

    Throughout the chicken production chain, transport from farm to the commercial abattoir is one of the most critical sources of stress, particularly heat stress. The aim of this work was to describe the performance of a new prototype truck container designed to improve the microenvironment and reduce the incidence of pale, soft and exudative (PSE) meat and dead on arrival (DOA) occurrences. Experiments were carried out for four different conditions: regular and prototype truck, both with and without wetting loaded cages at the farm (for bird thermal stress relief) just before transporting. While there was no difference in the DOA index (P ≥ 0.05), the prototype truck caused a reduction (P animal welfare conditions and improves meat quality. PMID:26304672

  11. Composition and physicochemical properties of Zedo gum exudates from Amygdalus scoparia.

    Science.gov (United States)

    Fadavi, Ghasem; Mohammadifar, Mohammad Amin; Zargarran, Azizollaah; Mortazavian, Amir Mohammad; Komeili, Rozita

    2014-01-30

    Composition and physicochemical properties of three types of Zedo gum exudates from Amygdalus scoparia were investigated. Monosaccharide analysis by GC-MS indicated the occurrence of arabinose and galactose as the main sugars. FTIR spectra showed no differences in functional groups among the samples. Steady shear rheological data and power law parameters revealed that the white gum (W) was the most shear sensitive type and had the highest value of consistency coefficient. The mechanical spectra derived from the strain and frequency sweep measurements indicated a liquid viscoelastic behavior for Zedo gum dispersions. GPC-MALLS revealed that the white sample had the highest apparent average molecular weight (4.74 × 10(6)Da) and the lowest dispersity (1.045). TG-DTA analysis showed that the character of gum decomposition significantly depended on the gum type and the white sample had the highest thermal stability. PMID:24299876

  12. Clinical performance of a new silver dressing, Contreet Foam, for chronic exuding venous leg ulcers

    DEFF Research Database (Denmark)

    Karlsmark, T; Agerslev, R H; Bendz, S H;

    2003-01-01

    : The clinical performance of Contreet Foam was studied for four weeks in 25 patients with moderately to highly exuding delayed-healing venous leg ulcers. Healing was assessed on a weekly basis with reference to the wound-bed tissue composition, degree of odour and pain, dressing performance and the dressing......'s effect on the peri-ulcer area. Blood samples were analysed for silver content. RESULTS: Twenty-three out of 25 patients completed the study. One ulcer healed and no wound infections occurred during the study period. A mean 56% reduction in ulcer area (from 15.6 to 6.9 cm2) was recorded during the four...... weeks, and there was a mean 25% reduction in granulation tissue from dull to healthy after one week. Wound odour reduced significantly after one week. Mean dressing wear time was 3.1 days, and there were only minimal incidences of leakage. Serum silver levels did not exceed reference values. CONCLUSION...

  13. PENGGUNAAN GETAH PEPAYA DALAM SINTESIS ESTER XILITOL ASAM LEMAK (EXAL [The Use of Papaya Exudates for Fatty Acid Xilitol Synthesis

    Directory of Open Access Journals (Sweden)

    Suhardi

    2003-12-01

    Full Text Available Fatty acid xylitol-ester (FAXILE are xylitol esters of fatty acids with one to five DE (degree of esterification value. FAXILE with DE value of 3 or higher can be used as low calorie fat replacer since they have low digestive property; while the xylitol ester with DE of less than 3 can be used as emulsifier. The FAXILE synthesis experiments were carried out by esterification of xylitol with palm oil¡¦s fatty acid (POFA using papaya exudates as a lipase source. The objective of this experiment was to evaluate the potential of papaya exuadates for the synthesis of FAXILE. In this first experiment, test were carried out to determine hydrolytic activity of lipases obtained from different part of papaya plant. The test, were performed with the presence of CaO and under different pH value. The papaya exudates were used for FAXILE synthesis under an optimum condition obtained from the first experiment. Samples were drawn during incubation at 40„aC for 1,2,3, and 4 days and hydroxyl number was analyzed to confirm the ester formation. The results showed that the most active exudate was from papaya leaves, followed by exudates from fruit with hydrolytic activity of 653 and 296 ƒÝmol/g. minutes, respectively. The hydrolytic activity of the fruit exudate was optimum at pH 6.0, at 45-50„aC, with the addition of CaO 4% dry exudates. The FAXILE synthesis with acid of papaya exudates was optimum at pH 6.0, at 45„aC with molar ratio of xylitol: fatty acids was 1 to 6,3 days incubation. At this condition the conversion rate xylitol to FAXILE was 79%.

  14. Isolation and characterization of a novel ribosome-inactivating protein from root cultures of pokeweed and its mechanism of secretion from roots.

    Science.gov (United States)

    Park, Sang-Wook; Lawrence, Christopher B; Linden, James C; Vivanco, Jorge M

    2002-09-01

    Ribosome-inactivating proteins are N-glycosidases that remove a specific adenine from the sarcin/ricin loop of the large rRNA, thus arresting protein synthesis at the translocation step. In the present study, a novel type I ribosome-inactivating protein, termed PAP-H, was purified from Agrobacterium rhizogenes-transformed hairy roots of pokeweed (Phytolacca americana). The protein was purified by anion- and cation-exchange chromatography. PAP-H has a molecular mass of 29.5 kD as detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its isoelectric point was determined to be 7.8. Yeast (Saccharomyces cerevisiae) ribosomes incubated with PAP-H released the 360-nucleotide diagnostic fragment from the 26S rRNA upon aniline treatment, an indication of its ribosome-inactivating activity. Using immunofluorescence microscopy, PAP-H was found to be located in the cell walls of hairy roots and root border cells. PAP-H was determined to be constitutively secreted as part of the root exudates, with its secretion enhanced by a mechanism mediated by ethylene induction. Purified PAP-H did not show in vitro antifungal activity against soil-borne fungi. In contrast, root exudates containing PAP-H as well as additional chitinase, beta-1,3-glucanase, and protease activities did inhibit the growth of soil-borne fungi. We found that PAP-H depurinates fungal ribosomes in vitro and in vivo, suggesting an additive mechanism that enables PAP-H to penetrate fungal cells.

  15. Functional properties of PSE (Pale, Soft, Exudative broiler meat in the production of mortadella

    Directory of Open Access Journals (Sweden)

    Cassiana Kissel

    2009-11-01

    Full Text Available This work was carried out in order to evaluate whether the functional properties of broiler meat are affected by the factors that lead to PSE (Pale, Soft, Exudative. PSE meat was characterized by pH and L* values, and mortadella formulations consisted of isolated soy protein, sodium tripolyphosphate, and cassava starch in addition to PSE and normal meats. The functionality of the meat was evaluated by examining the water holding capacity (WHC, texture profile, emulsion stability (ES and color of the final products. The results show that in mortadella prepared with PSE meat, the protein denaturation affected the ES. Additives are necessary to enhance the functional properties of PSE meat.Este trabalho foi realizado para avaliar o efeito dos fatores que conduzem à formação das carnes PSE (Pale, Soft, Exudative sobre as propriedades funcionais da carne de frango. Carnes PSE foram caracterizadas pelos valores de pH e L* e as formulações da mortadela consistiram de proteina isolada de soja, trifosfato de sódio, amido de mandioca e a adição das carnes normal e PSE. A funcionalidade da carne foi avaliada medindo a capacidade de retenção de água (CRA, perfil de textura, estabilidade de emulsão (EE, e cor dos produtos finais. Os resultados mostraram que na mortadela preparada com carnes PSE, as proteinas desnaturadas afetaram a EE. Aditivos são necessários para potencializar as propriedades funcionais da carne PSE.

  16. Combined intravitreal bevacizumab with phacoemulsification in visually significant cataract and visually significant exudative maculopathy

    Directory of Open Access Journals (Sweden)

    Ahmad Mansour

    2011-01-01

    Full Text Available Purpose : We investigated the visual outcome of combined phacoemulsification with intravitreal bevacizumab, in eyes with dense cataract and visually significant exudative maculopathy. Materials and Methods : Prospective longitudinal pilot study of consecutive patients treated by two surgeons in 2006, using intravitreal bevacizumab at the end of phacoemulsification. The historical control group consisted of consecutive subjects with exudative maculopathy and dense cataract treated by the same surgeons with the help of phacoemulsification without intravitreal bevacizumab prior to 2006. Results : Thirty-one treated patients had the mean (SD logMar best corrected visual acuity improving from - 1.48 (0.50 preoperatively to - 0.67 (0.38 in the first postoperative week ( p < 0.001, to - 0.64 (0.40 in the first postoperative month ( p < 0.001, and to - 0.62 (0.42 ( p < 0.001 on the last follow-up (mean 4.2 months, range 1 - 9 months. Fourteen control patients had the mean (SD logMar best corrected visual acuity improving from - 1.78 (0.79 preoperatively, to - 0.91 (0.53 in the first postoperative week ( p < 0.001, to - 0.86 (0.45 in the first postoperative month ( p < 0.001, and to - 0.90 (0.47 ( p < 0.001 on the last follow- up (mean 19.6 months, range 1 - 49 months. Initial visual acuities, final visual acuities, and percentage of visual improvement at one month were all not significantly better in the intervention compared to the control group at one month. In the study group, the fovea was flattened at the one-month follow-up, by 90-diopter slit lamp examination and / or Optical coherence tomography. Conclusion : The combination of intravitreal bevacizumab and phacoemulsification is beneficial for maximal visual rehabilitation in the first postoperative month.

  17. Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates.

    Science.gov (United States)

    Romera-Castillo, Cristina; Sarmento, Hugo; Alvarez-Salgado, Xosé Antón; Gasol, Josep M; Marrasé, Celia

    2011-11-01

    An understanding of the distribution of colored dissolved organic matter (CDOM) in the oceans and its role in the global carbon cycle requires a better knowledge of the colored materials produced and consumed by marine phytoplankton and bacteria. In this work, we examined the net uptake and release of CDOM by a natural bacterial community growing on DOM derived from four phytoplankton species cultured under axenic conditions. Fluorescent humic-like substances exuded by phytoplankton (excitation/emission [Ex/Em] wavelength, 310 nm/392 nm; Coble's peak M) were utilized by bacteria in different proportions depending on the phytoplankton species of origin. Furthermore, bacteria produced humic-like substances that fluoresce at an Ex/Em wavelength of 340 nm/440 nm (Coble's peak C). Differences were also observed in the Ex/Em wavelengths of the protein-like materials (Coble's peak T) produced by phytoplankton a