WorldWideScience

Sample records for alters keratinocyte cell

  1. The extracellular adherence protein (Eap) of Staphylococcus aureus acts as a proliferation and migration repressing factor that alters the cell morphology of keratinocytes.

    Science.gov (United States)

    Eisenbeis, Janina; Peisker, Henrik; Backes, Christian S; Bur, Stephanie; Hölters, Sebastian; Thewes, Nicolas; Greiner, Markus; Junker, Christian; Schwarz, Eva C; Hoth, Markus; Junker, Kerstin; Preissner, Klaus T; Jacobs, Karin; Herrmann, Mathias; Bischoff, Markus

    2017-02-01

    Staphyloccocus aureus is a major human pathogen and a common cause for superficial and deep seated wound infections. The pathogen is equipped with a large arsenal of virulence factors, which facilitate attachment to various eukaryotic cell structures and modulate the host immune response. One of these factors is the extracellular adherence protein Eap, a member of the "secretable expanded repertoire adhesive molecules" (SERAM) protein family that possesses adhesive and immune modulatory properties. The secreted protein was previously shown to impair wound healing by interfering with host defense and neovascularization. However, its impact on keratinocyte proliferation and migration, two major steps in the re-epithelialization process of wounds, is not known. Here, we report that Eap affects the proliferation and migration capacities of keratinocytes by altering their morphology and adhesive properties. In particular, treatment of non-confluent HaCaT cell cultures with Eap resulted in cell morphology changes as well as a significant reduction in cell proliferation and migration. Eap-treated HaCaT cells changed their appearance from an oblong via a trapezoid to an astral-like shape, accompanied by decreases in cell volume and cell stiffness, and exhibited significantly increased cell adhesion. Eap had a similar influence on endothelial and cancer cells, indicative for a general effect of Eap on eukaryotic cell morphology and functions. Specifically, Eap was found to interfere with growth factor-stimulated activation of the mitogen-activated protein kinase (MAPK) pathway that is known to be responsible for cell shape modulation, induction of proliferation and migration of epithelial cells. Western blot analyses revealed that Eap blocked the phosphorylation of extracellular signal-regulated kinase 1 and 2 (Erk1/2) in keratinocyte growth factor (KGF)-stimulated HaCaT cells. Together, these data add another antagonistic mechanism of Eap in wound healing, whereby the

  2. Single cell mechanics of keratinocyte cells.

    Science.gov (United States)

    Lulevich, Valentin; Yang, Hsin-ya; Isseroff, R Rivkah; Liu, Gang-yu

    2010-11-01

    Keratinocytes represent the major cell type of the uppermost layer of human skin, the epidermis. Using AFM-based single cell compression, the ability of individual keratinocytes to resist external pressure and global rupturing forces is investigated and compared with various cell types. Keratinocytes are found to be 6-70 times stiffer than other cell types, such as white blood, breast epithelial, fibroblast, or neuronal cells, and in contrast to other cell types they retain high mechanic strength even after the cell's death. The absence of membrane rupturing peaks in the force-deformation profiles of keratinocytes and their high stiffness during a second load cycle suggests that their unique mechanical resistance is dictated by the cytoskeleton. A simple analytical model enables the quantification of Young's modulus of keratinocyte cytoskeleton, as high as 120-340 Pa. Selective disruption of the two major cytoskeletal networks, actin filaments and microtubules, does not significantly affect keratinocyte mechanics. F-actin is found to impact cell deformation under pressure. During keratinocyte compression, the plasma membrane stretches to form peripheral blebs. Instead of blebbing, cells with depolymerized F-actin respond to pressure by detaching the plasma membrane from the cytoskeleton underneath. On the other hand, the compression force of keratinocytes expressing a mutated keratin (cell line, KEB-7) is 1.6-2.2 times less than that for the control cell line that has normal keratin networks. Therefore, we infer that the keratin intermediate filament network is responsible for the extremely high keratinocyte stiffness and resilience. This could manifest into the rugged protective nature of the human epidermis.

  3. Troxerutin induces protective effects against ultraviolet B radiation through the alteration of microRNA expression in human HaCaT keratinocyte cells.

    Science.gov (United States)

    Lee, Kwang Sik; Cha, Hwa Jun; Lee, Ghang Tai; Lee, Kun Kook; Hong, Jin Tae; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan; Bae, Seunghee

    2014-04-01

    Ultraviolet light B (UVB), contained in sunlight, induces damaging effects on skin by impairing cells in the epidermis and dermis. In particular, keratinocytes in the epidermis are those cells which are mainly affected by UVB light. UVB radiation induces cell death, growth arrest, DNA damage and restricts cell migration. Various phytochemicals have been shown to alleviate UVB-induced cellular damage. Troxerutin is a natural flavonoid rutin mainly found in extracts of Sophora japonica, and is a well-known antioxidant and anti-inflammatory compound used in experimental mouse models. In this study, we examined the effects of troxerutin on UVB-induced damage in HaCaT cells. HaCaT cells were pre-treated with troxerutin (0-10 µM) and then exposed to UVB radiation (50 mJ/cm2). Cell viability, cell cycle and migration assays were performed to determine the protective effects of troxerutin on the cells. DNA repair activity was also measured. Troxerutin protected the cells against UVB-induced damage, such as cell death, growth arrest, restriction of cell migration and decreased DNA repair activity in HaCaT cells. Analyses of microRNA (miRNA) expression demonstrated that the protective effects of troxerutin correlated with alterations in miRNA expression, as indicated by Gene Ontology analyses of putative target genes. Overall, our data demonstrate that troxerutin exerts protective effects against UVB-induced damage by regulating miRNA expression.

  4. Low dose chronic treatment of human keratinocytes with inorganic arsenic causes hyperproliferation and altered protein phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.L. [City College of New York, NY (United States); Su, L.; Snow, E.T. [New York Univ. Medical Center, Tuxedo, NY (United States)]|[City College of New York, NY (United States)

    1997-10-01

    Chronic exposure to arsenate [As(V)] or arsenite [As(III)] causes hyperproliferation of normal and SV40-transformed human epidermal keratinocytes. Line 327 SV40-infected human keratinocytes were grown in the presence of either As(III) or As(V) (0.01 to 10 {mu}M) in complete medium for seven days prior to harvesting and counting. Both As(III) and As(V) were cytotoxic at micromolar concentrations, however submicromolar arsenic caused a significant increase in cell growth. Cell numbers in cultures exposed to As(V) were increased more than 186% relative to controls, and an even larger stimulation in cell growth was observed after treatment with 50 nM As(III). Normal non-SV40 T-antigen. Preliminary cell cycle analysis using unselected, log-phase cultures of arsenic-treated keratinocytes shows an increased proportion of cells in S- and G2/M-phase. Isoelectric focusing of phosphotyrosine-containing proteins from cells labeled with {sup 32}P-inorganic phosphate showed that the hyperproliferation of keratinocytes grown in low concentrations of arsenic is accompanied by altered tyrosine-specific protein phosphorylation. A number of phosphorylated proteins were observed in As-treated cells that were not observed in the controls; and minor bands at IEPs of 3.0, 4.2, 7.2, 7.5 and 8.2. These results, together with the lack of direct enzyme inhibition by arsenic shown by Su et al., this volume, suggest that arsenic-induced skin lesions and carcinogenesis may be the result of altered cell cycle control rather than DNA damage or reduced DNA repair.

  5. Keratinocyte growth factor improves alterations of lung permeability and bronchial epithelium in allergic rats.

    Science.gov (United States)

    Tillie-Leblond, I; Gosset, P; Le Berre, R; Janin, A; Prangère, T; Tonnel, A B; Guery, B P H

    2007-07-01

    Chronic allergic asthma is associated with marked inflammatory reaction, microvascular leakage and epithelium injury. As previously shown in a rat model of chronic asthma, these alterations increase lung permeability and distal airway fluid clearance. Keratinocyte growth factor (KGF) has been shown to induce epithelial cell proliferation and to protect from acute lung injuries. Therefore, the current authors evaluated the potential role of KGF treatment on lung permeability and airway inflammation in rats with chronic asthma. KGF (1 mg x kg(-1)) was administered intravenously before the last ovalbumin (OVA) challenge in sensitised rats. Permeability was assessed by the leak of radiolabelled albumin from the alveolar and systemic compartments. Histopathological analysis was also performed. Treatment with KGF decreased the leak of both markers and decreased the level of extravascular lung water in sensitised rats challenged with OVA. KGF treatment also reduced the inflammatory cell number in bronchoalveolar lavage fluid but not in bronchial mucosa. KGF markedly limited the allergen-induced alterations in epithelium integrity and the expression of the intercellular junction proteins beta-catenin and zonula occludens protein-1. In conclusion, keratinocyte growth factor administration markedly limits lung permeability and airway inflammation, an effect associated with a decrease in epithelium alterations during chronic allergic asthma. These data open new prospects in the therapeutic strategy of asthma.

  6. Ultraviolet B light-induced apoptosis in human keratinocytes enriched with epidermal stem cells and normal keratinocytes

    Institute of Scientific and Technical Information of China (English)

    MEI Xue-ling; LIAN Shi

    2011-01-01

    Background The stem-cell compartment is the primary target for the accumulation of oncogenic mutations.Overexposure to solar ultraviolet radiation is responsible for the development and progression of >90% of skin cancers.Ultraviolet B (UVB) light-induced keratinocyte apoptosis is a strong preventive mechanism against carcinogenesis. The aim of this study was to isolate keratinocytes enriched with putative human epidermal stem cells and to investigate their apoptotic induction by UVB.Methods Keratinocytes enriched with putative human epidermal stem cells were isolated by adherence to collagen Ⅳ and the expressions of β1-integrin and p63 were investigated. Keratinocytes enriched with putative human epidermal stem cells and normal keratinocytes were irradiated with UVB at 0-80 mJ/cm2. The apoptotic response was investigated with phase-contrast microscopy, Hoechst 33342 staining, flow cytometry of annexin V/PI, and procaspase-3 Western blotting.Results Keratinocyte enriched with stem cells expressed high levels of p63 protein and β1-integrin and low level of pan-keratin (C11). In comparison to non-irradiated cells, significant apoptosis of keratinocyte enriched with stem cells was found with 40 and 80 mJ/cm2 UVB. However, significant apoptosis of normal keratinocytes was only found for 80 mJ/cm2 UVB.Conclusions Human epidermal stem cells can undergo apoptosis in response to UVB radiation and are more susceptible than other keratinocytes. The method could be used in vitro studies of human epidermal stem cells.

  7. Transdifferentiation of adipose-derived stem cells into keratinocyte-like cells: engineering a stratified epidermis.

    Directory of Open Access Journals (Sweden)

    Claudia Chavez-Munoz

    Full Text Available Skin regeneration is an important area of research in the field of tissue-engineering, especially for cases involving loss of massive areas of skin, where current treatments are not capable of inducing permanent satisfying replacements. Human adipose-derived stem cells (ASC have been shown to differentiate in-vitro into both mesenchymal lineages and non-mesenchymal lineages, confirming their transdifferentiation ability. This versatile differentiation potential, coupled with their ease of harvest, places ASC at the advancing front of stem cell-based therapies. In this study, we hypothesized that ASC also have the capacity to transdifferentiate into keratinocyte-like cells and furthermore are able to engineer a stratified epidermis. ASC were successfully isolated from lipoaspirates and cell sorted (FACS. After sorting, ASC were either co-cultured with human keratinocytes or with keratinocyte conditioned media. After a 14-day incubation period, ASC developed a polygonal cobblestone shape characteristic of human keratinocytes. Western blot and q-PCR analysis showed the presence of specific keratinocyte markers including cytokeratin-5, involucrin, filaggrin and stratifin in these keratinocyte-like cells (KLC; these markers were absent in ASC. To further evaluate if KLC were capable of stratification akin to human keratinocytes, ASC were seeded on top of human decellularized dermis and cultured in the presence or absence of EGF and high Ca(2+ concentrations. Histological analysis demonstrated a stratified structure similar to that observed in normal skin when cultured in the presence of EGF and high Ca(2+. Furthermore, immunohistochemical analysis revealed the presence of keratinocyte markers such as involucrin, cytokeratin-5 and cytokeratin-10. In conclusion this study demonstrates for the first time that ASC have the capacity to transdifferentiate into KLC and engineer a stratified epidermis. This study suggests that adipose tissue is potentially a

  8. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    Science.gov (United States)

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  9. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    Science.gov (United States)

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions.

  10. Effect of JP-8 jet fuel exposure on protein expression in human keratinocyte cells in culture.

    Science.gov (United States)

    Witzmann, F A; Monteiro-Riviere, N A; Inman, A O; Kimpel, M A; Pedrick, N M; Ringham, H N; Riviere, J E

    2005-12-30

    Dermal exposure to jet fuel is a significant occupational hazard. Previous studies have investigated its absorption and disposition in skin, and the systemic biochemical and immunotoxicological sequelae to exposure. Despite studies of JP-8 jet fuel components in murine, porcine or human keratinocyte cell cultures, proteomic analysis of JP-8 exposure has not been investigated. This study was conducted to examine the effect of JP-8 administration on the human epidermal keratinocyte (HEK) proteome. Using a two-dimensional electrophoretic approach combined with mass spectrometric-based protein identification, we analyzed protein expression in HEK exposed to 0.1% JP-8 in culture medium for 24 h. JP-8 exposure resulted in significant expression differences (p<0.02) in 35 of the 929 proteins matched and analyzed. Approximately, a third of these alterations were increased in protein expression, two-thirds declined with JP-8 exposure. Peptide mass fingerprint identification of effected proteins revealed a variety of functional implications. In general, altered proteins involved endocytotic/exocytotic mechanisms and their cytoskeletal components, cell stress, and those involved in vesicular function.

  11. The expression of P63 protein in some keratinocyte original tissues and cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To examine the expression patterns of p63 in tissues of particular keratinocyte original hyperproliferate diseases and variety cell types for determining if P63 is the marker of proliferative potential keratinocytes.Methods:P63 protein Was detected and analyzed by immunoreacdvity method and Western blot in biopsy specimens of keratinocyte original disorders including squamous cell carcinomas SCC,basal cell carcinomas BCC,Bowen's disease and other tissues or cells,such as psoriasis vulgaris,normal skin tissues,primary cultured keratinocytes,immortal HaCaT cells,and epidermoid carcinoma cells A431.Results:P63 protein was expressed in the nuclei of basal and suprabasal layer of the epidermis,germinative cells of sebaceous glands in normal epidermal.P63 was strongly and diffusely detected in the majority of tumor cells in BCC and poorly-differentiated SCC.In Bowen's disease,p63expresses are remarkable in all cell layers.In the psoriasis plaque epidermal,p63 expressed mainly in basal cells and part of spinous cells.P63 expressed more strongly in primary cultured keratinocytes than in A431 cells or HaCaT cells.Conclusion:P63 is a nuclei marker of undifferentiated keratinocytes with the proliferative potential and may disrupt the terminal differentiation.The overexpression of p63 reflects immaturity of the tumor cells.The immunohistochemical staining of p63 may be useful for investigating the origin and differentiation of tumor cells.

  12. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    Science.gov (United States)

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-07

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing.

  13. Human epidermal keratinocyte cell response on integrin-specific artificial extracellular matrix proteins.

    Science.gov (United States)

    Tjin, Monica Suryana; Chua, Alvin Wen Choong; Ma, Dong Rui; Lee, Seng Teik; Fong, Eileen

    2014-08-01

    Cell-matrix interactions play critical roles in regulating cellular behavior in wound repair and regeneration of the human skin. In particular, human skin keratinocytes express several key integrins such as alpha5beta1, alpha3beta1, and alpha2beta1 for binding to the extracellular matrix (ECM) present in the basement membrane in uninjured skin. To mimic these key integrin-ECM interactions, artificial ECM (aECM) proteins containing functional domains derived from laminin 5, type IV collagen, fibronectin, and elastin are prepared. Human skin keratinocyte cell responses on the aECM proteins are specific to the cell-binding domain present in each construct. Keratinocyte attachment to the aECM protein substrates is also mediated by specific integrin-material interactions. In addition, the aECM proteins are able to support the proliferation of keratinocyte stem cells, demonstrating their promise for use in skin tissue engineering.

  14. Fetal fibroblasts and keratinocytes with immunosuppressive properties for allogeneic cell-based wound therapy.

    Directory of Open Access Journals (Sweden)

    Thomas Zuliani

    Full Text Available Fetal skin heals rapidly without scar formation early in gestation, conferring to fetal skin cells a high and unique potential for tissue regeneration and scar management. In this study, we investigated the possibility of using fetal fibroblasts and keratinocytes to stimulate wound repair and regeneration for further allogeneic cell-based therapy development. From a single fetal skin sample, two clinical batches of keratinocytes and fibroblasts were manufactured and characterized. Tolerogenic properties of the fetal cells were investigated by allogeneic PBMC proliferation tests. In addition, the potential advantage of fibroblasts/keratinocytes co-application for wound healing stimulation has been examined in co-culture experiments with in vitro scratch assays and a multiplex cytokines array system. Based on keratin 14 and prolyl-4-hydroxylase expression analyses, purity of both clinical batches was found to be above 98% and neither melanocytes nor Langerhans cells could be detected. Both cell types demonstrated strong immunosuppressive properties as shown by the dramatic decrease in allogeneic PBMC proliferation when co-cultured with fibroblasts and/or keratinocytes. We further showed that the indoleamine 2,3 dioxygenase (IDO activity is required for the immunoregulatory activity of fetal skin cells. Co-cultures experiments have also revealed that fibroblasts-keratinocytes interactions strongly enhanced fetal cells secretion of HGF, GM-CSF, IL-8 and to a lesser extent VEGF-A. Accordingly, in the in vitro scratch assays the fetal fibroblasts and keratinocytes co-culture accelerated the scratch closure compared to fibroblast or keratinocyte mono-cultures. In conclusion, our data suggest that the combination of fetal keratinocytes and fibroblasts could be of particular interest for the development of a new allogeneic skin substitute with immunomodulatory activity, acting as a reservoir for wound healing growth factors.

  15. Fetal fibroblasts and keratinocytes with immunosuppressive properties for allogeneic cell-based wound therapy.

    Science.gov (United States)

    Zuliani, Thomas; Saiagh, Soraya; Knol, Anne-Chantal; Esbelin, Julie; Dréno, Brigitte

    2013-01-01

    Fetal skin heals rapidly without scar formation early in gestation, conferring to fetal skin cells a high and unique potential for tissue regeneration and scar management. In this study, we investigated the possibility of using fetal fibroblasts and keratinocytes to stimulate wound repair and regeneration for further allogeneic cell-based therapy development. From a single fetal skin sample, two clinical batches of keratinocytes and fibroblasts were manufactured and characterized. Tolerogenic properties of the fetal cells were investigated by allogeneic PBMC proliferation tests. In addition, the potential advantage of fibroblasts/keratinocytes co-application for wound healing stimulation has been examined in co-culture experiments with in vitro scratch assays and a multiplex cytokines array system. Based on keratin 14 and prolyl-4-hydroxylase expression analyses, purity of both clinical batches was found to be above 98% and neither melanocytes nor Langerhans cells could be detected. Both cell types demonstrated strong immunosuppressive properties as shown by the dramatic decrease in allogeneic PBMC proliferation when co-cultured with fibroblasts and/or keratinocytes. We further showed that the indoleamine 2,3 dioxygenase (IDO) activity is required for the immunoregulatory activity of fetal skin cells. Co-cultures experiments have also revealed that fibroblasts-keratinocytes interactions strongly enhanced fetal cells secretion of HGF, GM-CSF, IL-8 and to a lesser extent VEGF-A. Accordingly, in the in vitro scratch assays the fetal fibroblasts and keratinocytes co-culture accelerated the scratch closure compared to fibroblast or keratinocyte mono-cultures. In conclusion, our data suggest that the combination of fetal keratinocytes and fibroblasts could be of particular interest for the development of a new allogeneic skin substitute with immunomodulatory activity, acting as a reservoir for wound healing growth factors.

  16. Vanillin protects human keratinocyte stem cells against ultraviolet B irradiation.

    Science.gov (United States)

    Lee, Jienny; Cho, Jae Youl; Lee, Sang Yeol; Lee, Kyung-Woo; Lee, Jongsung; Song, Jae-Young

    2014-01-01

    Ultraviolet-B (UVB) irradiation is one of major factors which induce cellular damages in the epidermis. We investigated protective effects and mechanisms of vanillin, a main constituent of vanilla beans, against UVB-induced cellular damages in keratinocyte stem cells (KSC). Here, vanillin significantly attenuated UVB irradiation-induced cytotoxicity. The vanillin effects were also demonstrated by the results of the senescence-associated β-galactosidase and alkaline comet assays. In addition, vanillin induced production of pro-inflammatory cytokines. Attempts to elucidate a possible mechanism underlying the vanillin-mediated effects revealed that vanillin significantly reduced UVB-induced phosphorylation of ataxia telangiectasia mutated (ATM), serine threonine kinase checkpoint kinase 2 (Chk2), tumor suppressor protein 53 (p53), p38/mitogen-activated protein kinase (p38), c-Jun N-terminal kinase/stress-activated protein kinase (JNK), S6 ribosomal protein (S6RP), and histone 2A family member X (H2A.X). UVB-induced activation of p53 luciferase reporter was also significantly inhibited by vanillin. In addition, while ATM inhibitor had no effect on the vanillin effects, mouse double minute 2 homolog (MDM2) inhibitor significantly attenuated suppressive effects of vanillin on UVB-induced activation of p53 reporter in KSC. Taken together, these findings suggest that vanillin protects KSC from UVB irradiation and its effects may occur through the suppression of downstream step of MDM2 in UVB irradiation-induced p53 activation.

  17. Paracoccidioides brasiliensis interacts with dermal dendritic cells and keratinocytes in human skin and oral mucosa lesions.

    Science.gov (United States)

    Silva, Wellington Luiz Ferreira da; Pagliari, Carla; Duarte, Maria Irma Seixas; Sotto, Mirian N

    2016-05-01

    Paracoccidioidomycosis (PCM) is a systemic disease caused by the fungus Paracoccidioides brasiliensis and Paracoccidioides lutzii. In PCM the skin and oral mucosa are often affected. Dendritic cells and keratinocytes of the integument play a role in innate and adaptive immune response against pathogens, due to their function as antigen presenting cells. Aiming to verify the interaction of P. brasiliensis with these cell populations, we studied 52 skin and 47 oral mucosa samples taken from patients with proven diagnosis of PCM. The biopsies were subjected to immunohistochemical and/or immunofluorescence staining with anti-factor XIIIa (marker of dermal dendrocytes), anti-CD207 (marker of mature Langerhans cells), anti-pan cytokeratins (AE1-AE3) and anti-P. brasiliensis antibodies. Analyses with confocal laser microscopy were also performed for better visualization of the interaction between keratinocytes and the fungi. In sum, 42% of oral mucosa samples displayed yeast forms in Factor XIIIa dermal dendrocytes cytoplasm. Langerhans cells in skin and oral mucosa samples did not show yeast cells in their cytoplasm. In sum, 54% of skin and 60% of mucosal samples displayed yeast cells in the cytoplasm of keratinocytes. The parasitism of keratinocytes may represent a possible mechanism of evasion of the fungus to local immune mechanisms. Factor XIIIa dendrocytes and keratinocytes may be acting as antigen-presenting cells to fulfill the probably impaired function of Langerhans cells in skin and oral mucosa of human PCM.

  18. Functional genomic and radiosensitivity of human keratinocytes: from differentiated to stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Lamartine, J.; Rachidi, W.; Franco, N.; Lemaitre, G.; Vaigot, P.; Le Minter, P.; Waksman, G.; Martin, M.T. [Evry Univ. Lab. of Genomic and Radiobiology of Keratinocytes, Service de Genomique Fonctionnelle, CEA, 91 (France)

    2006-07-01

    Despite improvements in radiation techniques, patients can still experience radiation toxicity on the skin. Keratinocytes from the basal layer of the epidermis have been long proposed by ICRP as the main target of ionizing radiation in human skin, both for early and late effects of radiation. But the exact roles of these cells in radiation skin damage are still largely unknown., This is why a new program was started to define the radiosensitivity of human keratinocytes according to their differentiation. In a first study was characterized the response of differentiated keratinocytes to low and high doses of gamma radiation (1). To examine whether the response to low doses was different from that induced by high doses, cultured primary keratinocytes isolated from adult normal skin were irradiated with single doses of 1 c Gray or 2 c Gy. A major finding of this study was the identification of an important number of low dose specific genes (140), most of which were modulated at 48 h. Clustering analysis also revealed low dose specific profiles. These results show for the first time that low dose ionizing irradiation is able to induce specific transcriptional responses in human keratinocytes. Then came the part to characterize the radiosensitivity of human basal keratinocytes. The results show for the first time that keratinocytes stem cells from human epidermis are more resistant than proliferative basal keratinocytes. In summary, using cellular biology and functional genomics, we are improving the knowledge on the effects of ionizing radiation on human epidermis, one of the main target tissue of radiation in the human body. (N.C.)

  19. Generation of Integration-free Human Induced Pluripotent Stem Cells Using Hair-derived Keratinocytes.

    Science.gov (United States)

    Hung, Sandy S C; Pébay, Alice; Wong, Raymond C B

    2015-08-20

    Recent advances in reprogramming allow us to turn somatic cells into human induced pluripotent stem cells (hiPSCs). Disease modeling using patient-specific hiPSCs allows the study of the underlying mechanism for pathogenesis, also providing a platform for the development of in vitro drug screening and gene therapy to improve treatment options. The promising potential of hiPSCs for regenerative medicine is also evident from the increasing number of publications (>7000) on iPSCs in recent years. Various cell types from distinct lineages have been successfully used for hiPSC generation, including skin fibroblasts, hematopoietic cells and epidermal keratinocytes. While skin biopsies and blood collection are routinely performed in many labs as a source of somatic cells for the generation of hiPSCs, the collection and subsequent derivation of hair keratinocytes are less commonly used. Hair-derived keratinocytes represent a non-invasive approach to obtain cell samples from patients. Here we outline a simple non-invasive method for the derivation of keratinocytes from plucked hair. We also provide instructions for maintenance of keratinocytes and subsequent reprogramming to generate integration-free hiPSC using episomal vectors.

  20. A modeling approach to study the effect of cell polarization on keratinocyte migration.

    Directory of Open Access Journals (Sweden)

    Matthias Jörg Fuhr

    Full Text Available The skin forms an efficient barrier against the environment, and rapid cutaneous wound healing after injury is therefore essential. Healing of the uppermost layer of the skin, the epidermis, involves collective migration of keratinocytes, which requires coordinated polarization of the cells. To study this process, we developed a model that allows analysis of live-cell images of migrating keratinocytes in culture based on a small number of parameters, including the radius of the cells, their mass and their polarization. This computational approach allowed the analysis of cell migration at the front of the wound and a reliable identification and quantification of the impaired polarization and migration of keratinocytes from mice lacking fibroblast growth factors 1 and 2--an established model of impaired healing. Therefore, our modeling approach is suitable for large-scale analysis of migration phenotypes of cells with specific genetic defects or upon treatment with different pharmacological agents.

  1. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes.

    Science.gov (United States)

    Xie, Xin; Dai, Hui; Zhuang, Binyu; Chai, Li; Xie, Yanguang; Li, Yuzhen

    2016-04-01

    The effects and the underlying mechanisms of hydrogen sulfide (H2S) on keratinocyte proliferation and differentiation are still less known. In the current study, we investigated the effects and the underlying mechanisms of exogenous H2S on keratinocyte proliferation and differentiation. Human keratinocytes (HaCaT cells) were treated with various concentrations (0.05, 0.25, 0.5 and 1 mM) of sodium hydrosulfide (NaHS, a donor of H2S) for 24 h. A CCK-8 assay was used to assess cell viability. Western blot analysis was performed to determine the expression levels of proteins associated with differentiation and autophagy. Transmission electron microscopy was performed to observe autophagic vacuoles, and flow cytometry was applied to evaluate apoptosis. NaHS promoted the viability, induced the differentiation, and enhanced autophagic activity in a dose-dependent manner in HaCaT cells but had no effect on cell apoptosis. Blockage of autophagy by ATG5 siRNA inhibited NaHS-induced cell proliferation and differentiation. The current study demonstrated that autophagy in response to exogenous H2S treatment promoted keratinocyte proliferation and differentiation. Our results provide additional insights into the potential role of autophagy in keratinocyte proliferation and differentiation.

  2. Isorhamnetin Protects Human Keratinocytes against Ultraviolet B-Induced Cell Damage

    Science.gov (United States)

    Han, Xia; Piao, Mei Jing; Kim, Ki Cheon; Madduma Hewage, Susara Ruwan Kumara; Yoo, Eun Sook; Koh, Young Sang; Kang, Hee Kyoung; Shin, Jennifer H; Park, Yeunsoo; Yoo, Suk Jae; Chae, Sungwook; Hyun, Jin Won

    2015-01-01

    Isorhamnetin (3-methylquercetin) is a flavonoid derived from the fruits of certain medicinal plants. This study investigated the photoprotective properties of isorhamnetin against cell damage and apoptosis resulting from excessive ultraviolet (UV) B exposure in human HaCaT keratinocytes. Isorhamnetin eliminated UVB-induced intracellular reactive oxygen species (ROS) and attenuated the oxidative modification of DNA, lipids, and proteins in response to UVB radiation. Moreover, isorhamnetin repressed UVB-facilitated programmed cell death in the keratinocytes, as evidenced by a reduction in apoptotic body formation, and nuclear fragmentation. Additionally, isorhamnetin suppressed the ability of UVB light to trigger mitochondrial dysfunction. Taken together, these results indicate that isorhamnetin has the potential to protect human keratinocytes against UVB-induced cell damage and death. PMID:26157553

  3. Isorhamnetin Protects Human Keratinocytes against Ultraviolet B-Induced Cell Damage.

    Science.gov (United States)

    Han, Xia; Piao, Mei Jing; Kim, Ki Cheon; Madduma Hewage, Susara Ruwan Kumara; Yoo, Eun Sook; Koh, Young Sang; Kang, Hee Kyoung; Shin, Jennifer H; Park, Yeunsoo; Yoo, Suk Jae; Chae, Sungwook; Hyun, Jin Won

    2015-07-01

    Isorhamnetin (3-methylquercetin) is a flavonoid derived from the fruits of certain medicinal plants. This study investigated the photoprotective properties of isorhamnetin against cell damage and apoptosis resulting from excessive ultraviolet (UV) B exposure in human HaCaT keratinocytes. Isorhamnetin eliminated UVB-induced intracellular reactive oxygen species (ROS) and attenuated the oxidative modification of DNA, lipids, and proteins in response to UVB radiation. Moreover, isorhamnetin repressed UVB-facilitated programmed cell death in the keratinocytes, as evidenced by a reduction in apoptotic body formation, and nuclear fragmentation. Additionally, isorhamnetin suppressed the ability of UVB light to trigger mitochondrial dysfunction. Taken together, these results indicate that isorhamnetin has the potential to protect human keratinocytes against UVB-induced cell damage and death.

  4. KGF-transfected cells can stimulate growth and proliferation of human cultured keratinocytes in vitro

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Objective: To establish two stably KGF-transfected, immortalized cell lines. Methods: HaCaT-keratinocytes and KMST-6-fibroblasts were transfected by liposome mediated gene transfer. Transfection effectivity, gene integration and configuration of the transgenic protein were investigated by ELISA, DANN-PCR and β-Gal-staining. Results: Most effective GF producing clones were tested by a colorimetric XTT-test. Conclusion: This is a significant acceleration of cell proliferation and mitosis of human keratinocytes in an Air Liquid Interface (ALI) test system.

  5. Silver nanoparticles exert a long-lasting antiproliferative effect on human keratinocyte HaCaT cell line.

    Science.gov (United States)

    Zanette, Caterina; Pelin, Marco; Crosera, Matteo; Adami, Gianpiero; Bovenzi, Massimo; Larese, Francesca Filon; Florio, Chiara

    2011-08-01

    For their antibacterial activity, silver nanoparticles (Ag NPs) are largely used in various commercially available products designed to come in direct contact with the skin. In this study we investigated the effects of Ag NPs on skin using the human-derived keratinocyte HaCaT cell line model. Ag NPs caused a concentration- and time-dependent decrease of cell viability, with IC(50) values of 6.8 ± 1.3 μM (MTT assay) and 12 ± 1.2 μM (SRB assay) after 7 days of contact. A 24h treatment, followed by a 6 day recovery period in Ag NPs-free medium, reduced cell viability with almost the same potency (IC(50)s of 15.3 ± 4.6 and 35 ± 20 μM, MTT and SRB assays, respectively). Under these conditions, no evidence of induction of necrotic events (propidium iodide assay) was found. Apocynin, NADPH-oxidase inhibitor, or N(G)-monomethyl-L-argynine, nitric oxide synthase inhibitor, did not prevent NPs-induced reduction of cell viability. TEM analysis of cells exposed to NPs for 24h revealed alteration of nuclear morphology but only a marginal presence of individual NPs inside the cells. These results demonstrate that on HaCaT keratinocytes a relatively short time of contact with Ag NPs causes a long-lasting inhibition of cell growth, not associated with consistent Ag NPs internalization.

  6. Oral keratinocytes support non-replicative infection and transfer of harbored HIV-1 to permissive cells

    Directory of Open Access Journals (Sweden)

    Giacaman Rodrigo A

    2008-07-01

    Full Text Available Abstract Background Oral keratinocytes on the mucosal surface are frequently exposed to HIV-1 through contact with infected sexual partners or nursing mothers. To determine the plausibility that oral keratinocytes are primary targets of HIV-1, we tested the hypothesis that HIV-1 infects oral keratinocytes in a restricted manner. Results To study the fate of HIV-1, immortalized oral keratinocytes (OKF6/TERT-2; TERT-2 cells were characterized for the fate of HIV-specific RNA and DNA. At 6 h post inoculation with X4 or R5-tropic HIV-1, HIV-1gag RNA was detected maximally within TERT-2 cells. Reverse transcriptase activity in TERT-2 cells was confirmed by VSV-G-mediated infection with HIV-NL4-3Δenv-EGFP. AZT inhibited EGFP expression in a dose-dependent manner, suggesting that viral replication can be supported if receptors are bypassed. Within 3 h post inoculation, integrated HIV-1 DNA was detected in TERT-2 cell nuclei and persisted after subculture. Multiply spliced and unspliced HIV-1 mRNAs were not detectable up to 72 h post inoculation, suggesting that HIV replication may abort and that infection is non-productive. Within 48 h post inoculation, however, virus harbored by CD4 negative TERT-2 cells trans infected co-cultured peripheral blood mononuclear cells (PBMCs or MOLT4 cells (CD4+ CCR5+ by direct cell-to-cell transfer or by releasing low levels of infectious virions. Primary tonsil epithelial cells also trans infected HIV-1 to permissive cells in a donor-specific manner. Conclusion Oral keratinocytes appear, therefore, to support stable non-replicative integration, while harboring and transmitting infectious X4- or R5-tropic HIV-1 to permissive cells for up to 48 h.

  7. Characterization of fetal keratinocytes, showing enhanced stem cell-like properties: a potential source of cells for skin reconstruction.

    Science.gov (United States)

    Tan, Kenneth K B; Salgado, Giorgiana; Connolly, John E; Chan, Jerry K Y; Lane, E Birgitte

    2014-08-12

    Epidermal stem cells have been in clinical application as a source of culture-generated grafts. Although applications for such cells are increasing due to aging populations and the greater incidence of diabetes, current keratinocyte grafting technology is limited by immunological barriers and the time needed for culture amplification. We studied the feasibility of using human fetal skin cells for allogeneic transplantation and showed that fetal keratinocytes have faster expansion times, longer telomeres, lower immunogenicity indicators, and greater clonogenicity with more stem cell indicators than adult keratinocytes. The fetal cells did not induce proliferation of T cells in coculture and were able to suppress the proliferation of stimulated T cells. Nevertheless, fetal keratinocytes could stratify normally in vitro. Experimental transplantation of fetal keratinocytes in vivo seeded on an engineered plasma scaffold yielded a well-stratified epidermal architecture and showed stable skin regeneration. These results support the possibility of using fetal skin cells for cell-based therapeutic grafting.

  8. Polymerized laminin-332 matrix supports rapid and tight adhesion of keratinocytes, suppressing cell migration.

    Directory of Open Access Journals (Sweden)

    Yoshinobu Kariya

    Full Text Available Laminin-332 (α3ß3γ2 (Lm332 supports the stable anchoring of basal keratinocytes to the epidermal basement membrane, while it functions as a motility factor for wound healing and cancer invasion. To understand these contrasting activities of Lm332, we investigated Lm332 matrices deposited by normal human keratinocytes and other Lm332-expressing cell lines. All types of the cells efficiently deposited Lm332 on the culture plates in specific patterns. On the contrary, laminins containing laminin ß1 and/or γ1 chains, such as Lm511 and Lm311, were not deposited on the culture plates even if secreted into culture medium. The Lm332 deposition was not inhibited by function-blocking antibodies to the α3 and α6 integrins but was inhibited by sodium selenate, suggesting that sulfated glycosaminoglycans on cell surface, e.g. heparan sulfate proteoglycans, might be involved in the process. HEK293 cells overexpressing exogenous Lm332 (Lm332-HEK almost exclusively deposited Lm332 on the plates. The deposited Lm332 matrix showed a mesh-like network structure as analyzed by electron microscopy, suggesting that Lm332 was highly polymerized. When biological activity was analyzed, the Lm332 matrix rather suppressed the migration of keratinocytes as compared with purified Lm332, which highly promoted the cell migration. The Lm332 matrix supported adhesion of keratinocytes much more strongly and stably than purified Lm332. Integrin α3ß1 bound to the Lm332 matrix at a three times higher level than purified Lm332. Normal keratinocytes prominently showed integrin α6ß4-containing, hemidesmosome-like structures on the Lm332 matrix but not on the purified one. These results indicate that the polymerized Lm332 matrix supports stable cell adhesion by interacting with both integrin α6ß4 and α3ß1, whereas unassembled soluble Lm332 supports cell migration.

  9. Influence of different buffers (HEPES/MOPS) on keratinocyte cell viability and microbial growth.

    Science.gov (United States)

    Dias, Kássia de Carvalho; Barbugli, Paula Aboud; Vergani, Carlos Eduardo

    2016-06-01

    This study assessed the effect of the buffers 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 3-(N-morpholino) propanesulfonic acid (MOPS) on keratinocyte cell viability and microbial growth. It was observed that RPMI buffered with HEPES, supplemented with l-glutamine and sodium bicarbonate, can be used as a more suitable medium to promote co-culture.

  10. Biological properties of differently-aged human keratinocytes:population doubling time growth curve and cell cycle analysis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To explore the biological properties of keratinocytes from differently-aged healthy human beings. Methods Keratinocytes from fetus,teenager and middle-aged groups were separated and cultured. The population doubling time (PDT) and cell growth curve in different cells were compared,and the cell cycles were analyzed by flow cytometry. Results ① In primary culture of keratinocytes,the adherence time in middle-aged group was longer than that in fetus and teenager groups. However,all cell morphology sh...

  11. High glucose inhibits ClC-2 chloride channels and attenuates cell migration of rat keratinocytes

    Directory of Open Access Journals (Sweden)

    Pan F

    2015-08-01

    Full Text Available Fuqiang Pan, Rui Guo, Wenguang Cheng, Linlin Chai, Wenping Wang, Chuan Cao, Shirong LiDepartment of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, People’s Republic of China Background: Accumulating evidence has demonstrated that migration of keratinocytes is critical to wound epithelialization, and defects of this function result in chronic delayed-healing wounds in diabetes mellitus patients, and the migration has been proved to be associated with volume-activated chloride channels. The aim of the study is to investigate the effects of high glucose (HG, 25 mM on ClC-2 chloride channels and cell migration of keratinocytes.Methods: Newborn Sprague Dawley rats were used to isolate and culture the keratinocyte in this study. Immunofluorescence assay, real-time polymerase chain reaction, and Western blot assay were used to examine the expression of ClC-2 protein or mRNA. Scratch wound assay was used to measure the migratory ability of keratinocytes. Transwell cell migration assay was used to measure the invasion and migration of keratinocytes. Recombinant lentivirus vectors were established and transducted to keratinocytes. Whole-cell patch clamp was used to perform the electrophysiological studies.Results: We found that the expression of ClC-2 was significantly inhibited when keratinocytes were exposed to a HG (25 mM medium, accompanied by the decline of volume-activated Cl- current (ICl,vol, migration potential, and phosphorylated PI3K as compared to control group. When knockdown of ClC-2 by RNAi or pretreatment with wortmannin, similar results were observed, including ICl,vol and migration keratinocytes were inhibited.Conclusion: Our study proved that HG inhibited ClC-2 chloride channels and attenuated cell migration of rat keratinocytes via inhibiting PI3K signaling.Keywords: high glucose, keratinocytes, ClC-2, cell migration, PI3K

  12. Clinicopathological Features and Immunohistochemical Alterations of Keratinocyte Proliferation, Melanocyte Density, Smooth Muscle Hyperplasia and Nerve Fiber Distribution in Becker's Nevus

    Science.gov (United States)

    Sheng, Ping; Cheng, Yun-Long; Cai, Chuan-Chuan; Guo, Wei-Jin; Zhou, Ying; Shi, Ge

    2016-01-01

    Background Although Becker's nevus (BN) is a relatively common disease, the systematic studies of clinicopathological and immunohistochemical results are poorly reported. Objective To investigate the clinicopathological features and immunohistochemical alterations of keratinocyte proliferation, melanocyte density, smooth muscle hyperplasia and nerve fiber distribution in BN. Methods Clinical and pathological data were collected in 60 newly-diagnosed BN cases. Immunohistochemical stain of Ki-67, Melan-A, keratin 15, smooth muscle actin and protein gene product 9.5 was performed in 21 cases. Results The median diagnostic and onset age was 17 and 12 years, respectively. Skin lesions usually appeared on the upper trunk and upper limbs. The pathological features included the rete ridge elongation and fusion and basal hyperpigmentation. Epidermal Ki-67, Melan-A and keratin 15 expression and dermal nerve fiber length were significantly higher in lesional and perilesional skin than in normal skin (p<0.05~0.01), while smooth muscle actin expression was upregulated only in skin lesion (p<0.05). Conclusion Although the clinical diagnosis of BN is often straightforward, histopathology is helpful to differentiate from other pigmentary disorders. The hyperproliferation of keratinocytes, melanocytes, arrector pili muscle and dermal nerve fibers could be involved in the pathogenesis of BN. PMID:27904268

  13. Decorin gene expression and its regulation in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Castro-Munozledo, Federico [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico); Kuri-Harcuch, Walid, E-mail: walidkuri@gmail.com [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico)

    2011-07-22

    Highlights: {yields} We showed that cultured human diploid epidermal keratinocytes express and synthesize decorin. {yields} Decorin is found intracytoplasmic in suprabasal cells of cultures and in human epidermis. {yields} Decorin mRNA expression in cHEK is regulated by pro-inflammatory and proliferative cytokines. {yields} Decorin immunostaining of psoriatic lesions showed a lower intensity and altered intracytoplasmic arrangements. -- Abstract: In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.

  14. Transcriptional profiling of ectoderm specification to keratinocyte fate in human embryonic stem cells.

    Science.gov (United States)

    Tadeu, Ana Mafalda Baptista; Lin, Samantha; Hou, Lin; Chung, Lisa; Zhong, Mei; Zhao, Hongyu; Horsley, Valerie

    2015-01-01

    In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ-secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly, these genes are also associated with skin disorders and ectodermal defects, providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions.

  15. Spatial Distribution of Stem Cell-Like Keratinocytes in Dissected Compound Hair Follicles of the Dog.

    Directory of Open Access Journals (Sweden)

    Dominique J Wiener

    Full Text Available Hair cycle disturbances are common in dogs and comparable to some alopecic disorders in humans. A normal hair cycle is maintained by follicular stem cells which are predominately found in an area known as the bulge. Due to similar morphological characteristics of the bulge area in humans and dogs, the shared particularity of compound hair follicles as well as similarities in follicular biomarker expression, the dog is a promising model to study human hair cycle and stem cell disorders. To gain insight into the spatial distribution of follicular keratinocytes with stem cell potential in canine compound follicles, we microdissected hair follicles in anagen and telogen from skin samples of freshly euthanized dogs. The keratinocytes isolated from different locations were investigated for their colony forming efficiency, growth and differentiation potential as well as clonal growth. Our results indicate that i compound and single hair follicles exhibit a comparable spatial distribution pattern with respect to cells with high growth potential and stem cell-like characteristics, ii the lower isthmus (comprising the bulge harbors most cells with high growth potential in both, the anagen and the telogen hair cycle stage, iii unlike in other species, colonies with highest growth potential are rather small with an irregular perimeter and iv the keratinocytes derived from the bulbar region exhibit characteristics of actively dividing transit amplifying cells. Our results now provide the basis to conduct comparative studies of normal dogs and those with hair cycle disorders with the possibility to extend relevant findings to human patients.

  16. In Vitro Cytotoxicity and Phototoxicity Assessment of Acylglutamate Surfactants Using a Human Keratinocyte Cell Line

    OpenAIRE

    Abhay Kyadarkunte; Milind Patole; Varsha Pokharkar

    2014-01-01

    In the current study, human keratinocyte cell line was used as in vitro cell culture model to elucidate the effects of the fatty acid chain length of acylglutamate (amino acid-based surfactant) namely, sodium cocoyl glutamate, sodium lauroyl glutamate, and sodium myristoyl glutamate on their cytotoxicity and the ultraviolet B induced phototoxicity. The endpoint used to assess toxicity was a tetrazolium-based assay whereas, the phototoxic potential of acylglutamate surfactants was predicted u...

  17. A Sensitive Sensor Cell Line for the Detection of Oxidative Stress Responses in Cultured Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Ute Hofmann

    2014-06-01

    Full Text Available In the progress of allergic and irritant contact dermatitis, chemicals that cause the generation of reactive oxygen species trigger a heat shock response in keratinocytes. In this study, an optical sensor cell line based on cultured human keratinocytes (HaCaT cells expressing green fluorescent protein (GFP under the control of the stress-inducible HSP70B’ promoter were constructed. Exposure of HaCaT sensor cells to 25 µM cadmium, a model substance for oxidative stress induction, provoked a 1.7-fold increase in total glutathione and a ~300-fold induction of transcript level of the gene coding for heat shock protein HSP70B’. An extract of Arnica montana flowers resulted in a strong induction of the HSP70B’ gene and a pronounced decrease of total glutathione in keratinocytes. The HSP70B’ promoter-based sensor cells conveniently detected cadmium-induced stress using GFP fluorescence as read-out with a limit of detection of 6 µM cadmium. In addition the sensor cells responded to exposure of cells to A. montana extract with induction of GFP fluorescence. Thus, the HaCaT sensor cells provide a means for the automated detection of the compromised redox status of keratinocytes as an early indicator of the development of human skin disorders and could be applied for the prediction of skin irritation in more complex in vitro 3D human skin models and in the development of micro-total analysis systems (µTAS that may be utilized in dermatology, toxicology, pharmacology and drug screenings.

  18. A sensitive sensor cell line for the detection of oxidative stress responses in cultured human keratinocytes.

    Science.gov (United States)

    Hofmann, Ute; Priem, Melanie; Bartzsch, Christine; Winckler, Thomas; Feller, Karl-Heinz

    2014-06-25

    In the progress of allergic and irritant contact dermatitis, chemicals that cause the generation of reactive oxygen species trigger a heat shock response in keratinocytes. In this study, an optical sensor cell line based on cultured human keratinocytes (HaCaT cells) expressing green fluorescent protein (GFP) under the control of the stress-inducible HSP70B' promoter were constructed. Exposure of HaCaT sensor cells to 25 µM cadmium, a model substance for oxidative stress induction, provoked a 1.7-fold increase in total glutathione and a ~300-fold induction of transcript level of the gene coding for heat shock protein HSP70B'. An extract of Arnica montana flowers resulted in a strong induction of the HSP70B' gene and a pronounced decrease of total glutathione in keratinocytes. The HSP70B' promoter-based sensor cells conveniently detected cadmium-induced stress using GFP fluorescence as read-out with a limit of detection of 6 µM cadmium. In addition the sensor cells responded to exposure of cells to A. montana extract with induction of GFP fluorescence. Thus, the HaCaT sensor cells provide a means for the automated detection of the compromised redox status of keratinocytes as an early indicator of the development of human skin disorders and could be applied for the prediction of skin irritation in more complex in vitro 3D human skin models and in the development of micro-total analysis systems (µTAS) that may be utilized in dermatology, toxicology, pharmacology and drug screenings.

  19. Biological properties of differently-aged human keratinocytes:population doubling time growth curve and cell cycle analysis

    Institute of Scientific and Technical Information of China (English)

    Hui-qun Ma; Jie Feng; Lech Chyczewski; Jacek Niklinski

    2009-01-01

    Objective To explore the biological properties of keratinocytes from differently-aged healthy human beings. Methods Keratinocytes from fetus, teenager and middle-aged groups were separated and cultured. The population doubling time (PDT) and cell growth curve in different cells were compared, and the cell cycles were analyzed by flow cytometry. Results ① In primary culture of keratinocytes, the adherence time in middle-aged group was longer than that in fetus and teenager groups. However, all cell morphology showed no obvioas differences. In subculture of kecatinocytes, with donator's age increasing, time of cell adherence prolonged, passage number decreused and differences in cell morphology were obrioas. ② The average PDT of keratinocytes was shorter in fetus group than in teenager and middle-aged groups. Bat difference in cell growth curve between different passages was not observed. ③ Keratinocytes showed G2/M period in fetus group but G0/G1 period in teenager and middle-aged groups mainly. Conclusion As age increases, the biological properties of keratinocytes change obviously.

  20. RAC1 in keratinocytes regulates crosstalk to immune cells by Arp2/3-dependent control of STAT1

    DEFF Research Database (Denmark)

    Pedersen, Esben Ditlev Kølle; Wang, Zhipeng; Stanley, Alanna;

    2012-01-01

    Crosstalk between keratinocytes and immune cells is crucial for the immunological barrier function of the skin, and aberrant crosstalk contributes to inflammatory skin diseases. Using mice with a keratinocyte-restricted deletion of the RAC1 gene we found that RAC1 in keratinocytes plays an import...... hypersensitive to inflammatory stimuli both in vitro and in vivo, suggesting a major role for RAC1 in regulating the crosstalk between the epidermis and the immune system.......Crosstalk between keratinocytes and immune cells is crucial for the immunological barrier function of the skin, and aberrant crosstalk contributes to inflammatory skin diseases. Using mice with a keratinocyte-restricted deletion of the RAC1 gene we found that RAC1 in keratinocytes plays...... an important role in modulating the interferon (IFN) response in skin. These RAC1 mutant mice showed increased sensitivity in an irritant contact dermatitis model, abnormal keratinocyte differentiation, and increased expression of immune response genes including the IFN signal transducer STAT1. Loss of RAC1...

  1. In Vitro Cytotoxicity and Phototoxicity Assessment of Acylglutamate Surfactants Using a Human Keratinocyte Cell Line

    Directory of Open Access Journals (Sweden)

    Abhay Kyadarkunte

    2014-07-01

    Full Text Available In the current study, human keratinocyte cell line was used as in vitro cell culture model to elucidate the effects of the fatty acid chain length of acylglutamate (amino acid-based surfactant namely, sodium cocoyl glutamate, sodium lauroyl glutamate, and sodium myristoyl glutamate on their cytotoxicity and the ultraviolet B induced phototoxicity. The endpoint used to assess toxicity was a tetrazolium-based assay whereas, the phototoxic potential of acylglutamate surfactants was predicted using two models namely, the Photo-Irritation Factor and Mean Photo Effect. The results of this study showed that the fatty acid chain length of acylglutamate greatly influences toxic effects on human keratinocyte cells. In addition, all the acylglutamate surfactants tested on human keratinocyte cells demonstrated significantly less cytotoxicity (when irradiated and non-irradiated with ultraviolet B light; p < 0.05 and no phototoxic potential was observed in any of the acylglutamate surfactants, when compared with the positive control chlorpromazine. In conclusion, the in vitro studies confirm the suitability of sodium lauroyl glutamate destined for the synthesis and stabilization of lipid nanoparticles.

  2. Isorhamnetin Protects Human Keratinocytes against Ultraviolet B-Induced Cell Damage

    OpenAIRE

    Han, Xia; Piao, Mei Jing; Kim, Ki Cheon; Madduma Hewage, Susara Ruwan Kumara; Yoo, Eun Sook; Koh, Young Sang; Kang, Hee Kyoung; Jennifer H. Shin; PARK, YEUNSOO; Yoo, Suk Jae; Chae, Sungwook; Hyun, Jin Won

    2015-01-01

    Isorhamnetin (3-methylquercetin) is a flavonoid derived from the fruits of certain medicinal plants. This study investigated the photoprotective properties of isorhamnetin against cell damage and apoptosis resulting from excessive ultraviolet (UV) B exposure in human HaCaT keratinocytes. Isorhamnetin eliminated UVB-induced intracellular reactive oxygen species (ROS) and attenuated the oxidative modification of DNA, lipids, and proteins in response to UVB radiation. Moreover, isorhamnetin repr...

  3. Comparison of epidermal keratinocytes and dermal fibroblasts as potential target cells for somatic gene therapy of phenylketonuria

    DEFF Research Database (Denmark)

    Christensen, Rikke; Güttler, Flemming; Jensen, Thomas G

    2002-01-01

    gene therapy. We have previously shown that overexpression of PAH and GTP-CH in primary human keratinocytes leads to high levels of phenylalanine clearance without BH(4) supplementation [Gene Ther. 7 (2000) 1971]. Here, we investigate the capacity of fibroblasts, another cell type from the skin......, to metabolize phenylalanine. After retroviral gene transfer of PAH and GTP-CH both normal and PKU patient fibroblasts were able to metabolize phenylalanine, however, in lower amounts compared to genetically modified keratinocytes. Further comparative analyses between keratinocytes and fibroblasts revealed...

  4. Bathing in carbon dioxide-enriched water alters protein expression in keratinocytes of skin tissue in rats

    Science.gov (United States)

    Kälsch, Julia; Pott, Leona L.; Takeda, Atsushi; Kumamoto, Hideo; Möllmann, Dorothe; Canbay, Ali; Sitek, Barbara; Baba, Hideo A.

    2016-10-01

    Beneficial effects of balneotherapy using naturally occurring carbonated water (CO2 enriched) have been known since the Middle Ages. Although this therapy is clinically applied for peripheral artery disease and skin disorder, the underlying mechanisms are not fully elucidated. Under controlled conditions, rats were bathed in either CO2-enriched water (CO2 content 1200 mg/L) or tap water, both at 37 °C, for 10 min daily over 4 weeks. Proliferation activity was assessed by Ki67 immunohistochemistry of the epidermis of the abdomen. The capillary density was assessed by immunodetection of isolectin-positive cells. Using cryo-fixed abdominal skin epidermis, follicle cells and stroma tissue containing capillaries were separately isolated by means of laser microdissection and subjected to proteomic analysis using label-free technique. Differentially expressed proteins were validated by immunohistochemistry. Proliferation activity of keratinocytes was not significantly different in the epidermis after bathing in CO2-enriched water, and also, capillary density did not change. Proteomic analysis revealed up to 36 significantly regulated proteins in the analyzed tissue. Based on the best expression profiles, ten proteins were selected for immunohistochemical validation. Only one protein, far upstream element binding protein 2 (FUBP2), was similarly downregulated in the epidermis after bathing in CO2-enriched water with both techniques. Low FUBP2 expression was associated with low c-Myc immune-expression in keratinocytes. Long-term bathing in CO2-enriched water showed a cellular protein response of epithelial cells in the epidermis which was detectable by two different methods. However, differences in proliferation activity or capillary density were not detected in the normal skin.

  5. Effects of Arsenic on Cell Proliferation and Its Related Gene Expression in Human Epidermal Keratinocyte

    Institute of Scientific and Technical Information of China (English)

    顾军; 毕新岭; 米庆胜; 文军慧

    2002-01-01

    Objective:To study the effects of low concentration of arsenic (As2O3) on DNA synthesisand related transcription factor gene E2F1 expression in keratinocyte. Methods: Human epidermal kerati-nocyte (cell line HaCaT) cultured in vitro was used. After treatment with various concentrations of arse-nic, DNA synthesis and E2F1 expression in HaCaT cells were detected by using 3 H-TdR method and RT-PCR. Results: Arsenic caused a modest increase of keratinocyte DNA synthesis when the concentrationreached the range within 0.5-16 nmol/L, but the amount of incorporated 3 H-TdR decreased and returnedto baseline level when the concentration of arsenic increased to over 16 nmol/L. RT-PCR analysis showedthe level of E2F1 mRNA was elevated in HaCaT cells with the increase of DNA synthesis. Conclusion:Ar-senic of a certain concentration could increase DNA synthesis and enhance E2F1 expression in HaCaT cellline, which might be one of the pathological mechanisms of skin disease related to arsenic.

  6. Expression of TNF-related apoptosis-inducing ligand (TRAIL in keratinocytes mediates apoptotic cell death in allogenic T cells

    Directory of Open Access Journals (Sweden)

    Kiefer Paul

    2009-11-01

    Full Text Available Abstract The objective of the present study was to evaluate the aptitude of TRAIL gene expression for inducing apoptosis in co-cultivated T-cells. This should allow preparing a strategy for the development of a durable, allogenic skin substitute based on the induction of an immune-privileged transplant. In order to counteract the significant potential of rejection in transplanted allogenic keratinocytes, we created a murine keratinocyte cell line which expressed TRAIL through stable gene transfer. The exogenic protein was localized on the cellular surface and was not found in soluble condition as sTRAIL. Contact to TRAIL expressing cells in co-culture induced cell death in sensitive Jurkat-cells, which was further intensified by lymphocyte activation. This cytotoxic effect is due to the induction of apoptosis. We therefore assume that the de-novo expression of TRAIL in keratinocytes can trigger apoptosis in activated lymphocytes and thus prevent the rejection of keratinocytes in allogenic, immune-privileged transplants.

  7. Shuttling of the autoantigen La between nucleus and cell surface after uv irradiation of human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, M.; Chang, S.; Slor, H.; Kukulies, J.; Mueller, W.E. (Universitaet, Mainz (Germany, F.R.))

    1990-12-01

    During the past years we have established that the nuclear autoantigen La shuttles between the nucleus and the cytoplasm in tumor cells after inhibition of transcription or virus infection. We reinvestigated this shuttling using primary human keratinocytes from both healthy donors and patients with xeroderma pigmentosum. Ultraviolet irradiation resulted in both an inhibition of transcription and a translocation of La protein from the nucleus to the cytoplasm. After a prolonged inhibition of transcription La protein relocated into the nucleus and assembled with nuclear storage regions. The uv-induced shuttling included a translocation to the cell surface, where La protein colocalized with epidermal growth factor receptors.

  8. Human keratinocyte caspase-14 expression is altered in human epidermal 3D models by dexamethasone and by natural products used in cosmetics.

    Science.gov (United States)

    Kataoka, Saori; Hattori, Kenji; Date, Akira; Tamura, Hiroomi

    2013-10-01

    Caspase-14 is a cysteinyl-aspartate-specific proteinase that is specifically expressed in epidermal keratinocytes. Dysregulation of caspase-14 expression is implicated in impaired skin barrier formation. To elucidate the regulation of caspase-14 in differentiated keratinocytes, we characterized the expression of caspase-14 in normal human epidermal keratinocytes (NHEKs) and two types of three-dimensional (3D) human epidermis culture models, EPI-200 and EPI-201, via RT-PCR and immunoblot analyses. Caspase-14 expression was absent in subconfluent NHEKs, but was present in confluent NHEKs as well as those induced to differentiate by calcium. Caspase-14 expression levels in the 3D epidermis models were almost equal to that in the Ca(2+)-treated differentiated NHEKs. Despite the presence of caspase-14 expression in these models, caspase-14 activity was found only in the mature 3D skin model, EPI-200. This was confirmed by detection of a 17 kDa cleaved fragment of caspase-14 present only in the EPI-200 model. Since glucocorticoid (GC) receptor is required for skin barrier competence, we investigated whether the GC dexamethasone (Dex) and various natural components of common skin moisturizers affect caspase-14 expression in keratinocytes. Dex decreased caspase-14 expression in undifferentiated, but not differentiated, NHEKs. Conversely, Dex increased caspase-14 expression in both 3D skin models, although it did not alter caspase protease activity. Similar to treatment with Dex, treatment of the premature 3D skin mode, EPI-201 with a Galactomyces ferment filtrate markedly increased expression of caspase-14. Further, these results suggest that the effect of Dex, or lack thereof, on caspase-14 expression is dependent on the stage of keratinocyte differentiation.

  9. Enrichment of breast cancer stem cells using a keratinocyte serum-free medium

    Institute of Scientific and Technical Information of China (English)

    LIU Zhen-zhen; CHEN Ping; LU Zhen-duo; CUI Shu-de; DONG Zi-ming

    2011-01-01

    Background Keratinocyte serum-free medium (K-SFM) is a defined medium used to support the growth of primary keratinocytes and embryonic stem cell. The aim of this research was to optimize enrichment of breast cancer stem cells (CSCs) using K-SFM.Methods A K-SFM was used to enrich CSCs from two breast cancer cell lines and a primary culture of breast cancer.RPMI-1640 supplemented with 10% fetal calf serum (FCS) was used as a control. CSCs were identified with flow cytometry using CD44+/CD24-as molecular markers. The expression of a variety of CSC markers (Oct-4, ABCG2, Nanog,N-cadherin, and E-cadherin) was analyzed with real-time PCR.Results Much higher percentage of CSCs was achieved with K-SFM: 17.3% for MCF-7 cells, 17.4% for SKBR-3, and 20.0% for primary breast cancer culture. Less than 1% CSC was achieved using RPMI-1640 supplemented with 10% FCS. In comparison to the CSCs obtained with RPMI-1640, CSCs in the K-SFM expressed higher levels of Oct-4,ABCG2, Nanog and N-cadherin, and lower level of E-cadherin.Conclusion K-SFM is an optimal culture medium to maintain and to enrich breast CSCs.

  10. Keratinocytes function as accessory cells for presentation of endogenous antigen expressed in the epidermis.

    Science.gov (United States)

    Kim, Brian S; Miyagawa, Fumi; Cho, Young-Hun; Bennett, Clare L; Clausen, Björn E; Katz, Stephen I

    2009-12-01

    The precise contribution(s) of skin dendritic cells (DCs) to immune responses in the skin has not been well delineated. We developed an intradermal (i.d.) injection model in which CD8+ T (OT-I) cells that express ovalbumin (OVA) peptide-specific TCRs (Valpha2/Vbeta5) are delivered directly to the dermis of transgenic (Tg) mice expressing OVA in the epidermis. After i.d. injection, these mice reliably develop skin graft-versus-host disease (GVHD) by day 7. To determine the relative contribution of Langerhans cells (LCs) to the ensuing GVHD-like reaction, we generated K14-OVA x Langerin-diphtheria-toxin-receptor (Langerin-DTR) Tg mice to allow conditional ablation of LCs in the epidermis. To delineate the role of dermal DCs (dDCs) in the reaction, we also generated K14-OVA Tg chimeras using beta(2)-microglobulin-deficient (beta(2)m) congenic donor bone marrow cells. Dermal DCs in these mice cannot present OVA to autoreactive T cells (OT-I cells), whereas the LCs are antigen presentation-competent. Unexpectedly, OT-I cell injection into diphtheria toxin (DT)-treated beta(2)m --> K14-OVA x Langerin-DTR Tg mice resulted in skin GVHD. Thus, in vivo, both LC and dDC appear to be dispensable for the induction of keratinocyte-directed, CD8-mediated effector immune responses. Furthermore and surprisingly, OVA-expressing epidermal cells depleted of LCs that could not initiate allogeneic epidermal lymphocyte reactions activated naive OT-I cells in vitro. These results indicate that keratinocytes may function as accessory cells competent to prime naive skin-reactive T cells.JID JOURNAL CLUB ARTICLE: For questions, answers, and open discussion about this article, please go to http://network.nature.com/group/jidclub.

  11. Hyperthermia-induced micronucleus formation in a human keratinocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Hintzsche, Henning; Riese, Thorsten [Universitaet Wuerzburg, Institut fuer Pharmakologie und Toxikologie, Versbacher Str. 9, 97078 Wuerzburg (Germany); Stopper, Helga, E-mail: Stopper@toxi.uni-wuerzburg.de [Universitaet Wuerzburg, Institut fuer Pharmakologie und Toxikologie, Versbacher Str. 9, 97078 Wuerzburg (Germany)

    2012-10-15

    Elevated temperature can cause biological effects in vitro and in vivo. Many studies on effects of hypo- and hyperthermia have been conducted, but only few studies systematically investigated the formation of genomic damage in the micronucleus test in human cells in vitro as a consequence of different temperatures. In the present study, HaCaT human keratinocytes were exposed to different temperatures from 37 Degree-Sign C to 42 Degree-Sign C for 24 h in a regular cell culture incubator. Micronucleus frequency as a marker of genomic damage was elevated in a temperature-dependent and statistically significant manner. Apoptosis occurred at temperatures of 39 Degree-Sign C or higher. Cell proliferation was unaffected up to 40 Degree-Sign C and decreased at 41 Degree-Sign C and 42 Degree-Sign C. Expression of the heat shock protein Hsp70 was elevated, particularly at temperatures of 40 Degree-Sign C and higher. These findings are in agreement with several in vivo studies and some in vitro studies looking at single, specific temperatures, but a systematically investigated temperature-dependent increase of genomic damage in human keratinocytes in vitro is demonstrated for the first time here.

  12. Cobalt distribution in keratinocyte cells indicates nuclear and peri-nuclear accumulation and interaction with magnesium and zinc homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, R.; Seznec, H.; Moretto, Ph. [Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, (France); Bresson, C.; Sandre, C.; Gombert, C.; Moulin, Ch. [CEA, DEN, SECR, Lab Speciat Radionucleides et Mol, F-91191 Gif Sur Yvette, (France); Tabarant, M. [CEA, DEN, SCP, Lab React Surfaces et Interfaces, F-91191 Gif Sur Yvette, (France); Bleuet, P. [European Synchrotron Radiat Facil, F-38043 Grenoble, (France); Simionovici, A. [Univ Grenoble 1, LGIT, OSUG, CNRS, F-38041 Grenoble, (France)

    2009-07-01

    Cobalt is known to be toxic at high concentration, to induce contact dermatosis, and occupational radiation skin damage because of its use in nuclear industry. We investigated the intracellular distribution of cobalt in HaCaT human keratinocytes as a model of skin cells, and its interaction with endogenous trace elements. Direct micro-chemical imaging based on ion beam techniques was applied to determine the quantitative distribution of cobalt in HaCaT cells. In addition, synchrotron radiation X-ray fluorescence microanalysis in tomography mode was performed, for the first time on a single cell, to determine the 3D intracellular distribution of cobalt. Results obtained with these micro-chemical techniques were compared to a more classical method based on cellular fractionation followed by inductively coupled plasma atomic emission spectrometry (ICP-AES) measurements. Cobalt was found to accumulate in the cell nucleus and in peri-nuclear structures indicating the possible direct interaction with genomic DNA, and nuclear proteins. The peri-nuclear accumulation in the cytosol suggests that cobalt could be stored in the endoplasmic reticulum or the Golgi apparatus. The multi-elemental analysis revealed that cobalt exposure significantly decreased magnesium and zinc content, with a likely competition of cobalt for magnesium and zinc binding sites in proteins. Overall, these data suggest a multiform toxicity of cobalt related to interactions with genomic DNA and nuclear proteins, and to the alteration of zinc and magnesium homeostasis. (authors)

  13. Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia.

    Science.gov (United States)

    Dai, D; Li, L; Huebner, A; Zeng, H; Guevara, E; Claypool, D J; Liu, A; Chen, J

    2013-01-01

    Genes involved in the planar cell polarity (PCP) signaling pathway are essential for a number of developmental processes in mammals, such as convergent extension and ciliogenesis. Tissue-specific PCP effector genes of the PCP signaling pathway are believed to mediate PCP signals in a tissue- and cell type-specific manner. However, how PCP signaling controls the morphogenesis of mammalian tissues remains unclear. In this study, we investigated the role of inturned (Intu), a tissue-specific PCP effector gene, during hair follicle formation in mice. Tissue-specific disruption of Intu in embryonic epidermis resulted in hair follicle morphogenesis arrest because of the failure of follicular keratinocyte to differentiate. Targeting Intu in the epidermis resulted in almost complete loss of primary cilia in epidermal and follicular keratinocytes, and a suppressed hedgehog signaling pathway. Surprisingly, the epidermal stratification and differentiation programs and barrier function were not affected. These results demonstrate that tissue-specific PCP effector genes of the PCP signaling pathway control the differentiation of keratinocytes through the primary cilia in a cell fate- and context-dependent manner, which may be critical in orchestrating the propagation and interpretation of polarity signals established by the core PCP components.

  14. Effect of extremely low-frequency electromagnetic fields on antioxidant activity in the human keratinocyte cell line NCTC 2544.

    Science.gov (United States)

    Calcabrini, Cinzia; Mancini, Umberto; De Bellis, Roberta; Diaz, Anna Rita; Martinelli, Maddalena; Cucchiarini, Luigi; Sestili, Piero; Stocchi, Vilberto; Potenza, Lucia

    2016-03-22

    Some epidemiological studies have suggested possible associations between exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) and various diseases. Recently, ELF-EMF has been considered as a therapeutic agent. To support ELF-EMF use in regenerative medicine, in particular in the treatment of skin injuries, we investigated whether significant cell damage occurs after ELF-EMF exposure. Reactive oxygen species (ROS) production was evaluated in the human keratinocyte exposed for 1 H to 50 Hz ELF-EMF in a range of field strengths from 0.25 to 2 G. Significant ROS increases resulted at 0.5 and 1 G and under these flux densities ROS production, glutathione content, antioxidant defense activity, and lipid peroxidation markers were assessed for different lengths of time. Analyzed parameters of antioxidant defense and membrane integrity showed a different trend at two selected magnetic fluxes, with a greater sensitivity of the cells exposed to 0.5 G, especially after 1 H. All significant alterations observed in the first 4 H of exposure reverted to controls 24 H after suggesting that under these conditions, ELF-EMF induces a slight oxidative stress that does not overwhelm the metabolic capacity of the cells or have a cytotoxic effect.

  15. Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity Using Human Keratinocyte Cells

    Science.gov (United States)

    Shvedova, Anna A.; Castranova, Vincent; Kisin, Elena R.; Schwegler-Berry, Diane; Murray, Ashley R.; Gandelsman, Vadim Z.; Maynard, Andrew; Baron, Paul

    2003-01-01

    Carbon nanotubes are new members of carbon allotropes similar to fullerenes and graphite. Because of their unique electrical, mechanical, and thermal properties, carbon nanotubes are important for novel applications in the electronics, aerospace, and computer industries. Exposure to graphite and carbon materials has been associated with increased incidence of skin diseases, such as carbon fiber dermatitis, hyperkeratosis, and naevi. We investigated adverse effects of single-wall carbon nanotubes (SWCNT) using a cell culture of immortalized human epidermal keratinocytes (HaCaT). After 18 h of exposure of HaCaT to SWCNT, oxidative stress and cellular toxicity were indicated by formation of free radicals, accumulation of peroxidative products, antioxidant depletion, and loss of cell viability. Exposure to SWCNT also resulted in ultrastructural and morphological changes in cultured skin cells. These data indicate that dermal exposure to unrefined SWCNT may lead to dermal toxicity due to accelerated oxidative stress in the skin of exposed workers.

  16. Effect of Wnt3a on Keratinocytes Utilizing in Vitro and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Ju-Suk Nam

    2014-03-01

    Full Text Available Wingless-type (Wnt signaling proteins participate in various cell developmental processes. A suppressive role of Wnt5a on keratinocyte growth has already been observed. However, the role of other Wnt proteins in proliferation and differentiation of keratinocytes remains unknown. Here, we investigated the effects of the Wnt ligand, Wnt3a, on proliferation and differentiation of keratinocytes. Keratinocytes from normal human skin were cultured and treated with recombinant Wnt3a alone or in combination with the inflammatory cytokine, tumor necrosis factor α (TNFα. Furthermore, using bioinformatics, we analyzed the biochemical parameters, molecular evolution, and protein–protein interaction network for the Wnt family. Application of recombinant Wnt3a showed an anti-proliferative effect on keratinocytes in a dose-dependent manner. After treatment with TNFα, Wnt3a still demonstrated an anti-proliferative effect on human keratinocytes. Exogenous treatment of Wnt3a was unable to alter mRNA expression of differentiation markers of keratinocytes, whereas an altered expression was observed in TNFα-stimulated keratinocytes. In silico phylogenetic, biochemical, and protein–protein interaction analysis showed several close relationships among the family members of the Wnt family. Moreover, a close phylogenetic and biochemical similarity was observed between Wnt3a and Wnt5a. Finally, we proposed a hypothetical mechanism to illustrate how the Wnt3a protein may inhibit the process of proliferation in keratinocytes, which would be useful for future researchers.

  17. Interaction of Mycobacterium leprae with the HaCaT human keratinocyte cell line: new frontiers in the cellular immunology of leprosy.

    Science.gov (United States)

    Lyrio, Eloah C D; Campos-Souza, Ivy C; Corrêa, Luiz C D; Lechuga, Guilherme C; Verícimo, Maurício; Castro, Helena C; Bourguignon, Saulo C; Côrte-Real, Suzana; Ratcliffe, Norman; Declercq, Wim; Santos, Dilvani O

    2015-07-01

    Leprosy is a chronic granulomatous disease caused by Mycobacterium leprae affecting the skin and peripheral nerves. Despite M. leprae invasion of the skin and keratinocytes importance in innate immunity, the interaction of these cells in vitro during M. leprae infection is poorly understood. Conventional and fluorescence optical microscopy, transmission electronic microscopy, flow cytometry and ELISA were used to study the in vitro interaction of M. leprae with the HaCaT human keratinocyte cell line. Keratinocytes uptake of M. leprae is described, and modulation of the surface expression of CD80 and CD209, cathelicidin expression and TNF-α and IL-1β production of human keratinocytes are compared with dendritic cells and macrophages during M. leprae interaction. This study demonstrated that M. leprae interaction with human keratinocytes enhanced expression of cathelicidin and greatly increased TNF-α production. The highest spontaneous expression of cathelicidin was by dendritic cells which are less susceptible to M. leprae infection. In contrast, keratinocytes displayed low spontaneous cathelicidin expression and were more susceptible to M. leprae infection than dendritic cells. The results show, for the first time, an active role for keratinocytes during infection by irradiated whole cells of M. leprae and the effect of vitamin D on this process. They also suggest that therapies which target cathelicidin modulation may provide novel approaches for treatment of leprosy.

  18. Increase of integrin α6+p63+ cells after ultraviolet B irradiation in normal human keratinocytes

    Directory of Open Access Journals (Sweden)

    Gyeong-hun Park

    2009-12-01

    Full Text Available Epidermal stem cells (SC are believed to be resistant to environmental damage for the purpose of self renewal. Most promising SC markers include integrin a6 and p63. The aim of our study was to determine whether the integrin a6+p63+ cell fraction representative of the epidermal progenitor or SC is increased after ultraviolet B (UVB irradiation and to clarify the hypothesis that epidermal SC are resistant to high-dose UVB damage. We irradiated early passage normal human keratinocytes (NHK with 0, 25, 50, and 100 mJ/cm2 UVB. The percentage of cell death was calculated. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR and western blotting analyses were performed to identify integrin a6 and p63, and flow cytometry analysis with integrin a6 and p63 antibodies was done. After 50 and 100 mJ/cm2 UVB, integrin a6+p63+cells were found to be much increased by fluorescence-activated cell sorting. Expression of integrin a6 and p63 was increased in NHK after UVB irradiation, which was shown with real-time RT-PCR and western blotting analyses. We concluded that an increase of integrin a6+p63+ cells after high-dose UVB may suggest that the putative progenitor or SC are resistant to UVB irradiation.

  19. Effect of lead on IL-8 production and cell proliferation in human oral keratinocytes

    Institute of Scientific and Technical Information of China (English)

    Thaweboon Srosiri; Poomsawat Sopee; Thaweboon Boonyanit

    2010-01-01

    Objective:To investigate the effect of lead on the production of IL-8 and cell proliferation in normal human oral keratinocytes (NHKs). Methods: NHKs were prepared as outgrowths from normal human buccal mucosa. The cells were treated with three concentrations of lead glutamate (4.5í10-5M, 4.5í10-6M and 4.5í10-7M). NHKs grown in glutamic acid were used as control. The amounts of IL-8 secreted in the culture supernatants were evaluated at 12 and 24 h using enzyme-linked immunospecific assay (ELISA). Cell proliferation was determined by the MTT colorimetric assay. Three cultures were used for each experiment, and three independent experiments were performed. Analysis of variance and Duncan’s multiple range tests were used for statistical analysis. Results:An elevation of IL-8 in culture supernatants of NHKs treated with lead at all concentrations at 12 and 24 h after exposure in a dose-dependent manner was revealed. A significant increase in cell numbers was observed only at 24 h exposed to 4.5í10-5M lead glutamate. Conclusions: The capacity of NHKs, to secrete IL-8, enhanced by lead glutamate, is demonstrated here. Induction of cell proliferation is revealed only after exposure to high lead concentration. The elevation of secreted IL-8 is a probable initial sign for the acute inflammatory response and may be involved in the pathogenesis of lead stomatitis.

  20. Cell Density-Dependent Upregulation of PDCD4 in Keratinocytes and Its Implications for Epidermal Homeostasis and Repair

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2015-12-01

    Full Text Available Programmed cell death 4 (PDCD4 is one multi-functional tumor suppressor inhibiting neoplastic transformation and tumor invasion. The role of PDCD4 in tumorigenesis has attracted more attention and has been systematically elucidated in cutaneous tumors. However, the normal biological function of PDCD4 in skin is still unclear. In this study, for the first time, we find that tumor suppressor PDCD4 is uniquely induced in a cell density-dependent manner in keratinocytes. To determine the potential role of PDCD4 in keratinocyte cell biology, we show that knockdown of PDCD4 by siRNAs can promote cell proliferation in lower cell density and partially impair contact inhibition in confluent HaCaT cells, indicating that PDCD4 serves as an important regulator of keratinocytes proliferation and contact inhibition in vitro. Further, knockdown of PDCD4 can induce upregulation of cyclin D1, one key regulator of the cell cycle. Furthermore, the expression patterns of PDCD4 in normal skin, different hair cycles and the process of wound healing are described in detail in vivo, which suggest a steady-state regulatory role of PDCD4 in epidermal homeostasis and wound healing. These findings provide a novel molecular mechanism for keratinocytes’ biology and indicate that PDCD4 plays a role in epidermal homeostasis.

  1. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Sandre, C.; Moulin, C.; Bresson, C. [CEA Saclay, DEN, SECR, Lab Speciat Radionucleides and Mol, F-91191 Gif Sur Yvette (France); Gault, N. [CEA Fontenay Roses, DSV IRCM SCSR LRTS, F-92265 Fontenay Aux Roses (France); Poncy, J. L. [CEA Bruyeres Le Chatel, DSV IRCM SREIT LRT, F-91680 Bruyeres Le Chatel (France); Lefaix, J. L. [CEA Caen, DSV IRCM SRO LARIA, F-14070 Caen (France)

    2010-07-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B{sub 12}, but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, {sup 58}Co and {sup 60}Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl{sub 2}) with or without gamma-ray doses to mimic contamination by {sup 60}Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate gamma-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  2. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Gault, N. [CEA Fontenay aux Roses, DSV/IRCM/SCSR/LRTS, 92265 Fontenay aux Rose (France); Sandre, C.; Moulin, B.; Bresson, C. [CEA, DEN, SECR, Laboratoire de Speciation des Radionucleides et des Molecules, F-91191 Gif-sur-Yvette (France); Poncy, J.L. [CEA Bruyeres Le Chatel, DSV/IRCM/SREIT/LRT, 91680 Bruyeres Le Chatel (France); Lefaix, J.L. [CEA Caen, DSV/IRCM/SRO/LARIA, 14070 Caen (France)

    2010-07-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B12, but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, {sup 58}Co and {sup 60}Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl{sub 2}) with or without {gamma}-ray doses to mimic contamination by {sup 60}Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate {gamma}-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  3. Keratinocyte growth factor modulates alveolar epithelial cell phenotype in vitro: expression of aquaporin 5.

    Science.gov (United States)

    Borok, Z; Lubman, R L; Danto, S I; Zhang, X L; Zabski, S M; King, L S; Lee, D M; Agre, P; Crandall, E D

    1998-04-01

    We investigated the role of keratinocyte growth factor (KGF) in regulation of alveolar epithelial cell (AEC) phenotype in vitro. Effects of KGF on cell morphology, expression of surfactant apoproteins A, B, and C (SP-A, -B, and -C), and expression of aquaporin 5 (AQP5), a water channel present in situ on the apical surface of alveolar type I (AT1) cells but not expressed in alveolar type II (AT2) cells, were evaluated in AECs grown in primary culture. Observations were made on AEC monolayers grown in serum-free medium without KGF (control) or grown continuously in the presence of KGF (10 ng/ml) from either Day 0 (i.e., the time of plating) or Day 4 or 6 through Day 8 in culture. AECs monolayers express AQP5 only on their apical surfaces as determined by cell surface biotinylation studies. Control AECs grown in the absence of KGF through Day 8 express increasing levels of AQP5, consistent with transition toward the AT1 cell phenotype. Exposure of AECs to KGF from Day 0 results in decreased AQP5 expression, retention of a cuboidal morphology, and greater numbers of lamellar bodies relative to control on Day 8 in culture. AECs treated with KGF from Day 4 or 6 exhibit a decrease in AQP5 expression through subsequent days in culture, as well as an increase in expression of surfactant apoproteins. These data, showing that KGF both prevents and reverses the increase in AQP5 (and decrease in surfactant apoprotein) expression that accompanies progression of the AT2 toward the AT1 cell phenotype, support the concepts that transdifferentiation between AT2 and AT1 cell phenotypes is at least partially reversible and that KGF may play a major role in modulating AEC phenotype.

  4. Protein-kinase-Cmu expression correlates with enhanced keratinocyte proliferation in normal and neoplastic mouse epidermis and in cell culture.

    Science.gov (United States)

    Rennecke, J; Rehberger, P A; Fürstenberger, G; Johannes, F J; Stöhr, M; Marks, F; Richter, K H

    1999-01-05

    In order to gain insight into the biological function of a PKC iso-enzyme, the protein kinase Cmu, we analyzed the expression pattern of this protein in mouse epidermis and keratinocytes in culture. Daily analysis of neonatal mouse epidermis immediately after birth showed a time-dependent reduction in the PKCmu content. Expression of the proliferating-cell nuclear antigen (PCNA), indicative of the proliferative state of cells, was reduced synchronously with PKCmu as the hyperplastic state of the neonatal tissue declined. In epidermal mouse keratinocytes, fractionated according to their maturation state, PKCmu expression was restricted to PCNA-positive basal-cell fractions. In primary cultures of those cells, growth arrest and induction of terminal differentiation by Ca2+ resulted in strongly reduced PKCmu expression, concomitantly with the loss of PCNA expression. Treatment of PMK-R1 keratinocytes with 100 nM of the mitogen 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in activation of PKCmu, reflected by translocation from the cytosolic to the particulate fraction and by shifts in electrophoretic mobility. DNA synthesis was significantly inhibited by the PKCmu inhibitor Goedecke 6976, while Goedecke 6983 did not inhibit PKCmu. Carcinomas generated according to the 2-stage carcinogenesis protocol in mouse skin consistently exhibited high levels of PKCmu. These data correlate PKCmu expression with the proliferative state of murine keratinocytes and point to a role of PKCmu in growth stimulation. A correlation between PKCmu expression and enhanced cell proliferation was also observed for NIH3T3 fibroblasts transfected with and overexpressing human PKCmu.

  5. Induction of Interleukin-22 (IL-22) production in CD4+ T Cells by IL-17A Secreted from CpG-Stimulated Keratinocytes

    Science.gov (United States)

    Li, Zheng Jun; Choi, Dae-Kyoung; Sohn, Kyung-Cheol; Lim, Seul Ki; Im, Myung; Lee, Young; Seo, Young-Joon; Kim, Chang Deok

    2016-01-01

    Background Interleukin-17A (IL-17A) is mainly secreted from Th17 cells that are activated by various stimuli including CpG oligodeoxynucleotide, a Toll-like receptor 9 (TLR9) ligand. Recently, it has been demonstrated that keratinocytes play an important role in the pathogenesis of psoriasis. Objective To investigate the potential role of keratinocytes, we examined whether TLR9 ligand CpG induces IL-17A expression in keratinocytes. Methods We used HaCaT keratinocytes as a model system, and determined CpG-induced IL-17A using enzyme-linked immunosorbent assay and Western blot. Results When HaCaT keratinocytes were treated with CpG, the expression of several cytokines including IL-17A, tumor necrosis factor-α and CCL20 was markedly increased. Treatment with nuclear factor (NF)-κB inhibitor significantly blocked the CpG-induced IL-17A production, indicating that CpG induced IL-17A expression through the NF-κB signaling pathway. In addition, IL-17A secreted from keratinocytes stimulated the CD4+ T cells, resulting in strong induction of IL-22 production. Conclusion Since IL-22 is an important mediator for psoriatic inflammation, our data suggest that keratinocytes can participate in the pathogenesis of psoriasis via the TLR9-dependent IL-17A production. PMID:27746637

  6. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells

    Directory of Open Access Journals (Sweden)

    Leslie A. Mehalick

    2015-12-01

    Full Text Available Long-chain bases, found in the oral cavity, have potent antimicrobial activity against oral pathogens. In an article associated with this dataset, Poulson and colleagues determined the cytotoxicities of long-chain bases (sphingosine, dihydrosphingosine, and phytosphingosine for human oral gingival epithelial (GE keratinocytes, oral gingival fibroblasts (GF, dendritic cells (DC, and squamous cell carcinoma (SCC cell lines [1]. Poulson and colleagues found that GE keratinocytes were more resistant to long-chain bases as compared to GF, DC, and SCC cell lines [1]. In this study, we assess the susceptibility of DC to lower concentrations of long chain bases. 0.2–10.0 µM long-chain bases and GML were not cytotoxic to DC; 40.0–80.0 µM long-chain bases, but not GML, were cytotoxic for DC; and 80.0 µM long-chain bases were cytotoxic to DC and induced cellular damage and death in less than 20 mins. Overall, the LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections.

  7. Two oncogenes, v-fos and v-ras, cooperate to convert normal keratinocytes to squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Greenhalgh, D.A.; Welty, D.J.; Player, A.; Yuspa, S.H. (National Cancer Institute, Bethesda, MD (USA))

    1990-01-01

    Previous studies have been implicated the ras{sup Ha} oncogene in the initiation of skin carcinogenesis and the fos oncogene in malignant progression of premalignant skin cell lines. To determine if these two oncogenes are sufficient to convert normal keratinocytes to cancer cells, freshly isolated mouse keratinocytes were coinfected with replication-defective ({psi}-2) v-ras{sup Ha} and v-fos viruses in culture. When tested in nude mice within several days of infection, v-fos/v-ras{sup Ha}-coinfected keratinocytes produced squamous cell carcinomas. Introduction of v-fos alone resulted in normal or hyperplastic skin, whereas v-ras{sup Ha} alone produced squamous papillomas. These results indicate that two oncogenes are sufficient to produce the malignant phenotype in epidermal cells. Furthermore, they clearly link the fos oncogene with malignant conversion. Since fos acts as a transcriptional regulator of other genes, malignant conversion may be an indirect consequence of the overexpression of the fos-encoded protein leading to a change in the expression of fos-controlled cellular genes.

  8. The chemopreventive bioflavonoid apigenin modulates signal transduction pathways in keratinocyte and colon carcinoma cell lines.

    Science.gov (United States)

    Van Dross, Rukiyah; Xue, Yue; Knudson, Alexandra; Pelling, Jill C

    2003-11-01

    Apigenin is a nonmutagenic chemopreventive agent found in fruits and green vegetables. In this study, we used two different epithelial cell lines (308 mouse keratinocytes and HCT116 colon carcinoma cells) to determine the effect of apigenin on the mitogen-activated protein kinase (MAPK) cascade. Apigenin induced a dose-dependent phosphorylation of both extracellular signal-regulated protein kinase (ERK) and p38 kinase but had little effect on the phosphorylation of c-jun amino terminal kinase (JNK). We used immunoprecipitation-coupled kinase assays to show that apigenin increased the kinase activity of ERK and p38 but not JNK. Consistent with these results, we found that apigenin induced a 7.4-fold induction in the phosphorylation of Elk, the downstream phosphorylation target of ERK kinase. Similarly, apigenin induced a 3.2-fold induction in the phosphorylation of activating transcription factor-2, the downstream phosphorylation target of p38 kinase. Little change was observed in the phosphorylation of c-jun, the phosphorylation target of JNK. These data suggest that part of the chemopreventive activity of apigenin may be mediated by its ability to modulate the MAPK cascade.

  9. EGF receptor signaling blocks aryl hydrocarbon receptor-mediated transcription and cell differentiation in human epidermal keratinocytes

    OpenAIRE

    Sutter, Carrie Hayes; Yin, Hong; Li, Yunbo; Mammen, Jennifer S.; Bodreddigari, Sridevi; Stevens, Gaylene; Cole, Judith A; Sutter, Thomas R.

    2009-01-01

    Dioxin is an extremely potent carcinogen. In highly exposed people, the most commonly observed toxicity is chloracne, a pathological response of the skin. Most of the effects of dioxin are attributed to its activation of the aryl hydrocarbon receptor (AHR), a transcription factor that binds to the Ah receptor nuclear translocator (ARNT) to regulate the transcription of numerous genes, including CYP1A1 and CYP1B1. In cultures of normal human epidermal keratinocytes dioxin accelerates cell diff...

  10. Tanshinone IIA Inhibits Growth of Keratinocytes through Cell Cycle Arrest and Apoptosis: Underlying Treatment Mechanism of Psoriasis

    Directory of Open Access Journals (Sweden)

    Fu-Lun Li

    2012-01-01

    Full Text Available The aim of the present investigation was to elucidate the cellular mechanisms whereby Tanshinone IIA (Tan IIA leads to cell cycle arrest and apoptosis in vitro in keratinocytes, the target cells in psoriasis. Tan IIA inhibited proliferation of mouse keratinocytes in a dose- and time-dependent manner and induced apoptosis, resulting in S phase arrest accompanied by down-regulation of pCdk2 and cyclin A protein expression. Furthermore, Tan IIA-induced apoptosis and mitochondrial membrane potential changes were also further demonstrated by DNA fragmentation, single-cell gel electrophoresis assay (SCGE, and flow cytometry methods. Apoptosis was partially blocked by the caspase-3 inhibitor Ac-DEVD-CHO. Mitochondrial regulation of apoptosis further downstream was investigated, showing changes in the mitochondrial membrane potential, cytochrome c release into the cytoplasm, and enhanced activation of cleaved caspase-3 and Poly ADP-ribose polymerase (PARP. There was also no translocation of apoptosis-inducing factor (AIF from mitochondria to the nucleus in apoptotic keratinocytes, indicating Tan IIA-induced apoptosis occurs mainly through the caspase pathway. Our findings provide the molecular mechanisms by which Tan IIA can be used to treat psoriasis and support the traditional use of Salvia miltiorrhiza Bungee (Labiatae for psoriasis and related skin diseases.

  11. Cultured skin keratinocytes from both normal individuals and basal cell naevus syndrome patients are more resistant to. gamma. -rays and UV light compared with cultured skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, M.; Thacker, S.; Taylor, A.M.R. (Birmingham Univ. (UK). Cancer Research Campaign Labs.)

    1989-07-01

    Measurement of colony-forming ability following exposure to {gamma}-rays was performed on cultured skin keratinocytes and skin fibroblasts from normal individuals, basal cell naevus syndrome patients (BCNS) and ataxia telangiectasia (A-T) patients. The most striking observation was the radiation resistance of 8/8 keratinocyte strains compared with fibroblasts whether from BCNS patients or normals. The single A-T keratinocyte cell strain showed the same radiosensitivity as A-T fibroblast cell strains. The differential survival of keratinocytes and fibroblasts was also observed following exposure to 254 nm UV light. Survival curves of SV40 immortalized keratinocytes and retinoblasts derived from normal individuals or BCNS patients showed large shoulder regions following exposure to {gamma}-rays or 254 nm UV light. An increased D{sub 37} rather than an increased D{sub o} was therefore the feature of such curves, contrasting with SV40 immortalized A-T keratinocytes or fibroblasts which showed a minimal shoulder effect and an increased D{sub o}. No difference in survival was observed between BCNS and normal cells following exposure to either UV or {gamma}-rays. (author).

  12. The Alteration of the Epidermal Basement Membrane Complex of Human Nevus Tissue and Keratinocyte Attachment after High Hydrostatic Pressurization

    Directory of Open Access Journals (Sweden)

    Naoki Morimoto

    2016-01-01

    Full Text Available We previously reported that human nevus tissue was inactivated after high hydrostatic pressure (HHP higher than 200 MPa and that human cultured epidermis (hCE engrafted on the pressurized nevus at 200 MPa but not at 1000 MPa. In this study, we explore the changes to the epidermal basement membrane in detail and elucidate the cause of the difference in hCE engraftment. Nevus specimens of 8 mm in diameter were divided into five groups (control and 100, 200, 500, and 1000 MPa. Immediately after HHP, immunohistochemical staining was performed to detect the presence of laminin-332 and type VII collagen, and the specimens were observed by transmission electron microscopy (TEM. hCE was placed on the pressurized nevus specimens in the 200, 500, and 1000 MPa groups and implanted into the subcutis of nude mice; the specimens were harvested at 14 days after implantation. Then, human keratinocytes were seeded on the pressurized nevus and the attachment was evaluated. The immunohistochemical staining results revealed that the control and 100 MPa, 200 MPa, and 500 MPa groups were positive for type VII collagen and laminin-332 immediately after HHP. TEM showed that, in all of the groups, the lamina densa existed; however, anchoring fibrils were not clearly observed in the 500 or 1000 MPa groups. Although the hCE took in the 200 and 500 MPa groups, keratinocyte attachment was only confirmed in the 200 MPa group. This result indicates that HHP at 200 MPa is preferable for inactivating nevus tissue to allow its reuse for skin reconstruction in the clinical setting.

  13. Propolis Inhibits UVA-Induced Apoptosis of Human Keratinocyte HaCaT Cells by Scavenging ROS

    OpenAIRE

    2016-01-01

    Propolis is a resinous material collected by honeybees from several plant sources. This research aimed at showing its protective effect against UVA-induced apoptosis of human keratinocyte HaCaT cells. Using Hoechst staining, it was demonstrated that propolis (5 and 10 μg/mL) significantly inhibited the apoptosis of HaCaT cells induced by UVA-irradiation. Propolis also showed the protective effect against loss of mitochondrial membrane potential induced by UVA-irradiaiton in HaCaT cells. Propo...

  14. Death ligand TRAIL, secreted by CD1a+ and CD14+ cells in blister fluids, is involved in killing keratinocytes in toxic epidermal necrolysis.

    Science.gov (United States)

    de Araujo, Elisabeth; Dessirier, Valérie; Laprée, Geneviève; Valeyrie-Allanore, Laurence; Ortonne, Nicolas; Stathopoulos, Efstathios N; Bagot, Martine; Bensussan, Armand; Mockenhaupt, Maja; Roujeau, Jean-Claude; Tsapis, Andreas

    2011-02-01

    Toxic epidermal necrolysis (TEN) is characterized by an acute detachment and destruction of keratinocytes, affecting large areas of the skin. It is often related to adverse drug reactions. Previous studies have shown that effector CD8+ T cells, which accumulate in the blister fluid, are functionally cytotoxic and act through a classical perforin/granzyme B pathway. It has recently been shown that these cytotoxic T cells also secrete granulysin peptide, which is lethal to keratinocytes. These cytotoxic T cells exert their killer activity against autologous keratinocytes in the presence of the drug. However, they are unlikely to be the only effectors of TEN. We therefore searched for soluble death factors in the blister fluids that might kill keratinocytes. We found that the amounts of interferon-γ, TRAIL and TNF-α proteins were significantly greater in TEN blister fluids than in all controls (normal sera, TEN sera, burns and Eosinophilic pustular folliculitis blister fluids) and TNF-like weak inducer of apoptosis (TWEAK) amounts are also greater in all controls except burns. We showed that these proteins acted in synergy to induce the death of keratinocytes in vitro. We also found that TRAIL and TWEAK were secreted by CD1a+ and CD14+ cells present in the blister fluids. Thus, in addition to MHC class I-restricted cytotoxic T lymphocytes (CTLs), which lyse keratinocytes, ligands secreted by non-lymphoid cells capable of inducing keratinocyte death in an MHC class I-independent manner, also seem to be present in the blister fluids of patients with TEN.

  15. Isolation, cultivation and transfection of human keratinocytes.

    Science.gov (United States)

    Zare, Sona; Zarei, Mohammad Ali; Ghadimi, Tayyeb; Fathi, Fardin; Jalili, Ali; Hakhamaneshi, Mohammad Saeed

    2014-04-01

    Human keratinocytes could be used in the repair of damaged skin, in tissue engineering applications, gene therapy and recently, the generation of iPS cells. We isolated human keratinocytes from foreskin and subsequently cultured them on fibronectin, collagen type I, gelatin and laminin-coated dishes that contained three different types of serum-free medium (epilife, KSM or CnT). We developed improved conditions for efficient transfection of these human keratinocytes by testing three common transfection methods and a GFP plasmid vector. The isolated cells showed typical keratinocyte morphology and expressed the epithelial cell specific antigen, cytokeratin 14. Collagen type 1, epilife medium and lipofectamin 2000 gave the best results for isolation and transfection of human keratinocytes. Our protocol can be used as a reproducible, simple and efficient method for isolation, cultivation and genetic manipulation of human keratinocytes, which may be useful in cell and gene therapy applications.

  16. Regulation of haptoglobin expression in a human keratinocyte cell line HaCaT by inflammatory cytokines and dexamethasone

    Institute of Scientific and Technical Information of China (English)

    XIA Li-xin; XIAO Ting; CHEN Hong-duo; LI Ping; WANG Ya-kun; WANG He

    2008-01-01

    Background Haptoglobin(Hp)is one of the acute-phase proteins. Recent studies have demonstrated that Hp exerts immunoregulatory and anti-inflammatory actions and may be one of the inhibitory factors of immune reactions in the skin. In this study we investigated the regulation of Hp expression in a human keratinocyte cell line HaCaT by various cytokines and glucocorticod. Methods HaCaT cells were cultured with IL-6(50 ng/ml), TNF-α(20 ng/ml), IFN-Y(20 ng/ml)or IL-4(20 ng/ml)with or without 1 μmol/L dexamethasone in 6-well plates for 12, 24 and 48 hours. Both the cells and the supernatants were collected to detect the changes of Hp expression by reverse-transcription PCR, ELISA and immunohistochemistry. Results The results showed that Hp expression were elevated at both the mRNA and protein level by the combination of IL-6, TNF-α or IL-4 with dexamethasone, whereas the three cytokines alone did not upregulate the Hp expression. IFN-Y showed no effect on the Hp expression in HaCaT cells. Conclusions These findings suggest that different inflammatory cytokines as well as glucocorticoid may be involved in the regulation of Hp expression in keratinocytes, and this may be one of the negative feedback mechanisms in inflammatory skin diseases.

  17. Subcellular Raman Microspectroscopy Imaging of Nucleic Acids and Tryptophan for Distinction of Normal Human Skin Cells and Tumorigenic Keratinocytes.

    Science.gov (United States)

    Piredda, Paola; Berning, Manuel; Boukamp, Petra; Volkmer, Andreas

    2015-07-07

    At present, tumor diagnostic imaging is commonly based on hematoxylin and eosin or immunohistochemical staining of biopsies, which requires tissue excision, fixation, and staining with exogenous marker molecules. Here, we report on label-free tumor imaging using confocal spontaneous Raman scattering microspectroscopy, which exploits the intrinsic vibrational contrast of endogenous biomolecular species. We present a chemically specific and quantitative approach to monitoring normal human skin cells (keratinocytes and fibroblasts) as well as the human HaCaT in vitro skin carcinogenesis model and the tumor-derived MET in vivo skin cancer progression model. Mapping the amplitudes of two spectrally well isolated Raman bands at 752 and 785 cm(-1) allowed for direct visualization of the distributions representative of tryptophan-rich proteins and nucleic acids, respectively, with subcellular spatial resolution. Using these Raman markers, it was feasible to discriminate between normal human epidermal keratinocytes (NHEK) and dermal fibroblasts (NHDF) and to confine all tumorigenic cells from both the NHEK and NHDF. First evidence for the successful application of the proposed intracellular nucleic acid and tryptophan Raman signatures for skin cancer diagnosis was further demonstrated in an organotypic cutaneous squamous cell carcinomas model, allowing for the identification of tumor cells and their surrounding stroma in the tissue context.

  18. Cytotoxicity and Proliferation Studies with Arsenic in Established Human Cell Lines: Keratinocytes, Melanocytes, Dendritic Cells, Dermal Fibroblasts, Microvascular Endothelial Cells, Monocytes and T-Cells

    Directory of Open Access Journals (Sweden)

    Hari H. P. Cohly

    2003-01-01

    Full Text Available Abstract: Based on the hypothesis that arsenic exposure results in toxicity and mitogenecity, this study examined the dose-response of arsenic in established human cell lines of keratinocytes (HaCaT, melanocytes (1675, dendritic cells (THP-1/A23187, dermal fibroblasts (CRL1904, microvascular endothelial cells (HMEC, monocytes (THP-1, and T cells (Jurkat. Cytotoxicity was determined by incubating THP-1, THP-1+ A23187 and JKT cells in RPMI 1640, 1675 in Vitacell, HMEC in EBM, and dermal fibroblasts and HaCaT in DMEM with 10% fetal bovine serum, 1% streptomycin and penicillin for 72 hrs in 96-well microtiter plates, at 37oC in a 5% CO2 incubator with different concentrations of arsenic using fluorescein diacetate (FDA. Cell proliferation in 96-well plates was determined in cultured cells starved by prior incubation for 24 hrs in 1% FBS and exposed for 72 hours, using the 96 cell titer proliferation solution (Promega assay. Cytotoxicity assays yielded LD50s of 9 μg/mL for HaCaT, 1.5 μg/mL for CRL 1675, 1.5 μg/mL for dendritic cells, 37 μg/mL for dermal fibroblasts, 0.48 μg/mL for HMEC, 50 μg/mL for THP-1 cells and 50 μg/mL for JKT-T cells. The peak proliferation was observed at 6 μg/mL for HaCaT and THP-1 cells, 0.19 μg/mL for CRL 1675, dendritic cells, and HMEC, and 1.5 μg/mL for dermal fibroblasts and Jurkat T cells. These results show that arsenic is toxic at high doses to keratinocytes, fibroblasts, monocytes and T cells, and toxic at lower doses to melanocytes, microvascular endothelial cells and dendritic cells. Proliferation studies showed sub-lethal doses of arsenic to be mitogenic.

  19. Altered epigenetic regulation of homeobox genes in human oral squamous cell carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkiewicz, Katarzyna M.; Gudas, Lorraine J., E-mail: ljgudas@med.cornell.edu

    2014-01-01

    To gain insight into oral squamous cell carcinogenesis, we performed deep sequencing (RNAseq) of non-tumorigenic human OKF6-TERT1R and tumorigenic SCC-9 cells. Numerous homeobox genes are differentially expressed between OKF6-TERT1R and SCC-9 cells. Data from Oncomine, a cancer microarray database, also show that homeobox (HOX) genes are dysregulated in oral SCC patients. The activity of Polycomb repressive complexes (PRC), which causes epigenetic modifications, and retinoic acid (RA) signaling can control HOX gene transcription. HOXB7, HOXC10, HOXC13, and HOXD8 transcripts are higher in SCC-9 than in OKF6-TERT1R cells; using ChIP (chromatin immunoprecipitation) we detected PRC2 protein SUZ12 and the epigenetic H3K27me3 mark on histone H3 at these genes in OKF6-TERT1R, but not in SCC-9 cells. In contrast, IRX1, IRX4, SIX2 and TSHZ3 transcripts are lower in SCC-9 than in OKF6-TERT1R cells. We detected SUZ12 and the H3K27me3 mark at these genes in SCC-9, but not in OKF6-TERT1R cells. SUZ12 depletion increased HOXB7, HOXC10, HOXC13, and HOXD8 transcript levels and decreased the proliferation of OKF6-TERT1R cells. Transcriptional responses to RA are attenuated in SCC-9 versus OKF6-TERT1R cells. SUZ12 and H3K27me3 levels were not altered by RA at these HOX genes in SCC-9 and OKF6-TERT1R cells. We conclude that altered activity of PRC2 is associated with dysregulation of homeobox gene expression in human SCC cells, and that this dysregulation potentially plays a role in the neoplastic transformation of oral keratinocytes. - Highlights: • RNAseq elucidates differences between non-tumorigenic and tumorigenic oral keratinocytes. • Changes in HOX mRNA in SCC-9 vs. OKF6-TERT1R cells are a result of altered epigenetic regulation. • RNAseq shows that retinoic acid (RA) influences gene expression in both OKF6-TERT1R and SCC-9 cells.

  20. Metabolic Effects of Cobalt Ferrite Nanoparticles on Cervical Carcinoma Cells and Nontumorigenic Keratinocytes.

    Science.gov (United States)

    Oliveira, Ana Beatriz Bortolozo; de Moraes, Fabio Rogério; Candido, Natalia Maria; Sampaio, Isabella; Paula, Alex Silva; de Vasconcellos, Adriano; Silva, Thais Cerqueira; Miller, Alex Henrique; Rahal, Paula; Nery, Jose Geraldo; Calmon, Marilia Freitas

    2016-12-02

    The cytotoxic response, cellular uptake, and metabolomic profile of HeLa and HaCaT cell lines treated with cobalt ferrite nanoparticles (CoFe2O4 NPs) were investigated in this study. Cell viability assays showed low cytotoxicity caused by the uptake of the nanoparticles at 2 mg/mL. However, metabolomics revealed that these nanoparticles impacted cell metabolism even when tested at a concentration that presented low cytotoxicity according to the cell viability assay. The two cell lines shared stress-related metabolic changes such as increase in alanine and creatine levels. A reduced level of fumarate was also observed in HeLa cells after treatment with the nanoparticles, and this alteration can inhibit tumorigenesis. Fumarate is considered to be an oncometabolite that can inhibit prolyl hydroxylase, and this inhibition stabilizes HIF1α, one of the master regulators of tumorigenesis that promotes tumor growth and development. In summary, this study showed that nanoparticle-treated HeLa cells demonstrated decreased concentrations of metabolites associated with cell proliferation and tumor growth. The results clearly indicated that treatment with these nanoparticles might cause a perturbation in cellular metabolism.

  1. Cox2 and β-Catenin/T-cell Factor Signaling Intestinalize Human Esophageal Keratinocytes When Cultured under Organotypic Conditions

    Directory of Open Access Journals (Sweden)

    Jianping Kong

    2011-09-01

    Full Text Available The incidence of esophageal adenocarcinoma (EAC is rising in the United States. An important risk factor for EAC is the presence of Barrett esophagus (BE. BE is the replacement of normal squamous esophageal epithelium with a specialized columnar epithelium in response to chronic acid and bile reflux. However, the emergence of BE from squamous keratinocytes has not yet been demonstrated. Our research has focused on this. Wnt and cyclooxygenase 2 (Cox2 are two pathways whose activation has been associated with BE and progression to EAC, but their role has not been tested experimentally. To explore their contribution, we engineered a human esophageal keratinocyte cell line to express either a dominant-active Wnt effector CatCLef or a Cox2 complementary DNA. In a two-dimensional culture environment, Cox2 expression increases cell proliferation and migration, but neither transgene induces known BE markers. In contrast, when these cells were placed into three-dimensional organotypic culture conditions, we observed more profound effects. CatCLef-expressing cells were more proliferative, developed a thicker epithelium, and upregulated Notch signaling and several BE markers including NHE2. Cox2 expression also increased cell proliferation and induced a thicker epithelium. More importantly, we observed cysts form within the epithelium, filled with intestinal mucins including Muc5B and Muc17. This suggests that Cox2 expression in a three-dimensional culture environment induces a lineage of mucin-secreting cells and supports an important causal role for Cox2 in BE pathogenesis. We conclude that in vitro modeling of BE pathogenesis can be improved by enhancing Wnt signaling and Cox2 activity and using three-dimensional organotypic culture conditions.

  2. Human keratinocytes are vanilloid resistant.

    Directory of Open Access Journals (Sweden)

    László Pecze

    Full Text Available BACKGROUND: Use of capsaicin or resiniferatoxin (RTX as analgesics is an attractive therapeutic option. RTX opens the cation channel inflammatory pain/vanilloid receptor type 1 (TRPV1 permanently and selectively removes nociceptive neurons by Ca(2+-cytotoxicity. Paradoxically, not only nociceptors, but non-neuronal cells, including keratinocytes express full length TRPV1 mRNA, while patient dogs and experimental animals that underwent topical treatment or anatomically targeted molecular surgery have shown neither obvious behavioral, nor pathological side effects. METHODS: To address this paradox, we assessed the vanilloid sensitivity of the HaCaT human keratinocyte cell line and primary keratinocytes from skin biopsies. RESULTS: Although both cell types express TRPV1 mRNA, neither responded to vanilloids with Ca(2+-cytotoxicity. Only ectopic overproduction of TRPV1 rendered HaCaT cells sensitive to low doses (1-50 nM of vanilloids. The TRPV1-mediated and non-receptor specific Ca(2+-cytotoxicity ([RTX]>15 microM could clearly be distinguished, thus keratinocytes were indeed resistant to vanilloid-induced, TRPV1-mediated Ca(2+-entry. Having a wider therapeutic window than capsaicin, RTX was effective in subnanomolar range, but even micromolar concentrations could not kill human keratinocytes. Keratinocytes showed orders of magnitudes lower TRPV1 mRNA level than sensory ganglions, the bona fide therapeutic targets in human pain management. In addition to TRPV1, TRPV1b, a dominant negative splice variant was also noted in keratinocytes. CONCLUSION: TRPV1B expression, together with low TRPV1 expression, may explain the vanilloid paradox: even genuinely TRPV1 mRNA positive cells can be spared with therapeutic (up to micromolar doses of RTX. This additional safety information might be useful for planning future human clinical trials.

  3. Up-regulation of intestinal epithelial cell derived IL-7 expression by keratinocyte growth factor through STAT1/IRF-1, IRF-2 pathway.

    Directory of Open Access Journals (Sweden)

    Yu-Jiao Cai

    Full Text Available BACKGROUND: Epithelial cells(EC-derived interleukin-7 (IL-7 plays a crucial role in control of development and homeostasis of neighboring intraepithelial lymphocytes (IEL, and keratinocyte growth factor (KGF exerts protective effects on intestinal epithelial cells and up-regulates EC-derived IL-7 expression through KGFR pathway. This study was to further investigate the molecular mechanism involved in the regulation of IL-7 expression by KGF in the intestine. METHODS: Intestinal epithelial cells (LoVo cells and adult C57BL/6J mice were treated with KGF. Epithelial cell proliferation was studied by flow cytometry for BrdU-incorporation and by immunohistochemistry for PCNA staining. Western blot was used to detect the changes of expression of P-Tyr-STAT1, STAT1, and IL-7 by inhibiting STAT1. Alterations of nuclear extracts and total proteins of IRF-1, IRF-2 and IL-7 following IRF-1 and IRF-2 RNA interference with KGF treatment were also measured with western blot. Moreover, IL-7 mRNA expressions were also detected by Real-time PCR and IL-7 protein level in culture supernatants was measured by enzyme linked immunosorbent assay(ELISA. RESULTS: KGF administration significantly increased LoVo cell proliferation and also increased intestinal wet weight, villus height, crypt depth and crypt cell proliferation in mice. KGF treatment led to increased levels of P-Tyr-STAT1, RAPA and AG490 both blocked P-Tyr-STAT1 and IL-7 expression in LoVo cells. IRF-1 and IRF-2 expression in vivo and in vitro were also up-regulated by KGF, and IL-7 expression was decreased after IRF-1 and IRF-2 expression was silenced by interfering RNA, respectively. CONCLUSION: KGF could up-regulate IL-7 expression through the STAT1/IRF-1, IRF-2 signaling pathway, which is a new insight in potential effects of KGF on the intestinal mucosal immune system.

  4. Radiosensitivity of cultured human and mouse keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Parkinson, E.K.; Hume, W.J.; Potten, C.S.

    1986-10-01

    Clonogenic survival assays after ..gamma..-radiation in vitro were performed on freshly isolated and subcultured keratinocytes from mouse skin, mouse tongue and human skin. Survival curves were constructed by fitting the data to a multi-target model of cell survival. When subcultured, keratinocytes from all sites produced survival curves which showed a reduced shoulder region and an increased D/sub 0/ when compared with their freshly isolated counterparts. Freshly isolated human skin keratinocytes were more radiosensitive than mouse keratinocytes from either skin or tongue.

  5. Cytogenotoxicity of selected organophosphate insecticides on HaCaT keratinocytes and NL-20 human bronchial cells.

    Science.gov (United States)

    Arteaga-Gómez, Eduardo; Rodríguez-Levis, Alejandra; Cortés-Eslava, Josefina; Arenas-Huertero, Francisco; Valencia-Quintana, Rafael; Gómez-Arroyo, Sandra

    2016-02-01

    Organophosphate insecticides (OI) are widely used. To humans the main routes of exposure are skin and inhalation. For this, keratinocytes (HaCaT) and bronchial cells (NL-20) were used as cell culture models to evaluate the effects of OI. The aim of this study was to evaluate the effect of four OI on HaCaT and NL-20 cells: azinphos-methyl, (AM); parathion-methyl (PM); omethoate (OM); and methamidophos (MET). Cells were exposed to 0.1, 1 and 10 μg/μL of each. Results showed a decrease in cell viability in both cell lines. Viability of the NL-20 cell line decreased with the three concentrations of OM. All differences were significant (p insecticides except MET, induced cell death. MET caused DNA damage in HaCaT cells at all concentrations. Differences were significant (p insecticide. Quantitative real time-polymerase chain reaction (RT-qPCR) showed an increase of BN1 gene in HaCaT by effect of AM and MET at 1 μg/μL. In conclusion, all the insecticides induced different levels of cyto and genotoxic effects in both cell lines.

  6. Vitamin D signaling regulates oral keratinocyte proliferation in vitro and in vivo.

    Science.gov (United States)

    Yuan, Feng-Ning F; Valiyaparambil, Jayasanker; Woods, Michael C; Tran, Huy; Pant, Rima; Adams, John S; Mallya, Sanjay M

    2014-05-01

    The secosteroidal hormone 1,25-dihyroxyvitamin D [1,25(OH)(2)D(3)] and its receptor, the vitamin D receptor (VDR), are crucial regulators of epidermal proliferation and differentiation. However, the effects of 1,25(OH)(2)D(3)-directed signaling on oral keratinocyte pathophysiology have not been well studied. We examined the role of 1,25(OH)(2)D(3) in regulating proliferation and differentiation in cultured oral keratinocytes and on the oral epithelium in vivo. Using lentiviral-mediated shRNA to silence VDR, we generated an oral keratinocyte cell line with stable knockdown of VDR expression. VDR knockdown significantly enhanced proliferation and disrupted calcium- and 1,25(OH)(2)D(3)-induced oral keratinocyte differentiation, emphasizing the anti-proliferative and pro-differentiation effects of 1,25(OH)(2)D(3) in oral keratinocytes. Using vitamin D(3)-deficient diets, we induced chronic vitamin D deficiency in mice as evidenced by decreased serum 25-hydroxyvitamin D (25OHD) concentrations. The vitamin D-deficient mice manifested increased proliferation of the tongue epithelium, but did not develop any morphological or histological abnormalities in the oral epithelium, suggesting that vitamin D deficiency alone is insufficient to alter oral epithelial homeostasis and provoke carcinogenesis. Immunohistochemical analyses of human and murine oral squamous cell carcinomas showed increased VDR expression. Overall, our results provide strong support for a crucial role for vitamin D signaling in oral keratinocyte pathophysiology.

  7. Ultraviolet B-exposed major histocompatibility complex class II positive keratinocytes and antigen-presenting cells demonstrate a differential capacity to activate T cells in the presence of staphylococcal superantigens

    Energy Technology Data Exchange (ETDEWEB)

    Skov, L.; Baadsgaard, O. [Gentofte Hospital, Copenhagen (Denmark). Dept. of Dermatology

    1996-05-01

    In this study we tested the capacity of ultraviolet B (UVB)-irradiated major histocompatability complex (MHC) class II{sup +} keratinocytes, monocytes and dendritic cells to activate T cells in the presence of Staphylococcus enterotoxin B. We demonstrated that UVB irradiation of MHC class II{sup +} keratinocytes does not change their capacity to activate T cells in the presence of Staphylococcus enterotoxin B. In contrast, UVB irradiation of antigen-presenting cells decreases their capacity to activate T cells. The differential capacity to activate T cells after UVB irradiation was not due to factors released from UVB-irradiated cells. The interferon-{gamma} induced upregulation of HLA-DR and intercellular adhesion molecule-1 on keratinocytes does not seem to be the only explanation, since UVB irradiation decreased the accessory cell function of interferon-{gamma} pretreated monocytes. Differential requirements for and UVB regulation of costimulatory molecules may be involved, since blocking of the B7/CD28 pathway affects the capacity of dendritic cells but not keratinocytes to activate T cells in the presence of Staphylococcus enterotoxin B. Thus, MHC class II{sup +} keratinocytes in the presence of superantigens released from staphylococci may activate T cells and maintain inflammation despite UVB treatment. (Author).

  8. Development of a co-culture of keratinocytes and immune cells for in vitro investigation of cutaneous sulfur mustard toxicity.

    Science.gov (United States)

    Balszuweit, Frank; Menacher, Georg; Bloemeke, Brunhilde; Schmidt, Annette; Worek, Franz; Thiermann, Horst; Steinritz, Dirk

    2014-11-05

    Sulfur mustard (SM) is a chemical warfare agent causing skin blistering, ulceration and delayed wound healing. Inflammation and extrinsic apoptosis are known to have an important role in SM-induced cytotoxicity. As immune cells are involved in those processes, they may significantly modulate SM toxicity, but the extent of those effects is unknown. We adapted a co-culture model of immortalized keratinocytes (HaCaT) and immune cells (THP-1) and exposed this model to SM. Changes in necrosis, apoptosis and inflammation, depending on SM challenge, absence or presence and number of THP-1 cells were investigated. THP-1 were co-cultured for 24h prior to SM exposure in order to model SM effects on immune cells continuously present in the skin. Our results indicate that the presence of THP-1 strongly increased necrosis, apoptosis and inflammation. This effect was already significant when the ratio of THP-1 and HaCaT cells was similar to the ratio of Langerhans immune cells and keratinocytes in vivo. Any further increases in the number of THP-1 had only slight additional effects on SM-induced cytotoxicity. In order to assess the effects of immune cells migrating into skin areas damaged by SM, we added non-exposed THP-1 to SM-exposed HaCaT. Those THP-1 had only slight effects on SM-induced cytotoxicity. Notably, in HaCaT exposed to 300μM SM, necrosis and inflammation were slightly reduced by adding intact THP-1. This effect was dependent on the number of immune cells, steadily increasing with the number of unexposed THP-1 added. In summary, we have demonstrated that (a) the presented co-culture is a robust model to assess SM toxicity and can be used to test the efficacy of potential antidotes in vitro; (b) immune cells, damaged by SM strongly amplified cytotoxicity, (c) in contrast, unexposed THP-1 (simulating migration of immune cells into affected areas after exposure in vivo) had no pronounced adverse, but exhibited some protective effects. Thus, protecting immune cells

  9. Capsule expression in Streptococcus mitis modulates interaction with oral keratinocytes and alters susceptibility to human antimicrobial peptides.

    Science.gov (United States)

    Rukke, H V; Engen, S A; Schenck, K; Petersen, F C

    2016-08-01

    Streptococcus mitis is a colonizer of the oral cavity and the nasopharynx, and is closely related to Streptococcus pneumoniae. Both species occur in encapsulated and unencapsulated forms, but in S. mitis the role of the capsule in host interactions is mostly unknown. Therefore, the aim of this study was to examine how capsule expression in S. mitis can modulate interactions with the host with relevance for colonization. The S. mitis type strain, as well as two mutants of the type strain, an isogenic capsule deletion mutant, and a capsule switch mutant expressing the serotype 4 capsule of S. pneumoniae TIGR4, were used. Wild-type and capsule deletion strains of S. pneumoniae TIGR4 were included for comparison. We found that capsule production in S. mitis reduced adhesion to oral and lung epithelial cells. Further, exposure of oral epithelial cells to encapsulated S. mitis resulted in higher interleukin-6 and CXCL-8 transcription levels relative to the unencapsulated mutant. Capsule expression in S. mitis increased the sensitivity to human neutrophil peptide 1-3 but reduced the sensitivity to human β-defensin-3 and cathelicidin. This was in contrast with S. pneumoniae in which capsule expression has been generally associated with increased sensitivity to human antimicrobial peptides (AMPs). Collectively, these findings indicate that capsule expression in S. mitis is important in modulating interactions with epithelial cells, and is associated with increased or reduced susceptibility to AMPs depending on the nature of the AMP.

  10. Evidence of a role for fibrocyte and keratinocyte-like cells in the formation of hypertrophic scars.

    Science.gov (United States)

    Curran, Terry-Ann; Ghahary, Aziz

    2013-01-01

    Burn injuries affect millions of people every year, and dermal fibrosis is a common complication for the victims. This disfigurement has functional and cosmetic consequences and many research groups have made it the focus of their work to understand the mechanisms that underlie its development. Although significant progress has been made in wound-healing processes, the complexity of events involved makes it very difficult to come up with a single strategy to prevent this devastating fibrotic condition. Inflammation is considered one predisposing factor, although this phase is a necessary aspect of the wound-healing process. Inflammation, driven by infiltrated immune cells, begins minutes after the burn injury and is the prevalent phase of wound healing in the early stages. Accompanying the inflammatory infiltrate, there is evidence that subpopulations of bone marrow-derived cells are also present. These populations include fibrocytes and keratinocyte-like cells, derivatives of CD14 monocytes, a component of the peripheral blood mononuclear cell infiltrate. There is evidence that these cells contribute to regeneration and repair of the wound site, but it is interesting to note that there are also reports that these cells can have adverse effects and may contribute to the development of dermal fibrosis. In this article, the authors present a review of the origin and transdifferentiation of these cells from bone marrow stem cells, the environments that direct this transdifferentiation, and evidence to support their role in fibrosis, as well as potential avenues for therapeutics to control their fibrotic effects.

  11. Immunomodulatory effects of a set of amygdalin analogues on human keratinocyte cells.

    Science.gov (United States)

    Baroni, A; Paoletti, I; Greco, R; Satriano, R A; Ruocco, E; Tufano, M A; Perez, J J

    2005-11-01

    Peptide T (PT) is an octapeptide shown to resolve psoriatic lesions. Our previous investigations suggest that keratinocytes play an important role in conditioning the therapeutic effects of the PT in psoriasis. However, peptides are not good therapeutic agents, because they exhibit poor absorption, are easily metabolized and are immunogenic. Using computational methods, the natural product amygdalin was identified as peptidomimetic of PT. However, amygdalin exhibits a toxic profile due to its cyanide group. To overcome this deleterious effect, we synthesized analogues lacking the cyanide group. Human keratinocytes were treated with PT or with three different peptidomimetics of PT. To study its effects on the expression of HSP-70, TGF-beta, alpha-v integrin, ICAM-1 and cytokines, we analysed the protein levels by Western blot and ELISA. Our results show that the different peptidomimetics of PT tested exhibit a similar biological behaviour in regard to the overexpression of HSP-70, TGF-beta and alpha-v integrin than the native peptide. TNF-alpha is overexpressed by PT and SVT-03018; between the other two analogs, SVT-03016 do not produce any significant change in regard to the control, while SVT-03017 shows only a moderate increase in regard to control. SVT-03018 provokes a remarkable upregulation of IL-10, stronger than SVT-03016, SVT-03017 and PT. All the other three analogues reduce comparably to the PT, the expression of ICAM-1 and do not increase the release of proinflammatory cytokines. The results highlighted that the three analogues of amygdalin with the cyanide group removed exhibit the same biological effects of PT. Therefore, they can be considered peptidomimetics, suggesting their possible use in the treatment of psoriasis.

  12. Effect of Extracts of Terminalia chebula on Proliferation of Keratinocytes and Fibroblasts Cells: An Alternative Approach for Wound Healing

    Directory of Open Access Journals (Sweden)

    Dolly Singh

    2014-01-01

    Full Text Available Terminalia chebula is one of the traditional medicines used in the treatment of many diseases. In the present work, different concentrations of various organic and aqueous extracts (solvent-free of T. chebula were tested on fibroblast (L929 and keratinocytes cells to evaluate its biocompatible concentration by using MTT and live-dead viability/cytotoxic assay. These extracts were found to be effective in decreasing the ammonia accumulation in the media, thereby reducing its toxic effect on cells. DPPH assay further confirmed the free-radical scavenging ability of the extracts which increased with the increase in concentration of each extract. Cell proliferation/apoptosis, cytoskeletal structure, and ECM production were further evaluated by live-dead assay and phalloidin/cytokeratin staining, respectively. The cytoskeletal structure and ECM secretion of the cells treated with extracts showed higher cellular activity in comparison to control. In conclusion, we have demonstrated the effect of these extracts of T. chebula on both types of skin cells and optimized concentration in which it could be used as a bioactive component for wound healing applications by increasing cell proliferation and decreasing free-radical production without affecting the normal cellular matrix. It can also find applications in other therapeutics applications where ammonia toxicity is a limiting factor.

  13. Keratinocytes under Fire of Proinflammatory Cytokines: Bona Fide Innate Immune Cells Involved in the Physiopathology of Chronic Atopic Dermatitis and Psoriasis

    Science.gov (United States)

    Bernard, François-Xavier; Morel, Franck; Camus, Magalie; Pedretti, Nathalie; Barrault, Christine; Garnier, Julien; Lecron, Jean-Claude

    2012-01-01

    Cutaneous homeostasis and defenses are maintained by permanent cross-talk among particular epidermal keratinocytes and immune cells residing or recruited in the skin, through the production of cytokines. If required, a coordinated inflammatory response is triggered, relayed by specific cytokines. Due to numerous reasons, troubles in the resolution of this phenomenon could generate a cytokine-mediated vicious circle, promoting skin chronic inflammation, the most common being atopic dermatitis and psoriasis. In this paper, we discuss the biological effects of cytokine on keratinocytes, more particularly on specific or shared cytokines involved in atopic dermatitis or psoriasis. We report and discuss monolayer or 3D in vitro models of keratinocytes stimulated by specific sets of cytokines to mimic atopic dermatitis or psoriasis. IL-22, TNFa, IL-4, and IL-13 combination is able to mimic an “atopic dermatitis like” state. In psoriasis lesions, over expression of IL-17 is observed whereas IL-4 and IL-13 were not detected; the replacement of IL-4 and IL-13 by IL-17 from this mix is able to mimic in vitro a “psoriasis like” status on keratinocytes. We conclude that specific cytokine environment deregulation plays a central role on skin morphology and innate immunity, moving towards specific pathologies and opening the way to new therapeutic strategies. PMID:23193414

  14. Keratinocytes under Fire of Proinflammatory Cytokines: Bona Fide Innate Immune Cells Involved in the Physiopathology of Chronic Atopic Dermatitis and Psoriasis

    Directory of Open Access Journals (Sweden)

    François-Xavier Bernard

    2012-01-01

    Full Text Available Cutaneous homeostasis and defenses are maintained by permanent cross-talk among particular epidermal keratinocytes and immune cells residing or recruited in the skin, through the production of cytokines. If required, a coordinated inflammatory response is triggered, relayed by specific cytokines. Due to numerous reasons, troubles in the resolution of this phenomenon could generate a cytokine-mediated vicious circle, promoting skin chronic inflammation, the most common being atopic dermatitis and psoriasis. In this paper, we discuss the biological effects of cytokine on keratinocytes, more particularly on specific or shared cytokines involved in atopic dermatitis or psoriasis. We report and discuss monolayer or 3D in vitro models of keratinocytes stimulated by specific sets of cytokines to mimic atopic dermatitis or psoriasis. IL-22, TNFa, IL-4, and IL-13 combination is able to mimic an “atopic dermatitis like” state. In psoriasis lesions, over expression of IL-17 is observed whereas IL-4 and IL-13 were not detected; the replacement of IL-4 and IL-13 by IL-17 from this mix is able to mimic in vitro a “psoriasis like” status on keratinocytes. We conclude that specific cytokine environment deregulation plays a central role on skin morphology and innate immunity, moving towards specific pathologies and opening the way to new therapeutic strategies.

  15. Keratinocyte Apoptosis is Decreased in Psoriatic Epidermis

    Directory of Open Access Journals (Sweden)

    Fatma Eskioğlu

    2009-12-01

    Full Text Available Background and Design: Abnormal differentiation and hyperproliferation of keratinocytes are the hallmarks of psoriasis vulgaris. Although psoriasis vulgaris is generally accepted as a disease of decreased keratinocyte apoptosis, the results are contradictory. The aim of the current study is to investigate whether decreased keratinocyte apoptosis contributes to the formation of a thickened epidermis as increased keratinocyte proliferation. Material and Method: Forty-three untreated psoriasis vulgaris patients and 20 healthy control subjects were included into the study. Biopsy specimens taken from the enrollee were evaluated by immunohistochemical staining for Ki-67 expressions to show the proliferation of keratinocytes and by the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL method to show the apoptotic keratinocytes. Results: Apoptotic index (percentage of the TUNEL positive cells was significantly lower in psoriatic epidermis (0.33±0.64 than in normal epidermis (0.75±0.85; whereas Ki-67 index (percentage of positively staining cells for Ki-67 was significantly higher in psoriatic epidermis (30.86±10.49 than in normal epidermis (11.65±2.98, (p=0.021 and p=0.00; respectively. Conclusion: Decreased keratinocyte apoptosis also contribute to increased epidermal thickness in psoriasis as well as increased keratinocyte proliferation.

  16. Cyclic stretch induces upregulation of endothelin-1 with keratinocytes in vitro: Possible role in mechanical stress-induced hyperpigmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, Masakazu, E-mail: masakazukurita@gmail.com [Department of Plastic Surgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611 (Japan); Okazaki, Mutsumi [Department of Plastic and Reconstructive Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Fujino, Takashi [Department of Pathology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611 (Japan); Takushima, Akihiko; Harii, Kiyonori [Department of Plastic Surgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611 (Japan)

    2011-05-27

    Highlights: {yields} Influence of cyclic stretch on melanogenetic paracrine cytokines was investigated. {yields} Keratinocyte-derived endothelin-1 was upregulated with cyclic stretch. {yields} Degree of upregulation increases dose-dependently. {yields} This upregulation possibly plays a role in the pathogenesis of pigmented disorders. -- Abstract: The aim of this study was to investigate the possible pathological relation between mechanical stress and hyperpigmentation. We did this by investigating the influence of cyclic stretch on the expression of keratinocyte- and fibroblast-derived melanogenetic paracrine cytokines in vitro. Using primary human keratinocytes and fibroblasts, alterations of mRNA expression of melanogenetic paracrine cytokines due to cyclic stretch were investigated using a real-time polymerase chain reaction (PCR). The cytokines included basic fibroblast growth factor (bFGF), stem cell factor (SCF), granulocyte/macrophage colony-stimulating factor, interleukin-1{alpha}, and endothelin-1 (ET-1) for keratinocytes and bFGF, SCF, and hepatocyte growth factor for fibroblasts. The dose dependence of keratinocyte-derived ET-1 upregulation was further investigated using real-time PCR and an enzyme-linked immunosorbent assay. We also investigated the effects of cyclic stretch on the proliferation and differentiation of keratinocytes. Among the melanogenetic paracrine cytokines investigated, keratinocyte-derived ET-1 was consistently upregulated in all four cell lines. The degree of upregulation increased with the degree of the length and frequency of the stretch; in contrast, cell number and differentiation markers showed no obvious alterations with cyclic stretch. Keratinocyte-derived ET-1 upregulation possibly plays a significant role in the pathogenesis of pigmented disorders, such as friction melanosis, caused by mechanical stress.

  17. Dermal fibroblast expression of stromal cell-derived factor-1 (SDF-1) promotes epidermal keratinocyte proliferation in normal and diseased skin.

    Science.gov (United States)

    Quan, Chunji; Cho, Moon Kyun; Shao, Yuan; Mianecki, Laurel E; Liao, Eric; Perry, Daniel; Quan, Taihao

    2015-12-01

    Stromal cells provide a crucial microenvironment for overlying epithelium. Here we investigated the expression and function of a stromal cell-specific protein, stromal cell-derived factor-1 (SDF-1), in normal human skin and in the tissues of diseased skin. Immunohistology and laser capture microdissection (LCM)-coupled quantitative real-time RT-PCR revealed that SDF-1 is constitutively and predominantly expressed in dermal stromal cells in normal human skin in vivo. To our surprise, an extremely high level of SDF-1 transcription was observed in the dermis of normal human skin in vivo, evidenced by much higher mRNA expression level than type I collagen, the most abundant and highly expressed protein in human skin. SDF-1 was also upregulated in the tissues of many human skin disorders including psoriasis, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Double immunostaining for SDF-1 and HSP47 (heat shock protein 47), a marker of fibroblasts, revealed that fibroblasts were the major source of stroma-cell-derived SDF-1 in both normal and diseased skin. Functionally, SDF-1 activates the ERK (extracellular-signal-regulated kinases) pathway and functions as a mitogen to stimulate epidermal keratinocyte proliferation. Both overexpression of SDF-1 in dermal fibroblasts and treatment with rhSDF-1 to the skin equivalent cultures significantly increased the number of keratinocyte layers and epidermal thickness. Conversely, the stimulative function of SDF-1 on keratinocyte proliferation was nearly completely eliminated by interfering with CXCR4, a specific receptor of SDF-1, or by knock-down of SDF-1 in fibroblasts. Our data reveal that extremely high levels of SDF-1 provide a crucial microenvironment for epidermal keratinocyte proliferation in both physiologic and pathologic skin conditions.

  18. Protective effect of cyanidin-3-O-glucoside against ultraviolet B radiation-induced cell damage in human HaCaT keratinocytes

    Directory of Open Access Journals (Sweden)

    Yunfeng Hu

    2016-09-01

    Full Text Available Ultraviolet radiation is the major environmental harmful factor that has emotional impact on human skin. The aim of the present study was to determine the mechanism of protection of cyanidin-3-O-glucoside against ultraviolet B (UVB -induced damage to human HaCaT keratinocytes. Our results show that cyanidin-3-O-glucoside decreased the levels of intracellular reactive oxygen species generated by UVB treatment. cyanidin-3-O-glucoside also decreased the UVB-augmented levels of the DNA damage indicators phospho-p53 and phospho-ATM/ATR. In addition, cyanidin-3-O-glucoside protected keratinocytes from UVB-induced injury by overturning the disruption of mitochondrial membrane potential and reversing apoptosis. The expression of anti-apoptotic protein B-cell lymphoma 2 (Bcl-2 was attenuated in UVB-exposed cells but restored in UVB/cyanidin-3-O-glucoside-treated cells. Furthermore, expression of the proapoptotic proteins Bcl-2-associated X (Bax and the key apoptosis executer cleaved caspase-3 were increased in UVB-irradiated cells and decreased in UVB/cyanidin-3-O-glucoside-treated cells. For these reasons, the results demonstrate that cyanidin-3-O-glucoside protects human keratinocytes against UVB-induced oxidative stress and apoptosis. Our study provides a theoretical basis for the use of cyanidin-3-O-glucoside in the fight against light damage .

  19. Protective Effect of Cyanidin-3-O-Glucoside against Ultraviolet B Radiation-Induced Cell Damage in Human HaCaT Keratinocytes.

    Science.gov (United States)

    Hu, Yunfeng; Ma, Yuetang; Wu, Shi; Chen, Tianfeng; He, Yong; Sun, Jianxia; Jiao, Rui; Jiang, Xinwei; Huang, Yadong; Deng, Liehua; Bai, Weibin

    2016-01-01

    Ultraviolet radiation is the major environmental harmful factor that has emotional impact on human skin. The aim of the present study was to determine the mechanism of protection of cyanidin-3-O-glucoside against ultraviolet B (UVB)-induced damage to human HaCaT keratinocytes. Our results show that cyanidin-3-O-glucoside decreased the levels of intracellular reactive oxygen species generated by UVB treatment. Cyanidin-3-O-glucoside also decreased the UVB-augmented levels of the DNA damage indicators phospho-p53 and phospho-ATM/ATR. In addition, cyanidin-3-O-glucoside protected keratinocytes from UVB-induced injury by overturning the disruption of mitochondrial membrane potential and reversing apoptosis. The expression of anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) was attenuated in UVB-exposed cells but restored in UVB/cyanidin-3-O-glucoside-treated cells. Furthermore, expression of the proapoptotic proteins Bcl-2-associated X (Bax) and the key apoptosis executer cleaved caspase-3 were increased in UVB-irradiated cells and decreased in UVB/cyanidin-3-O-glucoside-treated cells. For these reasons, the results demonstrate that cyanidin-3-O-glucoside protects human keratinocytes against UVB-induced oxidative stress and apoptosis. Our study provides a theoretical basis for the use of cyanidin-3-O-glucoside in the fight against light damage.

  20. MiR-21-5p Links Epithelial-Mesenchymal Transition Phenotype with Stem-Like Cell Signatures via AKT Signaling in Keloid Keratinocytes

    Science.gov (United States)

    Yan, Li; Cao, Rui; Liu, Yuanbo; Wang, Lianzhao; Pan, Bo; Lv, Xiaoyan; Jiao, Hu; Zhuang, Qiang; Sun, Xuejian; Xiao, Ran

    2016-09-01

    Keloid is the abnormal wound healing puzzled by the aggressive growth and high recurrence rate due to its unrevealed key pathogenic mechanism. MicroRNAs contribute to a series of biological processes including epithelial-mesenchymal transition (EMT) and cells stemness involved in fibrotic disease. Here, using microRNAs microarray analysis we found mir-21-5p was significantly up-regulated in keloid epidermis. To investigate the role of miR-21-5p in keloid pathogenesis, we transfected miR-21-5p mimic or inhibitor in keloid keratinocytes and examined the abilities of cell proliferation, apoptosis, migration and invasion, the expressions of EMT-related markers vimentin and E-cadherin and stem-like cells-associated markers CD44 and ALDH1, and the involvement of PTEN and the signaling of AKT and ERK. Our results demonstrated that up-regulation or knockdown of miR-21-5p significantly increased or decreased the migration, invasion and sphere-forming abilities of keloid keratinocytes, and the phenotype of EMT and cells stemness were enhanced or reduced as well. Furthermore, PTEN and p-AKT were shown to participate in the regulation of miR-21-5p on EMT phenotypes and stemness signatures of keloid keratinocytes, which might account for the invasion and recurrence of keloids. This molecular mechanism of miR-21-5p on keloid keratinocytes linked EMT with cells stemness and implicated novel therapeutic targets for keloids.

  1. Bone marrow stem cells expressing keratinocyte growth factor via an inducible lentivirus protects against bleomycin-induced pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Susana Aguilar

    Full Text Available Many common diseases of the gas exchange surface of the lung have no specific treatment but cause serious morbidity and mortality. Idiopathic Pulmonary Fibrosis (IPF is characterized by alveolar epithelial cell injury, interstitial inflammation, fibroblast proliferation and collagen accumulation within the lung parenchyma. Keratinocyte Growth Factor (KGF, also known as FGF-7 is a critical mediator of pulmonary epithelial repair through stimulation of epithelial cell proliferation. During repair, the lung not only uses resident cells after injury but also recruits circulating bone marrow-derived cells (BMDC. Several groups have used Mesenchymal Stromal Cells (MSCs as therapeutic vectors, but little is known about the potential of Hematopoietic Stem cells (HSCs. Using an inducible lentiviral vector (Tet-On expressing KGF, we were able to efficiently transduce both MSCs and HSCs, and demonstrated that KGF expression is induced in a regulated manner both in vitro and in vivo. We used the in vivo bleomycin-induced lung fibrosis model to assess the potential therapeutic effect of MSCs and HSCs. While both populations reduced the collagen accumulation associated with bleomycin-induced lung fibrosis, only transplantation of transduced HSCs greatly attenuated the histological damage. Using double immunohistochemistry, we show that the reduced lung damage likely occurs through endogenous type II pneumocyte proliferation induced by KGF. Taken together, our data indicates that bone marrow transplantation of lentivirus-transduced HSCs can attenuate lung damage, and shows for the first time the potential of using an inducible Tet-On system for cell based gene therapy in the lung.

  2. Atmospheric pressure plasma jet treatment evokes transient oxidative stress in HaCaT keratinocytes and influences cell physiology.

    Science.gov (United States)

    Wende, Kristian; Straßenburg, Susanne; Haertel, Beate; Harms, Manuela; Holtz, Sarah; Barton, Annemarie; Masur, Kai; von Woedtke, Thomas; Lindequist, Ulrike

    2014-04-01

    Modern non-thermal atmospheric pressure plasma sources enable controllable interaction with biological systems. Their future applications - e.g. wound management - are based on their unique mixture of reactive components sparking both stimulatory as well as inhibitory processes. To gain detailed understanding of plasma-cell interaction and with respect to risk awareness, key mechanisms need to be identified. This study focuses on the impact of an argon non-thermal atmospheric pressure plasma jet (kINPen 09) on human HaCaT keratinocytes. With increasing duration, cell viability decreased. In accordance, cells accumulated in G2/M phase within the following 24 h. DNA single-strand breaks were detected immediately after treatment and receded in the aftermath, returning to control levels after 24 h. No directly plasma-related DNA double-strand breaks were detected over the same time. Concurrently, DNA synthesis decreased. Coincident with treatment time, an increase in intracellular 2',7'-dichlorodihydrofluorescein diacetate (H(2)DCFDA) conversion increased reactive oxygen species (ROS) levels. The radical scavenging activity of culture medium crucially influenced these effects. Thus, ROS changed DNA integrity, and the effectiveness of cellular defence mechanisms characterises the interaction of non-thermal plasma and eukaryotic cells. Effects were time-dependent, indicating an active response of the eukaryotic cells. Hence, a stimulation of eukaryotic cells using short-term non-thermal plasma treatment seems possible, eg in the context of chronic wound care. Long-term plasma treatments stopped in cell proliferation and apoptosis, which might be relevant in controlling neoplastic conditions.

  3. Citric acid induces cell-cycle arrest and apoptosis of human immortalized keratinocyte cell line (HaCaT) via caspase- and mitochondrial-dependent signaling pathways.

    Science.gov (United States)

    Ying, Tsung-Ho; Chen, Chia-Wei; Hsiao, Yu-Ping; Hung, Sung-Jen; Chung, Jing-Gung; Yang, Jen-Hung

    2013-10-01

    Citric acid is an alpha-hydroxyacid (AHA) widely used in cosmetic dermatology and skincare products. However, there is concern regarding its safety for the skin. In this study, we investigated the cytotoxic effects of citric acid on the human keratinocyte cell line HaCaT. HaCaT cells were treated with citric acid at 2.5-12.5 mM for different time periods. Cell-cycle arrest and apoptosis were investigated by 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining, flow cytometry, western blot and confocal microscopy. Citric acid not only inhibited proliferation of HaCaT cells in a dose-dependent manner, but also induced apoptosis and cell cycle-arrest at the G2/M phase (before 24 h) and S phase (after 24 h). Citric acid increased the level of Bcl-2-associated X protein (BAX) and reduced the levels of B-cell lymphoma-2 (BCL-2), B-cell lymphoma-extra large (BCL-XL) and activated caspase-9 and caspase-3, which subsequently induced apoptosis via caspase-dependent and caspase-independent pathways. Citric acid also activated death receptors and increased the levels of caspase-8, activated BH3 interacting-domain death agonist (BID) protein, Apoptosis-inducing factor (AIF), and Endonuclease G (EndoG). Therefore, citric acid induces apoptosis through the mitochondrial pathway in the human keratinocyte cell line HaCaT. The study results suggest that citric acid is cytotoxic to HaCaT cells via induction of apoptosis and cell-cycle arrest in vitro.

  4. Inhibitors of cysteine cathepsin and calpain do not prevent ultraviolet-B-induced apoptosis in human keratinocytes and HeLa cells

    DEFF Research Database (Denmark)

    Bang, Bo; Baadsgaard, Ole; Skov, Lone

    2004-01-01

    Caspases, members of the cysteine protease family, execute UVB-induced apoptosis in several cell lines and keratinocytes. Several researchers investigating UVB-induced apoptosis have demonstrated a dose-dependent protective effect of the synthetic peptide caspase inhibitor zVAD-fmk. However, z......VAD-fmk displays a dose-dependent protective effect against UVB-induced apoptosis, even at doses higher than those required to block all known proapoptotic caspases. In addition, it is known that zVAD-fmk also inhibits other cysteine proteases including cathepsins and calpains, and these proteases have recently....... This was done by investigating the effect of the irreversible cysteine protease inhibitor zFA-fmk, the cathepsin B inhibitor CA-074-Me and the calpain inhibitor ALLN on the viability of UVB-irradiated human keratinocytes and HeLa cells. At concentrations of 10 microM and above zVAD-fmk conferred partial dose...

  5. Laser capture microdissection-based in vivo genomic profiling of wound keratinocytes identifies similarities and differences to squamous cell carcinoma

    DEFF Research Database (Denmark)

    Pedersen, Tanja Xenia; Leethanakul, Chidchanop; Patel, Vyomesh;

    2003-01-01

    keratinocytes from incisional mouse skin wounds and adjacent normal skin keratinocytes. Changes in gene expression were determined by comparative cDNA array analyses, and the approach was validated by in situ hybridization. The analyses identified 48 candidate genes not previously associated with wound...... microdissection and cDNA array analysis provides a powerful new tool to unravel the complex changes in gene expression that underlie physiological and pathological remodeling of keratinized epithelium....

  6. [Effect of trypsin on the rat keratinocyte separation and subculture].

    Science.gov (United States)

    Ouyang, An-Li; Zhou, Yan; Hua, Ping; Tan, Wen-Song

    2002-01-01

    The effect of trypsin on the separation an subculture of the keratinocytes was investigated in this work. It was found that when 0.25% trypsin was employed for 5 minutes to separate keratinocytes, the number of active keratinocytes and the cells capable of forming colony were higher than those of other experimental conditions. The maximum attached ratio of primary keratinocytes was obtained when skin tissues were treated at 0.05% concentration of trypsin. With the increase of the trypsin concentrations, the attached ratio, attachment rate constant, and colony forming efficiency were all increased. Thus, 0.25% concentration of trypsin was recommended for separating and subculturing the keratinocytes.

  7. Platelet-rich plasma (PRP) and adipose-derived mesenchymal stem cells: stimulatory effects on proliferation and migration of fibroblasts and keratinocytes in vitro.

    Science.gov (United States)

    Stessuk, Talita; Puzzi, Maria Beatriz; Chaim, Elinton Adami; Alves, Paulo César Martins; de Paula, Erich Vinicius; Forte, Andresa; Izumizawa, Juliana Massae; Oliveira, Carolina Caliári; Frei, Fernando; Ribeiro-Paes, João Tadeu

    2016-09-01

    The clinical use of tissue engineering associated with cell therapy is considered a new alternative therapy for the repair of chronic lesions with potential application in different medical areas, mostly in orthopedic and dermatological diseases. Platelet-rich plasma (PRP) is a rich source of growth factors and cytokines important for wound healing. Adipose-derived mesenchymal stem cells (ADSCs) have shown potential to accelerate the resolution of ulcers, to stimulate cell proliferation, and to benefit the quality of skin repair. This study aims to determine the effect of PRP and conditioned medium (CM) from ADSC on fibroblast and keratinocyte proliferation in vitro. Migration and proliferation assays were performed to evaluate the growth of fibroblasts and keratinocytes in the presence of PRP, CM, and CM + PRP. Significant proliferative stimulation was observed after 48 h of culture (p < 0.05) on mean absorbance of fibroblasts cultured with 10 and 25 % PRP, 100 % CM, and 25 % PRP + 25 % CM, if compared with control. Keratinocyte proliferation was stimulated after 48 h in cultures with 25, 50, and 100 % CM, and growth was compared with controls. The migration assay detected a significant migratory stimulus in fibroblasts cultured with 10 % PRP + 10 % CM after 48 h. These in vitro results suggest that PRP and ADSC have therapeutic potential for healing and re-epithelialization of chronic wounds in vivo.

  8. Quercetin in combating H_2O_2 induced early cell apoptosis and mitochondrial damage to normal human keratinocytes

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-yan; HE Pei-ying; DU Juan; ZHANG Jian-zhong

    2010-01-01

    Background Oxidative stress plays an important role in the pathogenesis of epidermal diseases. This study aimed to investigate the effects of quercetin on the anti-oxidative response and on mitochondrial protection in cultured normal human keratinocytes. Methods Cultured HaCaT cells were treated with different concentrations of H_2O_2 (0, 50, 100, 250, 500 μmol/L) for different periods of time (0.5, 1,2,4 hours) to establish an oxidative stress model. The cultured HaCaT cells were randomly assigned to control, H_2O_2, and quercetin+H_2O_2 groups. For the quercetin groups, the cells were treated with different concentrations of quercetin (0,10, 25, 50 μmol/L) before exposure to H_2O_2. Morphological changes of the cells were observed under an inverted microscope and an electron microscope. The cell viability was detected by the MTT method. The cell apoptosis (AnnexinV/propidium iodide double stain) and mitochondrial membrane potential (△ψm) changes were detected by flow cytometry. Results An oxidative stress model of HaCaT cells was established under a suitable concentration (250 μmol/L) and treated time of H_2O_2 (2 hours). The cell viability and △ψm decreased in a concentration-dependent and time-dependent manner while the percentage of apoptotic cells significantly increased in the H_2O_2 groups compared with the control group (P<0.05). The cell viability and △ψm of the quercetin treated group increased (P<0.05) and the percentage of apoptotic cells decreased at concentrations of 1-50 μmol/L quercetin (P<0.01) compared with H_2O_2 treated group. Conclusion Quercetin can relieve the cell damage and apoptosis from H_2O_2 induced injury to HaCaT cells by anti-oxidation and mitochondrial protection.

  9. A novel chemopreventive mechanism for a traditional medicine: East Indian sandalwood oil induces autophagy and cell death in proliferating keratinocytes.

    Science.gov (United States)

    Dickinson, Sally E; Olson, Erik R; Levenson, Corey; Janda, Jaroslav; Rusche, Jadrian J; Alberts, David S; Bowden, G Timothy

    2014-09-15

    One of the primary components of the East Indian sandalwood oil (EISO) is α-santalol, a molecule that has been investigated for its potential use as a chemopreventive agent in skin cancer. Although there is some evidence that α-santalol could be an effective chemopreventive agent, to date, purified EISO has not been extensively investigated even though it is widely used in cultures around the world for its health benefits as well as for its fragrance and as a cosmetic. In the current study, we show for the first time that EISO-treatment of HaCaT keratinocytes results in a blockade of cell cycle progression as well as a concentration-dependent inhibition of UV-induced AP-1 activity, two major cellular effects known to drive skin carcinogenesis. Unlike many chemopreventive agents, these effects were not mediated through an inhibition of signaling upstream of AP-1, as EISO treatment did not inhibit UV-induced Akt or MAPK activity. Low concentrations of EISO were found to induce HaCaT cell death, although not through apoptosis as annexin V and PARP cleavage were not found to increase with EISO treatment. However, plasma membrane integrity was severely compromised in EISO-treated cells, which may have led to cleavage of LC3 and the induction of autophagy. These effects were more pronounced in cells stimulated to proliferate with bovine pituitary extract and EGF prior to receiving EISO. Together, these effects suggest that EISO may exert beneficial effects upon skin, reducing the likelihood of promotion of pre-cancerous cells to actinic keratosis (AK) and skin cancer.

  10. Brm inhibits the proliferative response of keratinocytes and corneal epithelial cells to ultraviolet radiation-induced damage.

    Directory of Open Access Journals (Sweden)

    Nur Mohammad Monsur Hassan

    Full Text Available Ultraviolet radiation (UV from sunlight is the primary cause of skin and ocular neoplasia. Brahma (BRM is part of the SWI/SNF chromatin remodeling complex. It provides energy for rearrangement of chromatin structure. Previously we have found that human skin tumours have a hotspot mutation in BRM and that protein levels are substantially reduced. Brm-/- mice have enhanced susceptibility to photocarcinogenesis. In these experiments, Brm-/- mice, with both or a single Trp53 allele were exposed to UV for 2 or 25 weeks. In wild type mice the central cornea and stroma became atrophic with increasing time of exposure while the peripheral regions became hyperplastic, presumably as a reparative process. Brm-/-, Trp53+/-, and particularly the Brm-/- Trp53+/- mice had an exaggerated hyperplastic regeneration response in the corneal epithelium and stroma so that the central epithelial atrophy or stromal loss was reduced. UV induced hyperplasia of the epidermis and corneal epithelium, with an increase in the number of dividing cells as determined by Ki-67 expression. This response was considerably greater in both the Brm-/- Trp53+/+ and Brm-/- Trp53+/- mice indicating that Brm protects from UV-induced enhancement of cell division, even with loss of one Trp53 allele. Cell division was disorganized in Brm-/- mice. Rather than being restricted to the basement membrane region, dividing cells were also present in the suprabasal regions of both tissues. Brm appears to be a tumour suppressor gene that protects from skin and ocular photocarcinogenesis. These studies indicate that Brm protects from UV-induced hyperplastic growth in both cutaneous and corneal keratinocytes, which may contribute to the ability of Brm to protect from photocarcinogenesis.

  11. Plant cells in vitro under altered gravity.

    Science.gov (United States)

    Klymchuk, D O

    1998-07-01

    Establishing the role of gravity in plant requires information about how gravity regulates the metabolism of individual cells. Plant cells and tissues in vitro are valuable models for such purpose. Disrupted intercellular relations in such models have allowed to elucidate both the gravity role in non-specialised to gravity plant cells and the correlative relation role of an intact plant organism. The data obtained from non-numerous space and clinostat experiments with plant cells in vitro have demonstrated that their metabolism is sensitive to g-environment. The most experiments have shown a decrease in the biomass production and cell proliferation of spaceflight samples compared with ground controls, although there is study reporting of increased biomass production in an anise suspension culture and D. carota crown gall tissue culture. At the same time, results of experiments with single carrot cells and tomato callus culture demonstrated similarities in differentiation process in microgravity and in ground controls. Noted ultrastructural arrangement in cells, especially mitochondria and plastids, have been related to altered energy load and functions of organelles in microgravity, as well as changes in the lipid peroxidation and the content of malonic dyaldehyde in a haplopappus tissue culture under altered gravity supposed with modification of membrane structural-functional state. This article focuses on growth aspects of the cultured cells in microgravity and under clinostat conditions and considers those aspects that require further analysis.

  12. Regulation of migratory activity of human keratinocytes by topography of multiscale collagen-containing nanofibrous matrices.

    Science.gov (United States)

    Fu, Xiaoling; Xu, Meng; Liu, Jie; Qi, Yanmei; Li, Shaohua; Wang, Hongjun

    2014-02-01

    Nanofibrous matrices hold great promise in skin wound repair partially due to their capability of recapturing the essential attributes of native extracellular matrix (ECM). With regard to limited studies on the effect of nanofibrous matrices on keratinocytes, the present study was aimed to understand how the topographical feature of nanofibrous matrices regulates keratinocyte motility by culturing keratinocytes on polycaprolactone (PCL)/collagen nanofibrous matrices (rough surface with fiber diameters of 331 ± 112 nm) or the matrices coated with a thin layer of collagen gel to form a secondary ultrafine fibrous network (smooth surface with ultrafine fiber diameters of 55 ± 26 nm). It was found that the PCL/collagen nanofibrous matrices alone did not stimulate cell migration, while collagen gel coating could significantly increase cell motility. Further studies demonstrated that the ultrafine fibrous network of collagen gel coating significantly activated integrin β1, Rac1 and Cdc42, facilitated the deposition of laminin-332 (formerly called laminin-5), and promoted the expression of active matrix metalloproteinases (MMPs) (i.e., MMP-2 and 9). Neutralization of integrin β1 activity abrogated the gel coating-induced keratinocyte migration. These findings provide important evidence on the role of topographical features of nanofibrous matrices in regulating the phenotypic alteration of keratinocytes and suggest the possible utility of collagen-containing nanofibrous matrices for skin regeneration especially in re-epithelialization.

  13. Keratinocyte Growth Factor-2 on the Proliferation of Corneal Epithelial Stem Cells in Rabbit Alkali Burned Cornea

    Institute of Scientific and Technical Information of China (English)

    Liu; Yongping; Shuqi; Huang; Jianxian; Lin; Wenxin; Zhang

    2007-01-01

    Purpose: To determine whether the topical application of keratinocyte growth factor-2 (KGF-2) can enhance corneal epithelial healing in rabbit alkali burned cornea. In addition, the distribution and proliferation of corneal epithelial stem cells in KGF-2-treated and control corneas were investigated to explain their mechanisms of effects on the epithelium.Methods: Twenty-four New Zealand eyes were divided into four groups, treated with KGF-2 solution (1, 50, 100 μg/ml) and PBS solution. Eighth millimeter filter paper discs, produced by standard paper punch, were soaked for 15 sec in 0.5N NaOH solution. The alkali-soaked discs were applied to the central cornea, centered on the pupil and held gently in position with forceps for 1 min. The cornea was finally irrigated over 1 min with 100 ml balanced salt solution (BSS). Keratinocyte growth factor-2 was then applied topically three times a day. The phosphate-buffered saline (PBS) group was served as a control. Each corneal epithelial defect was subsequently photographed every 24 hours with a slit lamp and was measured by computer-assisted digitizer. In each group, two rabbits were sacrificed for light microscopic examination after the interval of 7, 14 and 21 days. Meanwhile, the cornea epithelium was examined by immunohistochemistry for P63, AE5, EGFR.Results: Topical application of 10 μg/ml to 100 μg/ml KGF-2 significantly accelerated corneal epithelial wound healing when compared with controls. After 24 hours,epithelial healing rate of the 100 μg/ml KGF-2 group and the PBS treated group was (74±6)% and (40±8)% (P < 0.05). After 48 hours, the rate of the C group was (94±6)%, whereas in the control group it was (73±12)% (P < 0.05). Epithelial defects were often recurrent, which happened only two times in the 100 μg/ml KGF-2-treated group, but many times in the control group. In the corneal epithelial stem cell analysis, the number of the P63 positive cells was higher in the KGF-2-treated corneal

  14. Inflammatory responses of a human keratinocyte cell line to 10 nm citrate- and PEG-coated silver nanoparticles

    Science.gov (United States)

    Bastos, V.; Brown, D.; Johnston, H.; Daniel-da-Silva, A. L.; Duarte, I. F.; Santos, C.; Oliveira, H.

    2016-07-01

    Silver nanoparticles (AgNPs) are among the most commonly used engineered NPs and various commercially available products are designed to come in direct contact with the skin (wound dressings, textiles, creams, among others). Currently, there is limited understanding of the influence of coatings on the toxicity of AgNPs and in particular their ability to impact on AgNP's mediated inflammatory responses. As AgNPs are often stabilized by different coatings, including citrate and polyethyleneglycol (PEG), in this study we investigate the influence of citrate (Cit10) or PEG (PEG10) coatings to 10 nm AgNP on skin, using human HaCaT keratinocytes. AgNPs cytotoxicity and inflammatory response (nuclear factor (NF)-κB induction and cytokine production) of HaCaT were assessed after in vitro exposure to 10 and 40 µg/mL after 4, 24, and 48 h. Results showed that although both types of coated AgNPs decreased cell proliferation and viability, Cit10 AgNPs were more toxic. NF-κB inhibition was observed for the highest concentration (40 µg/mL) of PEG10 AgNPs, and the putative link to early apoptotic pathways observed in these cells is discussed. No production of IL-1β, IL-6, IL-10, and TNFα was stimulated by AgNPs. Furthermore, Cit10 and PEG10 AgNPs decreased the release of MCP-1 by HaCaT cells after 48 h of exposure. As cytokines are vital for the immunologic regulation in the human body, and it is demonstrated that they may interfere with NPs, more research is needed to understand how different AgNPs affect the immune system.

  15. Protective effect of C. sativa leaf extract against UV mediated-DNA damage in a human keratinocyte cell line.

    Science.gov (United States)

    Almeida, I F; Pinto, A S; Monteiro, C; Monteiro, H; Belo, L; Fernandes, J; Bento, A R; Duarte, T L; Garrido, J; Bahia, M F; Sousa Lobo, J M; Costa, P C

    2015-03-01

    Toxic effects of ultraviolet (UV) radiation on skin include protein and lipid oxidation, and DNA damage. The latter is known to play a major role in photocarcinogenesis and photoaging. Many plant extracts and natural compounds are emerging as photoprotective agents. Castanea sativa leaf extract is able to scavenge several reactive species that have been associated to UV-induced oxidative stress. The aim of this work was to analyze the protective effect of C. sativa extract (ECS) at different concentrations (0.001, 0.01, 0.05 and 0.1 μg/mL) against the UV mediated-DNA damage in a human keratinocyte cell line (HaCaT). For this purpose, the cytokinesis-block micronucleus assay was used. Elucidation of the protective mechanism was undertaken regarding UV absorption, influence on (1)O₂ mediated effects or NRF2 activation. ECS presented a concentration-dependent protective effect against UV-mediated DNA damage in HaCaT cells. The maximum protection afforded (66.4%) was achieved with the concentration of 0.1 μg/mL. This effect was found to be related to a direct antioxidant effect (involving (1)O₂) rather than activation of the endogenous antioxidant response coordinated by NRF2. Electrochemical studies showed that the good antioxidant capacity of the ECS can be ascribed to the presence of a pool of different phenolic antioxidants. No genotoxic or phototoxic effects were observed after incubation of HaCaT cells with ECS (up to 0.1 μg/mL). Taken together these results reinforce the putative application of this plant extract in the prevention/minimization of UV deleterious effects on skin.

  16. Hair-Growth-Promoting Effect of Conditioned Medium of High Integrin α6 and Low CD 71 (α6bri/CD71dim Positive Keratinocyte Cells

    Directory of Open Access Journals (Sweden)

    Chong Hyun Won

    2015-02-01

    Full Text Available Keratinocyte stem/progenitor cells (KSCs reside in the bulge region of the hair follicles and may be involved in hair growth. Hair follicle dermal papilla cells (HFDPCs and outer root sheath (ORS cells were treated with conditioned medium (CM of KSCs. Moreover, the effects of KSC-CM on hair growth were examined ex vivo and in vivo. A human growth factor chip array and RT-PCR were employed to identify enriched proteins in KSC-CM as compared with CM from keratinocytes. KSC-CM significantly increased the proliferation of HFDPCs and ORS cells, and increased the S-phase of the cell cycle in HFDPCs. KSC-CM led to the phosphorylation of ATK and ERK1/2 in both cell types. After subcutaneous injection of KSC-CM in C3H/HeN mice, a significant increase in hair growth and increased proliferation of hair matrix keratinocytes ex vivo was observed. We identified six proteins enriched in KSC-CM (amphiregulin, insulin-like growth factor binding protein-2, insulin-like growth factor binding protein-5, granulocyte macrophage-colony stimulating factor, Platelet-derived growth factor-AA, and vascular endothelial growth factor. A growth-factor cocktail that contains these six recombinant growth factors significantly increased the proliferation of HFDPCs and ORS cells and enhanced the hair growth of mouse models. These results collectively indicate that KSC-CM has the potential to increase hair growth via the proliferative capacity of HFDPCs and ORS cells.

  17. Differentiation of Keratinocytes Modulates Skin HPA Analog.

    Science.gov (United States)

    Wierzbicka, Justyna M; Żmijewski, Michał A; Antoniewicz, Jakub; Sobjanek, Michal; Slominski, Andrzej T

    2017-01-01

    It is well established, that epidermal keratinocytes express functional equivalent of hypothalamus-pituitary-adrenal axis (HPA) in order to respond to changing environment and maintain internal homeostasis. We are presenting data indicating that differentiation of primary neonatal human keratinocytes (HPEKp), induced by prolonged incubation or calcium is accompanied by significant changes in the expression of the elements of skin analog of HPA (sHPA). Expression of CRF, UCN1-3, POMC, ACTH, CRFR1, CRFR2, MC1R, MC2R, and GR (coded by NR3C1 gene) were observed on gene/protein levels along differentiation of keratinocytes in culture with similar pattern seen by immunohistochemistry on full thickness skin biopsies. Expression of CRF was more pronounced in less differentiated keratinocytes, which corresponded to the detection of CRF immunoreactivity preferentially in the stratum basale. POMC expression was enhanced in more differentiated keratinocytes, which corresponded to detection of ACTH immunoreactivity, predominantly in the stratum spinosum and stratum granulosum. Expression of urocortins was also affected by induction of HPEKp differentiation. Immunohistochemical studies showed high prevalence of CRFR1 in well differentiated keratinocytes, while smaller keratinocytes showed predominantly CRFR2 immunoreactivity. MC2R mRNA levels were elevated from days 4 to 8 of in vitro incubation, while MC2R immunoreactivity was the highest in the upper layers of epidermis. Similar changes in mRNA/protein levels of sHPA elements were observed in HPEKp keratinocytes treated with calcium. Summarizing, preferential expression of CRF and POMC (ACTH) by populations of keratinocytes on different stage of differentiation resembles organization of central HPA axis suggesting their distinct role in physiology and pathology of the epidermis. J. Cell. Physiol. 232: 154-166, 2017. © 2016 Wiley Periodicals, Inc.

  18. Human papillomavirus E6E7-mediated adenovirus cell killing: selectivity of mutant adenovirus replication in organotypic cultures of human keratinocytes.

    Science.gov (United States)

    Balagué, C; Noya, F; Alemany, R; Chow, L T; Curiel, D T

    2001-08-01

    Replication-competent adenoviruses are being investigated as potential anticancer agents. Exclusive virus replication in cancer cells has been proposed as a safety trait to be considered in the design of oncolytic adenoviruses. From this perspective, we have investigated several adenovirus mutants for their potential to conditionally replicate and promote the killing of cells expressing human papillomavirus (HPV) E6 and E7 oncoproteins, which are present in a high percentage of anogenital cancers. For this purpose, we have employed an organotypic model of human stratified squamous epithelium derived from primary keratinocytes that have been engineered to express HPV-18 oncoproteins stably. We show that, whereas wild-type adenovirus promotes a widespread cytopathic effect in all infected cells, E1A- and E1A/E1B-deleted adenoviruses cause no deleterious effect regardless of the coexpression of HPV18 E6E7. An adenovirus deleted in the CR2 domain of E1A, necessary for binding to the pRB family of pocket proteins, shows no selectivity of replication as it efficiently kills all normal and E6E7-expressing keratinocytes. Finally, an adenovirus mutant deleted in the CR1 and CR2 domains of E1A exhibits preferential replication and cell killing in HPV E6E7-expressing cultures. We conclude that the organotypic keratinocyte culture represents a distinct model to evaluate adenovirus selectivity and that, based on this model, further modifications of the adenovirus genome are required to restrict adenovirus replication to tumor cells.

  19. Radiofrequency treatment alters cancer cell phenotype

    Science.gov (United States)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  20. The Cytoskeleton & ATP in Sulfur Mustard-Mediated Injury to Endothelial Cells & Keratinocytes.

    Science.gov (United States)

    1996-12-01

    dithiothreitol, 3% Triton X-100 (Tx-100), and 1 mM phenylmethylsulfonyl fluoride (PMSF) in Hanks’ buffered salt solution was added to each well and...monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell. 15:935-943, 1978. 27. Yamamoto , K and Farber, TL...Metabolism of pyridine nucleotides in cultured rat hepatocytes intoxicated with tert-Butyl Hydroperoxide . Biochem. Pharmacol. 43:1119-1126, 1992. 28

  1. Metabolic alterations in renal cell carcinoma.

    Science.gov (United States)

    Massari, Francesco; Ciccarese, Chiara; Santoni, Matteo; Brunelli, Matteo; Piva, Francesco; Modena, Alessandra; Bimbatti, Davide; Fantinel, Emanuela; Santini, Daniele; Cheng, Liang; Cascinu, Stefano; Montironi, Rodolfo; Tortora, Giampaolo

    2015-11-01

    Renal cell carcinoma (RCC) is a metabolic disease, being characterized by the dysregulation of metabolic pathways involved in oxygen sensing (VHL/HIF pathway alterations and the subsequent up-regulation of HIF-responsive genes such as VEGF, PDGF, EGF, and glucose transporters GLUT1 and GLUT4, which justify the RCC reliance on aerobic glycolysis), energy sensing (fumarate hydratase-deficient, succinate dehydrogenase-deficient RCC, mutations of HGF/MET pathway resulting in the metabolic Warburg shift marked by RCC increased dependence on aerobic glycolysis and the pentose phosphate shunt, augmented lipogenesis, and reduced AMPK and Krebs cycle activity) and/or nutrient sensing cascade (deregulation of AMPK-TSC1/2-mTOR and PI3K-Akt-mTOR pathways). We analyzed the key metabolic abnormalities underlying RCC carcinogenesis, highlighting those altered pathways that may represent potential targets for the development of more effective therapeutic strategies.

  2. Wnt signaling induces differentiation of progenitor cells in organotypic keratinocyte cultures

    Directory of Open Access Journals (Sweden)

    Liu Bob Y

    2007-02-01

    Full Text Available Abstract Background Interfollicular skin develops normally only when the activity of the progenitor cells in the basal layer is counterbalanced by the exit of cells into the suprabasal layers, where they differentiate and cornify to establish barrier function. Distinct stem and progenitor compartments have been demonstrated in hair follicles and sebaceous glands, but there are few data to describe the control of interfollicular progenitor cell activity. Wnt signaling has been shown to be an important growth-inducer of stem cell compartments in skin and many other tissues. Results Here, we test the effect of ectopic Wnt1 expression on the behavior of interfollicular progenitor cells in an organotypic culture model, and find that Wnt1 signaling inhibits their growth and promotes terminal differentiation. Conclusion These results are consistent with the phenotypes reported for transgenic mice engineered to have gain or loss of function of Wnt signaling in skin, which would recommend our culture model as an accurate one for molecular analysis. Since it is known that canonical ligands are expressed in skin, it is likely that this pathway normally regulates the balance of growth and differentiation, and suggests it could be important to pathogenesis.

  3. DeltaNp63alpha repression of the Notch1 gene supports the proliferative capacity of normal human keratinocytes and cervical cancer cells.

    Science.gov (United States)

    Yugawa, Takashi; Narisawa-Saito, Mako; Yoshimatsu, Yuki; Haga, Kei; Ohno, Shin-ichi; Egawa, Nagayasu; Fujita, Masatoshi; Kiyono, Tohru

    2010-05-15

    The p53 family member p63 is a master regulator of epithelial development. One of its isoforms, DeltaNp63alpha, is predominantly expressed in the basal cells of stratified epithelia and plays a fundamental role in control of regenerative potential and epithelial integrity. In contrast to p53, p63 is rarely mutated in human cancers, but it is frequently overexpressed in squamous cell carcinomas (SCC). However, its functional relevance to tumorigenesis remains largely unclear. We previously identified the Notch1 gene as a novel transcriptional target of p53. Here, we show that DeltaNp63alpha functions as a transcriptional repressor of the Notch1 gene through the p53-responsive element. Knockdown of p63 caused upregulation of Notch1 expression and marked reduction in proliferation and clonogenicity of both normal human keratinocytes and cervical cancer cell lines overexpressing DeltaNp63alpha. Concomitant silencing of Notch1 significantly rescued this phenotype, indicating the growth defect induced by p63 deficiency to be, at least in part, attributable to Notch1 function. Conversely, overexpression of DeltaNp63alpha decreased basal levels of Notch1, increased proliferative potential of normal human keratinocytes, and inhibited both p53-dependent and p53-independent induction of Notch1 and differentiation markers upon genotoxic stress and serum exposure, respectively. These results suggest that DeltaNp63alpha maintains the self-renewing capacity of normal human keratinocytes and cervical cancer cells partly through transcriptional repression of the Notch1 gene and imply a novel pathogenetical significance of frequently observed overexpression of DeltaNp63alpha together with p53 inactivation in SCCs.

  4. Inhibition of JNK promotes differentiation of epidermal keratinocytes.

    Science.gov (United States)

    Gazel, Alix; Banno, Tomohiro; Walsh, Rebecca; Blumenberg, Miroslav

    2006-07-21

    In inflamed tissue, normal signal transduction pathways are altered by extracellular signals. For example, the JNK pathway is activated in psoriatic skin, which makes it an attractive target for treatment. To define comprehensively the JNK-regulated genes in human epidermal keratinocytes, we compared the transcriptional profiles of control and JNK inhibitor-treated keratinocytes, using DNA microarrays. We identified the differentially expressed genes 1, 4, 24, and 48 h after the treatment with SP600125. Surprisingly, the inhibition of JNK in keratinocyte cultures in vitro induces virtually all aspects of epidermal differentiation in vivo: transcription of cornification markers, inhibition of motility, withdrawal from the cell cycle, stratification, and even production of cornified envelopes. The inhibition of JNK also induces the production of enzymes of lipid and steroid metabolism, proteins of the diacylglycerol and inositol phosphate pathways, mitochondrial proteins, histones, and DNA repair enzymes, which have not been associated with differentiation previously. Simultaneously, basal cell markers, including integrins, hemidesmosome and extracellular matrix components, are suppressed. Promoter analysis of regulated genes finds that the binding sites for the forkhead family of transcription factors are over-represented in the SP600125-induced genes and c-Fos sites in the suppressed genes. The JNK-induced proliferation appears to be secondary to inhibition of differentiation. The results indicate that the inhibition of JNK in epidermal keratinocytes is sufficient to initiate their differentiation program and suggest that augmenting JNK activity could be used to delay cornification and enhance wound healing, whereas attenuating it could be a differentiation therapy-based approach for treating psoriasis.

  5. Differential effects of arsenic on calcium signaling in primary keratinocytes and malignant (HSC-1) cells.

    Science.gov (United States)

    Hsu, W L; Tsai, M H; Lin, M W; Chiu, Y C; Lu, J H; Chang, C H; Yu, H S; Yoshioka, T

    2012-08-01

    Arsenic is highly toxic to living cells, especially skin, and skin cancer is induced by drinking water containing arsenic. The molecular mechanisms of arsenic-induced cancer, however, are not well understood. To examine the initial processes in the development of arsenic-induced cancer, we analyzed calcium signaling at an early stage of arsenic treatment of human primary cells and compared the effects with those observed with arsenic treatment in carcinoma-derived cells. We found that arsenic inhibited inositol trisphosphate receptor (IP3R) function in the endoplasmic reticulum by inducing phosphorylation, which led to decreased intracellular calcium levels. Blockade of IP3R phosphorylation by the serine/threonine protein kinase Akt inhibitor wortmannin rescued calcium signaling. In contrast, arsenic treatment of cells derived from a carcinoma (human squamous carcinoma; HSC-1) for 1h had no obvious effect. Taken together, these results suggest that arsenic-induced reduction in calcium signaling is one of the initial mechanisms underlying the malignant transformation in the development of skin cancer.

  6. A method for the immortalization of newborn mouse skin keratinocytes

    Directory of Open Access Journals (Sweden)

    Brianna O Hammiller

    2015-07-01

    Full Text Available Isolation and culture of mouse primary epidermal keratinocytes is a common technique that allows for easy genetic and environmental manipulation. However, due to their limited lifespan in culture, experiments utilizing primary keratinocytes require large numbers of animals, and are time consuming and expensive. To avoid these issues, we developed a method for the immortalization of primary mouse epidermal keratinocytes. Upon isolation of newborn epidermal keratinocytes according to established methods, the cells were cultured long-term in keratinocyte growth factor-containing medium. The cells senesced within a few weeks and eventually, small, slowly growing colonies emerged. After they regained confluency, the cells were passaged and slowly refilled the dish. With several rounds of subculture, the cells adapted to culture conditions, were easily subcultured, maintained normal morphology, and were apparently immortal. The immortalized cells retained the ability to differentiate with increased calcium concentrations, and were maintained to high passage numbers, while maintaining a relatively stable karyotype. Analysis of multiple immortalized cell lines as well as primary keratinocyte cultures, revealed increased numbers of chromosomes, especially in the primary keratinocytes, and chromosomal aberrations in most of the immortalized cultures and in the primary keratinocytes. Orthotopic grafting of immortalized keratinocytes together with fibroblasts onto nude mouse hosts produced skin while v-rasHa infection of the immortalized keratinocytes prior to grafting produced squamous cell carcinoma. In summary, this method of cell line generation allows for decreased use of animals, reduces the expense and time involved in research, and provides a useful model for cutaneous keratinocyte experimentation.

  7. Altered calcium signaling in cancer cells.

    Science.gov (United States)

    Stewart, Teneale A; Yapa, Kunsala T D S; Monteith, Gregory R

    2015-10-01

    It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  8. Bazex Syndrome in Lung Squamous Cell Carcinoma: High Expression of Epidermal Growth Factor Receptor in Lesional Keratinocytes with Th2 Immune Shift

    Science.gov (United States)

    Amano, Maki; Hanafusa, Takaaki; Chikazawa, Sakiko; Ueno, Makiko; Namiki, Takeshi; Igawa, Ken; Miura, Keiko; Yokozeki, Hiroo

    2016-01-01

    An 82-year-old Japanese man was referred for detailed examination of hyperkeratotic erythematous plaques on his palms and soles for 6 months. Two weeks before his first visit, he had undergone lung lobectomy for right lung squamous cell carcinoma (SCC). Laboratory findings showed elevations of eosinophil counts, serum IgE, thymus and activation-regulated chemokine, SCC antigen, and soluble interleukin-2 receptor levels. Histological results of a skin biopsy involving the left palm showed psoriasiform dermatitis. Before lung lobectomy, the hyperkeratotic erythematous plaques on the palms and soles and the erythemas on the trunk and extremities were difficult to treat with topical steroids. After lobectomy, the skin symptoms dramatically and rapidly subsided with topical steroids. Therefore, we diagnosed Bazex syndrome (BS), also known as acrokeratosis paraneoplastica, as a paraneoplastic cutaneous disease in lung SCC. The mild eosinophilia subsided and levels of SCC antigen, IgE, and soluble interleukin-2 receptor were reduced. BS is a paraneoplastic cutaneous disease characterized by acral psoriasiform lesions associated with an underlying neoplasm. In a previous report, a shift to the Th2 immune condition was found in patients with non-small cell lung cancer, as shown in our patient. Epidermal growth factor receptor (EGFR) is also known as tumor growth factor-α receptor; it is increased in psoriatic keratinocytes. In our case, EGFR expression increased in lesional keratinocytes 2 weeks after surgery and decreased 4 weeks after surgery. We speculate that a shift to Th2 immune reactions in lung SCC may be the pathogenesis of BS, whereby lesional keratinocytes highly express EGFR in parallel with disease activity. PMID:28101024

  9. Anti-Inflammatory Effects of Concentrated Ethanol Extracts of Edelweiss (Leontopodium alpinum Cass. Callus Cultures towards Human Keratinocytes and Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Lulli Daniela

    2012-01-01

    Full Text Available Edelweiss (Leontopodium alpinum Cass. is traditionally employed in folk medicine as an anti-inflammatory remedy. In nature, the plant is sparsely available and protected; therefore production of callus cultures was established. A concentrated ethanolic extract of culture homogenate, with leontopodic acid representing 55±2% of the total phenolic fraction (ECC55, was characterized for anti-inflammatory properties in primary human keratinocytes (PHKs and endotheliocytes (HUVECs. Inflammatory responses were induced by UVA+UVB, lipopolysaccharide (LPS, oxidized low-density lipoprotein (oxLDL, and a mixture of proinflammatory cytokines. Trichostatin A, a sirtuin inhibitor, was used to induce keratinocyte inflammatory senescence. ECC55 (10–50 μg/mL protected PHK from solar UV-driven damage, by enhancing early intracellular levels of nitric oxide, although not affecting UV-induced expression of inflammatory genes. Comparison of the dose-dependent inhibition of chemokine (IL-8, IP-10, MCP-1 and growth factor (GM-CSF release from PHK activated by TNFα + IFNγ showed that leontopodic acid was mainly responsible for the inhibitory effects of ECC55. Sirtuin-inhibited cell cycle, proliferation, and apoptosis markers were restored by ECC55. The extract inhibited LPS-induced IL-6 and VCAM1 genes in HUVEC, as well as oxLDL-induced selective VCAM1 overexpression. Conclusion. Edelweiss cell cultures could be a valuable source of anti-inflammatory substances potentially applicable for chronic inflammatory skin diseases and bacterial and atherogenic inflammation.

  10. Evaluation of cytochrome P450 activity in vitro, using dermal and hepatic microsomes from four species and two keratinocyte cell lines in culture.

    Science.gov (United States)

    Rolsted, Kamilla; Kissmeyer, Anne-Marie; Rist, Gerda Marie; Hansen, Steen Honoré

    2008-01-01

    The Cytochrome P450 (CYP450) enzymes are expressed in the skin, and despite a low activity, as compared to the hepatic counterpart, a role during transdermal delivery of a drug cannot be excluded. Additionally, the enzymes may play a role in local toxicity, and further knowledge of dermal CYP450 activity can contribute to elucidate this issue. To achieve this, a cocktail of six selective CYP450 probe substrates were incubated with dermal and hepatic microsomes isolated from mouse, rat, minipig and man. Different species were used to evaluate if a reliable substitute for human tissue was possible. Further, the hepatic microsomes were included in this study, to estimate if the hepatic CYP450 activity is predictive of dermal CYP450 activity. The CYP450 activity was determined in two keratinocyte cell lines as well, as this in vitro model is desirable due to the ease in handling, among other factors. Overall, the metabolism found in the dermal microsomes was very low, and major differences were observed between species. When comparing the activities in dermal and hepatic microsomes, the qualitative pattern was to some extent similar within species, but also a number of differences were observed. The CYP450 metabolic activity in the two keratinocyte cell lines was not comparable to metabolism in the human dermal microsomes.

  11. Cell proliferation alterations in Chlorella cells under stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rioboo, Carmen [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); O' Connor, Jose Enrique [Laboratorio de Citomica, Unidad Mixta de Investigacion CIPF-UVEG, Centro de Investigacion Principe Felipe, Avda. Autopista del Saler, 16, 46013 Valencia (Spain); Prado, Raquel; Herrero, Concepcion [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); Cid, Angeles, E-mail: cid@udc.es [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain)

    2009-09-14

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  12. Lymphocytes in patients with psoriasis promote proliferation of keratinocytes

    Institute of Scientific and Technical Information of China (English)

    DENG An-mei; ZHONG Ren-qian; CHEN Sun-xiao; ZHOU Ye; KONG Xian-tao

    2002-01-01

    Objective: To analyze the effect of lymphocytes on proliferation of keratinocytes in patients with psoriasis. Methods: Lymphocytes in lesion and peripheral blood were isolated and amplified, then cultured together with normal keratinocytes. By MTT method, the living cells were quantified in the mixed culture.Results: Compared with normal controls, lymphocytes from lesion and peripheral blood of psoriasis both promote the proliferation of keratinocytes (P<0. 01 and P<0. 05 respectively). The concentrations of IL-2 and IFN-γ in the mixture of lesion lymphocytes and keratinocytes were significantly higher than that of controls.Tripterygium glycosides inhibited this promotion. Conclusion: Lymphocytes in patients with psoriasis (mainly Thl cell) play an important role in proliferation of keratinocytes. This psoriasis cell model is useful for studies on signal transduction in psoriasis.

  13. An ethanol extract derived from Bonnemaisonia hamifera scavenges ultraviolet B (UVB) radiation-induced reactive oxygen species and attenuates UVB-induced cell damage in human keratinocytes.

    Science.gov (United States)

    Piao, Mei Jing; Hyun, Yu Jae; Cho, Suk Ju; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Lee, Nam Ho; Ko, Mi Hee; Hyun, Jin Won

    2012-12-14

    The present study investigated the photoprotective properties of an ethanol extract derived from the red alga Bonnemaisonia hamifera against ultraviolet B (UVB)-induced cell damage in human HaCaT keratinocytes. The Bonnemaisonia hamifera ethanol extract (BHE) scavenged the superoxide anion generated by the xanthine/xanthine oxidase system and the hydroxyl radical generated by the Fenton reaction (FeSO₄ + H₂O₂), both of which were detected by using electron spin resonance spectrometry. In addition, BHE exhibited scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical and intracellular reactive oxygen species (ROS) that were induced by either hydrogen peroxide or UVB radiation. BHE reduced UVB-induced apoptosis, as shown by decreased apoptotic body formation and DNA fragmentation. BHE also attenuated DNA damage and the elevated levels of 8-isoprostane and protein carbonyls resulting from UVB-mediated oxidative stress. Furthermore, BHE absorbed electromagnetic radiation in the UVB range (280-320 nm). These results suggest that BHE protects human HaCaT keratinocytes against UVB-induced oxidative damage by scavenging ROS and absorbing UVB photons, thereby reducing injury to cellular components.

  14. An Ethanol Extract Derived from Bonnemaisonia hamifera Scavenges Ultraviolet B (UVB Radiation-Induced Reactive Oxygen Species and Attenuates UVB-Induced Cell Damage in Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Nam Ho Lee

    2012-12-01

    Full Text Available The present study investigated the photoprotective properties of an ethanol extract derived from the red alga Bonnemaisonia hamifera against ultraviolet B (UVB-induced cell damage in human HaCaT keratinocytes. The Bonnemaisonia hamifera ethanol extract (BHE scavenged the superoxide anion generated by the xanthine/xanthine oxidase system and the hydroxyl radical generated by the Fenton reaction (FeSO4 + H2O2, both of which were detected by using electron spin resonance spectrometry. In addition, BHE exhibited scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical and intracellular reactive oxygen species (ROS that were induced by either hydrogen peroxide or UVB radiation. BHE reduced UVB-induced apoptosis, as shown by decreased apoptotic body formation and DNA fragmentation. BHE also attenuated DNA damage and the elevated levels of 8-isoprostane and protein carbonyls resulting from UVB-mediated oxidative stress. Furthermore, BHE absorbed electromagnetic radiation in the UVB range (280–320 nm. These results suggest that BHE protects human HaCaT keratinocytes against UVB-induced oxidative damage by scavenging ROS and absorbing UVB photons, thereby reducing injury to cellular components.

  15. Thermolysin in human cultured keratinocyte isolation

    Directory of Open Access Journals (Sweden)

    A. Gragnani

    Full Text Available BACKGROUND: When treating extensively burned patients using cultured epidermal sheets, the main problem is the time required for its production. Conventional keratinocyte isolation is usually done using Trypsin. We used a modification of the conventional isolation method in order to improve this process and increase the number of colonies from the isolated epidermal cell population. PURPOSE: To compare the action of trypsin and thermolysin in the keratinocyte isolation using newborn foreskin. METHODS: This method used thermolysin as it selectively digests the dermo-epidermal junction. After dermis separation, the epidermis was digested by trypsin in order to obtain a cell suspension. RESULTS: Compared to the conventional procedure, these experiments demonstrated that in the thermolysin group, the epidermis was easily detached from the dermis, there was no fibroblast contamination and there were a larger number of keratinocyte colonies which had a significant statistical difference. CONCLUSION: The number of colonies in the thermolysin group was significantly greater than in the trypsin group.

  16. A comprehensive two-dimensional gel protein database of noncultured unfractionated normal human epidermal keratinocytes: towards an integrated approach to the study of cell proliferation, differentiation and skin diseases

    DEFF Research Database (Denmark)

    Celis, J E; Madsen, Peder; Rasmussen, H H

    1991-01-01

    proteins in alphabetical order), "basal cell markers", "differentiation markers", "proteins highly up-regulated in psoriatic skin", "microsequenced proteins" and "human autoantigens". For reference, we have also included 2-D gel (isoelectric focusing) patterns of cultured normal and psoriatic keratinocytes......A two-dimensional (2-D) gel database of cellular proteins from noncultured, unfractionated normal human epidermal keratinocytes has been established. A total of 2651 [35S]methionine-labeled cellular proteins (1868 isoelectric focusing, 783 nonequilibrium pH gradient electrophoresis) were resolved...

  17. Candida albicans phospholipomannan triggers inflammatory responses of human keratinocytes through Toll-like receptor 2.

    Science.gov (United States)

    Li, Min; Chen, Qing; Shen, Yongnian; Liu, Weida

    2009-07-01

    The Toll-like receptors (TLRs) play an important role in the recognition of Candida albicans components and activation of innate immunity. Phospholipomannan (PLM), a glycolipid, is expressed at the surface of C. albicans cell wall, which acts as a member of the pathogen-associated molecular patterns family. In this study, we sought to clarify whether C. albicans-native PLM could induce an inflammation response in human keratinocytes and to determine the underlying mechanisms. Exposure of cultured human primary keratinocytes to PLM led to the increased gene expression and secretion of proinflammatory cytokines (IL-6) and chemokines (IL-8). PLM hydrolysed with beta-d-mannoside mannohydrolase failed to induce gene expression and secretion of IL-6 and IL-8. PLM up-regulated the mRNA and protein levels of TLR2, whereas the mRNA level of TLR4 was not altered. Keratinocytes challenged with PLM resulted in the activation of NF-kappaB and mitogen-activated protein kinase (MAPKs) including p38. Anti-TLR2 neutralizing antibody, NFkappaB and p38MAPK inhibitors blocked the PLM-induced secretion of IL-6, IL-8 in keratinocytes, but no such effect was observed in pretreatment with anti-TLR4-neutralizing antibody and lipopolysaccharide inhibitor (polymyxin B). These data suggest C. albicans-native PLM may contribute to the inflammatory responses of cutaneous candidiasis in the TLR2-NF-kappaB and p38MAPK signalling pathway dependent manner.

  18. Chitin modulates innate immune responses of keratinocytes.

    Directory of Open Access Journals (Sweden)

    Barbara Koller

    Full Text Available BACKGROUND: Chitin, after cellulose the second most abundant polysaccharide in nature, is an essential component of exoskeletons of crabs, shrimps and insects and protects these organisms from harsh conditions in their environment. Unexpectedly, chitin has been found to activate innate immune cells and to elicit murine airway inflammation. The skin represents the outer barrier of the human host defense and is in frequent contact with chitin-bearing organisms, such as house-dust mites or flies. The effects of chitin on keratinocytes, however, are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesized that chitin stimulates keratinocytes and thereby modulates the innate immune response of the skin. Here we show that chitin is bioactive on primary and immortalized keratinocytes by triggering production of pro-inflammatory cytokines and chemokines. Chitin stimulation further induced the expression of the Toll-like receptor (TLR TLR4 on keratinocytes at mRNA and protein level. Chitin-induced effects were mainly abrogated when TLR2 was blocked, suggesting that TLR2 senses chitin on keratinocytes. CONCLUSIONS/SIGNIFICANCE: We speculate that chitin-bearing organisms modulate the innate immune response towards pathogens by upregulating secretion of cytokines and chemokines and expression of MyD88-associated TLRs, two major components of innate immunity. The clinical relevance of this mechanism remains to be defined.

  19. Death penalty for keratinocytes: apoptosis versus cornification.

    Science.gov (United States)

    Lippens, S; Denecker, G; Ovaere, P; Vandenabeele, P; Declercq, W

    2005-11-01

    Homeostasis implies a balance between cell growth and cell death. This balance is essential for the development and maintenance of multicellular organisms. Homeostasis is controlled by several mechanisms including apoptosis, a process by which cells condemned to death are completely eliminated. However, in some cases, total destruction and removal of dead cells is not desirable, as when they fulfil a specific function such as formation of the skin barrier provided by corneocytes, also known as terminally differentiated keratinocytes. In this case, programmed cell death results in accumulation of functional cell corpses. Previously, this process has been associated with apoptotic cell death. In this overview, we discuss differences and similarities in the molecular regulation of epidermal programmed cell death and apoptosis. We conclude that despite earlier confusion, apoptosis and cornification occur through distinct molecular pathways, and that possibly antiapoptotic mechanisms are implicated in the terminal differentiation of keratinocytes.

  20. Comparative evaluation of the antiproliferative effect of cyclosporin A and gamma-interferon on normal and HPV-transformed keratinocytes by cell counting, MTT assay and tritiated thymidine incorporation.

    Science.gov (United States)

    Marionnet, A V; Lizard, G; Chardonnet, Y; Schmitt, D

    1997-02-01

    We compared three techniques, the MTT tetrazolium assay, cell counting, and tritiated thymidine ([3H]TdR) incorporation assay to measure the antiproliferative effect of cyclosporin A (CsA) and interferon-gamma (IFN-gamma) on normal human skin keratinocyte cultures (NHK) used at the second passage and human papilomavirus type 16- and 18-transformed cell lines (EK16 and EK18) exposed continuously to the drugs for 3 days. The three techniques showed that under CsA (0.5 and 8 micrograms/ml) and IFN-gamma (5 and 160 U/ml) treatments the cells remained viable and that the growth of keratinocytes was inhibited. For IFN-gamma, the MTT colorimetric assay consistently underestimated its growth inhibitory activity as compared to cell counting or [3H]TdR incorporation, whatever the cells used. For high doses of CsA, MTT and cell counting gave similar percentages, of inhibitory activity whatever the cells; MTT underestimated this activity as compared to [3H]TdR incorporation only in NHK and EK18 cells, whereas similar results were obtained with EK16 cells. In conclusion, this investigations shows that MTT sensitivity differed with the drug and also according to the keratinocyte cultures. The MTT test is clearly not appropriate for study of IFN-gamma treatment whatever the keratinocytes used. Such discrepancies indicate that the MTT test should be done with care on cultures to measure the effects of drugs on cell growth; the growth inhibition should be carefully considered and it would be best if two different methods were used.

  1. Stathmin regulates keratinocyte proliferation and migration during cutaneous regeneration.

    Science.gov (United States)

    Schmitt, Sabrina; Safferling, Kai; Westphal, Kathi; Hrabowski, Manuel; Müller, Ute; Angel, Peter; Wiechert, Lars; Ehemann, Volker; Müller, Benedikt; Holland-Cunz, Stefan; Stichel, Damian; Harder, Nathalie; Rohr, Karl; Germann, Günter; Matthäus, Franziska; Schirmacher, Peter; Grabe, Niels; Breuhahn, Kai

    2013-01-01

    Cutaneous regeneration utilizes paracrine feedback mechanisms to fine-tune the regulation of epidermal keratinocyte proliferation and migration. However, it is unknown how fibroblast-derived hepatocyte growth factor (HGF) affects these mutually exclusive processes in distinct cell populations. We here show that HGF stimulates the expression and phosphorylation of the microtubule-destabilizing factor stathmin in primary human keratinocytes. Quantitative single cell- and cell population-based analyses revealed that basal stathmin levels are important for the migratory ability of keratinocytes in vitro; however, its expression is moderately induced in the migration tongue of mouse skin or organotypic multi-layered keratinocyte 3D cultures after full-thickness wounding. In contrast, clearly elevated stathmin expression is detectable in hyperproliferative epidermal areas. In vitro, stathmin silencing significantly reduced keratinocyte proliferation. Automated quantitative and time-resolved analyses in organotypic cocultures demonstrated a high correlation between Stathmin/phospho-Stathmin and Ki67 positivity in epidermal regions with proliferative activity. Thus, activation of stathmin may stimulate keratinocyte proliferation, while basal stathmin levels are sufficient for keratinocyte migration during cutaneous regeneration.

  2. Stathmin regulates keratinocyte proliferation and migration during cutaneous regeneration.

    Directory of Open Access Journals (Sweden)

    Sabrina Schmitt

    Full Text Available Cutaneous regeneration utilizes paracrine feedback mechanisms to fine-tune the regulation of epidermal keratinocyte proliferation and migration. However, it is unknown how fibroblast-derived hepatocyte growth factor (HGF affects these mutually exclusive processes in distinct cell populations. We here show that HGF stimulates the expression and phosphorylation of the microtubule-destabilizing factor stathmin in primary human keratinocytes. Quantitative single cell- and cell population-based analyses revealed that basal stathmin levels are important for the migratory ability of keratinocytes in vitro; however, its expression is moderately induced in the migration tongue of mouse skin or organotypic multi-layered keratinocyte 3D cultures after full-thickness wounding. In contrast, clearly elevated stathmin expression is detectable in hyperproliferative epidermal areas. In vitro, stathmin silencing significantly reduced keratinocyte proliferation. Automated quantitative and time-resolved analyses in organotypic cocultures demonstrated a high correlation between Stathmin/phospho-Stathmin and Ki67 positivity in epidermal regions with proliferative activity. Thus, activation of stathmin may stimulate keratinocyte proliferation, while basal stathmin levels are sufficient for keratinocyte migration during cutaneous regeneration.

  3. Spaceflight alters immune cell function and distribution

    Science.gov (United States)

    Sonnenfeld, Gerald; Mandel, Adrian D.; Konstantinova, Irina V.; Berry, Wallace D.; Taylor, Gerald R.; Lesniak, A. T.; Fuchs, Boris B.; Rakhmilevich, Alexander L.

    1992-01-01

    Experiments are described which were performed onboard Cosmos 2044 to determine spaceflight effects on immunologically important cell function and distribution. Results indicate that bone marrow cells from flown and suspended rats exhibited a decreased response to a granulocyte/monocyte colony-stimulating factor compared with the bone marrow cells from control rats. Bone marrow cells showed an increase in the percentage of cells expressing markers for helper T-cells in the myelogenous population and increased percentages of anti-asialo granulocyte/monocyte-1-bearing interleulin-2 receptor bearing pan T- and helper T-cells in the lymphocytic population.

  4. Anomalous features of EMT during keratinocyte transformation.

    Directory of Open Access Journals (Sweden)

    Tamar Geiger

    Full Text Available During the evolution of epithelial cancers, cells often lose their characteristic features and acquire a mesenchymal phenotype, in a process known as epithelial-mesenchymal transition (EMT. In the present study we followed early stages of keratinocyte transformation by HPV16, and observed diverse cellular changes, associated with EMT. We compared primary keratinocytes with early and late passages of HF1 cells, a cell line of HPV16-transformed keratinocytes. We have previously shown that during the progression from the normal cells to early HF1 cells, immortalization is acquired, while in the progression to late HF1, cells become anchorage independent. We show here that during the transition from the normal state to late HF1 cells, there is a progressive reduction in cytokeratin expression, desmosome formation, adherens junctions and focal adhesions, ultimately leading to poorly adhesive phenotype, which is associated with anchorage-independence. Surprisingly, unlike "conventional EMT", these changes are associated with reduced Rac1-dependent cell migration. We monitored reduced Rac1-dependent migration also in the cervical cancer cell line SiHa. Therefore we can conclude that up to the stage of tumor formation migratory activity is eliminated.

  5. Remediation of textile azo dye acid red 114 by hairy roots of Ipomoea carnea Jacq. and assessment of degraded dye toxicity with human keratinocyte cell line.

    Science.gov (United States)

    Jha, Pamela; Jobby, Renitta; Desai, N S

    2016-07-05

    Bioremediation has proven to be the most desirable and cost effective method to counter textile dye pollution. Hairy roots (HRs) of Ipomoea carnea J. were tested for decolourization of 25 textile azo dyes, out of which >90% decolourization was observed in 15 dyes. A diazo dye, Acid Red 114 was decolourized to >98% and hence, was chosen as the model dye. A significant increase in the activities of oxidoreductive enzymes was observed during decolourization of AR114. The phytodegradation of AR114 was confirmed by HPLC, UV-vis and FTIR spectroscopy. The possible metabolites were identified by GCMS as 4- aminobenzene sulfonic acid 2-methylaniline and 4- aminophenyl 4-ethyl benzene sulfonate and a probable pathway for the biodegradation of AR114 has been proposed. The nontoxic nature of the metabolites and toxicity of AR114 was confirmed by cytotoxicity tests on human keratinocyte cell line (HaCaT). When HaCaT cells were treated separately with 150 μg mL(-1) of AR114 and metabolites, MTT assay showed 50% and ≈100% viability respectively. Furthermore, flow cytometry data showed that, as compared to control, the cells in G2-M and death phase increased by 2.4 and 3.6 folds respectively on treatment with AR114 but remained unaltered in cells treated with metabolites.

  6. Transcriptional profiling of epidermal keratinocytes: comparison of genes expressed in skin, cultured keratinocytes, and reconstituted epidermis, using large DNA microarrays.

    Science.gov (United States)

    Gazel, Alix; Ramphal, Patricia; Rosdy, Martin; De Wever, Bart; Tornier, Carine; Hosein, Nadia; Lee, Brian; Tomic-Canic, Marjana; Blumenberg, Miroslav

    2003-12-01

    Epidermal keratinocytes are complex cells that create a unique three-dimensional (3-D) structure, differentiate through a multistage process, and respond to extracellular stimuli from nearby cells. Consequently, keratinocytes express many genes, i.e., have a relatively large "transcriptome." To determine which of the expressed genes are innate to keratinocytes, which are specific for the differentiation and 3-D architecture, and which are induced by other cell types, we compared the transcriptomes of skin from human subjects, differentiating 3-D reconstituted epidermis, cultured keratinocytes, and nonkeratinocyte cell types. Using large oligonucleotide microarrays, we analyzed five or more replicates of each, which yielded statistically consistent data and allowed identification of the differentially expressed genes. Epidermal keratinocytes, unlike other cells, express many proteases and protease inhibitors and genes that protect from UV light. Skin specifically expresses a higher number of receptors, secreted proteins, and transcription factors, perhaps influenced by the presence of nonkeratinocyte cell types. Surprisingly, mitochondrial proteins were significantly suppressed in skin, suggesting a low metabolic rate. Three-dimensional samples, skin and reconstituted epidermis, are similar to each other, expressing epidermal differentiation markers. Cultured keratinocytes express many cell-cycle and DNA replication genes, as well as integrins and extracellular matrix proteins. These results define innate, architecture-specific, and cell-type-regulated genes in epidermis.

  7. Tissue engineering of composite grafts: Cocultivation of human oral keratinocytes and human osteoblast-like cells on laminin-coated polycarbonate membranes and equine collagen membranes under different culture conditions.

    Science.gov (United States)

    Glaum, R; Wiedmann-Al-Ahmad, M; Huebner, U; Schmelzeisen, R

    2010-05-01

    In complex craniomaxillofacial defects, the simultaneous reconstruction of hard and soft tissue is often necessary. Until now, oral keratinocytes and osteoblast-like cells have not been cocultivated on the same carrier. For the first time, the cocultivation of human oral keratinocytes and human osteoblast-like cells has been investigated in this study. Different carriers (laminin-coated polycarbonate and equine collagen membranes) and various culture conditions were examined. Human oral keratinocytes and human osteoblast-like cells from five patients were isolated from tissue samples, seeded on the opposite sides of the carriers and cultivated for 1 and 2 weeks under static conditions in an incubator and in a perfusion chamber. Proliferation and morphology of the cells were analyzed by EZ4U-tests, light microscopy, and scanning electron microscopy. Cocultivation of both cell-types seeded on one carrier was possible. Quantitative and qualitative growth was significantly better on collagen membranes when compared with laminin-coated polycarbonate membranes independent of the culture conditions. Using perfusion culture in comparison to static culture, the increase of cell proliferation after 2 weeks of cultivation when compared with the proliferation after 1 week was significantly lower, independent of the carriers used. In conclusion, the contemporaneous cultivation of human oral keratinocytes and human osteoblast-like cells on the same carrier is possible, a prerequisite for planned in vivo studies. As carrier collagen is superior to laminin-coated polycarbonate membranes. Regarding the development over time, the increase of proliferation rate is lower in perfusion culture. Examinations of cellular differentiation over time under various culture conditions will be subject of further investigations.

  8. Ski protein levels increase during in vitro progression of HPV16-immortalized human keratinocytes and in cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi; Pirisi, Lucia [Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC (United States); Creek, Kim E., E-mail: creekk@sccp.sc.edu [Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC (United States)

    2013-09-15

    We compared the levels of the Ski oncoprotein, an inhibitor of transforming growth factor-beta (TGF-β) signaling, in normal human keratinocytes (HKc), HPV16 immortalized HKc (HKc/HPV16), and differentiation resistant HKc/HPV16 (HKc/DR) in the absence and presence of TGF-β. Steady-state Ski protein levels increased in HKc/HPV16 and even further in HKc/DR, compared to HKc. TGF-β treatment of HKc, HKc/HPV16, and HKc/DR dramatically decreased Ski. TGF-β-induced Ski degradation was delayed in HKc/DR. Ski and phospho-Ski protein levels are cell cycle dependent with maximal Ski expression and localization to centrosomes and mitotic spindles during G2/M. ShRNA knock down of Ski in HKc/DR inhibited cell proliferation. More intense nuclear and cytoplasmic Ski staining and altered Ski localization were found in cervical cancer samples compared to adjacent normal tissue in a cervical cancer tissue array. Overall, these studies demonstrate altered Ski protein levels, degradation and localization in HPV16-transformed human keratinocytes and in cervical cancer. - Highlights: • Ski oncoprotein levels increase during progression of HPV16-transformed cells. • Ski and phospho-Ski protein levels are cell cycle dependent. • Ski knock-down in HPV16-transformed keratinocytes inhibited cell proliferation. • Cervical cancer samples overexpress Ski.

  9. Activation of the low molecular weight protein tyrosine phosphatase in keratinocytes exposed to hyperosmotic stress.

    Directory of Open Access Journals (Sweden)

    Rodrigo A Silva

    Full Text Available Herein, we provide new contribution to the mechanisms involved in keratinocytes response to hyperosmotic shock showing, for the first time, the participation of Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP activity in this event. We reported that sorbitol-induced osmotic stress mediates alterations in the phosphorylation of pivotal cytoskeletal proteins, particularly Src and cofilin. Furthermore, an increase in the expression of the phosphorylated form of LMWPTP, which was followed by an augment in its catalytic activity, was observed. Of particular importance, these responses occurred in an intracellular milieu characterized by elevated levels of reduced glutathione (GSH and increased expression of the antioxidant enzymes glutathione peroxidase and glutathione reductase. Altogether, our results suggest that hyperosmostic stress provides a favorable cellular environment to the activation of LMWPTP, which is associated with increased expression of antioxidant enzymes, high levels of GSH and inhibition of Src kinase. Finally, the real contribution of LMWPTP in the hyperosmotic stress response of keratinocytes was demonstrated through analysis of the effects of ACP1 gene knockdown in stressed and non-stressed cells. LMWPTP knockdown attenuates the effects of sorbitol induced-stress in HaCaT cells, mainly in the status of Src kinase, Rac and STAT5 phosphorylation and activity. These results describe for the first time the participation of LMWPTP in the dynamics of cytoskeleton rearrangement during exposure of human keratinocytes to hyperosmotic shock, which may contribute to cell death.

  10. Raman spectroscopic study of a genetically altered kidney cell

    Science.gov (United States)

    Joshi, Joel; Garcia, Francisco; Centeno, Silvia P.; Joshi, N. V.

    2008-02-01

    A Raman spectroscopic investigation of a genetically altered Human Embryonic Kidney Cell (HEK293) along with a pathologically normal cell has been carried out by a conventional method. The genetic alteration was carried out with a standard protocol by using a Green Fluorescence Protein (GFP). Raman spectra show that there are dramatic differences between the spectrum obtained from a genetically altered cell and that obtained from a pathologically normal cell. The former shows three broad bands; meanwhile the latter shows several sharp peaks corresponding to the ring vibrational modes of Phen, GFP and DNA. The present analysis provides an indication that the force field near Phen located at 64, 65 and 66 was altered during the genetic transformation. The Raman spectrum could be a direct experimental evidence for substantial modifications triggered due to the expression of specific genes.

  11. Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: A new implication of skin cancer prevention.

    Science.gov (United States)

    Bridgeman, Bryan B; Wang, Pu; Ye, Boping; Pelling, Jill C; Volpert, Olga V; Tong, Xin

    2016-05-01

    Ultraviolet B (UVB) radiation is the major environmental risk factor for developing skin cancer, the most common cancer worldwide, which is characterized by aberrant activation of Akt/mTOR (mammalian target of rapamycin). Importantly, the link between UV irradiation and mTOR signaling has not been fully established. Apigenin is a naturally occurring flavonoid that has been shown to inhibit UV-induced skin cancer. Previously, we have demonstrated that apigenin activates AMP-activated protein kinase (AMPK), which leads to suppression of basal mTOR activity in cultured keratinocytes. Here, we demonstrated that apigenin inhibited UVB-induced mTOR activation, cell proliferation and cell cycle progression in mouse skin and in mouse epidermal keratinocytes. Interestingly, UVB induced mTOR signaling via PI3K/Akt pathway, however, the inhibition of UVB-induced mTOR signaling by apigenin was not Akt-dependent. Instead, it was driven by AMPK activation. In addition, mTOR inhibition by apigenin in keratinocytes enhanced autophagy, which was responsible, at least in part, for the decreased proliferation in keratinocytes. In contrast, apigenin did not alter UVB-induced apoptosis. Taken together, our results indicate the important role of mTOR inhibition in UVB protection by apigenin, and provide a new target and strategy for better prevention of UV-induced skin cancer.

  12. Characterisation of Human Keratinocytes by Measuring Cellular Repair Capacity of UVB-Induced DNA Damage and Monitoring of Cytogenetic Changes in Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Greinert, R.; Breibart, E.W.; Mitchell, D.; Smida, J.; Volkmer, B

    2000-07-01

    The molecular mechanisms for UV-induced photocarcinogenesis are far from being understood in detail, especially in the case of malignant melanoma of the skin. Nevertheless, it is known that deficiencies in cellular repair processes of UV-induced DNA damage (e.g. in the case of Xeroderma pigmentosum) represent important aetiological factors in the multistep development of skin cancer. The repair kinetics have therefore been studied of an established skin cell line (HaCaT), primary human keratinocytes, melanocytes and melanoma cell lines, using fluorescence microscopy and flow cytometry. Our data show a high degree of interindividual variability in cellular repair capacity for UV-induced DNA lesions, which might be due to individual differences in the degree of tolerable damage and/or the onsets of saturation of the enzymatic repair system. The cytogenetic analysis of melanoma cell lines, using spectral karyotyping (SKY) furthermore proves that malignant melanoma of the skin are characterised by high numbers of chromosomal aberrations. (author)

  13. Nylon wool purification alters the activation of T cells.

    Science.gov (United States)

    Wohler, Jillian E; Barnum, Scott R

    2009-02-01

    Purification of lymphocytes, particularly T cells, is commonly performed using nylon wool. This enrichment method selectively retains B cells and some myeloid cells allowing a significantly more pure T cell population to flow through a nylon wool column. T cells purified in this fashion are assumed to be unaltered and functionally naïve, however some studies have suggested aberrant in vitro T cell responses after nylon wool treatment. We found that nylon wool purification significantly altered T cell proliferation, expression of activation markers and production of cytokines. Our results suggest that nylon wool treatment modifies T cell activation responses and that caution should be used when choosing this purification method.

  14. Fluorescently tagged laminin subunits facilitate analyses of the properties, assembly and processing of laminins in live and fixed lung epithelial cells and keratinocytes.

    Science.gov (United States)

    Hopkinson, Susan B; DeBiase, Phillip J; Kligys, Kristina; Hamill, Kevin; Jones, Jonathan C R

    2008-09-01

    Recent analyses of collagen, elastin and fibronectin matrix assembly, organization and remodeling have been facilitated by the use of tagged proteins that can be visualized without the need for antibody labeling. Here, we report the generation of C-terminal tagged, full-length and "processed" (alpha3DeltaLG4-5) human alpha3 as well as C-terminal tagged, full-length human beta3 laminin subunits in adenoviral vectors. Human epidermal keratinocytes (HEKs) and human bronchial epithelial (BEP2D) cells, which assemble laminin-332-rich matrices, as well as primary rat lung alveolar type II (ATII) cells, which elaborate a fibrous network rich in laminin-311, were infected with adenovirus encoding the tagged human laminin subunits. In HEKs and BEP2D cells, tagged, full-length alpha3, alpha3DeltaLG4-5 and beta3 laminin subunits incorporate into arrays of matrix organized into patterns that are comparable to those observed when such cells are stained using laminin-332 subunit antibody probes. Moreover, HEKs and BEP2Ds move over these tagged, laminin-332-rich matrix arrays. We have also used the tagged beta3 laminin subunit-containing matrices to demonstrate that assembled laminin-332 arrays influence laminin matrix secretion and/or assembly. In the case of rat ATII cells, although tagged alpha3 laminin subunits are not detected in the matrix of rat ATII cells infected with virus encoding full-length human alpha3 laminin protein, processed human alpha3 laminin subunits are incorporated into an extracellular fibrous array. We discuss how these novel laminin reagents can be used to study the organization, processing and assembly of laminin matrices and how they provide new insights into the potential functional importance of laminin fragments.

  15. In vitro cytotoxicity of CdSe/ZnS quantum dots with different surface coatings to human keratinocytes HaCaT cells

    Institute of Scientific and Technical Information of China (English)

    Kavitha Pathakoti; Huey-Min Hwang; Hong Xu; Zoraida P.Aguilar; Andrew Wang

    2013-01-01

    Quantum dots (QD) nanoparticles have been widely used in biomedical and electronics fields,because of their novel optical properties.Consequently it confers enormous potential for human exposure and environmental release.To increase the biocompatibility of QDs,a variety of surface coatings or functional groups are added to increase their bioactivity and water solubility.Human adult low calcium high temperature (HaCaT) cells are the epithelial cells derived from adult human skin that exhibits normal differentiation capacity and a DNA fingerprint pattern that is unaffected by long-term cultivation,transformation,or the presence of muldple chromosomal alternations.Human keratinocytes,HaCaT cells were used to systematically evaluate the cytotoxicity of biocompatible QD made of CdSe metal core and ZnS shell with three different coatings and at three different wavelengths (530,580 and 620 nm).In terms of halfmaximal inhibitory concentration,QSA-QDs with amine-polyethyleneglycol coating and QSH-QDs with amphiphilic polymer coating were not cytotoxic,while QEI-QDs with polyethylenimine coating were highly toxic to the HaCaT cells in comparison to a reference CuInS2/ZnS.QEI-QDs led to significant increase in reactive oxygen species,decrease in mitochondrial membrane potential and DNA damage in HaCaT cells.The mechanisms of toxicity of QEI-530 and QEI-580 can be attributed to the combination of intracellular reactive oxygen species production and loss of MMP.The QDs toxicity can be attributed to the polyethylemimine surface coating which was highly toxic to cells in comparison with amine-polyethyleneglycol,but not due to the release of cadmium ions.

  16. Alteration of cell cycle progression by Sindbis virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ruirong; Saito, Kengo [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Isegawa, Naohisa [Laboratory Animal Center, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Shirasawa, Hiroshi, E-mail: sirasawa@faculty.chiba-u.jp [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan)

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  17. 银屑病患者外周血单个核细胞对自身角质形成细胞的促生长作用%Psoriatic peripheral blood mononuclear cells stimulate the proliferation of epidermal keratinocytes in autologous mixed culture reaction

    Institute of Scientific and Technical Information of China (English)

    王刚; 刘玉峰

    2001-01-01

    目的了解银屑病患者外周血单个核细胞(PBMCs)对自体表皮角质形成细胞(KCs)增生的作用. 方法分离3例银屑病患者的PBMCs,经30 Gy钴照射后与来自同一患者的%AIM To learn the effect of psoriatic peripheral blood mononuclear cells (PBMC) on the proliferation of autologous epidermal keratinocytes. METHODS Peripheral blood mononuclear cells were isolated from 3 patients with psoriasis vulgaris. After irradiating in Cobalt gamma ray of 30 Gy, the cells were cocultured with psoriatic epidermal keratinocytes that were obtained from the same patient. The changes of keratinocyte proliferation were detected by 3H-TdR incorporation assay. RESULTS Keratinocytes involved and uninvolved in Psoriatic underwent a significant proliferation response to autologous peripheral blood mononuclear cells in the mixed cultures. CONCLUSION Interaction of keratinocytes with infiltrated mononuclear cells in epidermis may induce the hyperproliferation of the keratinocytes and thus play an important role in the pathogenesis of psoriasis.

  18. Inhibition of inflammatory and proliferative responses of human keratinocytes exposed to the sesquiterpene lactones dehydrocostuslactone and costunolide.

    Directory of Open Access Journals (Sweden)

    Claudia Scarponi

    Full Text Available The imbalance of the intracellular redox state and, in particular, of the glutathione (GSH/GSH disulfide couple homeostasis, is involved in the pathogenesis of a number of diseases. In many skin diseases, including psoriasis, oxidative stress plays an important role, as demonstrated by the observation that treatments leading to increase of the local levels of oxidant species ameliorate the disease. Recently, dehydrocostuslactone (DCE and costunolide (CS, two terpenes naturally occurring in many plants, have been found to exert various anti-inflammatory and pro-apoptotic effects on different human cell types. These compounds decrease the level of the intracellular GSH by direct interaction with it, and, therefore, can alter cellular redox state. DCE and CS can trigger S-glutathionylation of various substrates, including the transcription factor STAT3 and JAK1/2 proteins. In the present study, we investigated on the potential role of DCE and CS in regulating inflammatory and proliferative responses of human keratinocytes to cytokines. We demonstrated that DCE and CS decreased intracellular GSH levels in human keratinocytes, as well as inhibited STAT3 and STAT1 phosphorylation and activation triggered by IL-22 or IFN-γ, respectively. Consequently, DCE and CS decreased the IL-22- and IFN-γ-induced expression of inflammatory and regulatory genes in keratinocytes, including CCL2, CXCL10, ICAM-1 and SOCS3. DCE and CS also inhibited proliferation and cell-cycle progression-related gene expression, as well as they promoted cell cycle arrest and apoptosis. In parallel, DCE and CS activated the anti-inflammatory EGFR and ERK1/2 molecules in keratinocytes, and, thus, wound healing in an in vitro injury model. In light of our findings, we can hypothesize that the employment of DCE and CS in psoriasis could efficiently counteract the pro-inflammatory effects of IFN-γ and IL-22 on keratinocytes, revert the apoptosis-resistant phenotype, as well as inhibit

  19. Calcium signaling in plant cells in altered gravity

    Science.gov (United States)

    Kordyum, E. L.

    2003-10-01

    Changes in the intracellular Ca 2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca 2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80 th, a review highlighting the performed research and the possible significance of such Ca 2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface

  20. Antimicrobial agent triclosan is a proton ionophore uncoupler of mitochondria in living rat and human mast cells and in primary human keratinocytes.

    Science.gov (United States)

    Weatherly, Lisa M; Shim, Juyoung; Hashmi, Hina N; Kennedy, Rachel H; Hess, Samuel T; Gosse, Julie A

    2016-06-01

    Triclosan (TCS) is an antimicrobial used widely in hospitals and personal care products, at ~10 mm. Human skin efficiently absorbs TCS. Mast cells are ubiquitous key players both in physiological processes and in disease, including asthma, cancer and autism. We previously showed that non-cytotoxic levels of TCS inhibit degranulation, the release of histamine and other mediators, from rat basophilic leukemia mast cells (RBL-2H3), and in this study, we replicate this finding in human mast cells (HMC-1.2). Our investigation into the molecular mechanisms underlying this effect led to the discovery that TCS disrupts adenosine triphosphate (ATP) production in RBL-2H3 cells in glucose-free, galactose-containing media (95% confidence interval EC50 = 7.5-9.7 µm), without causing cytotoxicity. Using these same glucose-free conditions, 15 µm TCS dampens RBL-2H3 degranulation by 40%. The same ATP disruption was found with human HMC-1.2 cells (EC50 4.2-13.7 µm), NIH-3 T3 mouse fibroblasts (EC50 4.8-7.4 µm) and primary human keratinocytes (EC50 3.0-4.1 µm) all with no cytotoxicity. TCS increases oxygen consumption rate in RBL-2H3 cells. Known mitochondrial uncouplers (e.g., carbonyl cyanide 3-chlorophenylhydrazone) previously were found to inhibit mast cell function. TCS-methyl, which has a methyl group in place of the TCS ionizable proton, affects neither degranulation nor ATP production at non-cytotoxic doses. Thus, the effects of TCS on mast cell function are due to its proton ionophore structure. In addition, 5 µm TCS inhibits thapsigargin-stimulated degranulation of RBL-2H3 cells: further evidence that TCS disrupts mast cell signaling. Our data indicate that TCS is a mitochondrial uncoupler, and TCS may affect numerous cell types and functions via this mechanism. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Culture adaptation alters transcriptional hierarchies among single human embryonic stem cells reflecting altered patterns of differentiation.

    Science.gov (United States)

    Gokhale, Paul J; Au-Young, Janice K; Dadi, SriVidya; Keys, David N; Harrison, Neil J; Jones, Mark; Soneji, Shamit; Enver, Tariq; Sherlock, Jon K; Andrews, Peter W

    2015-01-01

    We have used single cell transcriptome analysis to re-examine the substates of early passage, karyotypically Normal, and late passage, karyotypically Abnormal ('Culture Adapted') human embryonic stem cells characterized by differential expression of the cell surface marker antigen, SSEA3. The results confirmed that culture adaptation is associated with alterations to the dynamics of the SSEA3(+) and SSEA3(-) substates of these cells, with SSEA3(-) Adapted cells remaining within the stem cell compartment whereas the SSEA3(-) Normal cells appear to have differentiated. However, the single cell data reveal that these substates are characterized by further heterogeneity that changes on culture adaptation. Notably the Adapted population includes cells with a transcriptome substate suggestive of a shift to a more naïve-like phenotype in contrast to the cells of the Normal population. Further, a subset of the Normal SSEA3(+) cells expresses genes typical of endoderm differentiation, despite also expressing the undifferentiated stem cell genes, POU5F1 (OCT4) and NANOG, whereas such apparently lineage-primed cells are absent from the Adapted population. These results suggest that the selective growth advantage gained by genetically variant, culture adapted human embryonic stem cells may derive in part from a changed substate structure that influences their propensity for differentiation.

  2. Transcriptional repression in normal human keratinocytes by wild-type and mutant p53.

    Science.gov (United States)

    Alvarez-Salas, L M; Velazquez, A; Lopez-Bayghen, E; Woodworth, C D; Garrido, E; Gariglio, P; DiPaolo, J A

    1995-05-01

    Wild-type p53 is a nuclear phosphoprotein that inhibits cell proliferation and represses transcriptionally most TATA box-containing promoters in transformed or tumor-derived cell lines. This study demonstrates that p53 alters transcription of the long control region (LCR) of human papillomavirus type 18 (HPV-18). Wild-type and mutant p53 143Val to Ala repressed the HPV-18 LCR promoter in normal human keratinocytes, the natural host cell for HPV infections. Repression by wild-type p53 was also observed in C-33A cells and in an HPV-16-immortalized cell line with an inducible wild-type p53. However, when C-33A cells were cotransfected with the HPV-18 LCR and mutant 143Val to Ala, repression did not occur. Mutant p53 135Cys to Ser did not induce repression in either normal human keratinocytes or in the C-33A line; although like 143Val to Ala, it is thought to affect the DNA binding activity of the wild-type protein. The ability of mutant p53 143Val to Ala to inactivate the HPV early promoter in normal cells (by approximately 60% reduction) suggests that this mutant may be able to associate with wild-type p53 and interact with TATA box-binding proteins. Therefore, these results demonstrate that the transcriptional activities of p53 mutants may be dependent upon the cell type assayed and the form of its endogenous p53. Furthermore, normal human keratinocytes represent an alternative model for determining the activities of p53 mutants.

  3. Metabolic alterations in cancer cells and therapeutic implications

    Institute of Scientific and Technical Information of China (English)

    Naima Hammoudi; Kausar Begam Riaz Ahmed; Celia Garcia-Prieto; Peng Huang

    2011-01-01

    Cancer metabolism has emerged as an important area of research in recent years. Elucidation of the metabolic differences between cancer and normal cells and the underlying mechanisms will not only advance our understanding of fundamental cancer cell biology but also provide an important basis for the development of new therapeutic strategies and novel compounds to selectively eliminate cancer cells by targeting their unique metabolism. This article reviews several important metabolic alterations in cancer cells, with an emphasis on increased aerobic glycolysis (the Warburg effect) and glutamine addiction, and discusses the mechanisms that may contribute to such metabolic changes. In addition, metabolic alterations in cancer stem cells, mitochondrial metabolism and its influence on drug sensitivity, and potential therapeutic strategies and agents that target cancer metabolism are also discussed.

  4. Additive Effects of Millimeter Waves and 2-Deoxyglucose Co-Exposure on the Human Keratinocyte Transcriptome

    Science.gov (United States)

    Soubere Mahamoud, Yonis; Aite, Meziane; Martin, Catherine; Zhadobov, Maxim; Sauleau, Ronan; Le Dréan, Yves

    2016-01-01

    Millimeter Waves (MMW) will be used in the next-generation of high-speed wireless technologies, especially in future Ultra-Broadband small cells in 5G cellular networks. Therefore, their biocompatibilities must be evaluated prior to their massive deployment. Using a microarray-based approach, we analyzed modifications to the whole genome of a human keratinocyte model that was exposed at 60.4 GHz-MMW at an incident power density (IPD) of 20 mW/cm2 for 3 hours in athermic conditions. No keratinocyte transcriptome modifications were observed. We tested the effects of MMWs on cell metabolism by co-treating MMW-exposed cells with a glycolysis inhibitor, 2-deoxyglucose (2dG, 20 mM for 3 hours), and whole genome expression was evaluated along with the ATP content. We found that the 2dG treatment decreased the cellular ATP content and induced a high modification in the transcriptome (632 coding genes). The affected genes were associated with transcriptional repression, cellular communication and endoplasmic reticulum homeostasis. The MMW/2dG co-treatment did not alter the keratinocyte ATP content, but it did slightly alter the transcriptome, which reflected the capacity of MMW to interfere with the bioenergetic stress response. The RT-PCR-based validation confirmed 6 MMW-sensitive genes (SOCS3, SPRY2, TRIB1, FAM46A, CSRNP1 and PPP1R15A) during the 2dG treatment. These 6 genes encoded transcription factors or inhibitors of cytokine pathways, which raised questions regarding the potential impact of long-term or chronic MMW exposure on metabolically stressed cells. PMID:27529420

  5. Fibroblast growth factor 2 and DNA repair involvement in the keratinocyte stem cells response to ionizing radiation; Implication du FGF2 (fibroblast growth factor 2) et la reparation de l'ADN dans la reponse des keratinocytes souches aux irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Harfouche, L' Emira Ghida

    2010-02-15

    Keratinocyte stem cells (KSCs) from the human inter follicular epidermis are regarded as the major target to radiation during radiotherapy. We found herein that KSCs are more resistant to ionizing radiation than their direct progeny, and presented more rapid DNA damage repair kinetics than the progenitors. Furthermore, we provided evidence describing the effect of fibroblast growth factor 2 (FGF2) signaling on the ability of KSCs and progenitors to repair damaged DNA. Despite our knowledge of the fact, that FGF is an anti-apoptotic factor in multiple cell types, the direct link between DNA repair and FGF2 signaling has rarely been shown. Existence of such link is an important issue with implications not only to stem cell field but also to cancer therapy. (author)

  6. A decorin-deficient matrix affects skin chondroitin/dermatan sulfate levels and keratinocyte function

    Science.gov (United States)

    Nikolovska, Katerina; Renke, Jana K.; Jungmann, Oliver; Grobe, Kay; Iozzo, Renato V.; Zamfir, Alina D.; Seidler, Daniela G.

    2016-01-01

    Decorin is a small leucine-rich proteoglycan harboring a single glycosaminoglycan chain, which, in skin, is mainly composed of dermatan sulfate (DS). Mutant mice with targeted disruption of the decorin gene (Dcn−/−) exhibit an abnormal collagen architecture in the dermis and reduced tensile strength, collectively leading to a skin fragility phenotype. Notably, Ehlers-Danlos patients with mutations in enzymes involved in the biosynthesis of DS display a similar phenotype, and recent studies indicate that DS is involved in growth factor binding and signaling. To determine the impact of the loss of DS-decorin in the dermis, we analyzed the glycosaminoglycan content of Dcn−/− and wild-type mouse skin. The total amount of chondroitin/dermatan sulfate (CS/DS) was increased in the Dcn−/− skin, but was overall less sulfated with a significant reduction in bisulfated ΔDiS2,X (X=4 or 6) disaccharide units, due to the reduced expression of uronyl 2-O sulfotransferase (Ust). With increasing age, sulfation declined; however, Dcn−/− CS/DS was constantly undersulfated vis-à-vis wild-type. Functionally, we found altered fibroblast growth factor (Fgf)-7 and -2 binding due to changes in the micro-heterogeneity of skin Dcn−/− CS/DS. To better delineate the role of decorin, we used a 3D Dcn−/− fibroblast cell culture model. We found that the CS/DS extracts of wild-type and Dcn−/− fibroblasts were similar to the skin sugars, and this correlated with the lack of uronyl 2-O sulfotransferase in the Dcn−/− fibroblasts. Moreover, Ffg7 binding to total CS/DS was attenuated in the Dcn−/− samples. Surprisingly, wild-type CS/DS significantly reduced the binding of Fgf7 to keratinocytes in concentration dependent manner unlike the Dcn−/− CS/DS that only affected the binding at higher concentrations. Although binding to cell-surfaces was quite similar at higher concentrations, keratinocyte proliferation was differentially affected. Higher concentration of

  7. Nylon Wool Purification Alters the Activation of T Cells

    Science.gov (United States)

    Wohler, Jillian E.; Barnum, Scott R.

    2009-01-01

    Purification of lymphocytes, particularly T cells, is commonly performed using nylon wool. This enrichment method selectively retains B cells and some myeloid cells allowing a significantly more pure T cell population to flow through a nylon wool column. T cells purified in this fashion are assumed to be unaltered and functionally naïve, however some studies have suggested aberrant in vitro T cell responses after nylon wool treatment. We found that nylon wool purification significantly altered T cell proliferation, expression of activation markers and production of cytokines. Our results suggest that nylon wool treatment modifies T cell activation responses and that caution should be used when choosing this purification method. PMID:18952296

  8. Ultraviolet radiation (UVR) induces cell-surface Ro/SSA antigen expression by human keratinocytes in vitro: a possible mechanism for the UVR induction of cutaneous lupus lesions

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.K. (Bristol Royal Infirmary (United Kingdom))

    1992-06-01

    Antinuclear antibodies are useful markers of connective tissue disease. In this study, UVB but not UVA induced the expression of Ro/SSA antigen on keratinocyte surfaces in vitro. This expression was also found with the extractable nuclear antigens RnP and Sm, but not with single or double-stranded DNA. The expression was prevented by blocking protein synthesis, suggesting that it was an active process. The results suggest that UVB exposure may result in the expression of Ro/SSA antigen on the surfaces of basal keratinocytes in vivo. This antigen could then bind circulating antibody leading to the cutaneous lesions in neonatal and subacute cutaneous lupus erythematosus. (Author).

  9. FOXM1 allows human keratinocytes to bypass the oncogene-induced differentiation checkpoint in response to gain of MYC or loss of p53

    Science.gov (United States)

    Molinuevo, R; Freije, A; de Pedro, I; Stoll, S W; Elder, J T; Gandarillas, A

    2017-01-01

    Tumour suppressor p53 or proto-oncogene MYC is frequently altered in squamous carcinomas, but this is insufficient to drive carcinogenesis. We have shown that overactivation of MYC or loss of p53 via DNA damage triggers an anti-oncogenic differentiation-mitosis checkpoint in human epidermal keratinocytes, resulting in impaired cell division and squamous differentiation. Forkhead box M1 (FOXM1) is a transcription factor recently proposed to govern the expression of a set of mitotic genes. Deregulation of FOXM1 occurs in a wide variety of epithelial malignancies. We have ectopically expressed FOXM1 in keratinocytes of the skin after overexpression of MYC or inactivation of endogenous p53. Ectopic FOXM1 rescues the proliferative capacity of MYC- or p53-mutant cells in spite of higher genetic damage and a larger cell size typical of differentiation. As a consequence, differentiation induced by loss of p53 or MYC is converted into increased proliferation and keratinocytes displaying genomic instability are maintained within the proliferative compartment. The results demonstrate that keratinocyte oncogene-induced differentiation is caused by mitosis control and provide new insight into the mechanisms driving malignant progression in squamous cancer. PMID:27452522

  10. Keratinocyte-derived laminin-332 protein promotes melanin synthesis via regulation of tyrosine uptake.

    Science.gov (United States)

    Chung, Heesung; Jung, Hyejung; Lee, Jung-Hyun; Oh, Hye Yun; Kim, Ok Bin; Han, Inn-Oc; Oh, Eok-Soo

    2014-08-01

    Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake.

  11. Hyaluronan-Phosphatidylethanolamine Polymers Form Pericellular Coats on Keratinocytes and Promote Basal Keratinocyte Proliferation

    Directory of Open Access Journals (Sweden)

    Caitlin J. Symonette

    2014-01-01

    Full Text Available Aged keratinocytes have diminished proliferative capacity and hyaluronan (HA cell coats, which are losses that contribute to atrophic skin characterized by reduced barrier and repair functions. We formulated HA-phospholipid (phosphatidylethanolamine, HA-PE polymers that form pericellular coats around cultured dermal fibroblasts independently of CD44 or RHAMM display. We investigated the ability of these HA-PE polymers to penetrate into aged mouse skin and restore epidermal function in vivo. Topically applied Alexa647-HA-PE penetrated into the epidermis and dermis, where it associated with both keratinocytes and fibroblasts. In contrast, Alexa647-HA was largely retained in the outer cornified layer of the epidermis and quantification of fluorescence confirmed that significantly more Alexa647-HA-PE penetrated into and was retained within the epidermis than Alexa647-HA. Multiple topical applications of HA-PE to shaved mouse skin significantly stimulated basal keratinocyte proliferation and epidermal thickness compared to HA or vehicle cream alone. HA-PE had no detectable effect on keratinocyte differentiation and did not promote local or systemic inflammation. These effects of HA-PE polymers are similar to those reported for endogenous epidermal HA in youthful skin and show that topical application of HA-PE polymers can restore some of the impaired functions of aged epidermis.

  12. An ascorbic acid-enriched tomato genotype to fight UVA-induced oxidative stress in normal human keratinocytes.

    Science.gov (United States)

    Petruk, Ganna; Raiola, Assunta; Del Giudice, Rita; Barone, Amalia; Frusciante, Luigi; Rigano, Maria Manuela; Monti, Daria Maria

    2016-10-01

    UVA radiations contribute up to 95% of the total UV exposure and are known to induce cell damage, leading to apoptosis. Since the benefic effects of ascorbic acid on human health are well known, a new tomato genotype (named DHO4), highly rich in ascorbic acid, has been recently obtained. Here, we compared the effects of ascorbic acid and hydrophilic DHO4 extracts in protecting human keratinocytes exposed to UVA stress. Keratinocytes were pre-incubated with ascorbic acid or with extracts from the ascorbic acid enriched tomato genotype and irradiated with UVA light. Then, ROS production, intracellular GSH and lipid peroxidation levels were quantified. Western blots were carried out to evaluate mitogen-activated protein kinases cascade, activation of caspase-3 and inflammation levels. We demonstrated that ROS, GSH and lipid peroxidation levels were not altered in cell exposed to UVA stress when cells were pre-treated with ascorbic acid or with tomato extracts. In addition, no evidence of apoptosis and inflammation were observed in irradiated pre-treated cells. Altogether, we demonstrated the ability of an ascorbic acid enriched tomato genotype to counteract UVA-oxidative stress on human keratinocytes. This protective effect is due to the high concentration of vitamin C that acts as free radical scavenger. This novel tomato genotype may be used as genetic material in breeding schemes to produce improved varieties with higher antioxidant levels.

  13. Purification and growth of melanocortin 1 receptor (Mc1r)- defective primary murine melanocytes is dependent on stem cell factor (SFC) from keratinocyte-conditioned media.

    Science.gov (United States)

    Scott, Timothy L; Wakamatsu, Kazumasa; Ito, Shosuke; D'Orazio, John A

    2009-12-01

    The melanocortin 1 receptor (MC1R) is a transmembrane G(s)-coupled surface protein found on melanocytes that binds melanocyte-stimulating hormone and mediates activation of adenylyl cyclase and generation of the second messenger cyclic AMP (cAMP). MC1R regulates growth and differentiation of melanocytes and protects against carcinogenesis. Persons with loss-offunction polymorphisms of MC1R tend to be UV-sensitive (fair-skinned and with a poor tanning response) and are at high risk for melanoma. Mechanistic studies of the role of MC1R in melanocytic UV responses, however, have been hindered in part because Mc1r-defective primary murine melanocytes have been difficult to culture in vitro. Until now, effective growth of murine melanocytes has depended on cAMP stimulation with adenylyl cyclase-activating or phosphodiesterase-inhibiting agents. However, rescuing cAMP in the setting of defective MC1R signaling would be expected to confound experiments directly testing MC1R function on melanocytic UV responses. In this paper, we report a novel method of culturing primary murine melanocytes in the absence of pharmacologic cAMP stimulation by incorporating conditioned supernatants containing stem cell factor derived from primary keratinocytes. Importantly, this method seems to permit similar pigment expression by cultured melanocytes as that found in the skin of their parental murine strains. This novel approach will allow mechanistic investigation into MC1R's role in the protection against UV-mediated carcinogenesis and determination of the role of melanin pigment subtypes on UV-mediated melanocyte responses.

  14. Antioxidants protect keratinocytes against M. ulcerans mycolactone cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Alvar Grönberg

    Full Text Available BACKGROUND: Mycobacterium ulcerans is the causative agent of necrotizing skin ulcerations in distinctive geographical areas. M. ulcerans produces a macrolide toxin, mycolactone, which has been identified as an important virulence factor in ulcer formation. Mycolactone is cytotoxic to fibroblasts and adipocytes in vitro and has modulating activity on immune cell functions. The effect of mycolactone on keratinocytes has not been reported previously and the mechanism of mycolactone toxicity is presently unknown. Many other macrolide substances have cytotoxic and immunosuppressive activities and mediate some of their effects via production of reactive oxygen species (ROS. We have studied the effect of mycolactone in vitro on human keratinocytes--key cells in wound healing--and tested the hypothesis that the cytotoxic effect of mycolactone is mediated by ROS. METHODOLOGY/PRINCIPAL FINDINGS: The effect of mycolactone on primary skin keratinocyte growth and cell numbers was investigated in serum free growth medium in the presence of different antioxidants. A concentration and time dependent reduction in keratinocyte cell numbers was observed after exposure to mycolactone. Several different antioxidants inhibited this effect partly. The ROS inhibiting substance deferoxamine, which acts via chelation of Fe(2+, completely prevented mycolactone mediated cytotoxicity. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that mycolactone mediated cytotoxicity can be inhibited by deferoxamine, suggesting a role of iron and ROS in mycolactone induced cytotoxicity of keratinocytes. The data provide a basis for the understanding of Buruli ulcer pathology and the development of improved therapies for this disease.

  15. Photodynamic activities of silicon phthalocyanines against achromic M6 melanoma cells and healthy human melanocytes and keratinocytes.

    Science.gov (United States)

    Decreau, R; Richard, M J; Verrando, P; Chanon, M; Julliard, M

    1999-01-01

    Dichlorosilicon phthalocyanine (Cl2SiPc) and bis(tri-n-hexylsiloxy) silicon phthalocyanine (HexSiPc) have been evaluated in vitro as potential photosensitizers for photodynamic therapy (PDT) against the human amelanotic melanoma cell line M6. Each photosensitizer is dissolved in a solvent-PBS mixture, or entrapped in egg-yolk lecithin liposomes or in Cremophor EL micelles. The cells are incubated for 1 h with the sensitizer and then irradiated for 20 min, 1 h or 2 h (lambda > 480 nm, 10 mW cm-2). The photocytotoxic effect is dependent on the photosensitizer concentration and the light dose. Higher phototoxicity is observed after an irradiation of 2 h: treatment with a solution of photosensitizer (2 x 10(-9) M) leads to 10% (HexSiPc in egg-yolk lecithin liposomes) or 20% (Cl2SiPc in DMF-PBS solution) cell viability. After 1 h incubation and 20 min of light exposure, the photodynamic effect is connected with the type of delivery system used. For HexSiPc, lower cell viability is found when this photosensitizer is entrapped in egg-yolk lecithin instead of solvent-PBS or for Cremophor EL micelles with Cl2SiPc. Liposome-delivered HexSiPc leads to lipid damage in M6 cells, illustrated by an increase of thiobarbituric acid-reacting substances (TBARs), but the change is not significant with Cremophor EL. The same is observed for the antioxidative defences after photodynamic stress. The cells irradiated with HexSiPc entrapped in liposomes display an increase of superoxide dismutase (SOD) activity and a decrease of glutathione (GSH) level, glutathione peroxidase (GSHPx) and catalase (Cat) activities.

  16. Skin anti-photoaging properties of ginsenoside Rh2 epimers in UV-B-irradiated human keratinocyte cells

    Indian Academy of Sciences (India)

    Sun-Joo Oh; Sihyeong Lee; Woo-Yong Choi; Chang-Jin Lim

    2014-09-01

    Ginseng, one of the most widely used herbal medicines, has a wide range of therapeutic and pharmacological applications. Ginsenosides are the major bioactive ingredients of ginseng, which are responsible for various pharmacological activities of ginseng. Ginsenoside Rh2, known as an antitumour ginsenoside, exists as two different stereoisomeric forms, 20()-ginsenoside Rh2 [20()-Rh2] and 20()-ginsenoside Rh2 [20()-Rh2]. This work aimed to assess and compare skin anti-photoaging activities of 20()-Rh2 and 20()-Rh2 in UV-B-irradiated HaCat cells. 20()-Rh2, but not 20()-Rh2, was able to suppress UV-B-induced ROS production in HaCat cells. Both stereoisomeric forms could not modulate cellular survival and NO level in UV-B-irradiated HaCat cells. Both 20()-Rh2 and 20()-Rh2 exhibited suppressive effects on UV-B-induced MMP-2 activity and expression in HaCat cells. In brief, the two stereoisomers of ginsenoside Rh2, 20()-Rh2 and 20()-Rh2, possess skin anti-photoaging effects but possibly in different fashions.

  17. A Polyphenol-Enriched Fraction of Rose Oil Distillation Wastewater Inhibits Cell Proliferation, Migration and TNF-α-Induced VEGF Secretion in Human Immortalized Keratinocytes.

    Science.gov (United States)

    Wedler, Jonas; Rusanov, Krasimir; Atanassov, Ivan; Butterweck, Veronika

    2016-07-01

    Water steam distillation of rose flowers separates the essential oil from the polyphenol-containing rose oil distillation wastewater. Recently, a strategy was developed to separate rose oil distillation wastewater into a polyphenol depleted water fraction and a polyphenol-enriched fraction [RF20-(SP-207)]. The objective of the present study was to investigate RF20-(SP-207) and fraction F(IV), augmented in quercetin and ellagic acid, for possible antiproliferative effects in immortalized human keratinocytes (HaCaT) since rose petals are known to contain compounds with potential antiproliferative activity.RF20-(SP-207) revealed dose-dependent antiproliferative activity (IC50 of 9.78 µg/mL). In a nontoxic concentration of 10 µg/mL, this effect was stronger than that of the two positive controls LY294002 (10 µM, PI3 K-inhibitor, 30 % inhibition) and NVP-BEZ235 (100 nM, dual PI3 K/mTOR inhibitor, 30 % inhibition) and clearly exceeded the antiproliferative action of quercetin (50 µM, 25 % inhibition) and ellagic acid (1 µM, 15 % inhibition). Time-lapse microscopy detected a significant impairment of cell migration of RF20-(SP-207) and F(IV). At concentrations of 10 µg/mL of both, extract and fraction, cell migration was strongly suppressed (51 % and 28 % gap closure, respectively, compared to 95 % gap closure 24 hours after control treatment). The suppression of cell migration was comparable to the positive controls LY294002, NVP-BEZ235, and quercetin. Furthermore, basal and TNF-α-stimulated VEGF-secretion was significantly reduced by RF20-(SP-207) and F(IV) at 10 µg/mL (44 % vs. untreated control).In conclusion, RF20-(SP-207) showed promising antiproliferative and antimigratory effects and could be developed as a supportive, therapy against hyperproliferation-involved skin diseases.

  18. Understanding and altering cell tropism of vesicular stomatitis virus

    Science.gov (United States)

    Hastie, Eric; Cataldi, Marcela; Marriott, Ian; Grdzelishvili, Valery Z.

    2013-01-01

    Vesicular stomatitis virus (VSV) is a prototypic nonsegmented negative-strand RNA virus. VSV’s broad cell tropism makes it a popular model virus for many basic research applications. In addition, a lack of preexisting human immunity against VSV, inherent oncotropism and other features make VSV a widely used platform for vaccine and oncolytic vectors. However, VSV’s neurotropism that can result in viral encephalitis in experimental animals needs to be addressed for the use of the virus as a safe vector. Therefore, it is very important to understand the determinants of VSV tropism and develop strategies to alter it. VSV glycoprotein (G) and matrix (M) protein play major roles in its cell tropism. VSV G protein is responsible for VSV broad cell tropism and is often used for pseudotyping other viruses. VSV M affects cell tropism via evasion of antiviral responses, and M mutants can be used to limit cell tropism to cell types defective in interferon signaling. In addition, other VSV proteins and host proteins may function as determinants of VSV cell tropism. Various approaches have been successfully used to alter VSV tropism to benefit basic research and clinically relevant applications. PMID:23796410

  19. Altered cytoskeletal structures in transformed cells exhibiting obviously metastatic capabilities

    Institute of Scientific and Technical Information of China (English)

    LINZHONGXIANG; WUBINGQUAN; 等

    1990-01-01

    Cytoskeletal changes in transformed cells (LM-51) eshibiting obviously metastatic capabilities were investigated by utilization of double-fluorescent labelling through combinations of:(1) tubulin indirect immunofluorescence plus Rhodamine-phalloidin staining of F-actins;(2) indirect immunofluorescent staining with α-actinin polyclonal-and vinculin monoclonal antibodies.The LM-51 cells which showed metastatic index of >50% were derived from lung metastasis in nude mice after subcutaneous inoculation of human highly metastatic tumor DNA transfected NIH3T3 cell transformants.The parent NIH3T3 cells exhibited well-organized microtubules,prominent stress fibers and adhesion plaques while their transformants showed remarkable cytoskeletal alterations:(1)reduced microtubules but increased MTOC fluorescence;(2)disrupted stress fibers and fewer adhesion plaques with their protein components redistributed in the cytoplasm;(3)Factin-and α-actinin/vinculin aggregates appeared in the cytoplasm.These aggregates were dot-like,varied in size(0.1-0.4μm) and number,located near the ventral surface of the cells.TPA-induced actin/vinculin bodies were studied too.Indications that actin and α-actinin/vinculin redistribution might be important alterations involved in the expression of metastatic capabilities of LM-51 transformed cells were discussed.

  20. Induction of differentiation in psoriatic keratinocytes by propylthiouracil and fructose

    Directory of Open Access Journals (Sweden)

    Santhosh Arul

    2016-12-01

    Full Text Available Psoriasis is characterized by uncontrolled proliferation and poor differentiation. Sirtuin1 (SIRT1 a class III deacetylase, crucial for differentiation in normal keratinocytes, is reduced in psoriasis. Down regulated SIRT1 levels may contribute to poor differentiation in psoriasis. In addition, the levels of early differentiation factors Keratin1 (K1 and Keratin10 (K10 are depleted in psoriasis. We attempted to study a possible effect of fructose, a SIRT1 upregulator and Propylthiouracil (PTU to augment differentiation in psoriatic keratinocytes. Keratinocytes were cultured from lesional biopsies obtained from psoriatic patients and control cells were obtained from patients undergoing abdominoplasty. Cells were treated with fructose and PTU individually. K1 and K10 transcript levels were measured to evaluate early differentiation; SIRT1 protein expression was also studied to decipher its role in the mechanism of differentiation. The K1, K10 transcript levels, SIRT1 protein and transcript levels in fructose treated psoriatic keratinocytes were improved. This suggests keratinocyte differentiation was induced by fructose through SIRT1 upregulation. Whereas PTU induced differentiation, as confirmed by improved K1, K10 transcript levels followed a non-SIRT1 mechanism. We conclude that the use of fructose and PTU may be an adjunct to the existing therapies for psoriasis.

  1. Analysis of global sumoylation changes occurring during keratinocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Phillip R Heaton

    Full Text Available Sumoylation is a highly dynamic process that plays a role in a multitude of processes ranging from cell cycle progression to mRNA processing and cancer. A previous study from our lab demonstrated that SUMO plays an important role in keratinocyte differentiation. Here we present a new method of tracking the sumoylation state of proteins by creating a stably transfected HaCaT keratinocyte cell line expressing an inducible SNAP-SUMO3 protein. The SNAP-tag allows covalent fluorescent labeling that is denaturation resistant. When combined with two-dimensional gel electrophoresis, the SNAP-tag technology provides direct visualization of sumoylated targets and can be used to follow temporal changes in the global cohort of sumoylated proteins during dynamic processes such as differentiation. HaCaT keratinocyte cells expressing SNAP-SUMO3 displayed normal morphological and biochemical features that are consistent with typical keratinocyte differentiation. SNAP-SUMO3 also localized normally in these cells with a predominantly nuclear signal and some minor cytoplasmic staining, consistent with previous reports for untagged SUMO2/3. During keratinocyte differentiation the total number of proteins modified by SNAP-SUMO3 was highest in basal cells, decreased abruptly after induction of differentiation, and slowly rebounded beginning between 48 and 72 hours as differentiation progressed. However, within this overall trend the pattern of change for individual sumoylated proteins was highly variable with both increases and decreases in amount over time. From these results we conclude that sumoylation of proteins during keratinocyte differentiation is a complex process which likely reflects and contributes to the biochemical changes that drive differentiation.

  2. Asymmetric migration of human keratinocytes under mechanical stretch and cocultured fibroblasts in a wound repair model.

    Directory of Open Access Journals (Sweden)

    Dongyuan Lü

    Full Text Available Keratinocyte migration during re-epithelization is crucial in wound healing under biochemical and biomechanical microenvironment. However, little is known about the underlying mechanisms whereby mechanical tension and cocultured fibroblasts or keratinocytes modulate the migration of keratinocytes or fibroblasts. Here we applied a tensile device together with a modified transwell assay to determine the lateral and transmembrane migration dynamics of human HaCaT keratinocytes or HF fibroblasts. A novel pattern of asymmetric migration was observed for keratinocytes when they were cocultured with non-contact fibroblasts, i.e., the accumulative distance of HaCaT cells was significantly higher when moving away from HF cells or migrating from down to up cross the membrane than that when moving close to HF cells or when migrating from up to down, whereas HF migration was symmetric. This asymmetric migration was mainly regulated by EGF derived from fibroblasts, but not transforming growth factor α or β1 production. Mechanical stretch subjected to fibroblasts fostered keratinocyte asymmetric migration by increasing EGF secretion, while no role of mechanical stretch was found for EGF secretion by keratinocytes. These results provided a new insight into understanding the regulating mechanisms of two- or three-dimensional migration of keratinocytes or fibroblasts along or across dermis and epidermis under biomechanical microenvironment.

  3. The human keratinocyte two-dimensional protein database (update 1994): towards an integrated approach to the study of cell proliferation, differentiation and skin diseases

    DEFF Research Database (Denmark)

    Celis, J E; Rasmussen, H H; Olsen, E

    1994-01-01

    The master two-dimensional (2-D) gel database of human keratinocytes currently lists 3087 cellular proteins (2168 isoelectric focusing, IEF; and 919 none-quilibrium pH gradient electrophoresis, NEPHGE), many of which correspond to posttranslational modifications, 890 polypeptides have been...... identified (protein name, organelle components, etc.) using one or a combination of procedures that include (i) comigration with known human proteins, (ii) 2-D gel immunoblotting using specific antibodies (iii) microsequencing of Coomassie Brilliant Blue stained proteins, (iv) mass spectrometry and (v...... in the database. We also report a database of proteins recovered from the medium of noncultured, unfractionated keratinocytes. This database lists 398 polypeptides (309 IEF; 89 NEPHGE) of which 76 have been identified. The aim of the comprehensive databases is to gather, through a systematic study...

  4. Cell alterations induced by a biotherapic for influenza

    Directory of Open Access Journals (Sweden)

    José Nelson Couceiro

    2011-07-01

    Full Text Available Introduction: Influenza viruses have been responsible for highly contagious acute respiratory illnesses with high mortality, mainly in the elderly, which encourages the development of new drugs for the treatment of human flu. The biotherapics are medicines prepared from biological products, which are not chemically defined. They are compounded following the homeopathic procedures indicated for infectious diseases with known etiology [1]. Aim: The purpose of the present study is to verify cellular alterations induced by a biotherapic prepared from the infectious influenza A virus. Methodology: This biotherapic was prepared for this study in the homeopathic potency of 30X according to the Brazilian Homeopathic Pharmacopeia [2]. The concentration of 10% was not cytotoxic to cells, as verified by neutral red assay. The cellular alterations observed in MDCK cells were analyzed by optical microscopy for the quantification of mitosis, nucleoli and lipid bodies. The mitochondrial activity was assessed by MTT assay and the phosphosfructokinase-1 (PFK-1 enzyme activity was analyzed on the MDCK cells treated for 5, 10 and 30 days. Macrophages J778.G8 were treated with this biotherapic to evaluate the immunostimulatory cytokine release. Results: The cellular alterations observed in MDCK cells were verified by optical microscopy. The number of lipid bodies present in MDCK cells stimulated for 10 days was significantly lower (p <0.05 when compared to controls. The biotherapic significantly increased (p <0.05 the number of mitosis and the mitochondrial activity of MDCK cells stimulated for 10 and 30 days. These changes were confirmed by a significant reduction (p <0.05 on the PFK-1 activity. These results suggest that the biotherapic was able to activate the Krebs cycle and pentose-phosphate metabolism to the generation of amino acids and nucleotides, situations common to cells whose rate of mitosis is increased. The quantification of immunostimulatory

  5. Metabolic monosaccharides altered cell responses to anticancer drugs.

    Science.gov (United States)

    Chen, Long; Liang, Jun F

    2012-06-01

    Metabolic glycoengineering has been used to manipulate the glycochemistry of cell surfaces and thus the cell/cell interaction, cell adhesion, and cell migration. However, potential application of glycoengineering in pharmaceutical sciences has not been studied until recently. Here, we reported that Ac(4)ManNAc, an analog of N-acetyl-D-mannosamine (ManNAc), could affect cell responses to anticancer drugs. Although cells from different tissues and organs responded to Ac(4)ManNAc treatment differently, treated cells with increased sialic acid contents showed dramatically reduced sensitivity (up to 130 times) to anti-cancer drugs as tested on various drugs with distinct chemical structures and acting mechanisms. Neither increased P-glycoprotein activity nor decreased drug uptake was observed during the course of Ac(4)ManNAc treatment. However, greatly altered intracellular drug distributions were observed. Most intracellular daunorubicin was found in the perinuclear region, but not the expected nuclei in the Ac(4)ManNAc treated cells. Since sialoglycoproteins and gangliosides were synthesized in the Golgi, intracellular glycans affected intracellular signal transduction and drug distributions seem to be the main reason for Ac(4)ManNAc affected cell sensitivity to anticancer drugs. It was interesting to find that although Ac(4)ManNAc treated breast cancer cells (MDA-MB-231) maintained the same sensitivity to 5-Fluorouracil, the IC(50) value of 5-Fluorouracil to the same Ac(4)ManNAc treated normal cells (MCF-10A) was increased by more than 20 times. Thus, this Ac(4)ManNAc treatment enlarged drug response difference between normal and tumor cells provides a unique opportunity to further improve the selectivity and therapeutic efficiency of anticancer drugs.

  6. Genetic alterations in head and neck squamous cell carcinomas

    Directory of Open Access Journals (Sweden)

    Nagai M.A.

    1999-01-01

    Full Text Available The genetic alterations observed in head and neck cancer are mainly due to oncogene activation (gain of function mutations and tumor suppressor gene inactivation (loss of function mutations, leading to deregulation of cell proliferation and death. These genetic alterations include gene amplification and overexpression of oncogenes such as myc, erbB-2, EGFR and cyclinD1 and mutations, deletions and hypermethylation leading to p16 and TP53 tumor suppressor gene inactivation. In addition, loss of heterozygosity in several chromosomal regions is frequently observed, suggesting that other tumor suppressor genes not yet identified could be involved in the tumorigenic process of head and neck cancers. The exact temporal sequence of the genetic alterations during head and neck squamous cell carcinoma (HNSCC development and progression has not yet been defined and their diagnostic or prognostic significance is controversial. Advances in the understanding of the molecular basis of head and neck cancer should help in the identification of new markers that could be used for the diagnosis, prognosis and treatment of the disease.

  7. CD20(+) B Cell Depletion Alters T Cell Homing

    NARCIS (Netherlands)

    Kap, Yolanda S.; van Driel, Nikki; Laman, Jon D.; Tak, Paul P.; 't Hart, Bert A.

    2014-01-01

    Depleting mAbs against the pan B cell marker CD20 are remarkably effective in the treatment of autoimmune-mediated inflammatory disorders, but the underlying mechanisms are poorly defined. The primary objective of this study was to find a mechanistic explanation for the remarkable clinical effect of

  8. Human melanocytes mitigate keratinocyte-dependent contraction in an in vitro collagen contraction assay.

    Science.gov (United States)

    Rakar, Jonathan; Krammer, Markus P; Kratz, Gunnar

    2015-08-01

    Scarring is an extensive problem in burn care, and treatment can be especially complicated in cases of hypertrophic scarring. Contraction is an important factor in scarring but the contribution of different cell types remains unclear. We have investigated the contractile behavior of keratinocytes, melanocytes and fibroblasts by using an in vitro collagen gel assay aimed at identifying a modulating role of melanocytes in keratinocyte-mediated contraction. Cells were seeded on a collagen type I gel substrate and the change in gel dimensions were measured over time. Hematoxylin & Eosin-staining and immunohistochemistry against pan-cytokeratin and microphthalmia-associated transcription factor showed that melanocytes integrated between keratinocytes and remained there throughout the experiments. Keratinocyte- and fibroblast-seeded gels contracted significantly over time, whereas melanocyte-seeded gels did not. Co-culture assays showed that melanocytes mitigate the keratinocyte-dependent contraction (significantly slower and 18-32% less). Fibroblasts augmented the contraction in most assays (approximately 6% more). Non-contact co-cultures showed some influence on the keratinocyte-dependent contraction. Results show that mechanisms attributable to melanocytes, but not fibroblasts, can mitigate keratinocyte contractile behavior. Contact-dependent mechanisms are stronger modulators than non-contact dependent mechanisms, but both modes carry significance to the contraction modulation of keratinocytes. Further investigations are required to determine the mechanisms involved and to determine the utility of melanocytes beyond hypopigmentation in improved clinical regimes of burn wounds and wound healing.

  9. Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: In vitro study.

    Science.gov (United States)

    Bhowmick, Sirsendu; Scharnweber, Dieter; Koul, Veena

    2016-05-01

    Fortifying the scaffold with bioactive molecules and glycosaminoglycans (GAGs), is an efficient way to design new generation tissue engineered biomaterials. In this study, we evaluated the synergistic effect of electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) loaded with sericin and, contact co-culture of human mesenchymal stem cells (hMSCs)-keratinocytes on hMSCs' differentiation towards epithelial lineage. Cationic gelatin is prepared with one step novel synthesis process by grafting quaternary ammonium salts to the backbone of gelatin. Release kinetics studies showed that Fickian diffusion is the major release mechanism for both GAGs and sericin/gelatin. In vitro biocompatibility of the electrospun scaffold was evaluated in terms of LDH and DNA quantification assay on human foreskin fibroblast, human keratinocyte and hMSC. Significant proliferation (∼ 4-6 fold) was detected after culturing all three cell on the electrospun scaffold containing sericin. After 5 days of contact co-culture, results revealed that electrospun scaffold containing sericin promote epithelial differentiation of hMSC in terms of several protein markers (keratin 14, ΔNp63α and Pan-cytokeratin) and gene expression of some dermal proteins (keratin 14, ΔNp63α). Findings of this study will foster the progress of current skin tissue engineering scaffolds by understanding the skin regeneration and wound healing process.

  10. Alterations induced in Escherichia Coli cells by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kappke, J.; Schelin, H.R.; Paschuk, S.A.; Denyak, V.; Silva, E.R. da [Federal University of Technology of Parana (CPGEI/UTFPR), Curitiba, PR (Brazil)]. E-mails: jaquekap@yahoo.com.br; schelin@cpgei.cefetpr.br; sergei@utfpr.edu.br; Jesus, E.F.O. de; Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails: ricardo@lin.ufrj.br; edgar@lin.ufrj.br; Carlin, N.; Toledo, E.S. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica]. E-mail: nelson.carlin@dfn.if.usp.br

    2007-07-01

    Modifications occurred in Escherichia coli cells exposed to gamma radiation ({sup 60}Co source) were investigated. The irradiations were done at the LIN-COPPE laboratory of the UFRJ and the analysis at the Biology Department of the UTFPR. The E. coli cells were irradiated with 30, 60, 90, 120, 150, 180, 210, 240, 300, 480, 600 e 750 Gy doses. The samples were analyzed with Gram-stain, biochemical tests in EPM, MIO and Lysine Broth, Simmons Cytrate Medium and Rhamnose Broth, antibiogram and isolation of auxotrophic mutants. It was observed that for the received doses the E. coli did not show morphological alterations in the tests. Some E. Coli cells showed to be able to deaminade the L-tryptophan or they changed their sensibility for amoxillin and cephaloonine after the irradiation. The existence of aauxotrophic mutants after irradiation was also verified. (author)

  11. Altered B cell receptor signaling in human systemic lupus erythematosus

    Science.gov (United States)

    Jenks, Scott A.; Sanz, Iñaki

    2009-01-01

    Regulation of B cell receptor signaling is essential for the development of specific immunity while retaining tolerance to self. Systemic lupus erythematosus (SLE) is characterized by a loss of B cell tolerance and the production of anti-self antibodies. Accompanying this break down in tolerance are alterations in B cell receptor signal transduction including elevated induced calcium responses and increased protein phosphorylation. Specific pathways that negatively regulate B cell signaling have been shown to be impaired in some SLE patients. These patients have reduced levels of the kinase Lyn in lipid raft microdomains and this reduction is inversely correlated with increased CD45 in lipid rafts. Function and expression of the inhibitory immunoglobulin receptor FcγRIIB is also reduced in Lupus IgM- CD27+ memory cells. Because the relative contribution of different memory and transitional B cell subsets can be abnormal in SLE patients, we believe studies targeted to well defined B cell subsets will be necessary to further our understanding of signaling abnormalities in SLE. Intracellular flow cytometric analysis of signaling is a useful approach to accomplish this goal. PMID:18723129

  12. H-ras expression in immortalized keratinocytes produces an invasive epithelium in cultured skin equivalents.

    Directory of Open Access Journals (Sweden)

    Melville B Vaughan

    Full Text Available BACKGROUND: Ras proteins affect both proliferation and expression of collagen-degrading enzymes, two important processes in cancer progression. Normal skin architecture is dependent both on the coordinated proliferation and stratification of keratinocytes, as well as the maintenance of a collagen-rich basement membrane. In the present studies we sought to determine whether expression of H-ras in skin keratinocytes would affect these parameters during the establishment and maintenance of an in vitro skin equivalent. METHODOLOGY/PRINCIPAL FINDINGS: Previously described cdk4 and hTERT immortalized foreskin keratinocytes were engineered to express ectopically introduced H-ras. Skin equivalents, composed of normal fibroblast-contracted collagen gels overlaid with keratinocytes (immortal or immortal expressing H-ras, were prepared and incubated for 3 weeks. Harvested tissues were processed and sectioned for histology and antibody staining. Antigens specific to differentiation (involucrin, keratin-14, p63, basement-membrane formation (collagen IV, laminin-5, and epithelial to mesenchymal transition (EMT; e-cadherin, vimentin were studied. Results showed that H-ras keratinocytes produced an invasive, disorganized epithelium most apparent in the lower strata while immortalized keratinocytes fully stratified without invasive properties. The superficial strata retained morphologically normal characteristics. Vimentin and p63 co-localization increased with H-ras overexpression, similar to basal wound-healing keratinocytes. In contrast, the cdk4 and hTERT immortalized keratinocytes differentiated similarly to normal unimmortalized keratinocytes. CONCLUSIONS/SIGNIFICANCE: The use of isogenic derivatives of stable immortalized keratinocytes with specified genetic alterations may be helpful in developing more robust in vitro models of cancer progression.

  13. Agent based modelling helps in understanding the rules by which fibroblasts support keratinocyte colony formation.

    Directory of Open Access Journals (Sweden)

    Tao Sun

    Full Text Available BACKGROUND: Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this. METHODOLOGY/PRINCIPAL FINDINGS: A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1 the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2 this ratio needed to be optimum at the beginning of the co-culture, 3 proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4 in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum. CONCLUSIONS: A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse

  14. Defensive effects of fullerene-C60 dissolved in squalane against the 2,4-nonadienal-induced cell injury in human skin keratinocytes HaCaT and wrinkle formation in 3D-human skin tissue model.

    Science.gov (United States)

    Kato, Shinya; Aoshima, Hisae; Saitoh, Yasukazu; Miwa, Nobuhiko

    2010-02-01

    We dissolved fullerene-C60 in squalane (LipoFullerene; LF-SQ, C60-eq.: 500 ppm) and examined its defensive effects against 2,4-nonadienal (NDA)-induced cell injury in HaCaT keratinocytes and wrinkle formation in three dimensional (3D)-human skin tissue model. NDA is an analog of 4-hydroxynonenal, one of major causes for human body odor indicative of aging and a lipophilic cell injury factor. Cell viability (% of the control) decreased to 31.6% on treatment with NDA (40 microM), but it increased to 66.0-97.5% when LF-SQ of 1-4% (C60-eq.: 5-20 ppm) was administered for 5 hr before NDA addition. The defensive effect by LF-SQ was superior to that of "squalane" alone at the same doses. NDA-induced DNA-fragmentation in HaCaT cells was suppressed by LF-SQ administered for 5 hr before NDA treatment, and LF-SQ protected HaCaT cells against apoptosis-like cell death. LF-SQ did not appreciably defend against hydrogen peroxide, though LF-SQ effectively defended against tert-butylhydroperoxide, a type of the intermediate hydrophilicity-lipophilicity degree out of other reactive oxygen species. The scanning electron microscopy demonstrated that NDA caused wrinkles and abnormal scales on keratinocytes of 3D-human skin tissue model, and structural homogeneity of the interstratum was broken, any of which were, however, markedly suppressed with LF-SQ. Squalane alone exhibited defensive effect against the skin tissue injury to some extent, but which was inferior to LF-SQ. LF-SQ might effectively capture and scavenge lipid radicals generated inside the cell membrane, because squalane acts as a lipophilic carrier of C60. C60 dissolved in squalane can be expected to serve as a cosmeceutical ingredient for anti-wrinkle formation.

  15. Metabolic flux prediction in cancer cells with altered substrate uptake.

    Science.gov (United States)

    Schwartz, Jean-Marc; Barber, Michael; Soons, Zita

    2015-12-01

    Proliferating cells, such as cancer cells, are known to have an unusual metabolism, characterized by an increased rate of glycolysis and amino acid metabolism. Our understanding of this phenomenon is limited but could potentially be used in order to develop new therapies. Computational modelling techniques, such as flux balance analysis (FBA), have been used to predict fluxes in various cell types, but remain of limited use to explain the unusual metabolic shifts and altered substrate uptake in human cancer cells. We implemented a new flux prediction method based on elementary modes (EMs) and structural flux (StruF) analysis and tested them against experimentally measured flux data obtained from (13)C-labelling in a cancer cell line. We assessed the quality of predictions using different objective functions along with different techniques in normalizing a metabolic network with more than one substrate input. Results show a good correlation between predicted and experimental values and indicate that the choice of cellular objective critically affects the quality of predictions. In particular, lactate gives an excellent correlation and correctly predicts the high flux through glycolysis, matching the observed characteristics of cancer cells. In contrast with FBA, which requires a priori definition of all uptake rates, often hard to measure, atomic StruFs (aStruFs) are able to predict uptake rates of multiple substrates.

  16. Inhibition of Inflammatory Gene Expression in Keratinocytes Using a Composition Containing Carnitine, Thioctic Acid and Saw Palmetto Extract

    Directory of Open Access Journals (Sweden)

    Sridar Chittur

    2011-01-01

    Full Text Available Chronic inflammation of the hair follicle (HF is considered a contributing factor in the pathogenesis of androgenetic alopecia (AGA. Previously, we clinically tested liposterolic extract of Serenoa repens (LSESr and its glycoside, β-sitosterol, in subjects with AGA and showed a highly positive response to treatment. In this study, we sought to determine whether blockade of inflammation using a composition containing LSESr as well as two anti-inflammatory agents (carnitine and thioctic acid could alter the expression of molecular markers of inflammation in a well-established in vitro system. Using a well-validated assay representative of HF keratinocytes, specifically, stimulation of cultured human keratinocyte cells in vitro, we measured changes in gene expression of a spectrum of well-known inflammatory markers. Lipopolysaccharide (LPS provided an inflammatory stimulus. In particular, we found that the composition effectively suppressed LPS-activated gene expression of chemokines, including CCL17, CXCL6 and LTB(4 associated with pathways involved in inflammation and apoptosis. Our data support the hypothesis that the test compound exhibits anti-inflammatory characteristics in a well-established in vitro assay representing HF keratinocyte gene expression. These findings suggest that 5-alpha reductase inhibitors combined with blockade of inflammatory processes could represent a novel two-pronged approach in the treatment of AGA with improved efficacy over current modalities.

  17. Distinct roles for ROCK1 and ROCK2 in the regulation of keratinocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Frances E Lock

    Full Text Available BACKGROUND: The human epidermis is comprised of several layers of specialized epithelial cells called keratinocytes. Normal homoeostasis of the epidermis requires that the balance between keratinocyte proliferation and terminal differentiation be tightly regulated. The mammalian serine/threonine kinases (ROCK1 and ROCK2 are well-characterised downstream effectors of the small GTPase RhoA. We have previously demonstrated that the RhoA/ROCK signalling pathway plays an important role in regulation of human keratinocyte proliferation and terminal differentiation. In this paper we addressed the question of which ROCK isoform was involved in regulation of keratinocyte differentiation. METHODOLOGY AND PRINCIPAL FINDINGS: We used RNAi to specifically knockdown ROCK1 or ROCK2 expression in cultured human keratinocytes. ROCK1 depletion results in decreased keratinocyte adhesion to fibronectin and an increase in terminal differentiation. Conversely, ROCK2 depletion results in increased keratinocyte adhesion to fibronectin and inhibits terminal differentiation. CONCLUSION: These data suggest that ROCK1 and ROCK2 play distinct roles in regulating keratinocyte adhesion and terminal differentiation.

  18. Genetic alterations in B-cell non-Hodgkin's lymphoma

    Directory of Open Access Journals (Sweden)

    Magić Zvonko

    2005-01-01

    Full Text Available Background. Although the patients with diagnosed B-NHL are classified into the same disease stage on the basis of clinical, histopathological, and immunological parameters, they respond significantly different to the applied treatment. This points out the possibility that within the same group of lymphoma there are different diseases at molecular level. For that reason many studies deal with the detection of gene alterations in lymphomas to provide a better framework for diagnosis and treatment of these hematological malignancies. Aim. To define genetic alterations in the B-NHL with highest possibilities for diagnostic purposes and molecular detection of MRD. Methods. Formalin fixed and paraffin embedded lymph node tissues from 45 patients were examined by different PCR techniques for the presence of IgH and TCR γ gene rearrangement; K-ras and H-ras mutations; c-myc amplification and bcl-2 translocation. There were 34 cases of B-cell non-Hodgkin’s lymphoma (B-NHL, 5 cases of T-cell non-Hodgkin’s lymphoma (T-NHL and 6 cases of chronic lymphadenitis (CL. The mononuclear cell fraction of the peripheral blood of 12 patients with B-NHL was analyzed for the presence of monoclonality at the time of diagnosis and in 3 to 6 months time intervals after an autologous bone marrow transplantation (BMT. Results. The monoclonality of B-lymphocytes, as evidenced by DNA fragment length homogeneity, was detected in 88 % (30/34 of B-NHL, but never in CL, T-NHL, or in normal PBL. Bcl-2 translocation was detected in 7/31 (22.6% B-NHL specimens, c-myc amplification 9/31 (29%, all were more than doubled, K-ras mutations in 1/31 (3.23% and H-ras mutations in 2/31 (6.45% of the examined B-NHL samples. In the case of LC and normal PBL, however, these gene alterations were not detected. All the patients (12 with B-NHL had dominant clone of B-lymphocyte in the peripheral blood at the time of diagnosis while only in 2 of 12 patients MRD was detected 3 or 6 months after

  19. Altered T cell costimulation during chronic hepatitis B infection.

    Science.gov (United States)

    Barboza, Luisa; Salmen, Siham; Peterson, Darrell L; Montes, Henry; Colmenares, Melisa; Hernández, Manuel; Berrueta-Carrillo, Leidith E; Berrueta, Lisbeth

    2009-01-01

    T-cell response to hepatitis B virus (HBV) is vigorous, polyclonal and multi-specific in patients with acute hepatitis who ultimately clear the virus, whereas it is narrow and inefficient in patients with chronic disease, where inappropriate early activation events could account for viral persistence. We investigated the induction of activation receptors and cytokine production in response to HBcAg and crosslinking of CD28 molecules, in CD4+ cells from a group of chronically infected patients (CIP) and naturally immune subjects (NIS). We demonstrated that CD4+ cells from CIP did not increase levels of CD40L and CD69 following stimulation with HBcAg alone or associated to CD28 crosslinking, in contrast to subjects that resolved the infection (p<0.01). Furthermore, CD4+ cells from CIP produced elevated levels of IL-10 in response to HBcAg. These results suggest that a predominant inhibitory environment may be responsible for altered T cell costimulation, representing a pathogenic mechanism for viral persistence.

  20. Ureaplasma parvum infection alters filamin a dynamics in host cells

    Directory of Open Access Journals (Sweden)

    Brown Mary B

    2011-04-01

    Full Text Available Abstract Background Ureaplasmas are among the most common bacteria isolated from the human urogenital tract. Ureaplasmas can produce asymptomatic infections or disease characterized by an exaggerated inflammatory response. Most investigations have focused on elucidating the pathogenic potential of Ureaplasma species, but little attention has been paid to understanding the mechanisms by which these organisms are capable of establishing asymptomatic infection. Methods We employed differential proteome profiling of bladder tissues from rats experimentally infected with U. parvum in order to identify host cell processes perturbed by colonization with the microbe. Tissues were grouped into four categories: sham inoculated controls, animals that spontaneously cleared infection, asymptomatic urinary tract infection (UTI, and complicated UTI. One protein that was perturbed by infection (filamin A was used to further elucidate the mechanism of U. parvum-induced disruption in human benign prostate cells (BPH-1. BPH-1 cells were evaluated by confocal microscopy, immunoblotting and ELISA. Results Bladder tissue from animals actively colonized with U. parvum displayed significant alterations in actin binding proteins (profilin 1, vinculin, α actinin, and filamin A that regulate both actin polymerization and cell cytoskeletal function pertaining to focal adhesion formation and signal transduction (Fisher's exact test, P U. parvum perturbed the regulation of filamin A. Specifically, infected BPH-1 cells exhibited a significant increase in filamin A phosphorylated at serine2152 (P ≤ 0.01, which correlated with impaired proteolysis of the protein and its normal intracellular distribution. Conclusion Filamin A dynamics were perturbed in both models of infection. Phosphorylation of filamin A occurs in response to various cell signaling cascades that regulate cell motility, differentiation, apoptosis and inflammation. Thus, this phenomenon may be a useful

  1. Attenuating properties of Agastache rugosa leaf extract against ultraviolet-B-induced photoaging via up-regulating glutathione and superoxide dismutase in a human keratinocyte cell line.

    Science.gov (United States)

    Oh, Yuri; Lim, Hye-Won; Huang, Yu-Hua; Kwon, Hee-Souk; Jin, Chang Duck; Kim, Kyunghoon; Lim, Chang-Jin

    2016-10-01

    Agastache rugosa Kuntze, known as a Korean mint, is an herbal medicine that has been used for the treatment of diverse kinds of symptoms in traditional medicine. This work was undertaken to assess the protective properties of A. rugosa leaves against UV-B-induced photoaging in HaCaT keratinocytes. They were evaluated via analyzing reactive oxygen species (ROS), promatrix metalloproteinase-2 (proMMP-2) and -9 (proMMP-9), total glutathione (GSH), total superoxide dismutase (SOD), cellular viability, flavonoid content and in vitro radical scavenging activity. Total flavonoid content of ARE, a hot water extract of A. rugosa leaves, was 22.8±7.6mg of naringin equivalent/g ARE. ARE exhibited ABTS(+) radical scavenging activity with an SC50 of 836.9μg/mL. ARE attenuated the UV-B-induced ROS generation. It diminished the UV-B-induced elevation of proMMP-2 and -9 at both activity and protein levels. On the contrary, ARE was able to enhance the UV-B-reduced total GSH and total SOD activity levels. ARE, at the used concentrations, was unable to interfere with the cellular viabilities of HaCaT keratinocytes under UV-B irradiation. Taken together, ARE possesses a protective potential against UV-B-induced photoaging in HaCaT keratinocytes, possibly based upon up-regulating antioxidant components, including total GSH and SOD. These findings reasonably suggest the use of A. rugosa leaves as a photoprotective resource in manufacturing functional cosmetics.

  2. Alterations of proteins in MDCK cells during acute potassium deficiency.

    Science.gov (United States)

    Peerapen, Paleerath; Ausakunpipat, Nardtaya; Chanchaem, Prangwalai; Thongboonkerd, Visith

    2016-06-01

    Chronic K(+) deficiency can cause hypokalemic nephropathy associated with metabolic alkalosis, polyuria, tubular dilatation, and tubulointerstitial injury. However, effects of acute K(+) deficiency on the kidney remained unclear. This study aimed to explore such effects by evaluating changes in levels of proteins in renal tubular cells during acute K(+) deficiency. MDCK cells were cultivated in normal K(+) (NK) (K(+)=5.3 mM), low K(+) (LK) (K(+)=2.5 mM), or K(+) depleted (KD) (K(+)=0 mM) medium for 24 h and then harvested. Cellular proteins were resolved by two-dimensional gel electrophoresis (2-DE) and visualized by SYPRO Ruby staining (5 gels per group). Spot matching and quantitative intensity analysis revealed a total 48 protein spots that had significantly differential levels among the three groups. Among these, 46 and 30 protein spots had differential levels in KD group compared to NK and LK groups, respectively. Comparison between LK and NK groups revealed only 10 protein spots that were differentially expressed. All of these differentially expressed proteins were successfully identified by Q-TOF MS and/or MS/MS analyses. The altered levels of heat shock protein 90 (HSP90), ezrin, lamin A/C, tubulin, chaperonin-containing TCP1 (CCT1), and calpain 1 were confirmed by Western blot analysis. Global protein network analysis showed three main functional networks, including 1) cell growth and proliferation, 2) cell morphology, cellular assembly and organization, and 3) protein folding in which the altered proteins were involved. Further investigations on these networks may lead to better understanding of pathogenic mechanisms of low K(+)-induced renal injury.

  3. Effect of silver nanoparticles on human primary keratinocytes.

    Science.gov (United States)

    Szmyd, Radoslaw; Goralczyk, Anna Grazyna; Skalniak, Lukasz; Cierniak, Agnieszka; Lipert, Barbara; Filon, Francesca Larese; Crosera, Matteo; Borowczyk, Julia; Laczna, Eliza; Drukala, Justyna; Klein, Andrzej; Jura, Jolanta

    2013-01-01

    Silver nanoparticles (AgNPs) have many biological applications in biomedicine, biotechnology and other life sciences. Depending on the size, shape and the type of carrier, AgNPs demonstrate different physical and chemical properties. AgNPs have strong antimicrobial, antiviral and antifungal activity, thus they are used extensively in a range of medical settings, particularly in wound dressings but also in cosmetics. This study was undertaken to examine the potential toxic effects of 15 nm polyvinylpyrrolidone-coated AgNPs on primary normal human epidermal keratinocytes (NHEK). Cells were treated with different concentrations of AgNPs and then cell viability, metabolic activity and other biological and biochemical aspects of keratinocytes functioning were studied. We observed that AgNPs decrease keratinocyte viability, metabolism and also proliferatory and migratory potential of these cells. Moreover, longer exposure resulted in activation of caspase 3/7 and DNA damage. Our studies show for the first time, that AgNPs may present possible danger for primary keratinocytes, concerning activation of genotoxic and cytotoxic processes depending on the concentration.

  4. Human keratinocytes synthesize and secrete the extracellular matrix protein, thrombospondin.

    Science.gov (United States)

    Wikner, N E; Dixit, V M; Frazier, W A; Clark, R A

    1987-02-01

    Thrombospondin (TSP) a glycoprotein originally identified as the endogenous lectin of platelets, is also synthesized by fibroblasts, endothelial cells, pneumocytes, smooth muscle cells, and macrophages. Thrombospondin is subdivided into functional domains which bind specifically to heparin, fibronectin, collagen, and to specific cellular receptors. It is found within the basement membranes of kidney, lung, smooth muscle, and skin. Thus TSP may serve as an important link between cells and matrices. Thrombospondin also has been reported at the epidermal-dermal junction. We wished to determine whether human keratinocytes synthesize and secrete TSP. Pure human keratinocytes were grown in defined medium without fibroblast feeder layers. Immunofluorescent staining with either rabbit polyclonal or mouse monoclonal antibodies to human platelet TSP yielded specific granular staining within the cytoplasm of keratinocytes. Culture media and cellular lysates were harvested from cultures metabolically labeled with [35S]methionine. Trichloroacetic acid precipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and autoradiography revealed a major labeled band comigrating with purified platelet TSP in both the media and the cellular lysates. Immunoprecipitation with either the polyclonal or the monoclonal anti-TSP antibodies followed by SDS-PAGE and autoradiography identified this band as TSP. Thus keratinocytes in culture synthesize and secrete TSP. Thrombospondin may play an important role in epidermal interactions with extracellular matrix.

  5. Ubiquitin/proteasome pathway regulates levels of retinoic acid receptor gamma and retinoid X receptor alpha in human keratinocytes.

    Science.gov (United States)

    Boudjelal, M; Wang, Z; Voorhees, J J; Fisher, G J

    2000-04-15

    Repeated exposure of human skin to solar UV radiation leads to premature aging (photoaging) and skin cancer. UV-induced skin damage can be ameliorated by all-trans retinoic acid treatment. The actions of retinoic acid in skin keratinocytes are mediated primarily by nuclear retinoic acid receptor gamma (RARgamma) and retinoid X receptor alpha (RXRalpha). We found that exposure of cultured primary human keratinocytes to UV irradiation (30 mJ/cm2) substantially reduced (50-90%) RARgamma and RXRalpha mRNA and protein within 8 h. The rates of disappearance of RARgamma and RXRalpha proteins after UV exposure or treatment with the protein synthesis inhibitor cycloheximide were similar. UV irradiation did not increase the rate of breakdown of RARgamma or RXRalpha but rather reduced their rate of synthesis. The addition of proteasome inhibitors MG132 and LLvL, but not the lysosomal inhibitor E64, prevented loss of RARgamma and RXRalpha proteins after exposure of keratinocytes to either UV radiation or cycloheximide. Soluble extracts from nonirradiated or UV-irradiated keratinocytes possessed similar levels of proteasome activity that degraded RARgamma and RXRalpha proteins in vitro. Furthermore, RARgamma and RXRalpha were polyubiquitinated in intact cells. RXRalpha was found to contain two proline, glutamate/aspartate, serine, and threonine (PEST) motifs, which confer rapid turnover of many short-lived regulatory proteins that are degraded by the ubiquitin/proteasome pathway. However, the PEST motifs in RXRalpha did not function to regulate its stability, because deletion of the PEST motifs individually or together did not alter ubiquitination or proteasome-mediated degradation of RXRalpha. These results demonstrate that loss of RARgamma and RXRalpha proteins after UV irradiation results from degradation via the ubiquitin/proteasome pathway. Taken together, the data here indicate that ubiquitin/proteasome-mediated breakdown is an important mechanism regulating the levels of

  6. Surfactant-induced alteration of arachidonic acid metabolism of mammalian cells in culture.

    Science.gov (United States)

    De Leo, V A; Harber, L C; Kong, B M; De Salva, S J

    1987-04-01

    Primary irritancy in human and animal skin is characterized by an inflammatory reaction mediated, in part, by membrane-derived arachidonate metabolites. One of the mechanisms of this reaction was investigated in cultured mammalian cells using three surfactants: linear alkyl benzene sulfonate (LAS), alkyl ethoxylate sulfate (AEOS), and TWEEN 20. These compounds listed in order in vivo irritancy are LAS greater than AEOS greater than TWEEN 20. Each of these compounds was studied in C3H-10T1/2 cells and human keratinocytes which had been prelabeled with 3H-labeled arachidonic acid (AA). After labeling, media were removed, cells were washed, and fresh media with or without surfactant were added. Cells were then incubated for 2 hr, media were removed and centrifuged, and an aliquot was assayed by liquid scintillation for release of label. In C3H-10T1/2 cells LAS and AEOS in 5-50 microM concentration stimulated 2 to 10 times the release of [3H]AA as compared to controls. In contrast, concentrations of 50-100 microM of TWEEN were required to release [3H]AA. With keratinocytes the same rank order of surfactant concentrations necessary for release was obtained as found with C3H-10T1/2 cells. High-performance liquid chromatography of media extracts of both cell systems revealed surfactant stimulation of the production of cyclooxygenase AA metabolites. These results confirm the induction of release by primary irritants of fatty acid groups from membrane phospholipids. Subsequent metabolism of these fatty acid groups are an integral part of the primary irritant response. Data presented with three known irritants in this in vitro model show a direct correlation with in vivo studies.

  7. Dental metal-induced innate reactivity in keratinocytes.

    Science.gov (United States)

    Rachmawati, Dessy; Buskermolen, Jeroen K; Scheper, Rik J; Gibbs, Susan; von Blomberg, B Mary E; van Hoogstraten, Ingrid M W

    2015-12-25

    Gold, nickel, copper and mercury, i.e. four metals frequently used in dental applications, were explored for their capacity to induce innate immune activation in keratinocytes (KC). Due to their anatomical location the latter epithelial cells are key in primary local irritative responses of skin and mucosa. Fresh foreskin-derived keratinocytes and skin and gingiva KC cell lines were studied for IL-8 release as a most sensitive parameter for NF-kB activation. First, we verified that viral-defense mediating TLR3 is a key innate immune receptor in both skin- and mucosa derived keratinocytes. Second, we found that, in line with our earlier finding that ionized gold can mimic viral dsRNA in triggering TLR3, gold is very effective in KC activation. It would appear that epithelial TLR3 can play a key role in both skin- and mucosa localized irritation reactivities to gold. Subsequently we found that not only gold, but also nickel, copper and mercury salts can activate innate immune reactivity in keratinocytes, although the pathways involved remain unclear. Although current alloys have been optimized for minimal leakage of metal ions, secondary factors such as mechanical friction and acidity may still facilitate such leakage. Subsequently, these metal ions may create local irritation, itching and swelling by triggering innate immune reactions, potentially also facilitating the development of metal specific adaptive immunity.

  8. FOXO1 expression in keratinocytes promotes connective tissue healing

    Science.gov (United States)

    Zhang, Chenying; Lim, Jason; Liu, Jian; Ponugoti, Bhaskar; Alsadun, Sarah; Tian, Chen; Vafa, Rameen; Graves, Dana T.

    2017-01-01

    Wound healing is complex and highly orchestrated. It is well appreciated that leukocytes, particularly macrophages, are essential for inducing the formation of new connective tissue, which requires the generation of signals that stimulate mesenchymal stem cells (MSC), myofibroblasts and fibroblasts. A key role for keratinocytes in this complex process has yet to be established. To this end, we investigated possible involvement of keratinocytes in connective tissue healing. By lineage-specific deletion of the forkhead box-O 1 (FOXO1) transcription factor, we demonstrate for the first time that keratinocytes regulate proliferation of fibroblasts and MSCs, formation of myofibroblasts and production of collagen matrix in wound healing. This stimulation is mediated by a FOXO1 induced TGFβ1/CTGF axis. The results provide direct evidence that epithelial cells play a key role in stimulating connective tissue healing through a FOXO1-dependent mechanism. Thus, FOXO1 and keratinocytes may be an important therapeutic target where healing is deficient or compromised by a fibrotic outcome. PMID:28220813

  9. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  10. Withaferin a alters intermediate filament organization, cell shape and behavior.

    Directory of Open Access Journals (Sweden)

    Boris Grin

    Full Text Available Withaferin A (WFA is a steroidal lactone present in Withania somnifera which has been shown in vitro to bind to the intermediate filament protein, vimentin. Based upon its affinity for vimentin, it has been proposed that WFA can be used as an anti-tumor agent to target metastatic cells which up-regulate vimentin expression. We show that WFA treatment of human fibroblasts rapidly reorganizes vimentin intermediate filaments (VIF into a perinuclear aggregate. This reorganization is dose dependent and is accompanied by a change in cell shape, decreased motility and an increase in vimentin phosphorylation at serine-38. Furthermore, vimentin lacking cysteine-328, the proposed WFA binding site, remains sensitive to WFA demonstrating that this site is not required for its cellular effects. Using analytical ultracentrifugation, viscometry, electron microscopy and sedimentation assays we show that WFA has no effect on VIF assembly in vitro. Furthermore, WFA is not specific for vimentin as it disrupts the cellular organization and induces perinuclear aggregates of several other IF networks comprised of peripherin, neurofilament-triplet protein, and keratin. In cells co-expressing keratin IF and VIF, the former are significantly less sensitive to WFA with respect to inducing perinuclear aggregates. The organization of microtubules and actin/microfilaments is also affected by WFA. Microtubules become wavier and sparser and the number of stress fibers appears to increase. Following 24 hrs of exposure to doses of WFA that alter VIF organization and motility, cells undergo apoptosis. Lower doses of the drug do not kill cells but cause them to senesce. In light of our findings that WFA affects multiple IF systems, which are expressed in many tissues of the body, caution is warranted in its use as an anti-cancer agent, since it may have debilitating organism-wide effects.

  11. Yokukansan, a Traditional Japanese Medicine, Adjusts Glutamate Signaling in Cultured Keratinocytes

    Directory of Open Access Journals (Sweden)

    Maki Wakabayashi

    2014-01-01

    Full Text Available Glutamate plays an important role in skin barrier signaling. In our previous study, Yokukansan (YKS affected glutamate receptors in NC/Nga mice and was ameliorated in atopic dermatitis lesions. The aim of this study was to assess the effect of YKS on skin and cultured human keratinocytes. Glutamate concentrations in skin of YKS-treated and nontreated NC/Nga mice were measured. Then, glutamate release from cultured keratinocytes was measured, and extracellular glutamate concentrations in YKS-stimulated cultured human keratinocytes were determined. The mRNA expression levels of NMDA receptor 2D (NMDAR2D and glutamate aspartate transporter (GLAST were also determined in YKS-stimulated cultured keratinocytes. The glutamate concentrations and dermatitis scores increased in conventional mice, whereas they decreased in YKS-treated mice. Glutamate concentrations in cell supernatants of cultured keratinocytes increased proportionally to the cell density. However, they decreased dose-dependently with YKS. YKS stimulation increased NMDAR2D in a concentration-dependent manner. Conversely, GLAST decreased in response to YKS. Our findings indicate that YKS affects peripheral glutamate signaling in keratinocytes. Glutamine is essential as a transmitter, and dermatitis lesions might produce and release excess glutamate. This study suggests that, in keratinocytes, YKS controls extracellular glutamate concentrations, suppresses N-methyl-D-aspartate (NMDA receptors, and activates glutamate transport.

  12. Arsenic exposure disrupts epigenetic regulation of SIRT1 in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, Katharine J. [School of Health Sciences, University of Tasmania, Launceston, TAS 7250 (Australia); Holloway, Adele [Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000 (Australia); Cook, Anthony L. [School of Health Sciences, University of Tasmania, Launceston, TAS 7250 (Australia); Chin, Suyin P. [Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000 (Australia); Snow, Elizabeth T., E-mail: elizabeth.snow@utas.edu.au [School of Health Sciences, University of Tasmania, Launceston, TAS 7250 (Australia)

    2014-11-15

    Arsenic is an environmental toxin which increases skin cancer risk for exposed populations worldwide; however the underlying biomolecular mechanism for arsenic-induced carcinogenesis is complex and poorly defined. Recent investigations show that histone deacetylase and DNA methyltransferase activity is impaired, and epigenetic patterns of gene regulation are consistently altered in cancers associated with arsenic exposure. Expression of the histone deacetylase SIRT1 is altered in solid tumours and haematological malignancies; however its role in arsenic-induced pathology is unknown. In this study we investigated the effect of arsenic on epigenetic regulation of SIRT1 and its targeting microRNA, miR-34a in primary human keratinocytes. Acetylation of histone H4 at lysine 16 (H4K16) increased in keratinocytes exposed to 0.5 μM arsenite [As(III)]; and this was associated with chromatin remodelling at the miR-34a promoter. Moreover, although SIRT1 protein initially increased in these As(III)-exposed cells, after 24 days expression was not significantly different from untreated controls. Extended exposure to low-dose As(III) (0.5 μM; > 5 weeks) compromised the pattern of CpG methylation at SIRT1 and miR-34a gene promoters, and this was associated with altered expression for both genes. We have found that arsenic alters epigenetic regulation of SIRT1 expression via structural reorganisation of chromatin at the miR-34a gene promoter in the initial 24 h of exposure; and over time, through shifts in miR-34a and SIRT1 gene methylation. Taken together, this investigation demonstrates that arsenic produces cumulative disruptions to epigenetic regulation of miR-34a expression, and this is associated with impaired coordination of SIRT1 functional activity. - Highlights: • Submicromolar arsenic concentrations disrupt SIRT1 activity and expression in human keratinocytes. • Arsenic-induced chromatin remodelling at the miR-34a gene promoter is associated with hyperacetylation

  13. Shielding of the Geomagnetic Field Alters Actin Assembly and Inhibits Cell Motility in Human Neuroblastoma Cells

    OpenAIRE

    Wei-Chuan Mo; Zi-Jian Zhang; Dong-Liang Wang; Ying Liu; Bartlett, Perry F.; Rong-Qiao He

    2016-01-01

    Accumulating evidence has shown that absence of the geomagnetic field (GMF), the so-called hypomagnetic field (HMF) environment, alters the biological functions in seemingly non-magnetosensitive cells and organisms, which indicates that the GMF could be sensed by non-iron-rich and non-photo-sensing cells. The underlying mechanisms of the HMF effects on those cells are closely related to their GMF sensation but remain poorly understood so far. Previously, we found that the HMF represses expres...

  14. Radiosensitivity of keratinocytes from tongue and skin; enhanced radioresistance following serial cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Parkinson, E.K.; Hume, W.J.; Potten, C.S.

    1986-01-01

    A study has been carried out of the radiation response of keratinocytes from human skin, mouse skin and mouse tongue to 0-10 Gy of ..gamma..-radiation, carried out in suspension at 20/sup 0/C. The Dsub(o)values for primary cultures of keratinocytes was similar to those obtained in vivo for mice, suggesting that this in vitro assay could be used to measure the sensitivity of keratinocytes treated with various cytotoxic agents. Sensitivity appears to change on subculturing and hence subcultures may be less appropriate for determining in vivo cell sensitivities.

  15. Ski protein levels increase during in vitro progression of HPV16-immortalized human keratinocytes and in cervical cancer.

    Science.gov (United States)

    Chen, Yi; Pirisi, Lucia; Creek, Kim E

    2013-09-01

    We compared the levels of the Ski oncoprotein, an inhibitor of transforming growth factor-beta (TGF-β) signaling, in normal human keratinocytes (HKc), HPV16 immortalized HKc (HKc/HPV16), and differentiation resistant HKc/HPV16 (HKc/DR) in the absence and presence of TGF-β. Steady-state Ski protein levels increased in HKc/HPV16 and even further in HKc/DR, compared to HKc. TGF-β treatment of HKc, HKc/HPV16, and HKc/DR dramatically decreased Ski. TGF-β-induced Ski degradation was delayed in HKc/DR. Ski and phospho-Ski protein levels are cell cycle dependent with maximal Ski expression and localization to centrosomes and mitotic spindles during G2/M. ShRNA knock down of Ski in HKc/DR inhibited cell proliferation. More intense nuclear and cytoplasmic Ski staining and altered Ski localization were found in cervical cancer samples compared to adjacent normal tissue in a cervical cancer tissue array. Overall, these studies demonstrate altered Ski protein levels, degradation and localization in HPV16-transformed human keratinocytes and in cervical cancer.

  16. Traditional Aboriginal Preparation Alters the Chemical Profile of Carica papaya Leaves and Impacts on Cytotoxicity towards Human Squamous Cell Carcinoma.

    Science.gov (United States)

    Nguyen, Thao T; Parat, Marie-Odile; Shaw, Paul N; Hewavitharana, Amitha K; Hodson, Mark P

    2016-01-01

    Carica papaya leaf decoction, an Australian Aboriginal remedy, has been used widely for its healing capabilities against cancer, with numerous anecdotal reports. In this study we investigated its in vitro cytotoxicity on human squamous cell carcinoma cells followed by metabolomic profiling of Carica papaya leaf decoction and leaf juice/brewed leaf juice to determine the effects imparted by the long heating process typical of the Aboriginal remedy preparation. MTT assay results showed that in comparison with the decoction, the leaf juice not only exhibited a stronger cytotoxic effect on SCC25 cancer cells, but also produced a significant cancer-selective effect as shown by tests on non-cancerous human keratinocyte HaCaT cells. Furthermore, evidence from testing brewed leaf juice on these two cell lines suggested that the brewing process markedly reduced the selective effect of Carica papaya leaf on SCC25 cancer cells. To tentatively identify the compounds that contribute to the distinct selective anticancer activity of leaf juice, an untargeted metabolomic approach employing Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry followed by multivariate data analysis was applied. Some 90 and 104 peaks in positive and negative mode respectively were selected as discriminatory features from the chemical profile of leaf juice and >1500 putative compound IDs were obtained via database searching. Direct comparison of chromatographic and tandem mass spectral data to available reference compounds confirmed one feature as a match with its proposed authentic standard, namely pheophorbide A. However, despite pheophorbide A exhibiting cytotoxic activity on SCC25 cancer cells, it did not prove to be the compound contributing principally to the selective activity of leaf juice. With promising results suggesting stronger and more selective anticancer effects when compared to the Aboriginal remedy, Carica papaya leaf juice warrants further study

  17. Recovery and Cultivation of Keratinocytes From Shipped Mouse Skin.

    Science.gov (United States)

    Yang, Hsin-Ya; La, Thi Dinh; Gurenko, Zhanna; Steenhuis, Pieter; Liu, Wei; Isseroff, R Rivkah

    2015-02-01

    Murine keratinocyte culture from neonatal skin is an important tool for studying the functional role of specific genes in epithelial biology. However, when the transgenic animal is only available in a geographically distant local, obtaining viable keratinocytes can be problematic. A method for transferring the isolated murine skin from collaborating labs could decrease the cost of shipping live animals, and would allow the efficient use of the tissues from the transgenic animals. Here we optimized shipping conditions and characterized the cells retrieved and cultured from mouse skin shipped for 48 h at 0 °C. The cultured keratinocytes from the control, non-shipped skin and the 2-day shipped skin were 43.6 +/- 7.8% viable, doubled every 2 days, and expressed comparable amounts of heat shock proteins and CD29/integrin beta-1. However, under the same shipping conditions, the 3-day shipped tissue failed to establish colonies in the culture. Therefore, this 2-day shipping technique allows the transfer mouse skin from distant locations with recovery of viable, propagatable keratinocytes, facilitating long-distance collaborations.

  18. Characterization of extracellular matrix macromolecules in primary cultures of equine keratinocytes

    Directory of Open Access Journals (Sweden)

    Pollitt Christopher C

    2010-03-01

    Full Text Available Abstract Background Most research to date involving laminins and extracellular matrix protein function in both normal and pathological conditions involves in vitro culture of keratinocytes. Few methods are established to allow for prolonged propagation of keratinocytes from equine tissues, including the hoof lamellae. In this study we modified cell isolation and culture techniques to allow for proliferation and sub-culturing of equine lamellar keratinocytes. Additionally, the production and processing of extracellular matrix molecules by skin and lamellar keratinocytes were studied. Results Physical and proteolytic tissue separation in combination with media containing a calcium concentration of 0.6 mM in combination with additional media supplements proved optimal for proliferation and subculture of equine lamellar keratinocytes on collagen coated substratum. Immunofluorescence and immunoblotting studies confirmed that equine skin and lamellar keratinocytes produce Ln-332 in vitro and processing of this molecule follows that of other species. As well, matrix components including integrin alpha-6 (α6 and the hemidesmsome proteins, bullous pemphigoid antigen 1 (BP180 bullous pemphigoid antigen 2 (BP230 and plectin are also expressed. Conclusions Isolation of equine keratinocytes and study of the matrix and adhesion related molecules produced by them provides a valuable tool for future work in the veterinary field.

  19. Conjugation of extracellular matrix proteins to basal lamina analogs enhances keratinocyte attachment.

    Science.gov (United States)

    Bush, Katie A; Downing, Brett R; Walsh, Sarah E; Pins, George D

    2007-02-01

    The dermal-epidermal junction of skin contains extracellular matrix proteins that are involved in initiating and controlling keratinocyte signaling events such as attachment, proliferation, and terminal differentiation. To characterize the relationship between extracellular matrix proteins and keratinocyte attachment, a biomimetic design approach was used to precisely tailor the surface of basal lamina analogs with biochemistries that emulate the native biochemical composition found at the dermal-epidermal junction. A high-throughput screening device was developed by our laboratory that allows for the simultaneous investigation of the conjugation of individual extracellular matrix proteins (e.g. collagen type I, collagen type IV, laminin, or fibronectin) as well as their effect on keratinocyte attachment, on the surface of an implantable collagen membrane. Fluorescence microscopy coupled with quantitative digital image analyses indicated that the extracellular matrix proteins adsorbed to the collagen-GAG membranes in a dose-dependent manner. To determine the relationship between extracellular matrix protein signaling cues and keratinocyte attachment, cells were seeded on protein-conjugated collagen-GAG membranes and a tetrazolium-based colorimetric assay was used to quantify viable keratinocyte attachment. Our results indicate that keratinocyte attachment was significantly enhanced on the surfaces of collagen membranes that were conjugated with fibronectin and type IV collagen. These findings define a set of design parameters that will enhance keratinocyte binding efficiency on the surface of collagen membranes and ultimately improve the rate of epithelialization for dermal equivalents.

  20. Microarray assessment of fibronectin, collagen and integrin expression and the role of fibronectin-collagen coating in the growth of normal, SV40 T-antigen-immortalised and malignant human oral keratinocytes.

    Science.gov (United States)

    Sarang, Zsolt; Haig, Ylva; Hansson, Annette; Vondracek, Martin; Wärngård, Lars; Grafström, Roland

    2003-12-01

    Extracellular matrix proteins affect the growth and survival of epithelial tissues. Accordingly, surface coating with fibronectin and collagen is a common practice for promoting keratinocyte culture. In this study, the expression of fibronectin and collagen-related factors, including integrins, by normal (NOK), SV40 T-antigen-immortalised (SVpgC2a) and malignant (SqCC/Y1) human oral keratinocytes, under standardised, serum-free conditions, was investigated by using microarray analysis. Cell growth was also studied in the presence and absence of a matrix consisting of human fibronectin and bovine collagen type I (FN-COL). Fibronectin transcripts were abundant in all cells, whereas 16 of 29 collagen chains and 14 of 24 integrin subunits were variably detected. With regard to both the expression level and the number of transcripts, higher collagen and lower integrin expression was observed in SVpgC2a cells than in NOKs and SqCC/Y1 cells. The cell types differed with regard to colony-forming efficiency and the rate and kinetics of growth at high cell density. For all cell types, FN-COL coating consistently stimulated cell migration, without influencing growth in mass culture or clonal density. The results demonstrate the transcription of genes associated with the formation and function of fibronectin and collagen in oral epithelium, and variably altered expression patterns in transformed states, and show that keratinocyte lines can be successfully transferred without the stimulus from extracellular FN-COL.

  1. C/EBPδ gene targets in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Serena Borrelli

    Full Text Available C/EBPs are a family of B-Zip transcription factors--TFs--involved in the regulation of differentiation in several tissues. The two most studied members--C/EBPα and C/EBPβ--play important roles in skin homeostasis and their ablation reveals cells with stem cells signatures. Much less is known about C/EBPδ which is highly expressed in the granular layer of interfollicular epidermis and is a direct target of p63, the master regular of multilayered epithelia. We identified C/EBPδ target genes in human primary keratinocytes by ChIP on chip and profiling of cells functionally inactivated with siRNA. Categorization suggests a role in differentiation and control of cell-cycle, particularly of G2/M genes. Among positively controlled targets are numerous genes involved in barrier function. Functional inactivation of C/EBPδ as well as overexpressions of two TF targets--MafB and SOX2--affect expression of markers of keratinocyte differentiation. We performed IHC on skin tumor tissue arrays: expression of C/EBPδ is lost in Basal Cell Carcinomas, but a majority of Squamous Cell Carcinomas showed elevated levels of the protein. Our data indicate that C/EBPδ plays a role in late stages of keratinocyte differentiation.

  2. TELOMERE AND TELOMERASE MODULATION BY BERGAMOT POLYPHENOLIC FRACTION IN EXPERIMENTAL PHOTOAGEING IN HUMAN KERATINOCYTES.

    Science.gov (United States)

    Nisticò, S; Ehrlich, J; Gliozzi, M; Maiuolo, J; Del Duca, E; Muscoli, C; Mollace, V

    2015-01-01

    Photoageing represents the addition of extrinsic chronic ultraviolet radiation-induced damage on intrinsic ageing and accounts for most age-associated changes in skin appearance. In this study, we evaluated the effect of 38% BPF, a highly concentrated extract of the bergamot fruit (Citrus bergamia) on UVB-induced photoageing by examining inflammatory cytokine expression, telomere length/telomerase alterations and cellular viability in human immortalized HaCaT keratinocytes. Our results suggest that 38% BPF protects HaCaT cells against UVB-induced oxidative stress and markers of photoageing in a dose-dependent manner and could be a useful supplement in skin care products. Together with antioxidant properties, BPF, a highly concentrated extract of the bergamot fruit, appears to modulate basic cellular signal transduction pathways leading to anti-proliferative, anti-aging and immune modulating responses.

  3. Specificity in stress response: epidermal keratinocytes exhibit specialized UV-responsive signal transduction pathways.

    Science.gov (United States)

    Adachi, Makoto; Gazel, Alix; Pintucci, Giuseppe; Shuck, Alyssa; Shifteh, Shiva; Ginsburg, Dov; Rao, Laxmi S; Kaneko, Takehiko; Freedberg, Irwin M; Tamaki, Kunihiko; Blumenberg, Miroslav

    2003-10-01

    UV light, a paradigmatic initiator of cell stress, invokes responses that include signal transduction, activation of transcription factors, and changes in gene expression. Consequently, in epidermal keratinocytes, its principal and frequent natural target, UV regulates transcription of a distinctive set of genes. Hypothesizing that UV activates distinctive epidermal signal transduction pathways, we compared the UV-responsive activation of the JNK and NFkappaB pathways in keratinocytes, with the activation of the same pathways by other agents and in other cell types. Using of inhibitors and antisense oligonucleotides, we found that in keratinocytes only UVB/UVC activate JNK, while in other cell types UVA, heat shock, and oxidative stress do as well. Keratinocytes express JNK-1 and JNK-3, which is unexpected because JNK-3 expression is considered brain-specific. In keratinocytes, ERK1, ERK2, and p38 are activated by growth factors, but not by UV. UVB/UVC in keratinocytes activates Elk1 and AP1 exclusively through the JNK pathway. JNKK1 is essential for UVB/UVC activation of JNK in keratinocytes in vitro and in human skin in vivo. In contrast, in HeLa cells, used as a control, crosstalk among signal transduction pathways allows considerable laxity. In parallel, UVB/UVC and TNFalpha activate the NFkappaB pathway via distinct mechanisms, as shown using antisense oligonucleotides targeted against IKKbeta, the active subunit of IKK. This implies a specific UVB/UVC responsive signal transduction pathway independent from other pathways. Our results suggest that in epidermal keratinocytes specific signal transduction pathways respond to UV light. Based on these findings, we propose that the UV light is not a genetic stress response inducer in these cells, but a specific agent to which epidermis developed highly specialized responses.

  4. Photoprotection by Punica granatum seed oil nanoemulsion entrapping polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in human keratinocyte (HaCaT) cell line.

    Science.gov (United States)

    Baccarin, Thaisa; Mitjans, Montserrat; Ramos, David; Lemos-Senna, Elenara; Vinardell, Maria Pilar

    2015-12-01

    There has been an increase in the use of botanicals as skin photoprotective agents. Pomegranate (Punica granatum L.) is well known for its high concentration of polyphenolic compounds and for its antioxidant and anti-inflammatory properties. The aim of this study was to analyze the photoprotection provided by P. granatum seed oil nanoemulsion entrapping the polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in the keratinocyte HaCaT cell line. For this purpose, HaCaT cells were pretreated for 1h with nanoemulsions in a serum-free medium and then irradiated with UVB (90-200 mJ/cm(2)) rays. Fluorescence microscopy analysis provided information about the cellular internalization of the nanodroplets. We also determined the in vitro SPF of the nanoemulsions and evaluated their phototoxicity using the 3T3 Neutral Red Uptake Phototoxicity Test. The nanoemulsions were able to protect the cells' DNA against UVB-induced damage in a concentration dependent manner. Nanodroplets were internalized by the cells but a higher proportion was detected along the cell membrane. The SPF obtained (~25) depended on the concentration of the ethyl acetate fraction and pomegranate seed oil in the nanoemulsion. The photoprotective formulations were classified as non-phototoxic. In conclusion, nanoemulsions entrapping the polyphenol-rich ethyl acetate fraction show potential for use as a sunscreen product.

  5. Analysis of cell surface alterations in Legionella pneumophila cells treated with human apolipoprotein E.

    Science.gov (United States)

    Palusinska-Szysz, Marta; Zdybicka-Barabas, Agnieszka; Cytryńska, Małgorzata; Wdowiak-Wróbel, Sylwia; Chmiel, Elżbieta; Gruszecki, Wiesław I

    2015-03-01

    Binding of human apolipoprotein E (apoE) to Legionella pneumophila lipopolysaccharide was analysed at the molecular level by Fourier-transform infrared spectroscopy, thereby providing biophysical evidence for apoE-L. pneumophila lipopolysaccharide interaction. Atomic force microscopy imaging of apoE-exposed L. pneumophila cells revealed alterations in the bacterial cell surface topography and nanomechanical properties in comparison with control bacteria. The changes induced by apoE binding to lipopolysaccharide on the surface of L. pneumophila cells may participate in: (1) impeding the penetration of host cells by the bacteria; (2) suppression of pathogen intracellular growth and eventually; and (3) inhibition of the development of infection.

  6. A fully autologous co-culture system utilising non-irradiated autologous fibroblasts to support the expansion of human keratinocytes for clinical use.

    Science.gov (United States)

    Jubin, K; Martin, Y; Lawrence-Watt, D J; Sharpe, J R

    2011-12-01

    Autologous keratinocytes can be used to augment cutaneous repair, such as in the treatment of severe burns and recalcitrant ulcers. Such cells can be delivered to the wound bed either as a confluent sheet of cells or in single-cell suspension. The standard method for expanding primary human keratinocytes in culture uses lethally irradiated mouse 3T3 fibroblasts as feeder cells to support keratinocyte attachment and growth. In an effort to eliminate xenobiotic cells from clinical culture protocols where keratinocytes are applied to patients, we investigated whether human autologous primary fibroblasts could be used to expand keratinocytes in culture. At a defined ratio of a 6:1 excess of keratinocytes to fibroblasts, this co-culture method displayed a population doubling rate comparable to culture with lethally irradiated 3T3 cells. Furthermore, morphological and molecular analysis showed that human keratinocytes expanded in co-culture with autologous human fibroblasts were positive for proliferation markers and negative for differentiation markers. Keratinocytes expanded by this method thus retain their proliferative phenotype, an important feature in enhancing rapid wound closure. We suggest that this novel co-culture method is therefore suitable for clinical use as it dispenses with the need for lethally irradiated 3T3 cells in the rapid expansion of autologous human keratinocytes.

  7. Stretching Fibroblasts Remodels Fibronectin and Alters Cancer Cell Migration

    Science.gov (United States)

    Ao, Mingfang; Brewer, Bryson M.; Yang, Lijie; Franco Coronel, Omar E.; Hayward, Simon W.; Webb, Donna J.; Li, Deyu

    2015-02-01

    Most investigations of cancer-stroma interactions have focused on biochemical signaling effects, with much less attention being paid to biophysical factors. In this study, we investigated the role of mechanical stimuli on human prostatic fibroblasts using a microfluidic platform that was adapted for our experiments and further developed for both repeatable performance among multiple assays and for compatibility with high-resolution confocal microscopy. Results show that mechanical stretching of normal tissue-associated fibroblasts (NAFs) alters the structure of secreted fibronectin. Specifically, unstretched NAFs deposit and assemble fibronectin in a random, mesh-like arrangement, while stretched NAFs produce matrix with a more organized, linearly aligned structure. Moreover, the stretched NAFs exhibited an enhanced capability for directing co-cultured cancer cell migration in a persistent manner. Furthermore, we show that stretching NAFs triggers complex biochemical signaling events through the observation of increased expression of platelet derived growth factor receptor α (PDGFRα). A comparison of these behaviors with those of cancer-associated fibroblasts (CAFs) indicates that the observed phenotypes of stretched NAFs are similar to those associated with CAFs, suggesting that mechanical stress is a critical factor in NAF activation and CAF genesis.

  8. Membrane alterations in irreversibly sickled cells: hemoglobin--membrane interaction.

    Science.gov (United States)

    Lessin, L S; Kurantsin-Mills, J; Wallas, C; Weems, H

    1978-01-01

    Irreversibly sickled cells (ISCs) are sickle erythrocytes which retain bipolar elongated shapes despite reoxygenation and owe their biophysical abnormalities to acquired membrane alterations. Freeze-etched membranes both of ISCs produced in vitro and ISCs isolated in vivo reveal microbodies fixed to the internal (PS) surface which obscure spectrin filaments. Intramembranous particles (IMPs) on the intramembrane (PF) surface aggregate over regions of subsurface microbodies. Electron microscopy of diaminobenzidine-treated of ISC ghosts show the microbodies to contain hemoglobin and/or hemoglobin derivatives. Scanning electron microscopy and freeze-etching demonstrate that membrane--hemoglobin S interaction in ISCs enhances the membrane loss by microspherulation. Membrane-bound hemoglobin is five times greater in in vivo ISCs than non-ISCs, and increases during ISC production, parallelling depletion of adenosine triphosphate. Polyacrylamide gel electrophoresis of ISC membranes shows the presence of high-molecular-weight heteropolymers in the pre--band 1 region, a decrease in band 4.1 and an increase in bands 7, 8, and globin. The role of cross-linked membrane protein polymers in the generation of ISCs is discussed and is synthesized in terms of a unified concept for the determinants of the genesis of ISCs.

  9. Cooperative response of keratinocytes and melanocytes to UV radiation during PUVA therapy

    Science.gov (United States)

    Stolnitz, Mikhail M.; Baskakov, Pavel V.; Peshkova, Anna Y.

    1999-03-01

    The mathematical model of processes in UV-irradiated furocoumarin-sensitized epidermis is presented taking into account the mutual influence of keratinocytes and melanocytes populations. The model describes epidermis as a hierarchical structure on tissue (keratinocytes-melanocytes cooperation, melanin screen formation), cellular (proliferation and differentiation, transitions between subpopulations), subcellular (cell movement on mitotic cycle, generation, maturing and migration of melanosomes), and molecular (melanin synthesis, processes of DNA damage and repair, molecular signal transduction) levels.

  10. Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity

    OpenAIRE

    Marcella Mauro; Matteo Crosera; Marco Pelin; Chiara Florio; Francesca Bellomo; Gianpiero Adami; Piero Apostoli; Giuseppe Palma; Massimo Bovenzi; Marco Campanini; Francesca Larese Filon

    2015-01-01

    Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs) have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1) and needle-abraded huma...

  11. Redox Mechanisms of AVS022, an Oriental Polyherbal Formula, and Its Component Herbs in Protection against Induction of Matrix Metalloproteinase-1 in UVA-Irradiated Keratinocyte HaCaT Cells

    Directory of Open Access Journals (Sweden)

    Thanyawan Pluemsamran

    2013-01-01

    Full Text Available Ayurved Siriraj HaRak (AVS022 formula has been used for topical remedy of dermatologic disorders. Oxidative stress induced by ultraviolet (UV A irradiation could be implicated in photoaged skin through triggering matrix metalloproteinase-1 (MMP-1. We, therefore, explored the antioxidant mechanisms by which AVS022 formulation and its individual components protected against UVA-dependent MMP-1 upregulation in keratinocyte HaCaT cells. TLC analysis revealed the presence of multiple phenolics including gallic acid (GA in the AVS022 extracts. We demonstrated that pretreatment with the whole formula and individual herbal components except T. triandra protected against increased MMP-1 activity in irradiated HaCaT cells. Moreover, all herbal extracts and GA, used as the reference compound, were able to reverse cytotoxicity, oxidant production, glutathione (GSH loss, and inactivation of catalase and glutathione peroxidase (GPx. F. racemosa was observed to yield the strongest abilities to abolish UVA-mediated induction of MMP-1 and impairment of antioxidant defenses including GSH and catalase. Our observations suggest that upregulation of endogenous antioxidants could be the mechanisms by which AVS022 and its herbal components suppressed UVA-stimulated MMP-1 in HaCaT cells. In addition, pharmacological actions of AVS022 formula may be attributed to the antioxidant potential of its components, in particular F. racemosa, and several phenolics including GA.

  12. Anti-wrinkle effects of Sargassum muticum ethyl acetate fraction on ultraviolet B-irradiated hairless mouse skin and mechanistic evaluation in the human HaCaT keratinocyte cell line.

    Science.gov (United States)

    Song, Jae Hyoung; Piao, Mei Jing; Han, Xia; Kang, Kyoung Ah; Kang, Hee Kyoung; Yoon, Weon Jong; Ko, Mi Hee; Lee, Nam Ho; Lee, Mi Young; Chae, Sungwook; Hyun, Jin Won

    2016-10-01

    The present study investigated the photoprotective properties of the ethyl acetate fraction of Sargassum muticum (SME) against ultraviolet B (UVB)‑induced skin damage and photoaging in a mouse model. HR‑1 strain hairless male mice were divided into three groups: An untreated control group, a UVB‑irradiated vehicle group and a UVB‑irradiated SME group. The UVB‑irradiated mice in the SME group were orally administered with SME (100 mg/kg body weight in 0.1 ml water per day) and then exposed to radiation at a dose of 60‑120 mJ/cm2. Wrinkle formation and skin damage were evaluated by analysis of skin replicas, epidermal thickness and collagen fiber integrity in the dermal connective tissue. The mechanism underlying the action of SME was also investigated in the human HaCaT keratinocyte cell line following exposure of the cells to UVB at a dose of 30 mJ/cm2. The protein expression levels and activity of matrix metalloproteinase‑1 (MMP‑1), and the binding of activator protein‑1 (AP‑1) to the MMP‑1 promoter were assessed in the HaCaT cells using western blot analysis, an MMP‑1 fluorescent assay and a chromatin immune‑precipitation assay, respectively. The results showed that the mean length and depth of the wrinkles in the UVB‑exposed hairless mice were significantly improved by oral administration of SME, which also prevented the increase in epidermal thickness triggered by UVB irradiation. Furthermore, a marked increase in collagen bundle formation was observed in the UVB‑treated mice with SME administration. SME pretreatment also significantly inhibited the UVB‑induced upregulation in the expression and activity of MMP‑1 in the cultured HaCaT keratinocytes, and the UVB‑enhanced association of AP‑1 with the MMP‑1 promoter. These results suggested that SME may be useful as an anti-photoaging resource for the skin.

  13. Salivary trefoil factor 3 enhances migration of oral keratinocytes.

    Science.gov (United States)

    Storesund, Trond; Hayashi, Katsuhiko; Kolltveit, Kristin M; Bryne, Magne; Schenck, Karl

    2008-04-01

    Trefoil factor 3 (TFF3) is a member of the mammalian TFF family. Trefoil factors are secreted onto mucosal surfaces of the entire body and exert different effects according to tissue location. Trefoil factors may enhance mucosal healing by modulating motogenic activity, inhibiting apoptosis, and promoting angiogenesis. Trefoil factor 3 is secreted from the submandibular gland and is present in whole saliva. The aim of this study was to assess the migratory and proliferative effects of TFF3 on primary oral human keratinocytes and oral cancer cell lines. The addition of TFF3 increased the migration of both normal oral keratinocytes and the cancer cell line D12, as evaluated by a two-dimensional scratch assay. By contrast, no increase in proliferation or energy metabolism was observed after stimulation with TFF3. Trefoil factor 3-enhanced migration was found to be driven partly by the extracellular signal-related kinase (Erk1/2) pathway, as shown by addition of the mitogen-activated protein kinase (MAPK) inhibitor PD 98059. Previous functional studies on trefoil peptides have all been based on cells from monolayered epithelium like the intestinal mucosa; this is the first report to show that normal and cancerous keratinocytes from stratified epithelium respond to TFF stimuli. Taken together, salivary TFF3 is likely to contribute to oral wound healing.

  14. Shielding of the Geomagnetic Field Alters Actin Assembly and Inhibits Cell Motility in Human Neuroblastoma Cells.

    Science.gov (United States)

    Mo, Wei-Chuan; Zhang, Zi-Jian; Wang, Dong-Liang; Liu, Ying; Bartlett, Perry F; He, Rong-Qiao

    2016-03-31

    Accumulating evidence has shown that absence of the geomagnetic field (GMF), the so-called hypomagnetic field (HMF) environment, alters the biological functions in seemingly non-magnetosensitive cells and organisms, which indicates that the GMF could be sensed by non-iron-rich and non-photo-sensing cells. The underlying mechanisms of the HMF effects on those cells are closely related to their GMF sensation but remain poorly understood so far. Previously, we found that the HMF represses expressions of genes associated with cell migration and cytoskeleton assembly in human neuroblastoma cells (SH-SY5Y cell line). Here, we measured the HMF-induced changes on cell morphology, adhesion, motility and actin cytoskeleton in SH-SY5Y cells. The HMF inhibited cell adhesion and migration accompanied with a reduction in cellular F-actin amount. Moreover, following exposure to the HMF, the number of cell processes was reduced and cells were smaller in size and more round in shape. Furthermore, disordered kinetics of actin assembly in vitro were observed during exposure to the HMF, as evidenced by the presence of granule and meshed products. These results indicate that elimination of the GMF affects assembly of the motility-related actin cytoskeleton, and suggest that F-actin is a target of HMF exposure and probably a mediator of GMF sensation.

  15. Remifentanil protects human keratinocytes against hypoxia-reoxygenation injury through activation of autophagy.

    Directory of Open Access Journals (Sweden)

    Jae-Young Kwon

    Full Text Available The proliferation, differentiation, and migration of keratinocytes are essential in the early stages of wound healing. Hypoxia-Reoxygenation (H/R injury to keratinocytes can occur in various stressful environments such as surgery, trauma, and various forms of ulcers. The effects of remifentanil on human keratinocytes under hypoxia-reoxygenation have not been fully studied. Therefore, we investigated the effects of remifentanil on the proliferation, apoptosis, and autophagic activation of human keratinocytes during hypoxic-reoxygenation. Human keratinocytes were cultured under 1% oxygen tension for 24 h. The cells were then treated with various concentrations of remifentanil (0.01, 0.1, 0.5, and 1 ng/mL for 2 h. Thereafter, the cells were reoxygenated for 12 h at 37°C. We measured cell viability via MTT assay. Using quantitative real-time PCR and western blot analysis, we measured the expression levels of proteins associated with apoptosis and autophagy. Quantification of apoptotic cells was performed using flow cytometer analysis and autophagic vacuoles were observed under a fluorescence microscope. Remifentanil treatment brought about an increase in the proliferation of human keratinocytes damaged by hypoxia-reoxygenation and decreased the apoptotic cell death, enhancing autophagic activity. However, the autophagy pathway inhibitor 3-MA inhibited the protective effect of remifentanil in hypoxia-reoxygenation injury. In conclusion, the current study demonstrated that remifentanil treatment stimulated autophagy and reduced apoptotic cell death in a hypoxia-reoxygenation model of human keratinocytes. Our results provide additional insights into the relationship between apoptosis and autophagy.

  16. Investigation on etretin effects on expression of Fas/FasL ligand and apoptosis in cultured human keratinocytes

    Institute of Scientific and Technical Information of China (English)

    Ping Liu; Shunsheng Tan; Yanping Xi; Zhenping Cao

    2005-01-01

    Objective: To further illuminate a possibme mechanism of Fas/FasL in the treatment of psoriasis, the expression of it and apoptosis of KC were investigated. Methods: With cell culture,immunocytochemistry, the expression of Fas/FasL protein after the treatment with etretin was observed in cultured human normal keratinocytes. Then, the state of apoptosis in cultured keratinocyte after stimuwasn't involved in apoptosis in cultured normol human keratinocytes. But during limited period, the apoptosis of KC could be induced by etretin, thus it can antagonize benign proliferate of keratinocytes. Our data showed up-regulation of the expression of Fas/FasL and apoptosis in cultured human keratinocytes stimulated by etretin, and its function may be involved in the therapeutic machanism of psoriasis.

  17. ADAM17 deletion in thymic epithelial cells alters aire expression without affecting T cell developmental progression.

    Directory of Open Access Journals (Sweden)

    David M Gravano

    Full Text Available BACKGROUND: Cellular interactions between thymocytes and thymic stromal cells are critical for normal T cell development. Thymic epithelial cells (TECs are important stromal niche cells that provide essential growth factors, cytokines, and present self-antigens to developing thymocytes. The identification of genes that mediate cellular crosstalk in the thymus is ongoing. One candidate gene, Adam17, encodes a metalloprotease that functions by cleaving the ectodomain of several transmembrane proteins and regulates various developmental processes. In conventional Adam17 knockout mice, a non-cell autonomous role for ADAM17 in adult T cell development was reported, which strongly suggested that expression of ADAM17 in TECs was required for normal T cell development. However, knockdown of Adam17 results in multisystem developmental defects and perinatal lethality, which has made study of the role of Adam17 in specific cell types difficult. Here, we examined T cell and thymic epithelial cell development using a conditional knockout approach. METHODOLOGY/PRINCIPAL FINDINGS: We generated an Adam17 conditional knockout mouse in which floxed Adam17 is deleted specifically in TECs by Cre recombinase under the control of the Foxn1 promoter. Normal T cell lineage choice and development through the canonical αβ T cell stages was observed. Interestingly, Adam17 deficiency in TECs resulted in reduced expression of the transcription factor Aire. However, no alterations in the patterns of TEC phenotypic marker expression and thymus morphology were noted. CONCLUSIONS/SIGNIFICANCE: In contrast to expectation, our data clearly shows that absence of Adam17 in TECs is dispensable for normal T cell development. Differentiation of TECs is also unaffected by loss of Adam17 based on phenotypic markers. Surprisingly, we have uncovered a novel genetic link between Adam17and Aire expression in vivo. The cell type in which ADAM17 mediates its non-cell autonomous impact and

  18. Modulation of keratinocyte expression of antioxidants by 4-hydroxynonenal, a lipid peroxidation end product

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruijin [Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Environmental Health Science, New York Medical College, Valhalla, NY (United States); Mishin, Vladimir; Black, Adrienne T. [Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Shakarjian, Michael P. [Environmental Health Science, New York Medical College, Valhalla, NY (United States); Kong, Ah-Ng Tony; Laskin, Debra L. [Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2014-03-01

    4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86–98 fold within 6 h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependent increases in mRNA and protein expression which were maximum after 6 h with 30 μM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2 −/− mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-β-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a reactive aldehyde. • 4-HNE induces antioxidant proteins in mouse keratinocytes. • Induction of

  19. The transcriptional coactivator DRIP/mediator complex is involved in vitamin D receptor function and regulates keratinocyte proliferation and differentiation.

    Science.gov (United States)

    Oda, Yuko; Chalkley, Robert J; Burlingame, Alma L; Bikle, Daniel D

    2010-10-01

    Mediator is a multisubunit coactivator complex that facilitates transcription of nuclear receptors. We investigated the role of the mediator complex as a coactivator for vitamin D receptor (VDR) in keratinocytes. Using VDR affinity beads, the vitamin D receptor interacting protein (DRIP)/mediator complex was purified from primary keratinocytes, and its subunit composition was determined by mass spectrometry. The complex included core subunits, such as DRIP205/MED1 (MED1), that directly binds to VDR. Additional subunits were identified that are components of the RNA polymerase II complex. The functions of different mediator components were investigated by silencing its subunits. The core subunit MED1 facilitates VDR activity and regulating keratinocyte proliferation and differentiation. A newly described subunit MED21 also has a role in promoting keratinocyte proliferation and differentiation, whereas MED10 has an inhibitory role. Blocking MED1/MED21 expression caused hyperproliferation of keratinocytes, accompanied by increases in mRNA expression of the cell cycle regulator cyclin D1 and/or glioma-associated oncogene homolog. Blocking MED1 or MED21 expression also resulted in defects in calcium-induced keratinocyte differentiation, as indicated by decreased expression of differentiation markers and decreased translocation of E-cadherin to the membrane. These results show that keratinocytes use the transcriptional coactivator mediator to regulate VDR functions and control keratinocyte proliferation and differentiation.

  20. Trypsin-induced proteome alteration during cell subculture in mammalian cells

    Directory of Open Access Journals (Sweden)

    Lin Cheng-Wen

    2010-05-01

    Full Text Available Abstract Background It is essential to subculture the cells once cultured cells reach confluence. For this, trypsin is frequently applied to dissociate adhesive cells from the substratum. However, due to the proteolytic activity of trypsin, cell surface proteins are often cleaved, which leads to dysregulation of the cell functions. Methods In this study, a triplicate 2D-DIGE strategy has been performed to monitor trypsin-induced proteome alterations. The differentially expressed spots were identified by MALDI-TOF MS and validated by immunoblotting. Results 36 proteins are found to be differentially expressed in cells treated with trypsin, and proteins that are known to regulate cell metabolism, growth regulation, mitochondrial electron transportation and cell adhesion are down-regulated and proteins that regulate cell apoptosis are up-regulated after trypsin treatment. Further study shows that bcl-2 is down-regulated, p53 and p21 are both up-regulated after trypsinization. Conclusions In summary, this is the first report that uses the proteomic approach to thoroughly study trypsin-induced cell physiological changes and provides researchers in carrying out their experimental design.

  1. Comparative Cytotoxicity of Glycyrrhiza glabra Roots from Different Geographical Origins Against Immortal Human Keratinocyte (HaCaT), Lung Adenocarcinoma (A549) and Liver Carcinoma (HepG2) Cells.

    Science.gov (United States)

    Basar, Norazah; Oridupa, Olayinka Ayotunde; Ritchie, Kenneth J; Nahar, Lutfun; Osman, Nashwa Mostafa M; Stafford, Angela; Kushiev, Habibjon; Kan, Asuman; Sarker, Satyajit D

    2015-06-01

    Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is a well-known medicinal plant. Roots of this plant have long been used as a sweetening and flavouring agent in food and pharmaceutical products, and also as a traditional remedy for cough, upper and lower respiratory ailments, kidney stones, hepatitis C, skin disorder, cardiovascular diseases, diabetes, gastrointestinal ulcers and stomach ache. Previous pharmacological and clinical studies have revealed its antitussive, antiinflammatory, antiviral, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and cardioprotective properties. While glycyrrhizin, a sweet-tasting triterpene saponin, is the principal bioactive compound, several bioactive flavonoids and isoflavonoids are also present in the roots of this plant. In the present study, the cytotoxicity of the methanol extracts of nine samples of the roots of G. glabra, collected from various geographical origins, was assessed against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cell lines using the in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide cell toxicity/viability assay. Considerable variations in levels of cytotoxicity were observed among various samples of G. glabra.

  2. Effect of ultraviolet on cytokine secretion in human keratinocyte cell line HaCaT%紫外线照射对皮肤细胞因子分泌功能的影响

    Institute of Scientific and Technical Information of China (English)

    周春蕾; 顾军

    2004-01-01

    AIM:To observe the effect of ultraviolet(UV) on cytokine secretion in human keratinocyte HaCaT cell line in both normal condition and after stimulation with PMA and LPS. METHODS:The expression of IL 1α ,IL 2,IL 6 and IL 8 was detected by enzyme linked immunosorbent assay(ELISA). RESULTS:Normal HaCaT cells secreted IL 1α ,IL 2,IL 6 and IL 8 spontaneously.Stimulation by PMA and LPS induced increase in IL 6 and IL 8 production(P0.05), IL 8分泌量升高( P< 0.05). PMA和 LPS刺激的 HaCaT细胞经 UV照射,其 IL 1α ,IL 6和 IL 8的分泌量明显增加( P< 0.01). 结论: UV对不同状态下 HaCaT细胞的作用是不同的.

  3. Transcriptional responses of human epidermal keratinocytes to Oncostatin-M.

    Science.gov (United States)

    Finelt, Nika; Gazel, Alix; Gorelick, Steven; Blumenberg, Miroslav

    2005-08-21

    Oncostatin-M (OsM) plays an important role in inflammatory and oncogenic processes in skin, including psoriasis and Kaposi sarcoma. However, the molecular responses to OsM in keratinocytes have not been explored in depth. Here we show the results of transcriptional profiling in OsM-treated primary human epidermal keratinocytes, using high-density DNA microarrays. We find that OsM strongly and specifically affects the expression of many genes, in particular those involved with innate immunity, angiogenesis, adhesion, motility, tissue remodeling, cell cycle and transcription. The timing of the responses to OsM comprises two waves, early at 1h, and late at 48 h, with much fewer genes regulated in the intervening time points. Secreted cytokines and growth factors and their receptors, as well as nuclear transcription factors, are primary targets of OsM regulation, and these, in turn, effect the secondary changes.

  4. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Kotani, Eiji [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan); Hirano, Tomoko [Venture Laboratory, Kyoto Institute of Technology, Kyoto (Japan); Nakajima, Yumiko [Functional Genomics Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa (Japan); Matsumoto, Goichi [Division of Oral Surgery, Yokohama Clinical Education Center of Kanagawa Dental University, Yokohama (Japan); Mori, Hajime, E-mail: hmori@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan)

    2014-09-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals.

  5. Mechanisms of mitochondrial damage in keratinocytes by pemphigus vulgaris antibodies.

    Science.gov (United States)

    Kalantari-Dehaghi, Mina; Chen, Yumay; Deng, Wu; Chernyavsky, Alex; Marchenko, Steve; Wang, Ping H; Grando, Sergei A

    2013-06-07

    The development of nonhormonal treatment of pemphigus vulgaris (PV) has been hampered by a lack of clear understanding of the mechanisms leading to keratinocyte (KC) detachment and death in pemphigus. In this study, we sought to identify changes in the vital mitochondrial functions in KCs treated with the sera from PV patients and healthy donors. PV sera significantly increased proton leakage from KCs, suggesting that PV IgGs increase production of reactive oxygen species. Indeed, measurement of intracellular reactive oxygen species production showed a drastic increase of cell staining in response to treatment by PV sera, which was confirmed by FACS analysis. Exposure of KCs to PV sera also caused dramatic changes in the mitochondrial membrane potential detected with the JC-1 dye. These changes can trigger the mitochondria-mediated intrinsic apoptosis. Although sera from different PV patients elicited unique patterns of mitochondrial damage, the mitochondria-protecting drugs nicotinamide (also called niacinamide), minocycline, and cyclosporine A exhibited a uniform protective effect. Their therapeutic activity was validated in the passive transfer model of PV in neonatal BALB/c mice. The highest efficacy of mitochondrial protection of the combination of these drugs found in mitochondrial assay was consistent with the ability of the same drug combination to abolish acantholysis in mouse skin. These findings provide a theoretical background for clinical reports of the efficacy of mitochondria-protecting drugs in PV patients. Pharmacological protection of mitochondria and/or compensation of an altered mitochondrial function may therefore become a novel approach to development of personalized nonhormonal therapies of patients with this potentially lethal autoimmune blistering disease.

  6. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals.

    Science.gov (United States)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-Ichi; Kotani, Eiji; Hirano, Tomoko; Nakajima, Yumiko; Matsumoto, Goichi; Mori, Hajime

    2014-09-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase-Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6.

  7. Genetic alteration in notch pathway is associated with better prognosis in renal cell carcinoma.

    Science.gov (United States)

    Feng, Chenchen; Xiong, Zuquan; Jiang, Haowen; Ding, Qiang; Fang, Zujun; Hui, Wen

    2016-01-01

    Notch signaling was associated with a variety of cancers but was not comprehensively studied in clear-cell renal cell carcinoma (ccRCC). We have in this study studied the genetic alteration (mutation and copy number variance) of Notch gene set in the Cancer Genome Atlas (TCGA) Kidney Renal Clear Cell Carcinoma (KIRC) database. We found that Notch pathway was frequently altered in ccRCC. The Notch gene set was genetically altered in 182 (44%) of the 415 ccRCC patients. CNV was the predominant type of alteration in most genes. Alterations in KAT2B and MAML1 occurred in 13% and 19% of patients, respectively, both of which were functionally active in ccRCC. Deletion of VHL was exclusively found in cases with Notch alteration. Overall survival was longer in ccRCC patients with altered-Notch pathway. The median survival was 90.41 months in Notch-altered cases and 69.15 in Notch-unaltered cases (P = 0.0404). The median disease free time was 89.82 months in Notch-altered cases and 77.27 months in in Notch-unaltered cases (P = 0.935). Conclusively, Notch signaling was altered in almost half of the ccRCC patients and copy number variances in MAML1 and KAT2B were predominant changes. These findings broadened our understanding of the role of Notch in ccRCC.

  8. A Model to Predict the Risk of Keratinocyte Carcinomas.

    Science.gov (United States)

    Whiteman, David C; Thompson, Bridie S; Thrift, Aaron P; Hughes, Maria-Celia; Muranushi, Chiho; Neale, Rachel E; Green, Adele C; Olsen, Catherine M

    2016-06-01

    Basal cell and squamous cell carcinomas of the skin are the commonest cancers in humans, yet no validated tools exist to estimate future risks of developing keratinocyte carcinomas. To develop a prediction tool, we used baseline data from a prospective cohort study (n = 38,726) in Queensland, Australia, and used data linkage to capture all surgically excised keratinocyte carcinomas arising within the cohort. Predictive factors were identified through stepwise logistic regression models. In secondary analyses, we derived separate models within strata of prior skin cancer history, age, and sex. The primary model included terms for 10 items. Factors with the strongest effects were >20 prior skin cancers excised (odds ratio 8.57, 95% confidence interval [95% CI] 6.73-10.91), >50 skin lesions destroyed (odds ratio 3.37, 95% CI 2.85-3.99), age ≥ 70 years (odds ratio 3.47, 95% CI 2.53-4.77), and fair skin color (odds ratio 1.75, 95% CI 1.42-2.15). Discrimination in the validation dataset was high (area under the receiver operator characteristic curve 0.80, 95% CI 0.79-0.81) and the model appeared well calibrated. Among those reporting no prior history of skin cancer, a similar model with 10 factors predicted keratinocyte carcinoma events with reasonable discrimination (area under the receiver operator characteristic curve 0.72, 95% CI 0.70-0.75). Algorithms using self-reported patient data have high accuracy for predicting risks of keratinocyte carcinomas.

  9. Basic Red 51, a permitted semi-permanent hair dye, is cytotoxic to human skin cells: Studies in monolayer and 3D skin model using human keratinocytes (HaCaT).

    Science.gov (United States)

    Zanoni, Thalita B; Tiago, Manoela; Faião-Flores, Fernanda; de Moraes Barros, Silvia B; Bast, Aalt; Hageman, Geja; de Oliveira, Danielle Palma; Maria-Engler, Silvya S

    2014-06-01

    The use of hair dyes is closely associated with the increase of cancer, inflammation and other skin disorders. The recognition that human skin is not an impermeable barrier indicates that there is the possibility of human systemic exposure. The carcinogenic potential of hair dye ingredients has attracted the attention of toxicologists for many decades, mainly due to the fact that some ingredients belong to the large chemical family of aromatic amines. Herein, we investigated the cytotoxicity of Basic Red 51 (BR51) in immortalized human keratinocytes (HaCaT). BR51 is a temporary hair dye that belongs to the azo group (NN); the cleavage of this bond may result in the release of toxic aromatic amines. The half maximal effective concentration (EC50) in HaCaT cells is 13μg/mL. BR51 induced a significant decrease on expression of p21 in a dose dependent manner. p53 was not affected, whereas BR51 decreased procaspase 8 and cleaved procaspase 9. These results proved that caspase 3 is fully involved in BR51-induced apoptosis. The dye was also able to stop this cell cycle on G2 in sub-toxic doses. Moreover, we reconstructed a 3D artificial epidermis using HaCaT cells; using this model, we observed that BR51 induced cell injury and cells were undergoing apoptosis, considering the fragmented nuclei. Subsequently, BR51 induced reactive oxygen species (ROS) leading to an increase on the levels of 8-oxo-dG. In conclusion, we provide strong evidence that consumer and/or professional exposure to BR51 poses risk to human health.

  10. Fisetin inhibits TNF-α-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3K/AKT/Nrf-2-mediated heme oxygenase-1 expression.

    Science.gov (United States)

    Seo, Seung-Hee; Jeong, Gil-Saeng

    2015-12-01

    Oxidative skin damage and skin inflammation play key roles in the pathogenesis of skin-related diseases. Fisetin is a naturally occurring flavonoid abundantly found in several vegetables and fruits. Fisetin has been shown to exert various positive biological effects, such as anti-cancer, anti-proliferative, neuroprotective and anti-oxidative effects. In this study, we investigate the skin protective effects and anti-inflammatory properties of fisetin in hydrogen peroxide- and TNF-α-challenged human keratinocyte HaCaT cells. When HaCaT cells were treated with non-cytotoxic concentrations of fisetin (1-20μM), heme oxygenase (HO)-1 mRNA and protein expression increased in a dose-dependent manner. Furthermore, fisetin dose-dependently increased cell viability and reduced ROS production in hydrogen peroxide-treated HaCaT cells. Fisetin also inhibited the production of NO, PGE2 IL-1β, IL-6, expression of iNOS and COX-2, and activation of NF-κB in HaCaT cells treated with TNF-α. Fisetin induced Nrf2 translocation to the nuclei. HO-1 siRNA transient transfection reversed the effects of fisetin on cytoprotection, ROS reduction, NO, PGE2, IL-1β, IL-6, and TNF-α production, and NF-κB DNA-binding activity. Moreover, fisetin increased Akt phosphorylation and a PI3K pathway inhibitor (LY294002) abolished fisetin-induced cytoprotection and NO inhibition. Taken together, these results provide evidence for a beneficial role of fisetin in skin therapy.

  11. Human keratinocytes restrict chikungunya virus replication at a post-fusion step

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Eric [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Hamel, Rodolphe [Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle, UMR 5290 CNRS/IRD/UM1, Montpellier (France); Neyret, Aymeric [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Ekchariyawat, Peeraya [Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle, UMR 5290 CNRS/IRD/UM1, Montpellier (France); Molès, Jean-Pierre [INSERM U1058, UM1, CHU Montpellier (France); Simmons, Graham [Blood Systems Research Institute, San Francisco, CA 94118 (United States); Chazal, Nathalie [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Desprès, Philippe [Unité Interactions Moléculaires Flavivirus-Hôtes, Institut Pasteur, Paris (France); and others

    2015-02-15

    Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses. - Highlights: • Human keratinocytes support endocytosis of CHIKV and fusion of viral membranes. • CHIKV replication is blocked at a post entry step in these cells. • Infection upregulates type-I, –II and –III IFN genes expression. • Keratinocytes behave as immune sentinels against CHIKV.

  12. Establishment of a novel method for primary culture of normal human cervical keratinocytes

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-zhen; L(U) Xiu-ping; PAN Zi-xuan; ZHANG Wei; CHEN Zhao-ri; WANG Hui; LIU Hua

    2013-01-01

    Background Cervical keratinocytes are recovered at a low numbers and frequently associated with contaminating human fibroblasts which rapidly overgrow the epithelial cells in culture with medium supplemented with 10% fetal bovine serum (FBS).However,it is difficult to initiate keratinocyte cultures with serum-free keratinocyte growth medium alone because cell attachment can be poor.Therefore,the culture of these cells is extremely difficult.In this study,we described a modified culture medium and coated culture plastics for growing normal human cervical epithelial cells in vitro.Methods Normal cervical epithelial tissue pieces were obtained and digested with type Ⅰ collagenase to dissociate the cells and a single cell suspension produced.The cells were cultured on plastic tissue culture substrate alone or substrate coated with collagen type Ⅰ from rat tail,with modified keratinocyte serum-free medium (K-SFM) supplemented with 5% FBS.After attachment,the medium were replaced with K-SFM without FBS.The expression of basal keratins of the ectocervical epithelium,K5,K14 and K19 were assayed by immunofiuorescence with monoclonal antibodies to identify the cell purity.Results Our results indicate that cells attached to the culture plastic more quickly in K-SFM supplemented with 5%FBS than in K-SFM alone,as well as to tissue culture plastic coated with collagen type Ⅰ than plastic alone.The modified medium composed of K-SFM and 5% FBS combined with a specific tissue culture plastic coated with collagen type Ⅰ from rat tail was the best method for culture of normal cervical epithelial cells.K5,K14 and K19 were assayed and keratinocyte purity was nearly 100%.Conclusion A novel,simple and effective method can be used to rapidly obtain highly purified keratinocytes from normal human cervical epithelium.

  13. Altered status of glutathione and its metabolites in cystinotic cells.

    NARCIS (Netherlands)

    Levtchenko, E.N.; Graaf-Hess, A.C. de; Wilmer, M.J.G.; Heuvel, L.P.W.J. van den; Monnens, L.A.H.; Blom, H.J.

    2005-01-01

    BACKGROUND: Cystinosis is an autosomal recessive disorder, caused by mutations of the lysosomal cystine carrier cystinosin, encoded by the CTNS gene (17p13). The concomitant intralysosomal cystine accumulation leads to multi-organ damage, with kidneys being the first affected. Altered mitochondrial

  14. Virus Innexins induce alterations in insect cell and tissue function

    Science.gov (United States)

    Polydnaviruses are dsDNA viruses that induce immune and developmental alterations in their caterpillar hosts. Characterization of polydnavirus gene families and family members is necessary to understand mechanisms of pathology and evolution of these viruses, and may aid to elucidate the role of host...

  15. Alterations in the growth and adhesion pattern of Vero cells induced by nutritional stress conditions.

    Science.gov (United States)

    Genari, S C; Gomes, L; Wada, M L

    1998-01-01

    The pattern of growth, adhesion and protein synthesis in Vero cells submitted to nutritional stress conditions was investigated. The control cells presented a characteristic pattern, with monolayer growth, while the stressed cells presented multilayered growth, with aggregate or spheroid formation which detached on the flask surface and continued their growth in another region. In the soft agar assay, with reduced amount of nutrients, only the stressed cells presented growth, indicating physical and nutritional independence. A 44-kDa protein was observed in stressed cells and was absent in non-stressed cells. The adhesion index and fibronectin synthesis and distribution were altered in stressed cells. After confluence, control cells presented fibronectin accumulation in lateral cell-cell contact regions, while this fibronectin accumulation pattern was not observed in stressed cells. These alterations may be responsible for the multilayered growth and decreased adhesion index observed in stressed cells which were transformed by nutritional stress conditions.

  16. Altering β-cell number through stable alteration of miR-21 and miR-34a expression

    DEFF Research Database (Denmark)

    Backe, Marie Balslev; Novotny, Guy Wayne; Christensen, Dan Ploug;

    2014-01-01

    RNAs, miR-21 and miR-34a, may be involved in mediating cytokine-induced β-cell dysfunction. Therefore, manipulation of miR-21 and miR-34a levels may potentially be beneficial to β cells. To study the effect of long-term alterations of miR-21 or miR-34a levels upon net β-cell number, we stably overexpressed...... miR-21 and knocked down miR-34a, and investigated essential cellular processes. Materials and Methods: miRNA expression was manipulated using Lentiviral transduction of the β-cell line INS-1. Stable cell lines were generated, and cell death, NO synthesis, proliferation, and total cell number were...... monitored in the absence or presence of cytokines. Results: Overexpression of miR-21 decreased net β-cell number in the absence of cytokines, and increased apoptosis and NO synthesis in the absence and presence of cytokines. Proliferation was increased upon miR-21 overexpression. Knockdown of miR-34a...

  17. Alterations in Cell Signaling Pathways in Breast Cancer Cells after Environmental Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kulp, K; McCutcheon-Maloney, S M; Bennett, L M

    2003-02-01

    Recent human epidemiological studies suggest that up to 75% of human cancers can be attributed to environmental exposures. Understanding the biologic impact of being exposed to a lifetime of complex environmental mixtures that may not be fully characterized is currently a major challenge. Functional endpoints may be used to assess the gross health consequences of complex mixture exposures from groundwater contamination, superfund sites, biologic releases, or nutritional sources. Such endpoints include the stimulation of cell growth or the induction of a response in an animal model. An environmental exposure that upsets normal cell growth regulation may have important ramifications for cancer development. Stimulating cell growth may alter an individual's cancer risk by changing the expression of genes and proteins that have a role in growth regulatory pathways within cells. Modulating the regulation of these genes and their products may contribute to the initiation, promotion or progression of disease in response to environmental exposure. We are investigating diet-related compounds that induce cell proliferation in breast cancer cell lines. These compounds, PhIP, Flor-Essence{reg_sign} and Essiac{reg_sign}, may be part of an everyday diet. PhIP is a naturally occurring mutagen that is formed in well-cooked muscle meats. PhIP consistently causes dose-dependent breast tumor formation in rats and consumption of well-done meat has been linked to increased risk of breast cancer in women. Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics are complementary and alternative medicines used by women who have been diagnosed with breast cancer as an alternative therapy for disease treatment and prevention. The long-term goal of this work is to identify those cellular pathways that are altered by a chemical or biologic environmental exposure and understand how those changes correlate with and or predict changes in human health risk. This project addressed this goal

  18. Low electromagnetic field (50 Hz) induces differentiation on primary human oral keratinocytes (HOK).

    Science.gov (United States)

    Manni, Vanessa; Lisi, Antonella; Rieti, Sabrina; Serafino, Annalucia; Ledda, Mario; Giuliani, Livio; Sacco, Donatella; D'Emilia, Enrico; Grimaldi, Settimio

    2004-02-01

    This work concerns the effect of low frequency electromagnetic fields (ELF) on biochemical properties of human oral keratinocytes (HOK). Cells exposed to a 2 mT, 50 Hz, magnetic field, showed by scanning electron microscopy (SEM) modification in shape and morphology; these modifications were also associated with different actin distribution, revealed by phalloidin fluorescence analysis. Moreover, exposed cells had a smaller clonogenic capacity, and decreased cellular growth. Indirect immunofluorescence with fluorescent antibodies against involucrin and beta-catenin, both differentiation and adhesion markers, revealed an increase in involucrin and beta-catenin expression. The advance in differentiation was confirmed by a decrease of expression of epidermal growth factor (EGF) receptor in exposed cells, supporting the idea that exposure to electromagnetic field carries keratinocytes to higher differentiation level. These observations support the hypothesis that 50 Hz electromagnetic fields may modify cell morphology and interfere in differentiation and cellular adhesion of normal keratinocytes.

  19. TCDD induces dermal accumulation of keratinocyte-derived matrix metalloproteinase-10 in an organotypic model of human skin

    Energy Technology Data Exchange (ETDEWEB)

    De Abrew, K. Nadira [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Thomas-Virnig, Christina L.; Rasmussen, Cathy A. [Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States); Bolterstein, Elyse A. [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Schlosser, Sandy J. [Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States); Allen-Hoffmann, B. Lynn, E-mail: blallenh@wisc.edu [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States)

    2014-05-01

    The epidermis of skin is the first line of defense against the environment. A three dimensional model of human skin was used to investigate tissue-specific phenotypes induced by the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Continuous treatment of organotypic cultures of human keratinocytes with TCDD resulted in intracellular spaces between keratinocytes of the basal and immediately suprabasal layers as well as thinning of the basement membrane, in addition to the previously reported hyperkeratinization. These tissue remodeling events were preceded temporally by changes in expression of the extracellular matrix degrading enzyme, matrix metalloproteinase-10 (MMP-10). In organotypic cultures MMP-10 mRNA and protein were highly induced following TCDD treatment. Q-PCR and immunoblot results from TCDD-treated monolayer cultures, as well as indirect immunofluorescence and immunoblot analysis of TCDD-treated organotypic cultures, showed that MMP-10 was specifically contributed by the epidermal keratinocytes but not the dermal fibroblasts. Keratinocyte-derived MMP-10 protein accumulated over time in the dermal compartment of organotypic cultures. TCDD-induced epidermal phenotypes in organotypic cultures were attenuated by the keratinocyte-specific expression of tissue inhibitor of metalloproteinase-1, a known inhibitor of MMP-10. These studies suggest that MMP-10 and possibly other MMP-10-activated MMPs are responsible for the phenotypes exhibited in the basement membrane, the basal keratinocyte layer, and the cornified layer of TCDD-treated organotypic cultures. Our studies reveal a novel mechanism by which the epithelial–stromal microenvironment is altered in a tissue-specific manner thereby inducing structural and functional pathology in the interfollicular epidermis of human skin. - Highlights: • TCDD causes hyperkeratosis and basement membrane changes in a model of human skin. • TCDD induces MMP-10 expression in organotypic cultures

  20. Improvement of human keratinocyte migration by a redox active bioelectric dressing.

    Directory of Open Access Journals (Sweden)

    Jaideep Banerjee

    Full Text Available Exogenous application of an electric field can direct cell migration and improve wound healing; however clinical application of the therapy remains elusive due to lack of a suitable device and hence, limitations in understanding the molecular mechanisms. Here we report on a novel FDA approved redox-active Ag/Zn bioelectric dressing (BED which generates electric fields. To develop a mechanistic understanding of how the BED may potentially influence wound re-epithelialization, we direct emphasis on understanding the influence of BED on human keratinocyte cell migration. Mapping of the electrical field generated by BED led to the observation that BED increases keratinocyte migration by three mechanisms: (i generating hydrogen peroxide, known to be a potent driver of redox signaling, (ii phosphorylation of redox-sensitive IGF1R directly implicated in cell migration, and (iii reduction of protein thiols and increase in integrinαv expression, both of which are known to be drivers of cell migration. BED also increased keratinocyte mitochondrial membrane potential consistent with its ability to fuel an energy demanding migration process. Electric fields generated by a Ag/Zn BED can cross-talk with keratinocytes via redox-dependent processes improving keratinocyte migration, a critical event in wound re-epithelialization.

  1. Improvement of human keratinocyte migration by a redox active bioelectric dressing.

    Science.gov (United States)

    Banerjee, Jaideep; Das Ghatak, Piya; Roy, Sashwati; Khanna, Savita; Sequin, Emily K; Bellman, Karen; Dickinson, Bryan C; Suri, Prerna; Subramaniam, Vish V; Chang, Christopher J; Sen, Chandan K

    2014-01-01

    Exogenous application of an electric field can direct cell migration and improve wound healing; however clinical application of the therapy remains elusive due to lack of a suitable device and hence, limitations in understanding the molecular mechanisms. Here we report on a novel FDA approved redox-active Ag/Zn bioelectric dressing (BED) which generates electric fields. To develop a mechanistic understanding of how the BED may potentially influence wound re-epithelialization, we direct emphasis on understanding the influence of BED on human keratinocyte cell migration. Mapping of the electrical field generated by BED led to the observation that BED increases keratinocyte migration by three mechanisms: (i) generating hydrogen peroxide, known to be a potent driver of redox signaling, (ii) phosphorylation of redox-sensitive IGF1R directly implicated in cell migration, and (iii) reduction of protein thiols and increase in integrinαv expression, both of which are known to be drivers of cell migration. BED also increased keratinocyte mitochondrial membrane potential consistent with its ability to fuel an energy demanding migration process. Electric fields generated by a Ag/Zn BED can cross-talk with keratinocytes via redox-dependent processes improving keratinocyte migration, a critical event in wound re-epithelialization.

  2. A Glutathione-Nrf2-Thioredoxin Cross-Talk Ensures Keratinocyte Survival and Efficient Wound Repair.

    Directory of Open Access Journals (Sweden)

    Michèle Telorack

    2016-01-01

    Full Text Available The tripeptide glutathione is the most abundant cellular antioxidant with high medical relevance, and it is also required as a co-factor for various enzymes involved in the detoxification of reactive oxygen species and toxic compounds. However, its cell-type specific functions and its interaction with other cytoprotective molecules are largely unknown. Using a combination of mouse genetics, functional cell biology and pharmacology, we unraveled the function of glutathione in keratinocytes and its cross-talk with other antioxidant defense systems. Mice with keratinocyte-specific deficiency in glutamate cysteine ligase, which catalyzes the rate-limiting step in glutathione biosynthesis, showed a strong reduction in keratinocyte viability in vitro and in the skin in vivo. The cells died predominantly by apoptosis, but also showed features of ferroptosis and necroptosis. The increased cell death was associated with increased levels of reactive oxygen and nitrogen species, which caused DNA and mitochondrial damage. However, epidermal architecture, and even healing of excisional skin wounds were only mildly affected in the mutant mice. The cytoprotective transcription factor Nrf2 was strongly activated in glutathione-deficient keratinocytes, but additional loss of Nrf2 did not aggravate the phenotype, demonstrating that the cytoprotective effect of Nrf2 is glutathione dependent. However, we show that deficiency in glutathione biosynthesis is efficiently compensated in keratinocytes by the cysteine/cystine and thioredoxin systems. Therefore, our study highlights a remarkable antioxidant capacity of the epidermis that ensures skin integrity and efficient wound healing.

  3. Effective inhibition of melanosome transfer to keratinocytes by lectins and niacinamide is reversible.

    Science.gov (United States)

    Greatens, Amanda; Hakozaki, Tomohiro; Koshoffer, Amy; Epstein, Howard; Schwemberger, Sandy; Babcock, George; Bissett, Donald; Takiwaki, Hirotsugu; Arase, Seiji; Wickett, R Randall; Boissy, Raymond E

    2005-07-01

    Skin pigmentation results in part from the transfer of melanized melanosomes synthesized by melanocytes to neighboring keratinocytes. Plasma membrane lectins and their glycoconjugates expressed by these epidermal cells are critical molecules involved in this transfer process. In addition, the derivative of vitamin B(3), niacinamide, can inhibit melanosome transfer and induce skin lightening. We investigated the effects of these molecules on the viability of melanocytes and keratinocytes and on the reversibility of melanosome-transfer inhibition induced by these agents using an in vitro melanocyte-keratinocyte coculture model system. While lectins and neoglycoproteins could induce apoptosis in a dose-dependent manner to melanocytes or keratinocytes in monoculture, similar dosages of the lectins, as opposed to neoglycoproteins, did not induce apoptosis to either cell type when treated in coculture. The dosages of lectins and niacinamide not affecting cell viability produced an inhibitory effect on melanosome transfer, when used either alone or together in cocultures of melanocytes-keratinocytes. Cocultures treated with lectins or niacinamide resumed normal melanosome transfer in 3 days after removal of the inhibitor, while cocultures treated with a combination of lectins and niacinamide demonstrated a lag in this recovery. Subsequently, we assessed the effect of niacinamide on facial hyperpigmented spots using a vehicle-controlled, split-faced design human clinical trial. Topical application of niacinamide resulted in a dose-dependent and reversible reduction in hyperpigmented lesions. These results suggest that lectins and niacinamide at concentrations that do not affect cell viability are reversible inhibitors of melanosome transfer.

  4. Alemtuzumab treatment alters circulating innate immune cells in multiple sclerosis

    Science.gov (United States)

    Ahmetspahic, Diana; Ruck, Tobias; Schulte-Mecklenbeck, Andreas; Schwarte, Kathrin; Jörgens, Silke; Scheu, Stefanie; Windhagen, Susanne; Graefe, Bettina; Melzer, Nico; Klotz, Luisa; Arolt, Volker; Wiendl, Heinz; Meuth, Sven G.

    2016-01-01

    Objective: To characterize changes in myeloid and lymphoid innate immune cells in patients with relapsing-remitting multiple sclerosis (MS) during a 6-month follow-up after alemtuzumab treatment. Methods: Circulating innate immune cells including myeloid cells and innate lymphoid cells (ILCs) were analyzed before and 6 and 12 months after onset of alemtuzumab treatment. Furthermore, a potential effect on granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)–23 production by myeloid cells and natural killer (NK) cell cytolytic activity was determined. Results: In comparison to CD4+ T lymphocytes, myeloid and lymphoid innate cell subsets of patients with MS expressed significantly lower amounts of CD52 on their cell surface. Six months after CD52 depletion, numbers of circulating plasmacytoid dendritic cells (DCs) and conventional DCs were reduced compared to baseline. GM-CSF and IL-23 production in DCs remained unchanged. Within the ILC compartment, the subset of CD56bright NK cells specifically expanded under alemtuzumab treatment, but their cytolytic activity did not change. Conclusions: Our findings demonstrate that 6 months after alemtuzumab treatment, specific DC subsets are reduced, while CD56bright NK cells expanded in patients with MS. Thus, alemtuzumab specifically restricts the DC compartment and expands the CD56bright NK cell subset with potential immunoregulatory properties in MS. We suggest that remodeling of the innate immune compartment may promote long-term efficacy of alemtuzumab and preserve immunocompetence in patients with MS. PMID:27766281

  5. Altered effector function of peripheral cytotoxic cells in COPD

    Directory of Open Access Journals (Sweden)

    Corne Jonathan M

    2009-06-01

    Full Text Available Abstract Background There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3- cells and NKT-like (CD56+CD3+ cells. Methods Peripheral blood mononuclear cells (PBMCs were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3- and NKT-like (CD56+CD3+ cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies. Results The proportion of peripheral blood NKT-like (CD56+CD3+ cells in smokers with COPD (COPD subjects was significantly lower (0.6% than in healthy smokers (smokers (2.8%, p +CD3- cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p +CD3+ cells (16.7% vs 52.4% specific lysis, p +CD3- and NKT-like (CD56+CD3+ cells from smokers and HNS. Conclusion In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3- and NKT-like (CD56+CD3+ cells in COPD subjects are reduced and that their cytotoxic effector function is defective.

  6. Calcipotriol inhibits the proliferation of hyperproliferative CD29 positive keratinocytes in psoriatic epidermis in the absence of an effect on the function and number of antigen-presenting cells

    DEFF Research Database (Denmark)

    Jensen, A.M.; Llado, Minna Fyhn Lykke; Skov, L.;

    1998-01-01

    for infiltrating leucocytes (CD45+) and Langerhans cells (CD1a+). Flow cytometric analysis showed that calcipotriol did not alter the number of CD45+ cells or Langerhans cells in psoriatic skin. These results indicate that calcipotriol does not alter either the number of the function of epidermal antigen......The aim of this study was to elucidate some of the possible mechanisms of action of the vitamin D analogue calcipotriol in vivo. Calcipotriol is finding increasing use in the treatment of psoriasis, but the primary target cell in vivo has not yet been identified. We treated psoriatic patients...... and healthy volunteers with calcipotriol and placebo ointment for 4 and 7 days, and obtained epidermal cell suspensions from treated areas. Epidermal cells were cocultured with autologous T cells, isolated from peripheral blood, in the absence or the presence of a classical antigen or a superantigen. In both...

  7. The expressions of ABCC4 and ABCG2 xenobiotic transporters in human keratinocytes are proliferation-related.

    Science.gov (United States)

    Bebes, Attila; Kis, Kornélia; Nagy, Tünde; Kurunczi, Anita; Polyánka, Hilda; Bata-Csörgo, Zsuzsanna; Kemény, Lajos; Dobozy, Attila; Széll, Márta

    2012-01-01

    Xenobiotic transporters of the ATP-binding cassette (ABC) protein superfamily play important roles in maintaining the biochemical barrier of various tissues, but their precise functions in the skin are not yet known. Screening of the expressions of the known xenobiotic transporter genes in two in vitro keratinocyte differentiation models revealed that the ABCC4 and ABCG2 transporters are highly expressed in proliferating keratinocytes, their expressions decreasing along with differentiation. Abrogation of the ABCC4 and ABCG2 protein functions by siRNA-mediated silencing and chemical inhibition did not affect the proliferation of HaCaT cells. In contrast, disruption of the ABCG2 function had no effect on normal human epidermal keratinocyte proliferation, while the inhibition of ABCC-type transporters by probenecid resulted in a striking decrease in the proliferation of the cells. These results indicate that, besides their possible therapy-modulating effects, xenobiotic transporters may contribute significantly to other keratinocyte functions, such as cell proliferation.

  8. TNF-alpha stimulates Akt by a distinct aPKC-dependent pathway in premalignant keratinocytes

    DEFF Research Database (Denmark)

    Faurschou, A.; Gniadecki, R.

    2008-01-01

    kappaB inhibition and in the presence of p38 blockers. Akt/ERK signalling but not p38 activation was abolished in the presence of the iron chelator desferroxamine that blocks formation of hydroxyl ( OH) radicals. Thus, the TNF-alpha signalling in keratinocytes seems to bifurcate into an aPKC-, NFk......Tumor necrosis factor-alpha (TNF-alpha) is an important proinflammatory cytokine involved in the pathogenesis of inflammatory skin diseases and cutaneous squamous cell carcinoma. Some of these effects are mediated by the stimulatory effect of this cytokine on the Akt signalling pathway, which...... renders keratinocytes less susceptible to proapoptotic stimuli and enhances cell growth. We have recently shown that TNF-alpha-induced Akt activation may promote the early stages of skin cancer. In this work, we demonstrate that in the premalignant keratinocyte cell line HaCaT, TNF-alpha activates Akt...

  9. Carbofuran alters centrosome and spindle organization, and delays cell division in oocytes and mitotic cells.

    Science.gov (United States)

    Cinar, Ozgur; Semiz, Olcay; Can, Alp

    2015-04-01

    Although many countries banned of its usage, carbofuran (CF) is still one of the most commonly used carbamate derivative insecticides against insects and nematodes in agriculture and household, threatening the human and animal health by contaminating air, water, and food. Our goal was to evaluate the potential toxic effects of CF on mammalian oocytes besides mitotic cells. Caspase-dependent apoptotic pathway was assessed by immunofluorescence and western blot techniques. Alterations in the meiotic spindle formation after CF exposure throughout the in vitro maturation of mice oocyte-cumulus complexes (COCs) were analyzed by using a 3D confocal laser microscope. Maturation efficiency and kinetics were assessed by direct observation of the COCs. Results indicated that the number of TUNEL-positive cells increased in CF-exposed groups, particularly higher doses (>250 µM) in a dose-dependent fashion. The ratio of anticleaved caspase-3 labeled cells in those groups positively correlated with TUNEL-positivity. Western blot analysis confirmed a significant increase in active caspase-3 activity. CF caused a dose-dependent accumulation of oocytes at prometaphase-I (PM-I) of meiosis. Partial loss of spindle microtubules (MTs) was noted, which consequently gave rise to a diamond shape spindle. Aberrant pericentrin foci were noted particularly in PM-I and metaphase-I (M-I) stages. Conclusively, CF (1) induces programmed cell death in a dose-dependent manner, and (2) alters spindle morphology most likely through a mechanism that interacts with MT assembly and/or disorientation of pericentriolar proteins. Overall, data suggest that CF could give rise to aneuploidy or cell death in higher doses, therefore reduce fertilization and implantation rates.

  10. Lactobacillus rhamnosus GG inhibits the toxic effects of Staphylococcus aureus on epidermal keratinocytes.

    Science.gov (United States)

    Mohammedsaeed, Walaa; McBain, Andrew J; Cruickshank, Sheena M; O'Neill, Catherine A

    2014-09-01

    Few studies have evaluated the potential benefits of the topical application of probiotic bacteria or material derived from them. We have investigated whether a probiotic bacterium, Lactobacillus rhamnosus GG, can inhibit Staphylococcus aureus infection of human primary keratinocytes in culture. When primary human keratinocytes were exposed to S. aureus, only 25% of the keratinocytes remained viable following 24 h of incubation. However, in the presence of 10(8) CFU/ml of live L. rhamnosus GG, the viability of the infected keratinocytes increased to 57% (P = 0.01). L. rhamnosus GG lysates and spent culture fluid also provided significant protection to keratinocytes, with 65% (P = 0.006) and 57% (P = 0.01) of cells, respectively, being viable following 24 h of incubation. Keratinocyte survival was significantly enhanced regardless of whether the probiotic was applied in the viable form or as cell lysates 2 h before or simultaneously with (P = 0.005) or 12 h after (P = 0.01) S. aureus infection. However, spent culture fluid was protective only if added before or simultaneously with S. aureus. With respect to mechanism, both L. rhamnosus GG lysate and spent culture fluid apparently inhibited adherence of S. aureus to keratinocytes by competitive exclusion, but only viable bacteria or the lysate could displace S. aureus (P = 0.04 and 0.01, respectively). Furthermore, growth of S. aureus was inhibited by either live bacteria or lysate but not spent culture fluid. Together, these data suggest at least two separate activities involved in the protective effects of L. rhamnosus GG against S. aureus, growth inhibition and reduction of bacterial adhesion.

  11. Cytokine secretion profiles of human keratinocytes during Trichophyton tonsurans and Arthroderma benhamiae infections.

    Science.gov (United States)

    Shiraki, Yumi; Ishibashi, Yoshio; Hiruma, Masataro; Nishikawa, Akemi; Ikeda, Shigaku

    2006-09-01

    Dermatophytes cause intractable superficial infections in humans. Arthroderma benhamiae, a zoophilic dermatophyte, triggers severe inflammatory responses in humans, while Trichophyton tonsurans, an anthropophilic dermatophyte, triggers minimal ones. Cytokines and other factors derived from keratinocytes play important roles in inflammatory and immune responses in the skin. The authors performed an in vitro investigation to determine the human keratinocyte cytokine profiles during dermatophyte infection. The human keratinocyte cell line PHK16-0b was infected with A. benhamiae or T. tonsurans for 24 h, and the cytokines secreted were analysed using a human cytokine antibody array. Marked differences were observed in the cytokine profiles of the cells infected with the two dermatophytes. A. benhamiae infection resulted in the secretion of a broad spectrum of cytokines, including proinflammatory cytokines, chemokines, and immunomodulatory cytokines. In contrast, T. tonsurans-infected keratinocytes secreted only limited cytokines, including eotaxin-2, interleukin (IL)-8 and IL-16. cDNA microarray analysis confirmed that A. benhamiae infection upregulated genes encoding IL-1beta, IL-2, IL-4, IL-6, IL-10, IL-13, IL-15, IL-16, IL-17 and interferon (IFN)-gamma, while T. tonsurans infection upregulated only a few genes, such as those encoding IL-1beta and IL-16. RT-PCR demonstrated that infection by both dermatophytes enhanced IL-8 mRNA expression in keratinocytes. These results suggest that A. benhamiae-induced secretion of several cytokines from keratinocytes may be involved in a severe inflammatory response, and that the limited cytokine secretion from keratinocytes in response to T. tonsurans infection may result in a minimal inflammatory response in the skin. These cytokine profiles may aid in proving the clinical features of dermatophytosis.

  12. Cell surface glycan alterations in epithelial mesenchymal transition process of Huh7 hepatocellular carcinoma cell.

    Directory of Open Access Journals (Sweden)

    Shan Li

    Full Text Available BACKGROUND AND OBJECTIVE: Due to recurrence and metastasis, the mortality of Hepatocellular carcinoma (HCC is high. It is well known that the epithelial mesenchymal transition (EMT and glycan of cell surface glycoproteins play pivotal roles in tumor metastasis. The goal of this study was to identify HCC metastasis related differential glycan pattern and their enzymatic basis using a HGF induced EMT model. METHODOLOGY: HGF was used to induce HCC EMT model. Lectin microarray was used to detect the expression of cell surface glycan and the difference was validated by lectin blot and fluorescence cell lectin-immunochemistry. The mRNA expression levels of glycotransferases were determined by qRT-PCR. RESULTS: After HGF treatment, the Huh7 cell lost epithelial characteristics and obtained mesenchymal markers. These changes demonstrated that HGF could induce a typical cell model of EMT. Lectin microarray analysis identified a decreased affinity in seven lectins ACL, BPL, JAC, MPL, PHA-E, SNA, and SBA to the glycan of cell surface glycoproteins. This implied that glycan containing T/Tn-antigen, NA2 and bisecting GlcNAc, Siaα2-6Gal/GalNAc, terminal α or βGalNAc structures were reduced. The binding ability of thirteen lectins, AAL, LCA, LTL, ConA, NML, NPL, DBA, HAL, PTL II, WFL, ECL, GSL II and PHA-L to glycan were elevated, and a definite indication that glycan containing terminal αFuc and ± Sia-Le, core fucose, α-man, gal-β(α GalNAc, β1,6 GlcNAc branching and tetraantennary complex oligosaccharides structures were increased. These results were further validated by lectin blot and fluorescence cell lectin-immunochemistry. Furthermore, the mRNA expression level of Mgat3 decreased while that of Mgat5, FucT8 and β3GalT5 increased. Therefore, cell surface glycan alterations in the EMT process may coincide with the expression of glycosyltransferase. CONCLUSIONS: The findings of this study systematically clarify the alterations of cell surface

  13. Bullous pemphigoid and linear IgA dermatosis sera recognize a similar 120-kDa keratinocyte collagenous glycoprotein with antigenic cross-reactivity to BP180

    NARCIS (Netherlands)

    Pas, HH; Kloosterhuis, GJ; Heeres, K; vanderMeer, JB; Jonkman, MF

    1997-01-01

    Circulating IgG from a large subset of bullous pein; phigoid (SP) patients reacted on immunoblot with a 120-kDa protein in conditioned keratinocyte culture medium and in keratinocyte cell extracts, A protein with a similar molecular weight was recognized by circulating IgA from a subset of patients

  14. Pulmonary malformation in transgenic mice expressing human keratinocyte growth factor in the lung.

    Science.gov (United States)

    Simonet, W S; DeRose, M L; Bucay, N; Nguyen, H Q; Wert, S E; Zhou, L; Ulich, T R; Thomason, A; Danilenko, D M; Whitsett, J A

    1995-01-01

    Expression of human keratinocyte growth factor (KGF/FGF-7) was directed to epithelial cells of the developing embryonic lung of transgenic mice disrupting normal pulmonary morphogenesis during the pseudoglandular stage of development. By embryonic day 15.5(E15.5), lungs of transgenic surfactant protein C (SP-C)-KGF mice resembled those of humans with pulmonary cystadenoma. Lungs were cystic, filling the thoracic cavity, and were composed of numerous dilated saccules lined with glycogen-containing columnar epithelial cells. The normal distribution of SP-C proprotein in the distal regions of respiratory tubules was disrupted. Columnar epithelial cells lining the papillary structures stained variably and weakly for this distal respiratory cell marker. Mesenchymal components were preserved in the transgenic mouse lungs, yet the architectural relationship of the epithelium to the mesenchyme was altered. SP-C-KGF transgenic mice failed to survive gestation to term, dying before E17.5. Culturing mouse fetal lung explants in the presence of recombinant human KGF also disrupted branching morphogenesis and resulted in similar cystic malformation of the lung. Thus, it appears that precise temporal and spatial expression of KGF is likely to play a crucial role in the control of branching morphogenesis during fetal lung development. Images Fig. 1 Fig. 2 Fig. 3 PMID:8618921

  15. Alterations in cell surface area and deformability of individual human red blood cells in stored blood

    CERN Document Server

    Park, HyunJoo; Lee, SangYun; Kim, Kyoohyun; Sohn, Yong-Hak; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The functionality and viability of stored human red blood cells (RBCs) is an important clinical issue in transfusion. To systematically investigate changes in stored whole blood, the hematological properties of individual RBCs were quantified in blood samples stored for various periods with and without a preservation solution called CPDA-1. With 3-D quantitative phase imaging techniques, the optical measurements of the 3-D refractive index (RI) distributions and membrane fluctuations were done at the individual cell level. From the optical measurements, the morphological (volume, surface area and sphericity), biochemical (hemoglobin content and concentration), and mechanical parameters (dynamic membrane fluctuation) were simultaneously quantified to investigate the functionalities and their progressive alterations in stored RBCs. Our results show that the stored RBCs without CPDA-1 had a dramatic morphological transformation from discocytes to spherocytes within 2 weeks which was accompanied with significant ...

  16. Human Keratinocytes Radioprotection with Mentha Longifolia

    Science.gov (United States)

    Rizzo, Angela Maria; Berselli, P.; Zava, S.; Negroni, M.; Corsetto, P.; Montorfano, G.; Bertolotti, A.; Ranza, E.; Ottolenghi, A.; Berra, B.

    Antioxidants are suggested to act as radioprotectors, and dietary supplements based on antiox-idants have been proposed for astronauts involved in long-term space missions. Plant extracts with antioxidant properties may be used in dietetic supplements for astronauts; in fact recent nutritional guidelines suggest that "fruits and vegetables may become as important on space-going vessels as limes were on the sea-going vessels of old". Mint presents a large variety of biological properties, such as antiallergenic, antibacterial, anti-inflammatory, antitumor, an-tiviral, gastrointestinal protective, hepatoprotective, chemopreventive activities, most of which are attributable to its antioxidant activity. The aim of the present study is to evaluate the antioxidant properties and protective bio-efficacy of a phenol enriched Mentha longifolia ex-tract on gamma rays stressed human keratinocytes (NCTC2544). We assessed first the in vitro antioxidant activity (ABTS and DPPH), and then evaluated different stress markers in order to investigate various oxidative stress targets: cell viability (MTT); retained proliferating ca-pability (CA); DNA damage (histone H2AX) and protein damage (HSP70 induction). Results indicate that this Mint extract has a higher antioxidant activity respect to fresh extracts, that could be responsible of its really interesting radio-protective effects.

  17. Persea americana Mill. Seed: Fractionation, Characterization, and Effects on Human Keratinocytes and Fibroblasts.

    Science.gov (United States)

    Ramos-Jerz, Maria Del R; Villanueva, Socorro; Jerz, Gerold; Winterhalter, Peter; Deters, Alexandra M

    2013-01-01

    Methanolic avocado (Persea americana Mill., Lauraceae) seed extracts were separated by preparative HSCCC. Partition and HSCCC fractions were principally characterized by LC-ESI-MS/MS analysis. Their in vitro influence was investigated on proliferation, differentiation, cell viability, and gene expression on HaCaT and normal human epidermal keratinocytes (NHEK) and normal human dermal fibroblasts (NHDF). The methanol-water partition (M) from avocado seeds and HSCCC fraction 3 (M.3) were mostly composed of chlorogenic acid and its isomers. Both reduced NHDF but enhanced HaCaT keratinocytes proliferation. HSCCC fraction M.2 composed of quinic acid among chlorogenic acid and its isomers inhibited proliferation and directly induced differentiation of keratinocytes as observed on gene and protein level. Furthermore, M.2 increased NHDF proliferation via upregulation of growth factor receptors. Salidrosides and ABA derivatives present in HSCCC fraction M.6 increased NHDF and keratinocyte proliferation that resulted in differentiation. The residual solvent fraction M.7 contained among low concentrations of ABA derivatives high amounts of proanthocyanidins B1 and B2 as well as an A-type trimer and stimulated proliferation of normal cells and inhibited the proliferation of immortalized HaCaT keratinocytes.

  18. Human Keratinocyte Growth and Differentiation on Acellular Porcine Dermal Matrix in relation to Wound Healing Potential

    Directory of Open Access Journals (Sweden)

    Robert Zajicek

    2012-01-01

    Full Text Available A number of implantable biomaterials derived from animal tissues are now used in modern surgery. Xe-Derma is a dry, sterile, acellular porcine dermis. It has a remarkable healing effect on burns and other wounds. Our hypothesis was that the natural biological structure of Xe-Derma plays an important role in keratinocyte proliferation and formation of epidermal architecture in vitro as well as in vivo. The bioactivity of Xe-Derma was studied by a cell culture assay. We analyzed growth and differentiation of human keratinocytes cultured in vitro on Xe-Derma, and we compared the results with formation of neoepidermis in the deep dermal wounds treated with Xe-Derma. Keratinocytes cultured on Xe-Derma submerged in the culture medium achieved confluence in 7–10 days. After lifting the cultures to the air-liquid interface, the keratinocytes were stratified and differentiated within one week, forming an epidermis with basal, spinous, granular, and stratum corneum layers. Immunohistochemical detection of high-molecular weight cytokeratins (HMW CKs, CD29, p63, and involucrin confirmed the similarity of organization and differentiation of the cultured epidermal cells to the normal epidermis. The results suggest that the firm natural structure of Xe-Derma stimulates proliferation and differentiation of human primary keratinocytes and by this way improves wound healing.

  19. Persea americana Mill. Seed: Fractionation, Characterization, and Effects on Human Keratinocytes and Fibroblasts

    Directory of Open Access Journals (Sweden)

    Maria del R. Ramos-Jerz

    2013-01-01

    Full Text Available Methanolic avocado (Persea americana Mill., Lauraceae seed extracts were separated by preparative HSCCC. Partition and HSCCC fractions were principally characterized by LC-ESI-MS/MS analysis. Their in vitro influence was investigated on proliferation, differentiation, cell viability, and gene expression on HaCaT and normal human epidermal keratinocytes (NHEK and normal human dermal fibroblasts (NHDF. The methanol-water partition (M from avocado seeds and HSCCC fraction 3 (M.3 were mostly composed of chlorogenic acid and its isomers. Both reduced NHDF but enhanced HaCaT keratinocytes proliferation. HSCCC fraction M.2 composed of quinic acid among chlorogenic acid and its isomers inhibited proliferation and directly induced differentiation of keratinocytes as observed on gene and protein level. Furthermore, M.2 increased NHDF proliferation via upregulation of growth factor receptors. Salidrosides and ABA derivatives present in HSCCC fraction M.6 increased NHDF and keratinocyte proliferation that resulted in differentiation. The residual solvent fraction M.7 contained among low concentrations of ABA derivatives high amounts of proanthocyanidins B1 and B2 as well as an A-type trimer and stimulated proliferation of normal cells and inhibited the proliferation of immortalized HaCaT keratinocytes.

  20. Stanniocalcin-1 regulates re-epithelialization in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Bonnie H Y Yeung

    Full Text Available Stanniocalcin-1 (STC1, a glycoprotein hormone, is believed to be involved in various biological processes such as inflammation, oxidative responses and cell migration. Riding on these emerging evidences, we hypothesized that STC1 may participate in the re-epithelialization during wound healing. Re-epithelialization is a critical step that involves keratinocyte lamellipodia (e-lam formation, followed by cell migration. In this study, staurosporine (STS treatment induced human keratinocyte (HaCaT e-lam formation on fibronectin matrix and migration via the activation of focal adhesion kinase (FAK, the surge of intracellular calcium level [Ca²⁺]i and the inactivation of Akt. In accompanied with these migratory features, a time- and dose-dependent increase in STC1 expression was detected. STC1 gene expression was found not the downstream target of FAK-signaling as illustrated by FAK inhibition using PF573228. The reduction of [Ca²⁺]i by BAPTA/AM blocked the STS-mediated keratinocyte migration and STC1 gene expression. Alternatively the increase of [Ca²⁺]i by ionomycin exerted promotional effect on STS-induced STC1 gene expression. The inhibition of Akt by SH6 and GSK3β by lithium chloride (LiCl could respectively induce and inhibit the STS-mediated e-lam formation, cell migration and STC1 gene expression. The STS-mediated e-lam formation and cell migration were notably hindered or induced respectively by STC1 knockdown or overexpression. This notion was further supported by the scratched wound assay. Collectively the findings provide the first evidence that STC1 promotes re-epithelialization in wound healing.

  1. Lipid body accumulation alters calcium signaling dynamics in immune cells.

    Science.gov (United States)

    Greineisen, William E; Speck, Mark; Shimoda, Lori M N; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J; Turner, Helen

    2014-09-01

    There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcɛRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signaling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcɛRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signaling pathway and its downstream targets.

  2. Induction of dental epithelial cell differentiation marker gene expression in non-odontogenic human keratinocytes by transfection with thymosin beta 4

    Directory of Open Access Journals (Sweden)

    Tamotsu Kiyoshima

    2014-01-01

    Full Text Available Previous studies have shown that the recombination of cells liberated from developing tooth germs develop into teeth. However, it is difficult to use human developing tooth germ as a source of cells because of ethical issues. Previous studies have reported that thymosin beta 4 (Tmsb4x is closely related to the initiation and development of the tooth germ. We herein attempted to establish odontogenic epithelial cells from non-odontogenic HaCaT cells by transfection with TMSB4X. TMSB4X-transfected cells formed nodules that were positive for Alizarin-red S (ALZ and von Kossa staining (calcium phosphate deposits when cultured in calcification-inducing medium. Three selected clones showing larger amounts of calcium deposits than the other clones, expressed PITX2, Cytokeratin 14, and Sonic Hedgehog. The upregulation of odontogenesis-related genes, such as runt-related transcription factor 2 (RUNX2, Amelogenin (AMELX, Ameloblastin (AMBN and Enamelin (ENAM was also detected. These proteins were immunohistochemically observed in nodules positive for the ALZ and von Kossa staining. RUNX2-positive selected TMSB4X-transfected cells implanted into the dorsal subcutaneous tissue of nude mice formed matrix deposits. Immunohistochemically, AMELX, AMBN and ENAM were observed in the matrix deposits. This study demonstrated the possibility of induction of dental epithelial cell differentiation marker gene expression in non-odontogenic HaCaT cells by TMSB4X.

  3. Distinct mesenchymal alterations in N-cadherin and E-cadherin positive primary renal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christof Keller

    Full Text Available BACKGROUND: Renal tubular epithelial cells of proximal and distal origin differ markedly in their physiological functions. Therefore, we hypothesized that they also differ in their capacity to undergo epithelial to mesenchymal alterations. RESULTS: We used cultures of freshly isolated primary human tubular cells. To distinguish cells of different tubular origin we took advantage of the fact that human proximal epithelial cells uniquely express N-cadherin instead of E-cadherin as major cell-cell adhesion molecule. To provoke mesenchymal alteration we treated these cocultures with TGF-β for up to 6 days. Within this time period, the morphology of distal tubular cells was barely altered. In contrast to tubular cell lines, E-cadherin was not down-regulated by TGF-β, even though TGF-β signal transduction was initiated as demonstrated by nuclear localization of Smad2/3. Analysis of transcription factors and miRNAs possibly involved in E-cadherin regulation revealed high levels of miRNAs of the miR200-family, which may contribute to the stability of E-cadherin expression in human distal tubular epithelial cells. By contrast, proximal tubular epithelial cells altered their phenotype when treated with TGF-β. They became elongated and formed three-dimensional structures. Rho-kinases were identified as modulators of TGF-β-induced morphological alterations. Non-specific inhibition of Rho-kinases resulted in stabilization of the epithelial phenotype, while partial effects were observed upon downregulation of Rho-kinase isoforms ROCK1 and ROCK2. The distinct reactivity of proximal and distal cells was retained when the cells were cultured as polarized cells. CONCLUSIONS: Interference with Rho-kinase signaling provides a target to counteract TGF-β-mediated mesenchymal alterations of epithelial cells, particularly in proximal tubular epithelial cells. Furthermore, primary distal tubular cells differed from cell lines by their high phenotypic stability

  4. Bactericidal Antibiotics Increase Hydroxyphenyl Fluorescein Signal by Altering Cell Morphology

    DEFF Research Database (Denmark)

    Paulander, Wilhelm; Wang, Ying; Folkesson, Sven Anders;

    2014-01-01

    It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH center dot) formation. Flow cytometric detection of OH center dot by hydroxyphenyl fluorescein (HPF) probe oxidation was used...... to support this hypothesis. Here we show that increased HPF signals in antibiotics-exposed bacterial cells are explained by fluorescence associated with increased cell size, and do not reflect reactive oxygen species (ROS) concentration. Independently of antibiotics, increased fluorescence was seen...... for elongated cells expressing the oxidative insensitive green fluorescent protein (GFP). Although our data question the role of ROS in lethality of antibiotics other research approaches point to important interplays between basic bacterial metabolism and antibiotic susceptibility. To underpin...

  5. Bactericidal antibiotics increase hydroxyphenyl fluorescein signal by altering cell morphology.

    Directory of Open Access Journals (Sweden)

    Wilhelm Paulander

    Full Text Available It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH• formation. Flow cytometric detection of OH• by hydroxyphenyl fluorescein (HPF probe oxidation was used to support this hypothesis. Here we show that increased HPF signals in antibiotics-exposed bacterial cells are explained by fluorescence associated with increased cell size, and do not reflect reactive oxygen species (ROS concentration. Independently of antibiotics, increased fluorescence was seen for elongated cells expressing the oxidative insensitive green fluorescent protein (GFP. Although our data question the role of ROS in lethality of antibiotics other research approaches point to important interplays between basic bacterial metabolism and antibiotic susceptibility. To underpin such relationships, methods for detecting bacterial metabolites at a cellular level are needed.

  6. GATA3 is a master regulator of the transcriptional response to low-dose ionizing radiation in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, F.; Molina, M.; Berthier-Vergnes, O.; Lamartine, J. [Universite de Lyon, Lyon, F-69003 (France); Universite Lyon 1, Lyon, F-69003 (France); CNRS, UMR5534, Centre de Genetique Moleculaire et Cellulaire, Villeurbanne, F-69622 (France); Malet, C.; Ginestet, C. [Centre Leon Berard, Service de Radiotherapie, Lyon F-69008 (France); Martin, M.T. [Laboratoire de Genomique et Radiobiologie de la Keratinopoiese, CEA, IRCM, Evry F-91000 (France)

    2009-07-01

    Background: The general population is constantly exposed to low levels of radiation through natural, occupational or medical irradiation. Even if the biological effects of low-level radiation have been intensely debated and investigated, the molecular mechanisms underlying the cellular response to low doses remain largely unknown. Results: The present study investigated the role of GATA3 protein in the control of the cellular and molecular response of human keratinocytes exposed to a 1 cGy dose of X-rays. Chromatin immunoprecipitation showed GATA3 to be able to bind the promoter of 4 genes responding to a 1 cGy exposure. To go further into the role of GATA3 after ionizing radiation exposure, we studied the cellular and molecular consequences of radiation in GATA3 knock-down cells. Knockdown was obtained by lentiviral-mediated expression of an shRNA targeting the GATA3 transcript in differentiated keratinocytes. First, radiosensitivity was assessed: the toxicity, in terms of immediate survival (with XTT test), associated with 1 cGy radiation was found to be increased in GATA3 knock-down cells. The impact of GATA3 knock-down on the transcriptome of X-ray irradiated cells was also investigated, using oligonucleotide micro-arrays to assess changes between 3 h and 72 h post-irradiation in normal vs GATA3 knock-down backgrounds; transcriptome response was found to be completely altered in GATA3 knock-down cells, with a strong induction/repression peak 48 h after irradiation. Functional annotation revealed enrichment in genes known to be involved in chaperone activity, TGF{beta} signalling and stress response. Conclusion: Taken together, these data indicate that GATA3 is an important regulator of the cellular and molecular response of epidermal cells to very low doses of radiation. (authors)

  7. Distinct epidermal keratinocytes respond to extremely low-frequency electromagnetic fields differently.

    Directory of Open Access Journals (Sweden)

    Chao-Ying Huang

    Full Text Available Following an increase in the use of electric appliances that can generate 50 or 60 Hz electromagnetic fields, concerns have intensified regarding the biological effects of extremely low-frequency electromagnetic fields (ELF-EMFs on human health. Previous epidemiological studies have suggested the carcinogenic potential of environmental exposure to ELF-EMFs, specifically at 50 or 60 Hz. However, the biological mechanism facilitating the effects of ELF-EMFs remains unclear. Cellular studies have yielded inconsistent results regarding the biological effects of ELF-EMFs. The inconsistent results might have been due to diverse cell types. In our previous study, we indicated that 1.5 mT, 60 Hz ELF-EMFs will cause G1 arrest through the activation of the ATM-Chk2-p21 pathway in human keratinocyte HaCaT cells. The aim of the current study was to investigate whether ELF-EMFs cause similar effects in a distinct epidermal keratinocyte, primary normal human epidermal keratinocytes (NHEK, by using the same ELF-EMF exposure system and experimental design. We observed that ELF-EMFs exerted no effects on cell growth, cell proliferation, cell cycle distribution, and the activation of ATM signaling pathway in NHEK cells. We demonstrated that the 2 epidermal keratinocytes responded to ELF-EMFs differently. To further validate this finding, we simultaneously exposed the NHEK and HaCaT cells to ELF-EMFs in the same incubator for 168 h and observed the cell growths. The simultaneous exposure of the two cell types results showed that the NHEK and HaCaT cells exhibited distinct responses to ELF-EMFs. Thus, we confirmed that the biological effects of ELF-EMFs in epidermal keratinocytes are cell type specific. Our findings may partially explain the inconsistent results of previous studies when comparing results across various experimental models.

  8. Distinct epidermal keratinocytes respond to extremely low-frequency electromagnetic fields differently.

    Science.gov (United States)

    Huang, Chao-Ying; Chuang, Chun-Yu; Shu, Wun-Yi; Chang, Cheng-Wei; Chen, Chaang-Ray; Fan, Tai-Ching; Hsu, Ian C

    2014-01-01

    Following an increase in the use of electric appliances that can generate 50 or 60 Hz electromagnetic fields, concerns have intensified regarding the biological effects of extremely low-frequency electromagnetic fields (ELF-EMFs) on human health. Previous epidemiological studies have suggested the carcinogenic potential of environmental exposure to ELF-EMFs, specifically at 50 or 60 Hz. However, the biological mechanism facilitating the effects of ELF-EMFs remains unclear. Cellular studies have yielded inconsistent results regarding the biological effects of ELF-EMFs. The inconsistent results might have been due to diverse cell types. In our previous study, we indicated that 1.5 mT, 60 Hz ELF-EMFs will cause G1 arrest through the activation of the ATM-Chk2-p21 pathway in human keratinocyte HaCaT cells. The aim of the current study was to investigate whether ELF-EMFs cause similar effects in a distinct epidermal keratinocyte, primary normal human epidermal keratinocytes (NHEK), by using the same ELF-EMF exposure system and experimental design. We observed that ELF-EMFs exerted no effects on cell growth, cell proliferation, cell cycle distribution, and the activation of ATM signaling pathway in NHEK cells. We demonstrated that the 2 epidermal keratinocytes responded to ELF-EMFs differently. To further validate this finding, we simultaneously exposed the NHEK and HaCaT cells to ELF-EMFs in the same incubator for 168 h and observed the cell growths. The simultaneous exposure of the two cell types results showed that the NHEK and HaCaT cells exhibited distinct responses to ELF-EMFs. Thus, we confirmed that the biological effects of ELF-EMFs in epidermal keratinocytes are cell type specific. Our findings may partially explain the inconsistent results of previous studies when comparing results across various experimental models.

  9. Lowering extracellular chloride concentration alters outer hair cell shape.

    Science.gov (United States)

    Cecola, R P; Bobbin, R P

    1992-08-01

    In general, increasing external K+ concentration, as well as exposure to hypotonic medium, induces a shortening of outer hair cells (OHCs) accompanied by an increase in width and volume. One possible mechanism suggested for these changes is a movement of Cl- and/or water across the cell membrane. We therefore examined the role of Cl- in OHC volume maintenance by testing the effect of decreasing extracellular Cl- concentration on OHC length and shape. In addition, the effect of hypotonic medium was examined. OHCs were isolated from guinea pig cochleae, mechanically dissociated and dispersed, and placed in a modified Hanks balanced salt solution (HBS). Exposing the cells to a Cl(-)-free HBS produced an initial shortening, which was rapidly followed by an increase in length. After about 9 min of exposure to Cl(-)-free HBS, the cells appeared to lose all water and collapsed. Upon return to normal HBS, the OHCs returned to their normal shape. We speculate that the collapse of the OHCs may be due to the loss of intracellular Cl-, which, in turn, resulted in the loss of intracellular K+ and water. The results indicate that Cl- contributes greatly to the maintenance of OHC volume. In addition, we confirmed that isolated OHCs swell in hypotonic medium and maintain their swollen state until returned to normal medium. The mechanism for maintenance of the swollen state is unknown.

  10. Transfected parvalbumin alters calcium homeostasis in teratocarcinoma PCC7 cells

    DEFF Research Database (Denmark)

    Müller, B K; Kabos, P; Belhage, B;

    1996-01-01

    Indirect evidence supports a protective role of some EF-hand calcium-binding proteins against calcium-induced neurotoxicity. Little is known about how these proteins influence cytosolic calcium levels. After cloning the parvalbumin cDNA into an expression vector, teratocarcinoma cells (PCC7) were...

  11. Spatial distributions of red blood cells significantly alter local haemodynamics.

    Directory of Open Access Journals (Sweden)

    Joseph M Sherwood

    Full Text Available Although bulk changes in red blood cell concentration between vessels have been well characterised, local distributions are generally overlooked. Red blood cells aggregate, deform and migrate within vessels, forming heterogeneous distributions which have considerable effect on local haemodynamics. The present study reports data on the local distribution of human red blood cells in a sequentially bifurcating microchannel, representing the branching geometry of the microvasculature. Imaging methodologies with simple extrapolations are used to infer three dimensional, time-averaged velocity and haematocrit distributions under a range of flow conditions. Strong correlation between the bluntness of the velocity and haematocrit profiles in the parent branch of the geometry is observed and red blood cell aggregation has a notable effect on the observed trends. The two branches of the first bifurcation show similar characteristics in terms of the shapes of the profiles and the extent of plasma skimming, despite the difference in geometric configuration. In the second bifurcation, considerable asymmetry between the branches in the plasma skimming relationship is observed, and elucidated by considering individual haematocrit profiles. The results of the study highlight the importance of considering local haematocrit distributions in the analysis of blood flow and could lead to more accurate computational models of blood flow in microvascular networks. The experimental approaches developed in this work provide a foundation for further examining the characteristics of microhaemodynamics.

  12. Alterations of red blood cell metabolome in overhydrated hereditary stomatocytosis.

    NARCIS (Netherlands)

    Darghouth, D.; Koehl, B.; Heilier, J.F.; Madalinski, G.; Bovee, P.H.; Bosman, G.J.C.G.M.; Delaunay, J.; Junot, C.; Romeo, P.H.

    2011-01-01

    Overhydrated hereditary stomatocytosis, clinically characterized by hemolytic anemia, is a rare disorder of the erythrocyte membrane permeability to monovalent cations, associated with mutations in the Rh-associated glycoprotein gene. We assessed the red blood cell metabolome of 4 patients with this

  13. Effects triggered by platinum nanoparticles on primary keratinocytes.

    Science.gov (United States)

    Konieczny, Piotr; Goralczyk, Anna Grazyna; Szmyd, Radoslaw; Skalniak, Lukasz; Koziel, Joanna; Filon, Francesca Larese; Crosera, Matteo; Cierniak, Agnieszka; Zuba-Surma, Ewa K; Borowczyk, Julia; Laczna, Eliza; Drukala, Justyna; Pyza, Elzbieta; Semik, Danuta; Woznicka, Olga; Klein, Andrzej; Jura, Jolanta

    2013-01-01

    The platinum (Pt)-group elements (PGEs) represent a new kind of environmental pollutant and a new hazard for human health. Since their introduction as vehicle-exhaust catalysts, their emissions into the environment have grown considerably compared with their low natural concentration in the earth crust. PGE emissions from vehicle catalysts can be also in the form of nanometer-sized particles (Pt nanoparticles [PtNPs]). These elements, both in their metallic form or as ions solubilized in biological media, are now recognized as potent allergens and sensitizers. Human skin is always exposed to toxic particles; therefore, in the present study we addressed the question of whether polyvinylpyrrolidone-coated PtNPs may have any negative effects on skin cells, including predominantly epidermal keratinocytes. In this study, PtNPs of two sizes were used: 5.8 nm and 57 nm, in concentrations of 6.25, 12.5, and 25 μg/mL. Both types of NPs were protected with polyvinylpyrrolidone. Primary keratinocytes were treated for 24 and 48 hours, then cytotoxicity, genotoxicity, morphology, metabolic activity, and changes in the activation of signaling pathways were investigated in PtNP-treated cells. We found that PtNPs trigger toxic effects on primary keratinocytes, decreasing cell metabolism, but these changes have no effects on cell viability or migration. Moreover, smaller NPs exhibited more deleterious effect on DNA stability than the big ones. Analyzing activation of caspases, we found changes in activity of caspase 9 and caspase 3/7 triggered mainly by smaller NPs. Changes were not so significant in the case of larger nanoparticles. Importantly, we found that PtNPs have antibacterial properties, as is the case with silver NPs (AgNPs). In comparison to our previous study regarding the effects of AgNPs on cell biology, we found that PtNPs do not exhibit such deleterious effects on primary keratinocytes as AgNPs and that they also can be used as potential antibacterial agents

  14. Karyotypic analysis of gene transformed human keratinocyte line

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    @@ INTRODUCTION In order to solve the difficult problem of long term in vitro culture of human keratinocytes, the technique of gene transfer was utilized to transform human keratinocytes with simian virus 40 (SV40).

  15. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture

    Directory of Open Access Journals (Sweden)

    Nathalia R. Lestard

    2016-01-01

    Full Text Available Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells.

  16. GM-CSF alters dendritic cells in autoimmune diseases.

    Science.gov (United States)

    Li, Bao-Zhu; Ye, Qian-Ling; Xu, Wang-Dong; Li, Jie-Hua; Ye, Dong-Qing; Xu, Yuekang

    2013-11-01

    Autoimmune diseases arise from an inappropriate immune response against self components, including macromolecules, cells, tissues, organs etc. They are often triggered or accompanied by inflammation, during which the levels of granulocyte macrophage colony-stimulating factor (GM-CSF) are elevated. GM-CSF is an inflammatory cytokine that has profound impact on the differentiation of immune system cells of myeloid lineage, especially dendritic cells (DCs) that play critical roles in immune initiation and tolerance, and is involved in the pathogenesis of autoimmune diseases. Although GM-CSF was discovered decades ago, recent studies with some new findings have shed an interesting light on the old hematopoietic growth factor. In the inflammatory autoimmune diseases, GM-CSF redirects the normal developmental pathway of DCs, conditions their antigen presentation capacities and endows them with unique cytokine signatures to affect autoimmune responses. Here we review the latest advances in the field, with the aim of demonstrating the effects of GM-CSF on DCs and their influences on autoimmune diseases. The summarized knowledge will help to design DC-based strategies for the treatment of autoimmune diseases.

  17. Butachlor, a suspected carcinogen, alters growth and transformation characteristics of mouse liver cells.

    Science.gov (United States)

    Ou, Y H; Chung, P C; Chang, Y C; Ngo, F Q; Hsu, K Y; Chen, F D

    2000-12-01

    Butachlor is a widely used herbicide in Asia and South America. Previous investigations have indicated that it is a suspected carcinogen. To understand more about the biological effects of butachlor on cultured cells and the mechanism(s) of its carcinogenicity, we studied the alteration of the growth characteristics that was induced by butachlor in normal mouse liver cells (BNL CL2). This study demonstrates that butachlor decreases the population-doubling time of BNL CL2 cells, suggesting that it stimulates cell proliferation. To support this finding, a thymidine incorporation assay was conducted and a similar result that butachlor stimulates cell proliferation was elucidated. In addition, we show that butachlor increases the saturation density of the BNL CL2 cells. When combined with the tumor initiator N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), butachlor transforms cells efficiently, as demonstrated by loss of contact inhibition. These findings indicate that butachlor alters the growth characteristics of BNL CL2 cells and suggest that butachlor may induce malignant transformation through stimulation of cell proliferation, alteration of cell cycle regulation, and suppression of cell density-dependent inhibition of proliferation.

  18. Alterations in Helicobacter pylori triggered by contact with gastric epithelial cells

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Johnson

    2012-02-01

    Full Text Available Helicobacter pylori lives within the mucus layer of the human stomach, in close proximity to gastric epithelial cells. While a great deal is known about the effects of H. pylori on human cells and the specific bacterial products that mediate these effects, relatively little work has been done to investigate alterations in H. pylori that may be triggered by bacterial contact with human cells. In this review, we discuss the spectrum of changes in bacterial physiology and morphology that occur when H. pylori is in contact with gastric epithelial cells. Several studies have reported that cell contact causes alterations in H. pylori gene transcription. In addition, H. pylori contact with gastric epithelial cells promotes the formation of pilus-like structures at the bacteria-host cell interface. The formation of these structures requires multiple genes in the cag pathogenicity island, and these structures are proposed to have an important role in the type IV secretion system-dependent process through which CagA enters host cells. Finally, H. pylori contact with epithelial cells can promote bacterial replication and the formation of microcolonies, phenomena that are facilitated by the acquisition of iron and other nutrients from infected cells. In summary, the gastric epithelial cell surface represents an important niche for H. pylori, and upon entry into this niche, the bacteria alter their behavior in a manner that optimizes bacterial proliferation and persistent colonization of the host.

  19. Use of Genetically Altered Stem Cells for the Treatment of Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Andrew T. Crane

    2014-03-01

    Full Text Available Transplantation of stem cells for the treatment of Huntington’s disease (HD garnered much attention prior to the turn of the century. Several studies using mesenchymal stem cells (MSCs have indicated that these cells have enormous therapeutic potential in HD and other disorders. Advantages of using MSCs for cell therapies include their ease of isolation, rapid propagation in culture, and favorable immunomodulatory profiles. However, the lack of consistent neuronal differentiation of transplanted MSCs has limited their therapeutic efficacy to slowing the progression of HD-like symptoms in animal models of HD. The use of MSCs which have been genetically altered to overexpress brain derived neurotrophic factor to enhance support of surviving cells in a rodent model of HD provides proof-of-principle that these cells may provide such prophylactic benefits. New techniques that may prove useful for cell replacement therapies in HD include the use of genetically altering fate-restricted cells to produce induced pluripotent stem cells (iPSCs. These iPSCs appear to have certain advantages over the use of embryonic stem cells, including being readily available, easy to obtain, less evidence of tumor formation, and a reduced immune response following their transplantation. Recently, transplants of iPSCs have shown to differentiate into region-specific neurons in an animal model of HD. The overall successes of using genetically altered stem cells for reducing neuropathological and behavioral deficits in rodent models of HD suggest that these approaches have considerable potential for clinical use. However, the choice of what type of genetically altered stem cell to use for transplantation is dependent on the stage of HD and whether the end-goal is preserving endogenous neurons in early-stage HD, or replacing the lost neurons in late-stage HD. This review will discuss the current state of stem cell technology for treating the different stages of HD and

  20. Effect of bacteria on the wound healing behavior of oral epithelial cells.

    Science.gov (United States)

    Bhattacharya, Rupa; Xu, Fanxing; Dong, Guangyu; Li, Shuai; Tian, Chen; Ponugoti, Bhaskar; Graves, Dana T

    2014-01-01

    Wounded tissue offers opportunity to microflora to adhere, colonize, invade and infect surrounding healthy tissue. The bacteria of the oral cavity have the potential to alter the wound healing process by interacting with keratinocytes. The aim of this study was to investigate mechanisms through which oral bacteria may influence re-epithelialization by interacting with gingival keratinocytes. By an in vitro scratch assay we demonstrate that primary gingival keratinocytes have impaired closure when exposed to two well characterized oral bacteria, P. gingivalis, and to a lesser extent, F. nucleatum. P. gingivalis reduced wound closure by ∼ 40%, which was partially dependent on proteolytic activity, and bacteria was still present within infected cells 9 days later despite exposure to bacteria for only 24 h. Both oral bacteria caused keratinocyte apoptosis at the wound site with cell death being greatest at the wound edge. P. gingivalis and F. nucleatum adversely affected cell proliferation and the effect also had a spatial component being most striking at the edge. The impact of the bacteria was long lasting even when exposure was brief. Cell migration was compromised in bacteria challenged keratinocytes with P. gingivalis having more severe effect (pbacteria challenged cells showed that P. gingivalis and to a lesser extent F. nucleatum significantly downregulated cell cycle genes cyclin1, CDK1, and CDK4 (pcell migration such as integrin beta-3 and -6 were significantly downregulated by P. gingivalis (p<0.05).

  1. Entry pathways of herpes simplex virus type 1 into human keratinocytes are dynamin- and cholesterol-dependent.

    Directory of Open Access Journals (Sweden)

    Elena Rahn

    Full Text Available Herpes simplex virus type 1 (HSV-1 can enter cells via endocytic pathways or direct fusion at the plasma membrane depending on the cell line and receptor(s. Most studies into virus entry have used cultured fibroblasts but since keratinocytes represent the primary entry site for HSV-1 infection in its human host, we initiated studies to characterize the entry pathway of HSV-1 into human keratinocytes. Electron microscopy studies visualized free capsids in the cytoplasm and enveloped virus particles in vesicles suggesting viral uptake both by direct fusion at the plasma membrane and by endocytic vesicles. The ratio of the two entry modes differed in primary human keratinocytes and in the keratinocyte cell line HaCaT. Inhibitor studies further support a role for endocytosis during HSV-1 entry. Infection was inhibited by the cholesterol-sequestering drug methyl-β-cyclodextrin, which demonstrates the requirement for host cholesterol during virus entry. Since the dynamin-specific inhibitor dynasore and overexpression of a dominant-negative dynamin mutant blocked infection, we conclude that the entry pathways into keratinocytes are dynamin-mediated. Electron microscopy studies confirmed that virus uptake is completely blocked when the GTPase activity of dynamin is inhibited. Ex vivo infection of murine epidermis that was treated with dynasore further supports the essential role of dynamin during entry into the epithelium. Thus, we conclude that HSV-1 can enter human keratinocytes by alternative entry pathways that require dynamin and host cholesterol.

  2. MicroRNA-191 triggers keratinocytes senescence by SATB1 and CDK6 downregulation

    Energy Technology Data Exchange (ETDEWEB)

    Lena, A.M.; Mancini, M.; Rivetti di Val Cervo, P. [University of ' Tor Vergata' , Department of Experimental Medicine and Biochemical Sciences, Via Montpellier 1, Rome 00133 (Italy); Istituto Dermopatico dell' Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Laboratory of Biochemistry c/o Department of Experimental Medicine and Biochemical Sciences, University of Rome ' Tor Vergata' , Rome 00133 (Italy); Saintigny, G.; Mahe, C. [CHANEL Parfums Beaute, 135 av. Charles de Gaulle, F 92521, Neuilly/Seine (France); Melino, G., E-mail: gerry.melino@uniroma2.it [University of ' Tor Vergata' , Department of Experimental Medicine and Biochemical Sciences, Via Montpellier 1, Rome 00133 (Italy); Istituto Dermopatico dell' Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Laboratory of Biochemistry c/o Department of Experimental Medicine and Biochemical Sciences, University of Rome ' Tor Vergata' , Rome 00133 (Italy); Association Cell Death and Differentiation c/o Department of Experimental Medicine and Biochemical Sciences, University of Rome ' Tor Vergata' , Rome 00133 (Italy); and others

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer miR-191 expression is upregulated in senescencent human epidermal keratinocytes. Black-Right-Pointing-Pointer miR-191 overexpression is sufficient per se to induce senescence in keratinocytes. Black-Right-Pointing-Pointer SATB1 and CDK6 are downregulated in senescence and are direct miR-191 targets. Black-Right-Pointing-Pointer SATB1 and CDK6 silencing by siRNA triggers senescence in HEKn cells. -- Abstract: Keratinocyte replicative senescence has an important role in time-dependent changes of the epidermis, a tissue with high turnover. Senescence encompasses growth arrest during which cells remain metabolically active but acquire a typical enlarged, vacuolar and flattened morphology. It is also accompanied by the expression of endogenous senescence-associated-{beta}-galactosidase and specific gene expression profiles. MicroRNAs levels have been shown to be modulated during keratinocytes senescence, playing key roles in inhibiting proliferation and in the acquisition of senescent markers. Here, we identify miR-191 as an anti-proliferative and replicative senescence-associated miRNA in primary human keratinocytes. Its overexpression is sufficient per se to induce senescence, as evaluated by induction of several senescence-associated markers. We show that SATB1 and CDK6 3 Prime UTRs are two miR-191 direct targets involved in this pathway. Cdk6 and Satb1 protein levels decrease during keratinocytes replicative senescence and their silencing by siRNA is able to induce a G1 block in cell cycle, accompanied by an increase in senescence-associated markers.

  3. Prenatal cadmium exposure alters postnatal immune cell development and function

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B., E-mail: jbarnett@hsc.wvu.edu

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can

  4. FGFR gene alterations in lung squamous cell carcinoma are potential targets for the multikinase inhibitor nintedanib.

    Science.gov (United States)

    Hibi, Masaaki; Kaneda, Hiroyasu; Tanizaki, Junko; Sakai, Kazuko; Togashi, Yosuke; Terashima, Masato; De Velasco, Marco Antonio; Fujita, Yoshihiko; Banno, Eri; Nakamura, Yu; Takeda, Masayuki; Ito, Akihiko; Mitsudomi, Tetsuya; Nakagawa, Kazuhiko; Okamoto, Isamu; Nishio, Kazuto

    2016-11-01

    Fibroblast growth factor receptor (FGFR) gene alterations are relatively frequent in lung squamous cell carcinoma (LSCC) and are a potential targets for therapy with FGFR inhibitors. However, little is known regarding the clinicopathologic features associated with FGFR alterations. The angiokinase inhibitor nintedanib has shown promising activity in clinical trials for non-small cell lung cancer. We have now applied next-generation sequencing (NGS) to characterize FGFR alterations in LSCC patients as well as examined the antitumor activity of nintedanib in LSCC cell lines positive for FGFR1 copy number gain (CNG). The effects of nintedanib on the proliferation of and FGFR signaling in LSCC cell lines were examined in vitro, and its effects on tumor formation were examined in vivo. A total of 75 clinical LSCC specimens were screened for FGFR alterations by NGS. Nintedanib inhibited the proliferation of FGFR1 CNG-positive LSCC cell lines in association with attenuation of the FGFR1-ERK signaling pathway in vitro and in vivo. FGFR1 CNG (10.7%), FGFR1 mutation (2.7%), FGFR2 mutation (2.7%), FGFR4 mutation (5.3%), and FGFR3 fusion (1.3%) were detected in LSCC specimens by NGS. Clinicopathologic features did not differ between LSCC patients positive or negative for FGFR alterations. However, among the 36 patients with disease recurrence after surgery, prognosis was significantly worse for those harboring FGFR alterations. Screening for FGFR alterations by NGS warrants further study as a means to identify patients with LSCC recurrence after surgery who might benefit from nintedanib therapy.

  5. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    Directory of Open Access Journals (Sweden)

    Mohammad F. Islam

    2012-05-01

    Full Text Available With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics.

  6. Alterations of FHIT Gene and P16 Gene in Nickel Transformed Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    WEI-DONG JI; JIA-KUN CHEN; JIA-CHUN LU; ZHONG-LIANG WU; FEI YI; SU-MEI FENG

    2006-01-01

    To study the alterations of FHIT gene and P16 gene in malignant transformed human bronchial epithelial cells induced by crystalline nickel sulfide using an immoral human bronchial epithelial cell line, and to explore the molecular mechanism of nickel carcinogenesis. Methods 16HBE cells were treated 6 times with different concentrations of NiS in vitro, and the degree of malignant transformation was determined by assaying the anchorage-independent growth and tumorigenicity. Malignant transformed cells and tumorigenic cells were examined for alterations of FHIT gene and P16 gene using RT-PCR, DNA sequencing, silver staining PCR-SSCP and Western blotting. Results NiS-treated cells exhibited overlapping growth. Compared with that of negative control cells, soft agar colony formation efficiency of NiS-treated cells showed significant increases (P<0.01) and dose-dependent effects. NiS-treated cells could form tumors in nude mice, and a squamous cell carcinoma was confirmed by histopathological examination. No mutation of exon 2 and exons 2-3, no abnormal expression in p16 gene and mutation of FHIT exons 5-8 and exons 1-4 or exons 5-9 were observed in transformed cells and tumorigenic cells. However, aberrant transcripts or loss of expression of the FHIT gene and Fhit protein was observed in transformed cells and tumorigenic cells. One of the aberrant transcripts in the FHIT gene was confirmed to have a deletion of exon 6, exon 7, exon 8, and an insertion of a 36 bp sequence replacing exon 6-8. Conclusions The FHIT gene rather than the P16 gene, plays a definite role in nickel carcinogenesis. Alterations of the FHIT gene induced by crystalline NiS may be a molecular event associated with carcinogen, chromosome fragile site instability and cell malignant transformation. FHIT may be an important target gene activated by nickel and other exotic carcinogens.

  7. The Modulatory Effect of Ellagic Acid and Rosmarinic Acid on Ultraviolet-B-Induced Cytokine/Chemokine Gene Expression in Skin Keratinocyte (HaCaT Cells

    Directory of Open Access Journals (Sweden)

    Serena Lembo

    2014-01-01

    Full Text Available Ultraviolet radiation (UV induces an increase in multiple cutaneous inflammatory mediators. Ellagic acid (EA and rosmarinic acid (RA are natural anti-inflammatory and immunomodulatory compounds found in many plants, fruits, and nuts. We assessed the ability of EA and RA to modulate IL-1β, IL-6, IL-8, IL-10, MCP-1, and TNF-α gene expression in HaCaT cells after UVB irradiation. Cells were treated with UVB (100 mJ/cm2 and simultaneously with EA (5 μM in 0.1% DMSO or RA (2.7 μM in 0.5% DMSO. Moreover, these substances were added to the UVB-irradiated cells 1 h or 6 h before harvesting, depending on the established UVB-induced cytokine expression peak. Cytokine gene expression was examined using quantitative real time polymerase chain reaction. RA produced a significant reduction in UVB-induced expression of IL-6, IL-8, MCP-1, and TNF-α when applied at the same time as irradiation. EA showed milder effects compared with RA, except for TNF-α. Both substances decreased IL-6 expression, also when applied 5 h after irradiation, and always produced a significant increase in UVB-induced IL-10 expression. Our findings suggest that EA and RA are able to prevent and/or limit the UVB-induced inflammatory cascade, through a reduction in proinflammatory mediators and the enhancement of IL-10, with its protective function.

  8. Vaccinia virus induces rapid necrosis in keratinocytes by a STAT3-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Yong He

    Full Text Available Humans with a dominant negative mutation in STAT3 are susceptible to severe skin infections, suggesting an essential role for STAT3 signaling in defense against cutaneous pathogens.To focus on innate antiviral defenses in keratinocytes, we used a standard model of cutaneous infection of severe combined immunodeficient mice with the current smallpox vaccine, ACAM-2000. In parallel, early events post-infection with the smallpox vaccine ACAM-2000 were investigated in cultured keratinocytes of human and mouse origin.Mice treated topically with a STAT3 inhibitor (Stattic developed larger vaccinia lesions with higher virus titers and died more rapidly than untreated controls. Cultured human and murine keratinocytes infected with ACAM-2000 underwent rapid necrosis, but when treated with Stattic or with inhibitors of RIP1 kinase or caspase-1, they survived longer, produced higher titers of virus, and showed reduced activation of type I interferon responses and inflammatory cytokines release. Treatment with inhibitors of RIP1 kinase and STAT3, but not caspase-1, also reduced the inflammatory response of keratinocytes to TLR ligands. Vaccinia growth properties in Vero cells, which are known to be defective in some antiviral responses, were unaffected by inhibition of RIP1K, caspase-1, or STAT3.Our findings indicate that keratinocytes suppress the replication and spread of vaccinia virus by undergoing rapid programmed cell death, in a process requiring STAT3. These data offer a new framework for understanding susceptibility to skin infection in patients with STAT3 mutations. Interventions which promote prompt necroptosis/pyroptosis of infected keratinocytes may reduce risks associated with vaccination with live vaccinia virus.

  9. [Mucocutaneous diseases and murine models with death of keratinocytes induced by lichenoid tissue reaction/interface dermatitis].

    Science.gov (United States)

    Okiyama, Naoko

    2015-01-01

    A set of histopathological elements with death of epidermal basal cell layer keratinocytes along with inflammatory cell infiltration distinguishes lichenoid tissue reaction (LTR)/interface dermatitis (IFD) from other inflammatory mucocutaneous diseases. The LTR/IFD can be seen in skin disorders like as lichen planus, acute graft-versus-host disease, lupus erythematosus, dermatomyositis, and toxic epidermal necrolysis/Stevesn-Johnson syndrome. Clinical and basic researches suggested that cytotoxic CD8 T cells producing interferon-γ and FasL are final effector cells to cause apoptosis of keratinocyte. Some murine models of LTR/IFD have been established, for example, LTR/IFD reactions of keratinocyte-specific ovalbumin (OVA)-transgenic mice after OVA-specific T-cell-receptor(+)CD8 T cells. By analysis of the murine model, a new class of immunosuppressant, a JAK inhibitor, has been suggested as a new candidate for treatment of LTR/IFD.

  10. Effects triggered by platinum nanoparticles on primary keratinocytes

    Directory of Open Access Journals (Sweden)

    Konieczny P

    2013-10-01

    Full Text Available Piotr Konieczny,1,* Anna Grazyna Goralczyk,1,* Radoslaw Szmyd,1,* Lukasz Skalniak,1,* Joanna Koziel,2 Francesca Larese Filon,3 Matteo Crosera,4 Agnieszka Cierniak,1 Ewa K Zuba-Surma,5 Julia Borowczyk,5 Eliza Laczna,5 Justyna Drukala,5 Elzbieta Pyza,6 Danuta Semik,6 Olga Woznicka,6 Andrzej Klein,1 Jolanta Jura11Department of General Biochemistry, 2Department of Microbiology, Jagiellonian University, Kraków, Poland; 3Department of Public Health Sciences, 4Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy; 5Department of Cell Biology, 6Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland*These authors equally contributed to this workAbstract: The platinum (Pt-group elements (PGEs represent a new kind of environmental pollutant and a new hazard for human health. Since their introduction as vehicle-exhaust catalysts, their emissions into the environment have grown considerably compared with their low natural concentration in the earth crust. PGE emissions from vehicle catalysts can be also in the form of nanometer-sized particles (Pt nanoparticles [PtNPs]. These elements, both in their metallic form or as ions solubilized in biological media, are now recognized as potent allergens and sensitizers. Human skin is always exposed to toxic particles; therefore, in the present study we addressed the question of whether polyvinylpyrrolidone-coated PtNPs may have any negative effects on skin cells, including predominantly epidermal keratinocytes. In this study, PtNPs of two sizes were used: 5.8 nm and 57 nm, in concentrations of 6.25, 12.5, and 25 µg/mL. Both types of NPs were protected with polyvinylpyrrolidone. Primary keratinocytes were treated for 24 and 48 hours, then cytotoxicity, genotoxicity, morphology, metabolic activity, and changes in the activation of signaling pathways were investigated in PtNP-treated cells. We found that PtNPs trigger toxic effects on primary keratinocytes

  11. Melanocytes and keratinocytes have distinct and shared responses to ultraviolet radiation and arsenic.

    Science.gov (United States)

    Cooper, K L; Yager, J W; Hudson, L G

    2014-01-30

    The rise of melanoma incidence in the United States is a growing public health concern. A limited number of epidemiology studies suggest an association between arsenic levels and melanoma risk. Arsenic acts as a co-carcinogen with ultraviolet radiation (UVR) for the development of squamous cell carcinoma and proposed mechanisms include generation of oxidative stress by arsenic and UVR and inhibition of UVR-induced DNA repair by arsenic. In this study, we investigate similarities and differences in response to arsenic and UVR in keratinocytes and melanocytes. Normal melanocytes are markedly more resistant to UVR-induced cytotoxicity than normal keratinocytes, but both cell types are equally sensitive to arsenite. Melanocytes were more resistant to arsenite and UVR stimulation of superoxide production than keratinocytes, but the concentration of arsenite necessary to inhibit the activity of the DNA repair protein poly(ADP-ribose)polymerase and enhance retention of UVR-induced DNA damage was essentially equivalent in both cell types. These findings suggest that although melanocytes are less sensitive than keratinocytes to initial UVR-mediated DNA damage, both of these important target cells in the skin share a mechanism related to arsenic inhibition of DNA repair. These findings suggest that concurrent chronic arsenic exposure could promote retention of unrepaired DNA damage in melanocytes and act as a co-carcinogen in melanoma.

  12. Activated protein C: A regulator of human skin epidermal keratinocyte function

    Institute of Scientific and Technical Information of China (English)

    Kelly; McKelvey; Christopher; John; Jackson; Meilang; Xue

    2014-01-01

    Activated protein C(APC) is a physiological anticoagulant, derived from its precursor protein C(PC). Independent of its anticoagulation, APC possesses strong anti-inflammatory, anti-apoptotic and barrier protective properties which appear to be protective in a number of disorders including chronic wound healing. The epidermis is the outermost skin layer and provides the first line of defence against the external environment. Keratinocytes are the most predominant cells in the epidermis and play a critical role in maintaining epidermal barrier function. PC/APC and its receptor, endothelial protein C receptor(EPCR), once thought to be restricted to the endothelium, are abundantly expressed by skin epidermal keratinocytes. These cells respond to APC by upregulating proliferation, migration and matrix metalloproteinase-2 activity and inhibiting apoptosis/inflammation leading to a wound healing phenotype. APC also increases barrier function of keratinocyte monolayers by promoting the expression of tight junction proteins and re-distributing them to cell-cell contacts. These cytoprotective properties of APC are mediated through EPCR, protease-activated receptors, epidermal growth factor receptor or Tie2. Future preventive and therapeutic uses of APC in skin disorders associated with disruption of barrier function and inflammation look promising. This review will focus on APC’s function in skin epidermis/keratinocytes and its therapeutical potential in skin inflammatory conditions.

  13. Development of a full-thickness human gingiva equivalent constructed from immortalized keratinocytes and fibroblasts

    NARCIS (Netherlands)

    J.K. Buskermolen; C.M.A. Reijnders; S.W. Spiekstra; T. Steinberg; C.J. Kleverlaan; A.J. Feilzer; A.D. Bakker; S. Gibbs

    2016-01-01

    Organotypic models make it possible to investigate the unique properties of oral mucosa in vitro. For gingiva, the use of human primary keratinocytes (KC) and fibroblasts (Fib) is limited due to the availability and size of donor biopsies. The use of physiologically relevant immortalized cell lines

  14. Activated protein C: A regulator of human skin epidermal keratinocyte function.

    Science.gov (United States)

    McKelvey, Kelly; Jackson, Christopher John; Xue, Meilang

    2014-05-26

    Activated protein C (APC) is a physiological anticoagulant, derived from its precursor protein C (PC). Independent of its anticoagulation, APC possesses strong anti-inflammatory, anti-apoptotic and barrier protective properties which appear to be protective in a number of disorders including chronic wound healing. The epidermis is the outermost skin layer and provides the first line of defence against the external environment. Keratinocytes are the most predominant cells in the epidermis and play a critical role in maintaining epidermal barrier function. PC/APC and its receptor, endothelial protein C receptor (EPCR), once thought to be restricted to the endothelium, are abundantly expressed by skin epidermal keratinocytes. These cells respond to APC by upregulating proliferation, migration and matrix metalloproteinase-2 activity and inhibiting apoptosis/inflammation leading to a wound healing phenotype. APC also increases barrier function of keratinocyte monolayers by promoting the expression of tight junction proteins and re-distributing them to cell-cell contacts. These cytoprotective properties of APC are mediated through EPCR, protease-activated receptors, epidermal growth factor receptor or Tie2. Future preventive and therapeutic uses of APC in skin disorders associated with disruption of barrier function and inflammation look promising. This review will focus on APC's function in skin epidermis/keratinocytes and its therapeutical potential in skin inflammatory conditions.

  15. Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes

    Science.gov (United States)

    Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes Nanoparticle uptake in cells may be an important determinant of their potential cytotoxic and inflammatory effects. Six commercial TiO2 NP (A=Alfa Aesar,10nm, A*=Alfa Aesar 32nm, B=P25 27...

  16. Altered expression of glycosaminoglycans in metastatic 13762NF rat mammary adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Steck, P.A.; Cheong, P.H.; Nakajima, M.; Yung, W.K.A.; Moser, R.P.; Nicolson, G.L.

    1987-02-24

    A difference in the expression and metabolism of (/sup 35/S)sulfated glycosaminoglycans between rat mammary tumor cells derived from a primary tumor and those from its metastatic lesions has been observed. Cells from the primary tumor possessed about equal quantities of chondroitin sulfate and heparan sulfate on their cell surfaces but released fourfold more chondroitin sulfate than heparan sulfate into their medium. In contrast, cells from distal metastatic lesions expressed approximately 5 times more heparan sulfate than chondroitin sulfate in both medium and cell surface fractions. This was observed to be the result of differential synthesis of the glycosaminoglycans and not of major structural alterations of the individual glycosaminoglycans. The degree of sulfation and size of heparan sulfate were similar for all cells examined. However, chondroitin sulfate, observed to be only chondroitin 4-sulfate, from the metastases-derived cells had a smaller average molecular weight on gel filtration chromatography and showed a decreased quantity of sulfated disaccharides upon degradation with chondroitin ABC lyase compared to the primary tumor derived cells. Major qualitative or quantitative alterations were not observed for hyaluronic acid among the various 13762NF cells. The metabolism of newly synthesized sulfated glycosaminoglycans was also different between cells from primary tumor and metastases. A pulse-chase kinetics study demonstrated that both heparan sulfate and chondroitin sulfate were degraded by the metastases-derived cells, whereas the primary tumor derived cells degraded only heparan sulfate and degraded it at a slower rate. These results suggested that altered glycosaminoglycan expression and metabolism may be associated with the metastatic process in 13762NF rat mammary tumor cells.

  17. Effects of Chemotherapy-Induced Alterations in Cell Mechanical Properties on Cancer Metastasis

    Science.gov (United States)

    Prathivadhi, Sruti; Ekpenyong, Andrew; Nichols, Michael; Taylor, Carolyn; Ning, Jianhao

    Biological cells can modulate their mechanical properties to suit their functions and in response to changes in their environment. Thus, mechanical phenotyping of cells has been employed for tracking stem cell differentiation, bacterial infection, cell death, etc. Malignant transformation of cells also involves changes in mechanical properties. However, the extent to which mechanical properties of cancer cells contribute to metastasis is not well understood. Yet, more than 90% of all cancer deaths are directly related to metastasis. Transit of cells through the microcirculation is one of the key features of metastasis. We hypothesize that cancer treatment regimens do inadvertently alter cell mechanical properties in ways that might promote cancer metastasis. We use a microfluidic microcirculation mimetic (MMM) platform which mimics the capillary constrictions of the pulmonary and peripheral microcirculation to determine if in-vivo-like mechanical stimuli can evoke different responses from cells subjected to various cancer drugs. In particular, we show that cancer cells treated with chemotherapeutic drugs such as daunorubicin, become more deformable at short timescales (0.1 s) and transit faster through the device. Our results are first steps in evaluating the pro- or anti-metastatic effects of chemotherapeutic drugs based on their induced alterations in cell mechanical properties.

  18. Gadd45a inhibits cell migration and invasion by altering the global RNA expression.

    Science.gov (United States)

    Shan, Zhanhai; Li, Guiyuan; Zhan, Qimin; Li, Dan

    2012-09-01

    Gadd45a, the first well-defined p53 downstream gene, can be induced by multiple DNA-damaging agents, which plays important roles in the control of cell cycle checkpoint, DNA repair process and signaling transduction. Our previous findings suggested that Gadd45a maintains cell-cell adhesion and cell contact inhibition. However, little is known about how Gadd45a participates in the suppression of malignancy in human cancer cells. To examine the functions of Gadd45a in cell invasion and metastasis, we performed the adhesion, wound-healing and transwell assays in Gadd45a (+/+) and Gadd45a (-/-) MEF cell lines. We found the adhesion, migration and invasive abilities were much higher in Gadd45a deficient cells. We furthermore applied high-throughput cDNA microarray analysis and bioinformatics analysis to analyze the mechanisms of Gadd45a gene in invasion and metastasis. Compared with the Gadd45a wild type cells, the Gadd45a deficient cells showed a wide range of transcripts alterations. The altered gene pathways were predicted by the MAS software, which indicated focal adhesion,cell communication,ECM-receptor interaction as the three main pathways. Real-time PCR was employed to validate the differentially expressed genes. Interestingly, we figured out that the deregulations of these genes are caused neither by genomic aberrations nor methylation status. These findings provided a novel insight that Gadd45a may involve in tumor progression by regulating related genes expressions.

  19. Molecular alterations in tumorigenic human bronchial and breast epithelial cells induced by high let radiation

    Science.gov (United States)

    Hei, T. K.; Zhao, Y. L.; Roy, D.; Piao, C. Q.; Calaf, G.; Hall, E. J.

    Carcinogenesis is a multi-stage process with sequence of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer. In the present study, immortalized human bronchial (BEP2D) and breast (MCF-10F) cells were irradiated with graded doses of either 150 keV/μm alpha particles or 1 GeV/nucleon 56Fe ions. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Cell fusion studies indicated that radiation-induced tumorigenic phenotype in BEP2D cells could be completely suppressed by fusion with non-tumorigenic BEP2D cells. The differential expressions of known genes between tumorigenic bronchial and breast cells induced by alpha particles and their respective control cultures were compared using cDNA expression array. Among the 11 genes identified to be differentially expressed in BEP2D cells, three ( DCC, DNA-PK and p21 CIPI) were shown to be consistently down-regulated by 2 to 4 fold in all the 5 tumor cell lines examined. In contrast, their expressions in the fusion cell lines were comparable to control BEP2D cells. Similarly, expression levels of a series of genes were found to be altered in a step-wise manner among tumorigenic MCF-10F cells. The results are highly suggestive that functional alterations of these genes may be causally related to the carcinogenic process.

  20. Effects of bile acids on proliferation and ultrastructural alteration of pancreatic cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Zheng Wu; Yi Lüi; Bo Wang; Chang Liu; Zuo-Ren Wang,

    2003-01-01

    AIM: Pancreatic cancer in the head is frequently accompanied by jaundice and high bile acid level in serum. This study focused on the direct effects of bile acids on proliferation and ultrastructural alteration of pancreatic cancer.METHODS: Pancreatic cancer cell lines PANC-1, MIA PaCa2 and PGHAM-1 were explored in this study. The cell lines were cultured in media supplemented with certain bile acids,CA, DCA, LCA, TCDC, TDCA and GCA. Their influence on cell growth was measured with MTT assay after 72 h of incubation. Cell cycles of PANC-1 cells in 40 μM of bile acids media were analyzed by flow cytometry. Ultrastructural alteration of PANC-1 cells induced by DCA was observed using scanning and transmission electron microscope (SEM and TEM).RESULTS: At various concentrations of bile acids and incubation time, no enhanced effects of bile acids on cell proliferation were observed. Significant inhibitory effects were obtained in almost all media with bile acids. DCA and CA increased the percentage of G0+G1 phase cells, while GCA and TDCA elevated the S phase cell number. After 48 h of incubation in DCA medium, PANC-1 cells showed some structural damages such as loss of their microvilli and vacuolization of organelles in cytoplasm.CONCLUSION: Bile acids can reduce proliferation of pancreatic cancer cells due to their direct cytotoxicity. This result implies that elevation of bile acids in jaundiced serum may inhibit pancreatic cancer progression.

  1. Selenoproteins are essential for proper keratinocyte function and skin development.

    Directory of Open Access Journals (Sweden)

    Aniruddha Sengupta

    Full Text Available Dietary selenium is known to protect skin against UV-induced damage and cancer and its topical application improves skin surface parameters in humans, while selenium deficiency compromises protective antioxidant enzymes in skin. Furthermore, skin and hair abnormalities in humans and rodents may be caused by selenium deficiency, which are overcome by dietary selenium supplementation. Most important biological functions of selenium are attributed to selenoproteins, proteins containing selenium in the form of the amino acid, selenocysteine (Sec. Sec insertion into proteins depends on Sec tRNA; thus, knocking out the Sec tRNA gene (Trsp ablates selenoprotein expression. We generated mice with targeted removal of selenoproteins in keratin 14 (K14 expressing cells and their differentiated descendents. The knockout progeny had a runt phenotype, developed skin abnormalities and experienced premature death. Lack of selenoproteins in epidermal cells led to the development of hyperplastic epidermis and aberrant hair follicle morphogenesis, accompanied by progressive alopecia after birth. Further analyses revealed that selenoproteins are essential antioxidants in skin and unveiled their role in keratinocyte growth and viability. This study links severe selenoprotein deficiency to abnormalities in skin and hair and provides genetic evidence for the role of these proteins in keratinocyte function and cutaneous development.

  2. UVB-dependent changes in the expression of fast-responding early genes is modulated by huCOP1 in keratinocytes.

    Science.gov (United States)

    Fazekas, B; Polyánka, H; Bebes, A; Tax, G; Szabó, K; Farkas, K; Kinyó, A; Nagy, F; Kemény, L; Széll, M; Ádám, É

    2014-11-01

    Ultraviolet (UV) B is the most prominent physical carcinogen in the environment leading to the development of various skin cancers. We have previously demonstrated that the human ortholog of the Arabidopsis thaliana constitutive photomorphogenesis 1 (COP1) protein, huCOP1, is expressed in keratinocytes in a UVB-regulated manner and is a negative regulator of p53 as a posttranslational modifier. However, it was not known whether huCOP1 plays a role in mediating the UVB-induced early transcriptional responses of human keratinocytes. In this study, we report that stable siRNA-mediated silencing of huCOP1 affects the UVB response of several genes within 2 h of irradiation, indicating that altered huCOP1 expression sensitizes the cells toward UVB. Pathway analysis identified a molecular network in which 13 of the 30 examined UVB-regulated genes were organized around three central proteins. Since the expression of the investigated genes was upregulated by UVB in the siCOP1 cell line, we hypothesize that huCOP1 is a repressor of the identified pathway. Several members of the network have been implicated previously in the pathogenesis of non-melanoma skin cancers; therefore, clarifying the role of huCOP1 in these skin diseases may have clinical relevance in the future.

  3. Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots.

    Science.gov (United States)

    Wang, Wei; Zhao, Xue Qiang; Chen, Rong Fu; Dong, Xiao Ying; Lan, Ping; Ma, Jian Feng; Shen, Ren Fang

    2015-07-01

    The phytotoxicity of aluminium (Al) ions can be alleviated by ammonium (NH4(+)) in rice and this effect has been attributed to the decreased Al accumulation in the roots. Here, the effects of different nitrogen forms on cell wall properties were compared in two rice cultivars differing in Al tolerance. An in vitro Al-binding assay revealed that neither NH4(+) nor NO3(-) altered the Al-binding capacity of cell walls, which were extracted from plants not previously exposed to N sources. However, cell walls extracted from NH4(+)-supplied roots displayed lower Al-binding capacity than those from NO3(-)-supplied roots when grown in non-buffered solutions. Fourier-transform infrared microspectroscopy analysis revealed that, compared with NO3(-)-supplied roots, NH4(+)-supplied roots possessed fewer Al-binding groups (-OH and COO-) and lower contents of pectin and hemicellulose. However, when grown in pH-buffered solutions, these differences in the cell wall properties were not observed. Further analysis showed that the Al-binding capacity and properties of cell walls were also altered by pHs alone. Taken together, our results indicate that the NH4(+)-reduced Al accumulation was attributed to the altered cell wall properties triggered by pH decrease due to NH4(+) uptake rather than direct competition for the cell wall binding sites between Al(3+) and NH4(+).

  4. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti

  5. The Parkinsonism-associated protein DJ-1/Park7 prevents glycation damage in human keratinocyte.

    Science.gov (United States)

    Advedissian, Tamara; Deshayes, Frédérique; Poirier, Françoise; Viguier, Mireille; Richarme, Gilbert

    2016-04-22

    Reducing sugars and dicarbonyls form covalent adducts with proteins through a nonenzymatic process known as glycation, which inactivates proteins, is increased in diabetic patients and is associated with diabetic complications, including retinopathy, cataracts, nephropathy, neuropathy, cardiomyopathy and skin defects. We recently characterized DJ-1/Park7 as a protein deglycase that repairs proteins from glycation by glyoxal and methylglyoxal, two major glycating agents which are responsible for up to 65% of glycation events. In this study, we investigated the ability of DJ-1 to prevent protein glycation in keratinocytes. Glycation of collagen and keratinocyte proteins was tested by measuring ultraviolet absorption and fluorescence emission. Protein glycation in HaCaT keratinocytes was investigated by immunodetection with anti-advanced glycation endproduct antibodies, after DJ-1 depletion or overexpression. In vitro, DJ-1 prevented glycation of collagen and keratinocyte protein extracts. In cell culture, DJ-1 depletion by small interfering RNAs resulted in a 3-fold increase in protein glycation levels. Moreover, protein glycation levels were decreased several-fold in cells overexpressing DJ-1 after addition of the Nrf2 inducer sulforaphane or after transfection with a DJ-1 plasmid. Thus, the DJ-1 deglycase plays a major role in preventing protein glycation in eukaryotic cells and might be important for preventing skin glycation.

  6. The Effects of Antifungal Azoles on Inflammatory Cytokine Production in Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    K Zomorodian

    2008-04-01

    Full Text Available ABSTRACT: Introduction & Objective: Azoles drugs are being used successfully in treatment of fungal infections. Recently, immunosuppressive effects of some of these agents have been reported. Keratinocytes, as the major cells of the skin, have an important role in innate immunity against pathogenic agents. Considering the scanty of information about the effects of azoles on immune responces, this study was conducted to assess the expression and secretion of inflammatory cytokines in keratinocytes following treatment with azole drugs. Materials & Methods: This is an exprimental study conducted in in molecular biology division in Tehran University of Medical Sciences and Immunodermatology Department in Vienna Medical University. Primery keratinocytes were cultured and treated with different concentrations of fluconazole, itraconazole, ketoconazole and griseofulvin. Secreted IL1, IL6 and TNF-α by keratinocytes in culture supernatant were measured by quantitative enzyme immunoassay technique. Moreover, expression of the genes encoding IL1 and IL8 was evaluated by Real Time-PCR. Results: Treatment of keratinocytes with different concentrations of fluconazole and low concentration of ketoconazole resulted in decrease in IL1 secretion, but Itraconazole and griseofulvin did not show such an effect at the same concentrations. In addition, none of the examined drugs had an effect on secretion level of IL6 and TNF-α. Quantitative analysis of IL1 and IL8 encoding genes revealed that transcription on these genes might be suppressed following treatment with fluconazole or ketoconazole. Conclusion: Fluconazole and ketoconazole might modulate the expression and secretion of IL1 and IL8 and affect the direction of immune responses induced by keratinocytes

  7. Steroid synthesis by primary human keratinocytes; implications for skin disease

    Energy Technology Data Exchange (ETDEWEB)

    Hannen, Rosalind F., E-mail: r.f.hannen@qmul.ac.uk [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom); Michael, Anthony E. [Centre for Developmental and Endocrine Signalling, Academic Section of Obstetrics and Gynaecology, Division of Clinical Developmental Sciences, 3rd Floor, Lanesborough Wing, St. George' s, University of London, Cranmer Terrace, Tooting, London SW17 0RE (United Kingdom); Jaulim, Adil [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom); Bhogal, Ranjit [Life Science, Unilever R and D Colworth House, Sharnbrook, Bedfordshire MK44 1LQ (United Kingdom); Burrin, Jacky M. [Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ (United Kingdom); Philpott, Michael P. [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom)

    2011-01-07

    Research highlights: {yields} Primary keratinocytes express the steroid enzymes required for cortisol synthesis. {yields} Normal primary human keratinocytes can synthesise cortisol. {yields} Steroidogenic regulators, StAR and MLN64, are expressed in normal epidermis. {yields} StAR expression is down regulated in eczema and psoriatic epidermis. -- Abstract: Cortisol-based therapy is one of the most potent anti-inflammatory treatments available for skin conditions including psoriasis and atopic dermatitis. Previous studies have investigated the steroidogenic capabilities of keratinocytes, though none have demonstrated that these skin cells, which form up to 90% of the epidermis are able to synthesise cortisol. Here we demonstrate that primary human keratinocytes (PHK) express all the elements required for cortisol steroidogenesis and metabolise pregnenolone through each intermediate steroid to cortisol. We show that normal epidermis and cultured PHK express each of the enzymes (CYP11A1, CYP17A1, 3{beta}HSD1, CYP21 and CYP11B1) that are required for cortisol synthesis. These enzymes were shown to be metabolically active for cortisol synthesis since radiometric conversion assays traced the metabolism of [7-{sup 3}H]-pregnenolone through each steroid intermediate to [7-{sup 3}H]-cortisol in cultured PHK. Trilostane (a 3{beta}HSD1 inhibitor) and ketoconazole (a CYP17A1 inhibitor) blocked the metabolism of both pregnenolone and progesterone. Finally, we show that normal skin expresses two cholesterol transporters, steroidogenic acute regulatory protein (StAR), regarded as the rate-determining protein for steroid synthesis, and metastatic lymph node 64 (MLN64) whose function has been linked to cholesterol transport in steroidogenesis. The expression of StAR and MLN64 was aberrant in two skin disorders, psoriasis and atopic dermatitis, that are commonly treated with cortisol, suggesting dysregulation of epidermal steroid synthesis in these patients. Collectively these data

  8. SIRT1 inhibition restores apoptotic sensitivity in p53-mutated human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, Katharine J.; Cook, Anthony L., E-mail: Anthony.Cook@utas.edu.au; Snow, Elizabeth T., E-mail: elizabeth.snow@utas.edu.au

    2014-06-15

    Mutations to the p53 gene are common in UV-exposed keratinocytes and contribute to apoptotic resistance in skin cancer. P53-dependent activity is modulated, in part, by a complex, self-limiting feedback loop imposed by miR-34a-mediated regulation of the lysine deacetylase, SIRT1. Expression of numerous microRNAs is dysregulated in squamous and basal cell carcinomas; however the contribution of specific microRNAs to the pathogenesis of skin cancer remains untested. Through use of RNAi, miRNA target site blocking oligonucleotides and small molecule inhibitors, this study explored the influence of p53 mutational status, SIRT1 activity and miR-34a levels on apoptotic sensitivity in primary (NHEK) and p53-mutated (HaCaT) keratinocyte cell lines. SIRT1 and p53 are overexpressed in p53-mutated keratinocytes, whilst miR-34a levels are 90% less in HaCaT cells. HaCaTs have impaired responses to p53/SIRT1/miR-34a axis manipulation which enhanced survival during exposure to the chemotherapeutic agent, camptothecin. Inhibition of SIRT1 activity in this cell line increased p53 acetylation and doubled camptothecin-induced cell death. Our results demonstrate that p53 mutations increase apoptotic resistance in keratinocytes by interfering with miR-34a-mediated regulation of SIRT1 expression. Thus, SIRT1 inhibitors may have a therapeutic potential for overcoming apoptotic resistance during skin cancer treatment. - Highlights: • Impaired microRNA biogenesis promotes apoptotic resistance in HaCaT keratinocytes. • TP53 mutations suppress miR-34a-mediated regulation of SIRT1 expression. • SIRT1 inhibition increases p53 acetylation in HaCaTs, restoring apoptosis.

  9. Keratinocyte differentiation and upregulation of ceramide synthesis induced by an oat lipid extract via the activation of PPAR pathways.

    Science.gov (United States)

    Chon, Su-Hyoun; Tannahill, Ruth; Yao, Xiang; Southall, Michael D; Pappas, Apostolos

    2015-04-01

    Activation of peroxisome proliferator-activated receptors (PPARs) has been shown to have an important role in skin barrier function by regulating differentiation and lipid synthesis in keratinocytes. Oat (Avena sativa) has long been used as a soothing agent to relieve skin irritations, and the clinical benefits of topical oat formulations have been proven; however, the mechanistic understanding of oat's mode of action remains unknown. We investigated whether an oat lipid extract could activate PPARs and subsequently increase epidermal lipid synthesis and differentiation markers. Primary human epidermal keratinocytes and transformed cell lines were treated with PPAR agonists and oat lipid extracts to investigate the PPAR agonism. PPAR target genes and epidermal differentiation markers were analysed using quantitative real-time PCR and HPTLC analysis. Oat lipid extract demonstrated robust dual agonism for PPARα and PPARβ/δ, and increased direct PPAR target gene induction in primary human keratinocytes. In addition, oat oil treatment increased both receptor expression and, consistent with the literature on PPARs, oat oil treatment resulted in a significant upregulation of differentiation genes (involucrin, SPRRs and transglutaminase 1) and ceramide processing genes (β-glucocerebrosidase, sphingomyelinases 3 and ABCA12). Further, oat oil treatment in keratinocytes significantly increased ceramide levels (70%), suggesting a functional translation of PPAR activation by oat oil in keratinocytes. Taken together, these results demonstrate that oat lipids possess robust dual agonistic activities for PPARα and PPARβ/δ, increase their gene expression and induce differentiation and ceramide synthesis in keratinocytes, which can collectively improve skin barrier function.

  10. Altered T cell surface glycosylation in HIV-1 infection results in increased susceptibility to galectin-1-induced cell death.

    Science.gov (United States)

    Lantéri, Marion; Giordanengo, Valérie; Hiraoka, Nobuyoshi; Fuzibet, Jean-Gabriel; Auberger, Patrick; Fukuda, Minoru; Baum, Linda G; Lefebvre, Jean-Claude

    2003-12-01

    The massive T cell death that occurs in HIV type 1 (HIV-1) infection contributes profoundly to the pathophysiology associated with AIDS. The mechanisms controlling cell death of both infected and uninfected T cells ("bystander" death) are not completely understood. We have shown that HIV-1 infection of T cells results in altered glycosylation of cell surface glycoproteins; specifically, it decreased sialylation and increased expression of core 2 O-glycans. Galectin-1 is an endogenous human lectin that recognizes these types of glycosylation changes and induces cell death of activated lymphocytes. Therefore we studied the possible contribution of galectin-1 in the pathophysiology of AIDS. O-glycan modifications were investigated on peripheral lymphocytes from AIDS patients. Oligosaccharides from CD43 and CD45 of CEM cells latently infected with HIV-1 were chemically analyzed. Consistent with our previous results, we show that HIV-1 infection results in accumulation of exposed lactosamine residues, oligosaccharides recognized by galectin-1 on cell surface glycoproteins. Both latently HIV-1-infected T cell lines and peripheral CD4 and CD8 T cells from AIDS patients exhibited exposed lactosamine residues and demonstrated marked susceptibility to galectin-1-induced cell death, in contrast to control cultures or cells from uninfected donors. The fraction of cells that died in response to galectin-1 exceeded the fraction of infected cells, indicating that death of uninfected cells occurred. Altered cell surface glycosylation of T cells during HIV-1 infection increases the susceptibility to galectin-1-induced cell death, and this death pathway can contribute to loss of both infected and uninfected T cells in AIDS.

  11. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure

    OpenAIRE

    Coleman, Heather D.; Yan, Jimmy; Mansfield, Shawn D.

    2009-01-01

    Overexpression of the Gossypium hirsutum sucrose synthase (SuSy) gene under the control of 2 promoters was examined in hybrid poplar (Populus alba × grandidentata). Analysis of RNA transcript abundance, enzyme activity, cell wall composition, and soluble carbohydrates revealed significant changes in the transgenic lines. All lines showed significantly increased SuSy enzyme activity in developing xylem. This activity manifested in altered secondary cell wall cellulose content per dry weight in...

  12. Disodium Cromoglycate, A Mast-Cell Stabilizer, Alters Postradiation Regional Cerebral Blood Flow in Primates

    Science.gov (United States)

    1986-01-01

    ranD RISEARCH INSTITUTI SCIENTIFIC REPORTTC SR86-14 ELECTE JUL0186_ _ ~D DISODIUM CROMOGLYCATE , A MAST-CELL STABILIZER, ALTERS POSTRADIATION...were given the mast-cell stabilizers disodium cromoglycate (DSCC) or BRL 22321 (Beecham Phar- maceuticals, Research Division) before exposure to 100 Gy...flow could be mitigated by the pre- radiation administration of either disodium cromoglycate (DSCG) (Fisons Corporation, ledford, Mass.) or BRL 22321

  13. Neuroprotection by inhibiting the c-Jun N-terminal kinase pathway after cerebral ischemia occurs independently of interleukin-6 and keratinocyte-derived chemokine (KC/CXCL1 secretion

    Directory of Open Access Journals (Sweden)

    Benakis Corinne

    2012-04-01

    Full Text Available Abstract Background Cerebral ischemia is associated with the activation of glial cells, infiltration of leukocytes and an increase in inflammatory mediators in the ischemic brain and systemic circulation. How this inflammatory response influences lesion size and neurological outcome remains unclear. D-JNKI1, an inhibitor of the c-Jun N-terminal kinase pathway, is strongly neuroprotective in animal models of stroke. Intriguingly, the protection mediated by D-JNKI1 is high even with intravenous administration at very low doses with undetectable drug levels in the brain, pointing to a systemic mode of action, perhaps on inflammation. Findings We evaluated whether D-JNKI1, administered intravenously 3 h after the onset of middle cerebral artery occlusion (MCAO, modulates secretion of the inflammatory mediators interleukin-6 and keratinocyte-derived chemokine in the plasma and from the spleen and brain at several time points after MCAO. We found an early release of both mediators in the systemic circulation followed by an increase in the brain and went on to show a later systemic increase in vehicle-treated mice. Release of interleukin-6 and keratinocyte-derived chemokine from the spleen of mice with MCAO was not significantly different from sham mice. Interestingly, the secretion of these inflammatory mediators was not altered in the systemic circulation or brain after successful neuroprotection with D-JNKI1. Conclusions We demonstrate that neuroprotection with D-JNKI1 after experimental cerebral ischemia is independent of systemic and brain release of interleukin-6 and keratinocyte-derived chemokine. Furthermore, our findings suggest that the early systemic release of interleukin-6 and keratinocyte-derived chemokine may not necessarily predict an unfavorable outcome in this model.

  14. δ-Catenin promotes prostate cancer cell growth and progression by altering cell cycle and survival gene profiles

    Directory of Open Access Journals (Sweden)

    Chen Yan-Hua

    2009-03-01

    Full Text Available Abstract Background δ-Catenin is a unique member of β-catenin/armadillo domain superfamily proteins and its primary expression is restricted to the brain. However, δ-catenin is upregulated in human prostatic adenocarcinomas, although the effects of δ-catenin overexpression in prostate cancer are unclear. We hypothesized that δ-catenin plays a direct role in prostate cancer progression by altering gene profiles of cell cycle regulation and cell survival. Results We employed gene transfection and small interfering RNA to demonstrate that increased δ-catenin expression promoted, whereas its knockdown suppressed prostate cancer cell viability. δ-Catenin promoted prostate cancer cell colony formation in soft agar as well as tumor xenograft growth in nude mice. Deletion of either the amino-terminal or carboxyl-terminal sequences outside the armadillo domains abolished the tumor promoting effects of δ-catenin. Quantitative RT2 Profiler™ PCR Arrays demonstrated gene alterations involved in cell cycle and survival regulation. δ-Catenin overexpression upregulated cyclin D1 and cdc34, increased phosphorylated histone-H3, and promoted the entry of mitosis. In addition, δ-catenin overexpression resulted in increased expression of cell survival genes Bcl-2 and survivin while reducing the cell cycle inhibitor p21Cip1. Conclusion Taken together, our studies suggest that at least one consequence of an increased expression of δ-catenin in human prostate cancer is the alteration of cell cycle and survival gene profiles, thereby promoting tumor progression.

  15. Impact on Autophagy and Ultraviolet B Induced Responses of Treatment with the MTOR Inhibitors Rapamycin, Everolimus, Torin 1, and pp242 in Human Keratinocytes

    Science.gov (United States)

    Xu, Song; Li, Li; Li, Min; Zhang, Mengli

    2017-01-01

    The mechanistic target of Rapamycin (MTOR) protein is a crucial signaling regulator in mammalian cells that is extensively involved in cellular biology. The function of MTOR signaling in keratinocytes remains unclear. In this study, we detected the MTOR signaling and autophagy response in the human keratinocyte cell line HaCaT and human epidermal keratinocytes treated with MTOR inhibitors. Moreover, we detected the impact of MTOR inhibitors on keratinocytes exposed to the common carcinogenic stressors ultraviolet B (UVB) and UVA radiation. As a result, keratinocytes were sensitive to the MTOR inhibitors Rapamycin, everolimus, Torin 1, and pp242, but the regulation of MTOR downstream signaling was distinct. Next, autophagy induction only was observed in HaCaT cells treated with Rapamycin. Furthermore, we found that MTOR signaling was insensitive to UVB but sensitive to UVA radiation. UVB treatment also had no impact on the inhibition of MTOR signaling by MTOR inhibitors. Finally, MTOR inhibition by Rapamycin, everolimus, or pp242 did not affect the series of biological events in keratinocytes exposed to UVB, including the downregulation of BiP and PERK, activation of Histone H2A and JNK, and cleavage of caspase-3 and PARP. Our study demonstrated that MTOR inhibition in keratinocytes cannot always induce autophagy, and the MTOR pathway does not play a central role in the UVB triggered cellular response.

  16. Dyslipidemia-associated alterations in B cell subpopulation frequency and phenotype during experimental atherosclerosis.

    Science.gov (United States)

    Rincón-Arévalo, Héctor; Castaño, Diana; Villa-Pulgarín, Janny; Rojas, Mauricio; Vásquez, Gloria; Correa, Luis A; Ramírez-Pineda, José R; Yassin, Lina M

    2016-04-01

    Lymphocytes, the cellular effectors of adaptive immunity, are involved in the chronic inflammatory process known as atherosclerosis. Proatherogenic and atheroprotective properties have been ascribed to B cells. However, information regarding the role of B cells during atherosclerosis is scarce. Both the frequency and the phenotype of B cell subpopulations were studied by flow cytometry in wild type and apolipoprotein-E-deficient (apoE(-/-)) mice fed a high-fat (HFD) or control diet. Whereas the proportion of follicular cells was decreased, transitional 1-like cells were increased in mice with advanced atherosclerotic lesions (apoE(-/-) HFD). B cells in atherosclerotic mice were more activated, indicated by their higher surface expression of CD80, CD86, CD40 and CD95 and increased serum IgG1 levels. In the aorta, a decreased frequency of B cells was observed in mice with advanced atherosclerosis. Low expression of CD19 was observed on B cells from the spleen, aorta and lymph nodes of apoE(-/-) HFD mice. This alteration correlated with serum levels of IgG1 and cholesterol. A reduction in CD19 expression was induced in splenic cells from young apoE(-/-) mice cultured with lipemic serum. These results show that mice with advanced atherosclerosis display a variety of alterations in the frequency and phenotype of B lymphocytes, most of which are associated with dyslipidemia.

  17. Keratinocyte-targeted expression of human laminin γ2 rescues skin blistering and early lethality of laminin γ2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Tracy L Adair-Kirk

    Full Text Available Laminin-332 is a heterotrimeric basement membrane component comprised of the α3, ß3, and γ2 laminin chains. Laminin-332 modulates epithelial cell processes, such as adhesion, migration, and differentiation and is prominent in many embryonic and adult tissues. In skin, laminin-332 is secreted by keratinocytes and is a key component of hemidesmosomes connecting the keratinocytes to the underlying dermis. In mice, lack of expression of any of the three Laminin-332 chains result in impaired anchorage and detachment of the epidermis, similar to that seen in human junctional epidermolysis bullosa, and death occurs within a few days after birth. To bypass the early lethality of laminin-332 deficiency caused by the knockout of the mouse laminin γ2 chain, we expressed a dox-controllable human laminin γ2 transgene under a keratinocyte-specific promoter on the laminin γ2 (Lamc2 knockout background. These mice appear similar to their wild-type littermates, do not develop skin blisters, are fertile, and survive >1.5 years. Immunofluorescence analyses of the skin showed that human laminin γ2 colocalized with mouse laminin α3 and ß3 in the basement membrane zone underlying the epidermis. Furthermore, the presence of "humanized" laminin-332 in the epidermal basement membrane zone rescued the alterations in the deposition of hemidesmosomal components, such as plectin, collagen type XVII/BP180, and integrin α6 and ß4 chains, seen in conventional Lamc2 knockout mice, leading to restored formation of hemidesmosomes. These mice will be a valuable tool for studies of organs deficient in laminin-332 and the role of laminin-332 in skin, including wound healing.

  18. Altered expression of epithelial cell surface glycoconjugates and intermediate filaments at the margins of mucosal wounds

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Grøn, B; Mandel, U

    1998-01-01

    Alterations in cell to cell adhesion are necessary to enable the type of cell movements that are associated with epithelial wound healing and malignant invasion. Several studies of transformed cells have related epithelial cell movement to changes in the cell surface expression of the carbohydrate......-T antigen. The changes induced by wounding in the expression of collagen IV, laminin gamma2-chain (laminin-5), and laminin alpha5-chain were similar to those found in skin wounds and served to define the region of epithelial movement. This region was found to show a marked increase in staining for both...... epithelium, a pattern of expression similar to K16, which was also strongly upregulated in both the outgrowth and the adjacent nonwounded epithelium. These findings provide further support for an influence of such carbohydrate structures on the migratory behavior of epithelial cells....

  19. 熊果苷对A375与HACAT共培养模型中黑素细胞酪氨酸酶活性的影响%Effect of Arbutin on the in vitro model of the melanoma cells and keratinocyte co-culture system

    Institute of Scientific and Technical Information of China (English)

    陈凤江; 郭云辉; 陈巧云

    2013-01-01

    目的 体外构建黑素瘤细胞(A375)与人永生角质形成细胞(HACAT)直接接触共培养模型,观察熊果苷对该模型酪氨酸酶活性的影响同时观察熊果苷对该模型黑素合成及细胞的增殖的影响.方法 分别培养A375与HACAT,体外构建黑素瘤细胞与人永生角质形成细胞直接接触的共培养模型;将不同浓度熊果苷作用于此模型,用MTT法、多巴氧化法及NaOH裂解法检测酪氨酸酶活性、黑素合成以及细胞增殖的.结果 A375与HACAT能共同存活;分别用1 mg/ml,0.5mg/ml和0.2mg/ml的熊果苷对共培养细胞的增殖、黑素细胞酪氨酸酶活性及黑素合成均有较强的剂量相关的抑制作用,与对照组相比差异有统计学意义(P<0.05或P<0.01).结论 熊果苷对A375与HACAT共培养模型中细胞增殖、酪氨酸酶活性及黑素合成均呈浓度依赖性抑制作用.%Objective To establish the in vitro co-culture model of melanoma cells and keratinocytes,and observe the effect of Arbutin on pigmentation in co-culture model of melanoma cells and keratinocytes.Methods We cultivated the melanoma cells and keratinocytes respectively and then constructed the mixed cultivating model of them.After arbutin was added to the model,celludar proliferation,tyrosinase activity and melanin content were measured by MTT assay,L-DOPA oxidation assay and NaOH assay respectively.Results The in vitro co-culture model of melanoma cells and keratinocytes was established successfully The proliferation of co-culture cells,tyrosinase activity and the melanin synthesis were markedly suppressed by arbutin in a dose-dependent manner.The significant suppression was observed with 1,0.5,0.2mg/ml of arbutin than that with control.Conclusion We have successfully constructed the co-culture model of melanoma cells and keratinocytes,and the results indicate that Arbutin had a strong inhibition on celludar proliferation,tyrosinase activity and melanin content in a dose-dependent manner.

  20. Alteration of cadherin isoform expression and inhibition of gap junctions in stomach carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To explore cell malignant phenotype correlated changes of cell surface adhesion molecules and cell-cell communication in carcinogenesis, human stomach transformed and cancer cell lines were investigated. Expressions of E-cadherin, N-cadherin, ?-catenin, ?-catenin as well as gap junction (GJ) protein Cx32 were studied by utilization of immunoblotting, immunocytochemical and fluorescent dye transfer methods. Mammalian normal stomach mucosal cells expressed E-cadherin but not N-cadherin. E-cadherin immunofluorescence was detected at cell membranous adherens junctions (AJ) where colocalization with immunofluorescent staining of inner surface adhesion plaque proteins ?- and ?-catenins was observed. The existence of E-cadherin/ catenin (?-, ?-) protein complexes as AJ was suggested. In transformed and stomach cancer cells E-cadherin was inhibited, instead, N-cadherin was expressed and localized at membranous AJ where co-staining with ?- and ?-catenin fluorescence was observed. Formation of N-cadherin/catenin (?-, ?-) protein complex at AJs of transformed and cancer cells was suggested. The above observations were further supported by immunoblotting results. Normal stomach muscosal and transformed cells expressed Cx32 at membranous GJ and were competent of gap junction communication (GJIC). In stomach cancer cells, Cx32 was inhibited and GJIC was defective. The results suggested that changes of signal pathways mediated by both cell adhesion and cell communication systems are associated intracellular events of stomach carcinogenesis. The alteration of cadherin isoform from E- to N-cadherin in transformed and stomach cancer cells is the first report.

  1. Integration of the Transcription Factor-Regulated and Epigenetic Mechanisms in the Control of Keratinocyte Differentiation

    Science.gov (United States)

    Botchkarev, Vladimir A.

    2016-01-01

    The epidermal differentiation program is regulated at several levels including signaling pathways, lineage-specific transcription factors, and epigenetic regulators that establish well-coordinated process of terminal differentiation resulting in formation of the epidermal barrier. The epigenetic regulatory machinery operates at several levels including modulation of covalent DNA/histone modifications, as well as through higher-order chromatin remodeling to establish long-range topological interactions between the genes and their enhancer elements. Epigenetic regulators exhibit both activating and repressive effects on chromatin in keratinocytes (KCs): whereas some of them promote terminal differentiation, the others stimulate proliferation of progenitor cells, as well as inhibit premature activation of terminal differentiation-associated genes. Transcription factor-regulated and epigenetic mechanisms are highly connected, and the p63 transcription factor has an important role in the higher-order chromatin remodeling of the KC-specific gene loci via direct control of the genome organizer Satb1 and ATP-dependent chromatin remodeler Brg1. However, additional efforts are required to fully understand the complexity of interactions between distinct transcription factors and epigenetic regulators in the control of KC differentiation. Further understanding of these interactions and their alterations in different pathological skin conditions will help to progress toward the development of novel approaches for the treatment of skin disorders by targeting epigenetic regulators and modulating chromatin organization in KCs. PMID:26551942

  2. Transforming growth factor-β2 induces morphological alteration of human corneal endothelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Jing; Wang; Ting-Jun; Fan; Xiu-Xia; Yang; Shi-Min; Chang

    2014-01-01

    AIM:To investigate the morphological altering effect of transforming growth factor-β2(TGF-β2) on untransfected human corneal endothelial cells(HCECs)in vitro.METHODS:After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology,cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy,immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2(9 μg/L) altered HCE cell morphology after treatment for 36 h, increased the mean optical density(P <0.01) and the length of F-actin,reduced the mean optical density(P <0.01) of the collagen type IV in extracellular matrix(ECM) and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72 h.·CONCLUTION: TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.

  3. Beryllium alters lipopolysaccharide-mediated intracellular phosphorylation and cytokine release in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Silva, Shannon; Ganguly, Kumkum; Fresquez, Theresa M; Gupta, Goutam; McCleskey, T Mark; Chaudhary, Anu

    2009-12-01

    Beryllium exposure in susceptible individuals leads to the development of chronic beryllium disease, a lung disorder marked by release of inflammatory cytokine and granuloma formation. We have previously reported that beryllium induces an immune response even in blood mononuclear cells from healthy individuals. In this study, we investigate the effects of beryllium on lipopolysaccharide-mediated cytokine release in blood mononuclear and dendritic cells from healthy individuals. We found that in vitro treatment of beryllium sulfate inhibits the secretion of lipopolysaccharide-mediated interleukin 10, while the release of interleukin 1beta is enhanced. In addition, not all lipopolysaccharide-mediated responses are altered, as interleukin 6 release in unaffected upon beryllium treatment. Beryllium sulfate-treated cells show altered phosphotyrosine levels upon lipopolysaccharide stimulation. Significantly, beryllium inhibits the phosphorylation of signal transducer and activator of transducer 3, induced by lipopolysaccharide. Finally, inhibitors of phosphoinositide-3 kinase mimic the effects of beryllium in inhibition of interleukin 10 release, while they have no effect on interleukin 1beta secretion. This study strongly suggests that prior exposures to beryllium could alter host immune responses to bacterial infections in healthy individuals, by altering intracellular signaling.

  4. Long-term subculture of human keratinocytes under an anoxic condition.

    Science.gov (United States)

    Kino-oka, Masahiro; Agatahama, Yuka; Haga, Yuki; Inoie, Masukazu; Taya, Masahito

    2005-07-01

    The serial subculturing of human keratinocyte cells under the anoxic and normoxic conditions was examined. The cumulative number of population doublings in the subcultures under the former condition increased 2.1-fold while maintaining an appreciable growth rate of cells, as compared with that under the latter condition. Moreover, the migration ability, which was estimated by the rotation rate of paired cells, was maintained accompanied by fully developed filopodia of F-actin filaments under the anoxic condition, despite of the poor development of stress fibers at the center of the cellular body. The cells passaged under the anoxic condition possessed the sufficient clonogenic potential to form epithelial sheets, supporting the view that the long-term subculture of keratinocytes under the anoxic condition can be applied for cell expansion in the practical production of epithelial sheets.

  5. Epigenetic alteration of imprinted genes during neural differentiation of germline-derived pluripotent stem cells.

    Science.gov (United States)

    Lee, Hye Jeong; Choi, Na Young; Lee, Seung-Won; Ko, Kisung; Hwang, Tae Sook; Han, Dong Wook; Lim, Jisun; Schöler, Hans R; Ko, Kinarm

    2016-03-01

    Spermatogonial stem cells (SSCs), which are unipotent stem cells in the testes that give rise to sperm, can be converted into germline-derived pluripotent stem (gPS) by self-induction. The androgenetic imprinting pattern of SSCs is maintained even after their reprogramming into gPS cells. In this study, we used an in vitro neural differentiation model to investigate whether the imprinting patterns are maintained or altered during differentiation. The androgenetic patterns of H19, Snrpn, and Mest were maintained even after differentiation of gPS cells into NSCs (gPS-NSCs), whereas the fully unmethylated status of Ndn in SSCs was altered to somatic patterns in gPS cells and gPS-NSCs. Thus, our study demonstrates epigenetic alteration of genomic imprinting during the induction of pluripotency in SSCs and neural differentiation, suggesting that gPS-NSCs can be a useful model to study the roles of imprinted genes in brain development and human neurodevelopmental disorders.

  6. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis.

    Science.gov (United States)

    Jafari, Abbas; Qanie, Diyako; Andersen, Thomas L; Zhang, Yuxi; Chen, Li; Postert, Benno; Parsons, Stuart; Ditzel, Nicholas; Khosla, Sundeep; Johansen, Harald Thidemann; Kjærsgaard-Andersen, Per; Delaisse, Jean-Marie; Abdallah, Basem M; Hesselson, Daniel; Solberg, Rigmor; Kassem, Moustapha

    2017-02-14

    Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis.

  7. Kinetin Improves Barrier Function of the Skin by Modulating Keratinocyte Differentiation Markers

    Science.gov (United States)

    An, Sungkwan; Cha, Hwa Jun; Ko, Jung-Min; Han, Hyunjoo; Kim, Su Young; Kim, Kyung-Suk; Lee, Song Jeong; An, In-Sook; Kim, Sangwon; Youn, Hae Jeong

    2017-01-01

    Background Kinetin is a plant hormone that regulates growth and differentiation. Keratinocytes, the basic building blocks of the epidermis, function in maintaining the skin barrier. Objective We examined whether kinetin induces skin barrier functions in vitro and in vivo. Methods To evaluate the efficacy of kinetin at the cellular level, expression of keratinocyte differentiation markers was assessed. Moreover, we examined the clinical efficacy of kinetin by evaluating skin moisture, transepidermal water loss (TEWL), and skin surface roughness in patients who used kinetin-containing cream. We performed quantitative real-time polymerase chain reaction to measure the expression of keratinocyte differentiation markers in HaCaT cells following treatment. A clinical trial was performed to assess skin moisture, TEWL, and evenness of skin texture in subjects who used kinetin-containing cream for 4 weeks. Results Kinetin increased involucrin, and keratin 1 mRNA in HaCaT cells. Moreover, use of a kinetin-containing cream improved skin moisture and TEWL while decreasing roughness of skin texture. Conclusion Kinetin induced the expression of keratinocyte differentiation markers, suggesting that it may affect differentiation to improve skin moisture content, TEWL, and other signs of skin aging. Therefore, kinetin is a potential new component for use in cosmetics as an anti-aging agent that improves the barrier function of skin. PMID:28223740

  8. Altered goblet cell differentiation and surface mucus properties in Hirschsprung disease.

    Directory of Open Access Journals (Sweden)

    Jay R Thiagarajah

    Full Text Available Hirschsprung disease-associated enterocolitis (HAEC leads to significant mortality and morbidity, but its pathogenesis remains unknown. Changes in the colonic epithelium related to goblet cells and the luminal mucus layer have been postulated to play a key role. Here we show that the colonic epithelium of both aganglionic and ganglionic segments are altered in patients and in mice with Hirschsprung disease (HSCR. Structurally, goblet cells were altered with increased goblet cell number and reduced intracellular mucins in the distal colon of biopsies from patients with HSCR. Endothelin receptor B (Ednrb mutant mice showed increased goblet cell number and size and increased cell proliferation compared to wild-type mice in aganglionic segments, and reduced goblet cell size and number in ganglionic segments. Functionally, compared to littermates, Ednrb-/- mice showed increased transepithelial resistance, reduced stool water content and similar chloride secretion in the distal colon. Transcript levels of goblet cell differentiation factors SPDEF and Math1 were increased in the distal colon of Ednrb-/- mice. Both distal colon from Ednrb mice and biopsies from HSCR patients showed reduced Muc4 expression as compared to controls, but similar expression of Muc2. Particle tracking studies showed that mucus from Ednrb-/- mice provided a more significant barrier to diffusion of 200 nm nanoparticles as compared to wild-type mice. These results suggest that aganglionosis is associated with increased goblet cell proliferation and differentiation and subsequent altered surface mucus properties, prior to the development of inflammation in the distal colon epithelium. Restoration of normal goblet cell function and mucus layer properties in the colonic epithelium may represent a therapeutic strategy for prevention of HAEC.

  9. Altered Pattern of Naive and Memory B cells and B1 Cells in Patients with Chronic Granulomatous Disease

    NARCIS (Netherlands)

    Mohsenzadegan, Monireh; Fattahi, Fahimeh; Fattahi, Fatemeh; Mirshafiey, Abbas; Fazlollahi, Mohammad Reza; Beni, Fariba Naderi; Movahedi, Masoud; Pourpak, Zahra

    2014-01-01

    Chronic granulomatous disease (CGD) is a rare primary immunodeficiency disorder characterized by a greatly increased susceptibility to severe fungal and bacterial infections caused by defects in NADPH oxidase of phagocytic cells. We aimed to investigate immunophenotype alterations of naive and memor

  10. V(D)J recombination in mature B cells: a mechanism for altering antibody responses.

    Science.gov (United States)

    Papavasiliou, F; Casellas, R; Suh, H; Qin, X F; Besmer, E; Pelanda, R; Nemazee, D; Rajewsky, K; Nussenzweig, M C

    1997-10-10

    The clonal selection theory states that B lymphocytes producing high-affinity immunoglobulins are selected from a pool of cells undergoing antibody gene mutation. Somatic hypermutation is a well-documented mechanism for achieving diversification of immune responses in mature B cells. Antibody genes were also found to be modified in such cells in germinal centers by recombination of the variable (V), diversity (D), and joining (J) segments. The ability to alter immunoglobulin expression by V(D)J recombination in the selective environment of the germinal center may be an additional mechanism for inactivation or diversification of immune responses.

  11. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  12. Altered development of NKT cells, γδ T cells, CD8 T cells and NK cells in a PLZF deficient patient.

    Directory of Open Access Journals (Sweden)

    Maggie Eidson

    Full Text Available In mice, the transcription factor, PLZF, controls the development of effector functions in invariant NKT cells and a subset of NKT cell-like, γδ T cells. Here, we show that in human lymphocytes, in addition to invariant NKT cells, PLZF was also expressed in a large percentage of CD8+ and CD4+ T cells. Furthermore, PLZF was also found to be expressed in all γδ T cells and in all NK cells. Importantly, we show that in a donor lacking functional PLZF, all of these various lymphocyte populations were altered. Therefore, in contrast to mice, PLZF appears to control the development and/or function of a wide variety of human lymphocytes that represent more than 10% of the total PBMCs. Interestingly, the PLZF-expressing CD8+ T cell population was found to be expanded in the peripheral blood of patients with metastatic melanoma but was greatly diminished in patients with autoimmune disease.

  13. Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain.

    Science.gov (United States)

    Pilaz, Louis-Jan; McMahon, John J; Miller, Emily E; Lennox, Ashley L; Suzuki, Aussie; Salmon, Edward; Silver, Debra L

    2016-01-06

    Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly.

  14. In ovo gene manipulation of melanocytes and their adjacent keratinocytes during skin pigmentation of chicken embryos.

    Science.gov (United States)

    Murai, Hidetaka; Tadokoro, Ryosuke; Sakai, Ken-Ichiro; Takahashi, Yoshiko

    2015-04-01

    During skin pigmentation in avians and mammalians, melanin is synthesized in the melanocytes, and subsequently transferred to adjacently located keratinocytes, leading to a wide coverage of the body surface by melanin-containing cells. The behavior of melanocytes is influenced by keratinocytes shown mostly by in vitro studies. However, it has poorly been investigated how such intercellular cross-talk is regulated in vivo because of a lack of suitable experimental models. Using chicken embryos, we developed a method that enables in vivo gene manipulations of melanocytes and keratinocytes, where these cells are separately labeled by different genes. Two types of gene transfer techniques were combined: one was a retrovirus-mediated gene infection into the skin/keratinocytes, and the other was the in ovo DNA electroporation into neural crest cells, the origin of melanocytes. Since the Replication-Competent Avian sarcoma-leukosis virus long terminal repeat with Splice acceptor (RCAS) infection was available only for the White leghorn strain showing little pigmentation, melanocytes prepared from the Hypeco nera (pigmented) were back-transplanted into embryos of White leghorn. Prior to the transplantation, enhanced green fluorescent protein (EGFP)(+) Neo(r+) -electroporated melanocytes from Hypeco nera were selectively grown in G418-supplemented medium. In the skin of recipient White leghorn embryos infected with RCAS-mOrange, mOrange(+) keratinocytes and transplanted EGFP(+) melanocytes were frequently juxtaposed each other. High-resolution confocal microscopy also revealed that transplanted melanocytes exhibited normal behaviors regarding distribution patterns of melanocytes, dendrite morphology, and melanosome transfer. The method described in this study will serve as a useful tool to understand the mechanisms underlying intercellular regulations during skin pigmentation in vivo.

  15. Altering adsorbed proteins or cellular gene expression in bone-metastatic cancer cells affects PTHrP and Gli2 without altering cell growth

    Directory of Open Access Journals (Sweden)

    Jonathan M. Page

    2015-09-01

    Full Text Available The contents of this data in brief are related to the article titled “Matrix Rigidity Regulates the Transition of Tumor Cells to a Bone-Destructive Phenotype through Integrin β3 and TGF-β Receptor Type II”. In this DIB we will present our supplemental data investigating Integrin expression, attachment of cells to various adhesion molecules, and changes in gene expression in multiple cancer cell lines. Since the interactions of Integrins with adsorbed matrix proteins are thought to affect the ability of cancer cells to interact with their underlying substrates, we examined the expression of Integrin β1, β3, and β5 in response to matrix rigidity. We found that only Iβ3 increased with increasing substrate modulus. While it was shown that fibronectin greatly affects the expression of tumor-produced factors associated with bone destruction (parathyroid hormone-related protein, PTHrP, and Gli2, poly-l-lysine, vitronectin and type I collagen were also analyzed as potential matrix proteins. Each of the proteins was independently adsorbed on both rigid and compliant polyurethane films which were subsequently used to culture cancer cells. Poly-l-lysine, vitronectin and type I collagen all had negligible effects on PTHrP or Gli2 expression, but fibronectin was shown to have a dose dependent effect. Finally, altering the expression of Iβ3 demonstrated that it is required for tumor cells to respond to the rigidity of the matrix, but does not affect other cell growth or viability. Together these data support the data presented in our manuscript to show that the rigidity of bone drives Integrinβ3/TGF-β crosstalk, leading to increased expression of Gli2 and PTHrP.

  16. Secretion of interferon gamma from human immune cells is altered by exposure to tributyltin and dibutyltin.

    Science.gov (United States)

    Lawrence, Shanieek; Reid, Jacqueline; Whalen, Margaret

    2015-05-01

    Tributyltin (TBT) and dibutyltin (DBT) are widespread environmental contaminants found in food, beverages, and human blood samples. Both of these butyltins (BTs) interfere with the ability of human natural killer (NK) cells to lyse target cells and alter secretion of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) from human immune cells in vitro. The capacity of BTs to interfere with secretion of other pro-inflammatory cytokines has not been examined. Interferon gamma (IFNγ) is a modulator of adaptive and innate immune responses, playing an important role in overall immune competence. This study shows that both TBT and DBT alter secretion of IFNγ from human immune cells. Peripheral blood cell preparations that were increasingly reconstituted were used to determine if exposures to either TBT or DBT affected IFNγ secretion and how the makeup of the cell preparation influenced that effect. IFNγ secretion was examined after 24 h, 48 h, and 6 day exposures to TBT (200 - 2.5 nM) and DBT (5 - 0.05 µM) in highly enriched human NK cells, a monocyte-depleted preparation of PBMCs, and monocyte-containing PBMCs. Both BTs altered IFNγ secretion from immune cells at most of the conditions tested (either increasing or decreasing secretion). However, there was significant variability among donors as to the concentrations and time points that showed changes as well as the baseline secretion of IFNγ. The majority of donors showed an increase in IFNγ secretion in response to at least one concentration of TBT or DBT at a minimum of one length of exposure.

  17. Impaired APP activity and altered Tau splicing in embryonic stem cell-derived astrocytes obtained from an APPsw transgenic minipig

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Lindblad, Maiken Marie; Jakobsen, Jannik E.;

    2015-01-01

    onset mechanisms related to cell renewal and function in familial AD astrocytes. These outcomes also highlight that radial glia could be a potentially useful population of cells for drug discovery, and that altered APP expression and altered tau phosphorylation can be detected in an in vitro model...

  18. Histological alterations of intestinal villi and epithelial cells after feeding dietary sugar cane extract in piglets

    Directory of Open Access Journals (Sweden)

    Toshikazu Kawai

    2012-07-01

    Full Text Available Effects of sugar cane extract (SCE on the piglet intestinal histology were observed. Twelve castrated male piglets weaned at the age of 26 days were allotted to three groups fed diets containing 0, 0.05 or 0.10% SCE. At the end of feeding experiment, each intestinal segment was taken for light or scanning electron microscopy. Feed intake, body weight gain and feed efficiency did not show a difference among groups. Most of the values for villus height, villus area, cell area and cell mitosis numbers were not different among groups, except for that the villus area of the 0.10% SCE group and the cell area of both SCE groups increased significantly at the jejunum compared to the control (P<0.05. For cell mitosis numbers, the 0.10% SCE group was higher than the 0.05% SCE group at the jejunum. Compared with the majority of flat cells of each intestinal segment in the control, the SCE groups had protuberated cells. In the 0.05% SCE group, deeper cells at the sites of recently exfoliated cells in the duodenum, cell clusters aggregated by protuberated cells in the jejunum and much more protuberant cells in the ileum were observed. These histological intestinal alterations suggest that SCE could raise the functions of intestinal villi and epithelial cells, especially at the 0.05%.

  19. Senescence-Induced Alterations of Laminin Chain Expression Modulate Tumorigenicity of Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Cynthia C.T. Sprenger

    2008-12-01

    Full Text Available Prostate cancer is an age-associated epithelial cancer, and as such, it contributes significantly to the mortality of the elderly. Senescence is one possible mechanism by which the body defends itself against various epithelial cancers. Senescent cells alter the microenvironment, in part, through changes to the extracellular matrix. Laminins (LMs are extracellular proteins important to both the structure and function of the microenvironment. Overexpression of the senescence-associated gene mac25 in human prostate cancer cells resulted in increased mRNA levels of the LM α4 and β2 chains compared to empty vector control cells. The purpose of this study was to examine the effects of these senescence-induced LM chains on tumorigenicity of prostate cancer cells. We created stable M12 human prostate cancer lines overexpressing either the LM α4 or β2 chain or both chains. Increased expression of either the LM α4 or β2 chain resulted in increased in vitro migration and in vivo tumorigenicity of those cells, whereas high expression of both chains led to decreased in vitro proliferation and in vivo tumorigenicity compared to M12 control cells. This study demonstrates that senescent prostate epithelial cells can alter the microenvironment and that these changes modulate progression of prostate cancer.

  20. Mechanistic Framework for Establishment, Maintenance, and Alteration of Cell Polarity in Plants

    Directory of Open Access Journals (Sweden)

    Pankaj Dhonukshe

    2012-01-01

    Full Text Available Cell polarity establishment, maintenance, and alteration are central to the developmental and response programs of nearly all organisms and are often implicated in abnormalities ranging from patterning defects to cancer. By residing at the distinct plasma membrane domains polar cargoes mark the identities of those domains, and execute localized functions. Polar cargoes are recruited to the specialized membrane domains by directional secretion and/or directional endocytic recycling. In plants, auxin efflux carrier PIN proteins display polar localizations in various cell types and play major roles in directional cell-to-cell transport of signaling molecule auxin that is vital for plant patterning and response programs. Recent advanced microscopy studies applied to single cells in intact plants reveal subcellular PIN dynamics. They uncover the PIN polarity generation mechanism and identified important roles of AGC kinases for polar PIN localization. AGC kinase family members PINOID, WAG1, and WAG2, belonging to the AGC-3 subclass predominantly influence the polar localization of PINs. The emerging mechanism for AGC-3 kinases action suggests that kinases phosphorylate PINs mainly at the plasma membrane after initial symmetric PIN secretion for eventual PIN internalization and PIN sorting into distinct ARF-GEF-regulated polar recycling pathways. Thus phosphorylation status directs PIN translocation to different cell sides. Based on these findings a mechanistic framework evolves that suggests existence of cell side-specific recycling pathways in plants and implicates AGC3 kinases for differential PIN recruitment among them for eventual PIN polarity establishment, maintenance, and alteration.

  1. Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening

    DEFF Research Database (Denmark)

    Orfila, C.; Huisman, M.M.H.; Willats, William George Tycho;

    2002-01-01

    The Cnr (Colourless non-ripening) tomato (Lycopersicon esculentum Mill.) mutant has an aberrant fruit-ripening phenotype in which fruit do not soften and have reduced cell adhesion between pericarp cells. Cell walls from Cnr fruit were analysed in order to assess the possible contribution of pectic...... polysaccharides to the non-softening and altered cell adhesion phenotype. Cell wall material (CWM) and solubilised fractions of mature green and red ripe fruit were analysed by chemical, enzymatic and immunochemical techniques. No major differences in CWM sugar composition were detected although differences were...... that was chelator-soluble was 50% less in Cnr cell walls at both the mature green and red ripe stages. Chelator-soluble material from ripe-stage Cnr was more susceptible to endo-polygalacturonase degradation than the corresponding material from wild-type fruit. In addition, cell walls from Cnr fruit contained...

  2. MicroRNA-155 is Dysregulated in the Skin of Patients with Vitiligo and Inhibits Melanogenesis-associated Genes in Melanocytes and Keratinocytes.

    Science.gov (United States)

    Šahmatova, Liisi; Tankov, Stoyan; Prans, Ele; Aab, Alar; Hermann, Helen; Reemann, Paula; Pihlap, Maire; Karelson, Maire; Abram, Kristi; Kisand, Kai; Kingo, Külli; Rebane, Ana

    2016-08-23

    Little is known about the functions of microRNAs (miRNAs) in skin pigmentation disorders. The aim of this study was to investigate the expression and potential role of miRNAs in vitiligo. Of 12 studied miRNAs with proven functions in cell proliferation, differentiation, immune responses and melanogenesis, miR-99b, miR-125b, miR-155 and miR-199a-3p were found to be increased and miR-145 was found to be decreased in the skin of patients with vitiligo. Combined pathway and target analysis revealed melanogenesis-associated targets for miR-99b, miR-125b, miR-155 and miR-199a-3p. In situ hybridization analysis demonstrated increased expression of miR-155 in the epidermis of patients with vitiligo. Correspondingly, miR-155 was induced by vitiligo-associated cytokines in human primary melanocytes and keratinocytes. When overexpressed, miR-155 inhibited the expression of melanogenesis-associated genes and altered interferon-regulated genes in melanocytes and keratinocytes. In conclusion, this study demonstrates that the expression of miRNAs is dysregulated in the skin of patients with vitiligo and suggests that miR-155 contributes to the pathogenesis of vitiligo.

  3. Hydrochloric acid alters the effect of L-glutamic acid on cell viability in human neuroblastoma cell cultures.

    Science.gov (United States)

    Croce, Nicoletta; Bernardini, Sergio; Di Cecca, Stefano; Caltagirone, Carlo; Angelucci, Francesco

    2013-07-15

    l-Glutamic acid (l-glutamate) is used to induce excitotoxicity and test neuroprotective compounds in cell cultures. However, because l-glutamate powder is nearly insoluble in water, many manufacturers recommend reconstituting l-glutamate in hydrochloric acid (HCl) prior to successive dilutions. Nevertheless, HCl, even at low concentrations, may alter the pH of the cell culture medium and interfere with cell activity. Thus, the aim of this study was to evaluate whether the reconstitution of l-glutamate powder in HCl alters its capacity to induce neurotoxicity in different human neuroblastoma cell lines. SH-SY5Y, IMR-32 and SK-N-BE(2) cells were exposed to various concentrations of l-glutamate, which was either reconstituted in HCl (1M) or post re-equilibrated to the pH of the culture medium (7.5). After 24 and 48h of incubation, changes in the cell viability of treated versus untreated cells were evaluated. The effect of an identical amount of HCl present in the l-glutamate dilutions on neuroblastoma cell survival was also investigated. Our data showed that the neurotoxicity of glutamate reconstituted in HCl was comparable to that of HCl alone. Moreover, the pH variations induced by glutamate or HCl in the culture medium were similar. When the pH of the glutamate stock solution was re-equilibrated, l-glutamate induced variation in cell viability to a lower extent and after a longer incubation time. This study demonstrated that HCl used to reconstitute l-glutamate powder might alter the effect of glutamate itself in neuroblastoma cell cultures. Thus, this information might be useful to scientists who use l-glutamate to induce excitotoxicity or to test neuroprotective agents.

  4. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure.

    Science.gov (United States)

    Coleman, Heather D; Yan, Jimmy; Mansfield, Shawn D

    2009-08-04

    Overexpression of the Gossypium hirsutum sucrose synthase (SuSy) gene under the control of 2 promoters was examined in hybrid poplar (Populus alba x grandidentata). Analysis of RNA transcript abundance, enzyme activity, cell wall composition, and soluble carbohydrates revealed significant changes in the transgenic lines. All lines showed significantly increased SuSy enzyme activity in developing xylem. This activity manifested in altered secondary cell wall cellulose content per dry weight in all lines, with increases of 2% to 6% over control levels, without influencing plant growth. The elevated concentration of cellulose was associated with an increase in cell wall crystallinity but did not alter secondary wall microfibril angle. This finding suggests that the observed increase in crystallinity is a function of altered carbon partitioning to cellulose biosynthesis rather than the result of tension wood formation. Furthermore, the augmented deposition of cellulose in the transgenic lines resulted in thicker xylem secondary cell wall and consequently improved wood density. These findings clearly implicate SuSy as a key regulator of sink strength in poplar trees and demonstrate the tight association of SuSy with cellulose synthesis and secondary wall formation.

  5. Development of melanocye-keratinocyte co-culture model for controls and vitiligo to assess regulators of pigmentation and melanocytes

    Directory of Open Access Journals (Sweden)

    Ravinder Kumar

    2012-01-01

    Full Text Available Background: There is a need to develop an in vitro skin models which can be used as alternative system for research and testing pharmacological products in place of laboratory animals. Therefore to study the biology and pathophysiology of pigmentation and vitiligo, reliable in vitro skin pigmentation models are required. Aim: In this study, we used primary cultured melanocytes and keratinocytes to prepare the skin co-culture model in control and vitiligo patients. Methods: The skin grafts were taken from control and patients of vitiligo. In vitro co-culture was prepared after culturing primary melanocytes and keratinocytes. Co- cultures were treated with melanogenic stimulators and inhibitors and after that tyrosinase assay, MTT assay and melanin content assay were performed. Results: Melanocytes and keratinocytes were successfully cultured from control and vitiligo patients and after that co-culture models were prepared. After treatment of co-culture model with melanogenic stimulator we found that tyrosinase activity, cell proliferation and melanin content increased whereas after treatment with melanogenic inhibitor, tyrosinase activity, cell proliferation and melanin content decreased. We also found some differences in the control co-culture model and vitiligo co-culture model. Conclusion: We successfully constructed in vitro co-culture pigmentation model for control and vitiligo patients using primary cultured melanocytes and keratinocytes. The use of primary melanocytes and keratinocytes is more appropriate over the use of transformed cells. The only limitation of these models is that these can be used for screening small numbers of compounds.

  6. Ecto-nucleoside triphosphate diphosphohydrolase 2 modulates local ATP-induced calcium signaling in human HaCaT keratinocytes.

    Directory of Open Access Journals (Sweden)

    Chia-Lin Ho

    Full Text Available Keratinocytes are the major building blocks of the human epidermis. In many physiological and pathophysiological conditions, keratinocytes release adenosine triphosphate (ATP as an autocrine/paracrine mediator that regulates cell proliferation, differentiation, and migration. ATP receptors have been identified in various epidermal cell types; therefore, extracellular ATP homeostasis likely determines its long-term, trophic effects on skin health. We investigated the possibility that human keratinocytes express surface-located enzymes that modulate ATP concentration, as well as the corresponding receptor activation, in the pericellular microenvironment. We observed that the human keratinocyte cell line HaCaT released ATP and hydrolyzed extracellular ATP. Interestingly, ATP hydrolysis resulted in adenosine diphosphate (ADP accumulation in the extracellular space. Pharmacological inhibition by ARL 67156 or gene silencing of the endogenous ecto-nucleoside triphosphate diphosphohydrolase (NTPDase isoform 2 resulted in a 25% reduction in both ATP hydrolysis and ADP formation. Using intracellular calcium as a reporter, we found that although NTPDase2 hydrolyzed ATP and generated sustainable ADP levels, only ATP contributed to increased intracellular calcium via P2Y2 receptor activation. Furthermore, knocking down NTPDase2 potentiated the nanomolar ATP-induced intracellular calcium increase, suggesting that NTPDase2 globally attenuates nucleotide concentration in the pericellular microenvironment as well as locally shields receptors in the vicinity from being activated by extracellular ATP. Our findings reveal an important role of human keratinocyte NTPDase2 in modulating nucleotide signaling in the extracellular milieu of human epidermis.

  7. WNT5A inhibits metastasis and alters splicing of Cd44 in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Wen Jiang

    Full Text Available Wnt5a is a non-canonical signaling Wnt. Low expression of WNT5A is correlated with poor prognosis in breast cancer patients. The highly invasive breast cancer cell lines, MDA-MB-231 and 4T1, express very low levels of WNT5A. To determine if enhanced expression of WNT5A would affect metastatic behavior, we generated WNT5A expressing cells from the 4T1 and MDA-MB-231 parental cell lines. WNT5A expressing cells demonstrated cobblestone morphology and reduced in vitro migration relative to controls. Cell growth was not altered. Metastasis to the lung via tail vein injection was reduced in the 4T1-WNT5A expressing cells relative to 4T1-vector controls. To determine the mechanism of WNT5A action on metastasis, we performed microarray and whole-transcriptome sequence analysis (RNA-seq to compare gene expression in 4T1-WNT5A and 4T1-vector cells. Analysis indicated highly significant alterations in expression of genes associated with cellular movement. Down-regulation of a subset of these genes, Mmp13, Nos2, Il1a, Cxcl2, and Lamb3, in WNT5A expressing cells was verified by semi-quantitative RT-PCR. Significant differences in transcript splicing were also detected in cell movement associated genes including Cd44. Cd44 is an adhesion molecule with a complex genome structure. Variable exon usage is associated with metastatic phenotype. Alternative spicing of Cd44 in WNT5A expressing cells was confirmed using RT-PCR. We conclude that WNT5A inhibits metastasis through down-regulation of multiple cell movement pathways by regulating transcript levels and splicing of key genes like Cd44.

  8. Altered differentiation and paracrine stimulation of mammary epithelial cell proliferation by conditionally activated Smoothened.

    Science.gov (United States)

    Visbal, Adriana P; LaMarca, Heather L; Villanueva, Hugo; Toneff, Michael J; Li, Yi; Rosen, Jeffrey M; Lewis, Michael T

    2011-04-01

    The Hedgehog (Hh) signaling network is critical for patterning and organogenesis in mammals, and has been implicated in a variety of cancers. Smoothened (Smo), the gene encoding the principal signal transducer, is overexpressed frequently in breast cancer, and constitutive activation in MMTV-SmoM2 transgenic mice caused alterations in mammary gland morphology, increased proliferation, and changes in stem/progenitor cell number. Both in transgenic mice and in clinical specimens, proliferative cells did not usually express detectable Smo, suggesting the hypothesis that Smo functioned in a non-cell autonomous manner to stimulate proliferation. Here, we employed a genetically tagged mouse model carrying a Cre-recombinase-dependent conditional allele of constitutively active Smo (SmoM2) to test this hypothesis. MMTV-Cre- or adenoviral-Cre-mediated SmoM2 expression in the luminal epithelium, but not in the myoepithelium, was required for the hyper-proliferative phenotypes. High levels of proliferation were observed in cells adjacent or in close-proximity to Smo expressing cells demonstrating that SmoM2 expressing cells were stimulating proliferation via a paracrine or juxtacrine mechanism. In contrast, Smo expression altered luminal cell differentiation in a cell-autonomous manner. SmoM2 expressing cells, purified by fluorescence activated cell sorting (FACS) via the genetic fluorescent tag, expressed high levels of Ptch2, Gli1, Gli2, Jag2 and Dll-1, and lower levels of Notch4 and Hes6, in comparison to wildtype cells. These studies provide insight into the mechanism of Smo activation in the mammary gland and its possible roles in breast tumorigenesis. In addition, these results also have potential implications for the interpretation of proliferative phenotypes commonly observed in other organs as a consequence of hedgehog signaling activation.

  9. Multipronged functional proteomics approaches for global identification of altered cell signalling pathways in B-cell chronic lymphocytic leukaemia.

    Science.gov (United States)

    Díez, Paula; Lorenzo, Seila; Dégano, Rosa M; Ibarrola, Nieves; González-González, María; Nieto, Wendy; Almeida, Julia; González, Marcos; Orfao, Alberto; Fuentes, Manuel

    2016-04-01

    Chronic lymphocytic leukaemia (CLL) is a malignant B cell disorder characterized by its high heterogeneity. Although genomic alterations have been broadly reported, protein studies are still in their early stages. Herein, a 224-antibody microarray has been employed to study the intracellular signalling pathways in a cohort of 14 newly diagnosed B-CLL patients as a preliminary study for further investigations. Several protein profiles were differentially identified across the cytogenetic and molecular alterations presented in the samples (deletion 13q14 and 17p13.1, trisomy 12, and NOTCH1 mutations) by a combination of affinity and MS/MS proteomics approaches. Among others altered cell signalling pathways, PKC family members were identified as down-regulated in nearly 75% of the samples tested with the antibody arrays. This might explain the rapid progression of the disease when showing p53, Rb1, or NOTCH1 mutations due to PKC-proteins family plays a critical role favouring the slowly progressive indolent behaviour of CLL. Additionally, the antibody microarray results were validated by a LC-MS/MS quantification strategy and compared to a transcriptomic CLL database. In summary, this research displays the usefulness of proteomic strategies to globally evaluate the protein alterations in CLL cells and select the possible biomarkers to be further studied with larger sample sizes.

  10. Integrin-blocking antibodies delay keratinocyte re-epithelialization in a human three-dimensional wound healing model.

    Directory of Open Access Journals (Sweden)

    Christophe Egles

    Full Text Available The alpha6beta4 integrin plays a significant role in tumor growth, angiogenesis and metastasis through modulation of growth factor signaling, and is a potentially important therapeutic target. However, alpha6beta4-mediated cell-matrix adhesion is critical in normal keratinocyte attachment, signaling and anchorage to the basement membrane through its interaction with laminin-5, raising potential risks for targeted therapy. Bioengineered Human Skin Equivalent (HSE, which have been shown to mimic their normal and wounded counterparts, have been used here to investigate the consequences of targeting beta4 to establish toxic effects on normal tissue homeostasis and epithelial wound repair. We tested two antibodies directed to different beta4 epitopes, one adhesion-blocking (ASC-8 and one non-adhesion blocking (ASC-3, and determined that these antibodies were appropriately localized to the basal surface of keratinocytes at the basement membrane interface where beta4 is expressed. While normal tissue architecture was not altered, ASC-8 induced a sub-basal split at the basement membrane in non-wounded tissue. In addition, wound closure was significantly inhibited by ASC-8, but not by ASC-3, as the epithelial tongue only covered 40 percent of the wound area at 120 hours post-wounding. These results demonstrate beta4 adhesion-blocking antibodies may have adverse effects on normal tissue, whereas antibodies directed to other epitopes may provide safer alternatives for therapy. Taken together, we conclude that these three-dimensional tissue models provide a biologically relevant platform to identify toxic effects induced by candidate therapeutics, which will allow generation of findings that are more predictive of in vivo responses early in the drug development process.

  11. MicroRNA and DNA methylation alterations mediating retinoic acid induced neuroblastoma cell differentiation.

    Science.gov (United States)

    Stallings, Raymond L; Foley, Niamh H; Bray, Isabella M; Das, Sudipto; Buckley, Patrick G

    2011-10-01

    Many neuroblastoma cell lines can be induced to differentiate into a mature neuronal cell type with retinoic acid and other compounds, providing an important model system for elucidating signalling pathways involved in this highly complex process. Recently, it has become apparent that miRNAs, which act as regulators of gene expression at a post-transcriptional level, are differentially expressed in differentiating cells and play important roles governing many aspects of this process. This includes the down-regulation of DNA methyltransferases that cause the de-methylation and transcriptional activation of numerous protein coding gene sequences. The purpose of this article is to review involvement of miRNAs and DNA methylation alterations in the process of neuroblastoma cell differentiation. A thorough understanding of miRNA and genetic pathways regulating neuroblastoma cell differentiation potentially could lead to targeted therapies for this disease.

  12. Chlorpyrifos is estrogenic and alters embryonic hatching, cell proliferation and apoptosis in zebrafish.

    Science.gov (United States)

    Yu, Kaimin; Li, Guochao; Feng, Weimin; Liu, Lili; Zhang, Jiayu; Wu, Wei; Xu, Lei; Yan, Yanchun

    2015-09-05

    The potential interference of endocrine disrupting chemicals (EDCs) on aquatic animals and humans has drawn wide attention in recent years. Reports have shown that some organophosphorus pesticides were a kind of EDCs, but their effects on fish species are still under research. In present study, flow cytometry data of HEC-1B cell line showed that chlorpyrifos (CPF) could increase cell proliferation index like 17β-estradiol (E2), but the effect of CPF was weaker than of E2 in the same concentration. Moreover, CPF altered the expression pattern of estrogen-responsive gene VTG and ERα in zebrafish embryos. When exposed to CPF at various concentrations (0, 0.10, 0.25, 0.50, 0.75 and 1.00mg/L) for 48h during the embryo stage, compared with controls, the hatching rate of treated groups significantly increased at the same time and the hatching rate of embryos was proportional to CPF concentration. The mRNA expression levels of c-myc, cyclin D1, Bax and Bcl-2, which are closely related to cell proliferation and cell apoptosis, were disturbed by CPF in zebrafish embryos after exposure treated for 48h. In addition, acridine orange (AO) staining of zebrafish embryos showed that cell apoptosis was appeared in the 0.75, 1.00mg/L CPF treated groups. Taken together, the results obtained in the present study indicated that chlorpyrifos is estrogenic and alters embryonic hatching, cell proliferation and apoptosis in zebrafish.

  13. Selective alterations of transcription factors in MPP+-induced neurotoxicity in PC12 cells.

    Science.gov (United States)

    Xu, Z; Cawthon, D; McCastlain, K A; Duhart, H M; Newport, G D; Fang, H; Patterson, T A; Slikker, W; Ali, S F

    2005-08-01

    MPP(+) (1-methyl-4-phenylpyridinium; the active metabolite of the neurotoxin MPTP (1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine)) depletes dopamine (DA) content and elicits cell death in PC12 cells. However, the mechanism of MPP(+)-induced neurotoxicity is still unclear. In this study, the dose response and time-course of MPP(+)-induced DA depletion and decreased cell viability were determined in nerve growth factor (NGF)-differentiated PC12 cells. The alteration of transcription factors (TFs) induced by MPP(+) from a selected dose level and time point was then evaluated using protein/DNA-binding arrays. K-means clustering analysis identified four patterns of protein/DNA-binding changes. Three of the 28 TFs identified in PC12 cells increased by 100% (p53, PRE, Smad SBE) and 2 decreased by 50% (HSE, RXR(DR1)) of control with MPP(+) treatment. In addition, three TFs decreased within the range of 33-50% (TFIID, E2F1, CREB) and two TFs increased within the range of 50-100% (PAX-5, Stat4). An electrophoretic mobility shift assay (EMSA) was used to confirm the changes of p53 and HSE. The observed changes in TFs correlated with the alterations of DA and cell viability. The data indicates that selective transcription factors are involved in MPP(+)-induced neurotoxicity and it provides mechanistic information that may be applicable to animal studies with MPTP and clinical studies of Parkinson's disease.

  14. Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes.

    Science.gov (United States)

    Tucci, P; Porta, G; Agostini, M; Dinsdale, D; Iavicoli, I; Cain, K; Finazzi-Agró, A; Melino, G; Willis, A

    2013-03-21

    The long-term health risks of nanoparticles remain poorly understood, which is a serious concern given their prevalence in the environment from increased industrial and domestic use. The extent to which such compounds contribute to cellular toxicity is unclear, and although it is known that induction of oxidative stress pathways is associated with this process, the proteins and the metabolic pathways involved with nanoparticle-mediated oxidative stress and toxicity are largely unknown. To investigate this problem further, the effect of TiO2 on the HaCaT human keratinocyte cell line was examined. The data show that although TiO2 does not affect cell cycle phase distribution, nor cell death, these nanoparticles have a considerable and rapid effect on mitochondrial function. Metabolic analysis was performed to identify 268 metabolites of the specific pathways involved and 85 biochemical metabolites were found to be significantly altered, many of which are known to be associated with the cellular stress response. Importantly, the uptake of nanoparticles into the cultured cells was restricted to phagosomes, TiO2 nanoparticles did not enter into the nucleus or any other cytoplasmic organelle. No other morphological changes were detected after 24-h exposure consistent with a specific role of mitochondria in this response.

  15. Valproate, thalidomide and ethyl alcohol alter the migration of HTR-8/SVneo cells

    Directory of Open Access Journals (Sweden)

    Rout Ujjwal K

    2006-08-01

    Full Text Available Abstract Background Valproate, thalidomide and alcohol (ethanol exposure during the first trimester of pregnancy is known to cause several developmental disorders. All these teratogens are known to pass the placental barrier and interfere directly with the normal development of the fetus. However, these teratogens also alter the formation and function of the placenta itself which may in turn affect the proper nourishment and development of the fetus. Optimum development of the placenta requires adequate invasion of trophoblast into the maternal uterine tissues. Changes in the migratory behavior of trophoblast by maternal exposure to these teratogens during placentogenesis may therefore alter the structure and function of the placenta. Methods In the present study, the effects of sodium valproate, thalidomide and alcohol on the migration of human first trimester trophoblast cell line (HTR-8/SVneo were examined in vitro. Cells were cultured in the wells of 48-well culture plates as mono or multilayers. Circular patches of cells were removed from the center of the wells by suction, and the migration of cells into the wound was studied using microscopy. Effects of low and high concentrations of valproate, thalidomide and alcohol were examined on the healing of wounds and on the migration rate of cells by determining the wound areas at 0, 3, 6, 12, 24 and 48 h. Effects of drugs and alcohol on the proliferation and the expression levels of integrin subunits beta1 and alpha5 in cells were examined. Results The migration rates of trophoblast differed between wounds created in mono and multilayers of cells. Exposure to teratogens altered the migration of trophoblast into mono and multilayer wounds. The effects of valproate, thalidomide and alcohol on the proliferation of cells during the rapid migratory phase were mild. Drug exposure caused significant changes in the expression levels of beta1 and alpha5 integrin subunits. Conclusion Results suggest that

  16. NOVEL NON-CALCEMIC SECOSTEROIDS THAT ARE PRODUCED BY HUMAN EPIDERMAL KERATINOCYTES PROTECT AGAINST SOLAR RADIATION

    Science.gov (United States)

    Slominski, Andrzej T.; Janjetovic, Zorica; Kim, Tae-Kang; Wasilewski, Piotr; Rosas, Sofia; Hanna, Sherie; Sayre, Robert M.; Dowdy, John C.; Li, Wei; Tuckey, Robert C.

    2015-01-01

    CYP11A1 hydroxylates the side chain of vitamin D3 (D3) in a sequential fashion [D3→20S(OH)D3→20,23(OH)2D3→ 17,20,23(OH)3D3], in an alternative to the classical pathway of activation [D3→25(OH)D3→1,25(OH)2D3]. The products/intermediates of the pathway can be further modified by the action of CYP27B1. The CYP11A1-derived products are biologically active with functions determined by the lineage of the target cells. This pathway can operate in epidermal keratinocytes. To further define the role of these novel secosteroids we tested them for protective effects against UVB-induced damage in human epidermal keratinocytes, melanocytes and HaCaT keratinocytes, cultured in vitro. The secosteroids attenuated ROS, H2O2 and NO production by UVB-irradiated keratinocytes and melanocytes, with an efficacy similar to 1,25(OH)2D3, while 25(OH)D3 had lower efficacy. These attenuations were also seen to some extent for the 20(OH)D3 precursor, 20S-hydroxy-7-dehydrocholesterol. These effects were accompanied by upregulation of genes encoding enzymes responsible for defence against oxidative stress. Using immunofluorescent staining we observed that the secosteroids reduced the generation cyclobutane pyrimidine dimers in response to UVB and enhanced expression of p53 phosphorylated at Ser-15, but not at Ser-46. Additional evidence for protection against DNA damage in cells exposed to UVB and treated with secosteroids was provided by the Comet assay where DNA fragmentation was markedly reduced by 20(OH)D3 and 20,23(OH)2D3. In conclusion, novel secosteroids that can be produced by the action of CYP11A1 in epidermal keratinocytes have protective effects against UVB radiation. PMID:25617667

  17. File list: Unc.Epd.20.AllAg.Keratinocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Epd.20.AllAg.Keratinocytes mm9 Unclassified Epidermis Keratinocytes SRX352044 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Epd.20.AllAg.Keratinocytes.bed ...

  18. File list: Oth.Epd.20.AllAg.Keratinocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Epd.20.AllAg.Keratinocytes mm9 TFs and others Epidermis Keratinocytes SRX352043... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Epd.20.AllAg.Keratinocytes.bed ...

  19. File list: ALL.Epd.20.AllAg.Keratinocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Epd.20.AllAg.Keratinocytes hg19 All antigens Epidermis Keratinocytes SRX079858,...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Epd.20.AllAg.Keratinocytes.bed ...

  20. File list: Unc.Epd.50.AllAg.Keratinocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Epd.50.AllAg.Keratinocytes mm9 Unclassified Epidermis Keratinocytes SRX352044 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Epd.50.AllAg.Keratinocytes.bed ...

  1. File list: ALL.Epd.50.AllAg.Keratinocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Epd.50.AllAg.Keratinocytes hg19 All antigens Epidermis Keratinocytes SRX079858,...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Epd.50.AllAg.Keratinocytes.bed ...

  2. File list: Oth.Epd.10.AllAg.Keratinocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Epd.10.AllAg.Keratinocytes mm9 TFs and others Epidermis Keratinocytes SRX352043... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Epd.10.AllAg.Keratinocytes.bed ...

  3. File list: Unc.Epd.05.AllAg.Keratinocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Epd.05.AllAg.Keratinocytes mm9 Unclassified Epidermis Keratinocytes SRX352044 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Epd.05.AllAg.Keratinocytes.bed ...

  4. File list: Unc.Epd.10.AllAg.Keratinocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Epd.10.AllAg.Keratinocytes mm9 Unclassified Epidermis Keratinocytes SRX352044 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Epd.10.AllAg.Keratinocytes.bed ...

  5. File list: ALL.Epd.10.AllAg.Keratinocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Epd.10.AllAg.Keratinocytes hg19 All antigens Epidermis Keratinocytes SRX079858,...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Epd.10.AllAg.Keratinocytes.bed ...

  6. File list: ALL.Epd.05.AllAg.Keratinocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Epd.05.AllAg.Keratinocytes hg19 All antigens Epidermis Keratinocytes SRX079858,...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Epd.05.AllAg.Keratinocytes.bed ...

  7. File list: Oth.Epd.05.AllAg.Keratinocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Epd.05.AllAg.Keratinocytes mm9 TFs and others Epidermis Keratinocytes SRX352043... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Epd.05.AllAg.Keratinocytes.bed ...

  8. Targeted alteration of real and imaginary refractive index of biological cells by histological staining

    OpenAIRE

    Cherkezyan, Lusik; Subramanian, Hariharan; Stoyneva, Valentina; Rogers, Jeremy D.; Yang, Seungmoo; Damania, Dhwanil; Taflove, Allen; Backman, Vadim

    2012-01-01

    Various staining techniques are commonly used in biomedical research to investigate cellular morphology. By inducing absorption of light, staining dyes change the intracellular refractive index due to the Kramers-Kronig relationship. We present a method for creating 2-D maps of real and imaginary refractive indices of stained biological cells using their thickness and absorptance. We validate our technique on dyed polystyrene microspheres and quantify the alteration in refractive index of sta...

  9. An altered endometrial CD8 tissue resident memory T cell population in recurrent miscarriage.

    Science.gov (United States)

    Southcombe, J H; Mounce, G; McGee, K; Elghajiji, A; Brosens, J; Quenby, S; Child, T; Granne, I

    2017-01-23

    When trying to conceive 1% of couples have recurrent miscarriages, defined as three or more consecutive pregnancy losses. This is not accounted for by the known incidence of chromosomal aneuploidy in miscarriage, and it has been suggested that there is an immunological aetiology. The endometrial mucosa is populated by a variety of immune cells which in addition to providing host pathogen immunity must facilitate pregnancy. Here we characterise the endometrial CD8-T cell population during the embryonic window of implantation and find that the majority of cells are tissue resident memory T cells with high levels of CD69 and CD103 expression, proteins that prevent cells egress. We demonstrate that unexplained recurrent miscarriage is associated with significantly decreased expression of the T-cell co-receptor CD8 and tissue residency marker CD69. These cells differ from those found in control women, with less expression of CD127 indicating a lack of homeostatic cell control through IL-7 signalling. Nevertheless this population is resident in the endometrium of women who have RM, more than three months after the last miscarriage, indicating that the memory CD8-T cell population is altered in RM patients. This is the first evidence of a differing pre-pregnancy phenotype in endometrial immune cells in RM.

  10. Alterations of expression and regulation of transforming growth factor beta in human cancer prostate cell lines.

    Science.gov (United States)

    Blanchère, M; Saunier, E; Mestayer, C; Broshuis, M; Mowszowicz, I

    2002-11-01

    TGF beta can promote and/or suppress prostate tumor growth through multiple and opposing actions. Alterations of its expression, secretion, regulation or of the sensitivity of target cells can lead to a favorable environment for tumor development. To gain a better insight in TGF beta function during cancer progression, we have used different cultured human prostate cells: preneoplastic PNT2 cells, the androgen-dependent LNCaP and the androgen-independent PC3 and DU145 prostate cancer cell lines. We have studied by specific ELISA assays in conditioned media (CM), the secretion of TGF beta 1 and TGF beta 2 in basal conditions and after hormonal treatment (DHT or E2) and the expression of TGF beta 1 mRNA by Northern blot. We have also compared the effect of fibroblast CM on TGF beta secretion by the different cell types. Compared to PNT2 cells, cancer cell lines secrete lower levels of active TGF beta which are not increased in the presence of fibroblast CM. LNCaP cells respond to androgen or estrogen treatment by a 10-fold increase of active TGF beta secretion while PC3 and DU145 are unresponsive. In conclusion, prostate cancer cell lines have lost part of their ability to secrete and activate TGF beta, and to regulate this secretion through stromal-epithelial interactions. Androgen-sensitive cancer cells may compensate this loss by hormonal regulation.

  11. Alterations in the nuclear proteome of HIV-1 infected T-cells

    Energy Technology Data Exchange (ETDEWEB)

    DeBoer, Jason [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Jagadish, Teena; Haverland, Nicole A. [Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 (United States); Madson, Christian J. [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Ciborowski, Pawel [Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 (United States); The Nebraska Center for Virology, University of Nebraska, Lincoln 68583 (United States); Belshan, Michael, E-mail: michaelbelshan@creighton.edu [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); The Nebraska Center for Virology, University of Nebraska, Lincoln 68583 (United States)

    2014-11-15

    Virus infection of a cell involves the appropriation of host factors and the innate defensive response of the cell. The identification of proteins critical for virus replication may lead to the development of novel, cell-based inhibitors. In this study we mapped the changes in T-cell nuclei during human immunodeficiency virus type 1 (HIV-1) at 20 hpi. Using a stringent data threshold, a total of 13 and 38 unique proteins were identified in infected and uninfected cells, respectively, across all biological replicates. An additional 15 proteins were found to be differentially regulated between infected and control nuclei. STRING analysis identified four clusters of protein–protein interactions in the data set related to nuclear architecture, RNA regulation, cell division, and cell homeostasis. Immunoblot analysis confirmed the differential expression of several proteins in both C8166-45 and Jurkat E6-1 T-cells. These data provide a map of the response in host cell nuclei upon HIV-1 infection. - Highlights: • We identify changes in the expression of nuclear proteins during HIV-1 infection. • 163 nuclear proteins were found differentially regulated during HIV-1 infection. • Bioinformatic analysis identified several nuclear pathways altered by HIV infection. • Candidate factors were validated in two independent cell lines.

  12. Loss of caveolin-1 causes blood-retinal barrier breakdown, venous enlargement, and mural cell alteration.

    Science.gov (United States)

    Gu, Xiaowu; Fliesler, Steven J; Zhao, You-Yang; Stallcup, William B; Cohen, Alex W; Elliott, Michael H

    2014-02-01

    Blood-retinal barrier (BRB) breakdown and related vascular changes are implicated in several ocular diseases. The molecules and mechanisms regulating BRB integrity and pathophysiology are not fully elucidated. Caveolin-1 (Cav-1) ablation results in loss of caveolae and microvascular pathologies, but the role of Cav-1 in the retina is largely unknown. We examined BRB integrity and vasculature in Cav-1 knockout mice and found a significant increase in BRB permeability, compared with wild-type controls, with branch veins being frequent sites of breakdown. Vascular hyperpermeability occurred without apparent alteration in junctional proteins. Such hyperpermeability was not rescued by inhibiting eNOS activity. Veins of Cav-1 knockout retinas exhibited additional pathological features, including i) eNOS-independent enlargement, ii) altered expression of mural cell markers (eg, down-regulation of NG2 and up-regulation of αSMA), and iii) dramatic alterations in mural cell phenotype near the optic nerve head. We observed a significant NO-dependent increase in retinal artery diameter in Cav-1 knockout mice, suggesting that Cav-1 plays a role in autoregulation of resistance vessels in the retina. These findings implicate Cav-1 in maintaining BRB integrity in retinal vasculature and suggest a previously undefined role in the retinal venous system and associated mural cells. Our results are relevant to clinically significant retinal disorders with vascular pathologies, including diabetic retinopathy, uveoretinitis, and primary open-angle glaucoma.

  13. Menstrual cycle distribution of uterine natural killer cells is altered in heavy menstrual bleeding.

    Science.gov (United States)

    Biswas Shivhare, Sourima; Bulmer, Judith N; Innes, Barbara A; Hapangama, Dharani K; Lash, Gendie E

    2015-11-01

    Heavy menstrual bleeding (HMB) affects 30% of women of reproductive age and significantly interferes with quality of life. Altered endometrial vascular maturation has been reported in HMB and recurrent miscarriage, the latter associated with increased uterine natural killer (uNK) cell numbers. This study compared endometrial leukocyte populations in controls and women with HMB. Formalin-fixed paraffin-embedded endometrial biopsies from controls (without endometrial pathology) and HMB were immunostained for CD14 (macrophages), CD56 (uNK cells), CD83 (dendritic cells), FOXP3 (regulatory T cells/Tregs), CD3 and CD8 (T cells). Leukocyte numbers were analysed as a percentage of total stromal cells in five randomly selected fields of view in the stratum functionalis of each sample. In control women across the menstrual cycle, 2-8% of total stromal cells were CD3(+) cells, 2-4% were CD8(+) T cells and 6-8% were CD14(+) macrophages. Compared with controls, CD3(+) cells were reduced during the mid-secretory phase (4%, P<0.01) and increased in the late secretory phase (12%, P=0.01) in HMB. CD83(+) dendritic cells and FOXP3(+) Tregs were scarce throughout the menstrual cycle in both groups. In controls, 2% of stromal cells in proliferative endometrium were CD56(+) uNK cells, increasing to 17% during the late secretory phase. In HMB, CD56(+) uNK cells were increased in the proliferative (5%, P<0.01) and early secretory (4%, P<0.02) phases, but reduced (10%, P<0.01) in the late secretory phase. This study demonstrates dysregulation of uNK cells in HMB, the functional consequence of which may have an impact on endometrial vascular development and/or endometrial preparation for menstruation.

  14. Keratinocyte Antiviral Response to Poly(dA:dT) Stimulation and Papillomavirus Infection in a Canine Model of X-Linked Severe Combined Immunodeficiency

    Science.gov (United States)

    Luff, Jennifer A.; Yuan, Hang; Kennedy, Douglas; Schlegel, Richard; Felsburg, Peter; Moore, Peter F.

    2014-01-01

    X-linked severe combined immunodeficiency (XSCID) is caused by a genetic mutation within the common gamma chain (γc), an essential component of the cytokine receptors for interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21. XSCID patients are most commonly treated with bone marrow transplants (BMT) to restore systemic immune function. However, BMT-XSCID humans and dogs remain at an increased risk for development of cutaneous papillomavirus (PV) infections and their associated neoplasms, most typically cutaneous papillomas. Since basal keratinocytes are the target cell for the initial PV infection, we wanted to determine if canine XSCID keratinocytes have a diminished antiviral cytokine response to poly(dA:dT) and canine papillomavirus-2 (CPV-2) upon initial infection. We performed quantitative RT-PCR for antiviral cytokines and downstream interferon stimulated genes (ISG) on poly(dA:dT) stimulated and CPV-2 infected monolayer keratinocyte cultures derived from XSCID and normal control dogs. We found that XSCID keratinocytes responded similarly to poly(dA:dT) as normal keratinocytes by upregulating antiviral cytokines and ISGs. CPV-2 infection of both XSCID and normal keratinocytes did not result in upregulation of antiviral cytokines or ISGs at 2, 4, or 6 days post infection. These data suggest that the antiviral response to initial PV infection of basal keratinocytes is similar between XSCID and normal patients, and is not the likely source for the remaining immunodeficiency in XSCID patients. PMID:25025687

  15. Keratinocyte antiviral response to Poly(dA:dT stimulation and papillomavirus infection in a canine model of X-linked severe combined immunodeficiency.

    Directory of Open Access Journals (Sweden)

    Jennifer A Luff

    Full Text Available X-linked severe combined immunodeficiency (XSCID is caused by a genetic mutation within the common gamma chain (γc, an essential component of the cytokine receptors for interleukin (IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. XSCID patients are most commonly treated with bone marrow transplants (BMT to restore systemic immune function. However, BMT-XSCID humans and dogs remain at an increased risk for development of cutaneous papillomavirus (PV infections and their associated neoplasms, most typically cutaneous papillomas. Since basal keratinocytes are the target cell for the initial PV infection, we wanted to determine if canine XSCID keratinocytes have a diminished antiviral cytokine response to poly(dA:dT and canine papillomavirus-2 (CPV-2 upon initial infection. We performed quantitative RT-PCR for antiviral cytokines and downstream interferon stimulated genes (ISG on poly(dA:dT stimulated and CPV-2 infected monolayer keratinocyte cultures derived from XSCID and normal control dogs. We found that XSCID keratinocytes responded similarly to poly(dA:dT as normal keratinocytes by upregulating antiviral cytokines and ISGs. CPV-2 infection of both XSCID and normal keratinocytes did not result in upregulation of antiviral cytokines or ISGs at 2, 4, or 6 days post infection. These data suggest that the antiviral response to initial PV infection of basal keratinocytes is similar between XSCID and normal patients, and is not the likely source for the remaining immunodeficiency in XSCID patients.

  16. Development of a full-thickness human skin equivalent in vitro model derived from TERT-immortalized keratinocytes and fibroblasts

    NARCIS (Netherlands)

    C.M.A. Reijnders; A. van Lier; S. Roffel; D. Kramer; R.J. Scheper; S. Gibbs

    2015-01-01

    Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve th

  17. Development of a Full-Thickness Human Skin Equivalent In Vitro Model Derived from TERT-Immortalized Keratinocytes and Fibroblasts

    NARCIS (Netherlands)

    Reijnders, Christianne M. A.; van Lier, Amanda; Roffel, Sanne; Kramer, Duco; Scheper, Rik J.; Gibbs, Susan

    2015-01-01

    Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve th

  18. Differential effects of detergents on keratinocyte gene expression.

    Science.gov (United States)

    van Ruissen, F; Le, M; Carroll, J M; van der Valk, P G; Schalkwijk, J

    1998-04-01

    We have studied the effect of various detergents on keratinocyte gene expression in vitro, using an anionic detergent (sodium dodecyl sulfate), a cationic detergent cetyltrimethylammoniumbromide (CTAB), and two nonionic detergents, Nonidet P-40 and Tween-20. We measured the effect of these detergents on direct cellular toxicity (lactate dehydrogenase release), on the expression of markers for normal differentiation (cytokeratin 1 and involucrin expression), and on disturbed keratinocyte differentiation (SKALP) by northern blot analysis. As reported in other studies, large differences were noted in direct cellular toxicity. In a culture model that mimics normal epidermal differentiation we found that low concentrations of sodium dodecyl sulfate could induce the expression of SKALP, a proteinase inhibitor that is not normally expressed in human epidermis but is found in hyperproliferative skin. Sodium dodecyl sulfate caused upregulation of involucrin and downregulation of cytokeratin 1 expression, which is associated with the hyperproliferative/inflammatory epidermal phenotype found in psoriasis, wound healing, and skin irritation. These changes were not induced after treatment of cultures with CTAB, Triton X-100, and Nonidet-P40. This effect appeared to be specific for the class of anionic detergents because sodium dodecyl benzene sulfonate and sodium laurate also induced SKALP expression. These in vitro findings showed only a partial correlation with the potential of different detergents to induce clinical, biophysical, and cell biologic changes in vivo in human skin. Both sodium dodecyl sulfate and CTAB were found to cause induction and upregulation of SKALP and involucrin at low doses following a 24 h patch test, whereas high concentrations of Triton X-100 did not. Sodium dodecyl sulfate induced higher rates of transepidermal water loss, whereas CTAB treated skin showed more signs of cellular toxicity. We conclude that the action of anionic detergents on

  19. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Kiyomitsu, E-mail: nemoto@u-shizuoka-ken.ac.jp [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Ikeda, Ayaka; Yoshida, Chiaki; Kimura, Junko; Mori, Junki [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Fujiwara, Hironori [Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yokosuka, Akihito; Mimaki, Yoshihiro [Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392 (Japan); Ohizumi, Yasushi [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Laboratory of Kampo Medicines, Yokohama College of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066 (Japan); Degawa, Masakuni [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan)

    2013-02-15

    Highlights: ► Nobiletin-mediated alterations of gene expression were examined with DNA microarrays. ► Three organ-derived cell lines were treated with 100 μM nobiletin for 24 h. ► In all cell lines, 3 endoplasmic reticulum stress-responsive genes were up-regulated. ► Some cell cycle-regulating and oxidative stress-promoting genes were down-regulated. ► These alterations may contribute to nobiletin-mediated biological effects. -- Abstract: Nobiletin, a polymethoxylated flavonoid that is highly contained in the peels of citrus fruits, exerts a wide variety of beneficial effects, including anti-proliferative effects in cancer cells, repressive effects in hyperlipidemia and hyperglycemia, and ameliorative effects in dementia at in vitro and in vivo levels. In the present study, to further understand the mechanisms of these actions of nobiletin, the nobiletin-mediated alterations of gene expression in three organ-derived cell lines – 3Y1 rat fibroblasts, HuH-7 human hepatocarcinoma cells, and SK-N-SH human neuroblastoma cells – were first examined with DNA microarrays. In all three cell lines, treatments with nobiletin (100 μM) for 24 h resulted in more than 200% increases in the expression levels of five genes, including the endoplasmic reticulum stress-responsive genes Ddit3, Trib3, and Asns, and in less than 50% decreases in the expression levels of seven genes, including the cell cycle-regulating genes Ccna2, Ccne2, and E2f8 and the oxidative stress-promoting gene Txnip. It was also confirmed that in each nobiletin-treated cell line, the levels of the DDIT3 (DNA-damage-inducible transcript 3, also known as CHOP and GADD153) and ASNS (asparagine synthetase) proteins were increased, while the level of the TXNIP (thioredoxin-interacting protein, also known as VDUP1 and TBP-2) protein was decreased. All these findings suggest that nobiletin exerts a wide variety of biological effects, at least partly, through induction of endoplasmic reticulum stress and

  20. Positional and expressive alteration of prohibitin during the induced differentiation of human hepatocarcinoma SMMC-7721 cells

    Institute of Scientific and Technical Information of China (English)

    Dong-Hui Xu; Jian Tang; Qi-Fu Li; Song-Lin Shi; Xiang-Feng Chen; Ying Liang

    2008-01-01

    AIM: To explore the existence and distribution of prohibitin (PHB) in nuclear matrix and its co-localization with products of some related genes during the differentiation of human hepatocarcinoma SMMC-7721cells.METHODS: The nuclear matrix of the SHHC-7721 cells cultured with or without 5 x 10-3 mmol/L hexamethylene bisacetamide (HMBA) was selectively extracted.Western blot was used to analyze the expression of PHB in nuclear matrix; imrnunofluorescence microscope observation was used to analyze the distribution of PHB in cell. LCSM was used to observe the co-localization of PHB with products of oncogenes and tumor suppressor genes.RESULTS: Western blot analysis showed that PHB existed in the composition of nuclear matrix proteins and was down-regulated by HMBA treatment.Immunofluorescence observation revealed that PHB existed in the nuclear matrix, and its distribution regions and expression levels were altered after HMBA treatment. Laser scanning confocal microscopy revealed the co-localization between PHB and the products of oncogenes or tumor repression genes including c-fos, c-myc, p53 and Rb and its alteration of distributive area in the cells treated by HMBA.CONCLUSION: These data confirm that PHB is a nuclear matrix protein, which is located in the nuclear matrix, and the distribution and expression of PHB and its relation with associated genes may play significant roles during the differentiation of SMHC-7721 cells.

  1. Low oxygen alters mitochondrial function and response to oxidative stress in human neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Yury M. Lages

    2015-12-01

    Full Text Available Oxygen concentration should be carefully regulated in all living tissues, beginning at the early embryonic stages. Unbalances in oxygen regulation can lead to cell death and disease. However, to date, few studies have investigated the consequences of variations in oxygen levels for fetal-like cells. Therefore, in the present work, human neural progenitor cells (NPCs derived from pluripotent stem cells grown in 3% oxygen (v/v were compared with NPCs cultured in 21% (v/v oxygen. Low oxygen concentrations altered the mitochondrial content and oxidative functions of the cells, which led to improved ATP production, while reducing generation of reactive oxygen species (ROS. NPCs cultured in both conditions showed no differences in proliferation and glucose metabolism. Furthermore, antioxidant enzymatic activity was not altered in NPCs cultured in 3% oxygen under normal conditions, however, when exposed to external agents known to induce oxidative stress, greater susceptibility to DNA damage was observed. Our findings indicate that the management of oxygen levels should be considered for in vitro models of neuronal development and drug screening.

  2. Oestradiol and progesterone differentially alter cytoskeletal protein expression and flame cell morphology in Taenia crassiceps.

    Science.gov (United States)

    Ambrosio, Javier R; Ostoa-Saloma, Pedro; Palacios-Arreola, M Isabel; Ruíz-Rosado, Azucena; Sánchez-Orellana, Pedro L; Reynoso-Ducoing, Olivia; Nava-Castro, Karen E; Martínez-Velázquez, Nancy; Escobedo, Galileo; Ibarra-Coronado, Elizabeth G; Valverde-Islas, Laura; Morales-Montor, Jorge

    2014-09-01

    We examined the effects of oestradiol (E2) and progesterone (P4) on cytoskeletal protein expression in the helminth Taenia crassiceps - specifically actin, tubulin and myosin. These proteins assemble into flame cells, which constitute the parasite excretory system. Total protein extracts were obtained from E2- and P4-treated T. crassiceps cysticerci and untreated controls, and analysed by one- and two-dimensional protein electrophoresis, flow cytometry, immunofluorescence and videomicroscopy. Exposure of T. crassiceps cysticerci to E2 and P4 induced differential protein expression patterns compared with untreated controls. Changes in actin, tubulin and myosin expression were confirmed by flow cytometry of parasite cells and immunofluorescence. In addition, parasite morphology was altered in response to E2 and P4 versus controls. Flame cells were primarily affected at the level of the ciliary tuft, in association with the changes in actin, tubulin and myosin. We conclude that oestradiol and progesterone act directly on T. crassiceps cysticerci, altering actin, tubulin and myosin expression and thus affecting the assembly and function of flame cells. Our results increase our understanding of several aspects of the molecular crosstalk between host and parasite, which might be useful in designing anthelmintic drugs that exclusively impair parasitic proteins which mediate cell signaling and pathogenic reproduction and establishment.

  3. Relationship Between Apoptosis and PCNA Expression of Keratinocytes in Condylomata Acuminata

    Institute of Scientific and Technical Information of China (English)

    樊翌明; 马泽粦; 冯进云; 吴志华; 李顺凡

    2002-01-01

    Objective: To investigate the relationship betweenapoptosis and proliferating cell nuclear antigen (PCNA)expression of keratinocytes in Condylomata acuminata (CA). Methods: PCNA expression was observed byimmunohistochemistry technique (ABC method) in 51 CAspecimens and 18 normal specimens of foreskin or vaginalmucosae. 55 specimens (40 in the CA group and 15 in thecontrol group) were randomly sampled for in situ labelingof apoptotic cells using the TUNEL method. Results: Positive expression of PCNA in CA and controlgroups were 90.2% and 77.8%, respectively, and theproliferation index in CA group was significantly higherthan that in the control group (P0.05). The proliferation indexshowed a significant negative correlation with theapoptosis-proliferation ratio (r=-0.62, P=0.01) in the CAgroup. Conclusion: It is suggested that the proliferativeappearance of CA could be due to the imbalance betweencell growth and cell death which is caused by moreproliferation and less apoptosis in keratinocytes.

  4. Phenotypic alterations in breast cancer cells overexpressing the nuclear receptor co-activator AIB1

    Directory of Open Access Journals (Sweden)

    Azorsa David O

    2003-09-01

    Full Text Available Abstract Background Estrogen signaling plays a critical role in a number of normal physiological processes and has important implications in the treatment of breast cancer. The p160 nuclear receptor coactivator, AIB1 (amplified in breast cancer 1, is frequently amplified and overexpressed in human breast cancer and has been shown to enhance estrogen-dependent transactivation. Methods To better understand the molecular and physiological consequences of AIB1 overexpression in breast cancer cells, an AIB1 cDNA was transfected into the low AIB1 expressing, estrogen-receptor (ER negative breast cancer cell line, MDA-MB-436. The features of a derivative cell line, designated 436.1, which expresses high levels of AIB1, are described and compared with the parental cell line. Results A significant increase in the levels of CREB binding protein (CBP was observed in 436.1 cells and immunofluorescent staining revealed altered AIB1 and CBP staining patterns compared to the parental cells. Further, transient transfection assays demonstrated that the overall estrogen-dependent transactivation in 436.1 cells is approximately 20-fold higher than the parental cells and the estrogen dose-response curve is repositioned to the right. Finally, cDNA microarray analysis of approximately 7,100 cDNAs identified a number of differentially expressed genes in the 436.1 cells. Conclusion These observations lend insight into downstream signaling pathways that are influenced by AIB1.

  5. Adhesion defective BHK cell mutant has cell surface heparan sulfate proteoglycan of altered properties

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, R; Woods, A;

    1988-01-01

    In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin......-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased...

  6. Altered global gene expression profiles in human gastrointestinal epithelial Caco2 cells exposed to nanosilver

    Directory of Open Access Journals (Sweden)

    Saura C. Sahu

    2016-01-01

    Full Text Available Extensive consumer exposure to food- and cosmetics-related consumer products containing nanosilver is of public safety concern. Therefore, there is a need for suitable in vitro models and sensitive predictive rapid screening methods to assess their toxicity. Toxicogenomic profile showing subtle changes in gene expressions following nanosilver exposure is a sensitive toxicological endpoint for this purpose. We evaluated the Caco2 cells and global gene expression profiles as tools for predictive rapid toxicity screening of nanosilver. We evaluated and compared the gene expression profiles of Caco-2 cells exposed to 20 nm and 50 nm nanosilver at a concentration 2.5 μg/ml. The global gene expression analysis of Caco2 cells exposed to 20 nm nanosilver showed that a total of 93 genes were altered at 4 h exposure, out of which 90 genes were up-regulated and 3 genes were down-regulated. The 24 h exposure of 20 nm silver altered 15 genes in Caco2 cells, out of which 14 were up-regulated and one was down-regulated. The most pronounced changes in gene expression were detected at 4 h. The greater size (50 nm nanosilver at 4 h exposure altered more genes by more different pathways than the smaller (20 nm one. Metallothioneins and heat shock proteins were highly up-regulated as a result of exposure to both the nanosilvers. The cellular pathways affected by the nanosilver exposure is likely to lead to increased toxicity. The results of our study presented here suggest that the toxicogenomic characterization of Caco2 cells is a valuable in vitro tool for assessing toxicity of nanomaterials such as nanosilver.

  7. Restricted maternal nutrition alters myogenic regulatory factor expression in satellite cells of ovine offspring.

    Science.gov (United States)

    Raja, J S; Hoffman, M L; Govoni, K E; Zinn, S A; Reed, S A

    2016-07-01

    Poor maternal nutrition inhibits muscle development and postnatal muscle growth. Satellite cells are myogenic precursor cells that contribute to postnatal muscle growth, and their activity can be evaluated by the expression of several transcription factors. Paired-box (Pax)7 is expressed in quiescent and active satellite cells. MyoD is expressed in activated and proliferating satellite cells and myogenin is expressed in terminally differentiating cells. Disruption in the expression pattern or timing of expression of myogenic regulatory factors negatively affects muscle development and growth. We hypothesized that poor maternal nutrition during gestation would alter the in vitro temporal expression of MyoD and myogenin in satellite cells from offspring at birth and 3 months of age. Ewes were fed 100% or 60% of NRC requirements from day 31±1.3 of gestation. Lambs from control-fed (CON) or restricted-fed (RES) ewes were euthanized within 24 h of birth (birth; n=5) or were fed a control diet until 3 months of age (n=5). Satellite cells isolated from the semitendinosus muscle were used for gene expression analysis or cultured for 24, 48 or 72 h and immunostained for Pax7, MyoD or myogenin. Fusion index was calculated from a subset of cells allowed to differentiate. Compared with CON, temporal expression of MyoD and myogenin was altered in cultured satellite cells isolated from RES lambs at birth. The percent of cells expressing MyoD was greater in RES than CON (P=0.03) after 24 h in culture. After 48 h of culture, there was a greater percent of cells expressing myogenin in RES compared with CON (P0.05). In satellite cells from RES lambs at 3 months of age, the percent of cells expressing MyoD and myogenin were greater than CON after 72 h in culture (Psatellite cells of the offspring, which may reduce the pool of myoblasts, decrease myoblast fusion and contribute to the poor postnatal muscle growth previously observed in these animals.

  8. Systemic sclerosis patients present alterations in the expression of molecules involved in B cell regulation

    Directory of Open Access Journals (Sweden)

    Lilian eSoto

    2015-09-01

    Full Text Available The activation threshold of B cells is tightly regulated by an array of inhibitory and activator receptors, in such a way that disturbances in their expression can lead to the appearance of autoimmunity. The aim of this study was to evaluate the expression of activating and inhibitory molecules involved in the modulation of B cell functions in transitional, naïve and memory B cell sub-populations from systemic sclerosis patients. To achieve this, blood samples were drawn from thirty one systemic sclerosis patients and fifty three healthy individuals. Surface expression of CD86, MHC II, CD19, CD21, CD40, CD22, Siglec 10, CD35, and FcgammaRIIB was determined by flow cytometry. IL-10 production was evaluated by intracellular flow cytometry from isolated B cells. Soluble IL-6 and IL-10 levels were measured by ELISA from supernatants of stimulated B cells. Systemic sclerosis patients exhibit an increased frequency of transitional and naïve B cells related to memory B cells, compared to healthy controls. Transitional and naïve B cells from patients express higher levels of CD86 and FcgammaRIIB than healthy donors. Also, B cells from patients show high expression of CD19 and CD40, while memory cells from systemic sclerosis patients show reduced expression of CD35. CD19 and CD35 expression levels associate to different autoantibody profiles. IL-10+ B cells and secreted levels of IL-10 were markedly reduced in patients. In conclusion, systemic sclerosis patients show alterations in the expression of molecules involved in B cell regulation. These abnormalities may be determinant in the B cell hyperactivation observed in systemic sclerosis.

  9. Microgravity-induced alterations in signal transduction in cells of the immune system

    Science.gov (United States)

    Paulsen, Katrin; Thiel, Cora; Timm, Johanna; Schmidt, Peter M.; Huber, Kathrin; Tauber, Svantje; Hemmersbach, Ruth; Seibt, Dieter; Kroll, Hartmut; Grote, Karl-Heinrich; Zipp, Frauke; Schneider-Stock, Regine; Cogoli, Augusto; Hilliger, Andre; Engelmann, Frank; Ullrich, Oliver

    2010-11-01

    Since decades it is known that the activity of cells of the immune system is severely dysregulated in microgravity, however, the underlying molecular aspects have not been elucidated yet. The identification of gravity-sensitive molecular mechanisms in cells of the immune system is an important and indispensable prerequisite for the development of counteractive measures to prevent or treat disturbed immune cell function of astronauts during long-term space missions. Moreover, their sensitivity to altered gravity renders immune cells an ideal model system to understand if and how gravity on Earth is required for normal mammalian cell function and signal transduction. We investigated the effect of simulated weightlessness (2D clinostat) and of real microgravity (parabolic flights) on key signal pathways in a human monocytic and a T lymphocyte cell line. We found that cellular responses to microgravity strongly depend on the cell-type and the conditions in which the cells are subjected to microgravity. In Jurkat T cells, enhanced phosphorylation of the MAP kinases ERK-1/2, MEK and p38 and inhibition of nuclear translocation of NF-kB were the predominant responses to simulated weightlessness, in either stimulated or non-stimulated cells. In contrast, non-stimulated monocytic U937 cells responded to simulated weightlessness with enhanced overall tyrosine-phosphorylation and activation of c-jun, whereas PMA-stimulated U937 cells responded the opposite way with reduced tyrosine-phosphorylation and reduced activation of c-jun, compared with PMA-stimulated 1 g controls. P53 protein was phosphorylated rapidly in microgravity. The identification of gravi-sensitive mechanisms in cells of the immune system will not only enable us to understand and prevent the negative effects of long time exposure to microgravity on Astronauts, but could also lead to novel therapeutic targets in general.

  10. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor.

    Science.gov (United States)

    Bae, Ok-Nam; Ahn, Seyeon; Jin, Sun Hee; Hong, Soo Hyun; Lee, Jinyoung; Kim, Eun-Sun; Jeong, Tae Cheon; Chun, Young-Jin; Lee, Ai-Young; Noh, Minsoo

    2015-03-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD.

  11. Alterations in expression, proteolysis and intracellular localizations of clusterin in esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Hong-Zhi He; Xiao-Hang Zhao; Zhen-Mei Song; Kun Wang; Liang-Hong Teng; Fang Liu; You-Sheng Mao; Ning Lu; Shang-Zhong Zhang; Min Wu

    2004-01-01

    AIM: To investigate biogenesis and intracellular localizations of clusterin to elucidate the potential molecular mechanisms implicated in tumorigenesis of esophageal mucosa.METHODS: Semi-quantitative RT-PCR for multi-region alteration analysis, Western blot for different transcriptional forms and immunohistochemical staining for intracellular localizations of clusterin were carried out in both tissues and cell lines of ESCC.RESULTS: The N-terminal deletions of the clusterin gene and the appearance of a 50-53 ku nuclear clusterin, an uncleaved, nonglycosylated, and disulfide-linked isoform,were the major alterations in cancer cells of esophagus.Naturally the 40 ku clusterin was located in the connective tissue of the lamina propria of epithelial mucosa and right under the basal membrane of epithelia, but it was disappeared in stromal mucosa of esophagus and the pre-matured clusterin was found positive in cancerous epithelia.CONCLUSION: The N-terminal deletion of clusterin may be essential for its alterations of biogenesis in ESCC.

  12. F-cell levels are altered with erythrocyte density in sickle cell disease.

    Science.gov (United States)

    Basu, Sumanta; Dash, Bisnu Prasad; Patel, Dilip Kumar; Chakravarty, Sudipa; Chakravarty, Amit; Banerjee, Debashis; Chakrabarti, Abhijit

    2011-08-15

    Lighter cells from density fractionated erythrocytes of sickle cell disease (SCD) patients carry higher amount of externalized phosphatidylserine (PS) and cell surface glycophorins compared to the denser counterparts. Further analysis also revealed that the denser cells contained higher levels of fetal hemoglobin (HbF) compared to the lighter cells, supported by the presence of larger number of F-cells in these populations. In this report, we have found direct evidence on the higher survival of the HbF rich erythrocytes in SCD.

  13. Nicotine alters MicroRNA expression and hinders human adult stem cell regenerative potential.

    Science.gov (United States)

    Ng, Tsz Kin; Carballosa, Carlos M; Pelaez, Daniel; Wong, Hoi Kin; Choy, Kwong Wai; Pang, Chi Pui; Cheung, Herman S

    2013-03-01

    Adult stem cells are critical for the healing process in regenerative medicine. However, cigarette smoking inhibits stem cell recruitment to tissues and delays the wound-healing process. This study investigated the effect of nicotine, a major constituent in the cigarette smoke, on the regenerative potentials of human mesenchymal stem cells (MSC) and periodontal ligament-derived stem cells (PDLSC). The cell proliferation of 1.0 μM nicotine-treated MSC and PDLSC was significantly reduced when compared to the untreated control. Moreover, nicotine also retarded the locomotion of these adult stem cells. Furthermore, their osteogenic differentiation capabilities were reduced in the presence of nicotine as evidenced by gene expression (RUNX2, ALPL, BGLAP, COL1A1, and COL1A2), calcium deposition, and alkaline phosphatase activity analyses. In addition, the microRNA (miRNA) profile of nicotine-treated PDLSC was altered; suggesting miRNAs might play an important role in the nicotine effects on stem cells. This study provided the possible mechanistic explanations on stem cell-associated healing delay in cigarette smoking.

  14. Ectopic KNOX Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity[OPEN

    Science.gov (United States)

    Rebocho, Alexandra B.

    2016-01-01

    Plant development involves two polarity types: tissue cell (asymmetries within cells are coordinated across tissues) and regional (identities vary spatially across tissues) polarity. Both appear altered in the barley (Hordeum vulgare) Hooded mutant, in which ectopic expression of the KNOTTED1-like Homeobox (KNOX) gene, BKn3, causes inverted polarity of differentiated hairs and ectopic flowers, in addition to wing-shaped outgrowths. These lemma-specific effects allow the spatiotemporal analysis of events following ectopic BKn3 expression, determining the relationship between KNOXs, polarity, and shape. We show that tissue cell polarity, based on localization of the auxin transporter SISTER OF PINFORMED1 (SoPIN1), dynamically reorients as ectopic BKn3 expression increases. Concurrently, ectopic expression of the auxin importer LIKE AUX1 and boundary gene NO APICAL MERISTEM is activated. The polarity of hairs reflects SoPIN1 patterns, suggesting that tissue cell polarity underpins oriented cell differentiation. Wing cell files reveal an anisotropic growth pattern, and computational modeling shows how polarity guiding growth can account for this pattern and wing emergence. The inverted ectopic flower orientation does not correlate with SoPIN1, suggesting that this form of regional polarity is not controlled by tissue cell polarity. Overall, the results suggest that KNOXs trigger different morphogenetic effects through interplay between tissue cell polarity, identity, and growth. PMID:27553356

  15. Ectopic KNOX Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity.

    Science.gov (United States)

    Richardson, Annis Elizabeth; Rebocho, Alexandra B; Coen, Enrico S

    2016-08-23

    Plant development involves two polarity types: tissue cell (asymmetries within cells are coordinated across tissues) and regional (identities vary spatially across tissues) polarity. Both appear altered in the barley (Hordeum vulgare) Hooded mutant, in which ectopic expression of the KNOTTED1-like Homeobox (KNOX) gene, BKn3, causes inverted polarity of differentiated hairs and ectopic flowers, in addition to wing-shaped outgrowths. These lemma-specific effects allow the spatiotemporal analysis of events following ectopic BKn3 expression, determining the relationship between KNOXs, polarity, and shape. We show that tissue cell polarity, based on localization of the auxin transporter SISTER OF PINFORMED1 (SoPIN1), dynamically reorients as ectopic BKn3 expression increases. Concurrently, ectopic expression of the auxin importer LIKE AUX1 and boundary gene NO APICAL MERISTEM is activated. The polarity of hairs reflects SoPIN1 patterns, suggesting that tissue cell polarity underpins oriented cell differentiation. Wing cell files reveal an anisotropic growth pattern, and computational modeling shows how polarity guiding growth can account for this pattern and wing emergence. The inverted ectopic flower orientation does not correlate with SoPIN1, suggesting that this form of regional polarity is not controlled by tissue cell polarity. Overall, the results suggest that KNOXs trigger different morphogenetic effects through interplay between tissue cell polarity, identity, and growth.

  16. TCDD induces dermal accumulation of keratinocyte-derived matrix metalloproteinase-10 in an organotypic model of human skin.

    Science.gov (United States)

    De Abrew, K Nadira; Thomas-Virnig, Christina L; Rasmussen, Cathy A; Bolterstein, Elyse A; Schlosser, Sandy J; Allen-Hoffmann, B Lynn

    2014-05-01

    The epidermis of skin is the first line of defense against the environment. A three dimensional model of human skin was used to investigate tissue-specific phenotypes induced by the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Continuous treatment of organotypic cultures of human keratinocytes with TCDD resulted in intracellular spaces between keratinocytes of the basal and immediately suprabasal layers as well as thinning of the basement membrane, in addition to the previously reported hyperkeratinization. These tissue remodeling events were preceded temporally by changes in expression of the extracellular matrix degrading enzyme, matrix metalloproteinase-10 (MMP-10). In organotypic cultures MMP-10 mRNA and protein were highly induced following TCDD treatment. Q-PCR and immunoblot results from TCDD-treated monolayer cultures, as well as indirect immunofluorescence and immunoblot analysis of TCDD-treated organotypic cultures, showed that MMP-10 was specifically contributed by the epidermal keratinocytes but not the dermal fibroblasts. Keratinocyte-derived MMP-10 protein accumulated over time in the dermal compartment of organotypic cultures. TCDD-induced epidermal phenotypes in organotypic cultures were attenuated by the keratinocyte-specific expression of tissue inhibitor of metalloproteinase-1, a known inhibitor of MMP-10. These studies suggest that MMP-10 and possibly other MMP-10-activated MMPs are responsible for the phenotypes exhibited in the basement membrane, the basal keratinocyte layer, and the cornified layer of TCDD-treated organotypic cultures. Our studies reveal a novel mechanism by which the epithelial-stromal microenvironment is altered in a tissue-specific manner thereby inducing structural and functional pathology in the interfollicular epidermis of human skin.

  17. Induction of Cell Death through Alteration of Oxidants and Antioxidants in Epithelial Cells Exposed to High Energy Protons

    Science.gov (United States)

    Ramesh, Govindarajan; Wu, Honglu

    2012-01-01

    Radiation affects several cellular and molecular processes including double strand breakage, modifications of sugar moieties and bases. In outer space, protons are the primary radiation source which poses a range of potential health risks to astronauts. On the other hand, the use of proton radiation for tumor radiation therapy is increasing as it largely spares healthy tissues while killing tumor tissues. Although radiation related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton radiation remain poorly understood. Therefore, in the present study, we irradiated rat epithelial cells (LE) with different doses of protons and investigated their effects on cell proliferation and cell death. Our data showed an inhibition of cell proliferation in proton irradiated cells with a significant dose dependent activation and repression of reactive oxygen species (ROS) and antioxidants, glutathione and superoxide dismutase respectively as compared to control cells. In addition, apoptotic related genes such as caspase-3 and -8 activities were induced in a dose dependent manner with corresponding increased levels of DNA fragmentation in proton irradiated cells than control cells. Together, our results show that proton radiation alters oxidant and antioxidant levels in the cells to activate apoptotic pathway for cell death.

  18. Hyperlipidemia Alters Regulatory T Cell Function and Promotes Resistance to Tolerance Induction Through Costimulatory Molecule Blockade.

    Science.gov (United States)

    Bagley, J; Yuan, J; Chandrakar, A; Iacomini, J

    2015-09-01

    Recent work from our laboratory has shown that hyperlipidemia promotes accelerated rejection of vascularized cardiac allografts in mice by inducing anti-donor Th17 reactivity and production of IL-17. Here, we show that hyperlipidemia also affects FoxP3(+) regulatory T cells (Tregs). Hyperlipidemia promotes the development of Tregs that express low levels of CD25. Hyperlipidemia also promotes a decrease in central Tregs and an increase in effector Tregs that appears to account for the increase in the frequency of CD25(low) Tregs. Alterations in Treg subsets also appear to lead to alterations in Treg function. The ability of FoxP3(+) , CD25(high) , CD4(+) Tregs from hyperlipidemic mice to inhibit proliferation of effector T cells stimulated with anti-CD3 and CD28 was reduced when compared with Tregs from control mice. Regulatory T cells isolated from hyperlipidemic recipients exhibit increased activation of Akt, and a reduction in Bim levels that permits the expansion of FoxP3(+) CD25(low) CD4(+) T cells. Hyperlipidemic mice were also resistant to tolerance induction using costimulatory molecule blockade consisting of anti-CD154 and CTLA4Ig, a strategy that requires Tregs. Together, our data suggest that hyperlipidemia profoundly affects Treg subsets and function as well as the ability to induce tolerance.

  19. Chronic ketamine produces altered distribution of parvalbumin-positive cells in the hippocampus of adult rats.

    Science.gov (United States)

    Sabbagh, Jonathan J; Murtishaw, Andrew S; Bolton, Monica M; Heaney, Chelcie F; Langhardt, Michael; Kinney, Jefferson W

    2013-08-29

    The underlying mechanisms of schizophrenia pathogenesis are not well understood. Increasing evidence supports the glutamatergic hypothesis that posits a hypofunction of the N-methyl D-aspartate (NMDA) receptor on specific gamma amino-butyric acid (GABA)-ergic neurons may be responsible for the disorder. Alterations in the GABAergic system have been observed in schizophrenia, most notably a change in the expression of parvalbumin (PV) in the cortex and hippocampus. Several reports also suggest abnormal neuronal migration may play a role in the etiology of schizophrenia. The current study examined the positioning and distribution of PV-positive cells in the hippocampus following chronic treatment with the NMDA receptor antagonist ketamine. A robust increase was found in the number of PV-positive interneurons located outside the stratum oriens (SO), the layer where most of these cells are normally localized, as well as an overall numerical increase in CA3 PV cells. These results suggest ketamine leads to an abnormal distribution of PV-positive cells, which may be indicative of aberrant migratory activity and possibly related to the Morris water maze deficits observed. These findings may also be relevant to alterations observed in schizophrenia populations.

  20. Canine Adipose Derived Mesenchymal Stem Cells Transcriptome Composition Alterations: A Step towards Standardizing Therapeutic

    Directory of Open Access Journals (Sweden)

    Nina Krešić

    2017-01-01

    Full Text Available Although canine adipose derived stem cells (cASCs morphology characteristics and differentiation ability are well documented, transcriptome alterations of undifferentiated cASCs during ex vivo cultivation remain unknown. Here we demonstrate, for the first time, the transcriptome composition of isolated cASCs in undifferentiated state originating from six donors. Transcriptome changes were monitored during ex vivo cultivation between passage 3 (P3 and P5, which are mostly used in therapy. Influence of donors’ age in given passage number on transcriptome composition was also investigated. Cultivation from P3 to P5 resulted in 16 differentially expressed genes with cooverexpression of pluripotency and self-renewal transcription factors genes SOX2 and POU5F1 dominant in old donors’ cells. Furthermore, cASCs demonstrated upregulation of IL-6 in young and old donors’ cells. In addition, ex vivo cultivation of cASCs revealed well-known morphological alterations accompanied with decrease in expression of CD90 and CD44 markers in P4 and higher monitored by flow cytometry and successful osteo- and chondrodifferentiation but inefficient adipodifferentiation in P3. Our results revealed the impact of ex vivo cultivation on nature of cells. Correlation of transcriptome changes with secretome composition is needed and its further impact on therapeutic potential of cASCs remains to be evaluated in clinical trials.

  1. Bone cell expression on titanium surfaces is altered by sterilization treatments.

    Science.gov (United States)

    Stanford, C M; Keller, J C; Solursh, M

    1994-05-01

    Phenotypic responses of rat calvarial osteoblast-like cells (RCOB) were evaluated on commercially pure titanium (cpTi) surfaces when cultured at high density (5100 cells/mm2). These surfaces were prepared to three different clinically relevant surface preparations (1-micron, 600-grit, and 50-microns-grit sand-blast), followed by sterilization with either ultraviolet light, ethylene oxide, argon plasma-cleaning, or routine clinical autoclaving. Osteocalcin and alkaline phosphatase, but not collagen expression, were significantly affected by surface roughness when these surfaces were altered by argon plasma-cleaning. In general, plasma-cleaned cpTi surfaces demonstrated an inverse relationship between surface roughness and phenotypic markers for a bone-like response. On a per-cell basis, levels of the bone-specific protein, osteocalcin, and the enzymatic activity of alkaline phosphatase were highest on the smooth 1-micron polished surface and lowest on the roughest surfaces for the plasma-cleaned cpTi. Detectable bone cell expression can be altered by clinically relevant surfaces prepared by standard dental implant preparation techniques.

  2. Human cytomegalovirus alters localization of MHC class II and dendrite morphology in mature Langerhans cells.

    Science.gov (United States)

    Lee, Andrew W; Hertel, Laura; Louie, Ryan K; Burster, Timo; Lacaille, Vashti; Pashine, Achal; Abate, Davide A; Mocarski, Edward S; Mellins, Elizabeth D

    2006-09-15

    Hemopoietic stem cell-derived mature Langerhans-type dendritic cells (LC) are susceptible to productive infection by human CMV (HCMV). To investigate the impact of infection on this cell type, we examined HLA-DR biosynthesis and trafficking in mature LC cultures exposed to HCMV. We found decreased surface HLA-DR levels in viral Ag-positive as well as in Ag-negative mature LC. Inhibition of HLA-DR was independent of expression of unique short US2-US11 region gene products by HCMV. Indeed, exposure to UV-inactivated virus, but not to conditioned medium from infected cells, was sufficient to reduce HLA-DR on mature LC, implicating particle binding/penetration in this effect. Reduced surface levels reflected an altered distribution of HLA-DR because total cellular HLA-DR was not diminished. Accumulation of HLA-DR was not explained by altered cathepsin S activity. Mature, peptide-loaded HLA-DR molecules were retained within cells, as assessed by the proportion of SDS-stable HLA-DR dimers. A block in egress was implicated, as endocytosis of surface HLA-DR was not increased. Immunofluorescence microscopy corroborated the intracellular retention of HLA-DR and revealed markedly fewer HLA-DR-positive dendritic projections in infected mature LC. Unexpectedly, light microscopic analyses showed a dramatic loss of the dendrites themselves and immunofluorescence revealed that cytoskeletal elements crucial for the formation and maintenance of dendrites are disrupted in viral Ag-positive cells. Consistent with these dendrite effects, HCMV-infected mature LC exhibit markedly reduced chemotaxis in response to lymphoid chemokines. Thus, HCMV impedes MHC class II molecule trafficking, dendritic projections, and migration of mature LC. These changes likely contribute to the reduced activation of CD4+ T cells by HCMV-infected mature LC.

  3. Influence of cyclodextrins on the proliferation of HaCaT keratinocytes in vitro.

    Science.gov (United States)

    Hipler, U C; Schönfelder, U; Hipler, C; Elsner, P

    2007-10-01

    Safety and efficacy of pharmaceutical agents can be greatly improved by encapsulation within, or covalent attachment to, a biomaterial carrier. Drug delivery systems must deliver the necessary amount of drug to the targeted site for a necessary period of time, both efficiently and precisely. Various kinds of high-performance biomaterials are being constantly developed for this purpose. Cyclodextrins are potential candidates for such a role, because of their ability to alter physical, chemical, and biological properties of guest molecules through the formation of inclusion complexes. The alpha-, beta-, and gamma-cyclodextrins are widely used natural cyclodextrins, consisting of six, seven, and eight D-glucopyranose residues, respectively, linked by -1,4 glycosidic bonds into a macro cycle. Each cyclodextrin has its own ability to form inclusion complexes with specific guests, an ability, which depends on a proper fit of the guest molecule into the hydrophobic cyclodextrin cavity. The most common pharmaceutical application of cyclodextrins is to enhance the solubility, stability, and bioavailability of drug molecules. Such kinds of ligand-receptor complexes can be used for different applications, e.g., for a transdermal therapeutic system (TTS) or in biofunctional textiles. The aim of this study was the investigation of the influence of the different cyclodextrins on the cell proliferation using HaCaT keratinocytes as an in vitro test system. Moreover, the study was performed to find harmless and nontoxic cyclodextrin concentrations for dermal applications. By means of different independent in vitro tests could be confirmed that alpha-, beta-, and gamma-cyclodextrins in concentrations up to 0.1% (w/v) do not show any antiproliferative influence on HaCaT keratinocytes. Sometimes even proliferative effects could be found. However, all used cyclodextrins (besides gamma-cyclodextrin and its derivatives) in concentrations of 0.5 and 1% (w/v), respectively, exert a

  4. Mechanical Unloading of Mouse Bone in Microgravity Significantly Alters Cell Cycle Gene Set Expression

    Science.gov (United States)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan

    2012-07-01

    Spaceflight factors, including microgravity and space radiation, have many detrimental short-term effects on human physiology, including muscle and bone degradation, and immune system dysfunction. The long-term progression of these physiological effects is still poorly understood, and a serious concern for long duration spaceflight missions. We hypothesized that some of the degenerative effects of spaceflight may be caused in part by an inability of stem cells to proliferate and differentiate normally resulting in an impairment of tissue regenerative processes. Furthermore, we hypothesized that long-term bone tissue degeneration in space may be mediated by activation of the p53 signaling network resulting in cell cycle arrest and/or apoptosis in osteoprogenitors. In our analyses we found that spaceflight caused significant bone loss in the weight-bearing bones of mice with a 6.3% reduction in bone volume and 11.9% decrease in bone thickness associated with increased osteoclastic activity. Along with this rapid bone loss we also observed alterations in the cell cycle characterized by an increase in the Cdkn1a/p21 cell cycle arrest molecule independent of Trp53. Overexpression of Cdkn1a/p21 was localized to osteoblasts lining the periosteal surface of the femur and chondrocytes in the head of the femur, suggesting an inhibition of proliferation in two key regenerative cell types of the femur in response to spaceflight. Additionally we found overexpression of several matrix degradation molecules including MMP-1a, 3 and 10, of which MMP-10 was localized to osteocytes within the shaft of the femur. This, in conjunction with 40 nm resolution synchrotron nano-Computed Tomography (nano-CT) observations of an increase in osteocyte lacunae cross-sectional area, perimeter and a decrease in circularity indicates a potential role for osteocytic osteolysis in the observed bone degeneration in spaceflight. To further investigate the genetic response of bone to mechanical

  5. Liver cell adenoma showing sequential alteration of radiological findings suggestive of well-differentiated hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Takayuki Kogure; Yoshiyuki Ueno; Satoshi Sekiguchi; Kazuyuki Ishida; Takehiko Igarashi; Yuta Wakui; Takao Iwasaki; Tooru Shimosegawa

    2009-01-01

    A liver tumor 35 mm in diameter was found incidentally in a 40-year-old woman who had no history of liver diseases or the use of oral contraceptives. Radiological diagnostics showed the typical findings of liver cell adenoma (LCA). Dynamic computed tomography revealed that the tumor showed a homogenous enhancement in the arterial phase and almost the same enhancement as the surrounding liver parenchyma in the delayed phase. The tumor was found to contain fat on magnetic resonance imaging. A benign fat containing liver tumor was suggested. However, radiological findings altered, which caused us to suspect that a welldifferentiated hepatocellular carcinoma (HCC) containing fat was becoming dedifferentiated. Partial hepatectomy was performed and the pathological findings showed the typical findings of LCA. This case was an extremely rare LCA, which had no background of risk for LCA and developed the sequential alteration of the radiological findings to suspect well-differentiated HCC.

  6. MicroRNA Let-7b inhibits keratinocyte migration in cutaneous wound healing by targeting IGF2BP2.

    Science.gov (United States)

    Wu, Yan; Zhong, Julia Li; Hou, Ning; Sun, Yaolan; Ma, Benting; Nisar, Muhammad Farrukh; Teng, Yan; Tan, Zhaoli; Chen, Keping; Wang, Youliang; Yang, Xiao

    2017-02-01

    Wound healing is a complex process which involves proliferation and migration of keratinocyte for closure of epidermal injuries. A member of microRNA family, let-7b, has been expressed in mammalian skin, but its exact role in keratinocyte migration is still not in knowledge. Here, we showed that let-7b regulates keratinocyte migration by targeting the insulin-like growth factor IGF2BP2. Overexpression of let-7b led to reduced HaCaT cell migration, while knockdown of let-7b resulted in enhanced migration. Furthermore, let-7b was decreased during wound healing in wild-type mice, which led us to construct the transgenic mice with overexpression of let-7b in skin. The re-epithelialization of epidermis of let-7b transgenic mice was reduced during wound healing. Using bioinformatics prediction software and a reporter gene assay, we found that IGF2BP2 was a target of let-7b, which contributes to keratinocyte migration. Introduction of an expression vector of IGF2BP2 also rescued let-7b-induced migration deficiency, which confirms that IGF2BP2 is an important target for let-7b regulation. Our findings suggest that let-7b significantly delayed the re-epithelialization possibly due to reduction of keratinocyte migration and restraints IGF2BP2 during skin wound healing.

  7. Superoxide anions produced by Streptococcus pyogenes group A-stimulated keratinocytes are responsible for cellular necrosis and bacterial growth inhibition.

    Science.gov (United States)

    Regnier, Elodie; Grange, Philippe A; Ollagnier, Guillaume; Crickx, Etienne; Elie, Laetitia; Chouzenoux, Sandrine; Weill, Bernard; Plainvert, Céline; Poyart, Claire; Batteux, Frédéric; Dupin, Nicolas

    2016-02-01

    Gram-positive Streptococcus pyogenes (group A Streptococcus or GAS) is a major skin pathogen and interacts with keratinocytes in cutaneous tissues. GAS can cause diverse suppurative and inflammatory infections, such as cellulitis, a common acute bacterial dermo-hypodermitis with a high morbidity. Bacterial isolation yields from the lesions are low despite the strong local inflammation observed, raising numerous questions about the pathogenesis of the infection. Using an in vitro model of GAS-infected keratinocytes, we show that the major ROS produced is the superoxide anion ([Formula: see text]), and that its production is time- and dose-dependent. Using specific modulators of ROS production, we show that [Formula: see text] is mainly synthesized by the cytoplasmic NADPH oxidase. Superoxide anion production leads to keratinocyte necrosis but incomplete inhibition of GAS growth, suggesting that GAS may be partially resistant to the oxidative burst. In conclusion, GAS-stimulated keratinocytes are able to develop an innate immune response based on the production of ROS. This local immune response limits GAS development and induces keratinocyte cell death, resulting in the skin lesions observed in patients with cellulitis.

  8. Imatinib alters cell viability but not growth factors levels in TM4 Sertoli cells

    Science.gov (United States)

    Hashemnia, Seyyed Mohammad Reza; Atari-Hajipirloo, Somayeh; Roshan-Milani, Shiva; Valizadeh, Nasim; Mahabadi, Sonya; Kheradmand, Fatemeh

    2016-01-01

    Background: The anticancer agent imatinib (IM) is a small molecular analog of ATP that inhibits tyrosine kinase activity of platelet derived growth factors (PDGFs) and stem cell factor (SCF) receptor in cancer cells. However these factors have a key role in regulating growth and development of normal Sertoli, Leydig and germ cells. Objective: The aim of this study was to determine cell viability, PDGF and SCF levels in mouse normal Sertoli cells exposed to IM. Materials and Methods: In this experimental study, the mouse TM4 Sertoli cells were treated with 0, 2.5, 5, 10 and 20 μM IM for 2, 4 or 6 days. The cell viability and growth factors levels were assessed by MTT and ELISA methods, respectively. For statistical analysis, One-Way ANOVA was performed. Results: IM showed significant decrease in Sertoli cell viability compared to control group (p=0.001). However, IM increased PDGF and SCF level insignificantly (p>0.05). Conclusion: Results suggested that IM treatment induced a dose dependent reduction of cell viability in Sertoli cells. It seems that treatment with this anticancer drug is involved in the fertility process. Further studies are needed to evaluate the role of PDGF and SCF in this cell. PMID:27738659

  9. Knockdown of a Laccase in Populus deltoides Confers Altered Cell Wall Chemistry and Increased Sugar Release

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Anthony C.; Jawdy, Sara; Gunter, Lee; Gjersing, Erica; Sykes, Robert; Hinchee, Maud A. W.; Winkeler, Kimberly A.; Collins, Cassandra M.; Engle, Nancy; Tschaplinski, Timothy J.; Yang, Xiaohan; Tuskan, Gerald A.; Muchero, Wellington; Chen, Jin-Gui

    2016-10-01

    Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G064000, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl (S/G) ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent on a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. We propose that this particular laccase has a range of functions related to oxidation of phenolics and conjugation of flavonoids that interact with lignin in the cell wall.

  10. Knockdown of a laccase in Populus deltoides confers altered cell wall chemistry and increased sugar release.

    Science.gov (United States)

    Bryan, Anthony C; Jawdy, Sara; Gunter, Lee; Gjersing, Erica; Sykes, Robert; Hinchee, Maud A W; Winkeler, Kimberly A; Collins, Cassandra M; Engle, Nancy; Tschaplinski, Timothy J; Yang, Xiaohan; Tuskan, Gerald A; Muchero, Wellington; Chen, Jin-Gui

    2016-10-01

    Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated, and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here, we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G064000, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent on a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. We propose that this particular laccase has a range of functions related to oxidation of phenolics and conjugation of flavonoids that interact with lignin in the cell wall.

  11. Apoptosis and morphological alterations after UVA irradiation in red blood cells of p53 deficient Japanese medaka (Oryzias latipes).

    Science.gov (United States)

    Sayed, Alla El-Din Hamid; Watanabe-Asaka, Tomomi; Oda, Shoji; Mitani, Hiroshi

    2016-08-01

    Morphological alterations in red blood cells were described as hematological bioindicators of UVA exposure to investigate the sensitivity to UVA in wild type Japanese medaka (Oryzias latipes) and a p53 deficient mutant. The fewer abnormal red blood cells were observed in the p53 mutant fish under the control conditions. After exposure to different doses of UVA radiation (15min, 30min and 60min/day for 3days), cellular and nuclear alterations in red blood cells were analyzed in the UVA exposed fish compared with non-exposed controls and those alterations included acanthocytes, cell membrane lysis, swollen cells, teardrop-like cell, hemolyzed cells and sickle cells. Those alterations were increased after the UVA exposure both in wild type and the p53 deficient fish. Moreover, apoptosis analyzed by acridine orange assay showed increased number of apoptosis in red blood cells at the higher UVA exposure dose. No micronuclei but nuclear abnormalities as eccentric nucleus, nuclear budding, deformed nucleus, and bilobed nucleus were observed in each group. These results suggested that UVA exposure induced both p53 dependent and independent apoptosis and morphological alterations in red blood cells but less sensitive to UVA than Wild type in medaka fish.

  12. MiR-26a inhibits proliferation and migration of HaCaT keratinocytes through regulating PTEN expression.

    Science.gov (United States)

    Yu, Nanze; Yang, Yang; Li, Xiongwei; Zhang, Mingzi; Huang, Jiuzuo; Wang, Xiaojun; Long, Xiao

    2016-12-05

    MicroRNAs (miRNAs) have been shown to be associated with differentiation, migration and apoptosis in keratinocyte. Although it has been reported that microRNA-26a (miR-26a) plays important roles in tumor cells, its biological functions in keratinocytes are still not well elucidated. In this study, we confirmed expression of miR-26a in human keratinocytes using RT-PCR and further studied the role of miR-26a in cell proliferation and cell migration. Ectopic expression of MiR-26a mimic or inhibitor increased or decreased miR-26a expression respectively in HaCaT cells. Proliferation of HaCaT keratinocyte can be suppressed or promoted by overexpression or down-expression of miR-26a. In scratch wound-healing assay and Boyden chamber cell migration assay, upregulating miR-26a expression blocked cell migration, while downregulating miR-26a expression enhanced the migration. Using quantitative RT-PCR (qRT-PCR) and western blot, we further discovered that both mRNA and protein level of phosphatase and tensin homolog deleted from chromosome 10(PTEN) were regulated by miR-26a in HaCaT cells. Meanwhile the level of active form of AKT was also regulated by the miR-26a. In rescue experiment, knockdown of PTEN in the miR-26a mimic transduced cells recovered the migration ability of HaCaT cells. Together these results suggest that miR-26a modulates the proliferation and migration of keratinocytes via regulating PTEN/AKT signaling pathway.

  13. Herbicide effects on freshwater benthic diatoms: Induction of nucleus alterations and silica cell wall abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Debenest, T. [Ecolab UMR 5245 (INP ENSAT, CNRS, UPS), Equipe ECOGEN, Avenue de l' Agrobiopole - BP 32607 Auzeville Tolosane, 31326 Castanet Tolosan Cedex (France); Cemagref, 50 avenue de Verdun, 33612 Cestas Cedex (France); Silvestre, J. [Ecolab UMR 5245 (INP ENSAT, CNRS, UPS), Equipe ECOGEN, Avenue de l' Agrobiopole - BP 32607 Auzeville Tolosane, 31326 Castanet Tolosan Cedex (France); Coste, M.; Delmas, F. [Cemagref, 50 avenue de Verdun, 33612 Cestas Cedex (France); Pinelli, E. [Ecolab UMR 5245 (INP ENSAT, CNRS, UPS), Equipe ECOGEN, Avenue de l' Agrobiopole - BP 32607 Auzeville Tolosane, 31326 Castanet Tolosan Cedex (France)], E-mail: pinelli@ensat.fr

    2008-06-02

    Benthic diatoms are well known bio-indicators of river pollution by nutrients (nitrogen and phosphorus). Biological indexes, based on diatom sensitivity for non-toxic pollution, have been developed to assess the water quality. Nevertheless, they are not reliable tools to detect pollution by pesticides. Many authors have suggested that toxic agents, like pesticides, induce abnormalities of the diatom cell wall (frustule). High abnormal frustule abundances have been reported in natural diatom communities sampled in streams contaminated by pesticides. However, no direct link was found between the abundances of abnormal frustules in these communities and the pesticide concentrations in stream water. In the present study, a freshwater benthic diatom community, isolated from natural biofilm and cultured under controlled conditions, was treated with a known genotoxic herbicide, maleic hydrazide (MH). Cells were exposed to three concentrations of MH (5 x 10{sup -6}, 10{sup -6}, 10{sup -7} M) for 6 h followed by a 24 h-recovery time. After MH treatments, nucleus alterations were observed: abnormal nucleus location, micronucleus, multinuclear cell or disruption of the nuclear membrane. A dose-dependent increase of nuclear <