WorldWideScience

Sample records for alters cuticular profiles

  1. Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles.

    Directory of Open Access Journals (Sweden)

    Claude Everaerts

    2010-03-01

    Full Text Available Most living organisms use pheromones for inter-individual communication. In Drosophila melanogaster flies, several pheromones perceived either by contact/at a short distance (cuticular hydrocarbons, CHs, or at a longer distance (cis-vaccenyl acetate, cVA, affect courtship and mating behaviours. However, it has not previously been possible to precisely identify all potential pheromonal compounds and simultaneously monitor their variation on a time scale. To overcome this limitation, we combined Solid Phase Micro-Extraction with gas-chromatography coupled with mass-spectrometry. This allowed us (i to identify 59 cuticular compounds, including 17 new CHs; (ii to precisely quantify the amount of each compound that could be detected by another fly, and (iii to measure the variation of these substances as a function of aging and mating. Sex-specific variation appeared with age, while mating affected cuticular compounds in both sexes with three possible patterns: variation was (i reciprocal in the two sexes, suggesting a passive mechanical transfer during mating, (ii parallel in both sexes, such as for cVA which strikingly appeared during mating, or (iii unilateral, presumably as a result of sexual interaction. We provide a complete reassessment of all Drosophila CHs and suggest that the chemical conversation between male and female flies is far more complex than is generally accepted. We conclude that focusing on individual compounds will not provide a satisfactory understanding of the evolution and function of chemical communication in Drosophila.

  2. Foliar Substrate Affects Cuticular Hydrocarbon Profiles and Intraspecific Aggression in the Leafcutter Ant Atta sexdens

    Directory of Open Access Journals (Sweden)

    Lohan Valadares

    2015-02-01

    Full Text Available Cuticular hydrocarbons (CHCs are traditionally considered to be one of the most important chemical cues used in the nestmate recognition process of social hymenopterans. However, it has been suggested that in the leafcutter ant genus Atta, it is not the CHCs, but the alarm pheromone that is involved in the nestmate recognition process. In this study we used a laboratory population of Atta sexdens to explore the association between their CHC profile variation and intraspecific aggression. In the first part of the experiment, four colonies were divided into two groups with distinct diets to stimulate differentiation of their CHC profiles. In the second part of the experiment, all colonies received the same diet to examine resemblance of chemical profiles. At the end of each part of the experiment we extracted the CHCs from workers. The results demonstrated that colonies that shared the same food resource had similar cuticular hydrocarbon profiles. Furthermore, colonies were significantly more aggressive towards conspecifics that used a different foliar substrate and consequently had greater differences in their cuticular chemical composition. This study suggests that the CHC profiles of A. sexdens can be affected by the foliar substrates used, and that the CHCs are used in the nestmate recognition process of this species.

  3. Comparative analysis of fertility signals and sex-specific cuticular chemical profiles of Odontomachus trap-jaw ants.

    Science.gov (United States)

    Smith, Adrian A; Millar, Jocelyn G; Suarez, Andrew V

    2016-02-01

    The lipid mixture that coats the insect cuticle contains a number of chemical signals. Mate choice in solitary insects is mediated by sexually dimorphic cuticular chemistry, whereas in eusocial insects, these profiles provide information through which colony members are identified and the fertility status of individuals is assessed. Profiles of queens and workers have been described for a number of eusocial species, but there have been few comparisons of fertility signals among closely related species. Additionally, sexual dimorphism in cuticular lipid profiles has only been reported in two species of ants. This study describes the cuticular chemical profiles of queens, workers and males of three species of Odontomachus trap-jaw ants: O. ruginodis, O. relictus and O. haematodus. These are compared with fertility signals and sexually dimorphic profiles already described from O. brunneus. We report that fertility signals are not conserved within this genus: chemical compounds that distinguish queens from workers vary in number and type among the species. Furthermore, the compounds that were most abundant in cuticular extracts of O. ruginodis queens relative to workers were novel 2,5-dialkyltetrahydrofurans. Bioassays of extracts of O. ruginodis queens indicate that the dialkyltetrahydrofuran and hydrocarbon fractions of the profile are likely to work synergistically in eliciting behavioral responses from workers. In contrast, cuticular lipids that distinguish males from females are more conserved across species, with isomeric and relative abundance variations comprising the main differences among species. Our results provide new insights into how these contact chemical signals may have arisen and evolved within eusocial insects. © 2016. Published by The Company of Biologists Ltd.

  4. Solid-phase microextraction-based cuticular hydrocarbon profiling for intraspecific delimitation in Acyrthosiphon pisum.

    Directory of Open Access Journals (Sweden)

    Nan Chen

    Full Text Available Insect cuticular hydrocarbons (CHCs play critical roles in reducing water loss and chemical communication. Species-specific CHC profiles have been used increasingly as an excellent character for species classification. However, considerably less is known about their potential for population delimitation within species. The aims of this study were to develop a solid-phase microextraction (SPME-based CHC collection method and to investigate whether CHC profiles could serve as potential chemotaxonomic tools for intraspecific delimitation in Acyrthosiphon pisum. Optimization of fibers for SPME sampling revealed that 7 μm polydimethylsiloxane (PDMS demonstrated the most efficient adsorption of CHCs among five different tested fibers. SPME sampling showed good reproducibility with repeated collections of CHCs from a single aphid. Validation of SPME was performed by comparing CHC profiles with those from conventional hexane extractions. The two methods showed no qualitative differences in CHCs, although SPME appeared to extract relatively fewer short-chained CHCs. While CHC profiles of a given population differed among developmental stages, wing dimorphism types, and host plants, wingless adult aphids showed very low variance in relative proportions of individual CHC components. Reproducibility of CHC profiles was explored further to classify wingless adult morphs of A. pisum from five different geographic regions that showed no variation in mitochondrial COI gene sequences. Our results demonstrate that CHC profiles are useful in intraspecific delimitation in the field of insect chemotaxonomy.

  5. Solid-phase microextraction-based cuticular hydrocarbon profiling for intraspecific delimitation in Acyrthosiphon pisum

    Science.gov (United States)

    Chen, Nan; Bai, Yu; Fan, Yong-Liang

    2017-01-01

    Insect cuticular hydrocarbons (CHCs) play critical roles in reducing water loss and chemical communication. Species-specific CHC profiles have been used increasingly as an excellent character for species classification. However, considerably less is known about their potential for population delimitation within species. The aims of this study were to develop a solid-phase microextraction (SPME)-based CHC collection method and to investigate whether CHC profiles could serve as potential chemotaxonomic tools for intraspecific delimitation in Acyrthosiphon pisum. Optimization of fibers for SPME sampling revealed that 7 μm polydimethylsiloxane (PDMS) demonstrated the most efficient adsorption of CHCs among five different tested fibers. SPME sampling showed good reproducibility with repeated collections of CHCs from a single aphid. Validation of SPME was performed by comparing CHC profiles with those from conventional hexane extractions. The two methods showed no qualitative differences in CHCs, although SPME appeared to extract relatively fewer short-chained CHCs. While CHC profiles of a given population differed among developmental stages, wing dimorphism types, and host plants, wingless adult aphids showed very low variance in relative proportions of individual CHC components. Reproducibility of CHC profiles was explored further to classify wingless adult morphs of A. pisum from five different geographic regions that showed no variation in mitochondrial COI gene sequences. Our results demonstrate that CHC profiles are useful in intraspecific delimitation in the field of insect chemotaxonomy. PMID:28859151

  6. Diet-related modification of cuticular hydrocarbon profiles of the Argentine ant, Linepithema humile, diminishes intercolony aggression.

    Science.gov (United States)

    Buczkowski, Grzegorz; Kumar, Ranjit; Suib, Steven L; Silverman, Jules

    2005-04-01

    Territorial boundaries between conspecific social insect colonies are maintained through a highly developed nestmate recognition system modulated by heritable and, in some instances, nonheritable cues. Argentine ants, Linepithema humile, use both genetic and environmentally derived cues to discriminate nestmates from nonnestmates. We explored the possibility that intraspecific aggression in the Argentine ant might diminish when colonies shared a common diet. After segregating recently field-collected colony pairs into high or moderate aggression categories, we examined the effect of one of three diets: two hydrocarbon-rich insect prey, Blattella germanica and Supella longipalpa, and an artificial (insect-free) diet, on the magnitude of aggression loss. Aggression diminished between colony pairs that were initially moderately aggressive. However, initially highly aggressive colony pairs maintained high levels of injurious aggression throughout the study, independent of diet type. Each diet altered the cuticular hydrocarbon profile by contributing unique, diet-specific cues. We suggest that acquisition of common exogenous nestmate recognition cues from shared food sources may diminish aggression and promote fusion in neighboring colonies of the Argentine ant.

  7. Gene expression profiling of cuticular proteins across the moult cycle of the crab Portunus pelagicus

    Directory of Open Access Journals (Sweden)

    Kuballa Anna V

    2007-10-01

    Full Text Available Abstract Background Crustaceans represent an attractive model to study biomineralization and cuticle matrix formation, as these events are precisely timed to occur at certain stages of the moult cycle. Moulting, the process by which crustaceans shed their exoskeleton, involves the partial breakdown of the old exoskeleton and the synthesis of a new cuticle. This cuticle is subdivided into layers, some of which become calcified while others remain uncalcified. The cuticle matrix consists of many different proteins that confer the physical properties, such as pliability, of the exoskeleton. Results We have used a custom cDNA microarray chip, developed for the blue swimmer crab Portunus pelagicus, to generate expression profiles of genes involved in exoskeletal formation across the moult cycle. A total of 21 distinct moult-cycle related differentially expressed transcripts representing crustacean cuticular proteins were isolated. Of these, 13 contained copies of the cuticle_1 domain previously isolated from calcified regions of the crustacean exoskeleton, four transcripts contained a chitin_bind_4 domain (RR consensus sequence associated with both the calcified and un-calcified cuticle of crustaceans, and four transcripts contained an unannotated domain (PfamB_109992 previously isolated from C. pagurus. Additionally, cryptocyanin, a hemolymph protein involved in cuticle synthesis and structural integrity, also displays differential expression related to the moult cycle. Moult stage-specific expression analysis of these transcripts revealed that differential gene expression occurs both among transcripts containing the same domain and among transcripts containing different domains. Conclusion The large variety of genes associated with cuticle formation, and their differential expression across the crustacean moult cycle, point to the complexity of the processes associated with cuticle formation and hardening. This study provides a molecular entry path

  8. Short-Term Water Deficit Changes Cuticular Sterol Profile in the Eggplant (Solanum melongena).

    Science.gov (United States)

    Haliński, Łukasz P; Stepnowski, Piotr

    2016-06-01

    Crop irrigation uses a majority of a total world water supply, at the same time displaying low efficiency. As the expected, future water requirements are higher than the current ones; there is a risk of a growing deficit of water for the agricultural use. Hence, there is an arising need for better understanding the effects of water deprivation on the crop plants. Eggplant (Solanum melongena L.) is a vegetable crop cultivated in arid and semi-arid parts of the world. Because of its high water demands, the eggplant is a convenient model organism for studies concerning the effects of water deficit on the plant growth. The objective of the study was to determine the impact of short-term water deficit on eggplant leaf cuticular waxes and total sterols. Water deprivation did not affect the amount and composition of aliphatic components of cuticular waxes. Significant decrease in the total cuticular sterols and the increase in cuticular cholesterol were observed as an effect of water deficit. In contrast, some of the free internal sterols were more abundant in water-deprived plants. The possible importance of these observations, including increased biosynthesis of defensive compounds and the need to maintain the cell membrane stability, was discussed. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  9. Cuticular hydrocarbon profiles differentiate tropical fire ant populations (Solenopsis geminata, Hymenoptera: Formicidae)

    Science.gov (United States)

    The cuticular hydrocarbons (CHCs) from hexane rinses of workers from two Florida populations (dark and red forms) of the tropical fire ant, Solenopsis geminata, were separated by silica gel chromatography and identified by GC-MS analysis. Both the dark form and the red form produce similar CHCs with...

  10. Female choice for male cuticular hydrocarbon profile in decorated crickets is not based on similarity to their own profile.

    Science.gov (United States)

    Steiger, S; Capodeanu-Nägler, A; Gershman, S N; Weddle, C B; Rapkin, J; Sakaluk, S K; Hunt, J

    2015-12-01

    Indirect genetic benefits derived from female mate choice comprise additive (good genes) and nonadditive genetic benefits (genetic compatibility). Although good genes can be revealed by condition-dependent display traits, the mechanism by which compatibility alleles are detected is unclear because evaluation of the genetic similarity of a prospective mate requires the female to assess the genotype of the male and compare it to her own. Cuticular hydrocarbons (CHCs), lipids coating the exoskeleton of most insects, influence female mate choice in a number of species and offer a way for females to assess genetic similarity of prospective mates. Here, we determine whether female mate choice in decorated crickets is based on male CHCs and whether it is influenced by females' own CHC profiles. We used multivariate selection analysis to estimate the strength and form of selection acting on male CHCs through female mate choice, and employed different measures of multivariate dissimilarity to determine whether a female's preference for male CHCs is based on similarity to her own CHC profile. Female mating preferences were significantly influenced by CHC profiles of males. Male CHC attractiveness was not, however, contingent on the CHC profile of the choosing female, as certain male CHC phenotypes were equally attractive to most females, evidenced by significant linear and stabilizing selection gradients. These results suggest that additive genetic benefits, rather than nonadditive genetic benefits, accrue to female mate choice, in support of earlier work showing that CHC expression of males, but not females, is condition dependent. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  11. Resolution of three cryptic agricultural pests (Ceratitis fasciventris, C. anonae, C. rosa, Diptera: Tephritidae) using cuticular hydrocarbon profiling

    Czech Academy of Sciences Publication Activity Database

    Vaníčková, Lucie; Virgilio, M.; Tomčala, Aleš; Břízová, Radka; Ekesi, S.; Hoskovec, Michal; Kalinová, Blanka; do Nascimento, R. R.; De Meyer, M.

    2014-01-01

    Roč. 104, č. 5 (2014), s. 631-638 ISSN 0007-4853 Institutional support: RVO:61388963 Keywords : cryptic species complex * genus Ceratitis * cuticular hydrocarbons * polymorphic microsatellite loci * chemotaxonomy Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.910, year: 2014

  12. Intraspecific and Intracolonial Variation in the Profile of Venom Alkaloids and Cuticular Hydrocarbons of the Fire Ant Solenopsis saevissima Smith (Hymenoptera: Formicidae

    Directory of Open Access Journals (Sweden)

    Eduardo Gonçalves Paterson Fox

    2012-01-01

    Full Text Available Fire ants are aggressive Neotropical ants that are extensively similar in general biology and morphology, making species identification difficult. Some fire ant species are top-rated pests spreading throughout the world by trade vessels. Many researchers attempted to sort between invasive and native species by using chemical characters, including patterns of venom alkaloids. The present study is the first to report intraspecific variation in some chemical characters, namely, cuticular hydrocarbons and venom alkaloids, within the Brazilian fire ant species Solenopsis saevissima and also reports on within-nest variations among members of different castes. Two different haplotypes (cryptic species of S. saevissima were clearly identified, one presenting a predominant combination of the venom alkaloids cis- and trans-2-methyl-6-undecylpiperidine with the cuticular hydrocarbons C23, 3-Me-C23, 10-C25 : 1, C25, and 3-Me-C25, and the other a predominant combination of cis- and trans-2-methyl-6-tridecenylpiperidine with predominance of 12-C25 : 1, C25, 11-Me-C25, 3-Me-C25, 13-C27 : 1, C27, and 13-Me-C27. Intranest variations revealed that the proportions among these compounds varied sensibly among workers of different sizes, gynes, and males (no alkaloids were detected in the latter. Larva contained vestiges of the same compounds. The recorded chemical profiles are quite different from previous reports with S. saevissima samples from São Paulo. The finds thus support other recent claims that S. saevissima includes cryptic species; the study, moreover, adds the find that they can occur in the same geographical location.

  13. Replicated evolutionary divergence in the cuticular hydrocarbon profile of male crickets associated with the loss of song in the Hawaiian archipelago.

    Science.gov (United States)

    Simmons, L W; Thomas, M L; Gray, B; Zuk, M

    2014-10-01

    Female choice based on male secondary sexual traits is well documented, although the extent to which this selection can drive an evolutionary divergence in male traits among populations is less clear. Male field crickets Teleogryllus oceanicus attract females using a calling song and once contacted switch to courtship song to persuade them to mate. These crickets also secrete onto their cuticle a cocktail of long-chained fatty acids or cuticular hydrocarbons (CHCs). Females choose among potential mates based on the structure of male acoustic signals and on the composition of male CHC profiles. Here, we utilize two naturally occurring mutations that have arisen independently on two Hawaiian islands and render the male silent to ask whether the evolutionary loss of acoustic signalling can drive an evolutionary divergence in the alternative signalling modality, male CHC profiles. QST -FST comparisons revealed strong patterns of CHC divergence among three populations of crickets on the islands of Hawaii, Oahu and Kauai. Contrasts between wild-type and flatwing males on the islands of Oahu and Kauai indicated that variation in male CHC profiles within populations is associated with the loss of acoustic signalling; flatwing males had a relatively low abundance of long-chained CHCs relative to the short-chained CHCs that females find attractive. Given their dual functions in desiccation resistance and sexual signalling, insect CHCs may be particularly important traits for reproductive isolation and ultimately speciation. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  14. The influence of slavemaking lifestyle, caste and sex on chemical profiles inTemnothoraxants: insights into the evolution of cuticular hydrocarbons.

    Science.gov (United States)

    Kleeberg, Isabelle; Menzel, Florian; Foitzik, Susanne

    2017-03-15

    Chemical communication is central for the formation and maintenance of insect societies. Generally, social insects only allow nest-mates into their colony, which are recognized by their cuticular hydrocarbons (CHCs). Social parasites, which exploit insect societies, are selected to circumvent host recognition. Here, we studied whether chemical strategies to reduce recognition evolved convergently in slavemaking ants, and whether they extend to workers, queens and males alike. We studied CHCs of three social parasites and their related hosts to investigate whether the parasitic lifestyle selects for specific chemical traits that reduce host recognition. Slavemaker profiles were characterized by shorter-chained hydrocarbons and a shift from methyl-branched alkanes to n -alkanes, presumably to reduce recognition cue quantity. These shifts were consistent across independent origins of slavery and were found in isolated ants and those emerging in their mother colony. Lifestyle influenced profiles of workers most profoundly, with little effect on virgin queen profiles. We detected an across-species caste signal, with workers, for which nest-mate recognition is particularly important, carrying more and longer-chained hydrocarbons and males exhibiting a larger fraction of n -alkanes. This comprehensive study of CHCs across castes and species reveals how lifestyle-specific selection can result in convergent evolution of chemical phenotypes. © 2017 The Author(s).

  15. Alterations In Lipid Profile Of Patients With Advanced Cervical Cancer

    African Journals Online (AJOL)

    Background The changes in lipid profile have long been associated with cancer because lipids play key role in maintenance of cell integrity. Aims. The study evaluated alterations in plasma lipid profile in patients with advanced squamous cervical cancer. Materials And Method This hospital-based study included 30 cervical ...

  16. THE CUTICULAR LAYER OF THE

    African Journals Online (AJOL)

    mucous covering the skin, including scales if the fish has scales, is removed accidentally the fish usually die, especially when kept in confinement. (see van Oosten 1957 for review). According to. Whitear (1970) the cuticular layer in bony fish has a dual origin; one part is secreted from the surface epidermal cells and the ...

  17. The Tomato MIXTA-Like Transcription Factor Coordinates Fruit Epidermis Conical Cell Development and Cuticular Lipid Biosynthesis and Assembly1

    Science.gov (United States)

    Lotan, Orfa; Alkan, Noam; Tsimbalist, Tatiana; Rechav, Katya; Fernandez-Moreno, Josefina-Patricia; Widemann, Emilie; Grausem, Bernard; Pinot, Franck; Costa, Fabrizio; Aharoni, Asaph

    2015-01-01

    The epidermis of aerial plant organs is the primary source of building blocks forming the outer surface cuticular layer. To examine the relationship between epidermal cell development and cuticle assembly in the context of fruit surface, we investigated the tomato (Solanum lycopersicum) MIXTA-like gene. MIXTA/MIXTA-like proteins, initially described in snapdragon (Antirrhinum majus) petals, are known regulators of epidermal cell differentiation. Fruit of transgenically silenced SlMIXTA-like tomato plants displayed defects in patterning of conical epidermal cells. They also showed altered postharvest water loss and resistance to pathogens. Transcriptome and cuticular lipids profiling coupled with comprehensive microscopy revealed significant modifications to cuticle assembly and suggested SlMIXTA-like to regulate cutin biosynthesis. Candidate genes likely acting downstream of SlMIXTA-like included cytochrome P450s (CYPs) of the CYP77A and CYP86A subfamilies, LONG-CHAIN ACYL-COA SYNTHETASE2, GLYCEROL-3-PHOSPHATE SN-2-ACYLTRANSFERASE4, and the ATP-BINDING CASSETTE11 cuticular lipids transporter. As part of a larger regulatory network of epidermal cell patterning and L1-layer identity, we found that SlMIXTA-like acts downstream of SlSHINE3 and possibly cooperates with homeodomain Leu zipper IV transcription factors. Hence, SlMIXTA-like is a positive regulator of both cuticle and conical epidermal cell formation in tomato fruit, acting as a mediator of the tight association between fruit cutin polymer formation, cuticle assembly, and epidermal cell patterning. PMID:26443676

  18. Dietary effects on cuticular hydrocarbons and sexual attractiveness in Drosophila.

    Directory of Open Access Journals (Sweden)

    Tatyana Y Fedina

    Full Text Available Dietary composition is known to have profound effects on many aspects of animal physiology, including lifespan, general health, and reproductive potential. We have previously shown that aging and insulin signaling significantly influence the composition and sexual attractiveness of Drosophila melanogaster female cuticular hydrocarbons (CHCs, some of which are known to be sex pheromones. Because diet is intimately linked to aging and to the activity of nutrient-sensing pathways, we asked how diet affects female CHCs and attractiveness. Here we report consistent and significant effects of diet composition on female CHC profiles across ages, with dietary yeast and sugar driving CHC changes in opposite directions. Surprisingly, however, we found no evidence that these changes affect female attractiveness. Multivariate comparisons among responses of CHC profiles to diet, aging, and insulin signaling suggest that diet may alter the levels of some CHCs in a way that results in profiles that are more attractive while simultaneously altering other CHCs in a way that makes them less attractive. For example, changes in short-chain CHCs induced by a high-yeast diet phenocopy changes caused by aging and by decreased insulin signaling, both of which result in less attractive females. On the other hand, changes in long-chain CHCs in response to the same diet result in levels that are comparable to those observed in attractive young females and females with increased insulin signaling. The effects of a high-sugar diet tend in the opposite direction, as levels of short-chain CHCs resemble those in attractive females with increased insulin signaling and changes in long-chain CHCs are similar to those caused by decreased insulin signaling. Together, these data suggest that diet-dependent changes in female CHCs may be sending conflicting messages to males.

  19. The alteration of the urinary steroid profile under the stress

    Directory of Open Access Journals (Sweden)

    A Gronowska

    2010-03-01

    Full Text Available In the second part of twentieth century anabolic-androgenic steroids were introduced into doping practice and received continuously increasing significance. In order to prove the usage of doping substances, the determination of steroid profile in the urine came into practice. Several factors may be responsible for alterations in the normal steroid profile for example age, sex and diet. The aim of this study was to find out, whether the psychological stress may cause modifications in the steroid profile and T/Et ratio. The effect of physical activity was also considered. The steroid profile was determined in the group of 34 students being in non-stress conditions and under stress immediately before an important university exam. The intensity of stress was rated by self-reported questionnaire. The GC/MS method was applied to determine the steroid profile in the urine samples. The results of the experiment have shown that psychological stress may cause significant changes in the steroid profile, especially in females. Physical activity, independently of stress significantly modified the steroid profile. In summary, observed changes in steroid profile suggest, that major fluctuations of T/Et and A/E ratios under the influence of stressogenic factors and physical activity are unlikely.

  20. Cuticular features as indicators of environmental pollution

    Science.gov (United States)

    G. K. Sharma

    1976-01-01

    Several leaf cuticular features such as stomatal frequency, stomatal size, trichome length, type, and frequency, and subsidiary cell complex respond to environmental pollution in different ways and hence can be used as indicators of environmental pollution in an area. Several modifications in cuticular features under polluted environments seem to indicate ecotypic or...

  1. Crowd control: sex ratio affects sexually selected cuticular hydrocarbons in male Drosophila serrata.

    Science.gov (United States)

    Gershman, S N; Rundle, H D

    2017-03-01

    Although it is advantageous for males to express costly sexually selected signals when females are present, they may also benefit from suppressing these signals to avoid costly interactions with rival males. Cuticular chemical profiles frequently function as insect sexual signals; however, few studies have asked whether males alter these signals in response to their social environment. In Drosophila serrata, an Australian fly, there is sexual selection for a multivariate combination of male cuticular hydrocarbons (CHCs). Here, we show that the ratio of females to males that an adult male experiences has a strong effect on his CHC expression, with female-biased adult sex ratios eliciting greater expression of CHC profiles associated with higher male mating success. Classical models predict that male reproductive investment should be highest when there is a small but nonzero number of rivals, but we found that males expressed the most attractive combination of CHCs when there were no rivals. We found that male CHCs were highly sensitive to adult sex ratio, with males expressing higher values of CHC profiles associated with greater mating success as the ratio of females to males increased. Moreover, sex ratio has a stronger effect on male CHC expression than adult density. Finally, we explore whether sex ratio affects the variance among a group of males in their CHC expression, as might be expected if individuals respond differently to a given social environment, but find little effect. Our results reveal that subtle differences in social environment can induce plasticity in male chemical signal expression. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  2. Alterations of Plasma lipid profile patterns in oral leukoplakia

    Science.gov (United States)

    Mahesh, N; Rahamthullah, S A K Uroof; Naidu, Guntipalli M; Rajesh, Amudala; Babu, P Ravisekhar; Reddy, J Muralinath

    2014-01-01

    Background: Oral cancer is associated initially by the presence of pre-malignant lesions or pre-malignant conditions. Oral Leukoplakia is one of the best-known pre-malignant lesions in the oral cavity that have the highest rate of malignant transformation. Numerous studies have shown an altered lipid profile in various cancers including head and neck cancers. An inverse relationship between plasma lipid profiles has been seen in oral cancer and pre-cancerous subjects. The present study evaluated the plasma lipid profiles in oral leukoplakia and controls. Materials & Methods: This study was done in department of Oral Medicine and Radiology, Sibar dental College and Konacc diagnostics. 30 patients were included in the study (15 patients with oral leukoplakia (histo-pathologically proven) and 15 patients for comparison of results as controls). Patients with cardiovascular diseases, uncontrolled diabetes mellitus, acute hepatitis and nephrosis were excluded from the sample and lipid profile assay was done by fully automated biochemistry analyser (EM–360). Paired-t and Scheffe tests were used to find statistical significance between two groups. Results: The plasma lipid levels were estimated in between the two groups by arithmetic mean along with standard deviation. The lipid parameters included were Total cholesterol, HDL, LDL, VLDL, Triglycerides. The lipid parameters of the patients in between the two groups were compared and analysed. Conclusion: In this study TC, HDL, LDL, Triglyceride level analysis showed slightly lower levels in oral leukoplakia patients than that of the controls. Higher VLDL levels were observed in leukoplakia than the control group. How to cite the article: Mahesh N, Rahamthullah SA, Naidu GM, Rajesh A, Babu PR, Reddy JM. Alterations of Plasma lipid profile patterns in oral leukoplakia. J Int Oral Health 2014;6(1):78-84. PMID:24653608

  3. The Tomato MIXTA-Like Transcription Factor Coordinates Fruit Epidermis Conical Cell Development and Cuticular Lipid Biosynthesis and Assembly.

    Science.gov (United States)

    Lashbrooke, Justin; Adato, Avital; Lotan, Orfa; Alkan, Noam; Tsimbalist, Tatiana; Rechav, Katya; Fernandez-Moreno, Josefina-Patricia; Widemann, Emilie; Grausem, Bernard; Pinot, Franck; Granell, Antonio; Costa, Fabrizio; Aharoni, Asaph

    2015-12-01

    The epidermis of aerial plant organs is the primary source of building blocks forming the outer surface cuticular layer. To examine the relationship between epidermal cell development and cuticle assembly in the context of fruit surface, we investigated the tomato (Solanum lycopersicum) MIXTA-like gene. MIXTA/MIXTA-like proteins, initially described in snapdragon (Antirrhinum majus) petals, are known regulators of epidermal cell differentiation. Fruit of transgenically silenced SlMIXTA-like tomato plants displayed defects in patterning of conical epidermal cells. They also showed altered postharvest water loss and resistance to pathogens. Transcriptome and cuticular lipids profiling coupled with comprehensive microscopy revealed significant modifications to cuticle assembly and suggested SlMIXTA-like to regulate cutin biosynthesis. Candidate genes likely acting downstream of SlMIXTA-like included cytochrome P450s (CYPs) of the CYP77A and CYP86A subfamilies, LONG-CHAIN ACYL-COA SYNTHETASE2, GLYCEROL-3-PHOSPHATE SN-2-ACYLTRANSFERASE4, and the ATP-BINDING CASSETTE11 cuticular lipids transporter. As part of a larger regulatory network of epidermal cell patterning and L1-layer identity, we found that SlMIXTA-like acts downstream of SlSHINE3 and possibly cooperates with homeodomain Leu zipper IV transcription factors. Hence, SlMIXTA-like is a positive regulator of both cuticle and conical epidermal cell formation in tomato fruit, acting as a mediator of the tight association between fruit cutin polymer formation, cuticle assembly, and epidermal cell patterning. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. New insights of altered lipid profile in Fragile X Syndrome.

    Directory of Open Access Journals (Sweden)

    Artuela Çaku

    Full Text Available Fragile X Syndrome (FXS is the main genetic cause of autism and intellectual deficiency resulting the absence of the Fragile X Mental Retardation Protein (FMRP. Clinical picture is characterized by cognitive impairment associated with a broad spectrum of psychiatric comorbidities including autism spectrum disorders and attention-deficit/hyperactivity disorders. Some of these disorders have been associated with lipid abnormalities and lower cholesterol levels. Since lipids are important for neuronal development, we aim to investigate the lipid profile of French Canadian-FXS individuals and to identify the altered components of cholesterol metabolism as well as their association with clinical profile.Anthropometric data were collected from 25 FXS individuals and 26 controls. Lipid assessment included: total cholesterol (TC, triglycerides, LDL, HDL, ApoB, ApoA1, PCSK9, Lp(a and lipoprotein electrophoresis. Aberrant and adaptive behaviour of affected individuals was respectively assessed by the ABC-C and ABAS questionnaires.FXS participants had a higher body mass index as compared to controls while 38% of them had TC<10th percentile. Lower levels of LDL, HDL and apoA1 were observed in FXS group as compared to controls. However, PCSK9 levels did not differ between the two groups. As expected, PCSK9 levels correlated with total cholesterol (rs = 0.61, p = 0.001 and LDL (rs = 0.46, p = 0.014 in the control group, while no association was present in the FXS group. An inverse relationship was observed between total cholesterol and aberrant behaviour as determined by ABC-C total score.Our results showed the presence of hypocholesterolemia in French Canadian-FXS population, a condition that seems to influence their clinical phenotype. We identified for the first time a potential underlying alteration of PCSK9 function in FXS that could result from the absence of FMRP. Further investigations are warranted to better understand the association between

  5. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5 Gy, 1 Gy, 2.5 Gy, and 5 Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1 Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1 Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders.

  6. Ecological restoration alters microbial communities in mine tailings profiles

    Science.gov (United States)

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  7. Cuticular hydrocarbons as potential kin recognition cues in a subsocial spider

    DEFF Research Database (Denmark)

    Grinsted, Lena; Bilde, Trine; D'Ettorre, Patrizia

    2011-01-01

    of recognition cues in subsocial species can provide insights into evolutionary pathways leading to permanent sociality and kin-selected benefits of cooperation. In subsocial spiders, empirical evidence suggests the existence of both kin recognition and benefits of cooperating with kin, whereas the cues for kin...... recognition have yet to be identified. However, cuticular hydrocarbons have been proposed to be involved in regulation of tolerance and interattraction in spider sociality. Here, we show that subsocial Stegodyphus lineatus spiderlings have cuticular hydrocarbon profiles that are sibling-group specific, making...... be branched alkanes that are influenced very little by rearing conditions and may be genetically determined. This indicates that a specific group of cuticular chemicals, namely branched alkanes, could have evolved to act as social recognition cues in both insects and spiders....

  8. Population diversity in cuticular hydrocarbons and mtDNA in a mountain social wasp.

    Science.gov (United States)

    Bonelli, Mariaelena; Lorenzi, Maria Cristina; Christidès, Jean-Philippe; Dupont, Simon; Bagnères, Anne-Geneviève

    2015-01-01

    Nestmate recognition is a common phenomenon in social insects that typically is mediated by cuticular hydrocarbons. Geographical variation in cuticular hydrocarbons has been observed, although the pattern of variation is not consistent across species and is usually related to the biology and ecology of the different species. Polistes biglumis (Hymenoptera: Vespidae) is a social wasp that lives in high mountains where populations are separated by significant geographical barriers. Here we investigated the level of chemical variation among populations of P. biglumis in the Alps, and shed light on the phylogeography of this species. Populations could be discriminated by means of their cuticular hydrocarbon profiles, which showed a pattern consistent with the isolation-by-distance hypothesis. Molecular data highlighted two areas with different levels of haplotype diversity, although all wasps belonged to the same species. These results suggest that the populations of P. biglumis in the Alps are geographically isolated from one another, favoring their genetic and chemical differentiation.

  9. Mycorrhiza alters the profile of root hairs in trifoliate orange.

    Science.gov (United States)

    Wu, Qiang-Sheng; Liu, Chun-Yan; Zhang, De-Jian; Zou, Ying-Ning; He, Xin-Hua; Wu, Qing-Hua

    2016-04-01

    Root hairs and arbuscular mycorrhiza (AM) coexist in root systems for nutrient and water absorption, but the relation between AM and root hairs is poorly known. A pot study was performed to evaluate the effects of four different AM fungi (AMF), namely, Claroideoglomus etunicatum, Diversispora versiformis, Funneliformis mosseae, and Rhizophagus intraradices on root hair development in trifoliate orange (Poncirus trifoliata) seedlings grown in sand. Mycorrhizal seedlings showed significantly higher root hair density than non-mycorrhizal seedlings, irrespective of AMF species. AMF inoculation generally significantly decreased root hair length in the first- and second-order lateral roots but increased it in the third- and fourth-order lateral roots. AMF colonization induced diverse responses in root hair diameter of different order lateral roots. Considerably greater concentrations of phosphorus (P), nitric oxide (NO), glucose, sucrose, indole-3-acetic acid (IAA), and methyl jasmonate (MeJA) were found in roots of AM seedlings than in non-AM seedlings. Levels of P, NO, carbohydrates, IAA, and MeJA in roots were correlated with AM formation and root hair development. These results suggest that AMF could alter the profile of root hairs in trifoliate orange through modulation of physiological activities. F. mosseae, which had the greatest positive effects, could represent an efficient AM fungus for increasing fruit yields or decreasing fertilizer inputs in citrus production.

  10. Cuticle ultrastructure, cuticular lipid composition, and gene expression in hypoxia-stressed Arabidopsis stems and leaves.

    Science.gov (United States)

    Kim, Hyojin; Choi, Dongsu; Suh, Mi Chung

    2017-06-01

    An increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis and may allow plants to cope with oxygen deficiency. The hydrophobic cuticle layer consisting of cutin polyester and cuticular wax is the first barrier to protect the aerial parts of land plants from environmental stresses. In the present study, we investigated the role of cuticle membrane in Arabidopsis responses to oxygen deficiency. TEM analysis showed that the epidermal cells of hypoxia-treated Arabidopsis stems and leaves possessed a thinner electron-translucent cuticle proper and a more electron-dense cuticular layer. A reduction in epicuticular wax crystal deposition was observed in SEM images of hypoxia-treated Arabidopsis stem compared with normoxic control. Cuticular transpiration was more rapid in hypoxia-stressed leaves than in normoxic control. Total wax and cutin loads decreased by approximately 6-12 and 12-22%, respectively, and the levels of C29 alkanes, secondary alcohols, and ketones, C16:0 ω-hydroxy fatty acids, and C18:2 dicarboxylic acids were also prominently reduced in hypoxia-stressed Arabidopsis leaves and/or stems relative to normoxic control. Genome-wide transcriptome and quantitative RT-PCR analyses revealed that the expression of several genes involved in the biosynthesis and transport of cuticular waxes and cutin monomers were downregulated more than fourfold, but no significant alterations were detected in the transcript levels of fatty acid biosynthetic genes, BCCP2, PDH-E1α, and ENR1 in hypoxia-treated Arabidopsis stems and leaves compared with normoxic control. Taken together, an increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis. The present study elucidates one of the cuticle-related adaptive responses that may allow plants to cope with low oxygen levels.

  11. Profile of altered brain iron acquisition in restless legs syndrome

    Science.gov (United States)

    Ponnuru, Padmavathi; Wang, Xin-Sheng; Patton, Stephanie M.; Allen, Richard P.; Earley, Christopher J.

    2011-01-01

    nigra of restless legs syndrome brains. This study reveals that there are alterations in the iron management protein profile in restless legs syndrome compared with controls at the site of blood–brain interface suggesting fundamental differences in brain iron acquisition in individuals with restless legs syndrome. Furthermore, the decrease in transferrin receptor expression in the microvasculature in the presence of relative brain iron deficiency reported in restless legs syndrome brains may underlie the problems associated with brain iron acquisition in restless legs syndrome. The consistent finding of loss of iron regulatory protein activity in restless legs syndrome brain tissue further implicates this protein as a factor in the underlying cause of the iron deficiency in the restless legs syndrome brain. The data herein provide evidence for regulation of iron uptake and storage within brain microvessels that challenge the existing paradigm that the blood–brain barrier is merely a transport system. PMID:21398376

  12. Adaptive dynamics of cuticular hydrocarbons in Drosophila

    Czech Academy of Sciences Publication Activity Database

    Rajpurohit, S.; Hanus, Robert; Vrkoslav, Vladimír; Behrman, E. L.; Bergland, A. O.; Petrov, D.; Cvačka, Josef; Schmidt, P. S.

    2017-01-01

    Roč. 30, č. 1 (2017), s. 66-80 ISSN 1010-061X R&D Projects: GA ČR GAP206/12/1093 Institutional support: RVO:61388963 Keywords : cuticular hydrocarbons * Drosophila * experimental evolution * spatiotemporal variation * thermal plasticity Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 2.792, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/jeb.12988/full

  13. Functional alteration of breast muscle fatty acid profile by ...

    African Journals Online (AJOL)

    ajl yemi

    2011-03-28

    Mar 28, 2011 ... Breast muscle fatty acid (FA) profile was studied in broiler chickens fed at different levels of n-6:n-3 polyunsaturated fatty acid (PUFA) ratios ... The fast growing demand of omega-3 enriched meat and meat products, lead producers to ..... Chia seed (Salvia hispanica L.) as an [omega]-3 fatty acid source for ...

  14. Alteration of Plasma Lipid Profile and Atherogenic Indices of ...

    African Journals Online (AJOL)

    The effect of the administration of 20mg/100g aqueous extract of the leaves of Tridax procumbens on the packed cell volume (PCV), daily weight gain, plasma lipid profiles and atherogenic indices of rats fed 1g/100g cholesterol, was investigated. The mean daily weight gain and plasma concentrations of triglyceride, LDL-, ...

  15. Alteration of Plasma Lipid Profiles and Atherogenic Indices by ...

    African Journals Online (AJOL)

    JTEkanem

    2009-07-15

    Jul 15, 2009 ... The effects of Stachytarpheta jamaicensis tea on the plasma lipid profile and atherogenic indices were ... metabolism may be useful for reducing the ... The animals were housed in clean, disinfected hutches and acclimatized on guinea growers mash (Bendel. Feed and Flour Mills Ltd., Ewu, Nigeria) for a.

  16. TEM study of progressive alteration of igneous biotite to kaolinite throughout a weathered soil profile

    Science.gov (United States)

    Dong, Hailiang; Peacor, Donald R.; Murphy, Sheila F.

    1998-06-01

    TEM characterization of progressive alteration of igneous biotite to kaolinite throughout a weathered soil profile was carried out to study the mechanisms of the reaction from biotite to kaolinite. A biotite-like phase with d (001) ≅ 10.5 Å but with a higher Al/Si ratio and lower Fe, Mg, and K contents forms as a first, intermediate alteration product of igneous biotite. This phase is referred to as altered biotite. Two different alteration mechanisms are responsible for the altered biotite-kaolinite reaction: (1) reaction of one layer of altered biotite to form two layers of kaolinite and (2) transition of one layer of altered biotite to one layer of halloysite, which subsequently reacted to form one layer of kaolinite. Metastable intermediate altered biotite and halloysite form at low temperatures, where reactions are sluggish, as consistent with the Ostwald step rule, and in direct contrast to equivalent reactions at high temperatures.

  17. Sexual selection and population divergence I: The influence of socially flexible cuticular hydrocarbon expression in male field crickets (Teleogryllus oceanicus).

    Science.gov (United States)

    Pascoal, Sonia; Mendrok, Magdalena; Mitchell, Christopher; Wilson, Alastair J; Hunt, John; Bailey, Nathan W

    2016-01-01

    Debates about how coevolution of sexual traits and preferences might promote evolutionary diversification have permeated speciation research for over a century. Recent work demonstrates that the expression of such traits can be sensitive to variation in the social environment. Here, we examined social flexibility in a sexually selected male trait-cuticular hydrocarbon (CHC) profiles-in the field cricket Teleogryllus oceanicus and tested whether population genetic divergence predicts the extent or direction of social flexibility in allopatric populations. We manipulated male crickets' social environments during rearing and then characterized CHC profiles. CHC signatures varied considerably across populations and also in response to the social environment, but our prediction that increased social flexibility would be selected in more recently founded populations exposed to fluctuating demographic environments was unsupported. Furthermore, models examining the influence of drift and selection failed to support a role of sexual selection in driving population divergence in CHC profiles. Variation in social environments might alter the dynamics of sexual selection, but our results align with theoretical predictions that the role social flexibility plays in modulating evolutionary divergence depends critically on whether responses to variation in the social environment are homogeneous across populations, or whether gene by social environment interactions occur. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  18. Alterations in the lipid profile and liver enzymes of rats treated with ...

    African Journals Online (AJOL)

    ... aminotransferase activities and lipid profile, hence monosodium glutamate though a flavor enhancer food additive but it must be carefully used in food preparation due to it alterations in both the liver enzymes and the lipid profile. Keywords: Adult rats, dyslipidaemia, flavor enhancer, hepatotoxic, monosodium glutamate ...

  19. Altered Bacterial Profiles in Saliva from Adults with Caries Lesions

    DEFF Research Database (Denmark)

    Belstrøm, D; Fiehn, N-E; Nielsen, C H

    2014-01-01

    The aim of this study was to learn whether presence of caries in an adult population was associated with a salivary bacterial profile different from that of individuals without untreated caries. Stimulated saliva samples from 621 participants of the Danish Health Examination Survey were analyzed ...... of commensal microbial communities are involved in the shift from oral health to tooth decay. © 2014 S. Karger AG, Basel....... using the Human Oral Microbe Identification Microarray technology. Samples from 174 individuals with dental caries and 447 from a control cohort were compared using frequency and levels of identified bacterial taxa/clusters as endpoints. Differences at taxon/cluster level were analyzed using Mann......-Whitney's test with Benjamini-Hochberg correction for multiple comparisons. Principal component analysis was used to visualize bacterial community profiles. A reduced bacterial diversity was observed in samples from subjects with dental caries. Five bacterial taxa (Veillonella parvula, Veillonella atypica...

  20. Functional alteration of breast muscle fatty acid profile by ...

    African Journals Online (AJOL)

    Breast muscle fatty acid (FA) profile was studied in broiler chickens fed at different levels of n-6:n-3 polyunsaturated fatty acid (PUFA) ratios in 4 treatment groups; very high level of n-6:n-3 ratios (VH), high level of n-6:n-3 ratios (H), low level of n-6:n-3 ratios (L), very low level of n-6:n-3 ratios (VL) and control, respectively.

  1. Altered Antibody Profiles against Common Infectious Agents in Chronic Disease

    Science.gov (United States)

    Burbelo, Peter D.; Ching, Kathryn H.; Morse, Caryn G.; Alevizos, Ilias; Bayat, Ahmad; Cohen, Jeffrey I.; Ali, Mir A.; Kapoor, Amit; Browne, Sarah K.; Holland, Steven M.; Kovacs, Joseph A.; Iadarola, Michael J.

    2013-01-01

    Despite the important diagnostic value of evaluating antibody responses to individual human pathogens, antibody profiles against multiple infectious agents have not been used to explore health and disease mainly for technical reasons.  We hypothesized that the interplay between infection and chronic disease might be revealed by profiling antibodies against multiple agents. Here, the levels of antibodies against a panel of 13 common infectious agents were evaluated with the quantitative Luciferase Immunoprecipitation Systems (LIPS) in patients from three disease cohorts including those with pathogenic anti-interferon-γ autoantibodies (IFN-γ AAB), HIV and Sjögren’s syndrome (SjS) to determine if their antibody profiles differed from control subjects.  The IFN-γ AAB patients compared to controls demonstrated statistically higher levels of antibodies against VZV (p=0.0003), EBV (p=0.002), CMV (p=0.003), and C. albicans (p=0.03), but lower antibody levels against poliovirus (p=0.04). Comparison of HIV patients with blood donor controls revealed that the patients had higher levels of antibodies against CMV (p=0.0008), HSV-2 (p=0.0008), EBV (p=0.001), and C. albicans (p=0.01), but showed decreased levels of antibodies against coxsackievirus B4 (p=0.0008), poliovirus (p=0.0005),   and HHV-6B (p=0.002). Lastly, SjS patients had higher levels of anti-EBV antibodies (p=0.03), but lower antibody levels against several enteroviruses including a newly identified picornavirus, HCoSV-A (p=0.004), coxsackievirus B4 (p=0.04), and poliovirus (p=0.02). For the IFN-γ AAB and HIV cohorts, principal component analysis revealed unique antibody clusters that showed the potential to discriminate patients from controls.  The results suggest that antibody profiles against these and likely other common infectious agents may yield insight into the interplay between exposure to infectious agents, dysbiosis, adaptive immunity and disease activity. PMID:24312567

  2. Variation of cuticular chemical compounds in three species of Mischocyttarus (Hymenoptera: Vespidae eusocial wasps

    Directory of Open Access Journals (Sweden)

    Eva Ramona Pereira Soares

    Full Text Available Abstract The social wasps have a remarkable system of organization in which chemical communication mediate different behavioral interactions. Among the compounds involved in this process, cuticular hydrocarbons are considered the main signals for nestmate recognition, caste differentiation, and fertility communication. The aims of this study were to describe the cuticular chemical compounds of the species Mischocyttarus consimilis, Mischocyttarus bertonii, and Mischocyttarus latior, and to test whether these chemical compounds could be used to evaluate differences and similarities between Mischocyttarus species, using gas chromatography coupled to mass spectrometry (GC-MS. Workers from these three species presented a variety of hydrocarbons ranging from C17 to C37, and among the compounds identified, the most representative were branched alkanes, linear alkanes and alkenes. The results revealed quantitative and qualitative differences among the hydrocarbon profiles, as confirmed by discriminant analysis. This study supports the hypothesis that cuticular chemical profiles can be used as parameters to identify interspecific and intercolony differences in Mischocyttarus, highlighting the importance of these compounds for differentiation of species and populations.

  3. Desiccation resistance: effect of cuticular hydrocarbons and water content in Drosophila melanogaster adults

    Directory of Open Access Journals (Sweden)

    Jean-Francois Ferveur

    2018-02-01

    Full Text Available Background The insect cuticle covers the whole body and all appendages and has bi-directionnal selective permeability: it protects against environmental stress and pathogen infection and also helps to reduce water loss. The adult cuticle is often associated with a superficial layer of fatty acid-derived molecules such as waxes and long chain hydrocarbons that prevent rapid dehydration. The waterproofing properties of cuticular hydrocarbons (CHs depend on their chain length and desaturation number. Drosophila CH biosynthesis involves an enzymatic pathway including several elongase and desaturase enzymes. Methods The link between desiccation resistance and CH profile remains unclear, so we tested (1 experimentally selected desiccation-resistant lines, (2 transgenic flies with altered desaturase expression and (3 natural and laboratory-induced CH variants. We also explored the possible relationship between desiccation resistance, relative water content and fecundity in females. Results We found that increased desiccation resistance is linked with the increased proportion of desaturated CHs, but not with their total amount. Experimentally-induced desiccation resistance and CH variation both remained stable after many generations without selection. Conversely, flies with a higher water content and a lower proportion of desaturated CHs showed reduced desiccation resistance. This was also the case in flies with defective desaturase expression in the fat body. Discussion We conclude that rapidly acquired desiccation resistance, depending on both CH profile and water content, can remain stable without selection in a humid environment. These three phenotypes, which might be expected to show a simple relationship, turn out to have complex physiological and genetic links.

  4. Alterations of urinary metabolite profile in model diabetic nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Stec, Donald F. [Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Wang, Suwan; Stothers, Cody [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Avance, Josh [Berea College, 1916 CPO, Berea, KY 40404 (United States); Denson, Deon [Choctaw Central High School, Philadelphia, MS 39350 (United States); Harris, Raymond [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Voziyan, Paul, E-mail: paul.voziyan@vanderbilt.edu [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2015-01-09

    Highlights: • {sup 1}H NMR spectroscopy was employed to study urinary metabolite profile in diabetic mouse models. • Mouse urinary metabolome showed major changes that are also found in human diabetic nephropathy. • These models can be new tools to study urinary biomarkers that are relevant to human disease. - Abstract: Countering the diabetes pandemic and consequent complications, such as nephropathy, will require better understanding of disease mechanisms and development of new diagnostic methods. Animal models can be versatile tools in studies of diabetic renal disease when model pathology is relevant to human diabetic nephropathy (DN). Diabetic models using endothelial nitric oxide synthase (eNOS) knock-out mice develop major renal lesions characteristic of human disease. However, it is unknown whether they can also reproduce changes in urinary metabolites found in human DN. We employed Type 1 and Type 2 diabetic mouse models of DN, i.e. STZ-eNOS{sup −/−} C57BLKS and eNOS{sup −/−} C57BLKS db/db, with the goal of determining changes in urinary metabolite profile using proton nuclear magnetic resonance (NMR). Six urinary metabolites with significantly lower levels in diabetic compared to control mice have been identified. Specifically, major changes were found in metabolites from tricarboxylic acid (TCA) cycle and aromatic amino acid catabolism including 3-indoxyl sulfate, cis-aconitate, 2-oxoisocaproate, N-phenyl-acetylglycine, 4-hydroxyphenyl acetate, and hippurate. Levels of 4-hydroxyphenyl acetic acid and hippuric acid showed the strongest reverse correlation to albumin-to-creatinine ratio (ACR), which is an indicator of renal damage. Importantly, similar changes in urinary hydroxyphenyl acetate and hippurate were previously reported in human renal disease. We demonstrated that STZ-eNOS{sup −/−} C57BLKS and eNOS{sup −/−} C57BLKS db/db mouse models can recapitulate changes in urinary metabolome found in human DN and therefore can be

  5. Alterations of urinary metabolite profile in model diabetic nephropathy

    International Nuclear Information System (INIS)

    Stec, Donald F.; Wang, Suwan; Stothers, Cody; Avance, Josh; Denson, Deon; Harris, Raymond; Voziyan, Paul

    2015-01-01

    Highlights: • 1 H NMR spectroscopy was employed to study urinary metabolite profile in diabetic mouse models. • Mouse urinary metabolome showed major changes that are also found in human diabetic nephropathy. • These models can be new tools to study urinary biomarkers that are relevant to human disease. - Abstract: Countering the diabetes pandemic and consequent complications, such as nephropathy, will require better understanding of disease mechanisms and development of new diagnostic methods. Animal models can be versatile tools in studies of diabetic renal disease when model pathology is relevant to human diabetic nephropathy (DN). Diabetic models using endothelial nitric oxide synthase (eNOS) knock-out mice develop major renal lesions characteristic of human disease. However, it is unknown whether they can also reproduce changes in urinary metabolites found in human DN. We employed Type 1 and Type 2 diabetic mouse models of DN, i.e. STZ-eNOS −/− C57BLKS and eNOS −/− C57BLKS db/db, with the goal of determining changes in urinary metabolite profile using proton nuclear magnetic resonance (NMR). Six urinary metabolites with significantly lower levels in diabetic compared to control mice have been identified. Specifically, major changes were found in metabolites from tricarboxylic acid (TCA) cycle and aromatic amino acid catabolism including 3-indoxyl sulfate, cis-aconitate, 2-oxoisocaproate, N-phenyl-acetylglycine, 4-hydroxyphenyl acetate, and hippurate. Levels of 4-hydroxyphenyl acetic acid and hippuric acid showed the strongest reverse correlation to albumin-to-creatinine ratio (ACR), which is an indicator of renal damage. Importantly, similar changes in urinary hydroxyphenyl acetate and hippurate were previously reported in human renal disease. We demonstrated that STZ-eNOS −/− C57BLKS and eNOS −/− C57BLKS db/db mouse models can recapitulate changes in urinary metabolome found in human DN and therefore can be useful new tools in

  6. The healthy donor profile of immunoregulatory soluble mediators is altered by stem cell mobilization and apheresis.

    Science.gov (United States)

    Melve, Guro Kristin; Ersvaer, Elisabeth; Paulsen Rye, Kristin; Bushra Ahmed, Aymen; Kristoffersen, Einar K; Hervig, Tor; Reikvam, Håkon; Hatfield, Kimberley Joanne; Bruserud, Øystein

    2018-03-22

    Peripheral blood stem cells from healthy donors mobilized by granulocyte colony-stimulating factor (G-CSF) and thereafter harvested by leukapheresis are commonly used for allogeneic stem cell transplantation. Plasma levels of 38 soluble mediators (cytokines, soluble adhesion molecules, proteases, protease inhibitors) were analyzed in samples derived from healthy stem cell donors before G-CSF treatment and after 4 days, both immediately before and after leukapheresis. Donors could be classified into two main subsets based on their plasma mediator profile before G-CSF treatment. Seventeen of 36 detectable mediators were significantly altered by G-CSF; generally an increase in mediator levels was seen, including pro-inflammatory cytokines, soluble adhesion molecules and proteases. Several leukocyte- and platelet-released mediators were increased during apheresis. Both plasma and graft mediator profiles were thus altered and showed correlations to graft concentrations of leukocytes and platelets; these concentrations were influenced by the apheresis device used. Finally, the mediator profile of the allotransplant recipients was altered by graft infusion, and based on their day +1 post-transplantation plasma profile our recipients could be divided into two major subsets that differed in overall survival. G-CSF alters the short-term plasma mediator profile of healthy stem cell donors. These effects together with the leukocyte and platelet levels in the graft determine the mediator profile of the stem cell grafts. Graft infusion also alters the systemic mediator profile of the recipients, but further studies are required to clarify whether such graft-induced alterations have a prognostic impact. Copyright © 2018. Published by Elsevier Inc.

  7. Altered glycosylation profile of purified plasma ACT from Alzheimer's disease.

    Science.gov (United States)

    Ianni, Manuela; Manerba, Marcella; Di Stefano, Giuseppina; Porcellini, Elisa; Chiappelli, Martina; Carbone, Ilaria; Licastro, Federico

    2010-12-16

    Alzheimer's disease (AD) is one of the most frequent cause of neurodegenerative disorder in the elderly. Inflammation has been implicated in brain degenerative processes and peripheral markers of brain AD related impairment would be useful. Plasma levels of alpha-1-antichymotrypsin (ACT), an acute phase protein and a secondary component of amyloid plaques, are often increased in AD patients and high blood ACT levels correlate with progressive cognitive deterioration. During inflammatory responses changes in the micro-heterogeneity of ACT sugar chains have been described. N-Glycanase digestion from Flavobacterium meningosepticum (PNGase F) was performed on both native and denatured purified ACT condition and resolved to Western blot with the purpose to revealed the ACT de-glycosylation pattern.Further characterization of the ACT glycan profile was obtained by a glycoarray; each lectin group in the assay specifically recognizes one or two glycans/epitopes. Lectin-bound ACT produced a glyco-fingerprint and mayor differences between AD and controls samples were assessed by a specific algorithms. Western blot analysis of purified ACT after PNGase F treatment and analysis of sugar composition of ACT showed significantly difference in "glyco-fingerprints" patterns from controls (CTR) and AD; ACT from AD showing significantly reduced levels of sialic acid. A difference in terminal GlcNac residues appeared to be related with progressive cognitive deterioration. Low content of terminal GlcNac and sialic acid in peripheral ACT in AD patients suggests that a different pattern of glycosylation might be a marker of brain inflammation. Moreover ACT glycosylation analysis could be used to predict AD clinical progression and used in clinical trials as surrogate marker of clinical efficacy.

  8. Species-Specific Cuticular Hydrocarbon Stability within European Myrmica Ants.

    Science.gov (United States)

    Guillem, Rhian M; Drijfhout, Falko P; Martin, Stephen J

    2016-10-01

    Recognition is a fundamental process on which all subsequent behaviors are based at every organizational level, from the gene up to the super-organism. At the whole organism level, visual recognition is the best understood. However, chemical communication is far more widespread than visual communication, but despite its importance is much less understood. Ants provide an excellent model system for chemical ecology studies as it is well established that compounds known as cuticular hydrocarbons (CHCs) are used as recognition cues in ants. Therefore, stable species-specific odors should exist, irrespective of geographic locality. We tested this hypothesis by comparing the CHC profiles of workers of twelve species of Myrmica ants from four countries across Europe, from Iberia to the Balkans and from the Mediterranean to Fennoscandia. CHCs remained qualitatively stable within each species, right down to the isomer level. Despite the morphological similarity that occurs within the genus Myrmica, their CHCs were highly diverse but remarkably species-specific and stable across wide geographical areas. This indicates a genetic mechanism under strong selection that produces these species-specific chemical profiles, despite each species encountering different environmental conditions across its range.

  9. Tropical parabiotic ants: Highly unusual cuticular substances and low interspecific discrimination

    Directory of Open Access Journals (Sweden)

    Schmitt Thomas

    2008-10-01

    Full Text Available Abstract Background Associations between animal species require that at least one of the species recognizes its partner. Parabioses are associations of two ant species which co-inhabit the same nest. Ants usually possess an elaborate nestmate recognition system, which is based on cuticular hydrocarbons and allows them to distinguish nestmates from non-nestmates through quantitative or qualitative differences in the hydrocarbon composition. Hence, living in a parabiotic association probably necessitates changes of the nestmate recognition system in both species, since heterospecific ants have to be accepted as nestmates. Results In the present study we report highly unusual cuticular profiles in the parabiotic species Crematogaster modiglianii and Camponotus rufifemur from the tropical rainforest of Borneo. The cuticle of both species is covered by a set of steroids, which are highly unusual surface compounds. They also occur in the Dufour gland of Crematogaster modiglianii in high quantities. The composition of these steroids differed between colonies but was highly similar among the two species of a parabiotic nest. In contrast, hydrocarbon composition of Cr. modiglianii and Ca. rufifemur differed strongly and only overlapped in three regularly occurring and three trace compounds. The hydrocarbon profile of Camponotus rufifemur consisted almost exclusively of methyl-branched alkenes of unusually high chain lengths (up to C49. This species occurred in two sympatric, chemically distinct varieties with almost no hydrocarbons in common. Cr. modiglianii discriminated between these two varieties. It only tolerated workers of the Ca. rufifemur variety it was associated with, but attacked the respective others. However, Cr. modiglianii did not distinguish its own Ca. rufifemur partner from allocolonial Ca. rufifemur workers of the same variety. Conclusion We conclude that there is a mutual substance transfer between Cr. modiglianii and Ca. rufifemur

  10. Altered gene-expression profile in rat plasma and promoted body ...

    African Journals Online (AJOL)

    ... among which five GO annotations and four KEGG pathways were annotated. Findings indicate that EE during pregnancy could positively promote the body and nervous system development of offspring, involving the evidence for altered gene expression profile. Keywords: Environmental enrichment, rats, gene expression ...

  11. Cuticular antifungals in spiders: density- and condition dependence.

    Directory of Open Access Journals (Sweden)

    Daniel González-Tokman

    Full Text Available Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities. For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders.

  12. Plant surfaces with cuticular folds are slippery for beetles.

    Science.gov (United States)

    Prüm, Bettina; Seidel, Robin; Bohn, Holger Florian; Speck, Thomas

    2012-01-07

    Plant surfaces covered with three-dimensional (3D) waxes are known to strongly reduce insect adhesion, leading to slippery surfaces. Besides 3D epicuticular waxes, cuticular folds are a common microstructure found on plant surfaces, which have not been quantitatively investigated with regard to their influence on insect adhesion. We performed traction experiments with Colorado potato beetles on five plant surfaces with cuticular folds of different magnitude. For comparison, we also tested (i) smooth plant surfaces and (ii) plant surfaces possessing 3D epicuticular waxes. Traction forces on surfaces with medium cuticular folds, of about 0.5 µm in both height and thickness and a spacing of 0.5-1.5 µm, were reduced by an average of 88 per cent in comparison to smooth plant surfaces. Traction forces were reduced by the same order of magnitude as on plant surfaces covered with 3D epicuticular waxes. For surface characterization, we performed static contact angle measurements, which proved a strong effect of cuticular folds also on surface wettability. Surfaces possessing cuticular folds of greater magnitude showed higher contact angles up to superhydrophobicity. We hypothesize that cuticular folds reduce insect adhesion mainly due to a critical roughness, reducing the real contact area between the surface and the insect's adhesive devices.

  13. Mutations in HNF1A Result in Marked Alterations of Plasma Glycan Profile

    DEFF Research Database (Denmark)

    Thanabalasingham, G.; Huffman, J. E.; Kattla, J. J.

    2013-01-01

    A recent genome-wide association study identified hepatocyte nuclear factor 1-alpha (HNF1A) as a key regulator of fucosylation. We hypothesized that loss-of-function HNF1A mutations causal for maturity-onset diabetes of the young (MOD?) would display altered fucosylation of N-linked glycans on pl...... undetected HNF1A mutations in patients with diabetes. In conclusion, glycan profiles are altered substantially in HNF1A-MODY, and the DG9-glycan index has potential clinical value as a diagnostic biomarker of HNF1A dysfunction. Diabetes 62:1329-1337, 2013...

  14. Oxidative Stress Alters miRNA and Gene Expression Profiles in Villous First Trimester Trophoblasts

    Directory of Open Access Journals (Sweden)

    Courtney E. Cross

    2015-01-01

    Full Text Available The relationship between oxidative stress and miRNA changes in placenta as a potential mechanism involved in preeclampsia (PE is not fully elucidated. We investigated the impact of oxidative stress on miRNAs and mRNA expression profiles of genes associated with PE in villous 3A first trimester trophoblast cells exposed to H2O2 at 12 different concentrations (0-1 mM for 0.5, 4, 24, and 48 h. Cytotoxicity, determined using the SRB assay, was used to calculate the IC50 of H2O2. RNA was extracted after 4 h exposure to H2O2 for miRNA and gene expression profiling. H2O2 exerted a concentration- and time-dependent cytotoxicity on 3A trophoblast cells. Short-term exposure of 3A cells to low concentration of H2O2 (5% of IC50 significantly altered miRNA profile as evidenced by significant changes in 195 out of 595 evaluable miRNAs. Tool for annotations of microRNAs (TAM analysis indicated that these altered miRNAs fall into 43 clusters and 34 families, with 41 functions identified. Exposure to H2O2 altered mRNA expression of 22 out of 84 key genes involved in dysregulation of placental development. In conclusion, short-term exposure of villous first trimester trophoblasts to low concentrations of H2O2 significantly alters miRNA profile and expression of genes implicated in placental development.

  15. Genetic control of cuticular wax compounds in Eucalyptus globulus.

    Science.gov (United States)

    Gosney, Benjamin J; Potts, Brad M; O'Reilly-Wapstra, Julianne M; Vaillancourt, René E; Fitzgerald, Hugh; Davies, Noel W; Freeman, Jules S

    2016-01-01

    Plant cuticular wax compounds perform functions that are essential for the survival of terrestrial plants. Despite their importance, the genetic control of these compounds is poorly understood outside of model taxa. Here we investigate the genetic basis of variation in cuticular compounds in Eucalyptus globulus using quantitative genetic and quantitative trait loci (QTL) analyses. Quantitative genetic analysis was conducted using 246 open-pollinated progeny from 13 native sub-races throughout the geographic range. QTL analysis was conducted using 112 clonally replicated progeny from an outcross F2 population. Nine compounds exhibited significant genetic variation among sub-races with three exhibiting signals of diversifying selection. Fifty-two QTL were found with co-location of QTL for related compounds commonly observed. Notable among these was the QTL for five wax esters, which co-located with a gene from the KCS family, previously implicated in the biosynthesis of cuticular waxes in Arabidopsis. In combination, the QTL and quantitative genetic analyses suggest the variation and differentiation in cuticular wax compounds within E. globulus has a complex genetic origin. Sub-races exhibited independent latitudinal and longitudinal differentiation in cuticular wax compounds, likely reflecting processes such as historic gene flow and diversifying selection acting upon genes that have diverse functions in distinct biochemical pathways. © 2015 University of Tasmania New Phytologist © 2015 New Phytologist Trust.

  16. Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects

    International Nuclear Information System (INIS)

    Takahashi, Kei; Yokota, Shin-ichi; Tatsumi, Naoyuki; Fukami, Tatsuki; Yokoi, Tsuyoshi; Nakajima, Miki

    2013-01-01

    Circulating microRNAs (miRNAs) are receiving attention as potential biomarkers of various diseases, including cancers, chronic obstructive pulmonary disease, and cardiovascular disease. However, it is unknown whether the levels of circulating miRNAs in a healthy subject might vary with external factors in daily life. In this study, we investigated whether cigarette smoking, a habit that has spread throughout the world and is a risk factor for various diseases, affects plasma miRNA profiles. We determined the profiles of 11 smokers and 7 non-smokers by TaqMan MicroRNA array analysis. A larger number of miRNAs were detected in smokers than in non-smokers, and the plasma levels of two-thirds of the detected miRNAs (43 miRNAs) were significantly higher in smokers than in non-smokers. A principal component analysis of the plasma miRNA profiles clearly separated smokers and non-smokers. Twenty-four of the miRNAs were previously reported to be potential biomarkers of disease, suggesting the possibility that smoking status might interfere with the diagnosis of disease. Interestingly, we found that quitting smoking altered the plasma miRNA profiles to resemble those of non-smokers. These results suggested that the differences in the plasma miRNA profiles between smokers and non-smokers could be attributed to cigarette smoking. In addition, we found that an acute exposure of ex-smokers to cigarette smoke (smoking one cigarette) did not cause a dramatic change in the plasma miRNA profile. In conclusion, we found that repeated cigarette smoking substantially alters the plasma miRNA profile, interfering with the diagnosis of disease or signaling potential smoking-related diseases. - Highlights: • Plasma miRNA profiles were unambiguously different between smokers and non-smokers. • Smoking status might interfere with the diagnosis of disease using plasma miRNAs. • Changes of plasma miRNA profiles may be a signal of smoking-related diseases

  17. Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kei; Yokota, Shin-ichi; Tatsumi, Naoyuki; Fukami, Tatsuki; Yokoi, Tsuyoshi; Nakajima, Miki, E-mail: nmiki@p.kanazawa-u.ac.jp

    2013-10-01

    Circulating microRNAs (miRNAs) are receiving attention as potential biomarkers of various diseases, including cancers, chronic obstructive pulmonary disease, and cardiovascular disease. However, it is unknown whether the levels of circulating miRNAs in a healthy subject might vary with external factors in daily life. In this study, we investigated whether cigarette smoking, a habit that has spread throughout the world and is a risk factor for various diseases, affects plasma miRNA profiles. We determined the profiles of 11 smokers and 7 non-smokers by TaqMan MicroRNA array analysis. A larger number of miRNAs were detected in smokers than in non-smokers, and the plasma levels of two-thirds of the detected miRNAs (43 miRNAs) were significantly higher in smokers than in non-smokers. A principal component analysis of the plasma miRNA profiles clearly separated smokers and non-smokers. Twenty-four of the miRNAs were previously reported to be potential biomarkers of disease, suggesting the possibility that smoking status might interfere with the diagnosis of disease. Interestingly, we found that quitting smoking altered the plasma miRNA profiles to resemble those of non-smokers. These results suggested that the differences in the plasma miRNA profiles between smokers and non-smokers could be attributed to cigarette smoking. In addition, we found that an acute exposure of ex-smokers to cigarette smoke (smoking one cigarette) did not cause a dramatic change in the plasma miRNA profile. In conclusion, we found that repeated cigarette smoking substantially alters the plasma miRNA profile, interfering with the diagnosis of disease or signaling potential smoking-related diseases. - Highlights: • Plasma miRNA profiles were unambiguously different between smokers and non-smokers. • Smoking status might interfere with the diagnosis of disease using plasma miRNAs. • Changes of plasma miRNA profiles may be a signal of smoking-related diseases.

  18. cuticleDB: a relational database of Arthropod cuticular proteins

    Directory of Open Access Journals (Sweden)

    Willis Judith H

    2004-09-01

    Full Text Available Abstract Background The insect exoskeleton or cuticle is a bi-partite composite of proteins and chitin that provides protective, skeletal and structural functions. Little information is available about the molecular structure of this important complex that exhibits a helicoidal architecture. Scores of sequences of cuticular proteins have been obtained from direct protein sequencing, from cDNAs, and from genomic analyses. Most of these cuticular protein sequences contain motifs found only in arthropod proteins. Description cuticleDB is a relational database containing all structural proteins of Arthropod cuticle identified to date. Many come from direct sequencing of proteins isolated from cuticle and from sequences from cDNAs that share common features with these authentic cuticular proteins. It also includes proteins from the Drosophila melanogaster and the Anopheles gambiae genomes, that have been predicted to be cuticular proteins, based on a Pfam motif (PF00379 responsible for chitin binding in Arthropod cuticle. The total number of the database entries is 445: 370 derive from insects, 60 from Crustacea and 15 from Chelicerata. The database can be accessed from our web server at http://bioinformatics.biol.uoa.gr/cuticleDB. Conclusions CuticleDB was primarily designed to contain correct and full annotation of cuticular protein data. The database will be of help to future genome annotators. Users will be able to test hypotheses for the existence of known and also of yet unknown motifs in cuticular proteins. An analysis of motifs may contribute to understanding how proteins contribute to the physical properties of cuticle as well as to the precise nature of their interaction with chitin.

  19. Altered global gene expression profiles in human gastrointestinal epithelial Caco2 cells exposed to nanosilver

    Directory of Open Access Journals (Sweden)

    Saura C. Sahu

    Full Text Available Extensive consumer exposure to food- and cosmetics-related consumer products containing nanosilver is of public safety concern. Therefore, there is a need for suitable in vitro models and sensitive predictive rapid screening methods to assess their toxicity. Toxicogenomic profile showing subtle changes in gene expressions following nanosilver exposure is a sensitive toxicological endpoint for this purpose. We evaluated the Caco2 cells and global gene expression profiles as tools for predictive rapid toxicity screening of nanosilver. We evaluated and compared the gene expression profiles of Caco-2 cells exposed to 20 nm and 50 nm nanosilver at a concentration 2.5 μg/ml. The global gene expression analysis of Caco2 cells exposed to 20 nm nanosilver showed that a total of 93 genes were altered at 4 h exposure, out of which 90 genes were up-regulated and 3 genes were down-regulated. The 24 h exposure of 20 nm silver altered 15 genes in Caco2 cells, out of which 14 were up-regulated and one was down-regulated. The most pronounced changes in gene expression were detected at 4 h. The greater size (50 nm nanosilver at 4 h exposure altered more genes by more different pathways than the smaller (20 nm one. Metallothioneins and heat shock proteins were highly up-regulated as a result of exposure to both the nanosilvers. The cellular pathways affected by the nanosilver exposure is likely to lead to increased toxicity. The results of our study presented here suggest that the toxicogenomic characterization of Caco2 cells is a valuable in vitro tool for assessing toxicity of nanomaterials such as nanosilver. Keywords: Nanosilver, Silver nanoparticles, Nanoparticles, Toxicogenomics, DNA microarray, Global gene expression profiles, Caco2 cells

  20. Rotational profile alterations after anatomic posterolateral corner reconstructions in multiligament injured knees.

    Science.gov (United States)

    Tardy, Nicolas; Mouton, Caroline; Boisrenoult, Philippe; Theisen, Daniel; Beaufils, Philippe; Seil, Romain

    2014-09-01

    Injuries of the posterolateral corner (PLC) are rare and severe knee injuries, resulting in posterolateral rotatory instability and an increase in external rotation. Surgical reconstruction techniques reproducing the normal anatomy showed promising results. In vivo evaluations of static rotational knee laxity at 30° of knee flexion have not been reported so far. The purpose of this study was to evaluate static rotational knee laxity after anatomic PLC reconstructions. This is a retrospective clinical cohort study. Twenty patients with PLC reconstructions with an average follow-up time of 39 ± 22 months and no history of knee trauma or surgery of the contralateral knee were included in the study. They underwent a routine clinical examination and static rotational laxity measurements at 30° of knee flexion in the prone position. Side-to-side differences were recorded and compared to a group of matched controls. The postoperative IKDC score was graded A for 8 patients, B for 16, C for 6 and D for one patient. The primary goal of the surgical procedure which consists in reducing excessive external tibiofemoral rotation could be reached in 18 of the 20 patients (90%). Anatomic PLC reconstructions yielded a comparable rotational profile in operated and healthy knees in 7 patients (35%). Thirteen patients (65%) presented a significantly altered rotational profile in comparison with a healthy control group. Unexpected increases in internal rotation were found in 8 patients (40%). Anatomic PLC reconstructions reduced excessive external tibiofemoral rotation in a vast majority of patients. Static rotational laxity measurements allowed for a determination of the patients' individual rotational profile after PLC reconstructions. This profile was normalised in only one-third of the patients. The understanding of this finding needs further investigation as well as the clinical impact of rotational profile alterations on knee function. Diagnostic studies, Level III.

  1. Altered circadian rhythm and metabolic gene profile in rats subjected to advanced light phase shifts.

    Directory of Open Access Journals (Sweden)

    Laura Herrero

    Full Text Available The circadian clock regulates metabolic homeostasis and its disruption predisposes to obesity and other metabolic diseases. However, the effect of phase shifts on metabolism is not completely understood. We examined whether alterations in the circadian rhythm caused by phase shifts induce metabolic changes in crucial genes that would predispose to obesity. Three-month-old rats were maintained on a standard diet under lighting conditions with chronic phase shifts consisting of advances, delays or advances plus delays. Serum leptin, insulin and glucose levels decreased only in rats subjected to advances. The expression of the clock gene Bmal 1 increased in the hypothalamus, white adipose tissue (WAT, brown adipose tissue (BAT and liver of the advanced group compared to control rats. The advanced group showed an increase in hypothalamic AgRP and NPY mRNA, and their lipid metabolism gene profile was altered in liver, WAT and BAT. WAT showed an increase in inflammation and ER stress and brown adipocytes suffered a brown-to-white transformation and decreased UCP-1 expression. Our results indicate that chronic phase advances lead to significant changes in neuropeptides, lipid metabolism, inflammation and ER stress gene profile in metabolically relevant tissues such as the hypothalamus, liver, WAT and BAT. This highlights a link between alteration of the circadian rhythm and metabolism at the transcriptional level.

  2. Genome profiling of chronic myelomonocytic leukemia: frequent alterations of RAS and RUNX1 genes

    Directory of Open Access Journals (Sweden)

    Olschwang Sylviane

    2008-10-01

    Full Text Available Abstract Background Chronic myelomonocytic leukemia (CMML is a hematological disease close to, but separate from both myeloproliferative disorders (MPD and myelodysplastic syndromes and may show either myeloproliferative (MP-CMML or myelodysplastic (MD-CMML features. Not much is known about the molecular biology of this disease. Methods We studied a series of 30 CMML samples (13 MP- and 11 MD-CMMLs, and 6 acutely transformed cases from 29 patients by using Agilent high density array-comparative genomic hybridization (aCGH and sequencing of 12 candidate genes. Results Two-thirds of samples did not show any obvious alteration of aCGH profiles. In one-third we observed chromosome abnormalities (e.g. trisomy 8, del20q and gain or loss of genes (e.g. NF1, RB1 and CDK6. RAS mutations were detected in 4 cases (including an uncommon codon 146 mutation in KRAS and PTPN11 mutations in 3 cases. We detected 11 RUNX1 alterations (9 mutations and 2 rearrangements. The rearrangements were a new, cryptic inversion of chromosomal region 21q21-22 leading to break and fusion of RUNX1 to USP16. RAS and RUNX1 alterations were not mutually exclusive. RAS pathway mutations occurred in MP-CMMLs (~46% but not in MD-CMMLs. RUNX1 alterations (mutations and cryptic rearrangement occurred in both MP and MD classes (~38%. Conclusion We detected RAS pathway mutations and RUNX1 alterations. The latter included a new cryptic USP16-RUNX1 fusion. In some samples, two alterations coexisted already at this early chronic stage.

  3. Genome profiling of chronic myelomonocytic leukemia: frequent alterations of RAS and RUNX1 genes

    International Nuclear Information System (INIS)

    Gelsi-Boyer, Véronique; Bentires-Alj, Mohamed; Olschwang, Sylviane; Vey, Norbert; Mozziconacci, Marie-Joëlle; Birnbaum, Daniel; Chaffanet, Max; Trouplin, Virginie; Adélaïde, José; Aceto, Nicola; Remy, Virginie; Pinson, Stephane; Houdayer, Claude; Arnoulet, Christine; Sainty, Danielle

    2008-01-01

    Chronic myelomonocytic leukemia (CMML) is a hematological disease close to, but separate from both myeloproliferative disorders (MPD) and myelodysplastic syndromes and may show either myeloproliferative (MP-CMML) or myelodysplastic (MD-CMML) features. Not much is known about the molecular biology of this disease. We studied a series of 30 CMML samples (13 MP- and 11 MD-CMMLs, and 6 acutely transformed cases) from 29 patients by using Agilent high density array-comparative genomic hybridization (aCGH) and sequencing of 12 candidate genes. Two-thirds of samples did not show any obvious alteration of aCGH profiles. In one-third we observed chromosome abnormalities (e.g. trisomy 8, del20q) and gain or loss of genes (e.g. NF1, RB1 and CDK6). RAS mutations were detected in 4 cases (including an uncommon codon 146 mutation in KRAS) and PTPN11 mutations in 3 cases. We detected 11 RUNX1 alterations (9 mutations and 2 rearrangements). The rearrangements were a new, cryptic inversion of chromosomal region 21q21-22 leading to break and fusion of RUNX1 to USP16. RAS and RUNX1 alterations were not mutually exclusive. RAS pathway mutations occurred in MP-CMMLs (~46%) but not in MD-CMMLs. RUNX1 alterations (mutations and cryptic rearrangement) occurred in both MP and MD classes (~38%). We detected RAS pathway mutations and RUNX1 alterations. The latter included a new cryptic USP16-RUNX1 fusion. In some samples, two alterations coexisted already at this early chronic stage

  4. Subchronic Arsenic Exposure Through Drinking Water Alters Lipid Profile and Electrolyte Status in Rats.

    Science.gov (United States)

    Waghe, Prashantkumar; Sarkar, Souvendra Nath; Sarath, Thengumpallil Sasindran; Kandasamy, Kannan; Choudhury, Soumen; Gupta, Priyanka; Harikumar, Sankarankutty; Mishra, Santosh Kumar

    2017-04-01

    Arsenic is a groundwater pollutant and can cause various cardiovascular disorders in the exposed population. The aim of the present study was to assess whether subchronic arsenic exposure through drinking water can induce vascular dysfunction associated with alteration in plasma electrolytes and lipid profile. Rats were exposed to arsenic as 25, 50, and 100 ppm of sodium arsenite through drinking water for 90 consecutive days. On the 91st day, rats were sacrificed and blood was collected. Lipid profile and the levels of electrolytes (sodium, potassium, and chloride) were assessed in plasma. Arsenic reduced high-density lipoprotein cholesterol (HDL-C) and HDL-C/LDL-C ratio, but increased the levels of triglycerides, total cholesterol, low-density lipoprotein cholesterol (LDL-C), and electrolytes. The results suggest that the arsenic-mediated dyslipidemia and electrolyte retention could be important mechanisms in the arsenic-induced vascular disorder.

  5. THE ASSOCIATION BETWEEN CUTICULAR DRUSEN AND KIDNEY FUNCTION

    DEFF Research Database (Denmark)

    Høeg, Tracy B; Klein, Ronald; Moldow, Birgitte

    2016-01-01

    PURPOSE: To determine the association between cuticular drusen (CD) and kidney function. DESIGN: observational case-control study. METHODS: SETTING: Population-based. Patients or Study Population: 53 participants with (CD) and 53 age- and sex-matched controls, selected from the Danish Rural Eye S...

  6. Dietary Fatty Acids Alter Lipid Profiles and Induce Myocardial Dysfunction without Causing Metabolic Disorders in Mice.

    Science.gov (United States)

    Chen, Bainian; Huang, Yifan; Zheng, Dong; Ni, Rui; Bernards, Mark A

    2018-01-19

    Oversupply of bulk saturated fatty acids (SFA) induces metabolic disorders and myocardial dysfunction. We investigated whether, without causing metabolic disorders, the uptake of individual dietary SFA species alters lipid profiles and induces myocardial dysfunction. C57BL/6 mice were fed various customized long-chain SFA diets (40% caloric intake from SFA), including a beef tallow (HBD), cocoa butter (HCD), milk fat (HMD) and palm oil diet (HPD), for 6 months. An isocaloric fat diet, containing medium-chain triglycerides, served as a control (CHD). Long-term intake of dietary long-chain SFA differentially affected the fatty acid composition in cardiac phospholipids. All long-chain SFA diets increased the levels of arachidonic acid and total SFA in cardiac phospholipids. The preferential incorporation of individual SFA into the cardiac phospholipid fraction was dependent on the dietary SFA species. Cardiac ceramide content was elevated in all mice fed long-chain SFA diets, while cardiac hypertrophy was only presented in mice fed HMD or HPD. We have demonstrated that the intake of long-chain SFA species differentially alters cardiac lipid profiles and induces cardiac dysfunction, without causing remarkable metabolic disorders.

  7. The cuticular hydrocarbons of the Triatoma sordida species subcomplex (Hemiptera: Reduviidae).

    Science.gov (United States)

    Calderón-Fernández, Gustavo Mario; Juárez, Marta Patricia

    2013-09-01

    The cuticular hydrocarbons of the Triatoma sordida subcomplex (Hemiptera: Reduviidae: Triatominae) were ana-lysed by gas chromatography and their structures identified by mass spectrometry. They comprised mostly n-alkanes and methyl-branched alkanes with one-four methyl substitutions. n-alkanes consisted of a homologous series from C21-C33 and represented 33-45% of the hydrocarbon fraction; n-C29 was the major component. Methyl-branched alkanes showed alkyl chains from C24-C43. High molecular weight dimethyl and trimethylalkanes (from C35-C39) represented most of the methyl-branched fraction. A few tetramethylalkanes were also detected, comprising mostly even-numbered chains. Several components such as odd-numbered 3-methylalkanes, dimethylalkanes and trimethylalkanes of C37 and C39 showed patterns of variation that allowed the differentiation of the species and populations studied. Triatoma guasayana and Triatoma patagonica showed the most distinct hydrocarbon patterns within the subcomplex. The T. sordida populations from Brazil and Argentina showed significantly different hydrocarbon profiles that posed concerns regarding the homogeneity of the species. Triatoma garciabesi had a more complex hydrocarbon pattern, but it shared some similarity with T. sordida. The quantitative and qualitative variations in the cuticular hydrocarbons may help to elucidate the relationships between species and populations of this insect group.

  8. The cuticular hydrocarbons of the Triatoma sordida species subcomplex (Hemiptera: Reduviidae

    Directory of Open Access Journals (Sweden)

    Gustavo Mario Calderon-Fernandez

    2013-09-01

    Full Text Available The cuticular hydrocarbons of the Triatoma sordida subcomplex (Hemiptera: Reduviidae: Triatominae were ana-lysed by gas chromatography and their structures identified by mass spectrometry. They comprised mostly n-alkanes and methyl-branched alkanes with one-four methyl substitutions. n-alkanes consisted of a homologous series from C21-C33 and represented 33-45% of the hydrocarbon fraction; n-C29 was the major component. Methyl-branched alkanes showed alkyl chains from C24-C43. High molecular weight dimethyl and trimethylalkanes (from C35-C39 represented most of the methyl-branched fraction. A few tetramethylalkanes were also detected, comprising mostly even-numbered chains. Several components such as odd-numbered 3-methylalkanes, dimethylalkanes and trimethylalkanes of C37 and C39 showed patterns of variation that allowed the differentiation of the species and populations studied. Triatoma guasayana and Triatoma patagonica showed the most distinct hydrocarbon patterns within the subcomplex. The T. sordida populations from Brazil and Argentina showed significantly different hydrocarbon profiles that posed concerns regarding the homogeneity of the species. Triatoma garciabesi had a more complex hydrocarbon pattern, but it shared some similarity with T. sordida. The quantitative and qualitative variations in the cuticular hydrocarbons may help to elucidate the relationships between species and populations of this insect group.

  9. Altered gene expression profile in a mouse model of SCN8A encephalopathy.

    Science.gov (United States)

    Sprissler, Ryan S; Wagnon, Jacy L; Bunton-Stasyshyn, Rosie K; Meisler, Miriam H; Hammer, Michael F

    2017-02-01

    SCN8A encephalopathy is a severe, early-onset epilepsy disorder resulting from de novo gain-of-function mutations in the voltage-gated sodium channel Na v 1.6. To identify the effects of this disorder on mRNA expression, RNA-seq was performed on brain tissue from a knock-in mouse expressing the patient mutation p.Asn1768Asp (N1768D). RNA was isolated from forebrain, cerebellum, and brainstem both before and after seizure onset, and from age-matched wildtype littermates. Altered transcript profiles were observed only in forebrain and only after seizures. The abundance of 50 transcripts increased more than 3-fold and 15 transcripts decreased more than 3-fold after seizures. The elevated transcripts included two anti-convulsant neuropeptides and more than a dozen genes involved in reactive astrocytosis and response to neuronal damage. There was no change in the level of transcripts encoding other voltage-gated sodium, potassium or calcium channels. Reactive astrocytosis was observed in the hippocampus of mutant mice after seizures. There is considerable overlap between the genes affected in this genetic model of epilepsy and those altered by chemically induced seizures, traumatic brain injury, ischemia, and inflammation. The data support the view that gain-of-function mutations of SCN8A lead to pathogenic alterations in brain function contributing to encephalopathy. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Altered plasma and erythrocyte phospholipid fatty acid profile in elite female water polo and football players.

    Science.gov (United States)

    Arsić, Aleksandra; Vučić, Vesna; Tepšić, Jasna; Mazić, Sanja; Djelić, Marina; Glibetić, Marija

    2012-02-01

    The impact of chronic, intense exercise, such as in elite athletes, on phospholipids fatty acids (FA) composition has not been studied in women so far. This study aimed to investigate FA profiles in plasma and erythrocytes phospholipids in elite female water polo (N = 15) and football (N = 19) players in comparison with sedentary women. In spite of similar dietary patterns, as assessed by a food frequency questionnaire, plasma FA profile in the football players showed significantly higher proportions of stearic acid, oleic acid, and monounsaturated FA (MUFA), and significantly lower proportions of total and n-6 polyunsaturated FA (PUFA) than in the water polo and control group. The water polo players had higher percentages of palmitoleic acid and arachidonic acid than the control subjects. Erythrocyte FA profile differed among groups. We found significantly higher proportion of oleic acid and MUFA in the football group than in the controls, and decreased stearic acid and elevated palmitic and palmitoleic acid in the water polo players than in the other 2 groups. Both groups of athletes had significantly lower percentages of n-6 dihomo-γ-linolenic acid, n-6 PUFA, and total PUFA compared with the controls. The estimated activities of elongase and desaturases in erythrocytes were also altered in the athletes. Our results indicate that long-term, intense physical training significantly affects FA status of plasma and erythrocyte phospholipids in women. The observed differences between the water polo and the football players suggest that the type of regular training may contribute to the altered metabolism of FA, although possible genetic differences among the 3 study groups cannot be ruled out.

  11. Gene expression profile altered by orthodontic tooth movement during healing of surgical alveolar defect.

    Science.gov (United States)

    Choi, Eun-Kyung; Lee, Jae-Hyung; Baek, Seung-Hak; Kim, Su-Jung

    2017-06-01

    We explored the gene expression profile altered by orthodontic tooth movement (OTM) during the healing of surgical alveolar defects in beagles. An OTM-related healing model was established where a maxillary second premolar was protracted into the critical-sized defect for 6 weeks (group DT6). As controls, natural healing models without OTM were set at 2 weeks (group D2) and at 6 weeks (group D6) after surgery. Total RNAs were extracted from dissected tissue blocks containing the regenerated defects and additionally from sound alveolar bone as a baseline (group C). mRNA profiling was performed using microarray analysis. Functional annotations of gene clusters based on differentially expressed genes among groups indicated that the gene expression profile of group DT6 had a stronger similarity to that of group D2 than to group D6. The genes participating in high woven-bone fraction in group DT6 could be identified as TNFSF11, MMP13, SPP1, and DMP1, which were verified by quantitative real-time polymerase chain reactions. We investigated at the gene level that OTM can affect the healing state of surgical defects serving as favorable matrices for OTM with defect regeneration. It would be a basis on selecting putative genes to be therapeutically applied for tissue-friendly accelerated orthodontics in the future. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  12. Alterations in urine, serum and brain metabolomic profiles exhibit sexual dimorphism during malaria disease progression

    Directory of Open Access Journals (Sweden)

    Sharma Shobhona

    2010-04-01

    Full Text Available Abstract Background Metabolic changes in the host in response to Plasmodium infection play a crucial role in the pathogenesis of malaria. Alterations in metabolism of male and female mice infected with Plasmodium berghei ANKA are reported here. Methods 1H NMR spectra of urine, sera and brain extracts of these mice were analysed over disease progression using Principle Component Analysis and Orthogonal Partial Least Square Discriminant Analysis. Results Analyses of overall changes in urinary profiles during disease progression demonstrate that females show a significant early post-infection shift in metabolism as compared to males. In contrast, serum profiles of female mice remain unaltered in the early infection stages; whereas that of the male mice changed. Brain metabolite profiles do not show global changes in the early stages of infection in either sex. By the late stages urine, serum and brain profiles of both sexes are severely affected. Analyses of individual metabolites show significant increase in lactate, alanine and lysine, kynurenic acid and quinolinic acid in sera of both males and females at this stage. Early changes in female urine are marked by an increase of ureidopropionate, lowering of carnitine and transient enhancement of asparagine and dimethylglycine. Several metabolites when analysed individually in sera and brain reveal significant changes in their levels in the early phase of infection mainly in female mice. Asparagine and dimethylglycine levels decrease and quinolinic acid increases early in sera of infected females. In brain extracts of females, an early rise in levels is also observed for lactate, alanine and glycerol, kynurenic acid, ureidopropionate and 2-hydroxy-2-methylbutyrate. Conclusions These results suggest that P. berghei infection leads to impairment of glycolysis, lipid metabolism, metabolism of tryptophan and degradation of uracil. Characterization of early changes along these pathways may be crucial for

  13. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco.

    Science.gov (United States)

    Cameron, Kimberly D; Teece, Mark A; Smart, Lawrence B

    2006-01-01

    Cuticular wax deposition and composition affects drought tolerance and yield in plants. We examined the relationship between wax and dehydration stress by characterizing the leaf cuticular wax of tree tobacco (Nicotiana glauca L. Graham) grown under periodic dehydration stress. Total leaf cuticular wax load increased after each of three periods of dehydration stress using a CH2Cl2 extraction process. Overall, total wax load increased 1.5- to 2.5-fold, but composition of the wax was not altered. Homologous series of wax components were classified into organic groups; n-hentriacontane was the largest component (>75%) with alcohols and fatty acids representing drying event. Leaves excised from plants subjected to multiple drying events were more resistant to water loss compared to leaves excised from well-watered plants, indicating that there is a negative relationship between total wax load and epidermal conductance. Lipid transfer proteins (LTPs) are thought to be involved in the transfer of lipids through the extracellular matrix for the formation of cuticular wax. Using northern analysis, a 6-fold increase of tree tobacco LTP gene transcripts was observed after three drying events, providing further evidence that LTP is involved in cuticle deposition. The simplicity of wax composition and the dramatic wax bloom displayed by tree tobacco make this an excellent species in which to study the relationship between leaf wax deposition and drought tolerance.

  14. The renal metallothionein expression profile is altered in human lupus nephritis

    DEFF Research Database (Denmark)

    Faurschou, Mikkel; Penkowa, Milena; Andersen, Claus Bøgelund

    2008-01-01

    -I+II expression profile is altered during lupus nephritis. METHODS: Immunohistochemistry was performed on renal biopsies from 37 patients with lupus nephritis. Four specimens of healthy renal tissue served as controls. Clinicopathological correlation studies and renal survival analyses were performed by means...... of standard statistical methods. RESULTS: Proximal tubules displaying epithelial cell MT-I+II depletion in combination with luminal MT-I+II expression were observed in 31 out of 37 of the lupus nephritis specimens, but not in any of the control sections (P = 0.006). The tubular MT score, defined as the median...... number of proximal tubules displaying this MT expression pattern per high-power microscope field (40x magnification), was positively correlated to the creatinine clearance in the lupus nephritis cohort (P = 0.01). Furthermore, a tubular MT score below the median value of the cohort emerged...

  15. Morphine alters the circulating proteolytic profile in mice: functional consequences on cellular migration and invasion.

    Science.gov (United States)

    Xie, Nan; Khabbazi, Samira; Nassar, Zeyad D; Gregory, Kye; Vithanage, Tharindu; Anand-Apte, Bela; Cabot, Peter J; Sturgess, David; Shaw, Paul N; Parat, Marie-Odile

    2017-12-01

    Opioids modulate the tumor microenvironment with potential functional consequences for tumor growth and metastasis. We evaluated the effects of morphine administration on the circulating proteolytic profile of tumor-free mice. Serum from morphine-treated (1 or 10 mg/kg, i.p. every 12 h) or saline-treated mice was collected at different time points and tested ex vivo in endothelial, lymphatic endothelial, and breast cancer cell migration assays. Serum from mice that were treated with 10 mg/kg morphine for 3 d displayed reduced chemotactic potential for endothelial and breast cancer cells, and elicited reduced cancer cell invasion through reconstituted basement membrane compared with serum from saline controls. This was associated with decreased circulating matrix metalloproteinase 9 (MMP-9) and increased circulating tissue inhibitor of metalloproteinase 1 (TIMP-1) and TIMP-3/4 as assessed by zymography and reverse zymography. By using quantitative RT-PCR, we confirmed morphine-induced alterations in MMP-9 and TIMP expression and identified organs, including the liver and spleen, in which these changes originated. Pharmacologic inhibition of MMP-9 abrogated the difference in chemotactic attraction between serum from saline-treated and morphine-treated mice, which indicated that reduced proteolytic ability mediated the decreased migration toward serum from morphine-treated mice. This novel mechanism may enable morphine administration to promote an environment that is less conducive to tumor growth, invasion, and metastasis.-Xie, N., Khabbazi, S., Nassar, Z. D., Gregory, K., Vithanage, T., Anand-Apte, B., Cabot, P. J., Sturgess, D., Shaw, P. N., Parat, M.-O. Morphine alters the circulating proteolytic profile in mice: functional consequences on cellular migration and invasion. © FASEB.

  16. HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers

    Directory of Open Access Journals (Sweden)

    Lehto Kirsi

    2011-04-01

    -adenosyl-L-methionine (SAM were also decreased in these plants, apparently leading to decreased transmethylation capacity. The proteome analysis using 2D-PAGE indicated significantly altered proteome profile, which may have been both due to altered transcript levels, decreased translation, and increased proteosomal/protease activity. Conclusion Expression of the HC-Pro RSS mimics transcriptional changes previously shown to occur in plants infected with intact viruses (e.g. Tobacco etch virus, TEV. The results indicate that the HC-Pro RSS contributes a significant part of virus-plant interactions by changing the levels of multiple cellular RNAs and proteins.

  17. Varroa destructor changes its cuticular hydrocarbons to mimic new hosts.

    Science.gov (United States)

    Le Conte, Y; Huang, Z Y; Roux, M; Zeng, Z J; Christidès, J-P; Bagnères, A-G

    2015-06-01

    Varroa destructor (Vd) is a honeybee ectoparasite. Its original host is the Asian honeybee, Apis cerana, but it has also become a severe, global threat to the European honeybee, Apis mellifera. Previous studies have shown that Varroa can mimic a host's cuticular hydrocarbons (HC), enabling the parasite to escape the hygienic behaviour of the host honeybees. By transferring mites between the two honeybee species, we further demonstrate that Vd is able to mimic the cuticular HC of a novel host species when artificially transferred to this new host. Mites originally from A. cerana are more efficient than mites from A. mellifera in mimicking HC of both A. cerana and A. mellifera. This remarkable adaptability may explain their relatively recent host-shift from A. cerana to A. mellifera. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Cuticular Hydrocarbons of Orchid Bees Males: Interspecific and Chemotaxonomy Variation.

    Science.gov (United States)

    Dos Santos, Aline Borba; do Nascimento, Fábio Santos

    2015-01-01

    Recent studies have investigated the composition of compounds that cover the cuticle in social insects, but few studies have focused on solitary bees. Cuticular hydrocarbons may provide a tool for chemotaxonomy, and perhaps they can be used as a complement to morphology and genetic characters in phylogenetic studies. Orchid bees (Tribe Euglossini) are a highly diverse group of Neotropical bees with more than 200 species. Here, the cuticular hydrocarbons of 17 species were identified and statistical analysis revealed 108 compounds, which allowed for the taxonomic classification according to the genera. The most significant compounds discriminating the four genera were (Z)-9-pentacosene, (Z,Z)-pentatriacontene-3, (Z)-9-tricosene, and (Z)-9-heptacosene. The analyses demonstrated the potential use of CHCs to identify different species.

  19. Cuticular Hydrocarbons of Orchid Bees Males: Interspecific and Chemotaxonomy Variation.

    Directory of Open Access Journals (Sweden)

    Aline Borba Dos Santos

    Full Text Available Recent studies have investigated the composition of compounds that cover the cuticle in social insects, but few studies have focused on solitary bees. Cuticular hydrocarbons may provide a tool for chemotaxonomy, and perhaps they can be used as a complement to morphology and genetic characters in phylogenetic studies. Orchid bees (Tribe Euglossini are a highly diverse group of Neotropical bees with more than 200 species. Here, the cuticular hydrocarbons of 17 species were identified and statistical analysis revealed 108 compounds, which allowed for the taxonomic classification according to the genera. The most significant compounds discriminating the four genera were (Z-9-pentacosene, (Z,Z-pentatriacontene-3, (Z-9-tricosene, and (Z-9-heptacosene. The analyses demonstrated the potential use of CHCs to identify different species.

  20. DEVELOPMENTAL CIGARETTE SMOKE EXPOSURE: KIDNEY PROTEOME PROFILE ALTERATIONS IN LOW BIRTH WEIGHT PUPS

    Science.gov (United States)

    Rekha, J; Chen, Jing; Canales, Lorena; Birtles, Todd; Pisano, M. Michele; Neal, Rachel E.

    2012-01-01

    The Brenner hypothesis states that a congenital reduction in nephron number predisposes to adult-onset hypertension and renal failure. The reduction in nephron number induced by proportionally smaller kidney mass may predispose offspring to glomerular hyperfiltration with maturity onset obesity. Developmental cigarette smoke exposure (CSE) results in intrauterine growth retardation with a predisposition to obesity and cardiovascular disease at maturity. Utilizing a mouse model of ‘active’ developmental CSE (gestational day [GD] 1-postnatal day [PD] 21; cotinine>50 ng/mL) characterized by persistently smaller offspring with proportionally decreased kidney mass, the present study examined the impact of developmental CSE on the abundance of proteins associated with cellular metabolism in the kidney. Following cessation of CSE on PD21, kidney tissue was collected from CSE and Sham exposed pups for 2D-SDS-PAGE based proteome profiling with statistical analysis by Partial Least Squares-Discriminant Analysis (PLS-DA) with affected molecular pathways identified by Ingenuity Pathway Analysis. Proteins whose expression in the kidney were affected by developmental CSE belonged to the inflammatory disease, cell to cell signaling/interaction, lipid metabolism, small molecule biochemistry, cell cycle, respiratory disease, nucleic acid and carbohydrate metabolism networks. The present findings indicate that developmental CSE alters the kidney proteome. The companion paper details the liver proteome alterations in the same offspring. PMID:22595367

  1. Cuticular hydrocarbons of Chagas disease vectors in Mexico

    OpenAIRE

    Juárez M Patricia; Carlson David A; Salazar Schettino Paz María; Mijailovsky Sergio; Rojas Gloria

    2002-01-01

    Capillary gas-liquid chromatography was used to analyse the cuticular hydrocarbons of three triatomine species, Triatoma dimidiata, T. barberi and Dipetalogaster maxima, domestic vectors of Chagas disease in Mexico. Mixtures of saturated hydrocarbons of straight and methyl-branched chains were characteristic of the three species, but quantitatively different. Major methylbranched components mostly corresponded to different saturated isomers of monomethyl, dimethyl and trimethyl branched hydro...

  2. MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Various biological effects are associated with radiation exposure. Irradiated cells may elevate the risk for genetic instability, mutation, and cancer under low levels of radiation exposure, in addition to being able to extend the postradiation side effects in normal tissues. Radiation-induced bystander effect (RIBE is the focus of rigorous research as it may promote the development of cancer even at low radiation doses. Alterations in the DNA sequence could not explain these biological effects of radiation and it is thought that epigenetics factors may be involved. Indeed, some microRNAs (or miRNAs have been found to correlate radiation-induced damages and may be potential biomarkers for the various biological effects caused by different levels of radiation exposure. However, the regulatory role that miRNA plays in this aspect remains elusive. In this study, we profiled the expression changes in miRNA under fractionated radiation exposure in human peripheral blood mononuclear cells. By utilizing publicly available microRNA knowledge bases and performing cross validations with our previous gene expression profiling under the same radiation condition, we identified various miRNA-gene interactions specific to different doses of radiation treatment, providing new insights for the molecular underpinnings of radiation injury.

  3. Attenuated UV Radiation Alters Volatile Profile in Cabernet Sauvignon Grapes under Field Conditions.

    Science.gov (United States)

    Liu, Di; Gao, Yuan; Li, Xiao-Xi; Li, Zheng; Pan, Qiu-Hong

    2015-09-17

    This study aimed to explore the effect of attenuated UV radiation around grape clusters on the volatile profile of Cabernet Sauvignon grapes (Vitis vinifera L. cv.) under field conditions. Grape bunches were wrapped with two types of polyester films that cut off 89% (film A) and 99% (film B) invisible sunlight of less than 380 nm wavelength, respectively. Solar UV radiation reaching the grape berry surface was largely attenuated, and an increase in the concentrations of amino acid-derived benzenoid volatiles and fatty acid-derived esters was observed in the ripening grapes. Meanwhile, the attenuated UV radiation significantly reduced the concentrations of fatty acid-derived aldehydes and alcohols and isoprenoid-derived norisoprenoids. No significant impact was observed for terpenes. In most case, these positive or negative effects were stage-dependent. Reducing UV radiation from the onset of veraison to grape harvest, compared to the other stages, caused a larger alteration in the grape volatile profile. Partial Least Square Discriminant Analysis (PLS-DA) revealed that (E)-2-hexenal, 4-methyl benzaldehyde, 2-butoxyethyl acetate, (E)-2-heptenal, styrene, α-phenylethanol, and (Z)-3-hexen-1-ol acetate were affected most significantly by the attenuated UV radiation.

  4. Attenuated UV Radiation Alters Volatile Profile in Cabernet Sauvignon Grapes under Field Conditions

    Directory of Open Access Journals (Sweden)

    Di Liu

    2015-09-01

    Full Text Available This study aimed to explore the effect of attenuated UV radiation around grape clusters on the volatile profile of Cabernet Sauvignon grapes (Vitis vinifera L. cv. under field conditions. Grape bunches were wrapped with two types of polyester films that cut off 89% (film A and 99% (film B invisible sunlight of less than 380 nm wavelength, respectively. Solar UV radiation reaching the grape berry surface was largely attenuated, and an increase in the concentrations of amino acid-derived benzenoid volatiles and fatty acid-derived esters was observed in the ripening grapes. Meanwhile, the attenuated UV radiation significantly reduced the concentrations of fatty acid-derived aldehydes and alcohols and isoprenoid-derived norisoprenoids. No significant impact was observed for terpenes. In most case, these positive or negative effects were stage-dependent. Reducing UV radiation from the onset of veraison to grape harvest, compared to the other stages, caused a larger alteration in the grape volatile profile. Partial Least Square Discriminant Analysis (PLS-DA revealed that (E-2-hexenal, 4-methyl benzaldehyde, 2-butoxyethyl acetate, (E-2-heptenal, styrene, α-phenylethanol, and (Z-3-hexen-1-ol acetate were affected most significantly by the attenuated UV radiation.

  5. Proteomic Characterization of Armillaria mellea Reveals Oxidative Stress Response Mechanisms and Altered Secondary Metabolism Profiles

    Directory of Open Access Journals (Sweden)

    Cassandra Collins

    2017-09-01

    Full Text Available Armillaria mellea is a major plant pathogen. Yet, the strategies the organism uses to infect susceptible species, degrade lignocellulose and other plant material and protect itself against plant defences and its own glycodegradative arsenal are largely unknown. Here, we use a combination of gel and MS-based proteomics to profile A. mellea under conditions of oxidative stress and changes in growth matrix. 2-DE and LC-MS/MS were used to investigate the response of A. mellea to H2O2 and menadione/FeCl3 exposure, respectively. Several proteins were detected with altered abundance in response to H2O2, but not menadione/FeCl3 (i.e., valosin-containing protein, indicating distinct responses to these different forms of oxidative stress. One protein, cobalamin-independent methionine synthase, demonstrated a common response in both conditions, which may be a marker for a more general stress response mechanism. Further changes to the A. mellea proteome were investigated using MS-based proteomics, which identified changes to putative secondary metabolism (SM enzymes upon growth in agar compared to liquid cultures. Metabolomic analyses revealed distinct profiles, highlighting the effect of growth matrix on SM production. This establishes robust methods by which to utilize comparative proteomics to characterize this important phytopathogen.

  6. Proteomic Characterization of Armillaria mellea Reveals Oxidative Stress Response Mechanisms and Altered Secondary Metabolism Profiles.

    Science.gov (United States)

    Collins, Cassandra; Hurley, Rachel; Almutlaqah, Nada; O'Keeffe, Grainne; Keane, Thomas M; Fitzpatrick, David A; Owens, Rebecca A

    2017-09-17

    Armillaria mellea is a major plant pathogen. Yet, the strategies the organism uses to infect susceptible species, degrade lignocellulose and other plant material and protect itself against plant defences and its own glycodegradative arsenal are largely unknown. Here, we use a combination of gel and MS-based proteomics to profile A. mellea under conditions of oxidative stress and changes in growth matrix. 2-DE and LC-MS/MS were used to investigate the response of A. mellea to H₂O₂ and menadione/FeCl₃ exposure, respectively. Several proteins were detected with altered abundance in response to H₂O₂, but not menadione/FeCl₃ (i.e., valosin-containing protein), indicating distinct responses to these different forms of oxidative stress. One protein, cobalamin-independent methionine synthase, demonstrated a common response in both conditions, which may be a marker for a more general stress response mechanism. Further changes to the A. mellea proteome were investigated using MS-based proteomics, which identified changes to putative secondary metabolism (SM) enzymes upon growth in agar compared to liquid cultures. Metabolomic analyses revealed distinct profiles, highlighting the effect of growth matrix on SM production. This establishes robust methods by which to utilize comparative proteomics to characterize this important phytopathogen.

  7. The cuticular nature of corneal lenses in Drosophila melanogaster.

    Science.gov (United States)

    Stahl, Aaron L; Charlton-Perkins, Mark; Buschbeck, Elke K; Cook, Tiffany A

    2017-07-01

    The dioptric visual system relies on precisely focusing lenses that project light onto a neural retina. While the proteins that constitute the lenses of many vertebrates are relatively well characterized, less is known about the proteins that constitute invertebrate lenses, especially the lens facets in insect compound eyes. To address this question, we used mass spectrophotometry to define the major proteins that comprise the corneal lenses from the adult Drosophila melanogaster compound eye. This led to the identification of four cuticular proteins: two previously identified lens proteins, drosocrystallin and retinin, and two newly identified proteins, Cpr66D and Cpr72Ec. To determine which ommatidial cells contribute each of these proteins to the lens, we conducted in situ hybridization at 50% pupal development, a key age for lens secretion. Our results confirm previous reports that drosocrystallin and retinin are expressed in the two primary corneagenous cells-cone cells and primary pigment cells. Cpr72Ec and Cpr66D, on the other hand, are more highly expressed in higher order interommatidial pigment cells. These data suggest that the complementary expression of cuticular proteins give rise to the center vs periphery of the corneal lens facet, possibly facilitating a refractive gradient that is known to reduce spherical aberration. Moreover, these studies provide a framework for future studies aimed at understanding the cuticular basis of corneal lens function in holometabolous insect eyes.

  8. Microenvironment alters epigenetic and gene expression profiles in Swarm rat chondrosarcoma tumors

    Directory of Open Access Journals (Sweden)

    Hamm Christopher A

    2010-09-01

    Full Text Available Abstract Background Chondrosarcomas are malignant cartilage tumors that do not respond to traditional chemotherapy or radiation. The 5-year survival rate of histologic grade III chondrosarcoma is less than 30%. An animal model of chondrosarcoma has been established - namely, the Swarm Rat Chondrosarcoma (SRC - and shown to resemble the human disease. Previous studies with this model revealed that tumor microenvironment could significantly influence chondrosarcoma malignancy. Methods To examine the effect of the microenvironment, SRC tumors were initiated at different transplantation sites. Pyrosequencing assays were utilized to assess the DNA methylation of the tumors, and SAGE libraries were constructed and sequenced to determine the gene expression profiles of the tumors. Based on the gene expression analysis, subsequent functional assays were designed to determine the relevancy of the specific genes in the development and progression of the SRC. Results The site of transplantation had a significant impact on the epigenetic and gene expression profiles of SRC tumors. Our analyses revealed that SRC tumors were hypomethylated compared to control tissue, and that tumors at each transplantation site had a unique expression profile. Subsequent functional analysis of differentially expressed genes, albeit preliminary, provided some insight into the role that thymosin-β4, c-fos, and CTGF may play in chondrosarcoma development and progression. Conclusion This report describes the first global molecular characterization of the SRC model, and it demonstrates that the tumor microenvironment can induce epigenetic alterations and changes in gene expression in the SRC tumors. We documented changes in gene expression that accompany changes in tumor phenotype, and these gene expression changes provide insight into the pathways that may play a role in the development and progression of chondrosarcoma. Furthermore, specific functional analysis indicates that

  9. Microenvironment alters epigenetic and gene expression profiles in Swarm rat chondrosarcoma tumors

    International Nuclear Information System (INIS)

    Hamm, Christopher A; Wang, Deli; Malchenko, Sergey; Fatima Bonaldo, Maria de; Casavant, Thomas L; Hendrix, Mary JC; Soares, Marcelo B; Stevens, Jeff W; Xie, Hehuang; Vanin, Elio F; Morcuende, Jose A; Abdulkawy, Hakeem; Seftor, Elisabeth A; Sredni, Simone T; Bischof, Jared M

    2010-01-01

    Chondrosarcomas are malignant cartilage tumors that do not respond to traditional chemotherapy or radiation. The 5-year survival rate of histologic grade III chondrosarcoma is less than 30%. An animal model of chondrosarcoma has been established - namely, the Swarm Rat Chondrosarcoma (SRC) - and shown to resemble the human disease. Previous studies with this model revealed that tumor microenvironment could significantly influence chondrosarcoma malignancy. To examine the effect of the microenvironment, SRC tumors were initiated at different transplantation sites. Pyrosequencing assays were utilized to assess the DNA methylation of the tumors, and SAGE libraries were constructed and sequenced to determine the gene expression profiles of the tumors. Based on the gene expression analysis, subsequent functional assays were designed to determine the relevancy of the specific genes in the development and progression of the SRC. The site of transplantation had a significant impact on the epigenetic and gene expression profiles of SRC tumors. Our analyses revealed that SRC tumors were hypomethylated compared to control tissue, and that tumors at each transplantation site had a unique expression profile. Subsequent functional analysis of differentially expressed genes, albeit preliminary, provided some insight into the role that thymosin-β4, c-fos, and CTGF may play in chondrosarcoma development and progression. This report describes the first global molecular characterization of the SRC model, and it demonstrates that the tumor microenvironment can induce epigenetic alterations and changes in gene expression in the SRC tumors. We documented changes in gene expression that accompany changes in tumor phenotype, and these gene expression changes provide insight into the pathways that may play a role in the development and progression of chondrosarcoma. Furthermore, specific functional analysis indicates that thymosin-β4 may have a role in chondrosarcoma metastasis

  10. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease

    Science.gov (United States)

    Minamoto, Yasushi; Otoni, Cristiane C; Steelman, Samantha M; Büyükleblebici, Olga; Steiner, Jörg M; Jergens, Albert E; Suchodolski, Jan S

    2015-01-01

    Idiopathic inflammatory bowel disease (IBD) is a common cause of chronic gastrointestinal (GI) disease in dogs. The combination of an underlying host genetic susceptibility, an intestinal dysbiosis, and dietary/environmental factors are suspected as main contributing factors in the pathogenesis of canine IBD. However, actual mechanisms of the host-microbe interactions remain elusive. The aim of this study was to compare the fecal microbiota and serum metabolite profiles between healthy dogs (n = 10) and dogs with IBD before and after 3 weeks of medical therapy (n = 12). Fecal microbiota and metabolite profiles were characterized by 454-pyrosequencing of 16 S rRNA genes and by an untargeted metabolomics approach, respectively. Significantly lower bacterial diversity and distinct microbial communities were observed in dogs with IBD compared to the healthy control dogs. While Gammaproteobacteria were overrepresented, Erysipelotrichia, Clostridia, and Bacteroidia were underrepresented in dogs with IBD. The functional gene content was predicted from the 16 S rRNA gene data using PICRUSt, and revealed overrepresented bacterial secretion system and transcription factors, and underrepresented amino acid metabolism in dogs with IBD. The serum metabolites 3-hydroxybutyrate, hexuronic acid, ribose, and gluconic acid lactone were significantly more abundant in dogs with IBD. Although a clinical improvement was observed after medical therapy in all dogs with IBD, this was not accompanied by significant changes in the fecal microbiota or in serum metabolite profiles. These results suggest the presence of oxidative stress and a functional alteration of the GI microbiota in dogs with IBD, which persisted even in the face of a clinical response to medical therapy. PMID:25531678

  11. Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster.

    Science.gov (United States)

    Dembeck, Lauren M; Böröczky, Katalin; Huang, Wen; Schal, Coby; Anholt, Robert R H; Mackay, Trudy F C

    2015-11-14

    Insect cuticular hydrocarbons (CHCs) prevent desiccation and serve as chemical signals that mediate social interactions. Drosophila melanogaster CHCs have been studied extensively, but the genetic basis for individual variation in CHC composition is largely unknown. We quantified variation in CHC profiles in the D. melanogaster Genetic Reference Panel (DGRP) and identified novel CHCs. We used principal component (PC) analysis to extract PCs that explain the majority of CHC variation and identified polymorphisms in or near 305 and 173 genes in females and males, respectively, associated with variation in these PCs. In addition, 17 DGRP lines contain the functional Desat2 allele characteristic of African and Caribbean D. melanogaster females (more 5,9-C27:2 and less 7,11-C27:2, female sex pheromone isomers). Disruption of expression of 24 candidate genes affected CHC composition in at least one sex. These genes are associated with fatty acid metabolism and represent mechanistic targets for individual variation in CHC composition.

  12. Altered molecular profile in thyroid cancers from patients affected by the Three Mile Island nuclear accident.

    Science.gov (United States)

    Goldenberg, David; Russo, Mariano; Houser, Kenneth; Crist, Henry; Derr, Jonathan B; Walter, Vonn; Warrick, Joshua I; Sheldon, Kathryn E; Broach, James; Bann, Darrin V

    2017-07-01

    In 1979, Three Mile Island (TMI) nuclear power plant experienced a partial meltdown with release of radioactive material. The effects of the accident on thyroid cancer (TC) in the surrounding population remain unclear. Radiation-induced TCs have a lower incidence of single nucleotide oncogenic driver mutations and higher incidence of gene fusions. We used next generation sequencing (NGS) to identify molecular signatures of radiation-induced TC in a cohort of TC patients residing near TMI during the time of the accident. Case series. We identified 44 patients who developed papillary thyroid carcinoma between 1974 and 2014. Patients who developed TC between 1984 and 1996 were at risk for radiation-induced TC, patients who developed TC before 1984 or after 1996 were the control group. We used targeted NGS of paired tumor and normal tissue from each patient to identify single nucleotide oncogenic driver mutations. Oncogenic gene fusions were identified using quantitative reverse transcription polymerase chain reaction. We identified 15 patients in the at-risk group and 29 patients in the control group. BRAF V600E mutations were identified in 53% patients in the at-risk group and 83% patients in the control group. The proportion of patients with BRAF mutations in the at-risk group was significantly lower than predicted by the The Cancer Genome Atlas cohort. Gene fusion or somatic copy number alteration drivers were identified in 33% tumors in the at-risk group and 14% of tumors in the control group. Findings were consistent with observations from other radiation-exposed populations. These data raise the possibility that radiation released from TMI may have altered the molecular profile of TC in the population surrounding TMI. 4 Laryngoscope, 127:S1-S9, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  13. Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate.

    Science.gov (United States)

    Liu, F; Killian, J K; Yang, M; Walker, R L; Hong, J A; Zhang, M; Davis, S; Zhang, Y; Hussain, M; Xi, S; Rao, M; Meltzer, P A; Schrump, D S

    2010-06-24

    Limited information is available regarding epigenomic events mediating initiation and progression of tobacco-induced lung cancers. In this study, we established an in vitro system to examine epigenomic effects of cigarette smoke in respiratory epithelia. Normal human small airway epithelial cells and cdk-4/hTERT-immortalized human bronchial epithelial cells (HBEC) were cultured in normal media with or without cigarette smoke condensate (CSC) for up to 9 months under potentially relevant exposure conditions. Western blot analysis showed that CSC mediated dose- and time-dependent diminution of H4K16Ac and H4K20Me3, while increasing relative levels of H3K27Me3; these histone alterations coincided with decreased DNA methyltransferase 1 (DNMT1) and increased DNMT3b expression. Pyrosequencing and quantitative RT-PCR experiments revealed time-dependent hypomethylation of D4Z4, NBL2, and LINE-1 repetitive DNA sequences; up-regulation of H19, IGF2, MAGE-A1, and MAGE-A3; activation of Wnt signaling; and hypermethylation of tumor suppressor genes such as RASSF1A and RAR-beta, which are frequently silenced in human lung cancers. Array-based DNA methylation profiling identified additional novel DNA methylation targets in soft-agar clones derived from CSC-exposed HBEC; a CSC gene expression signature was also identified in these cells. Progressive genomic hypomethylation and locoregional DNA hypermethylation induced by CSC coincided with a dramatic increase in soft-agar clonogenicity. Collectively, these data indicate that cigarette smoke induces 'cancer-associated' epigenomic alterations in cultured respiratory epithelia. This in vitro model may prove useful for delineating early epigenetic mechanisms regulating gene expression during pulmonary carcinogenesis.

  14. Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May Affect Clinical Decision Making.

    Science.gov (United States)

    Abida, Wassim; Armenia, Joshua; Gopalan, Anuradha; Brennan, Ryan; Walsh, Michael; Barron, David; Danila, Daniel; Rathkopf, Dana; Morris, Michael; Slovin, Susan; McLaughlin, Brigit; Curtis, Kristen; Hyman, David M; Durack, Jeremy C; Solomon, Stephen B; Arcila, Maria E; Zehir, Ahmet; Syed, Aijazuddin; Gao, Jianjiong; Chakravarty, Debyani; Vargas, Hebert Alberto; Robson, Mark E; Joseph, Vijai; Offit, Kenneth; Donoghue, Mark T A; Abeshouse, Adam A; Kundra, Ritika; Heins, Zachary J; Penson, Alexander V; Harris, Christopher; Taylor, Barry S; Ladanyi, Marc; Mandelker, Diana; Zhang, Liying; Reuter, Victor E; Kantoff, Philip W; Solit, David B; Berger, Michael F; Sawyers, Charles L; Schultz, Nikolaus; Scher, Howard I

    2017-07-01

    A long natural history and a predominant osseous pattern of metastatic spread are impediments to the adoption of precision medicine in patients with prostate cancer. To establish the feasibility of clinical genomic profiling in the disease, we performed targeted deep sequencing of tumor and normal DNA from patients with locoregional, metastatic non-castrate, and metastatic castration-resistant prostate cancer (CRPC). Patients consented to genomic analysis of their tumor and germline DNA. A hybridization capture-based clinical assay was employed to identify single nucleotide variations, small insertions and deletions, copy number alterations and structural rearrangements in over 300 cancer-related genes in tumors and matched normal blood. We successfully sequenced 504 tumors from 451 patients with prostate cancer. Potentially actionable alterations were identified in DNA damage repair (DDR), PI3K, and MAP kinase pathways. 27% of patients harbored a germline or a somatic alteration in a DDR gene that may predict for response to PARP inhibition. Profiling of matched tumors from individual patients revealed that somatic TP53 and BRCA2 alterations arose early in tumors from patients who eventually developed metastatic disease. In contrast, comparative analysis across disease states revealed that APC alterations were enriched in metastatic tumors, while ATM alterations were specifically enriched in CRPC. Through genomic profiling of prostate tumors representing the disease clinical spectrum, we identified a high frequency of potentially actionable alterations and possible drivers of disease initiation, metastasis and castration-resistance. Our findings support the routine use of tumor and germline DNA profiling for patients with advanced prostate cancer, for the purpose of guiding enrollment in targeted clinical trials and counseling families at increased risk of malignancy.

  15. Leptosphaeria maculans Alters Glucosinolate Profiles in Blackleg Disease–Resistant and -Susceptible Cabbage Lines

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2017-10-01

    Full Text Available Blackleg, a fungal disease caused by Leptosphaeria maculans, is one of the most devastating diseases of Brassica crops worldwide. Despite notable progress elucidating the roles of glucosinolates in pathogen defense, the complex interaction between B. oleracea (cabbage and L. maculans infection that leads to the selective induction of genes involved in glucosinolate production and subsequent modulation of glucosinolate profiles remains to be fully understood. The current study was designed to identify glucosinolate-biosynthesis genes induced by L. maculans and any associated alterations in glucosinolate profiles to explore their roles in blackleg resistance in 3-month-old cabbage plants. The defense responses of four cabbage lines, two resistant and two susceptible, were investigated using two L. maculans isolates, 03–02 s and 00–100 s. A simultaneous increase in the aliphatic glucosinolates glucoiberverin (GIV and glucoerucin (GER and the indolic glucosinolates glucobrassicin (GBS and neoglucobrassicin (NGBS was associated with complete resistance. An increase in either aliphatic (GIV or indolic (GBS and MGBS glucosinolates was associated with moderate resistance. Indolic glucobrassicin (GBS and neoglucobrassicin (NGBS were increased in both resistant and susceptible interactions. Pearson correlation showed positive association between GER content with GSL-OH (Bol033373 expression. Expressions of MYB34 (Bol007760, ST5a (Bol026200, and CYP81F2 (Bol026044 were positively correlated with the contents of both GBS and MGBS. Our results confirm that L. maculans infection induces glucosinolate-biosynthesis genes in cabbage, with concomitant changes in individual glucosinolate contents. In resistant lines, both aliphatic and indolic glucosinolates are associated with resistance, with aliphatic GIV and GER and indolic MGBS glucosinolates particularly important. The association between the genes, the corresponding glucosinolates, and plant resistance

  16. Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus

    DEFF Research Database (Denmark)

    Sebastiana, Mónica; Martins, Joana; Figueiredo, Andreia

    2017-01-01

    An increased knowledge on the real impacts of ectomycorrhizal symbiosis in forest species is needed to optimize forest sustainable productivity and thus to improve forest services and their capacity to act as carbon sinks. In this study, we investigated the response of an oak species to ectomycor......An increased knowledge on the real impacts of ectomycorrhizal symbiosis in forest species is needed to optimize forest sustainable productivity and thus to improve forest services and their capacity to act as carbon sinks. In this study, we investigated the response of an oak species...... to ectomycorrhizae formation using a proteomics approach complemented by biochemical analysis of carbohydrate levels. Comparative proteome analysis between mycorrhizal and nonmycorrhizal cork oak plants revealed no differences at the foliar level. However, the protein profile of 34 unique oak proteins was altered...... accommodation in colonized roots are also suggested by the results. The suggested improvement in root capacity to take up nutrients accompanied by an increase of root biomass without apparent changes in aboveground biomass strongly re-enforces the potential of mycorrhizal inoculation to improve cork oak forest...

  17. Accuracy of cuticular resistance parameterizations in ammonia dry deposition models

    Science.gov (United States)

    Schrader, Frederik; Brümmer, Christian; Richter, Undine; Fléchard, Chris; Wichink Kruit, Roy; Erisman, Jan Willem

    2016-04-01

    Accurate representation of total reactive nitrogen (Nr) exchange between ecosystems and the atmosphere is a crucial part of modern air quality models. However, bi-directional exchange of ammonia (NH3), the dominant Nr species in agricultural landscapes, still poses a major source of uncertainty in these models, where especially the treatment of non-stomatal pathways (e.g. exchange with wet leaf surfaces or the ground layer) can be challenging. While complex dynamic leaf surface chemistry models have been shown to successfully reproduce measured ammonia fluxes on the field scale, computational restraints and the lack of necessary input data have so far limited their application in larger scale simulations. A variety of different approaches to modelling dry deposition to leaf surfaces with simplified steady-state parameterizations have therefore arisen in the recent literature. We present a performance assessment of selected cuticular resistance parameterizations by comparing them with ammonia deposition measurements by means of eddy covariance (EC) and the aerodynamic gradient method (AGM) at a number of semi-natural and grassland sites in Europe. First results indicate that using a state-of-the-art uni-directional approach tends to overestimate and using a bi-directional cuticular compensation point approach tends to underestimate cuticular resistance in some cases, consequently leading to systematic errors in the resulting flux estimates. Using the uni-directional model, situations where low ratios of total atmospheric acids to NH3 concentration occur lead to fairly high minimum cuticular resistances, limiting predicted downward fluxes in conditions usually favouring deposition. On the other hand, the bi-directional model used here features a seasonal cycle of external leaf surface emission potentials that can lead to comparably low effective resistance estimates under warm and wet conditions, when in practice an expected increase in the compensation point due to

  18. Cuticular hydrocarbons of Chagas disease vectors in Mexico

    Directory of Open Access Journals (Sweden)

    M Patricia Juárez

    2002-09-01

    Full Text Available Capillary gas-liquid chromatography was used to analyse the cuticular hydrocarbons of three triatomine species, Triatoma dimidiata, T. barberi and Dipetalogaster maxima, domestic vectors of Chagas disease in Mexico. Mixtures of saturated hydrocarbons of straight and methyl-branched chains were characteristic of the three species, but quantitatively different. Major methylbranched components mostly corresponded to different saturated isomers of monomethyl, dimethyl and trimethyl branched hydrocarbons ranging from 29 to 39 carbon backbones. Sex-dependant, quantitative differences in certain hydrocarbons were apparent in T. dimidiata.

  19. Immune function responds to selection for cuticular colour in Tenebrio molitor

    DEFF Research Database (Denmark)

    Armitage, Sophie Alice Octavia; Siva-Jothy, M. T.

    2005-01-01

    Cuticular colour in the mealworm beetle (Tenebrio molitor) is a quantitative trait, varying from tan to black. Population level variation in cuticular colour has been linked to pathogen resistance in this species and in several other insects: darker individuals are more resistant to pathogens. Gi...

  20. Cuticular colour reflects underlying architecture and is affected by a limiting resource.

    Science.gov (United States)

    Evison, Sophie E F; Gallagher, Joe D; Thompson, John J W; Siva-Jothy, Michael T; Armitage, Sophie A O

    2017-04-01

    Central to the basis of ecological immunology are the ideas of costs and trade-offs between immunity and life history traits. As a physical barrier, the insect cuticle provides a key resistance trait, and Tenebrio molitor shows phenotypic variation in cuticular colour that correlates with resistance to the entomopathogenic fungus Metarhizium anisopliae. Here we first examined whether there is a relationship between cuticular colour variation and two aspects of cuticular architecture that we hypothesised may influence resistance to fungal invasion through the cuticle: its thickness and its porosity. Second, we tested the hypothesis that tyrosine, a semi-essential amino acid required for immune defence and cuticular melanisation and sclerotisation, can act as a limiting resource by supplementing the larval diet and subsequently examining adult cuticular colouration and thickness. We found that stock beetles and beetles artificially selected for extremes of cuticular colour had thicker less porous cuticles when they were darker, and thinner more porous cuticles when they were lighter, showing that colour co-varies with two architectural cuticular features. Experimental supplementation of the larval diet with tyrosine led to the development of darker adult cuticle and affected thickness in a sex-specific manner. However, it did not affect two immune traits. The results of this study provide a mechanism for maintenance of cuticular colour variation in this species of beetle; darker cuticles are thicker, but their production is potentially limited by resource constraints and differential investments in resistance mechanisms between the sexes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Alterations in Polysomnographic (PSG profile in drug-naïve Parkinson′s disease

    Directory of Open Access Journals (Sweden)

    Sanju P Joy

    2014-01-01

    Full Text Available Objective: We studied the changes in Polysomnographic (PSG profile in drug-naïve patients of Parkinson′s disease (PD who underwent evaluation with sleep overnight PSG. Materials and Methods: This prospective study included 30 with newly diagnosed levodopa-naïve patients with PD, fulfilling the UK-PD society brain bank clinical diagnostic criteria (M:F = 25:5; age: 57.2 ± 10.7 years. The disease severity scales and sleep related questionnaires were administered, and then patients were subjected to overnight PSG. Results: The mean duration of illness was 9.7 ± 9.5 months. The mean Hoehn and Yahr stage was 1.8 ± 0.4. The mean Unified Parkinson′s Disease Rating Scale (UPDRS motor score improved from 27.7 ± 9.2 to 17.5 ± 8.9 with sustained usage of levodopa. Nocturnal sleep as assessed by Pittsburgh Sleep Quality Index (PSQI was impaired in 10 (33.3% patients (mean PSQI score: 5.1 ± 3.1. Excessive day time somnolence was recorded in three patients with Epworth Sleepiness Scale (ESS score ≥ 10 (mean ESS score: 4.0 ± 3.4. PSG analysis revealed that poor sleep efficiency of <85% was present in 86.7% of patients (mean: 68.3 ± 21.3%. The latencies to sleep onset (mean: 49.8 ± 67.0 minutes and stage 2 sleep (36.5 ± 13.1% were prolonged while slow wave sleep was shortened. Respiration during sleep was significantly impaired in which 43.3% had impaired apnoea hyperpnoea index (AHI ≥5, mean AHI: 8.3 ± 12.1. Apnoeic episodes were predominantly obstructive (obstructive sleep apnea, OSA index = 2.2 ± 5.1. These patients had periodic leg movement (PLM disorder (56.7% had PLM index of 5 or more, mean PLMI: 27.53 ± 4 9.05 that resulted in excessive daytime somnolence. Conclusions: To conclude, sleep macro-architecture is altered in frequently and variably in levodopa-naοve patients of PD and the alterations are possibly due to disease process per se.

  2. Viral miRNAs Alter Host Cell miRNA Profiles and Modulate Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Afsar R. Naqvi

    2018-03-01

    Full Text Available Prevalence of the members of herpesvirus family in oral inflammatory diseases is increasingly acknowledged suggesting their likely role as an etiological factor. However, the underlying mechanisms remain obscure. In our recent miRNA profiling of healthy and diseased human tooth pulps, elevated expression of human herpesvirus encoded viral microRNAs (v-miRs were identified. Based on the fold induction and significance values, we selected three v-miRs namely miR-K12-3-3p [Kaposi sarcoma-associated virus (KSHV], miR-H1 [herpes simplex virus 1 (HSV1], and miR-UL-70-3p [human cytomegalovirus (HCMV] to further examine their impact on host cellular functions. We examined their impact on cellular miRNA profiles of primary human oral keratinocytes (HOK. Our results show differential expression of several host miRNAs in v-miR-transfected HOK. High levels of v-miRs were detected in exosomes derived from v-miR transfected HOK as well as the KSHV-infected cell lines. We show that HOK-derived exosomes release their contents into macrophages (Mφ and alter expression of endogenous miRNAs. Concurrent expression analysis of precursor (pre-miRNA and mature miRNA suggest transcriptional or posttranscriptional impact of v-miRs on the cellular miRNAs. Employing bioinformatics, we predicted several pathways targeted by deregulated cellular miRNAs that include cytoskeletal organization, endocytosis, and cellular signaling. We validated three novel targets of miR-K12-3-3p and miR-H1 that are involved in endocytic and intracellular trafficking pathways. To evaluate the functional consequence of this regulation, we performed phagocytic uptake of labeled bacteria and noticed significant attenuation in miR-H1 and miR-K12-3-3p but not miR-UL70-3p transfected primary human Mφ. Multiple cytokine analysis of E. coli challenged Mφ revealed marked reduction of secreted cytokine levels with important roles in innate and adaptive immune responses suggesting a role of v-miRs in

  3. Asthmatics exhibit altered oxylipin profiles compared to healthy individuals after subway air exposure.

    Science.gov (United States)

    Lundström, Susanna L; Levänen, Bettina; Nording, Malin; Klepczynska-Nyström, Anna; Sköld, Magnus; Haeggström, Jesper Z; Grunewald, Johan; Svartengren, Magnus; Hammock, Bruce D; Larsson, Britt-Marie; Eklund, Anders; Wheelock, Åsa M; Wheelock, Craig E

    2011-01-01

    Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM) and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications. This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air. Sixty-four oxylipins representing the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS) of bronchoalveolar lavage (BAL)-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information. Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and α-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E(2) (PGE(2)). Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change. Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas.

  4. Asthmatics exhibit altered oxylipin profiles compared to healthy individuals after subway air exposure.

    Directory of Open Access Journals (Sweden)

    Susanna L Lundström

    Full Text Available Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications.This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air.Sixty-four oxylipins representing the cyclooxygenase (COX, lipoxygenase (LOX and cytochrome P450 (CYP metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS of bronchoalveolar lavage (BAL-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPARγ. Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information.Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and α-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E(2 (PGE(2. Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change.Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas.

  5. Does smoking alter the mutation profile of human papillomavirus-driven head and neck cancers?

    Science.gov (United States)

    Mirghani, Haitham; Lacroix, Ludovic; Rossoni, Caroline; Sun, Roger; Aupérin, Anne; Casiraghi, Odile; Villepelet, Aude; Lacave, Roger; Faucher, Gladwys; Marty, Virginie; Ferté, Charles; Soria, Jean Charles; Even, Caroline

    2018-05-01

    Human papillomavirus (HPV)-driven oropharyngeal cancer (OPC) patients are characterised by a better prognosis than their HPV-negative counterparts. However, this significant survival advantage is not homogeneous and among HPV-positive patients those with a smoking history have a significantly increased risk of oncologic failure. The reason why tobacco consumption impacts negatively the prognosis is still elusive. Tobacco might induce additional genetic alterations leading to a more aggressive phenotype. The purpose of this study was to characterise the mutational profile of HPV-positive OPCs by smoking status. We hypothesise a higher frequency of mutations affecting smokers. Targeted next-generation sequencing of 39 genes that are recurrently mutated in head and neck cancers (HNCs) caused by tobacco/alcohol consumption was performed in 62 HPV-driven OPC cases including smokers and non-smokers. The study population included 37 (60%) non-smokers and 25 (40%) smokers. Twenty (32%) patients had no mutation, 14 (23%) had 1 mutation and 28 (45%) had 2 or more mutations. The most commonly mutated genes regardless of tobacco consumption were PIK3CA (19%), MLL2 (19%), TP53 (8%), FAT 1 (15%), FBXW7 (16%), NOTCH1 (10%) and FGFR3 (10%). Mutation rate was not significantly different in smokers compared with non-smokers even when analyses focused on heavy smokers (>20 pack-years vs. <20 pack-years). Similarly, there was no significant difference in mutations patterns according to tobacco consumption. In HPV-positive patients, smoking does not increase the mutation rate of genes that are recurrently mutated in traditional HNC. Additional studies are warranted to further describe the molecular landscape of HPV-driven OPC according to tobacco consumption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Altered brain protein expression profiles are associated with molecular neurological dysfunction in the PKU mouse model.

    Science.gov (United States)

    Imperlini, Esther; Orrù, Stefania; Corbo, Claudia; Daniele, Aurora; Salvatore, Francesco

    2014-06-01

    Phenylketonuria (PKU), if not detected and treated in newborns, causes severe neurological dysfunction and cognitive and behavioral deficiencies. Despite the biochemical characterization of PKU, the molecular mechanisms underlying PKU-associated brain dysfunction remain poorly understood. The aim of this study was to gain insights into the pathogenesis of this neurological damage by analyzing protein expression profiles in brain tissue of Black and Tan BRachyury-PahEnu2 mice (a mouse model of PKU). We compared the cerebral protein expression of homozygous PKU mice with that of their heterozygous counterparts using two-dimensional difference gel electrophoresis analysis, and identified 21 differentially expressed proteins, four of which were over-expressed and 17 under-expressed. An in silico bioinformatic approach indicated that protein under-expression was related to neuronal differentiation and dendritic growth, and to such neurological disorders as progressive motor neuropathy and movement disorders. Moreover, functional annotation analyses showed that some identified proteins were involved in oxidative metabolism. To further investigate the proteins involved in the neurological damage, we validated two of the proteins that were most strikingly under-expressed, namely, Syn2 and Dpysl2, which are involved in synaptic function and neurotransmission. We found that Glu2/3 and NR1 receptor subunits were over-expressed in PKU mouse brain. Our results indicate that differential expression of these proteins may be associated with the processes underlying PKU brain dysfunction, namely, decreased synaptic plasticity and impaired neurotransmission. We identified a set of proteins whose expression is affected by hyperphenylalaninemia. We think that phenylketonuria (PKU) brain dysfunction also depends on reduced Syn2 and Dpysl2 levels, increased Glu2/3 and NR1 levels, and decreased Pkm, Ckb, Pgam1 and Eno1 levels. These findings finally confirm that alteration in synaptic

  7. Altered Serum Lipoprotein Profiles in Male and Female Power Lifters Ingesting Anabolic Steroids.

    Science.gov (United States)

    Cohen, Jonathan C.; And Others

    1986-01-01

    Serum lipoprotein profiles were measured in nine male and three female weightlifters who were taking anabolic steroids. The profiles suggest that steriod users may face an increased risk of coronary artery disease. (Author/MT)

  8. Fruit cuticular waxes as a source of biologically active triterpenoids.

    Science.gov (United States)

    Szakiel, Anna; Pączkowski, Cezary; Pensec, Flora; Bertsch, Christophe

    2012-06-01

    The health benefits associated with a diet rich in fruit and vegetables include reduction of the risk of chronic diseases such as cardiovascular disease, diabetes and cancer, that are becoming prevalent in the aging human population. Triterpenoids, polycyclic compounds derived from the linear hydrocarbon squalene, are widely distributed in edible and medicinal plants and are an integral part of the human diet. As an important group of phytochemicals that exert numerous biological effects and display various pharmacological activities, triterpenoids are being evaluated for use in new functional foods, drugs, cosmetics and healthcare products. Screening plant material in the search for triterpenoid-rich plant tissues has identified fruit peel and especially fruit cuticular waxes as promising and highly available sources. The chemical composition, abundance and biological activities of triterpenoids occurring in cuticular waxes of some economically important fruits, like apple, grape berry, olive, tomato and others, are described in this review. The need for environmentally valuable and potentially profitable technologies for the recovery, recycling and upgrading of residues from fruit processing is also discussed.

  9. Biologically inspired LED lens from cuticular nanostructures of firefly lantern

    Science.gov (United States)

    Kim, Jae-Jun; Lee, Youngseop; Kim, Ha Gon; Choi, Ki-Ju; Kweon, Hee-Seok; Park, Seongchong; Jeong, Ki-Hun

    2012-01-01

    Cuticular nanostructures found in insects effectively manage light for light polarization, structural color, or optical index matching within an ultrathin natural scale. These nanostructures are mainly dedicated to manage incoming light and recently inspired many imaging and display applications. A bioluminescent organ, such as a firefly lantern, helps to out-couple light from the body in a highly efficient fashion for delivering strong optical signals in sexual communication. However, the cuticular nanostructures, except the light-producing reactions, have not been well investigated for physical principles and engineering biomimetics. Here we report a unique observation of high-transmission nanostructures on a firefly lantern and its biological inspiration for highly efficient LED illumination. Both numerical and experimental results clearly reveal high transmission through the nanostructures inspired from the lantern cuticle. The nanostructures on an LED lens surface were fabricated by using a large-area nanotemplating and reconfigurable nanomolding with heat-induced shear thinning. The biologically inspired LED lens, distinct from a smooth surface lens, substantially increases light transmission over visible ranges, comparable to conventional antireflection coating. This biological inspiration can offer new opportunities for increasing the light extraction efficiency of high-power LED packages. PMID:23112185

  10. Modified prokaryotic glucose isomerase enzymes with altered pH activity profiles

    NARCIS (Netherlands)

    Lambeir, Anne-Marie; Lasters, Ignace; Mrabet, Nadir; Quax, Wim; Van Der Laan, Jan M.; Misset, Onno

    1994-01-01

    A method for selecting amino acid residues is disclosed which upon replacement will give rise to an enzyme with an altered pH optimum. The method is specific for metalloenzymes which are inactivated at low pH due to the dissociation of the metal ions. The method is based on altering the pKa of the

  11. Suitability of cuticular pores and sensilla for harpacticoid copepod species delineation and phylogenetic reconstruction.

    Science.gov (United States)

    Karanovic, Tomislav; Kim, Kichoon

    2014-11-01

    Cuticular organs have not been described systematically in harpacticoids until recently, and they haven ever been used as characters for reconstructing phylogenetic relationships in any crustacean group. We survey cuticular pores and sensilla on somites in ten Miraciidae species, belonging to six genera, from Korea, Australia, and Russia. Nine species belong to the subfamily Stenheliinae, while the outgroup belongs to the subfamily Diosaccinae. We aim to compare phylogenetic trees reconstructed for these harpactioids based on: 1) cuticular organs (with 76 characters scored, 71% of them phylogenetically informative); 2) traditionally used macro-morphological characters (66 scored, 77% of them informative);and 3) mtCOI DNA data. All analyses suggest that cuticular organs are useful characters for harpacticoid species delineation, although not as sensitive as some fast-evolving molecular markers. Reconstructed cladograms based on all three datasets show very high bootstrap values for clades representing distinct genera, suggesting that cuticular organs are suitable characters for studying phylogenetic relationships. Bootstrap values for the more basal nodes differ among the different cladograms,as do the sister-group relationships they suggest, indicating that cuticular organs probably have different evolutionary constraints from macro-morphological characters. Cuticular organs could be quite useful in the study of old museum specimens and fossil crustaceans.

  12. Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Dawei Xue

    2017-04-01

    Full Text Available Cuticular wax, the first protective layer of above ground tissues of many plant species, is a key evolutionary innovation in plants. Cuticular wax safeguards the evolution from certain green algae to flowering plants and the diversification of plant taxa during the eras of dry and adverse terrestrial living conditions and global climate changes. Cuticular wax plays significant roles in plant abiotic and biotic stress tolerance and has been implicated in defense mechanisms against excessive ultraviolet radiation, high temperature, bacterial and fungal pathogens, insects, high salinity, and low temperature. Drought, a major type of abiotic stress, poses huge threats to global food security and health of terrestrial ecosystem by limiting plant growth and crop productivity. The composition, biochemistry, structure, biosynthesis, and transport of plant cuticular wax have been reviewed extensively. However, the molecular and evolutionary mechanisms of cuticular wax in plants in response to drought stress are still lacking. In this review, we focus on potential mechanisms, from evolutionary, molecular, and physiological aspects, that control cuticular wax and its roles in plant drought tolerance. We also raise key research questions and propose important directions to be resolved in the future, leading to potential applications of cuticular wax for water use efficiency in agricultural and environmental sustainability.

  13. Adult fly age estimations using cuticular hydrocarbons and Artificial Neural Networks in forensically important Calliphoridae species.

    Science.gov (United States)

    Moore, Hannah E; Butcher, John B; Day, Charles R; Drijfhout, Falko P

    2017-11-01

    Blowflies (Diptera: Calliphoridae) are forensically important as they are known to be one of the first to colonise human remains. The larval stage is typically used to assist a forensic entomologists with adult flies rarely used as they are difficult to age because they remain morphologically similar once they have gone through the initial transformation upon hatching. However, being able to age them is of interest and importance within the field. This study examined the cuticular hydrocarbons (CHC) of Diptera: Calliphoridae species Lucilia sericata, Calliphora vicina and Calliphora vomitoria. The CHCs were extracted from the cuticles of adult flies and analysed using Gas Chromatography-Mass Spectrometry (GC-MS). The chemical profiles were examined for the two Calliphora species at intervals of day 1, 5, 10, 20 and 30 and up to day 10 for L. sericata. The results show significant chemical changes occurring between the immature and mature adult flies over the extraction period examined in this study. With the aid of a Principal Component Analysis (PCA) and Artificial Neural Networks (ANN), samples were seen to cluster, allowing for the age to be established within the aforementioned time frames. The use of ANNs allowed for the automatic classification of novel samples with very good performance. This was a proof of concept study, which developed a method allowing to age post-emergence adults by using their chemical profiles. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Insect Cuticular Hydrocarbons as Dynamic Traits in Sexual Communication

    Directory of Open Access Journals (Sweden)

    Fiona C. Ingleby

    2015-08-01

    Full Text Available Recent research has demonstrated extensive within-species variation in pheromone expression in insect species, contrary to the view that pheromones are largely invariant within species. In fact, many studies on insect cuticular hydrocarbons (CHCs show that pheromones can be highly dynamic traits that can express significant short-term plasticity across both abiotic and social environments. It is likely that this variability in CHC expression contributes to their important role in sexual signaling and mate choice. In this review, I discuss CHC plasticity and how this might influence sexual communication. I also highlight two important avenues for future research: examining plasticity in how individuals respond to CHC signals, and testing how sexual communication varies across abiotic and social environments.

  15. Changes in the triterpenoid content of cuticular waxes during fruit ripening of eight grape (Vitis vinifera) cultivars grown in the Upper Rhine Valley.

    Science.gov (United States)

    Pensec, Flora; Pączkowski, Cezary; Grabarczyk, Marta; Woźniak, Agnieszka; Bénard-Gellon, Mélanie; Bertsch, Christophe; Chong, Julie; Szakiel, Anna

    2014-08-13

    Triterpenoids present in grape cuticular waxes are of interest due to their potential role in protection against biotic stresses, their impact on the mechanical toughness of the fruit surface, and the potential industrial application of these biologically active compounds from grape pomace. The determination of the triterpenoid profile of cuticular waxes reported here supplements existing knowledge of the chemical diversity of grape, with some compounds reported in this species for the first time. Common compounds identified in eight examined cultivars grown in the Upper Rhine Valley include oleanolic acid, oleanolic and ursolic acid methyl esters, oleanolic aldehyde, α-amyrin, α-amyrenone, β-amyrin, cycloartanol, 24-methylenecycloartanol, erythrodiol, germanicol, lupeol accompanied by lupeol acetate, campesterol, cholesterol, sitosterol, stigmasterol, and stigmasta-3,5-dien-7-one, whereas 3,12-oleandione was specific for the Muscat d'Alsace cultivar. Changes in the triterpenoid content of cuticular waxes were determined at three different phenological stages: young grapes, grapes at véraison (the onset of ripening), and mature grapes. The results reveal a characteristic evolution of triterpenoid content during fruit development, with a high level of total triterpenoids in young grapes that gradually decreases with a slight increase in the level of neutral triterpenoids. This phenomenon may partially explain changes in the mechanical properties of the cuticle and possible modulations in the susceptibility to pathogens of mature grapes.

  16. Genomic profiling in Down syndrome acute lymphoblastic leukemia identifies histone gene deletions associated with altered methylation profiles

    Science.gov (United States)

    Loudin, Michael G.; Wang, Jinhua; Leung, Hon-Chiu Eastwood; Gurusiddappa, Sivashankarappa; Meyer, Julia; Condos, Gregory; Morrison, Debra; Tsimelzon, Anna; Devidas, Meenakshi; Heerema, Nyla A.; Carroll, Andrew J.; Plon, Sharon E.; Hunger, Stephen P.; Basso, Giuseppe; Pession, Andrea; Bhojwani, Deepa; Carroll, William L.; Rabin, Karen R.

    2014-01-01

    Patients with Down syndrome (DS) and acute lymphoblastic leukemia (ALL) have distinct clinical and biological features. Whereas most DS-ALL cases lack the sentinel cytogenetic lesions that guide risk assignment in childhood ALL, JAK2 mutations and CRLF2 overexpression are highly enriched. To further characterize the unique biology of DS-ALL, we performed genome-wide profiling of 58 DS-ALL and 68 non-Down syndrome (NDS) ALL cases by DNA copy number, loss of heterozygosity, gene expression, and methylation analyses. We report a novel deletion within the 6p22 histone gene cluster as significantly more frequent in DS-ALL, occurring in 11 DS (22%) and only two NDS cases (3.1%) (Fisher’s exact p = 0.002). Homozygous deletions yielded significantly lower histone expression levels, and were associated with higher methylation levels, distinct spatial localization of methylated promoters, and enrichment of highly methylated genes for specific pathways and transcription factor binding motifs. Gene expression profiling demonstrated heterogeneity of DS-ALL cases overall, with supervised analysis defining a 45-transcript signature associated with CRLF2 overexpression. Further characterization of pathways associated with histone deletions may identify opportunities for novel targeted interventions. PMID:21647151

  17. Binding of hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid metabolism.

    Science.gov (United States)

    Oehler, Nicola; Volz, Tassilo; Bhadra, Oliver D; Kah, Janine; Allweiss, Lena; Giersch, Katja; Bierwolf, Jeanette; Riecken, Kristoffer; Pollok, Jörg M; Lohse, Ansgar W; Fehse, Boris; Petersen, Joerg; Urban, Stephan; Lütgehetmann, Marc; Heeren, Joerg; Dandri, Maura

    2014-11-01

    Chronic hepatitis B virus (HBV) infection has been associated with alterations in lipid metabolism. Moreover, the Na+-taurocholate cotransporting polypeptide (NTCP), responsible for bile acid (BA) uptake into hepatocytes, was identified as the functional cellular receptor mediating HBV entry. The aim of the study was to determine whether HBV alters the liver metabolic profile by employing HBV-infected and uninfected human liver chimeric mice. Humanized urokinase plasminogen activator/severe combined immunodeficiency mice were used to establish chronic HBV infection. Gene expression profiles were determined by real-time polymerase chain reaction using primers specifically recognizing transcripts of either human or murine origin. Liver biopsy samples obtained from HBV-chronic individuals were used to validate changes determined in mice. Besides modest changes in lipid metabolism, HBV-infected mice displayed a significant enhancement of human cholesterol 7α-hydroxylase (human [h]CYP7A1; median 12-fold induction; Pmetabolic alterations. Binding of HBV to NTCP limits its function, thus promoting compensatory BA synthesis and cholesterol provision. The intimate link determined between HBV and liver metabolism underlines the importance to exploit further metabolic pathways, as well as possible NTCP-related viral-drug interactions. © 2014 by the American Association for the Study of Liver Diseases.

  18. Sexual dimorphism in cuticular hydrocarbons of the Australian field cricket Teleogryllus oceanicus (Orthoptera: Gryllidae).

    Science.gov (United States)

    Thomas, Melissa L; Simmons, Leigh W

    2008-06-01

    Sexual dimorphism is presumed to reflect adaptive divergence in response to selection favouring different optimal character states in the two sexes. Here, we analyse patterns of sexual dimorphism in the cuticular hydrocarbons of the Australian field cricket Teleogryllus oceanicus using gas chromatography. Ten of the 25 peaks found in our chromatographs, differed in their relative abundance between the sexes. The presence of sexual dimorphism in T. oceanicus is discussed in reference to a review of sexual dimorphism in cuticular hydrocarbons of other insects. We found that this trait has been examined in 103 species across seven different orders. Seventy-six of these species (73%) displayed sex specificity of cuticular hydrocarbons, the presence/absence of which does not appear to be directly linked to phylogeny. The occurrence of sexual dimorphism in cuticular hydrocarbons of some but not other species, and the extent of variation within genera, suggest that this divergence has been driven primarily by sexual selection.

  19. Barriers to gene exchange in hybridizing field crickets: the role of male courtship effort and cuticular hydrocarbons.

    Science.gov (United States)

    Maroja, Luana S; McKenzie, Zachary M; Hart, Elizabeth; Jing, Joy; Larson, Erica L; Richardson, David P

    2014-03-28

    Pre-zygotic barriers often involve some form of sexual selection, usually interpreted as female choice, as females are typically the choosier sex. However, males typically show some mate preferences, which are increasingly reported. Here we document previously uncharacterized male courtship behavior (effort and song) and cuticular hydrocarbon (CHC) profiles in the hybridizing crickets Gryllus firmus and G. pennsylvanicus. These two species exhibit multiple barriers to gene exchange that act throughout their life history, including a behavioral barrier that results in increased time to mate in heterospecific pairs. We demonstrated that male mate choice (as courtship effort allocation) plays a more important role in the prezygotic behavioral barrier than previously recognized. In gryllids females ultimately decide whether or not to mate, yet we found males were selective by regulating courtship effort intensity toward the preferred (conspecific) females. Females were also selective by mating with more intensely courting males, which happened to be conspecifics. We report no differences in courtship song between the two species and suggest that the mechanism that allows males to act differentially towards conspecific and heterospecific females is the cuticular hydrocarbon (CHC) composition. CHC profiles differed between males and females of both species, and there were clear differences in CHC composition between female G. firmus and G. pennsylvanicus but not between the males of each species. Although many barriers to gene exchange are known in this system, the mechanism behind the mate recognition leading to reduced heterospecific mating remains unknown. The CHC profiles might be the phenotypic cue that allow males to identify conspecifics and thus to adjust their courtship intensity accordingly, leading to differential mating between species.

  20. Recent advances using electron beam analysis to detect cuticular changes induced by air pollution

    International Nuclear Information System (INIS)

    Krause, C.R.

    1994-01-01

    Invisible or ''hidden injury'', terms from the earliest air quality literature, expressed the diagnostician's frustration in identifying abiotic disease symptoms. Direct visualization was not technically possible until the advent of electron beam analysis (EBA) hardware and software. Electron beam analysis, a combination of scanning electron microscopy (SEM) energy dispersive X-ray analysis (EDXA), and computer-controlled image processing (CCIP) is useful for detecting changes in the cuticle and adjacent cells due to common phytotoxicants. Artifacts, caused by improper specimen preparation, inherent in the high vacuum of SEM and use of hydrated plant samples, fill the literature. Unique methodologies are necessary to interpret the minute changes to plant surfaces caused by a variety of environmental stresses such as sulfur dioxide, ozone, acidic deposition, pesticide residues, NACl, etc. EBA was used to show: the progression of surface alterations that occur to stomata of hybrid poplar (Populus spp.) following exposure to SO 2 and O 3 ; between SO 2 -sensitive and SO 2 -tolerant clones of eastern white pine (Pinus strobus L.). CCIP was especially useful in determining that acidified rain or mist and O 3 do not physically erode existing epicuticular wax of red spruce (Picea rubens Sarg.) as previous literature stated. EBA was used to correlate field and laboratory data showing similar injury to epistomatal wax of red spruce. Improved field emission microscopy and EDXA that offer increased resolution with little sample preparation can provide opportunities to observe cuticular modifications not previously available. (orig.)

  1. Improvement of Lipid Profile Is Accompanied by Atheroprotective Alterations in High-Density Lipoprotein Composition Upon Tumor Necrosis Factor Blockade A Prospective Cohort Study in Ankylosing Spondylitis

    NARCIS (Netherlands)

    Eijk, van I.C.; Vries, de M.K.; Levels, J.H.M.; Peters, M.J.L.; Huizer, E.E.; Dijkmans, B.A.C.; Horst - Bruinsma, van der I.E.; Hazenberg, B.P.C.; Stadt, van de R.J.; Wolbink, G.; Nurmohamed, M.T.

    2009-01-01

    Objective. Cardiovascular mortality is increased in ankylosing spondylitis (AS), and inflammation plays an important role. Inflammation deteriorates the lipid profile and alters high-density lipoprotein cholesterol (HDL-c) composition, reflected by increased concentrations of serum amyloid A (SAA)

  2. Ruminal fatty acid metabolism : altering rumen biohydrolgenation to improve milk fatty acid profile of dairy cows

    NARCIS (Netherlands)

    Sterk, A.R.

    2011-01-01

    Nutritional guidelines promote a reduced intake of saturated fatty acids (FA) and increased intake of unsaturated FA by humans. Milk and dairy products contain a high proportion of saturated FA caused by extensive alterations of dietary lipids in the rumen through the processes of lipolysis and

  3. DEVELOPMENTAL CIGARETTE SMOKE EXPOSURE: LIVER PROTEOME PROFILE ALTERATIONS IN LOW BIRTH WEIGHT PUPS

    Science.gov (United States)

    Canales, Lorena; Chen, Jing; Kelty, Elizabeth; Musah, Sadiatu; Webb, Cindy; Pisano, M. Michele; Neal, Rachel E.

    2012-01-01

    Cigarette smoke is composed of over 4000 chemicals many of which are strong oxidizing agents and chemical carcinogens. Chronic cigarette smoke exposure (CSE) induces mild alterations in liver histology indicative of toxicity though the molecular pathways underlying these alterations remain to be explored. Utilizing a mouse model of ‘active’ developmental CSE (gestational day (GD) 1 through postnatal day (PD) 21; cotinine > 50 ng/mL) characterized by low birth weight offspring, the impact of developmental CSE on liver protein abundances was determined. On PD21, liver tissue was collected from pups for 2D SDS-PAGE based proteome analysis with statistical analysis by Partial Least Squares-Discriminant Analysis (PLS-DA). Protein spots of interest were identified by ESI-MS/MS with impacted molecular pathways identified by Ingenuity Pathway Analysis. Developmental CSE decreased the abundance of proteins associated with the small molecule biochemistry (includes glucose metabolism), lipid metabolism, amino acid metabolism, and inflammatory response pathways. Decreased gluconeogenic enzyme activity and lysophosphatidylcholine availability following developmental CSE were found and supports the impact of CSE on these pathways. Proteins with increased abundance belonged to the cell death and drug metabolism networks. Liver antioxidant enzyme abundances [Glutathione-S-Transferase (GST) and Peroxiredoxins] were also altered by CSE, but GST enzymatic activity was unchanged. In summary, cigarette smoke exposure spanning pre- and post-natal development resulted in persistent decreased offspring weights, decreased abundances of liver metabolic proteins, decreased gluconeogenic activity, and altered lipid metabolism. The companion paper details the kidney proteome alterations in the same offspring. PMID:22609517

  4. Alteration of fecal microbiota profiles in juvenile idiopathic arthritis. Associations with HLA-B27 allele and disease status.

    Directory of Open Access Journals (Sweden)

    Monica Di Paola

    2016-10-01

    Full Text Available Alteration of gut microbiota is involved in several chronic inflammatory and autoimmune diseases, including rheumatoid arthritis, and gut microbial pro-arthritogenic profiles have been hypothesized. Intestinal inflammation may be involved in spondyloarthropathies and in a subset of patients affected by Juvenile Idiopathic Arthritis (JIA, the most common chronic rheumatic disease of childhood. We compared the fecal microbiota composition of JIA patients with healthy subjects (HS, evaluating differences in microbial profiles between sub-categories of JIA, such as enthesitis-related arthritis (JIA-ERA, in which inflammation of entheses occurs, and polyarticular JIA, non-enthesitis related arthritis (JIA-nERA. Through taxon-level analysis, we discovered alteration of fecal microbiota components that could be involved in subclinical gut inflammation, and promotion of joint inflammation. We observed abundance in Ruminococcaceae in both JIA categories, reduction in Clostridiaceae and Peptostreptococcaceae in JIA-ERA, and increase in Veillonellaceae in JIA-nERA, respectively compared with HS. Among the more relevant genera, we found an increase in Clostridium cluster XIVb, involved in colitis and arthritis, in JIA-ERA patients compared with HS, and a trend of decrease in Faecalibacterium, known for anti-inflammatory properties, in JIA-nERA compared with JIA-ERA and HS. Differential abundant taxa identified JIA patients for the HLA-B27 allele, including Bilophila, Clostridium cluster XIVb, Oscillibacter and Parvimonas. Prediction analysis of metabolic functions showed that JIA-ERA metagenome was differentially enriched in bacterial functions related to cell motility and chemotaxis, suggesting selection of potential virulence traits. We also discovered differential microbial profiles and intra-group variability among active disease and remission, suggesting instability of microbial ecosystem in autoimmune diseases with respect to healthy status. Similarly

  5. Palm and partially hydrogenated soybean oils adversely alter lipoprotein profiles compared with soybean and canola oils in moderately hyperlipidemic subjects.

    Science.gov (United States)

    Vega-López, Sonia; Ausman, Lynne M; Jalbert, Susan M; Erkkilä, Arja T; Lichtenstein, Alice H

    2006-07-01

    Partially hydrogenated fat has an unfavorable effect on cardiovascular disease risk. Palm oil is a potential substitute because of favorable physical characteristics. We assessed the effect of palm oil on lipoprotein profiles compared with the effects of both partially hydrogenated fat and oils high in monounsaturated or polyunsaturated fatty acids. Fifteen volunteers aged > or =50 y with LDL cholesterol > or =130 mg/dL were provided with food for each of 4 diets (35 d/phase) varying in type of fat (partially hydrogenated soybean, soybean, palm, or canola; two-thirds fat, 20% of energy). Plasma fatty acid profiles, lipids, lipoproteins, apolipoprotein A-I, apolipoprotein B, lipoprotein(a), glucose, insulin, HDL subfractions, and indicators of lipoprotein metabolism (HDL-cholesterol fractional esterification rate, cholesteryl ester transfer protein, phospholipid transfer protein, and paraoxonase activities) were measured at the end of each phase. Plasma fatty acid profiles reflected the main source of dietary fat. Partially hydrogenated soybean and palm oils resulted in higher LDL-cholesterol concentrations than did soybean (12% and 14%, respectively; P oils. Apolipoprotein B (P palm oil compared with the other dietary fats. HDL3 cholesterol was higher after palm oil than after partially hydrogenated and soybean oils (P Palm and partially hydrogenated soybean oils, compared with soybean and canola oils, adversely altered the lipoprotein profile in moderately hyperlipidemic subjects without significantly affecting HDL intravascular processing markers.

  6. Chia induces clinically discrete weight loss and improves lipid profile only in altered previous values.

    Science.gov (United States)

    Tavares Toscano, Luciana; Tavares Toscano, Lydiane; Leite Tavares, Renata; da Oliveira Silva, Cássia Surama; Silva, Alexandre Sérgio

    2014-12-14

    chia (Salvia hispanica L.) has an elevated concentration of dietary fiber, it has been used to weight loss and enhance blood glucose and lipid profile. However, data in human are still scarce or do not exist, according to the analyzed variable. to evaluate the effect of chia supplementation in body composition, lipid profile and blood glucose in overweight or obese individuals. men and women were randomly allocated in groups that ingested 35 g of chia flour/day (CHIA; n=19; 48.8±1.8 years) or placebo (PLA; n=7; 51.4±3.1 years) for 12 weeks. Body composition and food intake were evaluated in each four weeks. Lipid profile and blood glucose were measured in the beginning and in the end of the study. Chia induced significant intragroup reduction in body weight (-1.1±0.4 kg; pCHIA group (p chia flour and presented abnormal initial values. Triglycerides, blood glucose and LDL-C showed no changes for either group. consumption of chia for 12 weeks promotes significant but discrete reduction in weight and waist circumference, and enhances lipid profile dependent of initial values. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  7. Postpartal Subclinical Endometritis Alters Transcriptome Profiles in Liver and Adipose Tissue of Dairy Cows

    Science.gov (United States)

    Akbar, Haji; Cardoso, Felipe C.; Meier, Susanne; Burke, Christopher; McDougall, Scott; Mitchell, Murray; Walker, Caroline; Rodriguez-Zas, Sandra L.; Everts, Robin E.; Lewin, Harris A.; Roche, John R.; Loor, Juan J.

    2014-01-01

    Transcriptome alterations in liver and adipose tissue of cows with subclinical endometritis (SCE) at 29 d postpartum were evaluated. Bioinformatics analysis was performed using the Dynamic Impact Approach by means of KEGG and DAVID databases. Milk production, blood metabolites (non-esterified fatty acids, magnesium), and disease biomarkers (albumin, aspartate aminotransferase) did not differ greatly between healthy and SCE cows. In liver tissue of cows with SCE, alterations in gene expression revealed an activation of complement and coagulation cascade, steroid hormone biosynthesis, apoptosis, inflammation, oxidative stress, MAPK signaling, and the formation of fibrinogen complex. Bioinformatics analysis also revealed an inhibition of vitamin B3 and B6 metabolism with SCE. In adipose, the most activated pathways by SCE were nicotinate and nicotinamide metabolism, long-chain fatty acid transport, oxidative phosphorylation, inflammation, T cell and B cell receptor signaling, and mTOR signaling. Results indicate that SCE in dairy cattle during early lactation induces molecular alterations in liver and adipose tissue indicative of immune activation and cellular stress. PMID:24578603

  8. Genomic profiling of ER+ breast cancers after short-term estrogen suppression reveals alterations associated with endocrine resistance

    Science.gov (United States)

    Giltnane, J.M.; Hutchinson, K.E.; Stricker, T.P.; Formisano, L.; Young, C.D.; Estrada, M.V.; Nixon, M.J.; Du, L.; Sanchez, V.; Ericsson, P. Gonzalez; Kuba, M.G.; Sanders, M.E.; Mu, X.J.; Van Allen, E.M.; Wagle, N.; Mayer, I.; Abramson, V.; Gómez, H.; Rizzo, M.; Toy, W.; Chandarlapaty, S.; Mayer, E.L.; Christiansen, J.; Murphy, D.; Fitzgerald, K.; Wang, K.; Ross, J.S.; Miller, V.A.; Stephens, P.J.; Yelensky, R.; Garraway, L.; Shyr, Y.; Meszoely, I.; Balko, J.M.; Arteaga, C.L.

    2017-01-01

    Proliferative inhibition of estrogen-receptor positive (ER+) breast cancers after short-term antiestrogen therapy correlates with long-term patient outcome. We profiled 155 ER+/HER2– early breast cancers from 143 patients treated with the aromatase inhibitor letrozole for 10-21 days before surgery. Twenty-one percent of tumors remained highly proliferative suggesting these tumors harbor alterations associated with intrinsic endocrine therapy resistance. Whole-exome sequencing revealed a correlation between 8p11-12 and 11q13 gene amplifications, including FGFR1 and CCND1, respectively, and high Ki67. We corroborated these findings in a separate cohort of serial pre-treatment, post-neoadjuvant chemotherapy, and recurrent ER+ tumors. Combined inhibition of FGFR1 and CDK4/6 reversed antiestrogen resistance in ER+ FGFR1/CCND1 co-amplified CAMA1 breast cancer cells. RNA sequencing of letrozole-treated tumors revealed intrachromosomal ESR1 fusion transcripts and gene expression signatures in cancers with high Ki67, indicative of enhanced E2F-mediated transcription and cell cycle processes. These data suggest short-term pre-operative estrogen deprivation followed by genomic profiling can be used to identify druggable alterations potentially causal to intrinsic endocrine therapy resistance. PMID:28794284

  9. Alterations in gene expression profiles correlated with cisplatin cytotoxicity in the glioma U343 cell line

    OpenAIRE

    Patricia Oliveira Carminati; Stephano Spano Mello; Ana Lucia Fachin; Cristina Moraes Junta; Paula Sandrin-Garcia; Carlos Gilberto Carlotti; Eduardo Antonio Donadi; Geraldo Aleixo Silva Passos; Elza Tiemi Sakamoto-Hojo

    2010-01-01

    Gliomas are the most common tumors in the central nervous system, the average survival time of patients with glioblastoma multiforme being about 1 year from diagnosis, in spite of harsh therapy. Aiming to study the transcriptional profiles displayed by glioma cells undergoing cisplatin treatment, gene expression analysis was performed by the cDNA microarray method. Cell survival and apoptosis induction following treatment were also evaluated. Drug concentrations of 12.5 to 300 μM caused ...

  10. Consumption of pasteurized human lysozyme transgenic goats' milk alters serum metabolite profile in young pigs.

    Science.gov (United States)

    Brundige, Dottie R; Maga, Elizabeth A; Klasing, Kirk C; Murray, James D

    2010-08-01

    Nutrition, bacterial composition of the gastrointestinal tract, and general health status can all influence the metabolic profile of an organism. We previously demonstrated that feeding pasteurized transgenic goats' milk expressing human lysozyme (hLZ) can positively impact intestinal morphology and modulate intestinal microbiota composition in young pigs. The objective of this study was to further examine the effect of consuming hLZ-containing milk on young pigs by profiling serum metabolites. Pigs were placed into two groups and fed a diet of solid food and either control (non-transgenic) goats' milk or milk from hLZ-transgenic goats for 6 weeks. Serum samples were collected at the end of the feeding period and global metabolite profiling was performed. For a total of 225 metabolites (160 known, 65 unknown) semi-quantitative data was obtained. Levels of 18 known and 4 unknown metabolites differed significantly between the two groups with the direction of change in 13 of the 18 known metabolites being almost entirely congruent with improved health status, particularly in terms of the gastrointestinal tract health and immune response, with the effects of the other five being neutral or unknown. These results further support our hypothesis that consumption of hLZ-containing milk is beneficial to health.

  11. Comparison of gene expression profiles altered by comfrey and riddelliine in rat liver.

    Science.gov (United States)

    Guo, Lei; Mei, Nan; Dial, Stacey; Fuscoe, James; Chen, Tao

    2007-11-01

    Comfrey (Symphytum officinale) is a perennial plant and has been consumed by humans as a vegetable, a tea and an herbal medicine for more than 2000 years. It, however, is hepatotoxic and carcinogenic in experimental animals and hepatotoxic in humans. Pyrrolizidine alkaloids (PAs) exist in many plants and many of them cause liver toxicity and/or cancer in humans and experimental animals. In our previous study, we found that the mutagenicity of comfrey was associated with the PAs contained in the plant. Therefore, we suggest that carcinogenicity of comfrey result from those PAs. To confirm our hypothesis, we compared the expression of genes and processes of biological functions that were altered by comfrey (mixture of the plant with PAs) and riddelliine (a prototype of carcinogenic PA) in rat liver for carcinogenesis in this study. Groups of 6 Big Blue Fisher 344 rats were treated with riddelliine at 1 mg/kg body weight by gavage five times a week for 12 weeks or fed a diet containing 8% comfrey root for 12 weeks. Animals were sacrificed one day after the last treatment and the livers were isolated for gene expression analysis. The gene expressions were investigated using Applied Biosystems Rat Whole Genome Survey Microarrays and the biological functions were analyzed with Ingenuity Analysis Pathway software. Although there were large differences between the significant genes and between the biological processes that were altered by comfrey and riddelliine, there were a number of common genes and function processes that were related to carcinogenesis. There was a strong correlation between the two treatments for fold-change alterations in expression of drug metabolizing and cancer-related genes. Our results suggest that the carcinogenesis-related gene expression patterns resulting from the treatments of comfrey and riddelliine are very similar, and PAs contained in comfrey are the main active components responsible for carcinogenicity of the plant.

  12. Comprehensive immune profiling reveals substantial immune system alterations in a subset of patients with amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Michael P Gustafson

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease with a median lifespan of 2-3 years after diagnosis. There are few meaningful treatments that alter progression in this disease. Preclinical and clinical studies have demonstrated that neuroinflammation may play a key role in the progression rate of ALS. Despite this, there are no validated biomarkers of neuroinflammation for use in clinical practice or clinical trials. Biomarkers of neuroinflammation could improve patient management, provide new therapeutic targets, and possibly help stratify clinical trial selection and monitoring. However, attempts to identify a singular cause of neuroinflammation have not been successful. Here, we performed multi-parameter flow cytometry to comprehensively assess 116 leukocyte populations and phenotypes from lymphocytes, monocytes, and granulocytes in a cohort of 80 ALS patients. We identified 32 leukocyte phenotypes that were altered in ALS patients compared to age and gender matched healthy volunteers (HV that included phenotypes of both inflammation and immune suppression. Unsupervised hierarchical clustering and principle component analysis of ALS and HV immunophenotypes revealed two distinct immune profiles of ALS patients. ALS patients were clustered into a profile distinct from HVs primarily due to differences in a multiple T cell phenotypes, CD3+CD56+ T cells and HLA-DR on monocytes. Patients clustered into an abnormal immune profile were younger, more likely to have a familial form of the disease, and survived longer than those patients who clustered similarly with healthy volunteers (344 weeks versus 184 weeks; p = 0.012. The data set generated from this study establishes an extensive accounting of immunophenotypic changes readily suitable for biomarker validation studies. The extensive immune system changes measured in this study indicate that normal immune homeostatic mechanisms are disrupted in ALS patients, and that

  13. Pentoses and light intensity increase the growth and carbohydrate production and alter the protein profile of Chlorella minutissima.

    Science.gov (United States)

    Freitas, B C B; Cassuriaga, A P A; Morais, M G; Costa, J A V

    2017-08-01

    High concentrations of carbon, which is considered a necessary element, are required for microalgal growth. Therefore, the identification of alternative carbon sources available in large quantities is increasingly important. This study evaluated the effects of light variation and pentose addition on the carbohydrate content and protein profile of Chlorella minutissima grown in a raceway photobioreactor. The kinetic parameters, carbohydrate content, and protein profile of Chlorella minutissima and its theoretical potential for ethanol production were estimated. The highest cellular concentrations were obtained with a light intensity of 33.75µmol.m -2 .s -1 . Arabinose addition combined with a light intensity of 33.75µmol.m -2 .s -1 increased the carbohydrate content by 53.8% and theoretically produced 39.1mL·100g -1 ethanol. All of the assays showed that a lower light availability altered the protein profile. The luminous intensity affects xylose and arabinose assimilation and augments the carbohydrate content in C. minutissima, making this microalga appropriate for bioethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Serum oxylipin profiles in IgA nephropathy patients reflect kidney functional alterations.

    Science.gov (United States)

    Zivkovic, Angela M; Yang, Jun; Georgi, Katrin; Hegedus, Christine; Nording, Malin L; O'Sullivan, Aifric; German, J Bruce; Hogg, Ronald J; Weiss, Robert H; Bay, Curt; Hammock, Bruce D

    2012-12-01

    Immunoglobulin A nephropathy (IgAN) is a leading cause of chronic kidney disease, frequently associated with hypertension and renal inflammation. ω-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in fish oil (FO) improve kidney function in animal models, but have inconsistent metabolic effects in humans. Oxylipin profiles in serum from IgAN patients supplemented with either FO or corn oil (CO) placebo were analyzed by liquid chromatography coupled to tandem mass spectrometry. EPA cyclooxygenase and lipoxygenase metabolites, and EPA and DHA epoxides and diols were increased in response to FO supplementation, as were total epoxides and epoxide/diol ratios. Several of these metabolites were drivers of separation as assessed by multivariate analysis of FO patients pre- vs. post-supplementation, including 17,18-dihydroxyeicosatrienoic acid, prostaglandin D 3 , prostagalandin E 3 , Resolvin E1, 12-hydroxyeicosapentaenoic acid, and 10(11)-epoxydocosapentaenoic acid. In patients whose proteinuria improved, plasma total oxylipins as well as several hydroxyoctadecadienoic acids, hydroxyeicosatetraenoic acids, and leukotriene B 4 metabolites were among the metabolites that were significantly lower than in patients whose proteinuria either did not improve or worsened. These data support the involvement of oxylipins in the inflammatory component of IgAN as well as the potential use of oxylipin profiles as biomarkers and for assessing responsiveness to ω-3 fatty acid supplementation in IgAN patients.

  15. Chronic exercise promotes alterations in the neuroendocrine profile of elderly people.

    Science.gov (United States)

    Alves, E S; Souza, H S; Rosa, J P P; Lira, F S; Pimentel, G D; Santos, R V T; Oyama, L M; Damaso, A R; Oller do Nascimento, C M; Viana, V A R; Boscolo, R A; Grassmann, V; Santana, M G; Tufik, S; de Mello, M T

    2012-12-01

    Aging and physical inactivity are 2 factors that favour the development of cardiovascular disease, metabolic syndrome, obesity, and diabetes. In contrast, adopting a habitual moderate exercise routine may be a nonpharmacological treatment alternative for neuroendocrine aging disorders. We aimed to assess the effects of moderate exercise training on the metabolic profiles of elderly people with sedentary lifestyles. Fourteen sedentary, healthy, elderly male volunteers participated in a moderate training regimen for 60 min/day, 3 days/week for 24 weeks at a work rate equivalent to their ventilatory aerobic threshold. The environment was maintained at a temperature of 23±2°C, with a humidity of 60±5%. Blood samples for analysis were collected at 3 intervals: at baseline (1 week before training began), and 3 and 6 months after training. The training promoted increased aerobic capacity (relative VO(2), and time and velocity to VO(2)max; (pexercise training protocol improves the metabolic profile of older people, and metabolic adaptation is dependent on time. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Combinations of physiologic estrogens with xenoestrogens alter ERK phosphorylation profiles in rat pituitary cells.

    Science.gov (United States)

    Jeng, Yow-Jiun; Watson, Cheryl S

    2011-01-01

    Estrogens are potent nongenomic phospho-activators of extracellular-signal-regulated kinases (ERKs). A major concern about the toxicity of xenoestrogens (XEs) is potential alteration of responses to physiologic estrogens when XEs are present simultaneously. We examined estrogen-induced ERK activation, comparing the abilities of structurally related XEs (alkylphenols and bisphenol A) to alter ERK responses induced by physiologic concentrations (1 nM) of estradiol (E2), estrone (E1), and estriol (E3). We quantified hormone/mimetic-induced ERK phosphorylations in the GH3/B6/F10 rat pituitary cell line using a plate immunoassay, comparing effects with those on cell proliferation and by estrogen receptor subtype-selective ligands. Alone, these structurally related XEs activate ERKs in an oscillating temporal pattern similar (but not identical) to that with physiologic estrogens. The potency of all estrogens was similar (active between femtomolar and nanomolar concentrations). XEs potently disrupted physiologic estrogen signaling at low, environmentally relevant concentrations. Generally, XEs potentiated (at the lowest, subpicomolar concentrations) and attenuated (at the highest, picomolar to 100 nM concentrations) the actions of the physiologic estrogens. Some XEs showed pronounced nonmonotonic responses/inhibitions. The phosphorylated ERK and proliferative responses to receptor-selective ligands were only partially correlated. XEs are both imperfect potent estrogens and endocrine disruptors; the more efficacious an XE, the more it disrupts actions of physiologic estrogens. This ability to disrupt physiologic estrogen signaling suggests that XEs may disturb normal functioning at life stages where actions of particular estrogens are important (e.g., development, reproductive cycling, pregnancy, menopause).

  17. Repeated gastric distension alters food intake and neuroendocrine profiles in rats.

    Science.gov (United States)

    Hargrave, Sara L; Kinzig, Kimberly P

    2012-02-28

    The consumption of a large food bolus leads to stomach distension. Gastric distension potently signals the termination of a meal by stimulating gastric mechanoreceptors and activating neuroendocrine circuitry. The ability to terminate a meal is altered in disorders such as bulimia nervosa (BN), binge-eating disorder (BED) and certain subtypes of obesity in which large quantities of food are frequently ingested. When a large meal is consumed, the stomach is rapidly stretched. We modeled this rapid distension of the stomach in order to determine if the neuroendocrine abnormalities present in these disorders, including increased gastric capacit3y, leptin dysregulation, and alterations in neuropeptide Y (NPY), and proopiomelanocortin (POMC) expression, were influenced by the rapid stretch aspect of repeatedly consuming a large meal. To test the effects of repeated gastric distension (RGD) on neuroendocrine factors involved in energy homeostasis, a permanent intra-gastric balloon was implanted in rats, and briefly inflated daily for 4 weeks. Though body weights and daily food intakes remained equivalent in RGD and control rats, a significant delay in the onset of feeding was present during the first and second, but not the third and fourth weeks of inflations. Despite equivalent body weights and daily caloric consumption, RGD animals had significantly decreased leptin levels (pfood intake (control and RGD decreases from baseline were 184.95% and 257.42%, respectively). NPY expression in the nucleus of the solitary tract followed a similar pattern. These data demonstrate that the act of regularly distending the stomach can have effects on the regulation of energy balance that are independent from those related to caloric consumption, and may be related to disorders such as BN, BED, and certain types of obesity in which meal termination is impaired. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Alterations in the Cerebral Microvascular Proteome Expression Profile After Transient Global Cerebral Ischemia in Rat

    DEFF Research Database (Denmark)

    Spray, Stine; Johansson, Sara E; Edwards, Alistair V G

    2017-01-01

    This study aimed at obtaining an in-depth mapping of expressional changes of the cerebral microvasculature after transient global cerebral ischemia (GCI) and the impact on these GCI-induced expressional changes of post-GCI treatment with a mitogen-activated protein kinase kinase (MEK1/2) inhibitor....... The proteomic profile of the isolated cerebral microvasculature 72 h after GCI (compared to sham) indicated that the main expressional changes could be divided into nine categories: (1) cellular respiration, (2) remodelling of the extracellular matrix, (3) decreased contractile phenotype, (4) clathrin...... categories. Flow cytometry confirmed key findings from the proteome such as upregulation of the extracellular proteins lamininβ2 and nidogen2 (p expressional changes in the cerebral microvasculature after GCI...

  19. Cuticular hydrocarbons of buffalo fly, Haematobia exigua, and chemotaxonomic differentiation from horn fly, H. irritans.

    Science.gov (United States)

    Urech, Rudolf; Brown, Geoffrey W; Moore, Christopher J; Green, Peter E

    2005-10-01

    We determined the quantity and chemical composition of cuticular hydrocarbons of different strains, sexes, and ages of buffalo flies, Haematobia exigua. The quantity of cuticular hydrocarbons increased from less than 1 microg/fly for newly emerged flies to over 11 microg/fly in 13-d-old flies. The hydrocarbon chain length varied from C(21) to C(29), with unbranched alkanes and monounsaturated alkenes the major components. Newly emerged flies contained almost exclusively C(27) hydrocarbons. Increasing age was accompanied by the appearance of hydrocarbons with shorter carbon chains and an increase in the proportion of alkenes. 11-Tricosene and 7-tricosene were the most abundant hydrocarbons in mature H. exigua. Cuticular hydrocarbons of H. exigua are distinctly different from those of horn flies, Haematobia irritans. The most noticeable differences were in the C(23) alkenes, with the major isomers 11- and 7-tricosene in H. exigua and (Z)-9- and (Z)-5-tricosene in H. irritans, respectively. Cuticular hydrocarbon analysis provides a reliable method to differentiate the two species, which are morphologically difficult to separate. The differences in cuticular hydrocarbons also support their recognition as separate species, H. exigua and H. irritans, rather than as subspecies.

  20. The MIEL1 E3 Ubiquitin Ligase Negatively Regulates Cuticular Wax Biosynthesis in Arabidopsis Stems.

    Science.gov (United States)

    Lee, Hong Gil; Kim, Juyoung; Suh, Mi Chung; Seo, Pil Joon

    2017-07-01

    Cuticular wax is an important hydrophobic layer that covers the plant aerial surface. Cuticular wax biosynthesis is shaped by multiple layers of regulation. In particular, a pair of R2R3-type MYB transcription factors, MYB96 and MYB30, are known to be the main participants in cuticular wax accumulation. Here, we report that the MYB30-INTERACTING E3 LIGASE 1 (MIEL1) E3 ubiquitin ligase controls the protein stability of the two MYB transcription factors and thereby wax biosynthesis in Arabidopsis. MIEL1-deficient miel1 mutants exhibit increased wax accumulation in stems, with up-regulation of wax biosynthetic genes targeted by MYB96 and MYB30. Genetic analysis reveals that wax accumulation of the miel1 mutant is compromised by myb96 or myb30 mutation, but MYB96 is mainly epistatic to MIEL1, playing a predominant role in cuticular wax deposition. These observations indicate that the MIEL1-MYB96 module is important for balanced cuticular wax biosynthesis in developing inflorescence stems. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Vegetation change alters soil profile δ15N values at the landscape scale in a subtropical savanna

    Science.gov (United States)

    Zhou, Y.; Mushinski, R. M.; Hyodo, A.; Wu, X. B.; Boutton, T. W.

    2017-12-01

    The assessment of spatial variation in soil δ15N could provide integrative insights on soil N cycling processes across multiple spatial scales. However, little is known about spatial patterns of δ15N within soil profiles in arid and semiarid ecosystems, especially those undergoing vegetation change with a distinct shift in dominance and/or functional type. We quantified how changes from grass to woody plant dominance altered spatial patterns of δ15N throughout a 1.2 m soil profile by collecting 320 spatially-specific soil cores in a 160 m × 100 m subtropical savanna landscape that has undergone encroachment by Prosopis glandulosa (an N2-fixer) during the past century. Leaf δ15N was comparable among different plant life-forms, while fine roots from woody species had significantly lower δ15N than herbaceous species across this landscape. Woody encroachment significantly decreased soil δ15N throughout the entire soil profile, and created horizontal spatial patterns of soil δ15N that strongly resembled the spatial distribution of woody patches and were evident within each depth increment. The lower soil δ15N values that characterized areas beneath woody canopies were mostly due to the encroaching woody species, especially the N2-fixer P. glandulosa, which delivered 15N-depleted organic matter via root turnover to soils along the profile. Soil δ15N increased with depth, reached maximum values at an intermediate depth, and decreased at greater depths. Higher δ15N values at intermediate soil depths were correlated with the presence of a subsurface clay-rich argillic horizon across this landscape which may favor more rapid rates of N-cycling processes that can cause N losses and 15N enrichment of the residual soil N. These results indicate that succession from grassland to woodland has altered spatial variation in soil δ15N across the landscape and to considerable depth, suggesting significant changes in the relative rates of N-inputs vs. N-losses in this

  2. Neonicotinoid Insecticides Alter the Gene Expression Profile of Neuron-Enriched Cultures from Neonatal Rat Cerebellum.

    Science.gov (United States)

    Kimura-Kuroda, Junko; Nishito, Yasumasa; Yanagisawa, Hiroko; Kuroda, Yoichiro; Komuta, Yukari; Kawano, Hitoshi; Hayashi, Masaharu

    2016-10-04

    Neonicotinoids are considered safe because of their low affinities to mammalian nicotinic acetylcholine receptors (nAChRs) relative to insect nAChRs. However, because of importance of nAChRs in mammalian brain development, there remains a need to establish the safety of chronic neonicotinoid exposures with regards to children's health. Here we examined the effects of longterm (14 days) and low dose (1 μM) exposure of neuron-enriched cultures from neonatal rat cerebellum to nicotine and two neonicotinoids: acetamiprid and imidacloprid. Immunocytochemistry revealed no differences in the number or morphology of immature neurons or glial cells in any group versus untreated control cultures. However, a slight disturbance in Purkinje cell dendritic arborization was observed in the exposed cultures. Next we performed transcriptome analysis on total RNAs using microarrays, and identified significant differential expression (p neonicotinoid exposure alters the transcriptome of the developing mammalian brain in a similar way to nicotine exposure. Our results highlight the need for further careful investigations into the effects of neonicotinoids in the developing mammalian brain.

  3. Neonicotinoid Insecticides Alter the Gene Expression Profile of Neuron-Enriched Cultures from Neonatal Rat Cerebellum

    Directory of Open Access Journals (Sweden)

    Junko Kimura-Kuroda

    2016-10-01

    Full Text Available Neonicotinoids are considered safe because of their low affinities to mammalian nicotinic acetylcholine receptors (nAChRs relative to insect nAChRs. However, because of importance of nAChRs in mammalian brain development, there remains a need to establish the safety of chronic neonicotinoid exposures with regards to children’s health. Here we examined the effects of longterm (14 days and low dose (1 μM exposure of neuron-enriched cultures from neonatal rat cerebellum to nicotine and two neonicotinoids: acetamiprid and imidacloprid. Immunocytochemistry revealed no differences in the number or morphology of immature neurons or glial cells in any group versus untreated control cultures. However, a slight disturbance in Purkinje cell dendritic arborization was observed in the exposed cultures. Next we performed transcriptome analysis on total RNAs using microarrays, and identified significant differential expression (p < 0.05, q < 0.05, ≥1.5 fold between control cultures versus nicotine-, acetamiprid-, or imidacloprid-exposed cultures in 34, 48, and 67 genes, respectively. Common to all exposed groups were nine genes essential for neurodevelopment, suggesting that chronic neonicotinoid exposure alters the transcriptome of the developing mammalian brain in a similar way to nicotine exposure. Our results highlight the need for further careful investigations into the effects of neonicotinoids in the developing mammalian brain.

  4. Cartap and carbofuran induced alterations in serum lipid profile of Wistar rats.

    Science.gov (United States)

    Rai, Devendra K; Rai, Prashant Kumar; Gupta, Aradhna; Watal, Geeta; Sharma, Bechan

    2009-04-01

    Wistar rats of 6-8 weeks in age weighing between 120-150 g were exposed to the fixed doses of each of the carbamate pesticides such as cartap (50% LD(50)) and carbofuran (50% LD(50)) as well as a combination of these two with 25% LD(50) of each for one week. The effect of treatments was studied in terms of serum lipid parameters such as high-density lipoprotein, total cholesterol, triglyceride, low-density lipoprotein and very low-density lipoprotein. Treatment with individual doses of carbofuran (50% LD(50)) and cartap (50 % LD(50)) caused significant alterations in the levels of serum lipid parameters. The pesticides treatment resulted in marked decrease in the level of serum high-density lipoprotein where as that of other lipids got significantly elevated. Further, the rats exhibited relatively higher impact of pesticides when treated with the compounds in combination (25 % LD(50) of each). The results indicated that these compounds when used together may exert enhanced effect on the levels of serum lipids in rat.

  5. Selection for growth rate and body size have altered the expression profiles of somatotropic axis genes in chickens

    Science.gov (United States)

    Liu, Yong; Xu, Zhiqiang; Duan, Xiaohua; Li, Qihua; Dou, Tengfei; Gu, Dahai; Rong, Hua; Wang, Kun; Li, Zhengtian; Talpur, Mir Zulqarnain; Huang, Ying; Wang, Shanrong; Yan, Shixiong; Tong, Huiquan; Zhao, Sumei; Zhao, Guiping; Su, Zhengchang; Ge, Changrong

    2018-01-01

    The growth hormone / insulin-like growth factor-1 (GH/IGF-1) pathway of the somatotropic axis is the major controller for growth rate and body size in vertebrates, but the effect of selection on the expression of GH/IGF-1 somatotropic axis genes and their association with body size and growth performance in farm animals is not fully understood. We analyzed a time series of expression profiles of GH/IGF-1 somatotropic axis genes in two chicken breeds, the Daweishan mini chickens and Wuding chickens, and the commercial Avian broilers hybrid exhibiting markedly different body sizes and growth rates. We found that growth rate and feed conversion efficiency in Daweishan mini chickens were significantly lower than those in Wuding chickens and Avian broilers. The Wuding and Daweishan mini chickens showed higher levels of plasma GH, pituitary GH mRNA but lower levels of hepatic growth hormone receptor (GHR) mRNA than in Avian broilers. Daweishan mini chickens showed significantly lower levels of plasma IGF-1, thigh muscle and hepatic IGF-1 mRNA than did Avian broilers and Wuding chickens. These results suggest that the GH part of the somatotropic axis is the main regulator of growth rate, while IGF-1 may regulate both growth rate and body weight. Selection for growth performance and body size have altered the expression profiles of somatotropic axis genes in a breed-, age-, and tissue-specific manner, and manner, and alteration of regulatory mechanisms of these genes might play an important role in the developmental characteristics of chickens. PMID:29630644

  6. Estrogen and high-fat diet induced alterations in C57BL/6 mice endometrial transcriptome profile

    Directory of Open Access Journals (Sweden)

    Yali Cheng

    2017-12-01

    Full Text Available Unopposed estrogen stimulation and insulin resistance are known to play important roles in endometrial cancer (EC, but the interaction between these two factors and how they contribute to endometrial lesions are not completely elucidated. To investigate the endometrial transcriptome profile and the associated molecular pathway alterations, we established an ovariectomized C57BL/6 mouse model treated with subcutaneous implantation of 17-β estradiol (E2 pellet and/or high-fat diet (HFD for 12 weeks to mimic sustained estrogen stimulation and insulin resistance. Histomorphologically, we found that both E2 and E2 + HFD groups showed markedly enlarged uterus and increased number of endometrial glands. The endometrium samples were collected for microarray assay. GO and KEGG analysis showed that genes regulated by E2 and/or HFD are mainly responsible for immune response, inflammatory response and metabolic pathways. Further IPA analysis demonstrated that the acute phase response signaling, NF-κB signaling, leukocyte extravasation signaling, PPAR signaling and LXR/RXR activation pathways are mainly involved in the pathways above. In addition, the genes modulated reciprocally by E2 and/or HFD were also analyzed, and their crosstalk mainly focuses on enhancing one another’s activity. The combination analysis of microarray data and TCGA database provided potential diagnostic or therapeutic targets for EC. Further validation was performed in mice endometrium and human EC cell lines. In conclusion, this study unraveled the endometrial transcriptome profile alterations affected by E2 and/or HFD that may disturb endometrial homeostasis and contribute to the development of endometrial hyperplasia.

  7. Ultrahigh Pressure Processing Produces Alterations in the Metabolite Profiles of Panax ginseng.

    Science.gov (United States)

    Lee, Mee Youn; Singh, Digar; Kim, Sung Han; Lee, Sang Jun; Lee, Choong Hwan

    2016-06-22

    Ultrahigh pressure (UHP) treatments are non-thermal processing methods that have customarily been employed to enhance the quality and productivity of plant consumables. We aimed to evaluate the effects of UHP treatments on ginseng samples (white ginseng: WG; UHP-treated WG: UWG; red ginseng: RG; UHP-treated RG: URG; ginseng berries: GB; and UHP-treated GB: UGB) using metabolite profiling based on ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-tandem mass spectrometry (UHPLC-LTQ-IT-MS/MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Multivariate data analyses revealed a clear demarcation among the GB and UGB samples, and the phenotypic evaluations correlated the highest antioxidant activities and the total phenolic and flavonoid compositions with the UGB samples. Overall, eight amino acids, seven organic acids, seven sugars and sugar derivatives, two fatty acids, three notoginsenosides, three malonylginsenosides, and three ginsenosides, were identified as significantly discriminant metabolites between the GB and UGB samples, with relatively higher proportions in the latter. Ideally, these metabolites can be used as quality biomarkers for the assessment of ginseng products and our results indicate that UHP treatment likely led to an elevation in the proportions of total extractable metabolites in ginseng samples.

  8. Alterations of protein and DNA profiles of Zea mays L. under UV- B radiation

    Directory of Open Access Journals (Sweden)

    A. John De Britto

    2011-12-01

    Full Text Available UV radiation is an important stress factor for plants which may result in damage to genetic system and cell membranes and several metabolic processes. UV-B has greater damaging effects on plants because the cell macromolecules such as DNA and protein having strong absorption at 280-320 nm. In the present study, UV-B stress was given to the seeds of Zea mays L. at two different time intervals (30 and 60 min and that stressed seeds were grown under normal environment condition. The leaves of 10th and 20th day seedlings were collected for the analysis of protein and DNA profiles. Protein was analyzed by SDS-PAGE and DNA was analyzed by Restriction enzymes. When compared with control plants, increased numbers of protein and DNA bands were observed in UV-B treated plants. The present study concluded that the plant synthesis new proteins and DNA under UV treatment for the adaptation to the environmental conditions. These stressed proteins could be used as biomarkers for identification of stressed plant. Identification of quantitative trait loci for UV stress resistance may well be an effective analytical tool. This approach is promising, considering that saturated DNA marker maps are now available for both genetic model plants and crop plants.

  9. Neonatal diethylstilbestrol exposure alters the metabolic profile of uterine epithelial cells

    Directory of Open Access Journals (Sweden)

    Yan Yin

    2012-11-01

    Developmental exposure to diethylstilbestrol (DES causes reproductive tract malformations, affects fertility and increases the risk of clear cell carcinoma of the vagina and cervix in humans. Previous studies on a well-established mouse DES model demonstrated that it recapitulates many features of the human syndrome, yet the underlying molecular mechanism is far from clear. Using the neonatal DES mouse model, the present study uses global transcript profiling to systematically explore early gene expression changes in individual epithelial and mesenchymal compartments of the neonatal uterus. Over 900 genes show differential expression upon DES treatment in either one or both tissue layers. Interestingly, multiple components of peroxisome proliferator-activated receptor-γ (PPARγ-mediated adipogenesis and lipid metabolism, including PPARγ itself, are targets of DES in the neonatal uterus. Transmission electron microscopy and Oil-Red O staining further demonstrate a dramatic increase in lipid deposition in uterine epithelial cells upon DES exposure. Neonatal DES exposure also perturbs glucose homeostasis in the uterine epithelium. Some of these neonatal DES-induced metabolic changes appear to last into adulthood, suggesting a permanent effect of DES on energy metabolism in uterine epithelial cells. This study extends the list of biological processes that can be regulated by estrogen or DES, and provides a novel perspective for endocrine disruptor-induced reproductive abnormalities.

  10. MST-312 Alters Telomere Dynamics, Gene Expression Profiles and Growth in Human Breast Cancer Cells.

    Science.gov (United States)

    Gurung, Resham Lal; Lim, Shi Ni; Low, Grace Kah Mun; Hande, M Prakash

    2014-01-01

    Targeting telomerase is a potential cancer management strategy given that it allows unlimited cellular replication in the majority of cancers. Dysfunctional telomeres are recognized as double-strand breaks. However, the status of DNA repair response pathways following telomerase inhibition is not well understood in human breast cancer cells. Here, we evaluated the effects of MST-312, a chemically modified derivative from tea catechin, epigallocatechin gallate, on telomere dynamics and DNA damage gene expression in breast cancer cells. Breast cancer cells MCF-7 and MDA-MB-231 were treated with MST-312, and telomere-telomerase homeostasis, induced DNA damage and gene expression profiling were analyzed. MST-312 decreased telomerase activity and induced telomere dysfunction and growth arrest in breast cancer cells with more profound effects in MDA-MB-231 than in MCF-7 cells. Consistent with these data, the telomere-protective protein TRF2 was downregulated in MDA-MB-231 cells. MST-312 induced DNA damage at telomeres accompanied by reduced expression of DNA damage-related genes ATM and RAD50. Co-treatment with MST-312 and the poly(ADP-ribose) polymerase 1 (PARP-1) inhibitor PJ-34 further enhanced growth reduction as compared to single treatment with MST-312 or PJ-34. Our work demonstrates potential importance for the establishment of antitelomerase cancer therapy using MST-312 along with PARP-1 inhibition in breast cancer therapy. © 2015 S. Karger AG, Basel.

  11. Inferring alterations in cell-to-cell communication in HER2+ breast cancer using secretome profiling of three cell models

    Science.gov (United States)

    Klinke, David J.; Kulkarni, Yogesh M.; Wu, Yueting; Byrne-Hoffman, Christina

    2015-01-01

    Challenges in demonstrating durable clinical responses to molecular-targeted therapies has sparked a re-emergence in viewing cancer as an evolutionary process. In somatic evolution, cellular variants are introduced through a random process of somatic mutation and are selected for improved fitness through a competition for survival. In contrast to Darwinian evolution, cellular variants that are retained may directly alter the fitness competition. If cell-to-cell communication is important for selection, the biochemical cues secreted by malignant cells that emerge should be altered to bias this fitness competition. To test this hypothesis, we compared the proteins secreted in vitro by two human HER2+ breast cancer cell lines (BT474 and SKBR3) relative to a normal human mammary epithelial cell line (184A1) using a proteomics workflow that leveraged two-dimensional gel electrophoresis (2DE) and MALDI-TOF mass spectrometry. Supported by the 2DE secretome maps and identified proteins, the two breast cancer cell lines exhibited secretome profiles that were similar to each other and, yet, were distinct from the 184A1 secretome. Using protein-protein interaction and pathway inference tools for functional annotation, the results suggest that all three cell lines secrete exosomes, as confirmed by scanning electron microscopy. Interestingly, the HER2+ breast cancer cell line exosomes are enriched in proteins involved in antigen processing and presentation and glycolytic metabolism. These pathways are associated with two of the emerging hallmarks of cancer: evasion of tumor immunosurveillance and deregulating cellular energetics. PMID:24752654

  12. Alterations in gene expression profiles between radioresistant and radiosensitive cell lines

    International Nuclear Information System (INIS)

    Zhou Fuxiang; Zhou Yunfeng; Xie Conghua; Dai Jing; Cao Zhen; Yu Haijun; Liao Zhengkai; Luo Zhiguo

    2007-01-01

    Objective: To study the-difference of gene expressions by the contrastive model including the cells with same pathological origin and genetic background, but definitely different radioresponse, and to find the main molecular targets related to radiosensitivity. Methods: Human larynx squamous carcinoma cell, Hep -2 was irradiated with dose of 637 cGy repeatedly to establish a radioresistant daughter cell line. The radiobiology characteristics were obtained using clone forming assay. The difference of gene expression between parent and daughter cells was detected by cDNA microarray using two different arrays including 14000 genes respectively. Results: A radioresistant cell strain Hep-2R was isolated from its parental strain Hep-2 cell. The SF 2 , D 0 , α, β for Hep-2R cell line were 0.6798, 3.24, 0.2951 and 0.0363, respectively, while 0.4148, 2.06, 0.1074 and 0.0405 for Hep-2, respectively (for SF 2 , χ 2 =63.957, P<0.001). Compared with Hep-2 cells, the expressions of 41 genes were significantly altered in the radioresistant Hep-2R cells, including 22 genes up-regulated and 19 genes down-regulated, which were involved in DNA repair, regulation of the cell cycle, cell proliferation, cytoskeleton, protein synthesis, cellular metabolism and especially apoptosis which is responsible for the different radiosensitivity between these two larynx cancer cells. The telomere protection protein gene, POT1, was the mostly up-regulated by 3.348 times. Conclusions: There is difference of gene expression between the radioresistant contrastive models. POT1 gene may be the target of radiosensitization. (authors)

  13. Profiling of altered metabolomic states in Nicotiana tabacum cells induced by priming agents.

    Directory of Open Access Journals (Sweden)

    Msizi Innocent Mhlongo

    2016-10-01

    Full Text Available Metabolomics has developed into a valuable tool for advancing our understanding of plant metabolism. Plant innate immune defenses can be activated and enhanced so that, subsequent to being pre-sensitized, plants are able to launch a stronger and faster defense response upon exposure to pathogenic microorganisms, a phenomenon known as priming. Here, three contrasting chemical activators, namely acibenzolar-S-methyl, azelaic acid and riboflavin, were used to induce a primed state in Nicotiana tabacum cells. Identified biomarkers were then compared to responses induced by three phytohormones - abscisic acid, methyljasmonate and salicylic acid. Altered metabolomes were studied using a metabolite fingerprinting approach based on liquid chromatography and mass spectrometry. Multivariate data models indicated that these inducers cause time-dependent metabolic perturbations in the cultured cells and revealed biomarkers of which the levels are affected by these agents. A total of 34 metabolites were annotated from the mass spectral data and online databases. Venn diagrams were used to identify common biomarkers as well as those unique to a specific agent. Results implicate 20 cinnamic acid derivatives conjugated to (i quinic acid (chlorogenic acids, (ii tyramine, (iii polyamines or (iv glucose as discriminatory biomarkers of priming in tobacco cells. Functional roles for most of these metabolites in plant defense responses could thus be proposed. Metabolites induced by the activators belong to the early phenylpropanoid pathway, which indicates that different stimuli can activate similar pathways but with different metabolite fingerprints. Possible linkages to phytohormone-dependent pathways at a metabolomic level were indicated in the case of cells treated with salicylic acid and methyljasmonate. The results contribute to a better understanding of the priming phenomenon and advance our knowledge of cinnamic acid derivatives as versatile defense

  14. Chronic LSD alters gene expression profiles in the mPFC relevant to schizophrenia.

    Science.gov (United States)

    Martin, David A; Marona-Lewicka, Danuta; Nichols, David E; Nichols, Charles D

    2014-08-01

    Chronic administration of lysergic acid diethylamide (LSD) every other day to rats results in a variety of abnormal behaviors. These build over the 90 day course of treatment and can persist at full strength for at least several months after cessation of treatment. The behaviors are consistent with those observed in animal models of schizophrenia and include hyperactivity, reduced sucrose-preference, and decreased social interaction. In order to elucidate molecular changes that underlie these aberrant behaviors, we chronically treated rats with LSD and performed RNA-sequencing on the medial prefrontal cortex (mPFC), an area highly associated with both the actions of LSD and the pathophysiology of schizophrenia and other psychiatric illnesses. We observed widespread changes in the neurogenetic state of treated animals four weeks after cessation of LSD treatment. QPCR was used to validate a subset of gene expression changes observed with RNA-Seq, and confirmed a significant correlation between the two methods. Functional clustering analysis indicates differentially expressed genes are enriched in pathways involving neurotransmission (Drd2, Gabrb1), synaptic plasticity (Nr2a, Krox20), energy metabolism (Atp5d, Ndufa1) and neuropeptide signaling (Npy, Bdnf), among others. Many processes identified as altered by chronic LSD are also implicated in the pathogenesis of schizophrenia, and genes affected by LSD are enriched with putative schizophrenia genes. Our results provide a relatively comprehensive analysis of mPFC transcriptional regulation in response to chronic LSD, and indicate that the long-term effects of LSD may bear relevance to psychiatric illnesses, including schizophrenia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Fatty acids profile and alteration of lemon seeds extract (Citrus limon) added to soybean oil under thermoxidation.

    Science.gov (United States)

    Luzia, Débora Maria Moreno; Jorge, Neuza

    2013-10-01

    This paper aimed at evaluating fatty acids profile and the total alteration of lemon seeds extract added to soybean oil under thermoxidation, verifying the isolated and synergistic effect of these antioxidants. Therefore, Control treatments, LSE (2,400 mg/kg Lemon Seeds Extract), TBHQ (mg/kg), Mixture 1 (LSE + 50 mg/kg TBHQ) and Mixture 2 (LSE + 25 mg/kg TBHQ) were subjected to 180°C for 20 h. Samples were taken at 0, 5, 10, 15 and 20 h intervals and analyzed as for fatty acid profile and total polar compounds. Results were subjected to variance analyses and Tukey tests at a 5% significance level. An increase in the percentage of saturated fatty acids and mono-unsaturated, and decrease in polyunsaturated fatty acids was observed, regardless of the treatments studied. For total polar compounds, it was verified that Mixtures 1 and 2 presented values lower than 25% with 20 h of heating, not surpassing the limits established in many countries for disposal of oils and fats under high temperatures, thus proving the synergistic effect of antioxidants.

  16. Altered glycosylation profile of purified plasma ACT from Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Carbone Ilaria

    2010-12-01

    Full Text Available Abstract Background Alzheimer’s disease (AD is one of the most frequent cause of neurodegenerative disorder in the elderly. Inflammation has been implicated in brain degenerative processes and peripheral markers of brain AD related impairment would be useful. Plasma levels of alpha-1-antichymotrypsin (ACT, an acute phase protein and a secondary component of amyloid plaques, are often increased in AD patients and high blood ACT levels correlate with progressive cognitive deterioration. During inflammatory responses changes in the micro-heterogeneity of ACT sugar chains have been described. Methods N-Glycanase digestion from Flavobacterium meningosepticum (PNGase F was performed on both native and denatured purified ACT condition and resolved to Western blot with the purpose to revealed the ACT de-glycosylation pattern. Further characterization of the ACT glycan profile was obtained by a glycoarray; each lectin group in the assay specifically recognizes one or two glycans/epitopes. Lectin-bound ACT produced a glyco-fingerprint and mayor differences between AD and controls samples were assessed by a specific algorithms. Results Western blot analysis of purified ACT after PNGase F treatment and analysis of sugar composition of ACT showed significantly difference in “glyco-fingerprints” patterns from controls (CTR and AD; ACT from AD showing significantly reduced levels of sialic acid. A difference in terminal GlcNac residues appeared to be related with progressive cognitive deterioration. Conclusions Low content of terminal GlcNac and sialic acid in peripheral ACT in AD patients suggests that a different pattern of glycosylation might be a marker of brain inflammation. Moreover ACT glycosylation analysis could be used to predict AD clinical progression and used in clinical trials as surrogate marker of clinical efficacy.

  17. Quantitative measurement of alterations in DNA damage repair (DDR) pathways using single cell network profiling (SCNP).

    Science.gov (United States)

    Rosen, David B; Leung, Ling Y; Louie, Brent; Cordeiro, James A; Conroy, Andrew; Shapira, Iuliana; Fields, Scott Z; Cesano, Alessandra; Hawtin, Rachael E

    2014-06-25

    Homologous recombination repair (HRR) pathway deficiencies have significant implications for cancer predisposition and treatment strategies. Improved quantitative methods for functionally characterizing these deficiencies are required to accurately identify patients at risk of developing cancer and to identify mechanisms of drug resistance or sensitivity. Flow cytometry-based single cell network profiling (SCNP) was used to measure drug-induced activation of DNA damage response (DDR) proteins in cell lines with defined HRR pathway mutations (including ATM-/-, ATM+/-, BRCA1+/-, BRCA2-/-) and in primary acute myeloid leukemia (AML) samples. Both non-homologous end joining (NHEJ) and HRR pathways were examined by measuring changes in intracellular readouts (including p-H2AX, p-ATM, p-DNA-PKcs, p-53BP1, p-RPA2/32, p-BRCA1, p-p53, and p21) in response to exposure to mechanistically distinct genotoxins. The cell cycle S/G2/M phase CyclinA2 marker was used to normalize for proliferation rates. Etoposide induced proliferation-independent DNA damage and activation of multiple DDR proteins in primary AML cells and ATM +/+but not ATM -/- cell lines. Treatment with the PARPi AZD2281 +/- temozolomide induced DNA damage in CyclinA2+ cells in both primary AML cells and cell lines and distngiushed cell lines deficient (BRCA2-/-) or impaired (BRCA1+/-) in HRR activity from BRCA1+/+ cell lines based on p-H2AX induction. Application of this assay to primary AML samples identified heterogeneous patterns of repair activity including muted or proficient activation of NHEJ and HRR pathways and predominant activation of NHEJ in a subset of samples. SCNP identified functional DDR readouts in both NHEJ and HRR pathways, which can be applied to identify cells with BRCA1+/- haploinsuffiency and characterize differential DDR pathway functionality in primary clinical samples.

  18. Malnutrition in Healthy Individuals Results in Increased Mixed Cytokine Profiles, Altered Neutrophil Subsets and Function

    Science.gov (United States)

    Takele, Y.; Adem, E.; Getahun, M.; Tajebe, F.; Kiflie, A.; Hailu, A.; Raynes, J.; Mengesha, B.; Ayele, T. A.; Shkedy, Z.; Lemma, M.; Diro, E.; Toulza, F.; Modolell, M.; Munder, M.; Müller, I.; Kropf, P.

    2016-01-01

    Malnutrition is commonly associated with increased infectious disease susceptibility and severity. Whereas malnutrition might enhance the incidence of disease as well as its severity, active infection can in turn exacerbate malnutrition. Therefore, in a malnourished individual suffering from a severe infection, it is not possible to determine the contribution of the pre-existing malnutrition and/or the infection itself to increased disease severity. In the current study we focussed on two groups of malnourished, but otherwise healthy individuals: moderately malnourished (BMI: 18.4–16.5) and severely malnourished (BMI <16.5) and compared several immune parameters with those of individuals with a normal BMI (≥18.5). Our results show a similar haematological profile in all three groups, as well as a similar ratio of CD4+ and CD8+ T cells. We found significant correlations between low BMI and increased levels of T helper (Th) 1 (Interferon (IFN)-γ, (interleukin (IL)-2, IL-12), Th2 (IL-4, IL-5, IL-13), as well as IL-10, IL-33 and tumor necrosis factor-α, but not IL-8 or C reactive protein. The activities of arginase, an enzyme associated with immunosuppression, were similar in plasma, peripheral blood mononuclear cells (PBMC) and neutrophils from all groups and no differences in the expression levels of CD3ζ, a marker of T cell activation, were observed in CD4+ and CD8+T cells. Furthermore, whereas the capacity of neutrophils from the malnourished groups to phagocytose particles was not impaired, their capacity to produce reactive oxygen species was impaired. Finally we evaluated the frequency of a subpopulation of low-density neutrophils and show that they are significantly increased in the malnourished individuals. These differences were more pronounced in the severely malnourished group. In summary, our results show that even in the absence of apparent infections, healthy malnourished individuals display dysfunctional immune responses that might contribute to

  19. Altered microRNA expression profiles in a rat model of spina bifida.

    Science.gov (United States)

    Qin, Pan; Li, Lin; Zhang, Da; Liu, Qiu-Liang; Chen, Xin-Rang; Yang, He-Ying; Fan, Ying-Zhong; Wang, Jia-Xiang

    2016-03-01

    MicroRNAs (miRNAs) are dynamically regulated during neurodevelopment, yet few reports have examined their role in spina bifida. In this study, we used an established fetal rat model of spina bifida induced by intragastrically administering olive oil-containing all-trans retinoic acid to dams on day 10 of pregnancy. Dams that received intragastric administration of all-trans retinoic acid-free olive oil served as controls. The miRNA expression profile in the amniotic fluid of rats at 20 days of pregnancy was analyzed using an miRNA microarray assay. Compared with that in control fetuses, the expression of miRNA-9, miRNA-124a, and miRNA-138 was significantly decreased (> 2-fold), whereas the expression of miRNA-134 was significantly increased (> 4-fold) in the amniotic fluid of rats with fetuses modeling spina bifida. These results were validated using real-time quantitative reverse-transcription polymerase chain reaction. Hierarchical clustering analysis of the microarray data showed that these differentially expressed miRNAs could distinguish fetuses modeling spina bifida from control fetuses. Our bioinformatics analysis suggested that these differentially expressed miRNAs were associated with many cytological pathways, including a nervous system development signaling pathway. These findings indicate that further studies are warranted examining the role of miRNAs through their regulation of a variety of cell functional pathways in the pathogenesis of spina bifida. Such studies may provide novel targets for the early diagnosis and treatment of spina bifida.

  20. Pituitary genomic expression profiles of steers are altered by grazing of high vs. low endophyte-infected tall fescue forages.

    Science.gov (United States)

    Li, Qing; Hegge, Raquel; Bridges, Phillip J; Matthews, James C

    2017-01-01

    Consumption of ergot alkaloid-containing tall fescue grass impairs several metabolic, vascular, growth, and reproductive processes in cattle, collectively producing a clinical condition known as "fescue toxicosis." Despite the apparent association between pituitary function and these physiological parameters, including depressed serum prolactin; no reports describe the effect of fescue toxicosis on pituitary genomic expression profiles. To identify candidate regulatory mechanisms, we compared the global and selected targeted mRNA expression patterns of pituitaries collected from beef steers that had been randomly assigned to undergo summer-long grazing (89 to 105 d) of a high-toxic endophyte-infected tall fescue pasture (HE; 0.746 μg/g ergot alkaloids; 5.7 ha; n = 10; BW = 267 ± 14.5 kg) or a low-toxic endophyte tall fescue-mixed pasture (LE; 0.023 μg/g ergot alkaloids; 5.7 ha; n = 9; BW = 266 ± 10.9 kg). As previously reported, in the HE steers, serum prolactin and body weights decreased and a potential for hepatic gluconeogenesis from amino acid-derived carbons increased. In this manuscript, we report that the pituitaries of HE steers had 542 differentially expressed genes (P < 0.001, false discovery rate ≤ 4.8%), and the pattern of altered gene expression was dependent (P < 0.001) on treatment. Integrated Pathway Analysis revealed that canonical pathways central to prolactin production, secretion, or signaling were affected, in addition to those related to corticotropin-releasing hormone signaling, melanocyte development, and pigmentation signaling. Targeted RT-PCR analysis corroborated these findings, including decreased (P < 0.05) expression of DRD2, PRL, POU1F1, GAL, and VIP and that of POMC and PCSK1, respectively. Canonical pathway analysis identified HE-dependent alteration in signaling of additional pituitary-derived hormones, including growth hormone and GnRH. We conclude that consumption of endophyte-infected tall fescue alters the pituitary

  1. Cuticular wax coverage and composition differ among organs of Taraxacum officinale.

    Science.gov (United States)

    Guo, Yanjun; Busta, Lucas; Jetter, Reinhard

    2017-06-01

    Primary plant surfaces are coated with hydrophobic cuticular waxes to minimize non-stomatal water loss. Wax compositions differ greatly between plant species and, in the few species studied systematically so far, also between organs, tissues, and developmental stages. However, the wax mixtures of more species in diverse plant families must be investigated to assess overall wax variability, and ultimately to correlate organ-specific composition with local water barrier properties. Here, we present comprehensive analyses of the waxes covering five organs of Taraxacum officinale (dandelion), to help close a gap in our understanding of wax chemistry in the Asteraceae family. First, novel wax constituents of the petal wax were identified as C 25 6,8- and 8,10-ketols as well as C 27 6,8- and 8,10-ketols. Nine other component classes (fatty acids, primary alcohols, esters, aldehydes, alkanes, triterpenols, triterpene acetates, sterols, and tocopherols) were detected in the wax mixtures covering leaves, peduncles, and petals, as well as fruit beaks and pappi. Wax coverages varied from 5 μg/cm 2 on peduncles to 37 μg/cm 2 on petals. Alcohols predominated in leaf wax, while both alcohols and alkanes were found in similar amounts on peduncles and petals, and mainly alkanes on the fruit beaks and pappi. Chain length distributions within the wax compound classes were similar between organs, centered around C 26 for fatty acids, alcohols, and aldehydes, and C 29 for alkanes. However, the quantities of homologs with longer chain lengths varied substantially between organs, reaching well beyond C 30 on all surfaces except leaves, suggesting differences in elongation enzymes determining the alkyl chain structures. The detailed wax profiles presented here will serve as basis for future investigations into wax biosynthesis in the Asteraceae and into wax functions on different dandelion organs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Altered retinal microRNA expression profiles in early diabetic retinopathy: an in silico analysis.

    Science.gov (United States)

    Xiong, Fen; Du, Xinhua; Hu, Jianyan; Li, Tingting; Du, Shanshan; Wu, Qiang

    2014-07-01

    MicroRNAs (miRNAs) - as negative regulators of target genes - are associated with various human diseases, but their precise role(s) in diabetic retinopathy (DR) remains to be elucidated. The aim of this study was to elucidate the involvement of miRNAs in early DR using in silico analysis to explore their gene expression patterns. We used the streptozotocin (STZ)-induced diabetic rat to investigate the roles of miRNAs in early DR. Retinal miRNA expression profiles from diabetic versus healthy control rats were examined by miRNA array analysis. Based on several bioinformatic systems, specifically, gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we identified signatures of the potential pathological processes, gene functions, and signaling pathways that are influenced by dysregulated miRNAs. We used quantitative real-time polymerase chain reaction (qRT-PCR) to validate six (i.e. those with significant changes in expression levels) of the 17 miRNAs that were detected in the miRNA array. We also describe the significant role of the miRNA-gene network, which is based on the interactions between miRNAs and target genes. GO analysis of the 17 miRNAs detected in the miRNA array analysis revealed the most prevalent miRNAs to be those related to biological processes, olfactory bulb development and axonogenesis. These miRNAs also exert significant influence on additional pathways, including the mitogen-activated protein and calcium signaling pathways. Six of the seventeen miRNAs were chosen for qRT-PCR validation. With the exception of a slight difference in miRNA-350, our results are in close agreement with the differential expressions detected by array analysis. This study, which describes miRNA expression during the early developmental phases of DR, revealed extensive miRNA interactions. Based on both their target genes and signaling pathways, we suggest that miRNAs perform critical regulatory functions during the early stages of DR

  3. Moderate Perinatal Choline Deficiency Elicits Altered Physiology and Metabolomic Profiles in the Piglet.

    Directory of Open Access Journals (Sweden)

    Caitlyn M Getty

    metabolomic profiles to rodents and humans when exposed to moderate choline deficiency.

  4. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    International Nuclear Information System (INIS)

    Hamrick, Mark W.; Herberg, Samuel; Arounleut, Phonepasong; He, Hong-Zhi; Shiver, Austin; Qi, Rui-Qun; Zhou, Li; Isales, Carlos M.

    2010-01-01

    Research highlights: → Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. → We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. → Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. → Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient-related hormones such as leptin

  5. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Mark W., E-mail: mhamrick@mail.mcg.edu [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Herberg, Samuel; Arounleut, Phonepasong [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); He, Hong-Zhi [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Shiver, Austin [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Qi, Rui-Qun [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Zhou, Li [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Department of Internal Medicine, Henry Ford Health System, Detroit, MI (United States); Isales, Carlos M. [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); and others

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  6. Alterations in Activation, Cytotoxic Capacity and Trafficking Profile of Peripheral CD8 T Cells in Young Adult Binge Drinkers.

    Science.gov (United States)

    Zaldivar Fujigaki, José Luis; Arroyo Valerio, América Guadalupe; López Alvarenga, Juan Carlos; Gutiérrez Reyes, Esperanza Gabriela; Kershenobich, David; Hernández Ruiz, Joselin

    2015-01-01

    Excess of alcohol consumption is a public health problem and has documented effects on the immune system of humans and animals. Animal and in vitro studies suggest that alcohol abuse changes CD8 T cell (CD8) characteristics, however it remains unknown if the CD8 profile of binge drinkers is different in terms of activation, trafficking and cytotoxic capacity. To analyze the peripheral CD8 cytotoxic capacity, activation and trafficking phenotypic profile of Mexican young adults with regard to alcohol consumption pattern. 55 Mexican young adults were stratified as Light (20), Intermediate (18) or Binge drinkers (17) according to their reported alcohol consumption pattern. Blood samples were obtained and hematic biometry and liver enzyme analysis were performed. Peripheral CD8 profile was established by expression of Granzyme B (GB), CD137, CD127, CD69, TLR4, PD1, CCR2, CCR4, CCR5 and CXCR4 by FACS. Data was analyzed by ANOVA, posthoc DMS and Tamhane, and principal component analysis (PCA) with varimax rotation, palcohol consumption: "Early Activation" represented by CD69 and TLR4 expression in the CD8 population; "Effector Activation" by CD69 expression in CD8 CD127(+)CD137(+) and CD8 CD25(+) CD137(+); and Trafficking by CXCR4 expression on total CD8 and CD8 GB(+)CXCR4(+), and CCR2 expression on total CD8. Binge drinking pattern showed low expression of Early Activation and Trafficking factors while Light drinking pattern exhibited high expression of Effector Activation factor. Alcohol consumption affects the immune phenotype of CD8 cells since binge drinking pattern was found to be associated with high CD69 and low TLR4, CXCR4 and CCR2 expression, which suggest recent activation, decreased sensitivity to LPS and lower migration capacity in response to chemokines SDF-1 and MCP-1. These results indicate that a binge-drinking pattern of alcohol consumption may induce an altered immune profile that could be related with liver damage and the increased susceptibility to

  7. Alterations in Activation, Cytotoxic Capacity and Trafficking Profile of Peripheral CD8 T Cells in Young Adult Binge Drinkers.

    Directory of Open Access Journals (Sweden)

    José Luis Zaldivar Fujigaki

    sensitivity to LPS and lower migration capacity in response to chemokines SDF-1 and MCP-1. These results indicate that a binge-drinking pattern of alcohol consumption may induce an altered immune profile that could be related with liver damage and the increased susceptibility to infection reported to this behavior.

  8. Altered Expression Profile of Circular RNAs in the Serum of Patients with Diabetic Retinopathy Revealed by Microarray.

    Science.gov (United States)

    Gu, Yonghao; Ke, Genjie; Wang, Lin; Zhou, Enliang; Zhu, Kai; Wei, Yingying

    2017-01-01

    Diabetic retinopathy (DR) is the leading cause of blindness among working age adults. Circular RNAs (circRNAs) are a kind of noncoding RNAs that are involved in the development of some diseases. Here, we aimed to determine the possible role of circRNAs in the pathogenesis of DR by determining the expression profile of circRNAs in the serum of DR patients. Nineteen subjects with type 2 diabetes mellitus with proliferative DR (T2DR), 15 subjects with type 2 diabetes mellitus without DR (T2DM), and 21 age-matched nondiabetic control subjects were included in the study. Expression profiles in the serum samples from 5 subjects of each group were studied by circular microarray and validated by quantitative real-time polymerase chain re- action (qRT-PCR) in another 40 subjects. Bioinformatic software was used to predict the microRNA response elements. Thirty circRNAs were significantly upregulated in the serum of T2DR patients compared with the serum from both T2DM and control patients. Further, the altered expression of 7 circRNAs (hsa_circRNA_063981, hsa_circRNA_ 404457, hsa_circRNA_100750, hsa_circRNA_406918, hsa_ circRNA_104387, hsa_circRNA_103410, and hsa_circRNA_ 100192) were verified by qRT-PCR. This study suggested a potential role of circRNAs in the pathogenesis of DR and provides novel molecular targets for clinical therapy. © 2017 S. Karger AG, Basel.

  9. Altered protein expression profiles in umbilical veins: insights into vascular dysfunctions of the children born after in vitro fertilization.

    Science.gov (United States)

    Gao, Qian; Pan, Hai-Tao; Lin, Xian-Hua; Zhang, Jun-Yu; Jiang, Ying; Tian, Shen; Chen, Lu-Ting; Liu, Miao-E; Xiong, Yi-Meng; Huang, He-Feng; Sheng, Jian-Zhong

    2014-09-01

    Cardiovascular dysfunction and remodeling have been found in some children conceived by in vitro fertilization (IVF). However, the underlying mechanisms remain unclear. In this study, the retrospective investigation showed that the blood pressure of IVF-conceived Chinese children was higher than that of naturally conceived (NC) children at ages 3-13 yr. We analyzed the expression profile of proteins in the umbilical veins of IVF and NC newborns by proteomic techniques. Using iTRAQ (isobaric tags for relative and absolute quantitation), 47 differentially expressed proteins (DEPs) were identified by feature selection in IVF umbilical veins compared with NC. Ingenuity Pathway Analysis, which is used to explore the signaling pathways of DEPs, revealed that these DEPs played important roles in vascular system development and carbon metabolism, implying that these DEPs might be potential candidates for further exploration of the mechanism(s) of vascular dysfunction in IVF children. We found that the serum estradiol (E₂) level in the cord blood of IVF newborns was significantly higher than that of NC newborns. High concentrations of E₂ induced alteration of lumican and vimentin expression in human umbilical vein endothelial cells, which was consistent with the proteomic results. These findings suggested that abnormal expression of proteins in umbilical veins might be related to the cardiovascular dysfunction and remodeling in IVF offspring. In conclusion, our data for the first time reveal the protein expression profile in blood vessels of IVF offspring and provide information for further mechanism study and evaluation of risks of cardiovascular abnormality in IVF children. © 2014 by the Society for the Study of Reproduction, Inc.

  10. Differential alterations in gene expression profiles contribute to time-dependent effects of nandrolone to prevent denervation atrophy

    Directory of Open Access Journals (Sweden)

    Bauman William A

    2010-10-01

    Full Text Available Abstract Background Anabolic steroids, such as nandrolone, slow muscle atrophy, but the mechanisms responsible for this effect are largely unknown. Their effects on muscle size and gene expression depend upon time, and the cause of muscle atrophy. Administration of nandrolone for 7 days beginning either concomitantly with sciatic nerve transection (7 days or 29 days later (35 days attenuated denervation atrophy at 35 but not 7 days. We reasoned that this model could be used to identify genes that are regulated by nandrolone and slow denervation atrophy, as well as genes that might explain the time-dependence of nandrolone effects on such atrophy. Affymetrix microarrays were used to profile gene expression changes due to nandrolone at 7 and 35 days and to identify major gene expression changes in denervated muscle between 7 and 35 days. Results Nandrolone selectively altered expression of 124 genes at 7 days and 122 genes at 35 days, with only 20 genes being regulated at both time points. Marked differences in biological function of genes regulated by nandrolone at 7 and 35 days were observed. At 35, but not 7 days, nandrolone reduced mRNA and protein levels for FOXO1, the mTOR inhibitor REDD2, and the calcineurin inhibitor RCAN2 and increased those for ApoD. At 35 days, correlations between mRNA levels and the size of denervated muscle were negative for RCAN2, and positive for ApoD. Nandrolone also regulated genes for Wnt signaling molecules. Comparison of gene expression at 7 and 35 days after denervation revealed marked alterations in the expression of 9 transcriptional coregulators, including Ankrd1 and 2, and many transcription factors and kinases. Conclusions Genes regulated in denervated muscle after 7 days administration of nandrolone are almost entirely different at 7 versus 35 days. Alterations in levels of FOXO1, and of genes involved in signaling through calcineurin, mTOR and Wnt may be linked to the favorable action of nandrolone on

  11. An evaluation of fundus photography and fundus autofluorescence in the diagnosis of cuticular drusen

    DEFF Research Database (Denmark)

    Høeg, Tracy B; Moldow, Birgitte; Klein, Ronald

    2016-01-01

    PURPOSE: To examine non-mydriatic fundus photography (FP) and fundus autofluorescence (FAF) as alternative non-invasive imaging modalities to fluorescein angiography (FA) in the detection of cuticular drusen (CD). METHODS: Among 2953 adults from the Danish Rural Eye Study (DRES) with gradable FP...

  12. Analysis of insect cuticular hydrocarbons using matrix-assisted laser desorption/ ionization mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Cvačka, Josef; Jiroš, Pavel; Šobotník, Jan; Hanus, Robert; Svatoš, Aleš

    2006-01-01

    Roč. 32, č. 2 (2006), s. 409-434 ISSN 0098-0331 Institutional research plan: CEZ:AV0Z40550506 Keywords : lithium 2,5-dihydroxybenzoate * mass spectrometry * termites * cuticular hydrocarbons Subject RIV: CC - Organic Chemistry Impact factor: 1.896, year: 2006

  13. Polar cuticular lipids differ in male and female sandflies (Phlebotomus papatasi)

    Science.gov (United States)

    The sand fly Phlebotomus papatasi is an important blood feeder and the main vector of Leishmania major, which causes zoonotic cutaneous leishmaniasis in parts of the Afro-Eurasian region. Polar cuticular lipids in P. papatasi were analyzed by high resolution mass spectrometry. Blood-fed females, no...

  14. Sexual selection on cuticular hydrocarbons in the Australian field cricket, Teleogryllus oceanicus

    Science.gov (United States)

    Thomas, Melissa L; Simmons, Leigh W

    2009-01-01

    Background Females in a wide range of taxa have been shown to base their choice of mates on pheromone signals. However, little research has focussed specifically on the form and intensity of selection that mate choice imposes on the pheromone signal. Using multivariate selection analysis, we characterise directly the form and intensity of sexual selection acting on cuticular hydrocarbons, chemical compounds widely used in the selection of mates in insects. Using the Australian field cricket Teleogryllus oceanicus as a model organism, we use three measures of male attractiveness to estimate fitness; mating success, the duration of courtship required to elicit copulation, and subsequent spermatophore attachment duration. Results We found that all three measures of male attractiveness generated sexual selection on male cuticular hydrocarbons, however there were differences in the form and intensity of selection among these three measures. Mating success was the only measure of attractiveness that imposed both univariate linear and quadratic selection on cuticular hydrocarbons. Although we found that all three attractiveness measures generated nonlinear selection, again only mating success was found to exert statistically significant stabilizing selection. Conclusion This study shows that sexual selection plays an important role in the evolution of male cuticular hydrocarbon signals. PMID:19594896

  15. Development changes of cuticular hydrocarbons in Chrysomya rufifacies larvae: potential for determining larval age.

    Science.gov (United States)

    Zhu, G H; Ye, G Y; Hu, C; Xu, X H; Li, K

    2006-12-01

    Age determination is the basis of determining the postmortem interval using necrophagous fly larvae. To explore the potential of using cuticular hydrocarbons for determining the ages of fly larvae, changes of cuticular hydrocarbons in developing larvae of Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae) were investigated using gas chromatography with flame-ionization detection and gas chromatography-mass spectrometry. This study showed that the larvae produced cuticular hydrocarbons typical of insects. Most of the hydrocarbons identified were alkanes with the carbon chain length of 21-31, plus six kinds of alkenes. The hydrocarbon composition of the larvae correlated with age. The statistical results showed that simple peak ratios of n-C29 divided by another eight selected peaks increased significantly with age; their relationships with age could be modelled using exponential or power functions with R(2) close to or > 0.80. These results suggest that cuticular hydrocarbon composition is a useful indicator for determining the age of larval C. rufifacies, especially for post-feeding larvae, which are difficult to differentiate by morphology.

  16. Changes in Cuticular Wax Composition of Two Blueberry Cultivars during Fruit Ripening and Postharvest Cold Storage.

    Science.gov (United States)

    Chu, Wenjing; Gao, Haiyan; Chen, Hangjun; Wu, Weijie; Fang, Xiangjun

    2018-03-21

    Cuticular wax plays an important role for the quality of blueberry fruits. In this study, the cuticular wax composition of two blueberry cultivars, 'Legacy' ( Vaccinium corymbosum) and 'Brightwell' ( Vaccinium ashei), was examined during fruit ripening and postharvest cold storage. The results showed that wax was gradually deposited on the epidermis of blueberry fruits and the content of major wax compounds, except that for diketones, increased significantly during fruit ripening. The total wax content was 2-fold greater in 'Brightwell' blueberries than that in 'Legacy' blueberries during fruit ripening. The total wax content of both cultivars decreased during 30 days of storage at 4 °C, and the variation of cuticular wax composition was cultivar-dependent. The content of diketones decreased significantly in 'Legacy' blueberries, while the content of triterpenoids and aliphatic compounds showed different fold changes in 'Brightwell' blueberries after 30 days of storage at 4 °C. Overall, our study provided a quantitative and qualitative overview of cuticular wax compounds of blueberry fruits during ripening and postharvest cold storage.

  17. Skimmiwallinin, an additional skimmiwallinol derivative from the cuticular wax of Cocos nucifera.

    Science.gov (United States)

    Escalante-Erosa, Fabiola; Fernández-Concha, Germán Carnevali; Peña-Rodríguez, Luis M

    2009-01-01

    AgNO3-impregnated prep-TLC purification of the wax extract of Cocos nucifera allowed the isolation and identification of skimmiwallinin as an additional skimmiwallinol derivative from the cuticular wax of coconut palms. Identification was based on the comparison of its spectroscopic data with those reported in the literature.

  18. Cuticular lipids of orthopterous insects analyzed with GC-MS method

    OpenAIRE

    YAMATO, Ken-ichi / ABE, Takashi / MATSUKAWA, Satoru / YAMAMOTO, Hiroshi

    2011-01-01

    The cuticular lipids of 8 orthopterous insects were analyzed by GC-MS method, and 13esters were identified in addition to hydrocarbons and fatty acids. These esters can be useful fordistinction of the characteristic, for example a classification of orthopterous insects.

  19. Peripheral, central and behavioral responses to the cuticular pheromone bouquet in Drosophila melanogaster males.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Inoshita

    Full Text Available Pheromonal communication is crucial with regard to mate choice in many animals including insects. Drosophila melanogaster flies produce a pheromonal bouquet with many cuticular hydrocarbons some of which diverge between the sexes and differently affect male courtship behavior. Cuticular pheromones have a relatively high weight and are thought to be -- mostly but not only -- detected by gustatory contact. However, the response of the peripheral and central gustatory systems to these substances remains poorly explored. We measured the effect induced by pheromonal cuticular mixtures on (i the electrophysiological response of peripheral gustatory receptor neurons, (ii the calcium variation in brain centers receiving these gustatory inputs and (iii the behavioral reaction induced in control males and in mutant desat1 males, which show abnormal pheromone production and perception. While male and female pheromones induced inhibitory-like effects on taste receptor neurons, the contact of male pheromones on male fore-tarsi elicits a long-lasting response of higher intensity in the dedicated gustatory brain center. We found that the behavior of control males was more strongly inhibited by male pheromones than by female pheromones, but this difference disappeared in anosmic males. Mutant desat1 males showed an increased sensitivity of their peripheral gustatory neurons to contact pheromones and a behavioral incapacity to discriminate sex pheromones. Together our data indicate that cuticular hydrocarbons induce long-lasting inhibitory effects on the relevant taste pathway which may interact with the olfactory pathway to modulate pheromonal perception.

  20. Cuticular Hydrocarbons of the South American Fruit Fly Anastrepha fraterculus: Variability with Sex and Age

    Czech Academy of Sciences Publication Activity Database

    Vaníčková, Lucie; Svatoš, Aleš; Kroiss, J.; Kaltenpoth, M.; do Nascimento, R. R.; Hoskovec, Michal; Břízová, Radka; Kalinová, Blanka

    2012-01-01

    Roč. 38, č. 9 (2012), s. 1133-1142 ISSN 0098-0331 Institutional support: RVO:61388963 Keywords : Anastrepha fratercules species complex * cuticular hydrocarbons * sex-specific differences * age-dependent production Subject RIV: CC - Organic Chemistry Impact factor: 2.462, year: 2012

  1. Cuticular wax accumulation is associated with drought tolerance in wheat near-isogenic lines

    Directory of Open Access Journals (Sweden)

    Jianmin Song

    2016-11-01

    Full Text Available Previous studies have shown that wheat grain yield is seriously affected by drought stress, and leaf cuticular wax is reportedly associated with drought tolerance. However, most studies have focused on cuticular wax biosynthesis and model species. The effects of cuticular wax on wheat drought tolerance have rarely been studied. The aims of the current study were to study the effects of leaf cuticular wax on wheat grain yield under drought stress using the above-mentioned wheat NILs and to discuss the possible physiological mechanism of cuticular wax on high grain yield under drought stress. Compared to water-irrigated (WI conditions, the cuticular wax content (CWC in glaucous and non-glaucous NILs under drought-stress (DS conditions both increased; mean increase values were 151.1% and 114.4%, respectively, which was corroborated by scanning electronic microscopy images of large wax particles loaded on the surfaces of flag leaves. The average yield of glaucous NILs was higher than that of non-glaucous NILs under DS conditions in 2014 and 2015; mean values were 7368.37 kg·ha-1 and 7103.51 kg·ha-1. This suggested that glaucous NILs were more drought-tolerant than non-glaucous NILs (P = 0.05, which was supported by the findings of drought tolerance indices TOL and SSI in both years, the relatively high water potential and relative water content, and the low ELWL. Furthermore, the photosynthesis rate (Pn of glaucous and non-glaucous wheat NILs under DS conditions decreased by 7.5% and 9.8%, respectively; however, glaucous NILs still had higher mean values of Pn than those of non-glaucous NILs, which perhaps resulted in the higher yield of glaucous NILs. This could be explained by the fact that glaucous NILs had a smaller Fv/Fm reduction, a smaller PI reduction and a greater ABS/RC increase than non-glaucous NILs under DS conditions. This is the first report to show that wheat cuticular wax accumulation is associated with drought tolerance. Moreover

  2. Long-term increased carnitine palmitoyltransferase 1A expression in ventromedial hypotalamus causes hyperphagia and alters the hypothalamic lipidomic profile.

    Directory of Open Access Journals (Sweden)

    Paula Mera

    Full Text Available Lipid metabolism in the ventromedial hypothalamus (VMH has emerged as a crucial pathway in the regulation of feeding and energy homeostasis. Carnitine palmitoyltransferase (CPT 1A is the rate-limiting enzyme in mitochondrial fatty acid β-oxidation and it has been proposed as a crucial mediator of fasting and ghrelin orexigenic signalling. However, the relationship between changes in CPT1A activity and the intracellular downstream effectors in the VMH that contribute to appetite modulation is not fully understood. To this end, we examined the effect of long-term expression of a permanently activated CPT1A isoform by using an adeno-associated viral vector injected into the VMH of rats. Peripherally, this procedure provoked hyperghrelinemia and hyperphagia, which led to overweight, hyperglycemia and insulin resistance. In the mediobasal hypothalamus (MBH, long-term CPT1AM expression in the VMH did not modify acyl-CoA or malonyl-CoA levels. However, it altered the MBH lipidomic profile since ceramides and sphingolipids increased and phospholipids decreased. Furthermore, we detected increased vesicular γ-aminobutyric acid transporter (VGAT and reduced vesicular glutamate transporter 2 (VGLUT2 expressions, both transporters involved in this orexigenic signal. Taken together, these observations indicate that CPT1A contributes to the regulation of feeding by modulating the expression of neurotransmitter transporters and lipid components that influence the orexigenic pathways in VMH.

  3. Postpartum behavioral profiles in Wistar rats following maternal separation - altered exploration and risk-assessment behavior in MS15 dams

    Directory of Open Access Journals (Sweden)

    Loudin Daoura

    2010-06-01

    Full Text Available The rodent maternal separation (MS model is frequently used to investigate the impact of early environmental factors on adult neurobiology and behavior. The majority of MS studies assess effects in the offspring and few address the consequences of repeated pup removal in the dam. Such studies are of interest since alterations detected in offspring subjected to MS may, at least in part, be mediated by variations in maternal behavior and the amount of maternal care provided by the dam. The aim of this study was to investigate how daily short (15 min; MS15 and prolonged (360 min; MS360 periods of MS affects the dam by examining postpartum behavioral profiles using the multivariate concentric square field™ (MCSF test. The dams were tested on postpartum days 24-25, i.e. just after the end of the separation period and weaning. The results reveal a lower exploratory drive and lower risk-assessment behavior in MS15 dams relative to MS360 or animal facility reared dams. The present results contrast some of the previously reported findings and provide new information about early post-weaning behavioral characteristics in a multivariate setting. Plausible explanations for the results are provided including a discussion how the present results fit into the maternal mediation hypothesis.

  4. Rat hepatic stellate cells alter the gene expression profile and promote the growth, migration and invasion of hepatocellular carcinoma cells.

    Science.gov (United States)

    Wang, Zhi-Ming; Zhou, Le-Yuan; Liu, Bin-Bin; Jia, Qin-An; Dong, Yin-Ying; Xia, Yun-Hong; Ye, Sheng-Long

    2014-10-01

    The aim of the present study was to examine the effects of activated hepatic stellate cells (HSCs) and their paracrine secretions, on hepatocellular cancer cell growth and gene expression in vitro and in vivo. Differentially expressed genes in McA-RH7777 hepatocellular carcinoma (HCC) cells following non-contact co-culture with activated stellate cells, were identified by a cDNA microarray. The effect of the co-injection of HCC cells and activated HSCs on tumor size in rats was also investigated. Non-contact co-culture altered the expression of 573 HCC genes by >2-fold of the control levels. Among the six selected genes, ELISA revealed increased protein levels of hepatic growth factor, matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9). Incubation of HCC cells with medium conditioned by activated HSCs significantly increased the proliferation rate (Pexpression profile of HCC cells and affected their growth, migration and invasiveness. The results from the present study indicate that the interaction between the activated HSCs and HCC has an important role in the development of HCC.

  5. Alterations to the protein profile of bladder carcinoma cell lines induced by plant extract MINA-05 in vitro.

    Science.gov (United States)

    Nguyen-Khuong, Terry; White, Melanie Y; Hung, Tzong-Tyng; Seeto, Shona; Thomas, Melissa L; Fitzgerald, Anna M; Martucci, Carlos E; Luk, Sharon; Pang, Shiu-Fu; Russell, Pamela J; Walsh, Bradley J

    2009-04-01

    Bladder cancer (BLCa) is a severe urological cancer of both men and women that commonly recurs and once invasive, is difficult to treat. MINA-05 (CK Life Sciences Int'l, Hong Kong) is a derivative of complex botanical extracts, shown to reduce cellular proliferation of bladder and prostate carcinomas. We tested the effects of MINA-05 against human BLCa cell sublines, B8, B8-RSP-GCK, B8-RSP-LN and C3, from a transitional cell carcinoma, grade IV, to determine the molecular targets of treatment by observing the cellular protein profile. Cells were acclimatised for 48 h then treated for 72 h with concentrations of MINA-05 reflecting 1/2 IC(50), IC(50) and 2 x IC(50) (n = 3) or with vehicle, (0.5% DMSO). Dose-dependant changes in protein abundance were detected and characterised using 2-dimensional electrophoresis and MS. We identified 10 proteins that underwent changes in abundance, pI and/or molecular mass in response to treatment. MINA-05 was shown to influence proteins across numerous functional classes including cytoskeletal proteins, energy metabolism proteins, protein degradation proteins and tumour suppressors, suggesting a global impact on these cell lines. This study implies that the ability of MINA-05 to retard cellular proliferation is attributed to its ability to alter cell cycling, metabolism, protein degradation and the cancer cell environment.

  6. Long-term alteration of daily melatonin, 6-sulfatoxymelatonin, cortisol, and temperature profiles in burn patients: a preliminary report.

    Science.gov (United States)

    Pina, Géraldine; Brun, Jocelyne; Tissot, Sylvie; Claustrat, Bruno

    2010-01-01

    Melatonin, which shows a robust nycthemeral rhythm, plays the role of an endogenous synchronizer, able to stabilize and reinforce circadian rhythms and maintain their mutual phase relationships. Additionally, melatonin is a potent antioxidant and displays immunological properties. Because free radical generation, immune dysfunction, and sleep and metabolic disorders are involved in the short- and long-term pathophysiology of the burn syndrome, we undertook the study of daily urine melatonin, 6-sulfatoxymelatonin (aMT6s, the main hepatic melatonin metabolite), and cortisol variations plus temperature profiles in burn patients using a non-invasive protocol. Eight patients (6 males, 2 females) were studied on three occasions after admission to the intensive care unit (early session: days 1 to 3; intermediate session: day 10; late session: days 20 to 30). Melatonin, aMT6s, and free cortisol levels were determined in urine samples collected at 4 h intervals over a continuous 24 h span. Core temperature was recorded daily. Controls consisted of healthy subjects in the same age range. Cosinor analysis of the data provided an evaluation of mesor, amplitude, and acrophase of circadian rhythms. Also, we calculated day (D), night (N), and 24 h hormone excretions, N/D ratio for melatonin and aMT6s, and D/N ratio for cortisol. These data were analyzed using Kruskal-Wallis test followed by multiple comparisons. Cosinor analysis did not detect a circadian rhythm in melatonin, aMT6s, or cortisol in any of the three sessions. D melatonin excretion displayed a major increase, resulting in a decreased N/D melatonin ratio, and the melatonin mesor (24 h mean) was increased in the early session, compared with controls. For aMT6s, only the early N/D ratio was decreased, and the mesor of the intermediate session increased. These results were not the consequence of hepatic and/or kidney alteration, as the patients' hepatic and renal parameters were in the normal range. The D and N

  7. Management of familial Mediterranean fever by colchicine does not normalize the altered profile of microbial long chain fatty acids in the human metabolome

    Science.gov (United States)

    Ktsoyan, Zhanna A.; Beloborodova, Natalia V.; Sedrakyan, Anahit M.; Osipov, George A.; Khachatryan, Zaruhi A.; Manukyan, Gayane P.; Arakelova, Karine A.; Hovhannisyan, Alvard I.; Arakelyan, Arsen A.; Ghazaryan, Karine A.; Zakaryan, Magdalina K.; Aminov, Rustam I.

    2013-01-01

    In our previous works we established that in an autoinflammatory condition, familial Mediterranean fever (FMF), the gut microbial diversity is specifically restructured, which also results in the altered profiles of microbial long chain fatty acids (LCFAs) present in the systemic metabolome. The mainstream management of the disease is based on oral administration of colchicine to suppress clinical signs and extend remission periods and our aim was to determine whether this therapy normalizes the microbial LCFA profiles in the metabolome as well. Unexpectedly, the treatment does not normalize these profiles. Moreover, it results in the formation of new distinct microbial LCFA clusters, which are well separated from the corresponding values in healthy controls and FMF patients without the therapy. We hypothesize that the therapy alters the proinflammatory network specific for the disease, with the concomitant changes in gut microbiota and the corresponding microbial LCFAs in the metabolome. PMID:23373011

  8. Management of familial Mediterranean fever by colchicine does not normalize the altered profile of microbial long chain fatty acids in the human metabolome

    Directory of Open Access Journals (Sweden)

    Zhanna eKtsoyan

    2013-01-01

    Full Text Available In our previous works we established that in an autoinflammatory condition, familial Mediterranean fever, the gut microbial diversity is specifically restructured, which also results in the altered profiles of microbial long chain fatty acids (LCFAs present in the systemic metabolome. The mainstream management of the disease is based on oral administration of colchicine to suppress clinical signs and extend remission periods and our aim was to determine whether this therapy normalizes the microbial LCFA profiles in the metabolome as well. Unexpectedly, the treatment does not normalize these profiles. Moreover, it results in the formation of new distinct microbial LCFA clusters, which are well separated from the corresponding values in healthy controls and FMF patients without the therapy. We hypothesize that the therapy alters the proinflammatory network specific for the disease, with the concomitant changes in gut microbiota and the corresponding microbial LCFAs in the metabolome.

  9. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier.

    Science.gov (United States)

    Zeisler, Viktoria; Schreiber, Lukas

    2016-01-01

    Epicuticular wax of cherry laurel does not contribute to the formation of the cuticular transpiration barrier, which must be established by intracuticular wax. Barrier properties of cuticles are established by cuticular wax deposited on the outer surface of the cuticle (epicuticular wax) and in the cutin polymer (intracuticular wax). It is still an open question to what extent epi- and/or intracuticular waxes contribute to the formation of the transpiration barrier. Epicuticular wax was mechanically removed from the surfaces of isolated cuticles and intact leaf disks of cherry laurel (Prunus laurocerasus L.) by stripping with different polymers (collodion, cellulose acetate and gum arabic). Scanning electron microscopy showed that two consecutive treatments with all three polymers were sufficient to completely remove epicuticular wax since wax platelets disappeared and cuticle surfaces appeared smooth. Waxes in consecutive polymer strips and wax remaining in the cuticle after treatment with the polymers were determined by gas chromatography. This confirmed that two treatments of the polymers were sufficient for selectively removing epicuticular wax. Water permeability of isolated cuticles and cuticles covering intact leaf disks was measured using (3)H-labelled water before and after selectively removing epicuticular wax. Cellulose acetate and its solvent acetone led to a significant increase of cuticular permeability, indicating that the organic solvent acetone affected the cuticular transpiration barrier. However, permeability did not change after two subsequent treatments with collodion and gum arabic or after treatment with the corresponding solvents (diethyl ether:ethanol or water). Thus, in the case of P. laurocerasus the epicuticular wax does not significantly contribute to the formation of the cuticular transpiration barrier, which evidently must be established by the intracuticular wax.

  10. Investigation of storage time-dependent alterations of enantioselective amino acid profiles in kimchi using liquid chromatography-time of flight mass spectrometry.

    Science.gov (United States)

    Taniguchi, Moyu; Konya, Yutaka; Nakano, Yosuke; Fukusaki, Eiichiro

    2017-10-01

    Although naturally abundant amino acids are represented mainly by l-enantiomers, fermented foods are known to contain various d-amino acids. Enantiospecific profiles of food products can vary due to fermentation by bacteria, and such alterations may contribute to changes in food properties that would not be dependent exclusively on l-amino acids. Therefore, more attention should be paid to the study of temporal alterations of d-amino acid profiles during fermentation process. However, there have been very few studies reporting time-dependent profiling of d-amino acids because enantioseparation of widely targeted d-amino acids is technically difficult. This study aimed to achieve high throughput profiling of amino acids enantiomers. Enantioselective profiling of amino acids using CROWNPAK CR-I(+) column, liquid chromatography, time of flight mass spectrometry, and principle component analysis was performed to investigate time-dependent alterations in concentrations of free d- and l-amino acids in kimchi stored at 4°C or 25°C. We demonstrated significant changes in d- and l-amino acid profiles in kimchi stored at 25°C. In particular, concentrations of the amino acids d-Ala, d-Ser, d-allo-Ile, d-Leu, d-Asp, d-Glu, and d-Met became higher in kimchi with storage time. This is the first report of time-dependent alterations of d- and l-amino acid contents in kimchi. This study showed that our analytical method of enantioselective detection of amino acids using liquid chromatography time-of-flight mass spectrometry (LC-TOFMS) with CROWNPAK CR-I(+) enables high throughput food screening and can be recommended for advanced studies of the relationship between d-amino acid content and food properties. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Visceral adiposity index (VAI is predictive of an altered adipokine profile in patients with type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Marco C Amato

    Full Text Available AIMS: Although there is still no clear definition of "adipose tissue dysfunction" or ATD, the identification of a clinical marker of altered fat distribution and function may provide the needed tools for early identification of a condition of cardiometabolic risk. Our aim was to evaluate the correlations among various anthropometric indices [BMI, Waist Circumference (WC, Hip Circumference (HC, Waist/Hip ratio (WHR, Body Adiposity Index (BAI and Visceral adiposity Index (VAI] and several adipocytokines [Visfatin, Resistin, Leptin, Soluble leptin receptors (sOB-R, Adiponectin, Ghrelin, Adipsin, PAI-1, vascular endothelial growth factor (VEGF, Hepatocyte growth factor (HGF TNF-α, hs-CRP, IL-6, IL-18] in patients with type 2 diabetes (DM2. MATERIALS AND METHODS: Ninety-one DM2 patients (age: 65.25 ± 6.38 years; 42 men and 49 women in stable treatment for the last six months with metformin in monotherapy (1.5-2 g/day were cross-sectionally studied. Clinical, anthropometric, and metabolic parameters were evaluated. Serum adipocytokine levels were assayed with Luminex based kits. RESULTS: At the Pearson's correlation, among all the indices investigated, VAI showed a significant correlation with almost all adipocytokines analyzed [Visfatin, Resistin and hsCRP (all p<0.001; Adiponectin, sOb-R, IL-6, IL-18, HGF (all p<0.010; Ghrelin and VEGF (both p<0.05]. Through a two-step cluster analysis, 55 patients were identified with the most altered adipocytokine profile (patients with ATD. At a ROC analysis, VAI showed the highest C-statistic [0.767 (95% CI 0.66-0.84] of all the indices. CONCLUSIONS: Our study suggests that the VAI, among the most common indexes of adiposity assessment, shows the best correlation with the best known adipocytokines and cardiometabolic risk serum markers. Although to date we are still far from clearly identifying an ATD, the VAI would be an easy tool for clearly mirroring a condition of cardiometabolic risk, in the absence of an

  12. Altered Baseline and Nicotine-Mediated Behavioral and Cholinergic Profiles in ChAT-Cre Mouse Lines.

    Science.gov (United States)

    Chen, Edison; Lallai, Valeria; Sherafat, Yasmine; Grimes, Nickolas P; Pushkin, Anna N; Fowler, J P; Fowler, Christie D

    2018-02-28

    The recent development of transgenic rodent lines expressing cre recombinase in a cell-specific manner, along with advances in engineered viral vectors, has permitted in-depth investigations into circuit function. However, emerging evidence has begun to suggest that genetic modifications may introduce unexpected caveats. In the current studies, we sought to extensively characterize male and female mice from both the ChAT (BAC) -Cre mouse line, created with the bacterial artificial chromosome (BAC) method, and ChAT (IRES) -Cre mouse line, generated with the internal ribosome entry site (IRES) method. ChAT (BAC) -Cre transgenic and wild-type mice did not differ in general locomotor behavior, anxiety measures, drug-induced cataplexy, nicotine-mediated hypolocomotion, or operant food training. However, ChAT (BAC) -Cre transgenic mice did exhibit significant deficits in intravenous nicotine self-administration, which paralleled an increase in vesicular acetylcholine transporter and choline acetyltransferase (ChAT) hippocampal expression. For the ChAT (IRES) -Cre line, transgenic mice exhibited deficits in baseline locomotor, nicotine-mediated hypolocomotion, and operant food training compared with wild-type and hemizygous littermates. No differences among ChAT (IRES) -Cre wild-type, hemizygous, and transgenic littermates were found in anxiety measures, drug-induced cataplexy, and nicotine self-administration. Given that increased cre expression was present in the ChAT (IRES) -Cre transgenic mice, as well as a decrease in ChAT expression in the hippocampus, altered neuronal function may underlie behavioral phenotypes. In contrast, ChAT (IRES) -Cre hemizygous mice were more similar to wild-type mice in both protein expression and the majority of behavioral assessments. As such, interpretation of data derived from ChAT-Cre rodents must consider potential limitations dependent on the line and/or genotype used in research investigations. SIGNIFICANCE STATEMENT Altered

  13. A Critical Dose of Doxorubicin Is Required to Alter the Gene Expression Profiles in MCF-7 Cells Acquiring Multidrug Resistance

    Science.gov (United States)

    Tsou, Shang-Hsun; Chen, Tzer-Ming; Hsiao, Hui-Ting; Chen, Yen-Hui

    2015-01-01

    Cellular mechanisms of multidrug resistance (MDR) are related to ABC transporters, apoptosis, antioxidation, drug metabolism, DNA repair and cell proliferation. It remains unclear whether the process of resistance development is programmable. We aimed to study gene expression profiling circumstances in MCF-7 during MDR development. Eleven MCF-7 sublines with incremental doxorubicin resistance were established as a valued tool to study resistance progression. MDR marker P-gp was overexpressed only in cells termed MCF-7/ADR-1024 under the selection dose approaching 1024 nM. MCF-7/ADR-1024 and authentic MCF-7/ADR shared common features in cell morphology and DNA ploidy status. MCF-7/ADR-1024 and authentic MCF-7/ADR down regulated repair genes BRCA1/2 and wild type p53, apoptosis-related gene Bcl-2 and epithelial-mesenchymal transition (EMT) epithelial marker gene E-cadherin. While detoxifying enzymes glutathione-S transferase-π and protein kinase C-α were up-regulated. The genes involving in EMT mesenchymal formation were also overexpressed, including N-cadherin, vimentin and the E-cadherin transcription reppressors Slug, Twist and ZEB1/2. PI3K/AKT inhibitor wortmannin suppressed expression of Slug, Twist and mdr1. Mutant p53 with a deletion at codons 127-133 markedly appeared in MCF-7/ADR-1024 and authentic MCF-7/ADR as well. In addition, MCF-7/ADR-1024 cells exerted CSC-like cell surface marker CD44 high/CD24 low and form mammospheres. Overall, results suggest that resistance marker P-gp arises owing to turn on/off or mutation of the genes involved in DNA repair, apoptosis, detoxifying enzymes, EMT and ABC transporters at a turning point (1.024 μM doxorubicin challenge). Behind this point, no obvious alterations were found in most tested genes. Selection for CSC-like cells under this dose may importantly attribute to propagation of the population presenting invasive properties and drug resistance. We thereby suggest two models in the induction of drug resistance

  14. Traditional Aboriginal Preparation Alters the Chemical Profile of Carica papaya Leaves and Impacts on Cytotoxicity towards Human Squamous Cell Carcinoma.

    Science.gov (United States)

    Nguyen, Thao T; Parat, Marie-Odile; Shaw, Paul N; Hewavitharana, Amitha K; Hodson, Mark P

    2016-01-01

    Carica papaya leaf decoction, an Australian Aboriginal remedy, has been used widely for its healing capabilities against cancer, with numerous anecdotal reports. In this study we investigated its in vitro cytotoxicity on human squamous cell carcinoma cells followed by metabolomic profiling of Carica papaya leaf decoction and leaf juice/brewed leaf juice to determine the effects imparted by the long heating process typical of the Aboriginal remedy preparation. MTT assay results showed that in comparison with the decoction, the leaf juice not only exhibited a stronger cytotoxic effect on SCC25 cancer cells, but also produced a significant cancer-selective effect as shown by tests on non-cancerous human keratinocyte HaCaT cells. Furthermore, evidence from testing brewed leaf juice on these two cell lines suggested that the brewing process markedly reduced the selective effect of Carica papaya leaf on SCC25 cancer cells. To tentatively identify the compounds that contribute to the distinct selective anticancer activity of leaf juice, an untargeted metabolomic approach employing Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry followed by multivariate data analysis was applied. Some 90 and 104 peaks in positive and negative mode respectively were selected as discriminatory features from the chemical profile of leaf juice and >1500 putative compound IDs were obtained via database searching. Direct comparison of chromatographic and tandem mass spectral data to available reference compounds confirmed one feature as a match with its proposed authentic standard, namely pheophorbide A. However, despite pheophorbide A exhibiting cytotoxic activity on SCC25 cancer cells, it did not prove to be the compound contributing principally to the selective activity of leaf juice. With promising results suggesting stronger and more selective anticancer effects when compared to the Aboriginal remedy, Carica papaya leaf juice warrants further study

  15. Analysis of altered microRNA expression profile in the reparative interface of the femoral head with osteonecrosis.

    Science.gov (United States)

    Yuan, Heng-feng; Von Roemeling, Christina; Gao, Hui-di; Zhang, Jing; Guo, Chang-an; Yan, Zuo-qin

    2015-04-01

    The reparative reaction is considered to be important during the occurrence of collapse in the femoral head with osteonecrosis (ONFH), but little is known about the long-term reparative process. The aim of this study was to determine and analyze the altered microRNA expression profile in the reparative interface of ONFH, and further validate the expression of the involved genes in the predicted pathways. Microarray analysis was performed comparing the reparative interface of patients with ONFH and normal tissue of patients with fresh femoral neck fracture (FNF) and partly validated by real-time PCR. Potential target genes of differentially expressed miRNAs were predicted by TargetScan and miRanda, and the target genes were used for further bioinformatics analysis such as Gene Ontology and Pathway assay. The filtered miRNAs and genes in the predict pathways were further examined by real-time PCR in another 6 independent ONFH patients. Among the 2578 miRNAs identified, 17 were consistently differentially expressed, 12 of which are up-regulated and 5 down-regulated. GO classification showed that the predicted target genes of these miRNAs are involved in signal transduction, cell differentiation, methylation, cell growth and apoptosis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) classification indicated that these genes play a role in angiogenesis and Wnt signaling pathways. The expression of miR-34a and miR-146a and genes in the predict pathways were significantly up-regulated. This study presented a global view of miRNA expression in the reparative interface of osteonecrosis. In addition, our data provided novel and robust information for further researches in the pathogenesis and molecular events of ONFH. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Featured Article: Modulation of the OGF-OGFr pathway alters cytokine profiles in experimental autoimmune encephalomyelitis and multiple sclerosis.

    Science.gov (United States)

    Ludwig, Michael D; Zagon, Ian S; McLaughlin, Patricia J

    2018-02-01

    -dose naltrexone modulated IL-6 and IL-10 cytokine expression. Validation in human serum revealed markedly reduced IL-6 cytokine levels in MS patients taking low-dose naltrexone relative to standard care. In summary, modulation of the OGF-OGFr pathway regulates some inflammatory cytokines, and together with opioid growth factor serum levels, may begin to form a panel of valid biomarkers to monitor progression of multiple sclerosis and response to therapy. Impact statement Modulation of the opioid growth factor (OGF)-OGF receptor (OGFr) alters inflammatory cytokine expression in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Multiplex cytokine assays demonstrated that mice with chronic EAE and treated with either OGF or low-dose naltrexone (LDN) had decreased expression of interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and the anti-inflammatory cytokine IL-10 within 10 days or treatment, as well as increased serum expression of the pro-inflammatory cytokine IL-6, relative to immunized mice receiving saline. Multiplex data were validated using ELISA kits and serum from MS patients treated with LDN and revealed decreased in IL-6 levels in patients taking LDN relative to standard care alone. These data, along with serum levels of OGF, begin to formulate a selective biomarker profile for MS that is easily measured and effective at monitoring disease progression and response to therapy.

  17. Cuticular waxes in alpine meadow plants: climate effect inferred from latitude gradient in Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Guo, Yanjun; Guo, Na; He, Yuji; Gao, Jianhua

    2015-09-01

    Alpine meadow ecosystems are susceptible to climate changes. Still, climate impact on cuticular wax in alpine meadow plants is poorly understood. Assessing the variations of cuticular wax in alpine meadow plants across different latitudes might be useful for predicting how they may respond to climate change. We studied nine alpine meadows in a climate gradient in the east side of Qinghai-Tibetan Plateau, with mean annual temperature ranging from -7.7 to 3.2°C. In total, 42 plant species were analyzed for cuticular wax, averaged 16 plant species in each meadow. Only four plant species could be observed in all sampling meadows, including Kobresia humilis,Potentilla nivea,Anaphalis lacteal, and Leontopodium nanum. The amounts of wax compositions and total cuticular wax in the four plant species varied among sampling meadows, but no significant correlation could be observed between them and temperature, precipitation, and aridity index based on plant species level. To analyze the variations of cuticular wax on community level, we averaged the amounts of n-alkanes, aliphatic acids, primary alcohols, and total cuticular wax across all investigated plant species in each sampling site. The mean annual temperature, mean temperature in July, and aridity index were significantly correlated with the averaged amounts of wax compositions and total cuticular wax. The average chain length of n-alkanes in both plant and soil linearly increased with increased temperature, whereas reduced with increased aridity index. No significant correlation could be observed between mean annual precipitation and mean precipitation from June to August and the cuticular wax amounts and average chain length. Our results suggest that the survival of some alpine plants in specific environments might be depended on their abilities in adjusting wax deposition on plant leaves, and the alpine meadow plants as a whole respond to climate change, benefiting the stability of alpine meadow ecosystem.

  18. Profiles

    International Nuclear Information System (INIS)

    2004-01-01

    Profiles is a synthetic overview of more than 100 national energy markets in the world, providing insightful facts and key energy statistics. A Profile is structured around 6 main items and completed by key statistics: Ministries, public agencies, energy policy are concerned; main companies in the oil, gas, electricity and coal sectors, status, shareholders; reserve, production, imports and exports, electricity and refining capacities; deregulation of prices, subsidies, taxes; consumption trends by sector, energy market shares; main energy projects, production and consumption prospects. Statistical Profiles are present in about 3 pages the main data and indicators on oil, gas, coal and electricity. (A.L.B.)

  19. Identification of In-Chain-Functionalized Compounds and Methyl-Branched Alkanes in Cuticular Waxes of Triticum aestivum cv. Bethlehem.

    Directory of Open Access Journals (Sweden)

    Radu C Racovita

    Full Text Available In this work, cuticular waxes from flag leaf blades and peduncles of Triticum aestivum cv. Bethlehem were investigated in search for novel wax compounds. Seven wax compound classes were detected that had previously not been reported, and their structures were elucidated using gas chromatography-mass spectrometry of various derivatives. Six of the classes were identified as series of homologs differing by two methylene units, while the seventh was a homologous series with homologs with single methylene unit differences. In the waxes of flag leaf blades, secondary alcohols (predominantly C27 and C33, primary/secondary diols (predominantly C28 and esters of primary/secondary diols (predominantly C50, combining C28 diol with C22 acid were found, all sharing similar secondary hydroxyl group positions at and around C-12 or ω-12. 7- and 8-hydroxy-2-alkanol esters (predominantly C35, 7- and 8-oxo-2-alkanol esters (predominantly C35, and 4-alkylbutan-4-olides (predominantly C28 were found both in flag leaf and peduncle wax mixtures. Finally, a series of even- and odd-numbered alkane homologs was identified in both leaf and peduncle waxes, with an internal methyl branch preferentially on C-11 and C-13 of homologs with even total carbon number and on C-12 of odd-numbered homologs. Biosynthetic pathways are suggested for all compounds, based on common structural features and matching chain length profiles with other wheat wax compound classes.

  20. Cuticular hydrocarbon pattern as a chemotaxonomy marker to assess intraspecific variability in Triatoma infestans, a major vector of Chagas' disease.

    Science.gov (United States)

    Calderón-Fernández, G M; Girotti, J R; Juárez, M P

    2012-06-01

    Triatoma infestans Klug (Hemiptera: Reduviidae) populations were sampled in various localities throughout most of the species' geographic range of distribution in Argentina, Bolivia, Paraguay and Peru. In order to contribute to understanding of the diversity and population structure of this major vector of Chagas' disease, cuticular hydrocarbon (CHC) profiles were analysed by capillary gas chromatography and variations evaluated by statistical methods of classification and ordination. High levels of intrapopulation variation were detected, along with low levels of variability among populations. Based on relative amounts of the major odd-numbered straight-chain hydrocarbons n-C27 to n-C33, two hydrocarbon phenotypes were evident, unequally distributed along the species' geographic range. Analysis of CHC patterns showed that T. infestans populations segregate into two major groups consisting of an Andean group, which comprises specimens from Peru and most parts of Bolivia, and a non-Andean group, which includes all specimens from Argentina and Paraguay, together with those from Tarija (Bolivia). Pyrethroid-resistant and -susceptible specimens were differentiated based on relative amounts of some straight and monomethyl-branched hydrocarbon components. © 2011 The Authors. Medical and Veterinary Entomology © 2011 The Royal Entomological Society.

  1. Sex pheromone of the American warble fly, Dermatobia hominis: the role of cuticular hydrocarbons.

    Science.gov (United States)

    Gulias Gomes, Claudia Cristina; Trigo, José Roberto; Eiras, Alvaro Eduardo

    2008-05-01

    Chemical communication between adults of the American warble fly, Dermatobia hominis (Diptera: Oestridae), was investigated by electroantennography and behavioral bioassays. Significant electroantennographic responses were recorded from both sexes to hexane-soluble cuticular lipids from either sex. Olfactometer tests indicated an attraction between males and females, and between females. Copulatory behavior of males with a white knotted string treated with female extract confirmed production of a sexual stimulant by females. Such behavior was not observed in tests with male extract, demonstrating that the pheromone acts also as a sex recognition factor. Cuticular hydrocarbons of sexually mature female and male D. hominis were identified by Gas chromatography-mass spectrometry and consist of a mixture of saturated n-, monomethyl-, and dimethylalkanes in both sexes. Sexual dimorphism was characterized by a higher relative concentration of dimethylalkanes in males and the presence of alkenes only in females.

  2. Cuticular Lipids as a Cross-Talk among Ants, Plants and Butterflies

    OpenAIRE

    Barbero, Francesca

    2016-01-01

    Even though insects and plants are distantly related organisms, they developed an integument which is functionally and structurally similar. Besides functioning as a physical barrier to cope with abiotic and biotic stress, this interface, called cuticle, is also a source of chemical signaling. Crucial compounds with this respect are surface lipids and especially cuticular hydrocarbons (CHCs). This review is focused on the role of CHCs in fostering multilevel relationships among ants, plants a...

  3. Identification of the cuticular lipid composition of the Western Flower Thrips Frankliniella occidentalis.

    Science.gov (United States)

    Gołebiowski, Marek; Maliński, Edmund; Nawrot, Jan; Szafranek, Janusz; Stepnowski, Piotr

    2007-06-01

    The Western Flower Thrips Frankliniella occidentalis effectively resists many insecticides, but it can be controlled by the use of bioinsecticides such as entomopathogenic fungi. The epicuticular chemistry of these insects is therefore of great interest, and accordingly, the cuticular lipid composition of F. occidentalis was analysed. It was found that the cuticular lipids of both the adult and larval stages of F. occidentalis consist of two groups of compounds--hydrocarbons and free fatty acids. The same hydrocarbon pattern was found in both adults and larvae, with the exception of n-hentriacontane, which was detected only in adult insects. The following homologous series were identified: n-alkanes from C-25 to C-29 (31) with the marked dominance of odd numbers of carbon atoms, 3-methylalkanes with 26 and 28 carbon atoms, and branched monomethylalkanes (branched at C-9, -11, -13 and -15) with 26, 28 and 30 carbon atoms. The chemical composition of the free fatty acids consists of two homologous series: saturated (C(14:0), C(16:0), C(18:0)) and unsaturated fatty acids (C(16:1) and C(18:1)). This analysis confirmed the lack of potential inhibitors of entomopathogenic fungi in the cuticular lipids of this insect species.

  4. McWRI1, a transcription factor of the AP2/SHEN family, regulates the biosynthesis of the cuticular waxes on the apple fruit surface under low temperature.

    Science.gov (United States)

    Hao, Suxiao; Ma, Yiyi; Zhao, Shuang; Ji, Qianlong; Zhang, Kezhong; Yang, Mingfeng; Yao, Yuncong

    2017-01-01

    Cuticular waxes of plant and organ surfaces play an important role in protecting plants from biotic and abiotic stress and extending the freshness, storage time and shelf life in the post-harvest agricultural products. WRI1, a transcription factor of AP2/SHEN families, had been found to trigger the related genes taking part in the biosynthesis of seed oil in many plants. But whether WRI1 is involved in the biosynthesis of the cuticular waxes on the Malus fruits surface has been unclear. We investigated the changes of wax composition and structure, the related genes and WRI1 expression on Malus asiatica Nakai and sieversii fruits with the low temperature treatments, found that low temperature induced the up-regulated expression of McWRI1, which promoted gene expression of McKCS, McLACs and McWAX in very-long-chain fatty acid biosynthesis pathway, resulting in the accumulation of alkanes component and alteration of wax structure on the fruit surface. Corresponding results were verified in McWRI1 silenced by VIGS, and WRI1 silenced down-regulated the related genes on two kinds of fruits, it caused the diversity alteration in content of some alkanes, fatty acid and ester component in two kinds of fruits. We further conducted Y1H assay to find that McWRI1 transcription factor activated the promoter of McKCS, McLAC and McWAX to regulate their expression. These results demonstrated that McWRI1 is involved in regulating the genes related synthesis of very long chain fatty acid on surface of apple fruits in storage process, providing a highlight for improvement of the modified atmosphere storage of apple fruits.

  5. McWRI1, a transcription factor of the AP2/SHEN family, regulates the biosynthesis of the cuticular waxes on the apple fruit surface under low temperature.

    Directory of Open Access Journals (Sweden)

    Suxiao Hao

    Full Text Available Cuticular waxes of plant and organ surfaces play an important role in protecting plants from biotic and abiotic stress and extending the freshness, storage time and shelf life in the post-harvest agricultural products. WRI1, a transcription factor of AP2/SHEN families, had been found to trigger the related genes taking part in the biosynthesis of seed oil in many plants. But whether WRI1 is involved in the biosynthesis of the cuticular waxes on the Malus fruits surface has been unclear. We investigated the changes of wax composition and structure, the related genes and WRI1 expression on Malus asiatica Nakai and sieversii fruits with the low temperature treatments, found that low temperature induced the up-regulated expression of McWRI1, which promoted gene expression of McKCS, McLACs and McWAX in very-long-chain fatty acid biosynthesis pathway, resulting in the accumulation of alkanes component and alteration of wax structure on the fruit surface. Corresponding results were verified in McWRI1 silenced by VIGS, and WRI1 silenced down-regulated the related genes on two kinds of fruits, it caused the diversity alteration in content of some alkanes, fatty acid and ester component in two kinds of fruits. We further conducted Y1H assay to find that McWRI1 transcription factor activated the promoter of McKCS, McLAC and McWAX to regulate their expression. These results demonstrated that McWRI1 is involved in regulating the genes related synthesis of very long chain fatty acid on surface of apple fruits in storage process, providing a highlight for improvement of the modified atmosphere storage of apple fruits.

  6. Intraspecific variation of cuticular hydrocarbon profiles in the Anastrepha fraterculus (Diptera: Tephritidae) species complex

    Czech Academy of Sciences Publication Activity Database

    Vaníčková, Lucie; Břízová, Radka; Mendonca, A. L.; Pompeiano, A.; do Nascimento, R. R.

    2015-01-01

    Roč. 139, č. 9 (2015), s. 679-689 ISSN 0931-2048 Institutional support: RVO:61388963 Keywords : chemotaxonomy * GCxGC/TOFMS * multiple factorial analyses * putative species * South American fruit fly Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.517, year: 2015

  7. Chemical basis of unwettability in Liacaridae (Acari, Oribatida): specific variations of a cuticular acid/ester-based system.

    Science.gov (United States)

    Brückner, Adrian; Stabentheiner, Edith; Leis, Hans-Jörg; Raspotnig, Günther

    2015-07-01

    Oribatid mites of the family Liacaridae comprise a large number of species with smooth and shiny body surfaces that display extraordinary anti-wetting properties. The principle of liacarid unwettability is not related to micro-structured surfaces as present in many Oribatida ("Lotus effect") but the formation of raincoat-like lipid layers covering the epicuticle. We here conducted a comparative study on the chemistry of cuticular lipid layers in a selection of Liacaridae, including representatives of all major Central European genera, Liacarus, Dorycranosus, Adoristes, and Xenillus. Cuticular lipids of unwettable individuals were removed from mite bodies by hexane extraction, and were analyzed by GC-MS. Basically, two chemically distinguishable systems were found. Type I: cuticular lipids of Liacarus subterraneus, L. coracinus, L. nitens, Dorycranosus curtipilis, and Xenillus tegeocranus contained different carboxylic acids (C8-, C10-, C10:1-, C10:2-acids) and their corresponding di-glycerides in species-specific combinations. Type II: Adoristes ovatus exhibited a system of cuticular lipids composed of esters of pentanoic- and heptanoic acids with C14-, C15-, C16- and C17-alcohols. Interestingly, the chemistry of surface lipids did not reflect the morphology of the cuticle in the species investigated. Smooth and shiny cuticles, though exhibiting a specific pattern of round or slit-like pores, were found in representatives of Liacarus, Dorycranosus (all of which exhibiting cuticular chemistry of type I) and Adoristes (exhibiting cuticular chemistry of type II). Xenillus, possessing a rough, cerotegumental cement layer-covered surface, showed type I-chemistry. The acid-esters systems herein investigated are considered characteristic for the cuticular chemistry of Liacaridae or a lineage of these, and provide first insights into the comparative chemistry of the inner (=lipid) layer of the oribatid cerotegument.

  8. Alterations in Activation, Cytotoxic Capacity and Trafficking Profile of Peripheral CD8 T Cells in Young Adult Binge Drinkers

    OpenAIRE

    Zaldivar Fujigaki, Jos? Luis; Arroyo Valerio, Am?rica Guadalupe; L?pez Alvarenga, Juan Carlos; Guti?rrez Reyes, Esperanza Gabriela; Kershenobich, David; Hern?ndez Ruiz, Joselin

    2015-01-01

    Background Excess of alcohol consumption is a public health problem and has documented effects on the immune system of humans and animals. Animal and in vitro studies suggest that alcohol abuse changes CD8 T cell (CD8) characteristics, however it remains unknown if the CD8 profile of binge drinkers is different in terms of activation, trafficking and cytotoxic capacity. Aim To analyze the peripheral CD8 cytotoxic capacity, activation and trafficking phenotypic profile of Mexican young adults ...

  9. Considerations for automated machine learning in clinical metabolic profiling: Altered homocysteine plasma concentration associated with metformin exposure.

    Science.gov (United States)

    Orlenko, Alena; Moore, Jason H; Orzechowski, Patryk; Olson, Randal S; Cairns, Junmei; Caraballo, Pedro J; Weinshilboum, Richard M; Wang, Liewei; Breitenstein, Matthew K

    2018-01-01

    With the maturation of metabolomics science and proliferation of biobanks, clinical metabolic profiling is an increasingly opportunistic frontier for advancing translational clinical research. Automated Machine Learning (AutoML) approaches provide exciting opportunity to guide feature selection in agnostic metabolic profiling endeavors, where potentially thousands of independent data points must be evaluated. In previous research, AutoML using high-dimensional data of varying types has been demonstrably robust, outperforming traditional approaches. However, considerations for application in clinical metabolic profiling remain to be evaluated. Particularly, regarding the robustness of AutoML to identify and adjust for common clinical confounders. In this study, we present a focused case study regarding AutoML considerations for using the Tree-Based Optimization Tool (TPOT) in metabolic profiling of exposure to metformin in a biobank cohort. First, we propose a tandem rank-accuracy measure to guide agnostic feature selection and corresponding threshold determination in clinical metabolic profiling endeavors. Second, while AutoML, using default parameters, demonstrated potential to lack sensitivity to low-effect confounding clinical covariates, we demonstrated residual training and adjustment of metabolite features as an easily applicable approach to ensure AutoML adjustment for potential confounding characteristics. Finally, we present increased homocysteine with long-term exposure to metformin as a potentially novel, non-replicated metabolite association suggested by TPOT; an association not identified in parallel clinical metabolic profiling endeavors. While warranting independent replication, our tandem rank-accuracy measure suggests homocysteine to be the metabolite feature with largest effect, and corresponding priority for further translational clinical research. Residual training and adjustment for a potential confounding effect by BMI only slightly modified

  10. Cuticular characteristics in the detection of plant stress due to air pollution - new problems in the use of these cuticular characteristics

    International Nuclear Information System (INIS)

    Garrec, J.P.

    1994-01-01

    The foliar surface, and particularly the cuticle, is the first zone of impact of air pollutants on leaves. At the level of the cuticle, it is mainly studies on the modifications of the physico-chemical properties of the waxes that allow us to detect and estimate plant stress. However, during recent years, with modifications in the nature and level of air pollution (decrease of primary pollutants: SO 2 , HF; increase of secondary pollutants: O 2 , acid deposits; increase of nitrogen deposits; increase of organic micropollutants; appearence of global environmental problems: CO 2 , climatic change), the physiological impact on plants and in particular on the cuticle is different. For this reason, new problems have appeared and use of cuticular characteristics in the detection of plant stress due to air pollutants has recently evolved. Some examples are given, but much remains to be done to understand the effects on the cuticle of these new modifications of the atmospheric environment of plants. (orig.)

  11. Efficacy of Indigenous Herbal Preparation on Altered Milk pH, Somatic Cell Count and Electrolyte Profile in Subclinical Mastitis in Cows

    Directory of Open Access Journals (Sweden)

    A.Y. Kolte

    Full Text Available Comparative efficacy of three different locally prepared indigenous herbal paste were evaluated in subclinical 24 mastitic cows with reference to restoring altered milk pH, somatic cell count and milk electrolyte profile. The study revealed that all the treatment were found effective in restoring the altered milk constituents in subclinical mastitis with increased in the milk production. T3 (oots of Withania somnifera (Ashwagandha, Asparagus reacemosus (Shatavari, Curcuma-amada (Ambe Haldi and fresh leaves of Ocimum sanctum (Tulsi in equal quantities was found more effective than T5 ( T3 and T4 in combination in equal quantities and T4 (fresh roots of Glycerrhiza glabra (Jeshathamadh, Nardostachys jatamansi (Jatamansi, leaves of Riccinus communis (Yerand, bark of Ficus racemosa (Umber and rhizome of Curcuma longa (Haldi in equal quantities [Veterinary World 2008; 1(8.000: 239-240

  12. Conditioned Medium from Malignant Breast Cancer Cells Induces an EMT-Like Phenotype and an Altered N-Glycan Profile in Normal Epithelial MCF10A Cells.

    Science.gov (United States)

    Guo, Jia; Liu, Changmei; Zhou, Xiaoman; Xu, Xiaoqiang; Deng, Linhong; Li, Xiang; Guan, Feng

    2017-08-01

    Epithelial-mesenchymal transition (EMT) is a key process in cancer development and progression. Communication (crosstalk) between cancer cells and normal (nonmalignant) cells may facilitate cancer progression. Conditioned medium (CM) obtained from cultured cancer cells contains secreted factors capable of affecting phenotypes and the behaviors of normal cells. In this study, a culture of normal breast epithelial MCF10A cells with CM from malignant breast cancer cells (termed 231-CM and 453-CM) resulted in an alteration of morphology. CM-treated MCF10A, in comparison with control cells, showed a reduced expression of the epithelial marker E-cadherin, increased expression of the mesenchymal markers fibronectin, vimentin, N -cadherin, and TWIST1, meanwhile cell proliferation and migration were enhanced while cell apoptosis was decreased. N -glycan profiles of 231-CM-treated and control MCF10A cells were compared by MALDI-TOF/TOF-MS (Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry) and a lectin microarray analysis. The treated cells showed lower levels of high-mannose-type N -glycan structures, and higher levels of complex-type and hybrid-type structures. Altered N -glycan profiles were also detected in 453-CM-treated and non-treated MCF10A cells by MALDI-TOF/TOF-MS, and we found that the expression of five fucosylated N -glycan structures ( m / z 1406.663, 1590.471, 1668.782, 2421.141, and 2988.342) and one high-mannose structure m / z 1743.722 have the same pattern as 231-CM-treated MCF10A cells. Our findings, taken together, show that CM derived from breast cancer cells induced an EMT-like process in normal epithelial cells and altered their N -glycan profile.

  13. Association between increased visceral fat area and alterations in plasma fatty acid profile in overweight subjects: a cross-sectional study.

    Science.gov (United States)

    Kang, Miso; Lee, Ayoung; Yoo, Hye Jin; Kim, Minjoo; Kim, Minkyung; Shin, Dong Yeob; Lee, Jong Ho

    2017-12-19

    Visceral fat accumulation in overweight status has been resulted in changes of fatty acid profiles. The fatty acids profiles can be altered by fatty acid desaturase; the activity of which is highly associated with obesity and other metabolic diseases. We hypothesized that fatty acid composition, desaturase activity, and accumulation of visceral fat are interrelated. Thus, the aim of this study was to investigate the association between increased visceral fat area and alterations in plasma fatty acid profile in overweight subjects with different amounts of visceral fat. Healthy overweight subjects (25.0 kg/m 2  ≤ BMI fat area (T1: 99.6 cm 2 ). The T3 group showed higher amounts of cis-10-heptadecenoic acid and activity of C16 Δ9-desaturase and C18 Δ9-desaturase and lower activity of Δ5-desaturase than the T1 group. Additionally, the T3 group showed higher amounts of saturated fatty acids, myristic acid, palmitic acid, stearic acid, monounsaturated fatty acids, palmitoleic acid, oleic acid, n-6 polyunsaturated fatty acids, linoleic acid, dihomo-γ-linolenic acid, arachidonic acid, n-3 PUFAs, and docosapentaenoic acid than the T1 and T2 groups. This study indicates that greater than a certain area (>99.6 cm 2 ) of visceral fat is needed to observe altered levels of individual fatty acid species and desaturase activities. The results suggest that increased activity of C16 Δ9-desaturase and C18 Δ9-desaturase in parallel with decreased Δ5-desaturase activity may be a causative factor in disturbed fatty acid metabolism.

  14. Polyomic profiling reveals significant hepatic metabolic alterations in glucagon-receptor (GCGR knockout mice: implications on anti-glucagon therapies for diabetes

    Directory of Open Access Journals (Sweden)

    Molloy Mark P

    2011-06-01

    Full Text Available Abstract Background Glucagon is an important hormone in the regulation of glucose homeostasis, particularly in the maintenance of euglycemia and prevention of hypoglycemia. In type 2 Diabetes Mellitus (T2DM, glucagon levels are elevated in both the fasted and postprandial states, which contributes to inappropriate hyperglycemia through excessive hepatic glucose production. Efforts to discover and evaluate glucagon receptor antagonists for the treatment of T2DM have been ongoing for approximately two decades, with the challenge being to identify an agent with appropriate pharmaceutical properties and efficacy relative to potential side effects. We sought to determine the hepatic & systemic consequence of full glucagon receptor antagonism through the study of the glucagon receptor knock-out mouse (Gcgr-/- compared to wild-type littermates. Results Liver transcriptomics was performed using Affymetric expression array profiling, and liver proteomics was performed by iTRAQ global protein analysis. To complement the transcriptomic and proteomic analyses, we also conducted metabolite profiling (~200 analytes using mass spectrometry in plasma. Overall, there was excellent concordance (R = 0.88 for changes associated with receptor knock-out between the transcript and protein analysis. Pathway analysis tools were used to map the metabolic processes in liver altered by glucagon receptor ablation, the most notable being significant down-regulation of gluconeogenesis, amino acid catabolism, and fatty acid oxidation processes, with significant up-regulation of glycolysis, fatty acid synthesis, and cholesterol biosynthetic processes. These changes at the level of the liver were manifested through an altered plasma metabolite profile in the receptor knock-out mice, e.g. decreased glucose and glucose-derived metabolites, and increased amino acids, cholesterol, and bile acid levels. Conclusions In sum, the results of this study suggest that the complete ablation

  15. Resistant starch alters gut microbiome and metabolomics profiles concurrent with amelioration of chronic kidney disease in rats

    Science.gov (United States)

    Patients and animals with chronic kidney disease (CKD) exhibit profound alterations in the gut environment including shifts in microbial composition, increased fecal pH, and increased blood levels of gut microbe-derived metabolites (xeno-metabolites). The fermentable dietary fiber—high amylose maize...

  16. Gross genomic alterations and gene expression profiles of high- grade serous carcinoma of the ovary with and without BRCA1 inactivation

    International Nuclear Information System (INIS)

    Pradhan, Manohar; Risberg, Björn Å; Tropé, Claes G; Rijn, Matt van de; Gilks, C Blake; Lee, Cheng-Han

    2010-01-01

    BRCA1 gene inactivation causes chromosomal instability, leading to rapid accumulation of chromosomal rearrangements and mutations. The loss of BRCA1 function due to either germline/somatic mutation or epigenetic silencing is observed in most high-grade serous carcinomas of the ovary. DNA ploidy and gene expression profile were used in order to compare gross genomic alteration and gene expression pattern between cases with BRCA1 loss through mutation, BRCA1 epigenetic loss, and no BRCA1 loss in cases of high-grade serous carcinoma with known BRCA1 and BRCA 2 status. Using image cytometry and oligonucleotide microarrays, we analyzed DNA ploidy, S-phase fraction and gene expression profile of 28 consecutive cases of ovarian high-grade serous adenocarcinomas, which included 8 tumor samples with BRCA1 somatic or germline mutation, 9 samples with promoter hypermethylation of BRCA1, and 11 samples with no BRCA1 loss. None had BRCA2 mutations. The prevalence of aneuploidy and tetraploidy was not statistically different in the three groups with different BRCA1 status. The gene expression profiles were also very similar between the groups, with only two genes showing significant differential expression when comparison was made between the group with BRCA1 mutation and the group with no demonstrable BRCA1 loss. There were no genes showing significant differences in expression when the group with BRCA1 loss through epigenetic silencing was compared to either of the other two groups. In this series of 28 high-grade serous carcinomas, gross genomic alteration characterized by aneuploidy did not correlate with BRCA1 status. In addition, the gene expression profiles of the tumors showed negligible differences between the three defined groups based on BRCA1 status. This suggests that all ovarian high-grade serous carcinomas arise through oncogenic mechanisms that result in chromosomal instability, irrespective of BRCA status; the molecular abnormalities underlying this in the BRCA

  17. Non-targeted chromatographic analyses of cuticular wax flavonoids from Physalis alkekengi L.

    Science.gov (United States)

    Kranjc, Eva; Albreht, Alen; Vovk, Irena; Makuc, Damjan; Plavec, Janez

    2016-03-11

    Since Chinese lantern (Physalis alkekengi L.) represents a rich source of various bioactive secondary metabolites, there is an urge for its detailed characterization. Non-polar flavonoid aglycones represent one of the few bioactive species found in plant's cuticular waxes. The separation of flavonoids is already extensively covered in the literature, but methods dedicated to separation and identification of methylated flavonoids are rather scarce. In the present study a non-targeted approach for the separation, isolation and identification of methylated flavonoids present in P. alkekengi L. var. franchetii cuticular waxes was established. A rapid and simple separation on HPTLC silica gel was developed for preliminary screening of flavonoids. Fast HPLC-UV-MS(n) and HPLC-UV methods using a C6-Phenyl and a C18 stationary phase were also developed, respectively. In both cases, the right combination of temperature and tetrahydrofuran, as a mobile phase modifier, were shown to be crucial for a baseline separation of all studied compounds. By employing a semi-preparative analog of the C18 column, a simultaneous isolation of pure unknown analytes was achieved. Using these developed methods in combination with NMR, four 3-O-methylated flavonols were detected and identified in P. alkekengi L. var. franchetii cuticular waxes: myricetin 3,7,3'-trimethyl ether, quercetin 3,7-dimethyl ether, myricetin 3,7,3',5'-tetramethyl ether and quercetin 3,7,3'-trimethyl ether. Moreover, the simple and fast isocratic HPLC-UV-MS(n) method (under 8min) should prove useful in quality control of P. alkekengi L. var. franchetii by enabling chromatographic fingerprinting of external methylated flavonols. Finally, a rationale for the mechanism of separation of these metabolites by HPLC is also given, which establishes a foundation for future development of chromatographic methods for methylated flavonols and related compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Correspondence of soldier defense secretion mixtures with cuticular hydrocarbon phenotypes for chemotaxonomy of the termite genus Reticulitermes in North America.

    Science.gov (United States)

    Nelson, L J; Cool, L G; Forschler, B T; Haverty, M I

    2001-07-01

    Soldier defense secretions from samples of Reticulitermes collected in California, Nevada, Arizona, New Mexico, and Georgia were characterized and correlated with cuticular hydrocarbon phenotypes. Twenty-seven cuticular hydrocarbon phenotypes have been defined, and soldier defense secretion (SDS) phenotypes have been described for 25 of these. Forty-five terpenoid compounds were found, including monoterpenes, sesquiterpenes, and a few diterpenes. The monoterpenes include (-)-alpha-pinene, (-)-beta-pinene, (-)-camphene, myrcene, (Z)- and (E)-ocimene, and (-)-limonene. The major sesquiterpenes produced are (+)-gamma-cadinene, (+)-gamma-cadinene aldehyde, (-)-germacrene A, germacrene B, gamma-himachalene, and beta-bisabolene. Some SDS phenotypes pair with more than one cuticular hydrocarbon phenotype; however, with two exceptions, each hydrocarbon phenotype is associated with only one SDS phenotype. These chemical characterizations lend support to the conclusion that there are numerous undescribed species of Reticulitermes in North America.

  19. Visceral Adiposity Index (VAI) Is Predictive of an Altered Adipokine Profile in Patients with Type 2 Diabetes

    OpenAIRE

    Amato, M.; Pizzolanti, G.; Torregrossa, V.; Misiano, G.; Milano, S.; Giordano, C.

    2014-01-01

    AIMS: Although there is still no clear definition of "adipose tissue dysfunction" or ATD, the identification of a clinical marker of altered fat distribution and function may provide the needed tools for early identification of a condition of cardiometabolic risk. Our aim was to evaluate the correlations among various anthropometric indices [BMI, Waist Circumference (WC), Hip Circumference (HC), Waist/Hip ratio (WHR), Body Adiposity Index (BAI) and Visceral adiposity Index (VAI)] and several ...

  20. Cuticular Hydrocarbons of Tribolium confusum Larvae Mediate Trail Following and Host Recognition in the Ectoparasitoid Holepyris sylvanidis.

    Science.gov (United States)

    Fürstenau, Benjamin; Hilker, Monika

    2017-09-01

    Parasitic wasps which attack insects infesting processed stored food need to locate their hosts hidden inside these products. Their host search is well-known to be guided by host kairomones, perceived via olfaction or contact. Among contact kairomones, host cuticular hydrocarbons (CHCs) may provide reliable information for a parasitoid. However, the chemistry of CHC profiles of hosts living in processed stored food products is largely unknown. Here we showed that the ectoparasitoid Holepyris sylvanidis uses CHCs of its host Tribolium confusum, a worldwide stored product pest, as kairomones for host location and recognition at short range. Chemical analysis of T. confusum larval extracts by gas chromatography coupled with mass spectrometry revealed a rich blend of long-chain (C25-C30) hydrocarbons, including n-alkanes, mono-, and dimethylalkanes. We further studied whether host larvae leave sufficient CHCs on a substrate where they walk along, thus allowing parasitoids to perceive a CHC trail and follow it to their host larvae. We detected 18 CHCs on a substrate that had been exposed to host larvae. These compounds were also found in crude extracts of host larvae and made up about a fifth of the CHC amount extracted. Behavioral assays showed that trails of host CHCs were followed by the parasitoids and reduced their searching time until successful host recognition. Host CHC trails deposited on different substrates were persistent for about a day. Hence, the parasitoid H. sylvanidis exploits CHCs of T. confusum larvae for host finding by following host CHC trails and for host recognition by direct contact with host larvae.

  1. Antroquinonol inhibits NSCLC proliferation by altering PI3K/mTOR proteins and miRNA expression profiles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V. Bharath; Yuan, Ta-Chun [Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan (China); Liou, Je-Wen [Department of Biochemistry, School of Medicine, Tzu-Chi University, Hualien, Taiwan (China); Yang, Chih-Jen [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan (China); Sung, Ping-Jyun [Graduate Institute of Marine Biotechnology, Department of Life Science, National Dong Hwa University, Pingtung, Taiwan (China); Weng, Ching-Feng, E-mail: cfweng@mail.ndhu.edu.tw [Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan (China)

    2011-02-10

    Antroquinonol a derivative of Antrodia camphorata has been reported to have antitumor effects against various cancer cells. However, the effect of antroquinonol on cell signalling and survival pathways in non-small cell lung cancer (NSCLC) cells has not been fully demarcated. Here we report that antroquinonol treatment significantly reduced the proliferation of three NSCLC cells. Treatment of A549 cells with antroquinonol increased cell shrinkage, apoptotic vacuoles, pore formation, TUNEL positive cells and increased Sub-G1 cell population with respect to time and dose dependent manner. Antroquinonol treatment not only increased the Sub-G1 accumulation but also reduced the protein levels of cdc2 without altering the expression of cyclin B1, cdc25C, pcdc2, and pcdc25C. Antroquinonol induced apoptosis was associated with disrupted mitochondrial membrane potential and activation of Caspase 3 and PARP cleavage in A549 cells. Moreover, antroquinonol treatment down regulated the expression of Bcl2 proteins, which was correlated with the decreased PI3K and mTOR protein levels without altering pro apoptotic and anti apoptotic proteins. Results from the microarray analysis demonstrated that antroquinonol altered the expression level of miRNAs compared with untreated control in A549 cells. The data collectively suggested the antiproliferative effect of antroquinonol on NSCLC A549 cells, which provides useful information for understanding the anticancer mechanism influenced by antroquinonol and is the first report to suggest that antroquinonol may be a promising chemotherapeutic agent for lung cancer.

  2. Antroquinonol inhibits NSCLC proliferation by altering PI3K/mTOR proteins and miRNA expression profiles

    International Nuclear Information System (INIS)

    Kumar, V. Bharath; Yuan, Ta-Chun; Liou, Je-Wen; Yang, Chih-Jen; Sung, Ping-Jyun; Weng, Ching-Feng

    2011-01-01

    Antroquinonol a derivative of Antrodia camphorata has been reported to have antitumor effects against various cancer cells. However, the effect of antroquinonol on cell signalling and survival pathways in non-small cell lung cancer (NSCLC) cells has not been fully demarcated. Here we report that antroquinonol treatment significantly reduced the proliferation of three NSCLC cells. Treatment of A549 cells with antroquinonol increased cell shrinkage, apoptotic vacuoles, pore formation, TUNEL positive cells and increased Sub-G1 cell population with respect to time and dose dependent manner. Antroquinonol treatment not only increased the Sub-G1 accumulation but also reduced the protein levels of cdc2 without altering the expression of cyclin B1, cdc25C, pcdc2, and pcdc25C. Antroquinonol induced apoptosis was associated with disrupted mitochondrial membrane potential and activation of Caspase 3 and PARP cleavage in A549 cells. Moreover, antroquinonol treatment down regulated the expression of Bcl2 proteins, which was correlated with the decreased PI3K and mTOR protein levels without altering pro apoptotic and anti apoptotic proteins. Results from the microarray analysis demonstrated that antroquinonol altered the expression level of miRNAs compared with untreated control in A549 cells. The data collectively suggested the antiproliferative effect of antroquinonol on NSCLC A549 cells, which provides useful information for understanding the anticancer mechanism influenced by antroquinonol and is the first report to suggest that antroquinonol may be a promising chemotherapeutic agent for lung cancer.

  3. Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats

    International Nuclear Information System (INIS)

    Femia, Angelo Pietro; Luceri, Cristina; Toti, Simona; Giannini, Augusto; Dolara, Piero; Caderni, Giovanna

    2010-01-01

    Azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis in rats shares many phenotypical similarities with human sporadic colon cancer and is a reliable model for identifying chemopreventive agents. Genetic mutations relevant to human colon cancer have been described in this model, but comprehensive gene expression and genomic analysis have not been reported so far. Therefore, we applied genome-wide technologies to study variations in gene expression and genomic alterations in DMH-induced colon cancer in F344 rats. For gene expression analysis, 9 tumours (TUM) and their paired normal mucosa (NM) were hybridized on 4 × 44K Whole rat arrays (Agilent) and selected genes were validated by semi-quantitative RT-PCR. Functional analysis on microarray data was performed by GenMAPP/MappFinder analysis. Array-comparative genomic hybridization (a-CGH) was performed on 10 paired TUM-NM samples hybridized on Rat genome arrays 2 × 105K (Agilent) and the results were analyzed by CGH Analytics (Agilent). Microarray gene expression analysis showed that Defcr4, Igfbp5, Mmp7, Nos2, S100A8 and S100A9 were among the most up-regulated genes in tumours (Fold Change (FC) compared with NM: 183, 48, 39, 38, 36 and 32, respectively), while Slc26a3, Mptx, Retlna and Muc2 were strongly down-regulated (FC: -500; -376, -167, -79, respectively). Functional analysis showed that pathways controlling cell cycle, protein synthesis, matrix metalloproteinases, TNFα/NFkB, and inflammatory responses were up-regulated in tumours, while Krebs cycle, the electron transport chain, and fatty acid beta oxidation were down-regulated. a-CGH analysis showed that four TUM out of ten had one or two chromosomal aberrations. Importantly, one sample showed a deletion on chromosome 18 including Apc. The results showed complex gene expression alterations in adenocarcinomas encompassing many altered pathways. While a-CGH analysis showed a low degree of genomic imbalance, it is interesting to

  4. Cuticular waxes in alpine meadow plants: climate effect inferred from latitude gradient in Qinghai‐Tibetan Plateau

    OpenAIRE

    Guo, Yanjun; Guo, Na; He, Yuji; Gao, Jianhua

    2015-01-01

    Abstract Alpine meadow ecosystems are susceptible to climate changes. Still, climate impact on cuticular wax in alpine meadow plants is poorly understood. Assessing the variations of cuticular wax in alpine meadow plants across different latitudes might be useful for predicting how they may respond to climate change. We studied nine alpine meadows in a climate gradient in the east side of Qinghai‐Tibetan Plateau, with mean annual temperature ranging from −7.7 to 3.2°C. In total, 42 plant spec...

  5. Influence of Alternanthera brasiliana (L.) Kuntze on Altered Antioxidant Enzyme Profile during Cutaneous Wound Healing in Immunocompromised Rats

    OpenAIRE

    Barua, Chandana Choudhury; Ara Begum, Shameem; Talukdar, Archana; Datta Roy, Jayanti; Buragohain, Bhaben; Chandra Pathak, Debesh; Kumar Sarma, Dilip; Saikia Bora, Rumi; Gupta, Asheesh

    2012-01-01

    Alternanthera brasiliana (L.) Kuntze (Amaranthaceae) is a herbaceous plant used against inflammation, cough, and diarrhea in Brazilian popular medicine. In our preliminary study, promising wound healing activity of methanol extract of leaves of A. brasiliana (MEAB) was observed in normal excision and incision wound models. Therefore, the present study was designed to investigate the wound healing activity along with the antioxidant enzyme profile during cutaneous excision immunocompromised wo...

  6. Role of C-peptide in Altered Lipid Profile among Apparently Healthy Adults of Vijayapura City, Karnataka

    Directory of Open Access Journals (Sweden)

    Chandrahas M.Kulkarni

    2016-04-01

    Full Text Available Background: C-peptide is produced in equimolar concentration during insulin production as inactive molecule by beta islet cells of Langerhans. C-peptide is most useful biomarker of endogenous insulin production. Aim and Objectives: To predict metabolic syndrome in advance by estimation of C-peptide and lipid profile in healthy adults. Material and Methods: Serum C-peptide, fasting blood glucose and lipid profile of 128 healthy individuals were estimated. Adults in the age group of 18 to 60 years of both sexes were included in study. Results: C-peptide levels were increased in 27%, Serum cholesterol in 30%, LDL Cholesterol in 55% and triglyceride levels in 21% of healthy individuals. Significant correlation was observed between C peptide, age, serum cholesterol, LDL and cholesterol LDL ratio in male subjects only. In our study group most of the subjects (both males and females fell in overweight group. Conclusion: Cpeptide level and lipid profile may be considered as useful biomarkers to predict type 2 diabetes mellitus in advance, possibly due to insulin resistance.

  7. Antroquinonol inhibits NSCLC proliferation by altering PI3K/mTOR proteins and miRNA expression profiles.

    Science.gov (United States)

    Kumar, V Bharath; Yuan, Ta-Chun; Liou, Je-Wen; Yang, Chih-Jen; Sung, Ping-Jyun; Weng, Ching-Feng

    2011-02-10

    Antroquinonol a derivative of Antrodia camphorata has been reported to have antitumor effects against various cancer cells. However, the effect of antroquinonol on cell signalling and survival pathways in non-small cell lung cancer (NSCLC) cells has not been fully demarcated. Here we report that antroquinonol treatment significantly reduced the proliferation of three NSCLC cells. Treatment of A549 cells with antroquinonol increased cell shrinkage, apoptotic vacuoles, pore formation, TUNEL positive cells and increased Sub-G1 cell population with respect to time and dose dependent manner. Antroquinonol treatment not only increased the Sub-G1 accumulation but also reduced the protein levels of cdc2 without altering the expression of cyclin B1, cdc25C, pcdc2, and pcdc25C. Antroquinonol induced apoptosis was associated with disrupted mitochondrial membrane potential and activation of Caspase 3 and PARP cleavage in A549 cells. Moreover, antroquinonol treatment down regulated the expression of Bcl2 proteins, which was correlated with the decreased PI3K and mTOR protein levels without altering pro apoptotic and anti apoptotic proteins. Results from the microarray analysis demonstrated that antroquinonol altered the expression level of miRNAs compared with untreated control in A549 cells. The data collectively suggested the antiproliferative effect of antroquinonol on NSCLC A549 cells, which provides useful information for understanding the anticancer mechanism influenced by antroquinonol and is the first report to suggest that antroquinonol may be a promising chemotherapeutic agent for lung cancer. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Simultaneously hermaphroditic shrimp use lipophilic cuticular hydrocarbons as contact sex pheromones.

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    Full Text Available Successful mating is essentially a consequence of making the right choices at the correct time. Animals use specific strategies to gain information about a potential mate, which is then applied to decision-making processes. Amongst the many informative signals, odor cues such as sex pheromones play important ecological roles in coordinating mating behavior, enabling mate and kin recognition, qualifying mate choice, and preventing gene exchange among individuals from different populations and species. Despite overwhelming behavioral evidence, the chemical identity of most cues used in aquatic organisms remains unknown and their impact and omnipresence have not been fully recognized. In many crustaceans, including lobsters and shrimps, reproduction happens through a cascade of events ranging from initial attraction to formation of a mating pair eventually leading to mating. We examined the hypothesis that contact pheromones on the female body surface of the hermaphroditic shrimp Lysmata boggessi are of lipophilic nature, and resemble insect cuticular hydrocarbon contact cues. Via chemical analyses and behavioural assays, we show that newly molted euhermaphrodite-phase shrimp contain a bouquet of odor compounds. Of these, (Z-9-octadecenamide is the key odor with hexadecanamide and methyl linoleate enhancing the bioactivity of the pheromone blend. Our results show that in aquatic systems lipophilic, cuticular hydrocarbon contact sex pheromones exist; this raises questions on how hydrocarbon contact signals evolved and how widespread these are in the marine environment.

  9. Postmating changes in cuticular chemistry and visual appearance in Ectatomma tuberculatum queens (Formicidae: Ectatomminae)

    Science.gov (United States)

    Hora, Riviane R.; Ionescu-Hirsh, Armin; Simon, Tovit; Delabie, Jacques; Robert, Jacques; Fresneau, Dominique; Hefetz, Abraham

    2008-01-01

    In the ectatommine ant Ectatomma tuberculatum, the visual appearance of queens changes after mating and ovarian development in that their cuticle turns from shiny to matte. In this study, we have shown that this change seems to be caused by 15-fold accumulation of hydrocarbons, in particular heptacosane that covers the multiple grooves present on the cuticular surface creating a wax coat in mated fully fertile queens. Analyses of the scrapped wax revealed that it is composed largely of heptacosane. Peak-by-peak comparison of the cuticular hydrocarbon (CHC) composition of mated, virgin with developed ovaries and virgin with nondeveloped ovaries revealed significant differences between the queen groups. Although the total amount of the CHC of virgin queens with developed ovaries was not higher than virgin queens that did not have developed ovaries, the composition showed a shift toward the mated queen. While it is possible that the large accumulation of hydrocarbons may give extra physical and chemical protection to queens, we propose that the switch in the relative abundance of heptacosane and nonacosane and perhaps of other components is indicative of being a mating and fertility cue. This is the first report in social insects where external chemical changes are accompanied by changes in visual appearance.

  10. Association of urinary metal profiles with altered glucose levels and diabetes risk: a population-based study in China.

    Directory of Open Access Journals (Sweden)

    Wei Feng

    Full Text Available Elevated heavy metals and fasting plasma glucose (FPG levels were both associated with increased risk of cardiovascular diseases. However, studies on the associations of heavy metals and essential elements with altered FPG and diabetes risk were limited or conflicting. The objective of this study was to evaluate the potential associations of heavy metals and essential trace elements with FPG and diabetes risk among general Chinese population.We conducted a cross-sectional study to investigate the associations of urinary concentrations of 23 metals with FPG, impaired fasting glucose (IFG and diabetes among 2242 community-based Chinese adults in Wuhan. We used the false discovery rate (FDR method to correct for multiple hypothesis tests.After adjusting for potential confounders, urinary aluminum, titanium, cobalt, nickel, copper, zinc, selenium, rubidium, strontium, molybdenum, cadmium, antimony, barium, tungsten and lead were associated with altered FPG, IFG or diabetes risk (all P< 0.05; arsenic was only dose-dependently related to diabetes (P< 0.05. After additional adjustment for multiple testing, titanium, copper, zinc, selenium, rubidium, tungsten and lead were still significantly associated with one or more outcomes (all FDR-adjusted P< 0.05.Our results suggest that multiple metals in urine are associated with FPG, IFG or diabetes risk. Because the cross-sectional design precludes inferences about causality, further prospective studies are warranted to validate our findings.

  11. Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Mathieu Barbier

    Full Text Available Platelet adhesion to the brain microvasculature has been associated with cerebral malaria (CM in humans, suggesting that platelets play a role in the pathogenesis of this syndrome. In vitro co-cultures have shown that platelets can act as a bridge between Plasmodium falciparum-infected red blood cells (pRBC and human brain microvascular endothelial cells (HBEC and potentiate HBEC apoptosis. Using cDNA microarray technology, we analyzed transcriptional changes of HBEC in response to platelets in the presence or the absence of tumor necrosis factor (TNF and pRBC, which have been reported to alter gene expression in endothelial cells. Using a rigorous statistical approach with multiple test corrections, we showed a significant effect of platelets on gene expression in HBEC. We also detected a strong effect of TNF, whereas there was no transcriptional change induced specifically by pRBC. Nevertheless, a global ANOVA and a two-way ANOVA suggested that pRBC acted in interaction with platelets and TNF to alter gene expression in HBEC. The expression of selected genes was validated by RT-qPCR. The analysis of gene functional annotation indicated that platelets induce the expression of genes involved in inflammation and apoptosis, such as genes involved in chemokine-, TREM1-, cytokine-, IL10-, TGFβ-, death-receptor-, and apoptosis-signaling. Overall, our results support the hypothesis that platelets play a pathogenic role in CM.

  12. Altered Methylation Profile of Lymphocytes Is Concordant with Perturbation of Lipids Metabolism and Inflammatory Response in Obesity

    Directory of Open Access Journals (Sweden)

    Mette J. Jacobsen

    2016-01-01

    Full Text Available Obesity is associated with immunological perturbations that contribute to insulin resistance. Epigenetic mechanisms can control immune functions and have been linked to metabolic complications, although their contribution to insulin resistance still remains unclear. In this study, we investigated the link between metabolic dysfunction and immune alterations with the epigenetic signature in leukocytes in a porcine model of obesity. Global DNA methylation of circulating leukocytes, adipose tissue leukocyte trafficking, and macrophage polarisation were established by flow cytometry. Adipose tissue inflammation and metabolic function were further characterised by quantification of metabolites and expression levels of genes associated with obesity and inflammation. Here we show that obese pigs showed bigger visceral fat pads, higher levels of circulating LDL cholesterol, and impaired glucose tolerance. These changes coincided with impaired metabolism, sustained macrophages infiltration, and increased inflammation in the adipose tissue. Those immune alterations were linked to global DNA hypermethylation in both B-cells and T-cells. Our results provide novel insight into the possible contribution of immune cell epigenetics into the immunological disturbances observed in obesity. The dramatic changes in the transcriptomic and epigenetic signature of circulating lymphocytes reinforce the concept that epigenetic processes participate in the increased immune cell activation and impaired metabolic functions in obesity.

  13. Distinctive Regulatory T Cells and Altered Cytokine Profile Locally in the Airways of Young Smokers with Normal Lung Function.

    Science.gov (United States)

    Ostadkarampour, Mahyar; Müller, Malin; Öckinger, Johan; Kullberg, Susanna; Lindén, Anders; Eklund, Anders; Grunewald, Johan; Wahlström, Jan

    2016-01-01

    Smoking influences the immune system in different ways and, hypothetically, effects on pulmonary effector and regulatory T cells emerge as potentially detrimental. Therefore, we characterized the frequencies and characteristics of CD4+ and CD8+ T cell subsets in the blood and lungs of young tobacco smokers. Bronchoalveolar lavage (BAL) and peripheral blood were obtained from healthy moderate smokers (n = 18; 2-24 pack-years) and never-smokers (n = 15), all with normal lung function. Cells were stimulated ex vivo and key intracellular cytokines (IFNγ, IL-17, IL-10 and TNFα) and transcription factors (Foxp3, T-bet and Helios) were analyzed using flow cytometry. Our results indicate that smoking is associated with a decline in lung IL-17+ CD4+ T cells, increased IFNγ+ CD8+ T cells and these alterations relate to the history of daily cigarette consumption. There is an increased fraction of Foxp3+ regulatory T cells being Helios- in the lungs of smokers. Cytokine production is mainly confined to the Helios- T cells, both in regulatory and effector subsets. Moreover, we detected a decline of Helios+Foxp3- postulated regulatory CD8+ T cells in smokers. These alterations in the immune system are likely to increase risk for infection and may have implications for autoimmune processes initiated in the lungs among tobacco smokers.

  14. The effect of cinnamon extract and long-term aerobic training on heart function, biochemical alterations and lipid profile following exhaustive exercise in male rats.

    Science.gov (United States)

    Badalzadeh, Reza; Shaghaghi, Mehrnoush; Mohammadi, Mustafa; Dehghan, Gholamreza; Mohammadi, Zeynab

    2014-12-01

    Regular training is suggested to offer a host of benefits especially on cardiovascular system. In addition, medicinal plants can attenuate oxidative stress-mediated damages induced by stressor insults. In this study, we investigated the concomitant effect of cinnamon extract and long-term aerobic training on cardiac function, biochemical alterations and lipid profile following exhaustive exercise. Male Wistar rats (250-300 g) were divided into five groups depending on receiving regular training, cinnamon bark extraction, none or both of them, and then encountered with an exhausted exercise in last session. An 8-week endurance training program was designed with a progressive increase in training speed and time. Myocardial hemodynamics was monitored using a balloon-tipped catheter inserted into left ventricles. Blood samples were collected for analyzing biochemical markers, lipid profiles and lipid-peroxidation marker, malondealdehyde (MDA). Trained animals showed an enhanced cardiac force and contractility similar to cinnamon-treated rats. Co-application of regular training and cinnamon had additive effect in cardiac hemodynamic (Ptraining and supplementation with cinnamon significantly decreased serum levels of total cholesterol, low-density lipoprotein (LDL), and increased high-density lipoprotein (HDL) level and HDL/LDL ratio as compared to control group (Ptraining significantly reduced MDA level elevation induced by exhausted exercise (Ptraining improved cardiac hemodynamic through an additive effect. The positive effects of cinnamon and regular training on cardiac function were associated with a reduced serum MDA level and an improved blood lipid profile.

  15. Increased ApoB/ApoA1 ratio is associated with excess weight, body adiposity, and altered lipid profile in children.

    Science.gov (United States)

    Castro, Ana Paula Pereira; Hermsdorff, Helen Hermana Miranda; Milagres, Luana Cupertino; Albuquerque, Fernanda Martins de; Filgueiras, Mariana De Santis; Rocha, Naruna Pereira; Novaes, Juliana Farias de

    2018-02-10

    To investigate ApoB/ApoA1 ratio and its association with cardiovascular risk factors in children. Cross-sectional study with 258 children aged 8 and 9 years old, enrolled in all urban schools in the city of Viçosa-MG. Anthropometric and body composition assessment, as well as biochemical profile of the children was performed. Socioeconomic variables and sedentary lifestyle were evaluated through a semi-structured questionnaire. Many children had excess weight (35.2%), abdominal adiposity (10.5%), and body fat (15.6%), as well as increased ApoB/ApoA1 ratio (14.7%), total cholesterol (51.8%), and triglycerides (19.8%). Children with excess weight and total and central fat had a higher prevalence of having a higher ApoB/ApoA1 ratio, as well as those with atherogenic lipid profile (increased LDL-c and triglycerides and low HDL-c). A direct association was found between the number of cardiovascular risk factors and the ApoB/ApoA1 ratio (p=0.001), regardless of age and income. The increased ApoB/ApoA1 ratio was associated with excess weight, body adiposity (total and central), and altered lipid profile in children. Children with a higher number of cardiovascular risk factors had higher ApoB/ApoA1 ratio, in both genders. Copyright © 2018 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  16. Ultraviolet-B radiation and water deficit interact to alter flavonol and anthocyanin profiles in grapevine berries through transcriptomic regulation.

    Science.gov (United States)

    Martínez-Lüscher, Johann; Sánchez-Díaz, Manuel; Delrot, Serge; Aguirreolea, Jone; Pascual, Inmaculada; Gomès, Eric

    2014-11-01

    UV-B radiation and water deficit may trigger flavonol and anthocyanin biosynthesis in plant tissues. In addition, previous research has showed strong qualitative effects on grape berry skin flavonol and anthocyanin profiles in response to UV-B and water deficit. The aim of this study is to identify the mechanisms leading to quantitative and qualitative changes in flavonol and anthocyanin profiles, in response to separate and combined UV-B and water deficit. Grapevines (Vitis vinifera L. cv. Tempranillo) were exposed to three levels of UV-B radiation (0, 5.98 and 9.66 kJ m(-2) day(-1)) and subjected to two water regimes. A strong effect of UV-B on flavonol and anthocyanin biosynthesis was found, resulting in an increased anthocyanin concentration and a change in their profile. Concomitantly, two key biosynthetic genes (FLS1 and UFGT) were up-regulated by UV-B, leading to increased flavonol and anthocyanin skin concentration. Changes in flavonol and anthocyanin composition were explained to a large extend by transcript levels of F3'H, F3'5'H and OMT2. A significant interaction between UV-B and water deficit was found in the relative abundance of 3'4' and 3'4'5' substituted flavonols, but not in their anthocyanin homologues. The ratio between 3'4'5' and 3'4' substituted flavonols was linearly related to the ratios of F3'5'H and FLS1 transcription, two steps up-regulated independently by water deficit and UV-B radiation, respectively. Our results indicate that changes in flavonol profiles in response to environmental conditions are not only a consequence of changes in the expression of flavonoid hydroxylases; but also the result of the competition of FLS, F3'5'H and F3'H enzymes for the same flavonol substrates. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Various lamin A/C mutations alter expression profile of mesenchymal stem cells in mutation specific manner.

    Science.gov (United States)

    Malashicheva, Anna; Bogdanova, Maria; Zabirnyk, Arsenii; Smolina, Natalia; Ignatieva, Elena; Freilikhman, Olga; Fedorov, Anton; Dmitrieva, Renata; Sjöberg, Gunnar; Sejersen, Thomas; Kostareva, Anna

    2015-01-01

    Various mutations in LMNA gene, encoding for nuclear lamin A/C protein, lead to laminopathies and contribute to over ten human disorders, mostly affecting tissues of mesenchymal origin such as fat tissue, muscle tissue, and bones. Recently it was demonstrated that lamins not only play a structural role providing communication between extra-nuclear structures and components of cell nucleus but also control cell fate and differentiation. In our study we assessed the effect of various LMNA mutations on the expression profile of mesenchymal multipotent stem cells (MMSC) during adipogenic and osteogenic differentiation. We used lentiviral approach to modify human MMSC with LMNA-constructs bearing mutations associated with different laminopathies--G465D, R482L, G232E, R527C, and R471C. The impact of various mutations on MMSC differentiation properties and expression profile was assessed by colony-forming unit analysis, histological staining, expression of the key differentiation markers promoting adipogenesis and osteogenesis followed by the analysis of the whole set of genes involved in lineage-specific differentiation using PCR expression arrays. We demonstrate that various LMNA mutations influence the differentiation efficacy of MMSC in mutation-specific manner. Each LMNA mutation promotes a unique expression pattern of genes involved in a lineage-specific differentiation and this pattern is shared by the phenotype-specific mutations. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Sepsis in preterm infants causes alterations in mucosal gene expression and microbiota profiles compared to non-septic twins.

    Science.gov (United States)

    Cernada, María; Bäuerl, Christine; Serna, Eva; Collado, Maria Carmen; Martínez, Gaspar Pérez; Vento, Máximo

    2016-05-16

    Sepsis is a life-threatening condition in preterm infants. Neonatal microbiota plays a pivotal role in the immune system maturation. Changes in gut microbiota have been associated to inflammatory disorders; however, a link with sepsis in the neonatal period has not yet been established. We aimed to analyze gut microbiota and mucosal gene expression using non-invasively obtained samples to provide with an integrative perspective of host-microbe interactions in neonatal sepsis. For this purpose, a prospective observational case-control study was conducted in septic preterm dizygotic twins and their non-septic twin controls. Fecal samples were used for both microbiota analysis and host genome-wide expression using exfoliated intestinal cells. Gene expression of exfoliated intestinal cells in septic preterm showed an induction of inflammatory and oxidative stress pathways in the gut and pro-oxidant profile that caused dysbiosis in the gut microbiota with predominance of Enterobacteria and reduction of Bacteroides and Bifidobacterium spp.in fecal samples, leading to a global reduction of beneficial anaerobic bacteria. Sepsis in preterm infants induced low-grade inflammation and oxidative stress in the gut mucosa, and also changes in the gut microbiota. This study highlights the role of inflammation and oxidative stress in neonatal sepsis on gut microbial profiles.

  19. Deep thiopental anesthesia alters steady-state glucose homeostasis but not the neurochemical profile of rat cortex.

    Science.gov (United States)

    Lei, Hongxia; Duarte, Joao M N; Mlynarik, Vladimir; Python, Agathe; Gruetter, Rolf

    2010-02-01

    Barbiturates are regularly used as an anesthetic for animal experimentation and clinical procedures and are frequently provided with solubilizing compounds, such as ethanol and propylene glycol, which have been reported to affect brain function and, in the case of (1)H NMR experiments, originate undesired resonances in spectra affecting the quantification. As an alternative, thiopental can be administrated without any solubilizing agents. The aim of the study was to investigate the effect of deep thiopental anesthesia on the neurochemical profile consisting of 19 metabolites and on glucose transport kinetics in vivo in rat cortex compared with alpha-chloralose using localized (1)H NMR spectroscopy. Thiopental was devoid of effects on the neurochemical profile, except for the elevated glucose at a given plasma glucose level resulting from thiopental-induced depression of glucose consumption at isoelectrical condition. Over the entire range of plasma glucose levels, steady-state glucose concentrations were increased on average by 48% +/- 8%, implying that an effect of deep thiopental anesthesia on the transport rate relative to cerebral glucose consumption ratio was increased by 47% +/- 8% compared with light alpha-chloralose-anesthetized rats. We conclude that the thiopental-induced isoelectrical condition in rat cortex significantly affected glucose contents by depressing brain metabolism, which remained substantial at isoelectricity. 2009 Wiley-Liss, Inc.

  20. Angiogenic cytokines profile in smoldering multiple myeloma: no difference compared to MGUS but altered compared to symptomatic myeloma.

    Science.gov (United States)

    Gkotzamanidou, Maria; Christoulas, Dimitrios; Souliotis, Vasillis L; Papatheodorou, Athanasios; Dimopoulos, Meletios A; Terpos, Evangelos

    2013-12-20

    Symptomatic multiple myeloma (MM) evolves from an asymptomatic precursor state termed monoclonal gammopathy of undetermined significance (MGUS) and smoldering myeloma (SMM). Angiogenesis plays a key role in the pathogenesis of MM but there are very limited data for angiogenesis in SMM. We measured the circulating levels of angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), vascular endothelial growth factor (VEGF), and angiogenin in 54 patients with SMM. The results were compared with those of 27 MGUS patients, 55 MM patients, and 22 healthy controls. The expression of VEGF-A gene was also evaluated in 10 patients with SMM, 10 with symptomatic MM, and 10 with MGUS. The ratio of circulating Ang-1/Ang-2 was reduced in MM patients with symptomatic disease due to a dramatic increase of Ang-2 (pmyeloma, the alterations of angiopoietins along with VEGF contribute to myeloma cell growth, supporting the target of these molecules for the development of novel anti-myeloma agents.

  1. Alteration of gene expression profile in Niemann-Pick type C mice correlates with tissue damage and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Mary C Vázquez

    Full Text Available BACKGROUND: Niemann-Pick type C disease (NPC is a neurovisceral lipid storage disorder mainly characterized by unesterified cholesterol accumulation in lysosomal/late endosomal compartments, although there is also an important storage for several other kind of lipids. The main tissues affected by the disease are the liver and the cerebellum. Oxidative stress has been described in various NPC cells and tissues, such as liver and cerebellum. Although considerable alterations occur in the liver, the pathological mechanisms involved in hepatocyte damage and death have not been clearly defined. Here, we assessed hepatic tissue integrity, biochemical and oxidative stress parameters of wild-type control (Npc1(+/+; WT and homozygous-mutant (Npc1(-/-; NPC mice. In addition, the mRNA abundance of genes encoding proteins associated with oxidative stress, copper metabolism, fibrosis, inflammation and cholesterol metabolism were analyzed in livers and cerebella of WT and NPC mice. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed various oxidative stress parameters in the liver and hepatic and cerebellum gene expression in 7-week-old NPC1-deficient mice compared with control animals. We found signs of inflammation and fibrosis in NPC livers upon histological examination. These signs were correlated with increased levels of carbonylated proteins, diminished total glutathione content and significantly increased total copper levels in liver tissue. Finally, we analyzed liver and cerebellum gene expression patterns by qPCR and microarray assays. We found a correlation between fibrotic tissue and differential expression of hepatic as well as cerebellar genes associated with oxidative stress, fibrosis and inflammation in NPC mice. CONCLUSIONS/SIGNIFICANCE: In NPC mice, liver disease is characterized by an increase in fibrosis and in markers associated with oxidative stress. NPC is also correlated with altered gene expression, mainly of genes involved in oxidative stress

  2. The anti‑dengue virus properties of statins may be associated with alterations in the cellular antiviral profile expression.

    Science.gov (United States)

    Bryan-Marrugo, Owen Lloyd; Arellanos-Soto, Daniel; Rojas-Martinez, Augusto; Barrera-Saldaña, Hugo; Ramos-Jimenez, Javier; Vidaltamayo, Roman; Rivas-Estilla, Ana María

    2016-09-01

    Dengue virus (DENV) susceptibility to cholesterol depleting treatments has been previously reported. There are numerous questions regarding how DENV seizes cellular machinery and cholesterol to improve viral production and the effect of cholesterol sequestering agents on the cellular antiviral response. The aim of the present study was to evaluate the mechanisms involved in the negative regulation of DENV replication induced by agents that diminish intracellular cholesterol levels. Cholesterol synthesis was pharmacologically (fluvastatin, atorvastatin, lovastatin, pravastatin and simvastatin treatment) and genetically (HMGCR‑RNAi) inhibited, in uninfected and DENV2‑infected hepatoma Huh‑7 cells. The cholesterol levels, DENV titer and cellular antiviral expression profile were evaluated. A reduction in the DENV titer, measured as plaque forming units, was observed in DENV‑infected cells following 48 h treatment with 10 µM fluvastatin, 10 µM atorvastatin, 20 µM lovastatin and 20 µM simvastatin, which achieved 70, 70, 65 and 55% DENV2 inhibition, respectively, compared with the untreated cells. In addition, the cytopathic effect was reduced in the statin‑treated DENV‑infected cells. Statins simultaneously reduced cholesterol levels at 48 h, with the exception of DENV2 infected cells. Genetic inhibition of cholesterol synthesis was performed using RNA interference for 3‑hydroxy‑3‑methylglutaryl‑CoA reductase (HMGCR‑siRNA), which indicated a slight reduction in DENV2 titer at 48 h post‑infection, however, with no significant reduction in cholesterol levels. In addition, DENV2 infection was observed to augment the intracellular cholesterol levels in all experimental conditions. Comparison between the cellular antiviral response triggered by DENV2 infection, statin treatment and HMGCR‑siRNA in infected, uninfected, treated and untreated Huh7 cells, showed different expression profiles for the antiviral genes evaluated. All

  3. Impairment of lysophospholipid metabolism in obesity: altered plasma profile and desensitization to the modulatory properties of n-3 polyunsaturated fatty acids in a randomized controlled trial.

    Science.gov (United States)

    Del Bas, Josep M; Caimari, Antoni; Rodriguez-Naranjo, Maria Isabel; Childs, Caroline E; Paras Chavez, Carolina; West, Annette L; Miles, Elizabeth A; Arola, Lluis; Calder, Philip C

    2016-08-01

    Plasma lysophospholipids have emerged as signaling molecules with important effects on inflammation, insulin resistance, and fatty liver disease, each of which is linked closely to obesity. Dietary n-3 (ω-3) polyunsaturated fatty acids (PUFAs) may be able to improve these conditions. The objective of this study was to assess the response of plasma lysophospholipids to obesity, n-3 PUFA consumption, and a high-fat meal challenge to better understand the role of lysophospholipid metabolism in the progression of obesity-related disorders. We determined the concentrations of 8 lysophosphatidylcholines, 11 lysophosphatidylethanolamines, and 7 lysophosphatidylinositols in the plasma of 34 normal-weight and 38 obese subjects randomly assigned to consume corn oil (control) or n-3 PUFA-rich fish oil (3 g/d; n = 15-19/group) for 90 d. Blood samples were collected on the last day of the study under fasting conditions and 6 h after a high-fat meal (1135 kcal, 86 g fat) challenge. The profile of secreted lysophospholipids was studied in HepG2 cells under palmitate-induced steatosis. Obese and normal-weight subjects had different profiles of plasma lysophospholipids. A multivariate combination of the 26 lysophospholipids could discriminate between normal-weight and obese subjects with an accuracy of 98%. The high-fat meal challenge altered the concentration of plasma lysophosphatidylcholines in an oil treatment-dependent manner in normal-weight but not obese subjects, suggesting that obesity impairs the sensitivity of lysophospholipid metabolism to n-3 PUFAs. Noncytotoxic steatosis in HepG2 cells affected the secretion pattern of lysophospholipids, partially resembling the changes observed in the plasma of obese subjects. Obesity has a substantial impact on lysophospholipid metabolism, altering the plasma lysophospholipid profile and abolishing its sensitivity to dietary n-3 PUFAs. These effects could contribute to the onset or progression of alterations associated with obesity

  4. Single episode of mild murine malaria induces neuroinflammation, alters microglial profile, impairs adult neurogenesis, and causes deficits in social and anxiety-like behavior.

    Science.gov (United States)

    Guha, Suman K; Tillu, Rucha; Sood, Ankit; Patgaonkar, Mandar; Nanavaty, Ishira N; Sengupta, Arjun; Sharma, Shobhona; Vaidya, Vidita A; Pathak, Sulabha

    2014-11-01

    Cerebral malaria is associated with cerebrovascular damage and neurological sequelae. However, the neurological consequences of uncomplicated malaria, the most prevalent form of the disease, remain uninvestigated. Here, using a mild malaria model, we show that a single Plasmodium chabaudi adami infection in adult mice induces neuroinflammation, neurogenic, and behavioral changes in the absence of a blood-brain barrier breach. Using cytokine arrays we show that the infection induces differential serum and brain cytokine profiles, both at peak parasitemia and 15days post-parasite clearance. At the peak of infection, along with the serum, the brain also exhibited a definitive pro-inflammatory cytokine profile, and gene expression analysis revealed that pro-inflammatory cytokines were also produced locally in the hippocampus, an adult neurogenic niche. Hippocampal microglia numbers were enhanced, and we noted a shift to an activated profile at this time point, accompanied by a striking redistribution of the microglia to the subgranular zone adjacent to hippocampal neuronal progenitors. In the hippocampus, a distinct decline in progenitor turnover and survival was observed at peak parasitemia, accompanied by a shift from neuronal to glial fate specification. Studies in transgenic Nestin-GFP reporter mice demonstrated a decline in the Nestin-GFP(+)/GFAP(+) quiescent neural stem cell pool at peak parasitemia. Although these cellular changes reverted to normal 15days post-parasite clearance, specific brain cytokines continued to exhibit dysregulation. Behavioral analysis revealed selective deficits in social and anxiety-like behaviors, with no change observed in locomotor, cognitive, and depression-like behaviors, with a return to baseline at recovery. Collectively, these findings indicate that even a single episode of mild malaria results in alterations of the brain cytokine profile, causes specific behavioral dysfunction, is accompanied by hippocampal microglial

  5. Alterations of growth, blood biochemical components and hormone profiles by intensified nutrition in growth retarded Japanese Black cattle.

    Science.gov (United States)

    Watanabe, Daisaku; Ikeda, Hiroki; Kazamatsuri, Hiroyuki; Ando, Takaaki; Ohtsuka, Hiromichi; Kobayashi, Shigeki; Oikawa, Masaaki; Sugimoto, Yoshikazu

    2010-09-01

    In order to determine the clinical conditions of Japanese Black (JB) cattle with growth retardation, we determined the changes of body growth, blood profiles of metabolism and hormones caused by intensified nutrition (sufficient total digestible nutrients and digestible crude protein for a target daily gain set at 1.2-1.3 kg/day) in three cattle. The daily gain (DG) was increased during the intensified period (Intense) compared with the preparation period (Pre), but the DG in the Intense period was 36-66% of the target DG. Serum albumin, total cholesterol, insulin and IGF-1 increased during the Intense period compared with the Pre period. Serum GH showed high levels in the Pre period, whereas it showed lower levels in the Intense period. These results suggested that the present growth retarded cattle had abnormalities in their metabolic systems and lacked nutrient absorption.

  6. High Fat Diet Administration during Specific Periods of Pregnancy Alters Maternal Fatty Acid Profiles in the Near-Term Rat

    Directory of Open Access Journals (Sweden)

    Marlon E. Cerf

    2016-01-01

    Full Text Available Excessive fat intake is a global health concern as women of childbearing age increasingly ingest high fat diets (HFDs. We therefore determined the maternal fatty acid (FA profiles in metabolic organs after HFD administration during specific periods of gestation. Rats were fed a HFD for the first (HF1, second (HF2, or third (HF3 week, or for all three weeks (HFG of gestation. Total maternal plasma non-esterified fatty acid (NEFA concentrations were monitored throughout pregnancy. At day 20 of gestation, maternal plasma, liver, adipose tissue, and placenta FA profiles were determined. In HF3 mothers, plasma myristic and stearic acid concentrations were elevated, whereas docosahexaenoic acid (DHA was reduced in both HF3 and HFG mothers. In HF3 and HFG mothers, hepatic stearic and oleic acid proportions were elevated; conversely, DHA and linoleic acid (LA proportions were reduced. In adipose tissue, myristic acid was elevated, whereas DHA and LA proportions were reduced in all mothers. Further, adipose tissue stearic acid proportions were elevated in HF2, HF3, and HFG mothers; with oleic acid increased in HF1 and HFG mothers. In HF3 and HFG mothers, placental neutral myristic acid proportions were elevated, whereas DHA was reduced. Further, placental phospholipid DHA proportions were reduced in HF3 and HFG mothers. Maintenance on a diet, high in saturated fat, but low in DHA and LA proportions, during late or throughout gestation, perpetuated reduced DHA across metabolic organs that adapt during pregnancy. Therefore a diet, with normal DHA proportions during gestation, may be important for balancing maternal FA status.

  7. High Fat Diet Administration during Specific Periods of Pregnancy Alters Maternal Fatty Acid Profiles in the Near-Term Rat.

    Science.gov (United States)

    Cerf, Marlon E; Herrera, Emilio

    2016-01-04

    Excessive fat intake is a global health concern as women of childbearing age increasingly ingest high fat diets (HFDs). We therefore determined the maternal fatty acid (FA) profiles in metabolic organs after HFD administration during specific periods of gestation. Rats were fed a HFD for the first (HF1), second (HF2), or third (HF3) week, or for all three weeks (HFG) of gestation. Total maternal plasma non-esterified fatty acid (NEFA) concentrations were monitored throughout pregnancy. At day 20 of gestation, maternal plasma, liver, adipose tissue, and placenta FA profiles were determined. In HF3 mothers, plasma myristic and stearic acid concentrations were elevated, whereas docosahexaenoic acid (DHA) was reduced in both HF3 and HFG mothers. In HF3 and HFG mothers, hepatic stearic and oleic acid proportions were elevated; conversely, DHA and linoleic acid (LA) proportions were reduced. In adipose tissue, myristic acid was elevated, whereas DHA and LA proportions were reduced in all mothers. Further, adipose tissue stearic acid proportions were elevated in HF2, HF3, and HFG mothers; with oleic acid increased in HF1 and HFG mothers. In HF3 and HFG mothers, placental neutral myristic acid proportions were elevated, whereas DHA was reduced. Further, placental phospholipid DHA proportions were reduced in HF3 and HFG mothers. Maintenance on a diet, high in saturated fat, but low in DHA and LA proportions, during late or throughout gestation, perpetuated reduced DHA across metabolic organs that adapt during pregnancy. Therefore a diet, with normal DHA proportions during gestation, may be important for balancing maternal FA status.

  8. Altered Immune Profiles of Natural Killer Cells in Chronic Hepatitis B Patients: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Qiong-Fang Zhang

    Full Text Available Natural killer (NK cells are the main effective component of the innate immune system that responds to chronic hepatitis B (CHB infection. Although numerous studies have reported the immune profiles of NK cells in CHB patients, they are limited by inconsistent results. Thus, we performed a meta-analysis to characterize reliably the immune profiles of NK cells after CHB infection, specifically frequency, phenotype, and function.A literature search of the computer databases MEDLINE, PUBMED, EMBASE, and Cochrane Center Register of Controlled Trails was performed and 19 studies were selected. The standard mean difference (SMD and 95% confidence interval (CI of each continuous variable was estimated with a fixed effects model when I2 < 50% for the test for heterogeneity, or the random effects model otherwise. Publication bias was evaluated using Begg's and Egger's tests.The meta-analysis of publications that reported frequency of peripheral NK cells showed that NK cell levels in CHB patients were significantly lower compared with that of healthy controls. A higher frequency of CD56bright NK subsets was found in CHB patients, but the CD56dim NK subsets of CHB patients and healthy controls were similar. CHB patients before and after antiviral therapy with nucleotide analogues (NUCs showed no statistical difference in NK frequency. The activating receptors were upregulated, whereas inhibitory receptors were comparable in the peripheral NK cells of CHB individuals and healthy controls. NK cells of CHB patients displayed higher cytotoxic potency as evidenced by CD107a protein levels and conserved potency to produce interferon-gamma (IFNγ, compared with their healthy counterparts.Our results revealed that CHB patients had a lower frequency of NK cells compared with healthy individuals not treatable with antiviral NUC therapy. With an activating phenotype, NK cells in CHB patients showed better cytotoxic potency and conserved IFNγ production.

  9. Effects of relative humidity, temperature, and population density on production of cuticular hydrocarbons in housefly Musca domestica L.

    NARCIS (Netherlands)

    Noorman, N; Den Otter, CJ

    The production of cuticular hydrocarbons by both males and females of Musca domestica L. under very wet conditions (90% relative humidity) compared to the production at 50 and 20% relative humidity is delayed up to at least 3 days after emergence from the pupae. Eight days after emergence, however,

  10. Identification and characterization of cuticular hydrocarbons from a rapid species radiation of Hawaiian swordtailed crickets (Gryllidae: Trigonidiinae: Laupala).

    Science.gov (United States)

    Mullen, Sean P; Millar, Jocelyn G; Schal, Coby; Shaw, Kerry L

    2008-02-01

    A previous investigation of cuticular hydrocarbon variation among Hawaiian swordtail crickets (genus Laupala) revealed that these species differ dramatically in composition of cuticular lipids. Cuticular lipid extracts of Laupala species sampled from the Big Island of Hawaii also possess a greatly reduced number of chemicals (as evidenced by number of gas chromatography peaks) relative to ancestral taxa sampled from the geologically older island of Maui. One possible explanation for this biogeographic pattern is that reduction in chemical diversity observed among the Big Island taxa represents the loss of ancestral hydrocarbons found on Maui. To test this hypothesis, we characterized and identified the structures of cuticular hydrocarbons for seven species of Hawaiian Laupala, two from Maui (ancestral) and five from the Big Island of Hawaii (derived) by using gas chromatography-mass spectrometry. Big Island Laupala possessed a reduced number of alkenes as well as a reduction in the diversity of methyl-branch positions relative to species sampled from Maui (ancestral), thus supporting our hypothesis of a founder-induced loss of chemical diversity. The reduction in diversity of ancestral hydrocarbons was more severe within one of the two sister lineages on the Big Island, suggesting that post-colonizing processes, such as drift or selection, also have influenced hydrocarbon evolution in this group.

  11. Extracted Venom and Cuticular Compounds of Imported Fire Ants, Solenopsis spp., and Chemotaxonomic Applications Across a Persistent Hybrid Zone

    Science.gov (United States)

    Characterization of cuticular biomolecular assemblages for imported fire ants permit basic distinctions among colonies of S. invicta, S. richteri, and their hybrids; thus, providing opportunities to investigate details of landscape ecology for this species complex as well as to assess levels of inva...

  12. Replicatively senescent human fibroblasts reveal a distinct intracellular metabolic profile with alterations in NAD+ and nicotinamide metabolism.

    Science.gov (United States)

    James, Emma L; Lane, James A E; Michalek, Ryan D; Karoly, Edward D; Parkinson, E Kenneth

    2016-12-07

    Cellular senescence occurs by proliferative exhaustion (PEsen) or following multiple cellular stresses but had not previously been subject to detailed metabolomic analysis. Therefore, we compared PEsen fibroblasts with proliferating and transiently growth arrested controls using a combination of different mass spectroscopy techniques. PEsen cells showed many specific alterations in both the NAD+ de novo and salvage pathways including striking accumulations of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) in the amidated salvage pathway despite no increase in nicotinamide phosphoribosyl transferase or in the NR transport protein, CD73. Extracellular nicotinate was depleted and metabolites of the deamidated salvage pathway were reduced but intracellular NAD+ and nicotinamide were nevertheless maintained. However, sirtuin 1 was downregulated and so the accumulation of NMN and NR was best explained by reduced flux through the amidated arm of the NAD+ salvage pathway due to reduced sirtuin activity. PEsen cells also showed evidence of increased redox homeostasis and upregulated pathways used to generate energy and cellular membranes; these included nucleotide catabolism, membrane lipid breakdown and increased creatine metabolism. Thus PEsen cells upregulate several different pathways to sustain their survival which may serve as pharmacological targets for the elimination of senescent cells in age-related disease.

  13. Comparison of the aneugenic properties of nocodazole, paclitaxel and griseofulvin in vitro. Centrosome defects and alterations in protein expression profiles.

    Science.gov (United States)

    Zacharaki, Polyxeni; Stephanou, Georgia; Demopoulos, Nikos A

    2013-09-01

    We have comparatively investigated the aneugenic activity of two anticancer drugs, nocodazole (NOC) and paclitaxel (PTX), and the antifungal griseofulvin with promising role in cancer treatment (GF), which affect microtubule dynamics in different ways. The comparison was achieved in HFFF2 human fibroblasts, MCF-7 human breast cancer cells and C2C12 mouse myoblasts, and focused on three issues: (i) induction of chromosome delay by estimation of MN frequency using CREST analysis; (ii) disturbance of spindle organization with Aurora-A/β-tubulin immunofluorescence; and (iii) alterations in the expression of Aurora-A, β- and γ-tubulin by western blotting. They induced chromosome delay, provoked metaphase arrest and promoted microtubule disorganization, reflecting their common characteristic of generating aneuploidy. In particular, NOC induced mainly monopolar metaphases, although PTX induced only multipolar metaphases. GF generated different types of abnormal metaphases, exhibiting cell specificity. Additionally, NOC decreased the expression of Aurora-A and β-tubulin, while the opposite held true for PTX and GF. γ-Tubulin expression was not modulated owing to NOC treatment, whereas PTX and GF increased γ-tubulin expression. Our findings throw a light on the manifestation of the aneugenicity of the studied compounds through centrosome proliferation/separation and protein expression, reflecting their different effects on microtubule dynamics. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Probiotic Bacteria Alter Pattern-Recognition Receptor Expression and Cytokine Profile in a Human Macrophage Model Challenged with Candida albicans and Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Victor H. Matsubara

    2017-11-01

    Full Text Available Probiotics are live microorganisms that confer benefits to the host health. The infection rate of potentially pathogenic organisms such as Candida albicans, the most common agent associated with mucosal candidiasis, can be reduced by probiotics. However, the mechanisms by which the probiotics interfere with the immune system are largely unknown. We evaluated the effect of probiotic bacteria on C. albicans challenged human macrophages. Macrophages were pretreated with lactobacilli alone (Lactobacillus rhamnosus LR32, Lactobacillus casei L324m, or Lactobacillus acidophilus NCFM or associated with Escherichia coli lipopolysaccharide (LPS, followed by the challenge with C. albicans or LPS in a co-culture assay. The expression of pattern-recognition receptors genes (CLE7A, TLR2, and TLR4 was determined by RT-qPCR, and dectin-1 reduced levels were confirmed by flow cytometry. The cytokine profile was determined by ELISA using the macrophage cell supernatant. Overall probiotic lactobacilli down-regulated the transcription of CLEC7A (p < 0.05, resulting in the decreased expression of dectin-1 on probiotic pretreated macrophages. The tested Lactobacillus species down-regulated TLR4, and increased TLR2 mRNA levels in macrophages challenged with C. albicans. The cytokines profile of macrophages challenged with C. albicans or LPS were altered by the probiotics, which generally led to increased levels of IL-10 and IL-1β, and reduction of IL-12 production by macrophages (p < 0.05. Our data suggest that probiotic lactobacilli impair the recognition of PAMPs by macrophages, and alter the production of pro/anti-inflammatory cytokines, thus modulating inflammation.

  15. Dietary Docosahexaenoic Acid and trans-10, cis-12-Conjugated Linoleic Acid Differentially Alter Oxylipin Profiles in Mouse Periuterine Adipose Tissue.

    Science.gov (United States)

    Adkins, Yuriko; Belda, Benjamin J; Pedersen, Theresa L; Fedor, Dawn M; Mackey, Bruce E; Newman, John W; Kelley, Darshan S

    2017-05-01

    Diets containing high n-3 polyunsaturated fatty acids (PUFA) decrease inflammation and the incidence of chronic diseases including cardiovascular disease and nonalcoholic fatty liver disease while trans-fatty acids (TFA) intake increases the incidence of these conditions. Some health benefits of n-3 PUFA are mediated through the impact of their oxygenated metabolites, i.e. oxylipins. The TFA, trans-10, cis-12-conjugated linoleic acid (CLA; 18:2n-6) is associated with adipose tissue (AT) inflammation, oxidative stress, and wasting. We examined the impact of a 4-week feeding of 0, 0.5, and 1.5% docosahexaenoic acid (DHA; 22:6n-3) in the presence and absence of 0.5% CLA on AT oxylipin profiles in female C57BL/6N mice. Esterified oxylipins in AT derived from linoleic acid (LNA), alpha-linolenic acid (ALA), arachidonic acid (ARA), eicosapentaenoic acid (EPA), DHA, and putative from CLA were quantified. CLA containing diets reduced AT mass by ~62%. Compared with the control diet, the DHA diet elevated concentrations of EPA-and DHA-derived alcohols and epoxides and LNA-derived alcohols, reduced ARA-derived alcohols, ketones, epoxides, and 6-keto-prostaglandin (PG) F 1α (P oxylipins, respectively. Thus, CLA elevated proinflammatory oxylipins while DHA increased anti-inflammatory oxylipins and diminished concentration of CLA-induced pro-inflammatory oxylipins in AT.

  16. Alterations in serum paraoxonase-1 activity and lipid profile in chronic alcoholic patients infected with Strongyloides stercoralis.

    Science.gov (United States)

    de Jesus Inês, Elizabete; Sampaio Silva, Mônica Lopes; de Souza, Joelma Nascimento; Galvão, Alana Alcântara; Aquino Teixeira, Márcia Cristina; Soares, Neci Matos

    2017-02-01

    The objective of this study was to investigate paraoxonase-1 (PON1) activity, cortisol levels, and the lipid profile in the sera of alcoholic and non-alcoholic Strongyloides stercoralis-infected and uninfected individuals in a sample of 276 individuals attended at the National Health System in Salvador, Bahia, Brazil. The activity of PON1 was measured by the Beltowski method, serum lipids, and cortisol levels using commercial kits. PON1 activity was low in both alcoholic and non-alcoholic individuals infected with S. stercoralis. A positive correlation was observed between PON1 activity and cortisol concentration in alcoholic individuals who were not infected with S. stercoralis; whereas a negative correlation occurred in S. stercoralis-infected nonalcoholic individuals. The levels of triglycerides, LDL-C, and VLDL-C in S. stercoralis-infected alcoholic individuals were significantly lower than in uninfected alcoholic individuals. The high level of HDL-C and the low level of LDL-C, VLDL, triglycerides and PON1 activity in alcoholic patients infected with S. stercoralis evidenced an anti-atherogenic pattern. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Suppressing Sorbitol Synthesis Substantially Alters the Global Expression Profile of Stress Response Genes in Apple (Malus domestica) Leaves.

    Science.gov (United States)

    Wu, Ting; Wang, Yi; Zheng, Yi; Fei, Zhangjun; Dandekar, Abhaya M; Xu, Kenong; Han, Zhenhai; Cheng, Lailiang

    2015-09-01

    Sorbitol is a major product of photosynthesis in apple (Malus domestica) that is involved in carbohydrate metabolism and stress tolerance. However, little is known about how the global transcript levels in apple leaves respond to decreased sorbitol synthesis. In this study we used RNA sequencing (RNA-seq) profiling to characterize the transcriptome of leaves from transgenic lines of the apple cultivar 'Greensleeves' exhibiting suppressed expression of aldose-6-phosphate reductase (A6PR) to gain insights into sorbitol function and the consequences of decreased sorbitol synthesis on gene expression. We observed that, although the leaves of the low sorbitol transgenic lines accumulate higher levels of various primary metabolites, only very limited changes were found in the levels of transcripts associated with primary metabolism. We suggest that this is indicative of post-transcriptional and/or post-translational regulation of primary metabolite accumulation and central carbon metabolism. However, we identified significantly enriched gene ontology terms belonging to the 'stress related process' category in the antisense lines (P-value apple trees to abiotic and biotic stresses. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Apoptosis induced by low-intensity ultrasound in vitro: Alteration of protein profile and potential molecular mechanism

    Science.gov (United States)

    Feng, Yi; Wan, Mingxi

    2017-03-01

    To analyze the potential mechanism related to the apoptosis induced by low intensity focused ultrasound, comparative proteomic method was introduced in the study. After ultrasound irradiation (3.0 W/cm2, 1 minute, 6 hours incubation post-irradiation), the human SMMC-7721 hepatocarcinoma cells were stained by trypan blue to detect the morphologic changes, and then the percentage of early apoptosis were tested by the flow cytometry with double staining of FITC-labelled Annexin V/Propidium iodide. Two-dimensional SDS polyacrylamide gel electrophoresis was used to get the protein profile and some proteins differently expressed after ultrasound irradiation were identified by MALDI-TOF mass spectrometry. It's proved early apoptosis of cells were induced by low intentisy focused ultrasound. After ultrasound irradiation, the expressing characteristics of several proteins changed, in which protein p53 and heat shock proteins are associated with apoptosis initiation. It is suggested that the low-intensity ultrasound-induced apoptotic cancer therapy has the potential application via understanding its relevant molecular signaling and key proteins. Moreover, the comparative proteomic method is proved to be useful to supply information about the protein expression to analyze the metabolic processes related to bio-effects of biomedical ultrasound.

  19. Human myoblast transplantation in mice infarcted heart alters the expression profile of cardiac genes associated with left ventricle remodeling.

    Science.gov (United States)

    Wiernicki, B; Rozwadowska, N; Malcher, A; Kolanowski, T; Zimna, A; Rugowska, A; Kurpisz, M

    2016-01-01

    Myocardial infarction (MI) and left ventricle remodeling (LVR) are two of the most challenging disease entities in developed societies. Since conventional treatment cannot fully restore heart function new approaches were attempted to develop new strategies and technologies that could be used for myocardial regeneration. One of these strategies pursued was a cell therapy--particularly applying skeletal muscle stem cells (SkMCs). Using NOD-SCID murine model of MI and human skeletal myoblast transplantation we were able to show that SkMC administration significantly affected gene expression profile (pheart ventricular tissue and this change was beneficial for the heart function. We have also shown, that the level of heart biomarker, NT-proBNP, decreased in animals receiving implanted cells and that the NT-proBNP level negatively correlated with left ventricle area fraction change (LVFAC) index which makes NT-proBNP an attractive tool in assessing the efficacy of cell therapy both in the animal model and prospectively in clinical trials. The results obtained suggest that transplanted SkMCs exerted beneficial effect on heart regeneration and were able to inhibit LVR which was confirmed on the molecular level, giving hope for new ways of monitoring novel cellular therapies for MI. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Roldán, Antonio; Albacete, Alfonso; Pascual, Jose A

    2011-02-01

    Arbuscular mycorrhizal fungi (AMF) and Trichoderma harzianum are known to affect plant growth and disease resistance through interaction with phytohormone synthesis or transport in the plant. Cross-talk between these microorganisms and their host plants normally occurs in nature and may affect plant resistance. Simultaneous quantification in the shoots of melon plants revealed significant changes in the levels of several hormones in response to inoculation with T. harzianum and two different AMF (Glomus intraradices and Glomus mosseae). Analysis of zeatin (Ze), indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC), salicylic acid (SA), jasmonic acid (JA) and abscisic acid (ABA) in the shoot showed common and divergent responses of melon plants to G. intraradices and G. mosseae. T. harzianum effected systemic increases in Ze, IAA, ACC, SA, JA and ABA. The interaction of T. harzianum and the AMF with the plant produced a characteristic hormonal profile, which differed from that produced by inoculation with each microorganism singly, suggesting an attenuation of the plant response, related to the hormones SA, JA and ethylene. These results are discussed in relation to their involvement in biomass allocation and basal resistance against Fusarium wilt. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Ji-Feng Xu

    Full Text Available The physiological role of microRNAs (miRNAs in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84% could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05 when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221 were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation.

  2. Altered microRNA profiles during early colon adenoma progression in a porcine model of familial adenomatous polyposis.

    Science.gov (United States)

    Stachowiak, Monika; Flisikowska, Tatiana; Bauersachs, Stefan; Perleberg, Carolin; Pausch, Hubert; Switonski, Marek; Kind, Alexander; Saur, Dieter; Schnieke, Angelika; Flisikowski, Krzysztof

    2017-11-10

    MicroRNAs are dysregulated in various cancers including colorectal cancer, and are potential useful biomarkers of disease development. We used next generation sequencing to investigate miRNA expression profiles in low- and high-grade intraepithelial dysplastic polyps from pigs carrying a mutation in the adenomatous polyposis coli tumour suppressor ( APC 1311 , orthologous to human APC 1309 ) that model an inherited predisposition to colorectal cancer, familial adenomatous polyposis. We identified several miRNAs and their isomiRs significantly ( P < 0.05) differentially expressed between low and high-grade intraepithelial dysplastic polyps. Of these, ssc-let-7e, ssc-miR-98, ssc-miR-146a-5p, ssc-miR-146b, ssc-miR-183 and ssc-miR-196a were expressed at higher level and ssc-miR-126-3p at lower level in high-grade intraepithelial dysplastic polyps. Functional miRNA target analysis revealed significant ( P < 0.001) over-representation of cancer-related pathways, including 'microRNAs in cancer', 'proteoglycans in cancer', 'pathways in cancer' and 'colorectal cancer'. This is the first study to reveal miRNAs associated with premalignant transformation of colon polyps.

  3. Influence of Alternanthera brasiliana (L.) Kuntze on Altered Antioxidant Enzyme Profile during Cutaneous Wound Healing in Immunocompromised Rats.

    Science.gov (United States)

    Barua, Chandana Choudhury; Ara Begum, Shameem; Talukdar, Archana; Datta Roy, Jayanti; Buragohain, Bhaben; Chandra Pathak, Debesh; Kumar Sarma, Dilip; Saikia Bora, Rumi; Gupta, Asheesh

    2012-01-01

    Alternanthera brasiliana (L.) Kuntze (Amaranthaceae) is a herbaceous plant used against inflammation, cough, and diarrhea in Brazilian popular medicine. In our preliminary study, promising wound healing activity of methanol extract of leaves of A. brasiliana (MEAB) was observed in normal excision and incision wound models. Therefore, the present study was designed to investigate the wound healing activity along with the antioxidant enzyme profile during cutaneous excision immunocompromised wound after topical application of 5% w/w ointment of MEAB in rats. Immunocompromised state was induced by pretreatment with hydrocortisone (HC) at 40 mg/kg body weight (i.m.) in male rats. Following one-week pretreatment with HC, wounds were created. The vehicle, 5% (w/w) ointment of MEAB, or standard drug (Himax) was applied topically twice daily. Healing potential was evaluated by the rate of wound contraction, estimation of enzymatic and nonenzymatic antioxidants like catalase, SOD, GSH, protein, vitamin C, and hydroxyproline content, which was supported by histopathological study on the 8th day following wounding. There was significant increase in the enzymatic and nonenzymatic antioxidant parameters in the extract-reated group as compared to control group. Histopathological study revealed collagen deposition, fibroblast proliferation, angiogenesis, and development of basement membrane in A. brasiliana group. The results of the present investigation revealed significant wound healing activity of MEAB.

  4. Plasma PGE-2 levels and altered cytokine profiles in adherent peripheral blood mononuclear cells in non-small cell lung cancer (NSCLC

    Directory of Open Access Journals (Sweden)

    Hirschowitz Edward A

    2002-11-01

    Full Text Available Abstract Introduction PGE-2 is constitutively produced by many non-small cell lung cancers (NSCLC and its immunosuppressive effects have been linked to altered immune responses in lung cancer. We asked whether elevated levels of plasma PGE-2 correlated with monocyte IL10 production in the NSCLC environment. Looking for correlation in NSCLC patient blood we assayed plasma from NSCLC patients for PGE2 and IL10; we further evaluated production of IL10 by adherent mononuclear cells from a subset of these patients looking for an altered cytokine profile. Results Our initial in vitro experiments show that monocyte IL10 induction correlates with tumor cell PGE-2 production, confirming similar reports in the literature. Data show plasma PGE-2 levels in 38 NSCLC patients are elevated compared to normal controls. Plasma IL10 levels were not significantly elevated; however, adherent monocytes derived from NSCLC patient blood did produce significantly more IL10 in 24 hr primary culture than those from normal controls (p Conclusions Elevated plasma PGE-2 and monocyte IL10 production are associated with NSCLC. The biological significance to elevated PGE-2 levels in NSCLC are unclear. Further investigation of each as a nonspecific marker for NSCLC tumor is warranted.

  5. Epigenetic Profiling of H3K4Me3 Reveals Herbal Medicine Jinfukang-Induced Epigenetic Alteration Is Involved in Anti-Lung Cancer Activity

    Directory of Open Access Journals (Sweden)

    Jun Lu

    2016-01-01

    Full Text Available Traditional Chinese medicine Jinfukang (JFK has been clinically used for treating lung cancer. To examine whether epigenetic modifications are involved in its anticancer activity, we performed a global profiling analysis of H3K4Me3, an epigenomic marker associated with active gene expression, in JFK-treated lung cancer cells. We identified 11,670 genes with significantly altered status of H3K4Me3 modification following JFK treatment (P<0.05. Gene Ontology analysis indicates that these genes are involved in tumor-related pathways, including pathway in cancer, basal cell carcinoma, apoptosis, induction of programmed cell death, regulation of transcription (DNA-templated, intracellular signal transduction, and regulation of peptidase activity. In particular, we found that the levels of H3K4Me3 at the promoters of SUSD2, CCND2, BCL2A1, and TMEM158 are significantly altered in A549, NCI-H1975, NCI-H1650, and NCI-H2228 cells, when treated with JFK. Collectively, these findings provide the first evidence that the anticancer activity of JFK involves modulation of histone modification at many cancer-related gene loci.

  6. Identification of Altered Metabolomic Profiles Following a Panchakarma-based Ayurvedic Intervention in Healthy Subjects: The Self-Directed Biological Transformation Initiative (SBTI).

    Science.gov (United States)

    Peterson, Christine Tara; Lucas, Joseph; John-Williams, Lisa St; Thompson, J Will; Moseley, M Arthur; Patel, Sheila; Peterson, Scott N; Porter, Valencia; Schadt, Eric E; Mills, Paul J; Tanzi, Rudolph E; Doraiswamy, P Murali; Chopra, Deepak

    2016-09-09

    The effects of integrative medicine practices such as meditation and Ayurveda on human physiology are not fully understood. The aim of this study was to identify altered metabolomic profiles following an Ayurveda-based intervention. In the experimental group, 65 healthy male and female subjects participated in a 6-day Panchakarma-based Ayurvedic intervention which included herbs, vegetarian diet, meditation, yoga, and massage. A set of 12 plasma phosphatidylcholines decreased (adjusted p < 0.01) post-intervention in the experimental (n = 65) compared to control group (n = 54) after Bonferroni correction for multiple testing; within these compounds, the phosphatidylcholine with the greatest decrease in abundance was PC ae C36:4 (delta = -0.34). Application of a 10% FDR revealed an additional 57 metabolites that were differentially abundant between groups. Pathway analysis suggests that the intervention results in changes in metabolites across many pathways such as phospholipid biosynthesis, choline metabolism, and lipoprotein metabolism. The observed plasma metabolomic alterations may reflect a Panchakarma-induced modulation of metabotypes. Panchakarma promoted statistically significant changes in plasma levels of phosphatidylcholines, sphingomyelins and others in just 6 days. Forthcoming studies that integrate metabolomics with genomic, microbiome and physiological parameters may facilitate a broader systems-level understanding and mechanistic insights into these integrative practices that are employed to promote health and well-being.

  7. Alteration of Diastereoisomeric and Enantiomeric Profiles of Hexabromocyclododecanes (HBCDs) in Adult Chicken Tissues, Eggs, and Hatchling Chickens.

    Science.gov (United States)

    Zheng, Xiaobo; Qiao, Lin; Sun, Runxia; Luo, Xiaojun; Zheng, Jing; Xie, Qilai; Sun, Yuxin; Mai, Bixian

    2017-05-16

    The concentrations and enantiomer fractions (EFs) of α-, β-, and γ-hexabromocyclododecanes (HBCDs) were measured in chicken diet sources (soil and chicken feed), home-raised adult chicken (Gallus domesticus) tissues, eggs during incubation, and hatchling chicken tissues. HBCD concentrations were not detected-0.69 ng/g dry weight (dw) and 25.6-48.4 ng/g dw in chicken feed and soil, respectively. HBCDs were detected in all adult chicken tissues, except the brain, at median levels of 13.1-44.0 ng/g lipid weight (lw). The proportions of α-HBCD in total HBCDs increased from 51% in soil to more than 87% in adult chicken tissues. The accumulation ratios (ARs) of α-HBCD from diet to adult chicken tissues were 4.27 for liver, 11.2 for fat, and 7.64-12.9 for other tissues, respectively. The AR and carry-over rate (COR) of α-HBCD from diet to eggs were 22.4 and 0.226, respectively. The concentrations of α-HBCD in hatchling chicken liver (median: 35.4 ng/g lw) were significantly lower than those in hatchling chicken pectoral muscle (median: 130 ng/g lw). The EFs of α-HBCD decreased from soil to adult chicken tissues and from eggs to hatchling chicken liver. Meanwhile, the EFs of γ-HBCD increased from soil to adult chicken tissues. These results indicate the preferential enrichment of (-)-α-HBCD and (+)-γ-HBCD in chickens. The alteration of diastereoisomeric and enantiomeric patterns of HBCDs might be influenced by the different absorption and elimination rates of the six HBCD enantiomers as well as variations in HBCD metabolism in chickens.

  8. Characterization of the altered gene expression profile in early porcine embryos generated from parthenogenesis and somatic cell chromatin transfer.

    Science.gov (United States)

    Zhou, Chi; Dobrinsky, John; Tsoi, Stephen; Foxcroft, George R; Dixon, Walter T; Stothard, Paul; Verstegen, John; Dyck, Michael K

    2014-01-01

    The in vitro production of early porcine embryos is of particular scientific and economic interest. In general, embryos produced from in vitro Assisted Reproductive Technologies (ART) manipulations, such as somatic cell chromatin transfer (CT) and parthenogenetic activation (PA), are less developmentally competent than in vivo-derived embryos. The mechanisms underlying the deficiencies of embryos generated from PA and CT have not been completely understood. To characterize the altered genes and gene networks in embryos generated from CT and PA, comparative transcriptomic analyses of in vivo (IVV) expanded blastocysts (XB), IVV hatched blastocyst (HB), PA XB, PA HB, and CT HB were performed using a custom microarray platform enriched for genes expressed during early embryonic development. Differential expressions of 1492 and 103 genes were identified in PA and CT HB, respectively, in comparison with IVV HB. The "eIF2 signalling", "mitochondrial dysfunction", "regulation of eIF4 and p70S6K signalling", "protein ubiquitination", and "mTOR signalling" pathways were down-regulated in PA HB. Dysregulation of notch signalling-associated genes were observed in both PA and CT HB. TP53 was predicted to be activated in both PA and CT HB, as 136 and 23 regulation targets of TP53 showed significant differential expression in PA and CT HB, respectively, in comparison with IVV HB. In addition, dysregulations of several critical pluripotency, trophoblast development, and implantation-associated genes (NANOG, GATA2, KRT8, LGMN, and DPP4) were observed in PA HB during the blastocyst hatching process. The critical genes that were observed to be dysregulated in CT and PA embryos could be indicative of underlying developmental deficiencies of embryos produced from these technologies.

  9. Imaging heterogeneity of membrane and storage lipids in transgenic Camelina sativa seeds with altered fatty acid profiles.

    Science.gov (United States)

    Horn, Patrick J; Silva, Jillian E; Anderson, Danielle; Fuchs, Johannes; Borisjuk, Ljudmilla; Nazarenus, Tara J; Shulaev, Vladimir; Cahoon, Edgar B; Chapman, Kent D

    2013-10-01

    Engineering compositional changes in oilseeds is typically accomplished by introducing new enzymatic step(s) and/or by blocking or enhancing an existing enzymatic step(s) in a seed-specific manner. However, in practice, the amounts of lipid species that accumulate in seeds are often different from what one would predict from enzyme expression levels, and these incongruences may be rooted in an incomplete understanding of the regulation of seed lipid metabolism at the cellular/tissue level. Here we show by mass spectrometry imaging approaches that triacylglycerols and their phospholipid precursors are distributed differently within cotyledons and the hypocotyl/radicle axis in embryos of the oilseed crop Camelina sativa, indicating tissue-specific heterogeneity in triacylglycerol metabolism. Phosphatidylcholines and triacylglycerols enriched in linoleic acid (C18:2) were preferentially localized to the axis tissues, whereas lipid classes enriched in gadoleic acid (C20:1) were preferentially localized to the cotyledons. Manipulation of seed lipid compositions by heterologous over-expression of an acyl-acyl carrier protein thioesterase, or by suppression of fatty acid desaturases and elongases, resulted in new overall seed storage lipid compositions with altered patterns of distribution of phospholipid and triacylglycerol in transgenic embryos. Our results reveal previously unknown differences in acyl lipid distribution in Camelina embryos, and suggest that this spatial heterogeneity may or may not be able to be changed effectively in transgenic seeds depending upon the targeted enzyme(s)/pathway(s). Further, these studies point to the importance of resolving the location of metabolites in addition to their quantities within plant tissues. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  10. Long-term testosterone treatment during pregnancy does not alter insulin or glucose profile in a sheep model of polycystic ovary syndrome.

    Science.gov (United States)

    Recabarren, Monica; Carrasco, Albert; Sandoval, Daniel; Diaz, Felipe; Sir-Petermann, Teresa; Recabarren, Sergio E

    2017-09-07

    The administration of testosterone to pregnant sheep to resemble fetal programming of the polycystic ovary syndrome could alter other hormones/factors of maternal origin with known effects on fetal growth. Hence, we studied the weekly profile of insulin, progesterone and glucose during a treatment with testosterone propionate given biweekly from weeks 5 to 17 of pregnancy (term at 21 weeks) and checked the outcome of their fetuses at 17 weeks of gestation after C-section. Control dams were only exposed to the vehicle of the hormone. The testosterone administration did not cause any significant change in the maternal weekly profile of insulin, progesterone or glucose concentration, although the plasma levels of testosterone in the treated dams were inversely correlated to the levels of progesterone. Testosterone treatment also induced an inverse correlation between mean maternal insulin levels and fetal insulin levels; however, the fetal zoometric parameters, body weight, or insulin levels did not differ between exposed and not exposed fetuses. Therefore, treatment with testosterone during pregnancy does not cause significant impact on insulin levels in the mother, leading to less effect on the programming of fetal growth.

  11. Characterization of dog repellent factor from cuticular secretion of female yellow dog tick, Haemaphysalis leachi.

    Science.gov (United States)

    Burger, Ben V; Marx, Brenda; Le Roux, Maritha; Oelofsen, Burger W

    2006-01-01

    During its natural life cycle, the yellow dog tick, Haemaphysalis leachi, has three hosts, and it has to spend enough time on each of them to complete a blood meal. When irritated, the females of this tick species produce a cuticular secretion that contains a dog-repelling allomone. This improves the tick's chances of survival by deterring the dog from biting the tick off its body. Employing response-guided isolation techniques in conjunction with gas chromatography-mass spectrometry, the defensive allomone of H. leachi was found to consist of the six homologous aliphatic aldehydes from hexanal to undecanal. A mixture of synthetic versions of these six aldehydes in quantities corresponding to those secreted by one tick elicited strong aversion reactions in the majority of dogs of various breeds.

  12. Cuticular Lipids as a Cross-Talk among Ants, Plants and Butterflies

    Science.gov (United States)

    Barbero, Francesca

    2016-01-01

    Even though insects and plants are distantly related organisms, they developed an integument which is functionally and structurally similar. Besides functioning as a physical barrier to cope with abiotic and biotic stress, this interface, called cuticle, is also a source of chemical signaling. Crucial compounds with this respect are surface lipids and especially cuticular hydrocarbons (CHCs). This review is focused on the role of CHCs in fostering multilevel relationships among ants, plants and Lepidoptera (primarily butterflies). Indeed, particular traits of ants as eusocial organisms allowed the evolution and the maintenance of a variety of associations with both plants and animals. Basic concepts of myrmecophilous interactions and chemical deception strategies together with chemical composition, biosynthetic pathways and functions of CHCs as molecular cues of multitrophic systems are provided. Finally, the need to adopt a multidisciplinary and comprehensive approach in the survey of complex models is discussed. PMID:27886144

  13. Cuticular muscle attachment sites as a tool for species determination in blowfly larvae.

    Science.gov (United States)

    Niederegger, Senta; Spiess, Roland

    2012-05-01

    First results of a new method for species determination in third instar larvae of saprophagous blowflies are introduced. Cuticular attachment sites of a limited number of transversal muscles are visualized for light microscopic analysis. After removing the muscles and staining the cuticle, the attachment sites become visible as laterally symmetrical segmental clusters of dark dots. The combined patterns of five such clusters, located in the second, third and fourth segments, show sufficient differences to allow reliable separation of externally very similar larval Lucilia sericata and Lucilia illustris as well as Calliphora vomitoria and Calliphora vicina, the most common saprophagous blowfly species in Europe. Species determination even in poorly conserved, discoloured and fragmented blowfly larvae becomes possible with this new method. The method can primarily be applied for postmortem interval (PMI) calculations in forensic entomology. Interspecific morphological similarity of the larvae and differences in growth rate make species determination an essential requisite for an exact PMI calculation.

  14. Effects of cuticular wax on the postharvest quality of blueberry fruit.

    Science.gov (United States)

    Chu, Wenjing; Gao, Haiyan; Chen, Hangjun; Fang, Xiangjun; Zheng, Yonghua

    2018-01-15

    The blueberry fruit has a light-blue appearance because its blue-black skin is covered with a waxy bloom. This layer is easily damaged or removed during fruit harvesting and postharvest handling. We investigated the effects of wax removal on the postharvest quality of blueberry fruit and their possible mechanisms. The removal of natural wax on the fruit was found to accelerate the postharvest water loss and decay, reduce the sensory and nutritional qualities, and shorten the shelf-life. Wax removal decreased the activities of antioxidant enzymes and contents of antioxidants, and accelerated accumulation of ROS and lipid peroxidation, especially at the later period of storage. Moreover, the organellar membrane structure was disrupted in fruit with wax removed. These results indicate that cuticular wax plays an important role in maintaining the postharvest quality and delaying fruit senescence. The results should improve our understanding for better preservation of postharvest quality of blueberry fruit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Diversity of Cuticular Micro- and Nanostructures on Insects: Properties, Functions, and Potential Applications.

    Science.gov (United States)

    Watson, Gregory S; Watson, Jolanta A; Cribb, Bronwen W

    2017-01-31

    Insects exhibit a fascinating and diverse range of micro- and nanoarchitectures on their cuticle. Beyond the spectacular beauty of such minute structures lie surfaces evolutionarily modified to act as multifunctional interfaces that must contend with a hostile, challenging environment, driving adaption so that these can then become favorable. Numerous cuticular structures have been discovered this century; and of equal importance are the properties, functions, and potential applications that have been a key focus in many recent studies. The vast range of insect structuring, from the most simplistic topographies to the most elegant and geometrically complex forms, affords us with an exhaustive library of natural templates and free technologies to borrow, replicate, and employ for a range of applications. Of particular importance are structures that imbue cuticle with antiwetting properties, self-cleaning abilities, antireflection, enhanced color, adhesion, and antimicrobial and specific cell-attachment properties.

  16. Cuticular Lipids as a Cross-Talk among Ants, Plants and Butterflies.

    Science.gov (United States)

    Barbero, Francesca

    2016-11-24

    Even though insects and plants are distantly related organisms, they developed an integument which is functionally and structurally similar. Besides functioning as a physical barrier to cope with abiotic and biotic stress, this interface, called cuticle, is also a source of chemical signaling. Crucial compounds with this respect are surface lipids and especially cuticular hydrocarbons (CHCs). This review is focused on the role of CHCs in fostering multilevel relationships among ants, plants and Lepidoptera (primarily butterflies). Indeed, particular traits of ants as eusocial organisms allowed the evolution and the maintenance of a variety of associations with both plants and animals. Basic concepts of myrmecophilous interactions and chemical deception strategies together with chemical composition, biosynthetic pathways and functions of CHCs as molecular cues of multitrophic systems are provided. Finally, the need to adopt a multidisciplinary and comprehensive approach in the survey of complex models is discussed.

  17. Cuticular Lipids as a Cross-Talk among Ants, Plants and Butterflies

    Directory of Open Access Journals (Sweden)

    Francesca Barbero

    2016-11-01

    Full Text Available Even though insects and plants are distantly related organisms, they developed an integument which is functionally and structurally similar. Besides functioning as a physical barrier to cope with abiotic and biotic stress, this interface, called cuticle, is also a source of chemical signaling. Crucial compounds with this respect are surface lipids and especially cuticular hydrocarbons (CHCs. This review is focused on the role of CHCs in fostering multilevel relationships among ants, plants and Lepidoptera (primarily butterflies. Indeed, particular traits of ants as eusocial organisms allowed the evolution and the maintenance of a variety of associations with both plants and animals. Basic concepts of myrmecophilous interactions and chemical deception strategies together with chemical composition, biosynthetic pathways and functions of CHCs as molecular cues of multitrophic systems are provided. Finally, the need to adopt a multidisciplinary and comprehensive approach in the survey of complex models is discussed.

  18. Leaf morphology and cuticular features of Sphenophyllum in the Gigantopteris flora from South China.

    Science.gov (United States)

    Yao; Liu; Mapes; Rothwell

    2000-06-01

    Permian specimens of Sphenophyllum with preserved cuticular anatomy have been discovered in Cathaysia and have prompted a detailed re-evaluation of the genus in the Gigantopteris flora in South China. New specimens are described and previously published material is re-examined to clarify taxonomic diversity and to establish geographic and stratigraphic ranges for each species. Recognized taxa include Sphenophyllum apiciserratum sp. nov., S. koboense Kobatake, S. meridionale sp. nov., S. minor (Sterzel) Gu and Zhi, S. sinocoreanum Yabe, S. cf. sinocoreanum Yabe, and S. aff. speciosum (Royle) McClelland. Cuticles of Sphenophyllum apiciserratum and S. koboense are hypostomatic with randomly disposed ordinary cells in intercostal regions. Specific concepts are clarified and unresolved taxonomic problems are discussed. The South China taxa are compared with those from Euramerican, Gondwanan and Angaran floras, and the South China Cathaysian species are found to be taxonomically distinct.

  19. Cuticular Hydrocarbon Pheromones for Social Behavior and Their Coding in the Ant Antenna

    Directory of Open Access Journals (Sweden)

    Kavita R. Sharma

    2015-08-01

    Full Text Available The sophisticated organization of eusocial insect societies is largely based on the regulation of complex behaviors by hydrocarbon pheromones present on the cuticle. We used electrophysiology to investigate the detection of cuticular hydrocarbons (CHCs by female-specific olfactory sensilla basiconica on the antenna of Camponotus floridanus ants through the utilization of one of the largest family of odorant receptors characterized so far in insects. These sensilla, each of which contains multiple olfactory receptor neurons, are differentially sensitive to CHCs and allow them to be classified into three broad groups that collectively detect every hydrocarbon tested, including queen and worker-enriched CHCs. This broad-spectrum sensitivity is conserved in a related species, Camponotus laevigatus, allowing these ants to detect CHCs from both nestmates and non-nestmates. Behavioral assays demonstrate that these ants are excellent at discriminating CHCs detected by the antenna, including enantiomers of a candidate queen pheromone that regulates the reproductive division of labor.

  20. Cuticular hydrocarbons of Triatoma dimidiata (Hemiptera: Reduviidae): intraspecific variation and chemotaxonomy.

    Science.gov (United States)

    Calderón-Fernández, Gustavo M; Girotti, Juan R; Juárez, M Patricia

    2011-03-01

    Triatoma dimidiata Latreille is a major vector of Chagas disease with an extensive geographic distribution from Central Mexico, through Central America, to northern South America. As a result of its variability in phenetic and genetic characters, disagreement concerning its taxonomic status has been raised. In this study, the cuticular hydrocarbon pattern of T. dimidiata populations from Mexico, Belize, Guatemala, Honduras, Costa Rica, and Colombia was analyzed by capillary gas chromatography coupled to mass spectrometry; linear discriminant analysis was used to help elucidate population structure. Vector populations segregated into five distinct groups; specimens from Yucatan Peninsula, together with those from Central Mexico, Central America, and Colombia corresponded to different T. dimidiata subspecies, a putative different species comprising insects from Belize, together with an isolated population collected at bat caves in Guatemala. The analysis revalidates the earlier division of T dimidiata into three subspecies, T. d. maculipennis, T. d. dimidiata, and T. d. capitata; and an additional subspecies and a distinct species are proposed.

  1. Altered Expression Profile of Renal α1D-Adrenergic Receptor in Diabetes and Its Modulation by PPAR Agonists

    Directory of Open Access Journals (Sweden)

    Xueying Zhao

    2014-01-01

    Full Text Available Alpha1D-adrenergic receptor (α1D-AR plays important roles in regulating physiological and pathological responses mediated by catecholamines, particularly in the cardiovascular and urinary systems. The present study was designed to investigate the expression profile of α1D-AR in the diabetic kidneys and its modulation by activation of peroxisome proliferator-activated receptors (PPARs. 12-week-old Zucker lean (ZL and Zucker diabetic fatty (ZD rats were treated with fenofibrate or rosiglitazone for 8–10 weeks. Gene microarray, real-time PCR, and confocal immunofluorescence microscopy were performed to assess mRNA and protein expression of α1D-AR in rat kidney tissue. Using microarray, we found that α1D-AR gene was dramatically upregulated in 22-week-old ZD rats compared to ZL controls. Quantitative PCR analysis verified a 16-fold increase in α1D-AR mRNA in renal cortex from ZD animals compared to normal controls. Chronic treatment with fenofibrate or rosiglitazone reduced renal cortical α1D-AR gene. Immunofluorescence staining confirmed that α1D-AR protein was induced in the glomeruli and tubules of diabetic rats. Moreover, dual immunostaining for α1D-AR and kidney injury molecule-1 indicated that α1D-AR was expressed in dedifferentiated proximal tubules of diabetic Zucker rats. Taken together, our results show that α1D-AR expression is upregulated in the diabetic kidneys. PPAR activation suppressed renal expression of α1D-AR in diabetic nephropathy.

  2. High-Fat Diet Alters Serum Fatty Acid Profiles in Obesity Prone Rats: Implications for In Vitro Studies.

    Science.gov (United States)

    Liu, Tzu-Wen; Heden, Timothy D; Matthew Morris, E; Fritsche, Kevin L; Vieira-Potter, Victoria J; Thyfault, John P

    2015-10-01

    High-fat diets (HFD) are commonly used in rodents to induce obesity, increase serum fatty acids and induce lipotoxicity in various organs. In vitro studies commonly utilize individual free fatty acids (FFA) to study lipid exposure in an effort to model what is occurring in vivo; however, these approaches are not physiological as tissues are exposed to multiple fatty acids in vivo. Here we characterize circulating lipids in obesity-prone rats fed an HFD in both fasted and fed states with the goal of developing physiologically relevant fatty acid mixtures for subsequent in vitro studies. Rats were fed an HFD (60% kcal fat) or a control diet (10% kcal fat) for 3 weeks; liver tissue and both portal and systemic blood were collected. Fatty acid profiles and absolute concentrations of triglycerides (TAG) and FFA in the serum and TAG, diacylglycerol (DAG) and phospholipids in the liver were measured. Surprisingly, both systemic and portal serum TAG were ~40% lower in HFD-fed compared to controls. Overall, compared to the control diet, HFD feeding consistently induced an increase in the proportion of circulating polyunsaturated fatty acids (PUFA) with a concomitant decline in monounsaturated fatty acids (MUFA) and saturated fatty acids (SFA) in both serum TAG and FFA. The elevations of PUFA were mostly attributed to increases in n-6 PUFA, linoleic acid and arachidonic acid. In conclusion, fatty acid mixtures enriched with linoleic and arachidonic acid in addition to SFA and MUFA should be utilized for in vitro studies attempting to model lipid exposures that occur during in vivo HFD conditions.

  3. Release of urinary extracellular vesicles in prostate cancer is associated with altered urinary N-glycosylation profile.

    Science.gov (United States)

    Vermassen, Tijl; D'Herde, Katharina; Jacobus, Dominique; Van Praet, Charles; Poelaert, Filip; Lumen, Nicolaas; Callewaert, Nico; Decaestecker, Karel; Villeirs, Geert; Hoebeke, Piet; Van Belle, Simon; Rottey, Sylvie; Delanghe, Joris

    2017-10-01

    Nowadays, extracellular vesicles are of great interest in prostate cancer (PCa) research. Asparagine (N)-linked glycosylation could play a significant role in the pathological mechanism of these vesicles. We investigated if prostatic protein N-glycosylation profiles were related to urinary vesicle-associated prostate-specific antigen (PSA) extractability and if this parameter showed diagnostic potential for PCa. Urinary extracellular vesicles were visualised using transmission electron microscopy. Urinary extracellular vesicles extraction by means of n -butanol allowed determination of urinary vesicle-associated PSA extractability. Diagnostic value was assessed between benign prostate hyperplasia (BPH; n=122) and patients with PCa (n=85). Additionally, correlation with urine N-glycosylation was assessed. Urinary extracellular vesicles with a diameter of approximately 100 nm were more abundantly present in urine of patients with PCa versus patients with BPH resulting in a higher vesicle-associated PSA extraction ratio (pvesicle-associated PSA extraction ratio was correlated to biantennary core-fucosylation (p=0.003). Finally, vesicle-associated PSA extraction ratio proved beneficial in PCa diagnosis, next to serum PSA and the urinary glycosylation marker (p=0.021). The urinary vesicle-associated PSA extraction ratio is increased in PCa which is a direct result of the abundant presence of extracellular vesicles in urine of patients with PCa. The urinary vesicle-associated PSA extraction ratio was associated with changes in N-glycoforms and showed diagnostic potential. Further research is warranted to unravel the pathological link between N-glycosylation and extracellular vesicles in cancer, as well as to assess the prognostic value of this biomarker. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Variations of the composition of the leaf cuticular wax among Chinese populations of Plantago major.

    Science.gov (United States)

    Guo, Yanjun; He, Yuji; Guo, Na; Gao, Jianhua; Ni, Yu

    2015-04-01

    Plantago major L. grows in a very wide range of regions in China and exhibits great variations among populations. The analysis of the cuticular-wax composition provides a potential approach to classify populations of P. major confronting different environmental conditions. Twelve populations of P. major and five populations of P. depressa Willd., distributed over regions with average annual temperatures ranging from -2.0 to 18.4°, were sampled, the variation of the composition of their cuticular waxes was analyzed, and their values of average chain length (ACL) and carbon preference index (CPI) were calculated. Great intra- and interspecies variations were observed for the total wax contents. The average annual temperature of the habitats was significantly correlated with the relative contents of the dominant n-alkanes with an odd number of C-atoms, but not with the wax contents. With an increasing average annual temperature, the relative contents of n-alkanes C29 and C31 decreased, whereas those of C33 and C35 as well as the values of ACLtotal and ACL27-33 increased. Cluster analysis based on the pattern of the n-alkane distribution allowed to clearly separate the populations of P. major according to the average annual temperature of their habitats, but not to separate the populations of the two species. Hence, the pattern of the n-alkane distribution might be a good taxonomic marker for P. major at the intraspecies level, but not at the interspecies level. Nevertheless, a small difference between the populations of the two species was observed concerning the values of ACLtotal and CPItotal , implying the potential use of these indices for the classification of the populations of the two species at the interspecies level. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  5. Moderate alcohol consumption alters both leucocyte gene expression profiles and circulating proteins related to immune response and lipid metabolism in men.

    Science.gov (United States)

    Joosten, Michel M; van Erk, Marjan J; Pellis, Linette; Witkamp, Renger F; Hendriks, Henk F J

    2012-08-01

    Moderate alcohol consumption has various effects on immune and inflammatory processes, which could accumulatively modulate chronic disease risk. So far, no comprehensive, integrative profiling has been performed to investigate the effects of longer-term alcohol consumption. Therefore, we studied the effects of alcohol consumption on gene expression patterns using large-scale profiling of whole-genome transcriptomics in blood cells and on a number of proteins in blood. In a randomised, open-label, cross-over trial, twenty-four young, normal-weight men consumed 100 ml vodka (30 g alcohol) with 200 ml orange juice or only orange juice daily during dinner for 4 weeks. After each period, blood was sampled for measuring gene expression and selected proteins. Pathway analysis of 345 down-regulated and 455 up-regulated genes revealed effects of alcohol consumption on various signalling responses, immune processes and lipid metabolism. Among the signalling processes, the most prominently changed was glucocorticoid receptor signalling. A network on immune response showed a down-regulated NF-κB gene expression together with increased plasma adiponectin and decreased pro-inflammatory IL-1 receptor antagonist and IL-18, and acute-phase proteins ferritin and α1-antitrypsin concentrations (all P alcohol consumption. Furthermore, a network of gene expression changes related to lipid metabolism was observed, with a central role for PPARα which was supported by increased HDL-cholesterol and several apo concentrations (all P alcohol consumption. In conclusion, an integrated approach of profiling both genes and proteins in blood showed that 4 weeks of moderate alcohol consumption altered immune responses and lipid metabolism.

  6. Early osteoinductive human bone marrow mesenchymal stromal/stem cells support an enhanced hematopoietic cell expansion with altered chemotaxis- and adhesion-related gene expression profiles

    Energy Technology Data Exchange (ETDEWEB)

    Sugino, Noriko [Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Miura, Yasuo, E-mail: ym58f5@kuhp.kyoto-u.ac.jp [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Yao, Hisayuki [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Iwasa, Masaki; Fujishiro, Aya [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Division of Gastroenterology and Hematology, Shiga University of Medical Science, Shiga 520-2192 (Japan); Fujii, Sumie [Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Hirai, Hideyo [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Takaori-Kondo, Akifumi [Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Ichinohe, Tatsuo [Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Maekawa, Taira [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan)

    2016-01-22

    Bone marrow (BM) microenvironment has a crucial role in supporting hematopoiesis. Here, by using a microarray analysis, we demonstrate that human BM mesenchymal stromal/stem cells (MSCs) in an early osteoinductive stage (e-MSCs) are characterized by unique hematopoiesis-associated gene expression with an enhanced hematopoiesis-supportive ability. In comparison to BM-MSCs without osteoinductive treatment, gene expression in e-MSCs was significantly altered in terms of their cell adhesion- and chemotaxis-related profiles, as identified with Gene Ontology and Gene Set Enrichment Analysis. Noteworthy, expression of the hematopoiesis-associated molecules CXCL12 and vascular cell adhesion molecule 1 was remarkably decreased in e-MSCs. e-MSCs supported an enhanced expansion of CD34{sup +} hematopoietic stem and progenitor cells, and generation of myeloid lineage cells in vitro. In addition, short-term osteoinductive treatment favored in vivo hematopoietic recovery in lethally irradiated mice that underwent BM transplantation. e-MSCs exhibited the absence of decreased stemness-associated gene expression, increased osteogenesis-associated gene expression, and apparent mineralization, thus maintaining the ability to differentiate into adipogenic cells. Our findings demonstrate the unique biological characteristics of e-MSCs as hematopoiesis-regulatory stromal cells at differentiation stage between MSCs and osteoprogenitor cells and have significant implications in developing new strategy for using pharmacological osteoinductive treatment to support hematopoiesis in hematopoietic stem and progenitor cell transplantation. - Highlights: • Human BM-MSCs in an early osteoinductive stage (e-MSCs) support hematopoiesis. • Adhesion- and chemotaxis-associated gene signatures are altered in e-MSCs. • Expression of CXCL12 and VCAM1 is remarkably decreased in e-MSCs. • e-MSCs are at differentiation stage between MSCs and osteoprogenitor cells. • Osteoinductive treatment

  7. Whole-transcriptome brain expression and exon-usage profiling in major depression and suicide: evidence for altered glial, endothelial and ATPase activity.

    Science.gov (United States)

    Pantazatos, S P; Huang, Y-Y; Rosoklija, G B; Dwork, A J; Arango, V; Mann, J J

    2017-05-01

    Brain gene expression profiling studies of suicide and depression using oligonucleotide microarrays have often failed to distinguish these two phenotypes. Moreover, next generation sequencing approaches are more accurate in quantifying gene expression and can detect alternative splicing. Using RNA-seq, we examined whole-exome gene and exon expression in non-psychiatric controls (CON, N=29), DSM-IV major depressive disorder suicides (MDD-S, N=21) and MDD non-suicides (MDD, N=9) in the dorsal lateral prefrontal cortex (Brodmann Area 9) of sudden death medication-free individuals post mortem. Using small RNA-seq, we also examined miRNA expression (nine samples per group). DeSeq2 identified 35 genes differentially expressed between groups and surviving adjustment for false discovery rate (adjusted Pdepression, altered genes include humanin-like-8 (MTRNRL8), interleukin-8 (IL8), and serpin peptidase inhibitor, clade H (SERPINH1) and chemokine ligand 4 (CCL4), while exploratory gene ontology (GO) analyses revealed lower expression of immune-related pathways such as chemokine receptor activity, chemotaxis and cytokine biosynthesis, and angiogenesis and vascular development in (adjusted Psuicide and depression, and provisional evidence for altered DNA-dependent ATPase expression in suicide only. DEXSEq analysis identified differential exon usage in ATPase, class II, type 9B (adjusted Pdepression. Differences in miRNA expression or structural gene variants were not detected. Results lend further support for models in which deficits in microglial, endothelial (blood-brain barrier), ATPase activity and astrocytic cell functions contribute to MDD and suicide, and identify putative pathways and mechanisms for further study in these disorders.

  8. Analysis of miRNA and mRNA expression profiles highlights alterations in ionizing radiation response of human lymphocytes under modeled microgravity.

    Directory of Open Access Journals (Sweden)

    Cristina Girardi

    Full Text Available Ionizing radiation (IR can be extremely harmful for human cells since an improper DNA-damage response (DDR to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure.We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL incubated for 4 and 24 h in normal gravity (1 g and in modeled microgravity (MMG during the repair time after irradiation with 0.2 and 2Gy of γ-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of "Response to DNA damage" is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses.On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL.

  9. Alterations in the fatty acid profile, antioxidant enzymes and protein pattern of Biomphalaria alexandrina snails exposed to the pesticides diazinon and profenfos.

    Science.gov (United States)

    Bakry, Fayez A; El-Hommossany, Karem; Abd El-Atti, Mahmoud; Ismail, Somaya M

    2016-04-01

    The use of pesticides is widespread in agricultural activities. These pesticides may contaminate the irrigation and drainage systems during agriculture activities and pests' control and then negatively affect the biotic and a biotic component of the polluted water courses. The present study aimed to evaluate the effect of the pesticides diazinon and profenfos on some biological activities of Biomphalaria alexandrina snails such as fatty acid profile, some antioxidant enzymes (thioredoxin reductase (TrxR), sorbitol dehydrogenase (SDH), superoxide dismutase (SOD), catalase (CAT) as well as glutathione reductase (GR) and lipid peroxidation (LP)) and protein patterns in snails' tissues exposed for 4 weeks to LC10 of diazinon and profenfos. The results showed that the two pesticides caused considerable reduction in survival rates and egg production of treated snails. Identification of fatty acid composition in snail tissues treated with diazinon and profenfos pesticides was carried out using gas-liquid chromatography (GLC). The results declared alteration in fatty acid profile, fluctuation in percentage of long chain and short chain fatty acid contributions either saturated or unsaturated ones, and a decrease in total lipid content in tissues of snails treated with these pesticides. The data demonstrate that there was a significant inhibition in the activities of tissues SOD, CAT, glutathione reductase (GR), TrxR, and SDH in tissues of treated snails, while a significant elevation was detected in LP as compared to the normal control. On the other hand, the electrophoretic pattern of total protein showed differences in number and molecular weights of protein bands due to the treatment of snails. It was concluded that the residues of diazinon and profenfos pesticides in aquatic environments have toxic effects onB. alexandrina snails. © The Author(s) 2013.

  10. Investigating correlations in the altered metabolic profiles of obese and diabetic subjects in a South Indian Asian population using an NMR-based metabolomic approach.

    Science.gov (United States)

    Gogna, Navdeep; Krishna, Murahari; Oommen, Anup Mammen; Dorai, Kavita

    2015-02-01

    It is well known that obesity/high body mass index (BMI) plays a key role in the evolution of insulin resistance and type-2 diabetes mellitus (T2DM). However, the exact mechanism underlying its contribution is still not fully understood. This work focuses on an NMR-based metabolomic investigation of the serum profiles of diabetic, obese South Indian Asian subjects. (1)H 1D and 2D NMR experiments were performed to profile the altered metabolic patterns of obese diabetic subjects and multivariate statistical methods were used to identify metabolites that contributed significantly to the differences in the samples of four different subject groups: diabetic and non-diabetic with low and high BMIs. Our analysis revealed that the T2DM-high BMI group has higher concentrations of saturated fatty acids, certain amino acids (leucine, isoleucine, lysine, proline, threonine, valine, glutamine, phenylalanine, histidine), lactic acid, 3-hydroxybutyric acid, choline, 3,7-dimethyluric acid, pantothenic acid, myoinositol, sorbitol, glycerol, and glucose, as compared to the non-diabetic-low BMI (control) group. Of these 19 identified significant metabolites, the levels of saturated fatty acids, lactate, valine, isoleucine, and phenylalanine are also higher in obese non-diabetic subjects as compared to control subjects, implying that this set of metabolites could be identified as potential biomarkers for the onset of diabetes in subjects with a high BMI. Our work validates the utility of NMR-based metabolomics in conjunction with multivariate statistical analysis to provide insights into the underlying metabolic pathways that are perturbed in diabetic subjects with a high BMI.

  11. Bovine herpes virus type 4 alters TNF-α and IL-8 profiles and impairs the survival of bovine endometrial epithelial cells.

    Science.gov (United States)

    Chanrot, Metasu; Blomqvist, Gunilla; Guo, Yongzhi; Ullman, Karin; Juremalm, Mikael; Bage, Renee; Donofrio, Gaetano; Valarcher, Jean-Francois; Humblot, Patrice

    2017-09-01

    Bovine herpes virus type 4 (BoHV-4) can be transmitted by contaminated semen to cows at the time of breeding and may cause uterine disease. The aim of this study was to characterize the susceptibility of bovine endometrial epithelial cells (bEEC) to BoHV-4 by using an in vitro model. When bEEC were challenged with different multiplicity of infection (MOI; from 0.001 to 10) of BoHV-4 for 6days, a significant decrease in cell survival with increasing MOI was observed. The bEEC were subsequently challenged with BoHV-4 MOI 0.1 for 7days. During the first 4days, numbers increased in a similar way in controls and infected group (p<0.01 when compared to Day 0). After Day 4, numbers of live cells in infected samples decreased when compared to controls and were lower than control at Day 7 (p<0.01). From titration and qPCR, increasing number of viral particles was observed from Day 1, and reached a plateau at Day 5. Concentrations of IL-8 increased with time and were higher in supernatants from infected cells than in controls (p<0.0001). TNF-α concentrations presented similar profile as cell survival ones. In conclusion, the survival of bEEC was strongly impaired by BoHV-4 infection in a time and dose dependent manner and supernatant cytokine profiles were altered. This information supports BoHV-4 implication in clinical cases of uterine diseases and the existence of a risk of BoHV-4 transmission from infected males through animal breeding. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. Analysis of cuticular wax constituents and genes that contribute to the formation of 'glossy Newhall', a spontaneous bud mutant from the wild-type 'Newhall' navel orange.

    Science.gov (United States)

    Liu, Dechun; Yang, Li; Zheng, Qiong; Wang, Yuechen; Wang, Minli; Zhuang, Xia; Wu, Qi; Liu, Chuanfu; Liu, Shanbei; Liu, Yong

    2015-08-01

    Navel orange (Citrus sinensis [L.] Osbeck) fruit surfaces contain substantial quantities of cuticular waxes, which have important eco-physiological roles, such as water retention and pathogen defense. The wax constituents of ripe navel orange have been studied in various reports, while the wax changes occurring during fruit development and the molecular mechanism underlying their biosynthesis/export have not been investigated. Recently, we reported a spontaneous bud mutant from the wild-type (WT) 'Newhall' Navel orange. This mutant displayed unusual glossy fruit peels and was named 'glossy Newhall' (MT). In this study, we compared the developmental profiles of the epicuticular and intracuticular waxes on the WT and MT fruit surfaces. The formation of epicuticular wax crystals on the navel orange surface was shown to be dependent on the accumulation of high amounts of aliphatic wax components with trace amounts of terpenoids. In sharp contrast, the underlying intracuticular wax layers have relatively low concentrations of aliphatic wax components but high concentrations of cyclic wax compounds, especially terpenoids at the late fruit developmental stages. Our work also showed that many genes that are involved in wax biosynthesis and export pathways were down-regulated in MT fruit peels, leading to a decrease in aliphatic wax component amounts and the loss of epicuticular wax crystals, ultimately causing the glossy phenotype of MT fruits.

  13. The glossyhead1 allele of acc1 reveals a principal role for multidomain acetyl-coenzyme a carboxylase in the biosynthesis of cuticular waxes by Arabidopsis

    KAUST Repository

    Lu, Shiyou

    2011-09-23

    A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C 20:0 or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling. © 2011 American Society of Plant Biologists. All Rights Reserved.

  14. Effectiveness of isopropyl myristate/cyclomethicone D5 solution of removing cuticular hydrocarbons from human head lice (Pediculus humanus capitis

    Directory of Open Access Journals (Sweden)

    Barnett Eric

    2012-09-01

    Full Text Available Abstract Background In the treatment of human head lice infestation, healthcare providers are increasingly concerned about lice becoming resistant to existing pesticide treatments. Traditional pesticides, used to control these pests, have a neurological mechanism of action. This publication describes a topical solution with a non-traditional mechanism of action, based on physical disruption of the wax layer that covers the cuticle of the louse exoskeleton. This topical solution has been shown clinically to cure 82% of patients with only a 10-minute treatment time, repeated once after 7 days. All insects, including human head lice, have a wax-covered exoskeleton. This wax, composed of hydrocarbons, provides the insect with protection against water loss and is therefore critical to its survival. When the protective wax is disrupted, water loss becomes uncontrollable and irreversible, leading to dehydration and death. A specific pattern of hydrocarbons has been found in all of the head louse cuticular wax studied. Iso-octane effectively removes these hydrocarbons from human head lice’s cuticular wax. Methods A method of head louse cuticle wax extraction and analysis by gas chromatography was developed. Human head lice (Pediculus humanus capitis were collected from infested patients and subjected to any of three extraction solvents comprising either the test product or one of two solvents introduced as controls. A gas chromatograph equipped with a flame ionization detector (GC/FID was used to determine the presence of hydrocarbons in the three head lice extracts. Results In the study reported herein, the test product isopropyl myristate/cyclomethicone D5 (IPM/D5 was shown to perform comparably with iso-octane, effectively extracting the target hydrocarbons from the cuticular wax that coats the human head louse exoskeleton. Conclusions Disruption of the integrity of the insect cuticle by removal of specific hydrocarbons found in the cuticular wax

  15. Dissection of the complex phenotype in cuticular mutants of Arabidopsis reveals a role of SERRATE as a mediator.

    Directory of Open Access Journals (Sweden)

    Derry Voisin

    2009-10-01

    Full Text Available Mutations in LACERATA (LCR, FIDDLEHEAD (FDH, and BODYGUARD (BDG cause a complex developmental syndrome that is consistent with an important role for these Arabidopsis genes in cuticle biogenesis. The genesis of their pleiotropic phenotypes is, however, poorly understood. We provide evidence that neither distorted depositions of cutin, nor deficiencies in the chemical composition of cuticular lipids, account for these features, instead suggesting that the mutants alleviate the functional disorder of the cuticle by reinforcing their defenses. To better understand how plants adapt to these mutations, we performed a genome-wide gene expression analysis. We found that apparent compensatory transcriptional responses in these mutants involve the induction of wax, cutin, cell wall, and defense genes. To gain greater insight into the mechanism by which cuticular mutations trigger this response in the plants, we performed an overlap meta-analysis, which is termed MASTA (MicroArray overlap Search Tool and Analysis, of differentially expressed genes. This suggested that different cell integrity pathways are recruited in cesA cellulose synthase and cuticular mutants. Using MASTA for an in silico suppressor/enhancer screen, we identified SERRATE (SE, which encodes a protein of RNA-processing multi-protein complexes, as a likely enhancer. In confirmation of this notion, the se lcr and se bdg double mutants eradicate severe leaf deformations as well as the organ fusions that are typical of lcr and bdg and other cuticular mutants. Also, lcr does not confer resistance to Botrytis cinerea in a se mutant background. We propose that there is a role for SERRATE-mediated RNA signaling in the cuticle integrity pathway.

  16. UV laser radiation alters the embryonic protein profile of adrenal-kidney-gonadal complex and gonadal differentiation in the lizard, Calotes Versicolor.

    Science.gov (United States)

    Khodnapur, Bharati S; Inamdar, Laxmi S; Nindi, Robertraj S; Math, Shivkumar A; Mulimani, B G; Inamdar, Sanjeev R

    2015-02-01

    To examine the impact of ultraviolet (UV) laser radiation on the embryos of Calotes versicolor in terms of its effects on the protein profile of the adrenal-kidney-gonadal complex (AKG), sex determination and differentiation, embryonic development and hatching synchrony. The eggs of C. versicolor, during thermo-sensitive period (TSP), were exposed to third harmonic laser pulses at 355 nm from a Q-switched Nd:YAG laser for 180 sec. Subsequent to the exposure they were incubated at the male-producing temperature (MPT) of 25.5 ± 0.5°C. The AKG of hatchlings was subjected to protein analysis by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and to histology. The UV laser radiation altered the expression of the protein banding pattern in the AKG complex of hatchlings and it also affected the gonadal sex differentiation. SDS-PAGE of AKG of one-day-old hatchlings revealed a total of nine protein bands in the control group whereas UV laser irradiated hatchlings expressed a total of seven protein bands only one of which had the same Rf as a control band. The UV laser treated hatchlings have an ovotestes kind of gonad exhibiting a tendency towards femaleness instead of the typical testes. It is inferred that 355 nm UV laser radiation during TSP induces changes in the expression of proteins as well as their secretions. UV laser radiation had an impact on the gonadal differentiation pathway but no morphological anomalies were noticed.

  17. Alterations in endo-lysosomal function induce similar hepatic lipid profiles in rodent models of drug-induced phospholipidosis and Sandhoff disease.

    Science.gov (United States)

    Lecommandeur, Emmanuelle; Baker, David; Cox, Timothy M; Nicholls, Andrew W; Griffin, Julian L

    2017-07-01

    Drug-induced phospholipidosis (DIPL) is characterized by an increase in the phospholipid content of the cell and the accumulation of drugs and lipids inside the lysosomes of affected tissues, including in the liver. Although of uncertain pathological significance for patients, the condition remains a major impediment for the clinical development of new drugs. Human Sandhoff disease (SD) is caused by inherited defects of the β subunit of lysosomal β-hexosaminidases (Hex) A and B, leading to a large array of symptoms, including neurodegeneration and ultimately death by the age of 4 in its most common form. The substrates of Hex A and B, gangliosides GM2 and GA2, accumulate inside the lysosomes of the CNS and in peripheral organs. Given that both DIPL and SD are associated with lysosomes and lipid metabolism in general, we measured the hepatic lipid profiles in rodent models of these two conditions using untargeted LC/MS to examine potential commonalities. Both model systems shared a number of perturbed lipid pathways, notably those involving metabolism of cholesteryl esters, lysophosphatidylcholines, bis(monoacylglycero)phosphates, and ceramides. We report here profound alterations in lipid metabolism in the SD liver. In addition, DIPL induced a wide range of lipid changes not previously observed in the liver, highlighting similarities with those detected in the model of SD and raising concerns that these lipid changes may be associated with underlying pathology associated with lysosomal storage disorders. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  18. Hepatic Gene Expression Profiles Are Altered by Dietary Unsalted Korean Fermented Soybean (Chongkukjang Consumption in Mice with Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    JuRyoun Soh

    2011-01-01

    Full Text Available We found that Chongkukjang, traditional unsalted fermented soybean, has an antiobesity effect in mice with diet-induced obesity and examined the changes in hepatic transcriptional profiles using cDNA microarray. High-fat diet-induced obese C57BL/6J mice were divided into three groups: normal-diet control group (NDcon, 10% of total energy from fat, high-fat diet control group (HDcon, 45% of total energy from fat, and HDcon plus 40% Chongkukjang (HDC and were fed for 9 weeks. The HDC group mice were pair-fed (isocalorie with mice in the HDcon group. Final body weight, epididymal fat accumulation, serum total cholesterol, and LDL-cholesterol were improved in HDC group. The cDNA microarray analyses revealed marked alterations in the expression of about 800 genes. Several genes involved in fatty acid catabolism (Acaa2, Mgll, Phyh, Slc27a2, and Slc27a5 were normalized by Chongkukjang consumption. This study showed beneficial effects of Chongkukjang consumption in preventing diet-induced obesity and related metabolic abnormalities.

  19. Combined treatment of sodium orthovanadate and Momordica charantia fruit extract prevents alterations in lipid profile and lipogenic enzymes in alloxan diabetic rats.

    Science.gov (United States)

    Yadav, Umesh C S; Moorthy, K; Baquer, Najma Z

    2005-01-01

    Momordica charantia Linn., commonly called bitter gourd, is a medicinal plant used in the Ayurvedic system of medicine for treating various diseases including diabetes mellitus. Sodium orthovanadate (SOV) is also well-known insulin mimetic and an antidiabetic compound. Our laboratory has been using reduced doses of SOV along with administration of herbal extracts to alloxan diabetic rats and has established this combination as a good antihyperglycemic agent. The present study was undertaken to investigate the effects of treatment of Momordica fruit extract (MFE) and sodium orthovanadate, separately and in combination, on serum and tissue lipid profile and on the activities of lipogenic enzymes in alloxan induced diabetic rats. The results show that there was a significant (p diabetes. In the liver and kidney of diabetic rats the levels of total lipids and triglycerides also increased significantly (p diabetic liver, while in kidney they showed an increased activity. When compared with the controls these changes were significant. The treatment of alloxan diabetic rats with MFE and SOV prevented these alterations and maintained all parameters near control values. Most effective prevention was however observed in a combined treatment of Momordica with a reduced dose of SOV (0.2%). The results suggest that Momordica fruit extract and SOV exhibit hypolipidemic as well as hypoglycemic effect in diabetic rats and their effect is pronounced when administered in combination.

  20. The Unique Role of the ECERIFERUM2-LIKE Clade of the BAHD Acyltransferase Superfamily in Cuticular Wax Metabolism.

    Science.gov (United States)

    Haslam, Tegan M; Gerelle, Wesley K; Graham, Sean W; Kunst, Ljerka

    2017-06-13

    The elongation of very-long-chain fatty acids is a conserved process used for the production of many metabolites, including plant cuticular waxes. The elongation of precursors of the most abundant cuticular wax components of some plants, however, is unique in requiring ECERIFERUM2-LIKE (CER2-LIKE) proteins. CER2-LIKEs are a clade within the BAHD superfamily of acyltransferases. They are known to be required for cuticular wax production in both Arabidopsis and maize based on mutant studies. Heterologous expression of Arabidopsis and rice CER2-LIKEs in Saccharomyces cerevisiae has demonstrated that they modify the chain-length specificity of elongation when paired with particular condensing enzymes. Despite sequence homology, CER2-LIKEs are distinct from the BAHD superfamily in that they do not appear to use acyl transfer activity to fulfill their biological function. Here, we review the discovery and characterization of CER2-LIKEs, propose several models to explain their function, and explore the importance of CER2-LIKE proteins for the evolution of plant cuticles.

  1. The Unique Role of the ECERIFERUM2-LIKE Clade of the BAHD Acyltransferase Superfamily in Cuticular Wax Metabolism

    Directory of Open Access Journals (Sweden)

    Tegan M. Haslam

    2017-06-01

    Full Text Available The elongation of very-long-chain fatty acids is a conserved process used for the production of many metabolites, including plant cuticular waxes. The elongation of precursors of the most abundant cuticular wax components of some plants, however, is unique in requiring ECERIFERUM2-LIKE (CER2-LIKE proteins. CER2-LIKEs are a clade within the BAHD superfamily of acyltransferases. They are known to be required for cuticular wax production in both Arabidopsis and maize based on mutant studies. Heterologous expression of Arabidopsis and rice CER2-LIKEs in Saccharomyces cerevisiae has demonstrated that they modify the chain-length specificity of elongation when paired with particular condensing enzymes. Despite sequence homology, CER2-LIKEs are distinct from the BAHD superfamily in that they do not appear to use acyl transfer activity to fulfill their biological function. Here, we review the discovery and characterization of CER2-LIKEs, propose several models to explain their function, and explore the importance of CER2-LIKE proteins for the evolution of plant cuticles.

  2. Similarity of cuticular lipids between a caterpillar and its host plant: a way to make prey undetectable for predatory ants?

    Science.gov (United States)

    Portugal, Augusto Henrique Arantes; Trigo, José Roberto

    2005-11-01

    Ithomiine butterflies (Nymphalidae) have long-lived, aposematic, chemically protected adults. However, little is known about the defense mechanisms in larvae and other juvenile stages. We showed that larvae Mechanitis polymnia are defended from ants by a chemical similarity between their cuticular lipids and those of the host plant, Solanum tabacifolium (Solanaceae). This is a novel defense mechanism in phytophagous insects. A field survey during one season showed that larval survivorship was up to 80%, which is high when compared with other juvenile stages. In a laboratory bioassay, live larvae on their host plant were not attacked by the predatory ant Camponotus crassus (Formicidae). Two experiments showed that the similarity between the cuticular lipids of M. polymnia and S. tabacifolium protected the larvae from C. crassus: (a) when the caterpillar was switched from a host plant to a non-host plant, the predation rate increased, and (b) when a palatable larva (Spodoptera frugiperda, Noctuidae) was coated with the cuticular lipids of M. polymnia and placed on S. tabacifolium leaves, it no longer experienced a high predation rate. This defensive mechanism can be defined as chemical camouflage, and may have a double adaptive advantage, namely, protection against predation and a reduction in the cost of sequestering toxic compounds from the host plant.

  3. Formation of the hindgut cuticular lining during embryonic development of Porcellio scaber (Crustacea, Isopoda

    Directory of Open Access Journals (Sweden)

    Polona Mrak

    2015-07-01

    Full Text Available The hindgut and foregut in terrestrial isopod crustaceans are ectodermal parts of the digestive system and are lined by cuticle, an apical extracellular matrix secreted by epithelial cells. Morphogenesis of the digestive system was reported in previous studies, but differentiation of the gut cuticle was not followed in detail. This study is focused on ultrastructural analyses of hindgut apical matrices and cuticle in selected intramarsupial developmental stages of the terrestrial isopod Porcellio scaber in comparison to adult animals to obtain data on the hindgut cuticular lining differentiation. Our results show that in late embryos of stages 16 and 18 the apical matrix in the hindgut consists of loose material overlaid by a thin intensely ruffled electron dense lamina facing the lumen. The ultrastructural resemblance to the embryonic epidermal matrices described in several arthropods suggests a common principle in chitinous matrix differentiation. The hindgut matrix in the prehatching embryo of stage 19 shows characteristics of the hindgut cuticle, specifically alignment to the apical epithelial surface and a prominent electron dense layer of epicuticle. In the preceding embryonic stage – stage 18 – an electron dense lamina, closely apposed to the apical cell membrane, is evident and is considered as the first epicuticle formation. In marsupial mancae the advanced features of the hindgut cuticle and epithelium are evident: a more prominent epicuticular layer, formation of cuticular spines and an extensive apical labyrinth. In comparison to the hindgut cuticle of adults, the hindgut cuticle of marsupial manca and in particular the electron dense epicuticular layer are much thinner and the difference between cuticle architecture in the anterior chamber and in the papillate region is not yet distinguishable. Differences from the hindgut cuticle in adults imply not fully developed structure and function of the hindgut cuticle in marsupial

  4. Formation of the hindgut cuticular lining during embryonic development of Porcellioscaber (Crustacea, Isopoda).

    Science.gov (United States)

    Mrak, Polona; Bogataj, Urban; Štrus, Jasna; Žnidaršič, Nada

    2015-01-01

    The hindgut and foregut in terrestrial isopod crustaceans are ectodermal parts of the digestive system and are lined by cuticle, an apical extracellular matrix secreted by epithelial cells. Morphogenesis of the digestive system was reported in previous studies, but differentiation of the gut cuticle was not followed in detail. This study is focused on ultrastructural analyses of hindgut apical matrices and cuticle in selected intramarsupial developmental stages of the terrestrial isopod Porcellioscaber in comparison to adult animals to obtain data on the hindgut cuticular lining differentiation. Our results show that in late embryos of stages 16 and 18 the apical matrix in the hindgut consists of loose material overlaid by a thin intensely ruffled electron dense lamina facing the lumen. The ultrastructural resemblance to the embryonic epidermal matrices described in several arthropods suggests a common principle in chitinous matrix differentiation. The hindgut matrix in the prehatching embryo of stage 19 shows characteristics of the hindgut cuticle, specifically alignment to the apical epithelial surface and a prominent electron dense layer of epicuticle. In the preceding embryonic stage - stage 18 - an electron dense lamina, closely apposed to the apical cell membrane, is evident and is considered as the first epicuticle formation. In marsupial mancae the advanced features of the hindgut cuticle and epithelium are evident: a more prominent epicuticular layer, formation of cuticular spines and an extensive apical labyrinth. In comparison to the hindgut cuticle of adults, the hindgut cuticle of marsupial manca and in particular the electron dense epicuticular layer are much thinner and the difference between cuticle architecture in the anterior chamber and in the papillate region is not yet distinguishable. Differences from the hindgut cuticle in adults imply not fully developed structure and function of the hindgut cuticle in marsupial manca, possibly related also

  5. Sexual Selection on male cuticular hydrocarbons via male-male competition and female choice.

    Science.gov (United States)

    Lane, S M; Dickinson, A W; Tregenza, T; House, C M

    2016-07-01

    Traditional views of sexual selection assumed that male-male competition and female mate choice work in harmony, selecting upon the same traits in the same direction. However, we now know that this is not always the case and that these two mechanisms often impose conflicting selection on male sexual traits. Cuticular hydrocarbons (CHCs) have been shown to be linked to both social dominance and male attractiveness in several insect species. However, although several studies have estimated the strength and form of sexual selection imposed on male CHCs by female mate choice, none have established whether these chemical traits are also subject to sexual selection via male-male competition. Using a multivariate selection analysis, we estimate and compare sexual selection exerted by male-male competition and female mate choice on male CHC composition in the broad-horned flour beetle Gnatocerus cornutus. We show that male-male competition exerts strong linear selection on both overall CHC abundance and body size in males, while female mate choice exerts a mixture of linear and nonlinear selection, targeting not just the overall amount of CHCs expressed but the relative abundance of specific hydrocarbons as well. We discuss the potential implications of this antagonistic selection with regard to male reproductive success. © 2016 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  6. The complex interplay between macronutrient intake, cuticular hydrocarbon expression and mating success in male decorated crickets.

    Science.gov (United States)

    Rapkin, J; Jensen, K; House, C M; Sakaluk, S K; Sakaluk, J K; Hunt, J

    2017-04-01

    The condition dependence of male sexual traits plays a central role in sexual selection theory. Relatively little, however, is known about the condition dependence of chemical signals used in mate choice and their subsequent effects on male mating success. Furthermore, few studies have isolated the specific nutrients responsible for condition-dependent variation in male sexual traits. Here, we used nutritional geometry to determine the effect of protein (P) and carbohydrate (C) intake on male cuticular hydrocarbon (CHC) expression and mating success in male decorated crickets (Gryllodes sigillatus). We show that both traits are maximized at a moderate-to-high intake of nutrients in a P:C ratio of 1 : 1.5. We also show that female precopulatory mate choice exerts a complex pattern of linear and quadratic sexual selection on this condition-dependent variation in male CHC expression. Structural equation modelling revealed that although the effect of nutrient intake on mating success is mediated through condition-dependent CHC expression, it is not exclusively so, suggesting that other traits must also play an important role. Collectively, our results suggest that the complex interplay between nutrient intake, CHC expression and mating success plays an important role in the operation of sexual selection in G. sigillatus. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  7. Sexual selection on cuticular hydrocarbons of male sagebrush crickets in the wild.

    Science.gov (United States)

    Steiger, Sandra; Ower, Geoffrey D; Stökl, Johannes; Mitchell, Christopher; Hunt, John; Sakaluk, Scott K

    2013-12-22

    Cuticular hydrocarbons (CHCs) play an essential role in mate recognition in insects but the form and intensity of sexual selection on CHCs has only been evaluated in a handful of studies, and never in a natural population. We quantified sexual selection operating on CHCs in a wild population of sagebrush crickets, a species in which nuptial feeding by females imposes an unambiguous phenotypic marker on males. Multivariate selection analysis revealed a saddle-shaped fitness surface, suggesting a complex interplay between the total abundance of CHCs and specific CHC combinations in their influence on female choice. The fitness surface resulting from two axes of disruptive selection reflected a trade-off between short- and long-chained CHCs, suggesting that males may be sacrificing some level of desiccation resistance in favour of increased attractiveness. There was a significant correlation between male body size and total CHC abundance, suggesting that male CHCs provide females with a reliable cue for maximizing benefits obtained from males. Notwithstanding the conspicuousness of males' acoustic signals, our results suggest that selection imposed on males via female mating preferences may be far more complex than previously appreciated and operating in multiple sensory modalities.

  8. Cuticular hydrocarbons of Glossina austeni and Glossina pallidipes: Similarities between populations and activity as sex pheromones

    International Nuclear Information System (INIS)

    Carlson, D.A.; Bernier, U.R.; Sutton, B.D.

    2000-01-01

    Tsetse flies are a hazard to the health of humans and domestic animals because they spread trypanosomiasis, also known as nagana. Glossina austeni Newstead and Glossina pallidipes Austen are important vectors of this disease in East Africa. Sex pheromones were shown to be present in the surface or cuticular hydrocarbon waterproofing waxes of female of several species of the tsetse fly (Huyton et al. 1980). The pheromones identified in Glossina morsitans morsitans Westwood (Carlson et al. 1978) and G. pallidipes (Carlson et al. 1984, McDowell et al. 1985) have been shown to consist of species-specific, long-chain, high molecular weight hydrocarbons with several methyl branches, present with at least 20 other hydrocarbon compounds in the surface waxes (Nelson and Carlson 1986, Nelson et al. 1988, Sutton and Carlson 1997). The assignment of KI (Kovacx Index) narrows the range of possible methyl-branch configurations in cases of ambiguous or insufficient EI (electron impact) spectra (Carlson et al. 1998). We used gas chromatography/mass spectrometry to demonstrate that different populations of tsetse flies (Carlson et al. 1993) are closely related by investigating these patterns of surface hydrocarbons

  9. Secondary Metabolites of the Cuticular Abdominal Glands of Variegated Grasshopper (Zonocerus variegatus L.

    Directory of Open Access Journals (Sweden)

    O. U. Igwe

    2015-01-01

    Full Text Available Chemical compounds were extracted with petroleum ether from the cuticular abdominal glands of grasshopper (Zonocerus variegatus L. and eleven compounds were characterised using Gas Chromatography/Mass Spectrometry (GC/MS technique in combination with Fourier Transform-Infrared Spectroscopy (FT-IR. The compounds analysed were 2,7-dimethyloctane (3.21%, decane (5.33%, undecane (3.81%, tridecanoic acid methyl ester (4.76%, hexadecanoic acid (9.37%, 11-octadecenoic acid methyl ester (23.18%, pentadecanoic acid, 14-methyl-methyl ester (4.43%, (Z-13-docosenoic acid (10.71%, dodecyl pentafluoropropionate (9.52%, 2-dodecyl-1,3-propanediol (6.38%, and 1,12-tridecadiene (19.30%. FT-IR analysis of the extract showed peaks at 1270.17 (C–O and C–F, 1641.48 (C=C, 2937.68 (C–H, and 3430.51 (O–H cm−1 indicating the presence of ether, alkene, alkane, alcohol, carboxylic acid, and fluoric compounds. These compounds consisted of 32.37% ester, 31.65% hydrocarbons, 20.08% fatty acid, 9.52% halogenated ester, and 6.38% alcohol. The highest component was 11-octadecenoic acid methyl ester followed by 1,12-tridecadiene. Since behavioural bioassays were not carried out, the consideration of these compounds to be pheromone semiochemicals remains a hypothesis.

  10. Population studies of Glossina pallidipes in Ethiopia: emphasis on cuticular hydrocarbons and wing morphometric analysis.

    Science.gov (United States)

    Getahun, M N; Cecchi, G; Seyoum, E

    2014-10-01

    Tsetse flies, like many insects, use pheromones for inter- and intra-specific communication. Several of their pheromones are cuticular hydrocarbons (CHCs) that are perceived by contact at close range. We hypothesized that for a successful implementation of the Sterile Insect Technique (SIT), along with proper identification of target area and target species, the target tsetse populations and the sterile flies must chemically communicate with each other. To study the population structuring of Glossina pallidipes in Ethiopia, CHCs were extracted and analyzed from three tsetse belts. As a comparative approach, wing morphometric analysis was performed. The analysis of the relative abundance of CHCs revealed that populations of G. pallidipes from the Rift Valley tsetse belt showed a distinct clustering compared to populations from the other two belts. The spatial pattern of CHC differences was complemented by the wing morphometric analysis. Our data suggest that CHCs of known biological and ecological role, when combined with wing morphometric data, will provide an alternative means for the study of population structuring of Glossina populations. This could aid the planning of area wide control strategies using SIT, which is dependent on sexual competence. Copyright © 2014 International Atomic Energy Agency 2014. Published by Elsevier B.V. All rights reserved.

  11. Altered Expression Profile of IgLON Family of Neural Cell Adhesion Molecules in the Dorsolateral Prefrontal Cortex of Schizophrenic Patients

    Directory of Open Access Journals (Sweden)

    Karina Karis

    2018-01-01

    Full Text Available Neural adhesion proteins are crucial in the development and maintenance of functional neural connectivity. Growing evidence suggests that the IgLON family of neural adhesion molecules LSAMP, NTM, NEGR1, and OPCML are important candidates in forming the susceptibility to schizophrenia (SCZ. IgLON proteins have been shown to be involved in neurite outgrowth, synaptic plasticity and neuronal connectivity, all of which have been shown to be altered in the brains of patients with the diagnosis of schizophrenia. Here we optimized custom 5′-isoform-specific TaqMan gene-expression analysis for the transcripts of human IgLON genes to study the expression of IgLONs in the dorsolateral prefrontal cortex (DLPFC of schizophrenic patients (n = 36 and control subjects (n = 36. Uniform 5′-region and a single promoter was confirmed for the human NEGR1 gene by in silico analysis. IgLON5, a recently described family member, was also included in the study. We detected significantly elevated levels of the NEGR1 transcript (1.33-fold increase and the NTM 1b isoform transcript (1.47-fold increase in the DLPFC of schizophrenia patients compared to healthy controls. Consequent protein analysis performed in male subjects confirmed the increase in NEGR1 protein content both in patients with the paranoid subtype and in patients with other subtypes. In-group analysis of patients revealed that lower expression of certain IgLON transcripts, mostly LSAMP 1a and 1b, could be related with concurrent depressive endophenotype in schizophrenic patients. Additionally, our study cohort provides further evidence that cannabis use may be a relevant risk factor associated with suicidal behaviors in psychotic patients. In conclusion, we provide clinical evidence of increased expression levels of particular IgLON family members in the DLPFC of schizophrenic patients. We propose that alterations in the expression profile of IgLON neural adhesion molecules are associated with brain

  12. Comprehensive genomic profiling of 295 cases of clinically advanced urothelial carcinoma of the urinary bladder reveals a high frequency of clinically relevant genomic alterations.

    Science.gov (United States)

    Ross, Jeffrey S; Wang, Kai; Khaira, Depinder; Ali, Siraj M; Fisher, Huge A G; Mian, Badar; Nazeer, Tipu; Elvin, Julia A; Palma, Norma; Yelensky, Roman; Lipson, Doron; Miller, Vincent A; Stephens, Philip J; Subbiah, Vivek; Pal, Sumanta K

    2016-03-01

    In the current study, the authors present a comprehensive genomic profile (CGP)-based study of advanced urothelial carcinoma (UC) designed to detect clinically relevant genomic alterations (CRGAs). DNA was extracted from 40 µm of formalin-fixed, paraffin-embedded sections from 295 consecutive cases of recurrent/metastatic UC. CGP was performed on hybridization-captured, adaptor ligation-based libraries to a mean coverage depth of 688X for all coding exons of 236 cancer-related genes plus 47 introns from 19 genes frequently rearranged in cancer, using process-matched normal control samples as a reference. CRGAs were defined as GAs linked to drugs on the market or currently under evaluation in mechanism-driven clinical trials. All 295 patients assessed were classified with high-grade (International Society of Urological Pathology classification) and advanced stage (stage III/IV American Joint Committee on Cancer) disease, and 294 of 295 patients (99.7%) had at least 1 GA on CGP with a mean of 6.4 GAs per UC (61% substitutions/insertions/deletions, 37% copy number alterations, and 2% fusions). Furthermore, 275 patients (93%) had at least 1 CRGA involving 75 individual genes with a mean of 2.6 CRGAs per UC. The most common CRGAs involved cyclin-dependent kinase inhibitor 2A (CDKN2A) (34%), fibroblast growth factor receptor 3 (FGFR3) (21%), phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) (20%), and ERBB2 (17%). FGFR3 GAs were diverse types and included 10% fusions. ERBB2 GAs were equally divided between amplifications and substitutions. ERBB2 substitutions were predominantly within the extracellular domain and were highly enriched in patients with micropapillary UC (38% of 32 cases vs 5% of 263 nonmicropapillary UC cases; P<.0001). Using a CGP assay capable of detecting all classes of GA simultaneously, an extraordinarily high frequency of CRGA was identified in a large series of patients with advanced UC. Cancer 2016;122:702-711. © 2015 American

  13. Systematic review with meta-analysis: risk factors for non-alcoholic fatty liver disease suggest a shared altered metabolic and cardiovascular profile between lean and obese patients.

    Science.gov (United States)

    Sookoian, S; Pirola, C J

    2017-07-01

    The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is closely associated with the co-occurrence of multiple pathological conditions characterising the metabolic syndrome (MetS), obesity in particular. However, NAFLD also develops in lean subjects, whose risk factors remain poorly defined. We performed a meta-analysis of 15 studies, along with the data pertaining to our own population (n=336 patients). Data from lean (n=1966) and obese (n=5938) patients with NAFLD were analysed; lean (n=9946) and obese (n=6027) subjects without NAFLD served as controls. Relative to the lean non-NAFLD controls, lean patients with NAFLD were older (3.79±0.72 years, P=1.36×10 -6 ) and exhibited the entire spectrum of the MetS risk factors. Specifically, they had a significant (P=10 -10 ) increase in plasma glucose levels (6.44±1.12 mg/dL) and HOMA-IR (0.52±0.094-unit increment), blood lipids (triglycerides: 48.37±3.6, P=10 -10 and total cholesterol: 7.04±3.8, mg/dL, P=4.2×10 -7 ), systolic (5.64±0.7) and diastolic (3.37±0.9) blood pressure (mm Hg), P=10 -10 , and waist circumference (5.88±0.4 cm, P=10 -10 ); values denote difference in means±SE. Nevertheless, the overall alterations in the obese group were much more severe when compared to lean subjects, regardless of the presence of NAFLD. Meta-regression suggested that NAFLD is a modifier of the level of blood lipids. Lean and obese patients with NAFLD share a common altered metabolic and cardiovascular profile. The former, while having normal body weight, showed excess of abdominal adipose tissue as well as other MetS features. © 2017 John Wiley & Sons Ltd.

  14. Overexpression of miR-155 in the Liver of Transgenic Mice Alters the Expression Profiling of Hepatic Genes Associated with Lipid Metabolism

    Science.gov (United States)

    Li, Wei; Wang, Xiaoyan; Wei, Jieqiong; Lin, Xia; Zeng, Hui; Yao, Longping; Chen, Xuebing; Zhuang, Jingshen; Weng, Jie; Liu, Yu; Lin, Jihong; Wu, Qinghong; Wang, Wanshan; Yao, Kaitai; Xu, Kang; Xiao, Dong

    2015-01-01

    Hepatic expression profiling has revealed miRNA changes in liver diseases, while hepatic miR-155 expression was increased in murine non-alcoholic fatty liver disease, suggesting that miR-155 might regulate the biological process of lipid metabolism. To illustrate the effects of miR-155 gain of function in transgenic mouse liver on lipid metabolism, transgenic mice (i.e., Rm155LG mice) for the conditional overexpression of mouse miR-155 transgene mediated by Cre/lox P system were firstly generated around the world in this study. Rm155LG mice were further crossed to Alb-Cre mice to realize the liver-specific overexpression of miR-155 transgene in Rm155LG/Alb-Cre double transgenic mice which showed the unaltered body weight, liver weight, epididymal fat pad weight and gross morphology and appearance of liver. Furthermore, liver-specific overexpression of miR-155 transgene resulted in significantly reduced levels of serum total cholesterol, triglycerides (TG) and high-density lipoprotein (HDL), as well as remarkably decreased contents of hepatic lipid, TG, HDL and free fatty acid in Rm155LG/Alb-Cre transgenic mice. More importantly, microarray data revealed a general downward trend in the expression profile of hepatic genes with functions typically associated with fatty acid, cholesterol and triglyceride metabolism, which is likely at least partially responsible for serum cholesterol and triglyceride lowering observed in Rm155LG/Alb-Cre mice. In this study, we demonstrated that hepatic overexpression of miR-155 alleviated nonalcoholic fatty liver induced by a high-fat diet. Additionally, carboxylesterase 3/triacylglycerol hydrolase (Ces3/TGH) was identified as a direct miR-155 target gene that is potentially responsible for the partial liver phenotypes observed in Rm155LG/Alb-Cre mice. Taken together, these data from miR-155 gain of function study suggest, for what we believe is the first time, the altered lipid metabolism and provide new insights into the metabolic

  15. Deep brain stimulation of the subthalamic nucleus preferentially alters the translational profile of striatopallidal neurons in an animal model of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Iman eKamali Sarvestani

    2015-06-01

    Full Text Available Deep brain stimulation targeting the subthalamic nucleus (STN-DBS is an effective surgical treatment for the motor symptoms of Parkinson’s disease (PD, the precise neuronal mechanisms of which both at molecular and network levels remain a topic of debate. Here we employ two transgenic mouse lines, combining translating ribosomal affinity purification (TRAP with bacterial artificial chromosome expression (Bac, to selectively identify changes in translational gene expression in either Drd1a-expressing striatonigral or Drd2-expressing striatopallidal medium spiny neurons (MSNs of the striatum following STN-DBS. 6-hydroxydopamine lesioned mice received either 5 days stimulation via a DBS electrode implanted in the ipsilateral STN or 5 days sham treatment (no stimulation. Striatal polyribosomal RNA was selectively purified from either Drd2 or Drd1a MSNs using the TRAP method and gene expression profiling performed. We identified 8 significantly altered genes in Drd2 MSNs (Vps33b, Ppp1r3c, Mapk4, Sorcs2, Neto1, Abca1, Penk1 and Gapdh and 2 overlapping genes in Drd1a MSNs (Penk1 and Ppp1r3c implicated in the molecular mechanisms of STN-DBS. A detailed functional analysis, using a further 728 probes implicated in STN-DBS, suggested an increased ability to receive excitation (mediated by increased dendritic spines, increased calcium influx and enhanced excitatory post synaptic potentials accompanied by processes that would hamper the initiation of action potentials, transport of neurotransmitters from soma to axon terminals and vesicular release in Drd2-expressing MSNs. Finally, changes in expression of several genes involved in apoptosis as well as cholesterol and fatty acid metabolism were also identified. This increased understanding of the molecular mechanisms induced by STN-DBS may reveal novel targets for future non-surgical therapies for PD.

  16. Properties of the cuticular proteins of Anopheles gambiae as revealed by serial extraction of adults.

    Science.gov (United States)

    Zhou, Yihong; Badgett, Majors J; Billard, Lynne; Bowen, John Hunter; Orlando, Ron; Willis, Judith H

    2017-01-01

    How cuticular proteins (CPs) interact with chitin and with each other in the cuticle remains unresolved. We employed LC-MS/MS to identify CPs from 5-6 day-old adults of Anopheles gambiae released after serial extraction with PBS, EDTA, 2-8M urea, and SDS as well as those that remained unextracted. Results were compared to published data on time of transcript abundance, localization of proteins within structures and within the cuticle, as well as properties of individual proteins, length, pI, percent histidine, tyrosine, glutamine, and number of AAP[A/V/L] repeats. Thirteen proteins were solubilized completely, all were CPRs, most belonging to the RR-1 group. Eleven CPs were identified in both soluble fractions and the final pellet, including 5 from other CP families. Forty-three were only detected from the final pellet. These included CPRs and members of the CPAP1, CPF, CPFL, CPLCA, CPLCG, CPLCP, and TWDL families, as well as several low complexity CPs, not assigned to families and named CPLX. For a given protein, many histidines or tyrosines or glutamines appear to be potential participants in cross-linking since we could not identify any peptide bearing these residues that was consistently absent. We failed to recover peptides from the amino-terminus of any CP. Whether this implicates that location in sclerotization or some modification that prevents detection is not known. Soluble CPRs had lower isoelectric points than those that remained in the final pellet; most members of other CP families had isoelectric points of 8 or higher. Obviously, techniques beyond analysis of differential solubility will be needed to learn how CPs interact with each other and with chitin.

  17. Properties of the cuticular proteins of Anopheles gambiae as revealed by serial extraction of adults.

    Directory of Open Access Journals (Sweden)

    Yihong Zhou

    Full Text Available How cuticular proteins (CPs interact with chitin and with each other in the cuticle remains unresolved. We employed LC-MS/MS to identify CPs from 5-6 day-old adults of Anopheles gambiae released after serial extraction with PBS, EDTA, 2-8M urea, and SDS as well as those that remained unextracted. Results were compared to published data on time of transcript abundance, localization of proteins within structures and within the cuticle, as well as properties of individual proteins, length, pI, percent histidine, tyrosine, glutamine, and number of AAP[A/V/L] repeats. Thirteen proteins were solubilized completely, all were CPRs, most belonging to the RR-1 group. Eleven CPs were identified in both soluble fractions and the final pellet, including 5 from other CP families. Forty-three were only detected from the final pellet. These included CPRs and members of the CPAP1, CPF, CPFL, CPLCA, CPLCG, CPLCP, and TWDL families, as well as several low complexity CPs, not assigned to families and named CPLX. For a given protein, many histidines or tyrosines or glutamines appear to be potential participants in cross-linking since we could not identify any peptide bearing these residues that was consistently absent. We failed to recover peptides from the amino-terminus of any CP. Whether this implicates that location in sclerotization or some modification that prevents detection is not known. Soluble CPRs had lower isoelectric points than those that remained in the final pellet; most members of other CP families had isoelectric points of 8 or higher. Obviously, techniques beyond analysis of differential solubility will be needed to learn how CPs interact with each other and with chitin.

  18. RNA-Seq reveals leaf cuticular wax-related genes in Welsh onion.

    Science.gov (United States)

    Liu, Qianchun; Wen, Changlong; Zhao, Hong; Zhang, Liying; Wang, Jian; Wang, Yongqin

    2014-01-01

    The waxy cuticle plays a very important role in plant resistance to various biotic and abiotic stresses and is an important characteristic of Welsh onions. Two different types of biangan Welsh onions (BG) were selected for this study: BG, a wild-type covered by wax, which forms a continuous lipid membrane on its epidermal cells, and GLBG, a glossy mutant of BG whose epidermal cells are not covered by wax. To elucidate the waxy cuticle-related gene expression changes, we used RNA-Seq to compare these two Welsh onion varieties with distinct differences in cuticular wax. The de novo assembly yielded 42,881 putative unigenes, 25.41% of which are longer than 1,000 bp. Among the high-quality unique sequences, 22,289 (52.0%) had at least one significant match to an existing gene model. A total of 798 genes, representing 1.86% of the total putative unigenes, were differentially expressed between these two Welsh onion varieties. The expression patterns of four important unigenes that are related to waxy cuticle biosynthesis were confirmed by RT-qPCR and COG class annotation, which demonstrated that these genes play an important role in defense mechanisms and lipid transport and metabolism. To our knowledge, this study is the first exploration of the Welsh onion waxy cuticle. These results may help to reveal the molecular mechanisms underlying the waxy cuticle and will be useful for waxy gene cloning, genetics and breeding as well as phylogenetic and evolutionary studies of the Welsh onion.

  19. Properties of the cuticular proteins of Anopheles gambiae as revealed by serial extraction of adults

    Science.gov (United States)

    Zhou, Yihong; Badgett, Majors J.; Billard, Lynne; Bowen, John Hunter; Orlando, Ron

    2017-01-01

    How cuticular proteins (CPs) interact with chitin and with each other in the cuticle remains unresolved. We employed LC-MS/MS to identify CPs from 5–6 day-old adults of Anopheles gambiae released after serial extraction with PBS, EDTA, 2-8M urea, and SDS as well as those that remained unextracted. Results were compared to published data on time of transcript abundance, localization of proteins within structures and within the cuticle, as well as properties of individual proteins, length, pI, percent histidine, tyrosine, glutamine, and number of AAP[A/V/L] repeats. Thirteen proteins were solubilized completely, all were CPRs, most belonging to the RR-1 group. Eleven CPs were identified in both soluble fractions and the final pellet, including 5 from other CP families. Forty-three were only detected from the final pellet. These included CPRs and members of the CPAP1, CPF, CPFL, CPLCA, CPLCG, CPLCP, and TWDL families, as well as several low complexity CPs, not assigned to families and named CPLX. For a given protein, many histidines or tyrosines or glutamines appear to be potential participants in cross-linking since we could not identify any peptide bearing these residues that was consistently absent. We failed to recover peptides from the amino-terminus of any CP. Whether this implicates that location in sclerotization or some modification that prevents detection is not known. Soluble CPRs had lower isoelectric points than those that remained in the final pellet; most members of other CP families had isoelectric points of 8 or higher. Obviously, techniques beyond analysis of differential solubility will be needed to learn how CPs interact with each other and with chitin. PMID:28419115

  20. GC-MS Metabolomics to Evaluate the Composition of Plant Cuticular Waxes for Four Triticum aestivum Cultivars

    Directory of Open Access Journals (Sweden)

    Florent D. Lavergne

    2018-01-01

    Full Text Available Wheat (Triticum aestivum L. is an important food crop, and biotic and abiotic stresses significantly impact grain yield. Wheat leaf and stem surface waxes are associated with traits of biological importance, including stress resistance. Past studies have characterized the composition of wheat cuticular waxes, however protocols can be relatively low-throughput and narrow in the range of metabolites detected. Here, gas chromatography-mass spectrometry (GC-MS metabolomics methods were utilized to provide a comprehensive characterization of the chemical composition of cuticular waxes in wheat leaves and stems. Further, waxes from four wheat cultivars were assayed to evaluate the potential for GC-MS metabolomics to describe wax composition attributed to differences in wheat genotype. A total of 263 putative compounds were detected and included 58 wax compounds that can be classified (e.g., alkanes and fatty acids. Many of the detected wax metabolites have known associations to important biological functions. Principal component analysis and ANOVA were used to evaluate metabolite distribution, which was attributed to both tissue type (leaf, stem and cultivar differences. Leaves contained more primary alcohols than stems such as 6-methylheptacosan-1-ol and octacosan-1-ol. The metabolite data were validated using scanning electron microscopy of epicuticular wax crystals which detected wax tubules and platelets. Conan was the only cultivar to display alcohol-associated platelet-shaped crystals on its abaxial leaf surface. Taken together, application of GC-MS metabolomics enabled the characterization of cuticular wax content in wheat tissues and provided relative quantitative comparisons among sample types, thus contributing to the understanding of wax composition associated with important phenotypic traits in a major crop.

  1. The composition of dietary fat alters the transcriptional profile of pathways associated with lipid metabolism in the liver and adipose tissue in the pig.

    Science.gov (United States)

    Kellner, T A; Gabler, N K; Patience, J F

    2017-08-01

    The objective was to investigate the of effect chemical composition of dietary fat on transcription of genes involved in lipid metabolism in adipose tissue and the liver via transcriptional profiling in growing pigs. A total of 48 Genetiporc 6.0 × Genetiporc F25 (PIC, Inc., Hendersonville, TN) barrows (initial BW of 44.1 ± 1.2 kg) were randomly allotted to 1 of 6 dietary treatments. Each experimental diet included 95% of a corn-soybean meal basal diet and 5% cornstarch (control; CNTR), animal-vegetable blend (AV), coconut oil (COCO), corn oil (COIL), fish oil (FO), or tallow (TAL). Pigs were sacrificed on d 10 (final BW of 51.2 ± 1.7 kg) to collect tissues. Expression normalization across samples was performed by calculating a delta cycle threshold (ΔCt) value using . Delta delta cycle threshold (ΔΔCt) values were expressed relative to the CNTR treatment. In adipose tissue, adding dietary fat, regardless of the source, decreased the mRNA abundance of compared with the CNTR ( = 0.014). Pigs fed a COIL-based diet tended to have greater adipose tissue expression of ( = 0.071) than pigs fed the other dietary fat sources tested. Abundance of mRNA was greater in adipose tissue of barrows a fed COIL-based diet than barrows fed CNTR or FO-based diets ( = 0.047). In the liver, adding dietary fat, regardless of source, increased the mRNA abundance of , , , , , and ( ≤ 0.020) and tended to increase the abundance of ( = 0.071) and ( = 0.086) compared with the CNTR. Pigs fed a TAL-based diet had greater hepatic transcription of than pigs fed CNTR-, COCO-, or FO-based diets ( = 0.013). Hepatic transcription of tended to be greater in pigs fed COCO than in pigs fed other dietary fat sources ( = 0.074). Dietary omega-3 fatty acid content tended to negatively correlate with mRNA abundance of ( = 0.065) in adipose tissue and ( = 0.063) in the liver. Dietary fat SFA content was negatively correlated with in the liver ( ≤ 0.039). Dietary fat MUFA content tended to be

  2. Estimating the age of the adult stages of the blow flies Lucilia sericata and Calliphora vicina (Diptera: Calliphoridae) by means of the cuticular hydrocarbon n-pentacosane.

    Science.gov (United States)

    Bernhardt, Victoria; Pogoda, Werner; Verhoff, Marcel A; Toennes, Stefan W; Amendt, Jens

    2017-09-01

    Age estimation of insects like blow flies plays an important role in forensic entomology and can answer questions in regard to time of death. So far the focus is on the immature stages of these insects, but recently the adult fly became a target of interest. It has been established that the profile of specific cuticular hydrocarbons (CHCs) changes in a consistent pattern as adult insects age; thus, their analysis could be a promising tool for the age estimation of adult insects. We investigated the CHC n-pentacosane (nC25) on the legs of the adult blow flies Lucilia sericata and Calliphora vicina with gas chromatography-mass spectrometry. The flies were kept at room temperature (17°C±2°C) and 12:12 L:D from Day 1 to Day 20 post-emergence. For each of five flies per species, the amount of nC25 on all legs was determined daily. The amounts of nC25 on C. vicina increased linearly (R 2 =0.949). No significant difference between sexes could be detected. While L. sericata showed the same linear increase in general, we found significant (page is constructed from these data. Although the influence of various environmental factors, e.g., fluctuating temperatures, still needs to be tested, nC25 seems to be a promising tool for the age estimation of adult flies. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  3. Development of the cuticular wax during growth of Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves.

    Science.gov (United States)

    Van Maarseveen, Clare; Han, Hong; Jetter, Reinhard

    2009-01-01

    The goal of the present study was to monitor cuticular wax accumulation during leaf development of Kalanchoe daigremontiana. Leaves expanded linearly until they were 40-60 d old. Wax coverages of leaves on the third node increased steadily during initial leaf development, from 6.5 microg x cm(-2) on day 22 to 15.3 microg x cm(-2) on day 53, and then levelled off. Triterpenoids dominated the wax mixture throughout leaf development, but decreased from 74 to 40-45% in mature leaves, while very long-chain fatty acid (VLCFA) derivatives increased from 19 to 39-44%. The major VLCFA derivatives were alkanes, accompanied by fatty acids, primary alcohols, aldehydes and alkyl esters. In all compound classes, either C(34) or C(33) homologs predominated during leaf development. Eight different triterpenoids were identified, with glutinol constituting 70% of the fraction, and friedelin (20%) and germanicol (10%) as further major components of the young leaf wax. The glutinol percentage decreased, while the relative amounts of epifriedelanol and glutanol increased during development. Various leaf pairs upwards from the third node showed similar growth patterns and developmental time courses of cuticular wax amounts and composition. Based on these surface chemical analyses, the relative activities of biosynthetic pathways leading to various wax components can be assessed.

  4. Uncovering tomato quantitative trait loci and candidate genes for fruit cuticular lipid composition using the Solanum pennellii introgression line population.

    Science.gov (United States)

    Fernandez-Moreno, Josefina-Patricia; Levy-Samoha, Dorit; Malitsky, Sergey; Monforte, Antonio J; Orzaez, Diego; Aharoni, Asaph; Granell, Antonio

    2017-05-17

    The cuticle is a specialized cell wall layer that covers the outermost surface of the epidermal cells and has important implications for fruit permeability and pathogen susceptibility. In order to decipher the genetic control of tomato fruit cuticle composition, an introgression line (IL) population derived from a biparental cross between Solanum pennellii (LA0716) and the Solanum lycopersicum cultivar M82 was used to build a first map of associated quantitative trait loci (QTLs). A total of 24 cuticular waxes and 26 cutin monomers were determined. They showed changes associated with 18 genomic regions distributed in nine chromosomes affecting 19 ILs. Out of the five main fruit cuticular components described for the wild species S. pennellii, three of them were associated with IL3.4, IL12.1, and IL7.4.1, causing an increase in n-alkanes (≥C30), a decrease in amyrin content, and a decrease in cuticle thickness of ~50%, respectively. Moreover, we also found a QTL associated with increased levels of amyrins in IL3.4. In addition, we propose some candidate genes on the basis of their differential gene expression and single nucleotide polymorphism variability between the introgressed and the recurrent alleles, which will be the subjects of further investigation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Profiling of Plasma Metabolites Suggests Altered Mitochondrial Fuel Usage and Remodeling of Sphingolipid Metabolism in Individuals With Type 2 Diabetes and Kidney Disease

    Directory of Open Access Journals (Sweden)

    Jian-Jun Liu

    2017-05-01

    Discussion: DKD is associated with altered fuel substrate use and remodeling of sphingolipid metabolism in T2DM with DKD. Associations of albuminuria and impaired filtration function with distinct metabolomic signatures suggest different pathophysiology underlying these 2 manifestations of DKD.

  6. rRNA:mRNA pairing alters the length and the symmetry of mRNA-protected fragments in ribosome profiling experiments

    OpenAIRE

    O?Connor, Patrick B. F.; Li, Gene-Wei; Weissman, Jonathan S.; Atkins, John F.; Baranov, Pavel V.

    2013-01-01

    Motivation: Ribosome profiling is a new technique that allows monitoring locations of translating ribosomes on mRNA at a whole transcriptome level. A recent ribosome profiling study demonstrated that internal Shine?Dalgarno (SD) sequences have a major global effect on translation rates in bacteria: ribosomes pause at SD sites in mRNA. Therefore, it is important to understand how SD sites effect mRNA movement through the ribosome and generation of ribosome footprints. Results: Here, we provide...

  7. Moderate alcohol consumption alters both leucocyte gene expression profiles and circulating proteins related to immune response and lipid metabolism in men

    OpenAIRE

    Joosten, M.M.; Erk, M.J. van; Pellis, L; Witkamp, R.F.; Hendriks, H.F.

    2012-01-01

    Moderate alcohol consumption has various effects on immune and inflammatory processes, which could accumulatively modulate chronic disease risk. So far, no comprehensive, integrative profiling has been performed to investigate the effects of longer-term alcohol consumption. Therefore, we studied the effects of alcohol consumption on gene expression patterns using large-scale profiling of whole-genome transcriptomics in blood cells and on a number of proteins in blood. In a randomised, open-la...

  8. Ciliary hair cells and cuticular photoreceptor of the hornet Vespa orientalis as components of a gravity detecting system : an SEM/TEM investigation

    NARCIS (Netherlands)

    Jongebloed, WL; Rosenzweig, E; Kalicharan, D; van der Want, JJL; Ishay, JS

    1999-01-01

    This paper describes three types of hair cell configurations with stereo- and kinocilia in the head of the hornet; these were encountered at the vertex and frons regions adjacent to the three ocelli and are assumed to be part of the hornet's gravity detecting system together with cuticular

  9. Radiation induced changes in the cuticular hydrocarbons of the granary weevil and their relationships to desiccation and adult mortality: Half yearly report, February 16 to August 15, 1987

    International Nuclear Information System (INIS)

    Sriharan, S.

    1987-01-01

    This report outlines studies on the rate of moisture-loss in irradiated weevils and correlation loss of water with mortality. Further changes in the cuticular hydrocarbons of weevils as a result of gamma radiation were determined. 2 figs., 10 tabs

  10. miR-155, identified as anti-metastatic by global miRNA profiling of a metastasis model, inhibits cancer cell extravasation and colonization in vivo and causes significant signaling alterations

    DEFF Research Database (Denmark)

    Gravgaard, Karina Hedelund; Terp, Mikkel G; Lund, Rikke R

    2015-01-01

    To gain insight into miRNA regulation in metastasis formation, we used a metastasis cell line model that allows investigation of extravasation and colonization of circulating cancer cells to lungs in mice. Using global miRNA profiling, 28 miRNAs were found to exhibit significantly altered...... in lungs when injected intravenously in immunodeficient mice. Our experiments addressing the underlying mechanism of the altered tumor burden revealed that miR-155-overexpressing CL16 cells were less invasive than CL16 control cells in vitro, while miR-155 overexpression had no effect on cancer cell...... proliferation or apoptosis in established lung tumors. To identify proteins regulated by miR-155 and thus delineate its function in our cell model, we compared the proteome of xenograft tumors derived from miR-155-overexpressing CL16 cells and CL16 control cells using mass spectrometry-based proteomics. >4...

  11. Multiway real-time PCR gene expression profiling in yeast. Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Czech Academy of Sciences Publication Activity Database

    Stahlberg, A.; Elbing, K.; Andrade-Garda, J.M.; Sjögreen, B.; Forootan, A.; Kubista, Mikael

    2008-01-01

    Roč. 9, č. 170 (2008), s. 1-41 ISSN 1471-2164 Institutional research plan: CEZ:AV0Z50520701 Keywords : Expression Profiling * Real-time PCR * Yeast Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.926, year: 2008

  12. Plasma Phospholipid Fatty Acid Profile is Altered in Both Septic and Non-Septic Critically Ill: A Correlation with Inflammatory Markers and Albumin

    Czech Academy of Sciences Publication Activity Database

    Novák, F.; Borovská, J.; Vecka, M.; Rychlíková, J.; Vávrová, L.; Petrásková, H.; Žák, A.; Nováková, Olga

    2017-01-01

    Roč. 52, č. 3 (2017), s. 245-254 ISSN 0024-4201 Institutional support: RVO:67985823 Keywords : sepsis * inflammation * oxidative stress * plasma lipids * fatty acid profile * PUFA * lipoproteins Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition OBOR OECD: Critical care medicine and Emergency medicine Impact factor: 1.934, year: 2016

  13. Moderate alcohol consumption alters both leucocyte gene expression profiles and circulating proteins related to immune response and lipid metabolism in men

    NARCIS (Netherlands)

    Joosten, M.M.; Erk, van M.J.; Pellis, E.P.M.; Witkamp, R.F.; Hendriks, H.F.J.

    2012-01-01

    Moderate alcohol consumption has various effects on immune and inflammatory processes, which could accumulatively modulate chronic disease risk. So far, no comprehensive, integrative profiling has been performed to investigate the effects of longer-term alcohol consumption. Therefore, we studied the

  14. The exosome and trans-acting small interfering RNAs regulate cuticular wax biosynthesis during Arabidopsis inflorescence stem development.

    Science.gov (United States)

    Lam, Patricia; Zhao, Lifang; Eveleigh, Nathan; Yu, Yu; Chen, Xuemei; Kunst, Ljerka

    2015-02-01

    The primary aerial surfaces of land plants are covered with a cuticle, a protective layer composed of the cutin polyester matrix and cuticular waxes. Previously, we discovered a unique mechanism of regulating cuticular wax biosynthesis during Arabidopsis (Arabidopsis thaliana) stem elongation that involves ECERIFERUM7 (CER7), a core subunit of the exosome. Because loss-of-function mutations in CER7 result in reduced expression of the wax biosynthetic gene CER3, we proposed that CER7 is involved in degrading a messenger RNA encoding a CER3 repressor. To identify this putative repressor, we performed a cer7 suppressor screen that resulted in the isolation of the posttranscriptional gene-silencing components RNA-DEPENDENT RNA POLYMERASE1 and SUPPRESSOR OF GENE SILENCING3, indicating that small RNAs regulate CER3 expression. To establish the identity of the effector RNA species and determine whether these RNAs control CER3 transcript levels directly, we cloned additional genes identified in our suppressor screen and performed next-generation sequencing of small RNA populations that differentially accumulate in the cer7 mutant in comparison with the wild type. Our results demonstrate that the trans-acting small interfering RNA class of small RNAs are the effector molecules involved in direct silencing of CER3 and that the expression of five additional genes (EARLY RESPONSE TO DEHYDRATION14, AUXIN RESISTANT1, a translation initiation factor SUI1 family protein, and two genes of unknown function) is controlled by both CER7 and trans-acting small interfering RNAs. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Annotation and analysis of a large cuticular protein family with the R&R Consensus in Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    He Ningjia

    2008-01-01

    Full Text Available Abstract Background The most abundant family of insect cuticular proteins, the CPR family, is recognized by the R&R Consensus, a domain of about 64 amino acids that binds to chitin and is present throughout arthropods. Several species have now been shown to have more than 100 CPR genes, inviting speculation as to the functional importance of this large number and diversity. Results We have identified 156 genes in Anopheles gambiae that code for putative cuticular proteins in this CPR family, over 1% of the total number of predicted genes in this species. Annotation was verified using several criteria including identification of TATA boxes, INRs, and DPEs plus support from proteomic and gene expression analyses. Two previously recognized CPR classes, RR-1 and RR-2, form separate, well-supported clades with the exception of a small set of genes with long branches whose relationships are poorly resolved. Several of these outliers have clear orthologs in other species. Although both clades are under purifying selection, the RR-1 variant of the R&R Consensus is evolving at twice the rate of the RR-2 variant and is structurally more labile. In contrast, the regions flanking the R&R Consensus have diversified in amino-acid composition to a much greater extent in RR-2 genes compared with RR-1 genes. Many genes are found in compact tandem arrays that may include similar or dissimilar genes but always include just one of the two classes. Tandem arrays of RR-2 genes frequently contain subsets of genes coding for highly similar proteins (sequence clusters. Properties of the proteins indicated that each cluster may serve a distinct function in the cuticle. Conclusion The complete annotation of this large gene family provides insight on the mechanisms of gene family evolution and clues about the need for so many CPR genes. These data also should assist annotation of other Anopheles genes.

  16. Effects of temperature on transcriptome and cuticular hydrocarbon expression in ecologically differentiated populations of desertDrosophila.

    Science.gov (United States)

    Etges, William J; de Oliveira, Cássia C; Rajpurohit, Subhash; Gibbs, Allen G

    2017-01-01

    We assessed the effects of temperature differences on gene expression using whole-transcriptome microarrays and cuticular hydrocarbon variation in populations of cactophilic Drosophila mojavensis . Four populations from Baja California and mainland Mexico and Arizona were each reared on two different host cacti, reared to sexual maturity on laboratory media, and adults were exposed for 12 hr to 15, 25, or 35°C. Temperature differences influenced the expression of 3,294 genes, while population differences and host plants affected >2,400 each in adult flies. Enriched, functionally related groups of genes whose expression changed at high temperatures included heat response genes, as well as genes affecting chromatin structure. Gene expression differences between mainland and peninsular populations included genes involved in metabolism of secondary compounds, mitochondrial activity, and tRNA synthases. Flies reared on the ancestral host plant, pitaya agria cactus, showed upregulation of genes involved in metabolism, while flies reared on organ pipe cactus had higher expression of DNA repair and chromatin remodeling genes. Population × environment (G × E) interactions had widespread effects on the transcriptome where population × temperature interactions affected the expression of >5,000 orthologs, and there were >4,000 orthologs that showed temperature × host plant interactions. Adults exposed to 35°C had lower amounts of most cuticular hydrocarbons than those exposed to 15 or 25°C, including abundant unsaturated alkadienes. For insects adapted to different host plants and climatic regimes, our results suggest that temperature shifts associated with climate change have large and significant effects on transcriptomes of genetically differentiated natural populations.

  17. Proteomic Analysis of Interaction between a Plant Virus and Its Vector Insect Reveals New Functions of Hemipteran Cuticular Protein.

    Science.gov (United States)

    Liu, Wenwen; Gray, Stewart; Huo, Yan; Li, Li; Wei, Taiyun; Wang, Xifeng

    2015-08-01

    Numerous viruses can be transmitted by their corresponding vector insects; however, the molecular mechanisms enabling virus transmission by vector insects have been poorly understood, especially the identity of vector components interacting with the virus. Here, we used the yeast two-hybrid system to study proteomic interactions of a plant virus (Rice stripe virus, RSV, genus Tenuivirus) with its vector insect, small brown planthopper (Laodelphax striatellus). Sixty-six proteins of L. striatellus that interacted with the nucleocapsid protein (pc3) of RSV were identified. A virus-insect interaction network, constructed for pc3 and 29 protein homologs of Drosophila melanogaster, suggested that nine proteins might directly interact with pc3. Of the 66 proteins, five (atlasin, a novel cuticular protein, jagunal, NAC domain protein, and vitellogenin) were most likely to be involved in viral movement, replication, and transovarial transmission. This work also provides evidence that the novel cuticular protein, CPR1, from L. striatellus is essential for RSV transmission by its vector insect. CPR1 binds the nucleocapsid protein (pc3) of RSV both in vivo and in vitro and colocalizes with RSV in the hemocytes of L. striatellus. Knockdown of CPR1 transcription using RNA interference resulted in a decrease in the concentration of RSV in the hemolymph, salivary glands and in viral transmission efficiency. These data suggest that CPR1 binds RSV in the insect and stabilizes the viral concentration in the hemolymph, perhaps to protect the virus or to help move the virus to the salivary tissues. Our studies provide direct experimental evidence that viruses can use existing vector proteins to aid their survival in the hemolymph. Identifying these putative vector molecules should lead to a better understanding of the interactions between viruses and vector insects. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Alteration of Human Papillomavirus Type 16 Genetic and Epigenetic Profiles in Cervical Cancer Patients Is Indicative of Poor Disease Prognosis: A Cohort Analysis.

    Science.gov (United States)

    Dutta, Sankhadeep; Singh, Ratnesh Kumar; Mandal, Ranajit Kumar; Roychoudhury, Susanta; Basu, Partha; Panda, Chinmay Kumar

    2016-05-01

    Aim of this study was to assess the changes in genetic and epigenetic profiles of human papillomavirus type 16 (HPV16), if any, in primary cervical cancer (CaCx) and corresponding plasma before and after therapy for possible prognostic evaluation. The genetic (integration status) and epigenetic (methylation of enhancer, early promoter, and late promoter sequences) profiles of HPV16 were analyzed in pretherapy CaCx (n = 46), corresponding plasma, posttherapy cervical swabs (n = 39), and corresponding plasma from a single patient cohort. Quantitative viral load was also measured in these HPV16-positive primary CaCx and posttherapy cervical swabs. Presence of HPV16 in the patients' plasma before/after therapy was significantly (P = 0.03) associated with higher viral load in the primary tumor site. Human papillomavirus type 16 integration and hypomethylation of the early (14 of 29, Z = 4.47, P genetic-epigenetic profile of HPV16 in pretherapy/posttherapy CaCx samples showed significant association with disease prognosis.

  19. The role of supplemental ultraviolet-B radiation in altering the metabolite profile, essential oil content and composition, and free radical scavenging activities of Coleus forskohlii, an indigenous medicinal plant.

    Science.gov (United States)

    Takshak, Swabha; Agrawal, S B

    2016-04-01

    The effects of supplemental ultraviolet-B (s-UV-B; 3.6 kJ m(-2) day(-1) above ambient) radiation were investigated on plant metabolite profile, essential oil content and composition, and free radical scavenging capacities of methanolic extracts of Coleus forskohlii (an indigenous medicinal plant) grown under field conditions. Essential oil was isolated using hydrodistillation technique while alterations in metabolite profile and oil composition were determined via gas chromatography-mass spectroscopy (GC-MS). Leaf and root methanolic extracts were investigated via various in vitro assays for their DPPH radical-, superoxide radical-, hydrogen peroxide-, hydroxyl radical-, and nitric oxide radical scavenging activities, ferrous ion chelating activity, and reducing power. Phytochemical analysis revealed the presence of alkaloids, anthocyanins, coumarins, flavonoids, glycosides, phenols, saponins, steroids, tannins, and terpenoids. Oil content was found to be reduced (by ∼7 %) in supplemental UV-B (s-UV-B) treated plants; the composition of the plant extracts as well as essential oil was also considerably altered. Methanolic extracts from treated plant organs showed more potency as free radical scavengers (their EC50 values being lower than their respective controls). Anomalies were observed in Fe(2+) chelating activity for both leaves and roots. The present study concludes that s-UV-B adversely affects oil content in C. forskohlii and also alters the composition and contents of metabolites in both plant extracts and oil. The results also denote that s-UV-B treated plant organs might be more effective in safeguarding against oxidative stress, though further studies are required to authenticate these findings.

  20. Brain gray matter alterations and associated demographic profiles in adults with autism spectrum disorder: A meta-analysis of voxel-based morphometry studies.

    Science.gov (United States)

    Yang, Xun; Si, Tianjing; Gong, Qiyong; Qiu, Lihua; Jia, Zhiyun; Zhou, Mi; Zhao, Youjin; Hu, Xinyu; Wu, Min; Zhu, Hongyan

    2016-08-01

    There is increasing evidence that children with autism spectrum disorder are accompanied by specific anatomical alterations. However, the anatomical abnormalities in adults with autism spectrum disorder are poorly understood. This study was aimed to identify the neuroanatomical substrates underlying the pathophysiology of adults with autism spectrum disorder. We also investigated the relationship between neuroanatomical alterations and clinical and demographic characteristics. A total of 13 datasets were enrolled, of which 12 studies compared whole-brain differences of 382 adult patients with autism and 393 healthy control subjects. We conducted a meta-analysis to quantitatively estimate regional gray matter volume abnormalities in individuals with autism using the effect-size signed differential mapping. The voxel-wise meta-analysis revealed that relative to controls, adults with autism spectrum disorder had significantly increased gray matter volume in the middle temporal gyrus, superior temporal gyrus, postcentral gyrus and parahippocampal gyrus, and reduced gray matter volume in the anterior cingulate cortex and cerebellum. Variations in gray matter volume were significantly associated with the mean age and mean total IQ score of the patients, as well as with the percentage of male patients with autism. These findings confirmed that the neuroanatomical alterations in the fronto-temporal cortices, limbic system and cerebellum in adult individuals with autism were different from the children and young adolescent's autism. The effects of demographic characteristics on the brain morphological changes allow us to further clarify the neurobiological mechanisms and developmental trajectory in adult population with autism spectrum disorder. © The Royal Australian and New Zealand College of Psychiatrists 2016.

  1. Determination of cuticular and internal fatty acids of Chorthippus brunneus males and females using HPLC-LLSD and GC-MS.

    Science.gov (United States)

    Gołębiowski, Marek; Cerkowniak, Magdalena; Ostachowska, Aleksandra; Boguś, Mieczysława I; Stepnowski, Piotr

    2016-08-01

    Insects are of growing significance in veterinary medicine and human healthcare; therefore, an understanding of their biology is very important. The cuticular and internal fatty acid compositions of Chorthippus brunneus males and females have been studied for the first time. The lipids of males and females were separated into classes of compounds using high-performance liquid chromatography with a laser light scattering detector. The free fatty acid (FFA) fractions obtained by HPLC were silylated and then analyzed by GC-MS. The cuticular lipids of males contained 15 saturated, four unsaturated with even-numbered and two unsaturated with odd-numbered carbon chains, FFAs ranging from C8 to C25. The major free fatty acids in males were C16 (20.8%), C18:2 (8.5%), C18:1 (32.9%) and C18 (24.4%). The cuticular lipids of females contained 17 saturated, four monounsaturated and two diunsaturated free fatty acids ranging from C8 to C30. The major cuticular fatty acids in females were C16 (25.1%), C18:2 (6.2%), C18:1 (23.7%) and C18:0 (33.2%). The internal FFAs of males consisted of 20 compounds ranging from C8 to C26. Four of these compounds were detected as major compounds: C16 (14.1%), C18:2 (21.6%), C18:1 (38.0%) and C18 (22.5%). Among 18 internal free fatty acids of females, C16 (22.3%), C18:2 (10.9%), C18:1 (40.2%) and C18 (20.5%) were the most abundant compounds. The following cuticular fatty acids present in the lipids of females were absent in the lipids of males: C26, C27 and C30. On the other hand, only C24 was absent from the cuticular lipids of females. Only C10 and C24 internal fatty acids present in the lipids of males were absent in the lipids of females. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Gestational Diabetes Alters Offspring DNA Methylation Profiles in Human and Rat: Identification of Key Pathways Involved in Endocrine System Disorders, Insulin Signaling, Diabetes Signaling, and ILK Signaling.

    Science.gov (United States)

    Petropoulos, Sophie; Guillemin, Claire; Ergaz, Zivanit; Dimov, Sergiy; Suderman, Matthew; Weinstein-Fudim, Liza; Ornoy, Asher; Szyf, Moshe

    2015-06-01

    Gestational diabetes is associated with risk for metabolic disease later in life. Using a cross-species approach in rat and humans, we examined the hypothesis that gestational diabetes during pregnancy triggers changes in the methylome of the offspring that might be mediating these risks. We show in a gestation diabetes rat model, the Cohen diabetic rat, that gestational diabetes triggers wide alterations in DNA methylation in the placenta in both candidate diabetes genes and genome-wide promoters, thus providing evidence for a causal relationship between diabetes during pregnancy and DNA methylation alterations. There is a significant overlap between differentially methylated genes in the placenta and the liver of the rat offspring. Several genes differentially methylated in rat placenta exposed to maternal diabetes are also differentially methylated in the human placenta of offspring exposed to gestational diabetes in utero. DNA methylation changes inversely correlate with changes in expression. The changes in DNA methylation affect known functional gene pathways involved in endocrine function, metabolism, and insulin responses. These data provide support to the hypothesis that early-life exposures and their effects on metabolic disease are mediated by DNA methylation changes. This has important diagnostic and therapeutic implications.

  3. Soil-covered strategy for ecological restoration alters the bacterial community structure and predictive energy metabolic functions in mine tailings profiles.

    Science.gov (United States)

    Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2017-03-01

    Native soil amendment has been widely used to stabilize mine tailings and speed up the development of soil biogeochemical functions before revegetation; however, it remains poorly understood about the response of microbial communities to ecological restoration of mine tailings with soil-covered strategy. In this study, microbial communities along a 60-cm profile were investigated in mine tailings during ecological restoration of two revegetation strategies (directly revegetation and native soil covered) with different plant species. The mine tailings were covered by native soils as thick as 40 cm for more than 10 years, and the total nitrogen, total organic carbon, water content, and heavy metal (Fe, Cu, and Zn) contents in the 0-40 cm intervals of profiles were changed. In addition, increased microbial diversity and changed microbial community structure were also found in the 10-40 cm intervals of profiles in soil-covered area. Soil-covered strategy rather than plant species and soil depth was the main factor influencing the bacterial community, which explained the largest portion (29.96%) of the observed variation. Compared directly to revegetation, soil-covered strategy exhibited the higher relative abundance of Acidobacteria and Deltaproteobacteria and the lower relative abundance of Bacteroidetes, Gemmatimonadetes, Betaproteobacteria, and Gammaproteobacteria. PICRUSt analysis further demonstrated that soil-covered caused energy metabolic functional changes in carbon, nitrogen, and sulfur metabolism. Given all these, the soil-covered strategy may be used to fast-track the establishment of native microbial communities and is conducive to the rehabilitation of biogeochemical processes for establishing native plant species.

  4. Serum Metabolite Profiles Are Altered by Erlotinib Treatment and the Integrin α1-Null Genotype but Not by Post-Traumatic Osteoarthritis.

    Science.gov (United States)

    Mickiewicz, Beata; Shin, Sung Y; Pozzi, Ambra; Vogel, Hans J; Clark, Andrea L

    2016-03-04

    The risk of developing post-traumatic osteoarthritis (PTOA) following joint injury is high. Furthering our understanding of the molecular mechanisms underlying PTOA and/or identifying novel biomarkers for early detection may help to improve treatment outcomes. Increased expression of integrin α1β1 and inhibition of epidermal growth factor receptor (EGFR) signaling protect the knee from spontaneous OA; however, the impact of the integrin α1β1/EGFR axis on PTOA is currently unknown. We sought to determine metabolic changes in serum samples collected from wild-type and integrin α1-null mice that underwent surgery to destabilize the medial meniscus and were treated with the EGFR inhibitor erlotinib. Following (1)H nuclear magnetic resonance spectroscopy, we generated multivariate statistical models that distinguished between the metabolic profiles of erlotinib- versus vehicle-treated mice and the integrin α1-null versus wild-type mouse genotype. Our results show the sex-dependent effects of erlotinib treatment and highlight glutamine as a metabolite that counteracts this treatment. Furthermore, we identified a set of metabolites associated with increased reactive oxygen species production, susceptibility to OA, and regulation of TRP channels in α1-null mice. Our study indicates that systemic pharmacological and genetic factors have a greater effect on serum metabolic profiles than site-specific factors such as surgery.

  5. Serum metabolite profiles are altered by erlotinib treatment and the integrin α1-null genotype, but not by post traumatic osteoarthritis

    Science.gov (United States)

    Mickiewicz, Beata; Shin, Sung Y.; Pozzi, Ambra; Vogel, Hans J.; Clark, Andrea L.

    2016-01-01

    The risk of developing post traumatic osteoarthritis (PTOA) following joint injury is high. Furthering our understanding of the molecular mechanisms underlying PTOA and/or identifying novel biomarkers for early detection may help improve treatment outcomes. Increased expression of integrin α1β1 and inhibition of epidermal growth factor receptor (EGFR) signaling protect the knee from spontaneous OA, however the impact of the integrin α1β1/EGFR axis on PTOA is currently unknown. We sought to determine metabolic changes in serum samples collected from wild type and integrin α1-null mice that underwent surgery to destabilize the medial meniscus and were treated with the EGFR inhibitor erlotinib. Following 1H nuclear magnetic resonance spectroscopy we generated multivariate statistical models that distinguished between the metabolic profiles of erlotinib- versus vehicle-treated mice, and the integrin α1-null versus wild type mouse genotype. Our results show the sex dependent effects of erlotinib treatment and highlight glutamine as a metabolite that counteracts this treatment. Furthermore, we identified a set of metabolites associated with increased reactive oxygen species production, susceptibility to OA and regulation of TRP channels in α1-null mice. Our study indicates that systemic pharmacological and genetic factors have a greater effect on serum metabolic profiles than site specific factors such as surgery. PMID:26784366

  6. Dietary Alfalfa and Calcium Salts of Long-Chain Fatty Acids Alter Protein Utilization, Microbial Populations, and Plasma Fatty Acid Profile in Holstein Freemartin Heifers.

    Science.gov (United States)

    He, Yang; Qiu, Qinghua; Shao, Taoqi; Niu, Wenjing; Xia, Chuanqi; Wang, Haibo; Li, Qianwen; Gao, Zhibiao; Yu, Zhantao; Su, Huawei; Cao, Binghai

    2017-12-20

    This study presented the effects of alfalfa and calcium salts of long-chain fatty acids (CSFA) on feed intake, apparent digestibility, rumen fermentation, microbial community, plasma biochemical parameters, and fatty acid profile in Holstein freemartin heifers. Eight Holstein freemartin heifers were randomly divided into a 4 × 4 Latin Square experiment with 2 × 2 factorial diets, with or without alfalfa or CSFA. Dietary supplementation of CSFA significantly increased the apparent digestibility of dry matter, crude protein, neutral detergent fiber, organic matter, and significantly reduced N retention (P fatty acids in the plasma, which was expressed in reducing saturated fatty acid (ΣSFA) ratio and C14-C17 fatty acids proportion except C16:0 (P fatty acid (ΣPUFA) and unsaturated fatty acid (ΣUFA) (P fatty acids in plasma. Alfalfa and CSFA had mutual interaction effect on fat digestion and plasma triglycerides.

  7. Comparative transcript profiling of a male sterile cybrid pummelo and its fertile type revealed altered gene expression related to flower development.

    Directory of Open Access Journals (Sweden)

    Bei-Bei Zheng

    Full Text Available Male sterile and seedless characters are highly desired for citrus cultivar improvement. In our breeding program, a male sterile cybrid pummelo, which could be considered as a variant of male fertile pummelo, was produced by protoplast fusion. Herein, ecotopic stamen primordia initiation and development were detected in this male sterile cybrid pummelo. Histological studies revealed that the cybrid showed reduced petal development in size and width, and retarded stamen primordia development. Additionally, disorganized cell proliferation was also detected in stamen-like structures (fused to petals and/or carpel. To gain new insight into the underlying mechanism, we compared, by RNA-Seq analysis, the nuclear gene expression profiles of floral buds of the cybrid with that of fertile pummelo. Gene expression profiles which identified a large number of differentially expressed genes (DEGs between the two lines were captured at both petal primordia and stamen primordia distinguishable stages. For example, nuclear genes involved in nucleic acid binding and response to hormone synthesis and metabolism, genes required for floral bud identification and expressed in particular floral whorls. Furthermore, in accordance with flower morphology of the cybrid, expression of PISTILLATA (PI was reduced in stamen-like structures, even though it was restricted to correct floral whorls. Down-regulated expression of APETALA3 (AP3 coincided with that of PI. These finding indicated that, due to their whorl specific effects in flower development, citrus class-B MADS-box genes likely constituted 'perfect targets' for CMS retrograde signaling, and that dysfunctional mitochondria seemed to cause male sterile phenotype in the cybrid pummelo.

  8. Human omental adipose-derived mesenchymal stem cell-conditioned medium alters the proteomic profile of epithelial ovarian cancer cell lines in vitro

    Directory of Open Access Journals (Sweden)

    Zhang YL

    2017-03-01

    Full Text Available Yanling Zhang,1,* Weihong Dong,1,* Junjie Wang,2 Jing Cai,1 Zehua Wang1 1Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 2Department of Obstetrics and Gynecology, Renhe Hospital, China Three Gorges University, Yichang, People’s Republic of China *These authors contributed equally to this work Abstract: Mesenchymal stem cells (MSCs have been reported to participate in the formation of supportive tumor stroma. The abilities of proliferation and invasion of human epithelial ovarian cancer (EOC cells were significantly enhanced when indirectly cocultured with human omental adipose-derived MSCs (O-ADSCs in vitro. However, the underlying mechanisms remain poorly understood. In this study, EOC cells were cultured with conditioned medium (CM from O-ADSCs (O-ADSC, and the effect of O-ADSC CM on the proteomic profile of EOC cells was assessed by two-dimensional gel electrophoresis (2-DE, followed by liquid chromatography and tandem mass spectrometry. The 2-DE assays revealed a global increase in protein expression in the EOC cells treated with CM. Nine proteins were identified from 11 selected protein spots with differential expression after treatment with CM from O-ADSCs. All the nine proteins have been linked to carcinoma and apoptosis, and the migration ability of tumor cells can be regulated by these proteins. Moreover, the upregulation of prohibitin and serine/arginine-rich splicing factor 1 in EOC cells treated with CM was further confirmed by quantitative real-time polymerase chain reaction. These results suggest that O-ADSCs affect the proteomic profile of EOC cells via paracrine mechanism in favor of EOC progression. Keywords: ovarian cancer, mesenchymal stromal cells, mesenchymal stem cells, omentum, proteomic

  9. Patients with Treatment-Requiring Chronic Graft versus Host Disease after Allogeneic Stem Cell Transplantation Have Altered Metabolic Profiles due to the Disease and Immunosuppressive Therapy: Potential Implication for Biomarkers

    Directory of Open Access Journals (Sweden)

    Håkon Reikvam

    2018-01-01

    Full Text Available Chronic graft versus host disease (cGVHD is a common long-term complication after allogeneic hematopoietic stem cell transplantation. The objective of our study was to compare the metabolic profiles for allotransplant recipients and thereby identify metabolic characteristics of patients with treatment-requiring cGVHD. The study included 51 consecutive patients (29 men and 22 women; median age: 44 years, range: 15–66 years transplanted with peripheral blood stem cells derived from human leukocyte antigen-matched family donors. All serum samples investigated by global metabolomic profiling were collected approximately 1 year posttransplant (median 358 days. Thirty-one of the 51 patients (61% had cGVHD 1 year posttransplant. The affected organs were (number of patients liver/bile duct (23, eyes (15, gastrointestinal tract (14, skin (13, mouth (10, lungs (3, and urogenital tract (1. We compared the metabolic profile for patients with and without cGVHD, and a Random Forrest Classification Analysis then resulted in 75% accuracy in differentiating the two groups. The 30 top-ranked metabolites from this comparison included increased levels of bile acids, several metabolites from the cytokine-responsive kynurenine pathway for tryptophan degradation, pro-inflammatory lipid metabolites, phenylalanine and tyrosine metabolites derived from the gut microbial flora, and metabolites reflecting increased oxidative stress. However, nine of these 30 top-ranked metabolites were probably altered due to cyclosporine or steroid treatment, and we therefore did a hierarchical clustering analysis including all 51 patients but only based on the other 21 cGVHD-specific metabolites. This analysis identified three patient subsets: one cluster included mainly patients without cGVHD and had generally low metabolite levels; another cluster included mainly patients with cGVHD (most patients with at least three affected organs and high metabolite levels, and the last

  10. Gas Chromatography/Mass Spectrometry-Based Metabolomic Profiling Reveals Alterations in Mouse Plasma and Liver in Response to Fava Beans.

    Science.gov (United States)

    Xiao, Man; Du, Guankui; Zhong, Guobing; Yan, Dongjing; Zeng, Huazong; Cai, Wangwei

    2016-01-01

    Favism is a life-threatening hemolytic anemia resulting from the intake of fava beans by susceptible individuals with low erythrocytic glucose 6-phosphate dehydrogenase (G6PD) activity. However, little is known about the metabolomic changes in plasma and liver after the intake of fava beans in G6PD normal and deficient states. In this study, gas chromatography/mass spectrometry was used to analyze the plasma and liver metabolic alterations underlying the effects of fava beans in C3H- and G6PD-deficient (G6PDx) mice, and to find potential biomarkers and metabolic changes associated with favism. Our results showed that fava beans induced oxidative stress in both C3H and G6PDx mice. Significantly, metabolomic differences were observed in plasma and liver between the control and fava bean treated groups of both C3H and G6PDx mice. The levels of 7 and 21 metabolites in plasma showed significant differences between C3H-control (C3H-C)- and C3H fava beans-treated (C3H-FB) mice, and G6PDx-control (G6PDx-C)- and G6PDx fava beans-treated (G6PDx-FB) mice, respectively. Similarly, the levels of 7 and 25 metabolites in the liver showed significant differences between C3H and C3H-FB, and G6PDx and G6PDx-FB, respectively. The levels of oleic acid, linoleic acid, and creatinine were significantly increased in the plasma of both C3H-FB and G6PDx-FB mice. In the liver, more metabolic alterations were observed in G6PDx-FB mice than in C3H-FB mice, and were involved in a sugar, fatty acids, amino acids, cholesterol biosynthesis, the urea cycle, and the nucleotide metabolic pathway. These findings suggest that oleic acid, linoleic acid, and creatinine may be potential biomarkers of the response to fava beans in C3H and G6PDx mice and therefore that oleic acid and linoleic acid may be involved in oxidative stress induced by fava beans. This study demonstrates that G6PD activity in mice can affect their metabolic pathways in response to fava beans.

  11. Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities

    Energy Technology Data Exchange (ETDEWEB)

    Langland, Gregory T.; Yannone, Steven M.; Langland, Rachel A.; Nakao, Aki; Guan, Yinghui; Long, Sydney B.T.; Vonguyen, Lien; Chen, David J.; Gray, Joe W; Chen, Fanqing

    2009-09-07

    The variability of radiation responses in ovarian tumors and tumor-derived cell lines is poorly understood. Since both DNA repair capacity and p53 status can significantly alter radiation sensitivity, we evaluated these factors along with radiation sensitivity in a panel of sporadic human ovarian carcinoma cell lines. We observed a gradation of radiation sensitivity among these sixteen lines, with a five-fold difference in the LD50 between the most radiosensitive and the most radioresistant cells. The DNA-dependent protein kinase (DNA-PK) is essential for the repair of radiation induced DNA double-strand breaks in human somatic cells. Therefore, we measured gene copy number, expression levels, protein abundance, genomic copy and kinase activity for DNA-PK in all of our cell lines. While there were detectable differences in DNA-PK between the cell lines, there was no clear correlation with any of these differences and radiation sensitivity. In contrast, p53 function as determined by two independent methods, correlated well with radiation sensitivity, indicating p53 mutant ovarian cancer cells are typically radioresistant relative to p53 wild-type lines. These data suggest that the activity of regulatory molecules such as p53 may be better indicators of radiation sensitivity than DNA repair enzymes such as DNAPK in ovarian cancer.

  12. Analysis of transcription profile to reveal altered signaling pathways following the overexpression of human desumoylating isopeptidase 2 in pancreatic cancer cells

    Science.gov (United States)

    Fu, Yu-Yin; Kang, Yu-Huan; Shen, Cong-Cong; Wang, Rui-Xue; Yu, Lin; Li, Xin-Yue; Cui, Dan-Dan; Yang, Jin-Liang; Yao, Yu-Qin; Gou, Lan-Tu

    2016-01-01

    Human desumoylating isopeptidase 2 (DESI-2) is a member of the DESI family and contains a conserved PPPDE1 domain. Previous studies have demonstrated that DESI-2 overexpression may induce cell apoptosis. In the present study, differentially expressed genes were analyzed using a transcription microarray in DESI-2 overexpressing PANC-1 pancreatic cancer cells. A total of 45,033 genes were examined by microarray, which identified 1,766 upregulated and 1,643 downregulated genes. A series of altered signaling pathways were analyzed, in which certain essential signaling factors, including retinoid X receptor (RXR), BH3 interacting-domain death agonist, Ras homolog gene family member A (RhoA) and Rho-associated protein kinase, were further investigated at the protein level. The release of cytochrome c and the activation of caspase-3 were also detected by western blot analysis. Immunohistochemistry further revealed the expression features of RXR and RhoA in pancreatic ductal adenocarcinoma tissues with various DESI-2 expression levels. The results serve as a valuable reference for the further elucidation of the functions of DESI-2 in pancreatic cancer. PMID:28105175

  13. Toxoplasma gondii is dependent on glutamine and alters migratory profile of infected host bone marrow derived immune cells through SNAT2 and CXCR4 pathways.

    Directory of Open Access Journals (Sweden)

    I-Ping Lee

    Full Text Available The obligate intracellular parasite, Toxoplasma gondii, disseminates through its host inside infected immune cells. We hypothesize that parasite nutrient requirements lead to manipulation of migratory properties of the immune cell. We demonstrate that 1 T. gondii relies on glutamine for optimal infection, replication and viability, and 2 T. gondii-infected bone marrow-derived dendritic cells (DCs display both "hypermotility" and "enhanced migration" to an elevated glutamine gradient in vitro. We show that glutamine uptake by the sodium-dependent neutral amino acid transporter 2 (SNAT2 is required for this enhanced migration. SNAT2 transport of glutamine is also a significant factor in the induction of migration by the small cytokine stromal cell-derived factor-1 (SDF-1 in uninfected DCs. Blocking both SNAT2 and C-X-C chemokine receptor 4 (CXCR4; the unique receptor for SDF-1 blocks hypermotility and the enhanced migration in T. gondii-infected DCs. Changes in host cell protein expression following T. gondii infection may explain the altered migratory phenotype; we observed an increase of CD80 and unchanged protein level of CXCR4 in both T. gondii-infected and lipopolysaccharide (LPS-stimulated DCs. However, unlike activated DCs, SNAT2 expression in the cytosol of infected cells was also unchanged. Thus, our results suggest an important role of glutamine transport via SNAT2 in immune cell migration and a possible interaction between SNAT2 and CXCR4, by which T. gondii manipulates host cell motility.

  14. A Diet Rich in Medium-Chain Fatty Acids Improves Systolic Function and Alters the Lipidomic Profile in Patients With Type 2 Diabetes: A Pilot Study.

    Science.gov (United States)

    Airhart, Sophia; Cade, W Todd; Jiang, Hui; Coggan, Andrew R; Racette, Susan B; Korenblat, Kevin; Spearie, Catherine Anderson; Waller, Suzanne; O'Connor, Robert; Bashir, Adil; Ory, Daniel S; Schaffer, Jean E; Novak, Eric; Farmer, Marsha; Waggoner, Alan D; Dávila-Román, Víctor G; Javidan-Nejad, Cylen; Peterson, Linda R

    2016-02-01

    Excessive cardiac long-chain fatty acid (LCFA) metabolism/storage causes cardiomyopathy in animal models of type 2 diabetes. Medium-chain fatty acids (MCFAs) are absorbed and oxidized efficiently. Data in animal models of diabetes suggest MCFAs may benefit the heart. Our objective was to test the effects of an MCFA-rich diet vs an LCFA-rich diet on plasma lipids, cardiac steatosis, and function in patients with type 2 diabetes. This was a double-blind, randomized, 2-week matched-feeding study. The study included ambulatory patients in the general community. Sixteen patients, ages 37-65 years, with type 2 diabetes, an ejection fraction greater than 45%, and no other systemic disease were included. Fourteen days of a diet rich in MCFAs or LCFAs, containing 38% as fat in total, was undertaken. Cardiac steatosis and function were the main outcome measures, with lipidomic changes considered a secondary outcome. The relatively load-independent measure of cardiac contractility, S', improved in the MCFA group (P diet decreased several plasma sphingolipids, ceramide, and acylcarnitines implicated in diabetic cardiomyopathy, and changes in several sphingolipids correlated with improved fasting insulins. Although a diet high in MCFAs does not change cardiac steatosis, our findings suggest that the MCFA-rich diet alters the plasma lipidome and may benefit or at least not harm cardiac function and fasting insulin levels in humans with type 2 diabetes. Larger, long-term studies are needed to further evaluate these effects in less-controlled settings.

  15. Microsatellite alteration and immunohistochemical expression profile of chromosome 9p21 in patients with sporadic renal cell carcinoma following surgical resection

    International Nuclear Information System (INIS)

    El-Mokadem, Ismail; Lim, Alison; Kidd, Thomas; Garret, Katherine; Pratt, Norman; Batty, David; Fleming, Stewart; Nabi, Ghulam

    2016-01-01

    Long-term prognostic significance of loss of heterozygosity on chromosome 9p21 for localized renal cell carcinoma following surgery remains unreported. The study assessed the frequency of deletions of different loci of chromosome 9p along with immunohistochemical profile of proteins in surgically resected renal cancer tissue and correlated this with long-term outcomes. DNA was extracted from renal tumours and corresponding normal kidney tissues in prospectively collected samples of 108 patients who underwent surgical resection for clinically localized disease between January 2001 and December 2005, providing a minimum of 9 years follow-up for each participant. After checking quality of DNA, amplified by PCR, loss of heterozygosity (LOH) on chromosome 9p was assessed using 6 microsatellite markers in 77 clear cell carcinoma. Only 5 of the markers showed LOH (D9S1814, D9S916, D9S974, D9S942, and D9S171). Protein expression of p15(INK4b), p16(INK4a), p14(ARF), CAIX, and adipose related protein (ADFP) were demonstrated by immunostaining in normal and cancer tissues. Loss of heterozygosity for microsatellite analysis was correlated with tumour characteristics, recurrence free, cancer specific, and overall survival, including significance of immunohistochemical profile of protein expressions. The main deletion was found at loci telomeric to CDKN2A region at D9S916. There was a significant correlation between frequency of LOH stage (p = 0.005) and metastases (p = 0.006) suggesting a higher LOH for advanced and aggressive renal cell carcinoma. Most commonly observed LOH in the 3 markers: D9S916, D9S974, and D9S942 were associated with poor survival, and were statistically significant on multivariate analysis. Immunohistochemical expression of p14, p15, and p16 proteins were either low or absent in cancer tissue compared to normal. Loss of heterozygosity of p921 chromosome is associated with aggressive tumours, and predicts cancer specific or recurrence free survival on

  16. Alterations in glucocorticoid negative feedback following maternal Pb, prenatal stress and the combination: A potential biological unifying mechanism for their corresponding disease profiles

    International Nuclear Information System (INIS)

    Rossi-George, A.; Virgolini, M.B.; Weston, D.; Cory-Slechta, D.A.

    2009-01-01

    Combined exposures to maternal lead (Pb) and prenatal stress (PS) can act synergistically to enhance behavioral and neurochemical toxicity in offspring. Maternal Pb itself causes permanent dysfunction of the body's major stress system, the hypothalamic pituitary adrenal (HPA) axis. The current study sought to determine the potential involvement of altered negative glucocorticoid feedback as a mechanistic basis of the effects in rats of maternal Pb (0, 50 or 150 ppm in drinking water beginning 2 mo prior to breeding), prenatal stress (PS; restraint on gestational days 16-17) and combined maternal Pb + PS in 8 mo old male and female offspring. Corticosterone changes were measured over 24 h following an i.p. injection stress containing vehicle or 100 or 300 μg/kg (females) or 100 or 150 μg/kg (males) dexamethasone (DEX). Both Pb and PS prolonged the time course of corticosterone reduction following vehicle injection stress. Pb effects were non-monotonic, with a greater impact at 50 vs. 150 ppm, particularly in males, where further enhancement occurred with PS. In accord with these findings, the efficacy of DEX in suppressing corticosterone was reduced by Pb and Pb + PS in both genders, with Pb efficacy enhanced by PS in females, over the first 6 h post-administration. A marked prolongation of DEX effects was found in males. Thus, Pb, PS and Pb + PS, sometimes additively, produced hypercortisolism in both genders, followed by hypocortisolism in males, consistent with HPA axis dysfunction. These findings may provide a plausible unifying biological mechanism for the reported links between Pb exposure and stress-associated diseases and disorders mediated via the HPA axis, including obesity, hypertension, diabetes, anxiety, schizophrenia and depression. They also suggest broadening of Pb screening programs to pregnant women in high stress environments

  17. Do Cuticular Hydrocarbons Provide Sufficient Information for Optimal Sex Allocation in the Ant Formica exsecta?

    DEFF Research Database (Denmark)

    van Zweden, Jelle Stijn; Vitikainen, Emma; D'Ettorre, Patrizia

    2011-01-01

    translates accurately into chemical variability. However, in genetically heterogeneous colonies, too accurate information may encourage the pursuit of individual interests through nepotistic behavior and reduce colony efficiency or cause social disruption. In this study, we estimated how well variability...... of CHC recognition cues reflects colony kin structure in the ant Formica exsecta. Our results show that CHC variability does not covary with kin structure or the overall genetic diversity of the colony, and that patrilines and matrilines can have distinct CHC profiles in some but not all colonies...

  18. Gonadotrophin stimulation in IVF alters the immune cell profile in follicular fluid and the cytokine concentrations in follicular fluid and serum.

    Science.gov (United States)

    Kollmann, Z; Schneider, S; Fux, M; Bersinger, N A; von Wolff, M

    2017-04-01

    Are the immune cell profiles and the cytokine concentrations in follicular fluid (FF) and serum at the preovulatory stage different in conventional exogenous gonadotrophin stimulated IVF (c-IVF) compared with natural cycle IVF (NC-IVF)? The cell counts of CD45+ leucocytes and T cell subpopulations and the cytokine concentrations in FF and serum are different in c-IVF compared to NC-IVF. FF-derived cells are heterogeneous. Immune cells are involved in intra-ovarian processes and cytokines are required for normal follicular development. Gonadotrophins stimulate the regulatory intrafollicular system and influence the local distribution of immune cells and the intrafollicular release of cytokines. Administration of exogenous gonadotrophins may have a significant effect on this local regulatory system, which then in turn could influence oocyte quality. The study included 105 patients, 69 undergoing c-IVF and 36 undergoing NC-IVF. c-IVF was performed by exogenous ovarian stimulation with hMG and GnRH antagonists. FF samples were collected from the first dominant follicle in c-IVF without pooling and from single leading preovulatory follicles in NC-IVF. Three different approaches were used to analyze FF samples: (i) microscopic investigation of CD45+ leucocytes, (ii) fluorescence-activated cell sorting to determine CD19+ B cells and CD3+ T cells including T cell subpopulations (CD4+, CD8+), and (iii) evaluation of tumour necrosis factor-alpha (TNF-α), interferon-gamma (INF-γ), interleukins (IL)-2, -6, -8, -10 and vascular endothelial growth factor (VEGF) levels in matched FF and serum samples using the Bio-Plex® platform. FF obtained from c-IVF contained proportionally more CD45+ leucocytes (P = 0.0384), but fewer CD8+ cytotoxic T cells than FF from NC-IVF. CD3+ T lymphocytes were the most common type of lymphocytes, and the number thereof was comparable in the two study groups. In c-IVF, serum VEGF levels were higher (P = 0.007) than in NC-IVF while FF contained

  19. Comparative transcript profiling of alloplasmic male-sterile lines revealed altered gene expression related to pollen development in rice (Oryza sativa L.).

    Science.gov (United States)

    Hu, Jihong; Chen, Guanglong; Zhang, Hongyuan; Qian, Qian; Ding, Yi

    2016-08-05

    Cytoplasmic male sterility (CMS) is an ideal model for investigating the mitochondrial-nuclear interaction and down-regulated genes in CMS lines which might be the candidate genes for pollen development in rice. In this study, a set of rice alloplasmic sporophytic CMS lines was obtained by successive backcrossing of Meixiang B, with three different cytoplasmic types: D62A (D type), ZS97A (WA type) and XQZ-A (DA type). Using microarray, the anther transcript profiles of the three indica rice CMS lines revealed 622 differentially expressed genes (DEGs) in each of the three CMS lines compared with the maintainer line Meixiang B. GO and MapMan analysis indicated that these DEGs were mainly involved in lipid metabolism and cell wall organization. Compared with the gene expression of sporophytic and gametophytic CMS lines, 303 DEGs were identified and 56 of them were down-regulated in all the CMS lines of rice. These down-regulated DEGs in the CMS lines were found to be involved in tapetum or cell wall formation and their suppressed expression might be related to male sterility. Weighted gene co-expression network analysis (WGCNA) revealed that two modules were significantly associated with male sterility and many hub genes that were differentially expressed in the CMS lines. A large set of putative genes involved in anther development was identified in the present study. The results will give some information for the nuclear gene regulation by different cytoplasmic genotypes and provide a rich resource for further functional research on the pollen development in rice.

  20. Altered Metabolic Profile With Sodium-Restricted Dietary Approaches to Stop Hypertension Diet in Hypertensive Heart Failure With Preserved Ejection Fraction.

    Science.gov (United States)

    Mathew, Anna V; Seymour, E Mitchell; Byun, Jaeman; Pennathur, Subramaniam; Hummel, Scott L

    2015-12-01

    Heart failure with preserved ejection fraction (HFpEF) is increasingly recognized as a distinct entity with unique pathophysiology. In the Dietary Approaches to Stop Hypertension in Diastolic Heart Failure (DASH-DHF) study, the sodium-restricted Dietary Approaches to Stop Hypertension diet (DASH/SRD) was associated with improved blood pressure and cardiovascular function in 13 hypertensive patients with HFpEF. With the use of targeted metabolomics, we explored metabolite changes and their relationship with energy-dependent measures of cardiac function in DASH-DHF. With the use of chromatography and mass spectrometry, 152 metabolites including amino acids, free fatty acids, phospholipids, diglycerides, triglycerides, cholesterol esters, and acyl carnitines were measured. Comparison of baseline and post-DASH/SRD samples revealed increases in short-chain acetyl, butryl, and propionyl carnitines (P values .02, .03, .03, respectively). Increases in propionyl carnitine correlated with ventricular-arterial coupling ratio (Ees:Ea; r = 0.78; P = .005) and ventricular contractility (maximum rate of change of pressure-normalized stress [dσ*/dtmax]; r = 0.66; P = .03). Changes in L-carnitine also correlated with Ees:Ea (r = 0.62; P = .04) and dσ*/dtmax (r = 0.60; P = .05) and inversely with ventricular stiffness (r = -0.63; P = .03). Metabolite profile changes of patients with HFpEF during dietary modification with the use of DASH/SRD suggest improved energy substrate utilization. Additional studies are needed to clarify connections between diet, metabolic changes, and myocardial function in HFpEF. Published by Elsevier Inc.

  1. Profiling conserved biological pathways in Autosomal Dominant Polycystic Kidney Disorder (ADPKD) to elucidate key transcriptomic alterations regulating cystogenesis: A cross-species meta-analysis approach.

    Science.gov (United States)

    Chatterjee, Shatakshee; Verma, Srikant Prasad; Pandey, Priyanka

    2017-09-05

    Initiation and progression of fluid filled cysts mark Autosomal Dominant Polycystic Kidney Disease (ADPKD). Thus, improved therapeutics targeting cystogenesis remains a constant challenge. Microarray studies in single ADPKD animal models species with limited sample sizes tend to provide scattered views on underlying ADPKD pathogenesis. Thus we aim to perform a cross species meta-analysis to profile conserved biological pathways that might be key targets for therapy. Nine ADPKD microarray datasets on rat, mice and human fulfilled our study criteria and were chosen. Intra-species combined analysis was performed after considering removal of batch effect. Significantly enriched GO biological processes and KEGG pathways were computed and their overlap was observed. For the conserved pathways, biological modules and gene regulatory networks were observed. Additionally, Gene Set Enrichment Analysis (GSEA) using Molecular Signature Database (MSigDB) was performed for genes found in conserved pathways. We obtained 28 modules of significantly enriched GO processes and 5 major functional categories from significantly enriched KEGG pathways conserved in human, mice and rats that in turn suggest a global transcriptomic perturbation affecting cyst - formation, growth and progression. Significantly enriched pathways obtained from up-regulated genes such as Genomic instability, Protein localization in ER and Insulin Resistance were found to regulate cyst formation and growth whereas cyst progression due to increased cell adhesion and inflammation was suggested by perturbations in Angiogenesis, TGF-beta, CAMs, and Infection related pathways. Additionally, networks revealed shared genes among pathways e.g. SMAD2 and SMAD7 in Endocytosis and TGF-beta. Our study suggests cyst formation and progression to be an outcome of interplay between a set of several key deregulated pathways. Thus, further translational research is warranted focusing on developing a combinatorial therapeutic

  2. Studies on the chitin/chitosan binding properties of six cuticular proteins analogous to peritrophin 3 from Bombyx mori.

    Science.gov (United States)

    Qu, M; Ren, Y; Liu, Y; Yang, Q

    2017-08-01

    Chitin deacetylation is required to make the cuticle rigid and compact through chitin chain crosslinking. Thus it is presumed that specialized proteins are required to bind deacetylated chitin chains together. However, deacetylated-chitin binding proteins have not ever been reported. In a previous work, six cuticular proteins analogous to peritrophin 3 (CPAP3s) were found to be abundant in the moulting fluid of Bombyx mori. In this study, these BmCPAP3s (BmCPAP3-A1, BmCPAP3-A2, BmCPAP3-B, BmCPAP3-C, BmCPAP3-D1 and BmCPAP3-D2) were cloned and expressed in Escherichia coli and purified using metal-chelating affinity chromatography. Their binding activities demonstrated that although all of the BmCPAP3s showed similar binding abilities toward crystalline chitin and colloidal chitin, they differed in their affinities toward partially and fully deacetylated chitin. Amongst them, BmCPAP3-D1 exhibited the highest binding activity toward deacetylated chitin. The gene expression pattern of BmCPAP3-D1 was similar to BmCPAP3-A1 and BmCPAP3-C at most stages except that it was dramatically upregulated at the beginning of the pupa to adult transition stage. This work is the first report of a chitin-binding protein, BmCPAP3-D1, which exhibits high binding affinity to deacetylated chitin. © 2017 The Royal Entomological Society.

  3. Functional groups and elemental analyses of cuticular morphotypes of Cordaites principalis (Germar) Geinitz, Carboniferous Maritimes Basin, Canada

    Science.gov (United States)

    Zodrow, E.L.; Mastalerz, Maria; Orem, W.H.; Simunek, Z.; Bashforth, A.R.

    2000-01-01

    Well-preserved cuticles were isolated from Cordaites principalis (Germar) Geinitz leaf compressions, i.e., foliage from extinct gymnosperm trees Coniferophyta: Order Cordaitales. The specimens were collected from the Sydney. Stellarton and Bay St. George subbasins of the once extensive Carboniferous Maritimes Basin of Atlantic Canada. Fourier transformation of infrared spectra (FTIR) and elemental analyses indicate that the ca. 300-306-million-year-old fossil cuticles share many of the functional groups observed in modern cuticles. The similarities of the functional groups in each of the three cuticular morphotypes studied support the inclusion into a single cordaite-leaf taxon, i.e., C. principalis (Germar), confirming previous morphological investigations. Vitrinite reflectance measurements on coal seams in close proximity to the fossil-bearing sediments reveal that the Bay St. George sample site has the lowest thermal maturity, whereas the sites in Sydney and Stellarton are more mature. IR absorption and elemental analyses of the cordaite compressions corroborate this trend, which suggests that the coalified mesophyll in the leaves follows a maturation path similar to that of vitrinite. Comparison of functional groups of the cordaite cuticles with those from certain pteridosperms previously studied from the Sydney Subbasin shows that in the cordaite cuticles highly conjugated C-O (1632 cm-1) bands dominate over carbonyl stretch that characterizes the pteridosperm cuticles. The differences demonstrate the potential of chemotaxonomy as a valuable tool to assist distinguishing between Carboniferous plant-fossil groups. Published by Elsevier Science B.V.

  4. Functional groups and elemental analyses of cuticular morphotypes of Cordaites principalis (Germar) Geinitz, Carboniferous Maritimes Basin, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Zodrow, E.L. [Department of Earth Sciences, University College of Cape Breton, Sydney, Nova Scotia, B1P 6L2 Bloomington, IN (Canada); Mastalerz, M. [Indiana Geological Survey, Indiana University, 611 N. Walnut Grove, 47405-2208 Bloomington, IN (United States); Orem, W.H. [U.S. Geological Survey, MS 956, National Center, 22092 Reston, VA (United States); Simunek, Z. [Czech Geological Survey, Klarov 3/131, 118 21 Praha 1 St. John' s (Czech Republic); Bashforth, A.R. [Department of Earth Sciences, Memorial University of Newfoundland, A1B 3X5 St. John' s (Canada)

    2000-11-01

    Well-preserved cuticles were isolated from Cordaites principalis (Germar) Geinitz leaf compressions, i.e., foliage from extinct gymnosperm trees Coniferophyta: Order Cordaitales. The specimens were collected from the Sydney, Stellarton and Bay St. George subbasins of the once extensive Carboniferous Maritimes Basin of Atlantic Canada. Fourier transformation of infrared spectra (FTIR) and elemental analyses indicate that the ca. 300-306-million-year-old fossil cuticles share many of the functional groups observed in modern cuticles. The similarities of the functional groups in each of the three cuticular morphotypes studied support the inclusion into a single cordaite-leaf taxon, i.e., C. principalis (Germar), confirming previous morphological investigations. Vitrinite reflectance measurements on coal seams in close proximity to the fossil-bearing sediments reveal that the Bay St. George sample site has the lowest thermal maturity, whereas the sites in Sydney and Stellarton are more mature. IR absorption and elemental analyses of the cordaite compressions corroborate this trend, which suggests that the coalified mesophyll in the leaves follows a maturation path similar to that of vitrinite. Comparison of functional groups of the cordaite cuticles with those from certain pteridosperms previously studied from the Sydney Subbasin shows that in the cordaite cuticles highly conjugated C-O (1632 cm{sup -1}) bands dominate over carbonyl stretch that characterizes the pteridosperm cuticles. The differences demonstrate the potential of chemotaxonomy as a valuable tool to assist distinguishing between Carboniferous plant-fossil groups.

  5. Altered expression profile of glycolytic enzymes during testicular ischemia reperfusion injury is associated with the p53/TIGAR pathway: effect of fructose 1,6-diphosphate

    Directory of Open Access Journals (Sweden)

    May Al-Maghrebi

    2016-07-01

    Full Text Available Background. Testicular ischemia reperfusion injury (tIRI is considered the mechanism underlying the pathology of testicular torsion and detorsion. Left untreated, tIRI can induce testis dysfunction, damage to spermatogenesis and possible infertility. In this study, we aimed to assess the activities and expression of glycolytic enzymes (GEs in the testis and their possible modulation during tIRI. The effect of fructose 1,6-diphosphate (FDP, a glycolytic intermediate, on tIRI was also investigated. Methods. Male Sprague-Dawley rats were divided into three groups: sham, unilateral tIRI, and tIRI + FDP (2 mg/kg. tIRI was induced by occlusion of the testicular artery for 1 h followed by 4 h of reperfusion. FDP was injected peritoneally 30 min prior to reperfusion. Histological and biochemical analyses were used to assess damage to spermatogenesis, activities of major GEs, and energy and oxidative stress markers. The relative mRNA expression of GEs was evaluated by real-time PCR. ELISA and immunohistochemistry were used to evaluate the expression of p53 and TP53-induced glycolysis and apoptosis regulator (TIGAR. Results. Histological analysis revealed tIRI-induced spermatogenic damage as represented by a significant decrease in the Johnsen biopsy score. In addition, tIRI reduced the activities of hexokinase 1, phosphofructokinase-1, glyceraldehyde 3-phosphate dehydrogenase, and lactate dehydrogenase C. However, mRNA expression downregulation was detected only for hexokinase 1, phosphoglycerate kinase 2, and lactate dehydrogenase C. ATP and NADPH depletion was also induced by tIRI and was accompanied by an increased Malondialdehyde concentration, reduced glutathione level, and reduced superoxide dismutase and catalase enzyme activities. The immunoexpression of p53 and TIGAR was markedly increased after tIRI. The above tIRI-induced alterations were attenuated by FDP treatment. Discussion. Our findings indicate that tIRI-induced spermatogenic damage is

  6. Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid

    Directory of Open Access Journals (Sweden)

    Cribbs David H

    2008-04-01

    Full Text Available Abstract Background Inflammation is associated with Aβ pathology in Alzheimer's disease (AD and transgenic AD models. Previously, it has been demonstrated that chronic stimulation of the immune response induces pro-inflammatory cytokines IL-1β and TNF-α which contribute to neurodegeneration. However, recent evidence has shown that inducing the adaptive immune response reduces Aβ pathology and is neuroprotective. Low concentrations of IFN-γ modulate the adaptive immune response by directing microglia to differentiate to antigen presenting cells. Our objective was to determine if exercise could induce a shift from the immune profile in aged (17–19 months Tg2576 mice to a response that reduces Aβ pathology. Methods TG (n = 29 and WT (n = 27 mice were divided into sedentary (SED and exercised (RUN groups. RUN animals were provided an in-cage running wheel for 3 weeks. Tissue was harvested and hippocampus and cortex dissected out. Quantitative data was analyzed using 2 × 2 ANOVA and student's t-tests. Results IL-1β and TNF-α were significantly greater in hippocampi from sedentary Tg2576 (TGSED mice than in wildtype (WTSED (p = 0.04, p = 0.006. Immune response proteins IFN-γ and MIP-1α are lower in TGSED mice than in WTSED (p = 0.03, p = 0.07. Following three weeks of voluntary wheel running, IL-1β and TNF-α decreased to levels indistinguishable from WT. Concurrently, IFN-γ and MIP-1α increased in TGRUN. Increased CD40 and MHCII, markers of antigen presentation, were observed in TGRUN animals compared to TGSED, as well as CD11c staining in and around plaques and vasculature. Additional vascular reactivity observed in TGRUN is consistent with an alternative activation immune pathway, involving perivascular macrophages. Significant decreases in soluble Aβ40 (p = 0.01 and soluble fibrillar Aβ (p = 0.01 were observed in the exercised transgenic animals. Conclusion Exercise shifts the immune response from innate to an adaptive or

  7. Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid.

    Science.gov (United States)

    Nichol, Kathryn E; Poon, Wayne W; Parachikova, Anna I; Cribbs, David H; Glabe, Charles G; Cotman, Carl W

    2008-04-09

    Inflammation is associated with Abeta pathology in Alzheimer's disease (AD) and transgenic AD models. Previously, it has been demonstrated that chronic stimulation of the immune response induces pro-inflammatory cytokines IL-1beta and TNF-alpha which contribute to neurodegeneration. However, recent evidence has shown that inducing the adaptive immune response reduces Abeta pathology and is neuroprotective. Low concentrations of IFN-gamma modulate the adaptive immune response by directing microglia to differentiate to antigen presenting cells. Our objective was to determine if exercise could induce a shift from the immune profile in aged (17-19 months) Tg2576 mice to a response that reduces Abeta pathology. TG (n = 29) and WT (n = 27) mice were divided into sedentary (SED) and exercised (RUN) groups. RUN animals were provided an in-cage running wheel for 3 weeks. Tissue was harvested and hippocampus and cortex dissected out. Quantitative data was analyzed using 2 x 2 ANOVA and student's t-tests. IL-1beta and TNF-alpha were significantly greater in hippocampi from sedentary Tg2576 (TGSED) mice than in wildtype (WTSED) (p = 0.04, p = 0.006). Immune response proteins IFN-gamma and MIP-1alpha are lower in TGSED mice than in WTSED (p = 0.03, p = 0.07). Following three weeks of voluntary wheel running, IL-1beta and TNF-alpha decreased to levels indistinguishable from WT. Concurrently, IFN-gamma and MIP-1alpha increased in TGRUN. Increased CD40 and MHCII, markers of antigen presentation, were observed in TGRUN animals compared to TGSED, as well as CD11c staining in and around plaques and vasculature. Additional vascular reactivity observed in TGRUN is consistent with an alternative activation immune pathway, involving perivascular macrophages. Significant decreases in soluble Abeta40 (p = 0.01) and soluble fibrillar Abeta (p = 0.01) were observed in the exercised transgenic animals. Exercise shifts the immune response from innate to an adaptive or alternative response

  8. Variations on a theme: diversification of cuticular hydrocarbons in a clade of cactophilic Drosophila

    Directory of Open Access Journals (Sweden)

    Jackson Larry L

    2011-06-01

    Full Text Available Abstract Background We characterized variation and chemical composition of epicuticular hydrocarbons (CHCs in the seven species of the Drosophila buzzatii cluster with gas chromatography/mass spectrometry. Despite the critical role of CHCs in providing resistance to desiccation and involvement in communication, such as courtship behavior, mating, and aggregation, few studies have investigated how CHC profiles evolve within and between species in a phylogenetic context. We analyzed quantitative differences in CHC profiles in populations of the D. buzzatii species cluster in order to assess the concordance of CHC differentiation with species divergence. Results Thirty-six CHC components were scored in single fly extracts with carbon chain lengths ranging from C29 to C39, including methyl-branched alkanes, n-alkenes, and alkadienes. Multivariate analysis of variance revealed that CHC amounts were significantly different among all species and canonical discriminant function (CDF analysis resolved all species into distinct, non-overlapping groups. Significant intraspecific variation was found in different populations of D. serido suggesting that this taxon is comprised of at least two species. We summarized CHC variation using CDF analysis and mapped the first five CHC canonical variates (CVs onto an independently derived period (per gene + chromosome inversion + mtDNA COI gene for each sex. We found that the COI sequences were not phylogenetically informative due to introgression between some species, so only per + inversion data were used. Positive phylogenetic signal was observed mainly for CV1 when parsimony methods and the test for serial independence (TFSI were used. These results changed when no outgroup species were included in the analysis and phylogenetic signal was then observed for female CV3 and/or CV4 and male CV4 and CV5. Finally, removal of divergent populations of D. serido significantly increased the amount of phylogenetic signal as

  9. Short- and longer-term effects of feeding increased metabolizable protein with or without an altered amino acid profile to dairy cows immediately postpartum.

    Science.gov (United States)

    Carder, E G; Weiss, W P

    2017-06-01

    The first few weeks after parturition is marked by low, but increasing feed intake and sharply increasing milk production by dairy cows. Because of low intake, the nutrient density of the diet may need to be higher during this period to support increasing milk yields. We hypothesized that feeding higher levels of metabolizable protein (MP) or a protein supplement with rumen-protected lysine and methionine during the immediate postpartum period would increase yields of milk and milk components. Fifty-six Holstein cows (21 primiparous and 35 multiparous) starting at 3 d in milk were used in a randomized block design. In phase 1 (3 through 23 d in milk), cows were fed 1 of 3 diets that differed in supply of MP and AA profile. At 23 d in milk, all cows were moved to a common freestall pen and fed the control diet used in phase 1 for an additional 63 d (phase 2). Diets were formulated using the National Research Council model and were control [16.5% crude protein (CP), 10.9% rumen-degradable protein (RDP), and 5.6% rumen-undegradable protein (RUP)], high MP (HMP; 18.5% CP, 11.6% RDP, 6.9% RUP), and AA (MPAA; 17.5% CP, 10.5% RDP, 7.0% RUP 29.7). The MPAA diet included a proprietary spray-dried blood meal product (Perdue Agribusiness, Salisbury, MD) and contained a model-estimated 7.2 and 2.6% of digestible lysine and methionine (% of MP). The HMP and control diets contained 6.3 and 6.7% digestible lysine and both had 1.8% digestible methionine. In phase 1, diet did not affect milk yield (33.6, 34.7, and 33.2 kg for control, HMP, and MPAA, respectively), dry matter intake (17.8, 18.0, and 18.5 kg/d for control, HMP, and MPAA), or milk protein yield (1.07 kg/d). Feeding additional protein (HMP or MPAA) increased both the concentration and yield of milk fat, and milk protein concentration was greater (3.30 vs. 3.17%) for MPAA compared with the HMP diet. Energy-corrected milk was greater (38.4 and 38.6 vs. 35.3 kg/d, respectively) for MPAA and HP than for the control. Cows

  10. SUPERKILLER Complex Components Are Required for the RNA Exosome-Mediated Control of Cuticular Wax Biosynthesis in Arabidopsis Inflorescence Stems.

    Science.gov (United States)

    Zhao, Lifang; Kunst, Ljerka

    2016-06-01

    ECERIFERUM7 (CER7)/AtRRP45B core subunit of the exosome, the main cellular 3'-to-5' exoribonuclease, is a positive regulator of cuticular wax biosynthesis in Arabidopsis (Arabidopsis thaliana) inflorescence stems. CER7-dependent exosome activity determines stem wax load by controlling transcript levels of the wax-related gene CER3 Characterization of the second-site suppressors of the cer7 mutant revealed that small interfering RNAs (siRNAs) are direct effectors of CER3 expression. To explore the relationship between the exosome and posttranscriptional gene silencing (PTGS) in regulating CER3 transcript levels, we investigated two additional suppressor mutants, wax restorer1 (war1) and war7. We show that WAR1 and WAR7 encode Arabidopsis SUPERKILLER3 (AtSKI3) and AtSKI2, respectively, components of the SKI complex that associates with the exosome during cytoplasmic 3'-to-5' RNA degradation, and that CER7-dependent regulation of wax biosynthesis also requires participation of AtSKI8. Our study further reveals that it is the impairment of the exosome-mediated 3'-5' decay of CER3 transcript in the cer7 mutant that triggers extensive production of siRNAs and efficient PTGS of CER3. This identifies PTGS as a general mechanism for eliminating highly abundant endogenous transcripts that is activated when 3'-to-5' mRNA turnover by the exosome is disrupted. Diminished efficiency of PTGS in ski mutants compared with cer7, as evidenced by lower accumulation of CER3-related siRNAs, suggests that reduced amounts of CER3 transcript are available for siRNA synthesis, possibly because CER3 mRNA that does not interact with SKI is degraded by 5'-to-3' XRN4 exoribonuclease. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Effect of cuticular waxes compounds from table grapes on growth, germination and gene expression in Botrytis cinerea.

    Science.gov (United States)

    Silva-Moreno, Evelyn; Brito-Echeverría, Jocelyn; López, Miguel; Ríos, Juan; Balic, Iván; Campos-Vargas, Reinaldo; Polanco, Rubén

    2016-05-01

    Botrytis cinerea attacks a broad range of host causing significant economic losses in the worldwide fruit export industry. Hitherto, many studies have focused on the penetration mechanisms used by this phytopathogen, but little is known about the early stages of infection, especially those such as adhesion and germination. The aim of this work was to evaluate the effect of cuticular waxes compounds from table grapes on growth, germination and gene expression of B. cinerea. To accomplish this, growth was analyzed using as substrate n-alkanes extracted from waxes of fresh fruit (table grapes, blueberries and apricots). Subsequently, the main compounds of table grape waxes, oleanolic acid (OA) and n-fatty alcohols, were mixed to generate a matrix on which conidia of B. cinerea were added to assess their effect on germination and expression of bctub, bchtr and bchex genes. B. cinerea B05.10, isolated from grapes, increased its growth on a matrix composed by table grapes n-alkanes in comparison to a matrix made with n-alkanes from apricot or blueberries. Moreover, at 2.5 h, B05.10 germination increased 17 and 33 % in presence of n-alkanes from table grape, in comparison to conditions without alkanes or with blueberries alkanes, respectively. Finally, expression of bchtr and bchex showed a significant increase during the first hour after contact with n-fatty alcohols and OA. In conclusion, B. cinerea displays selectivity towards certain compounds found in host waxes, mainly n-fatty alcohols, which could be a good candidate to control this phytopathogen in early stages of infection.

  12. The silkworm Bombyx mori cuticular protein CPR55 gene is regulated by the transcription factor βFTZ-F1

    Directory of Open Access Journals (Sweden)

    Md. Saheb Ali

    2016-01-01

    Full Text Available The insect cuticle is composed of various proteins and formed during the moult under a complex biological process that depends on the cross talk between hormone levels and gene expression. In the present study, we aimed to clarify the ecdysone-dependent temporal regulation mechanisms of cuticular proteins expression and the underlying control of Bombyx mori metamorphosis. The expression of CPR55 was observed from the W3 early stage and peaked at pupation when the ecdysteroid titre declined. CPR55 was induced by the ecdysone pulse, and their expression peaked at 24 h after transfer to a hormone free medium. Transcripts of CPR55 were neither observed after the 20E pulse treatment in the presence of cycloheximide nor after the addition of 20E in V4 wing discs. We analysed the upstream region of the CPR55 gene using a transient reporter assay with a gene gun system which identified only one βFTZ-F1 binding site important for cis-acting elements for the transcription activation of the luciferase reporter gene by an ecdysone pulse. Site-directed mutagenesis of this element in the context of the 589-bp promoter fragment drastically decreased the reporter activity. The nuclear protein bound to βFTZ-F1 sites was identified by an electrophoretic mobility shift assay suggesting that CPR55 expression was regulated by βFTZ-F1 through the ecdysone pulse. The results confirmed that transcription factor, BmβFTZ-F1, binds to the cis-regulatory elements in the promoter of the gene coding for cuticle protein, CPR55, and regulates its expression during B. mori metamorphosis.

  13. Leaf cuticular n-alkanes as markers in the chemotaxonomy of the eggplant (Solanum melongena L.) and related species.

    Science.gov (United States)

    Haliński, L P; Szafranek, J; Stepnowski, P

    2011-11-01

    The complex of species formed by eggplant (Solanum melongena L.) and its wild and weedy relatives (mainly S. incanum L. and S. insanum L.) is characterised by an extreme morphological divergence that is not always associated with genetic variation. The taxonomy of so-called 'spiny Solanum' species (subgenus Leptostemonum) is therefore extremely unclear. Cultivated eggplant lacks resistance to pests that frequently occur among the wild forms and species. As these wild plants are a potential gene pool for improvement of eggplant cultivars, knowledge of the characteristics of taxonomic relations between plants of different origin is crucial. We suggest using the leaf cuticular n-alkane chain length distribution pattern as an alternative taxonomic marker for eggplant and related species. The results are in good agreement with current knowledge of the systematics of these plants; at the same time, the method developed here is useful for verifying plant identification based on morphological traits. Analysis of 13 eggplant cultivars, five accessions of S. incanum and two lines of S. macrocarpon enabled the intraspecific variation within eggplant to be assessed as low. There was wide variability among S. incanum accessions, probably because plants described as S. incanum are members of a number of different species. Some Asian accessions (sometimes described as S. insanum) were found to be almost identical to S. melongena, while a truly wild African S. incanum plant showed extensive similarity. The usefulness of the chemotaxonomic approach in dealing with the S. melongena-S. incanum complex is discussed. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Interactions of calcium ions with weakly acidic active ingredients slow cuticular penetration: a case study with glyphosate.

    Science.gov (United States)

    Schönherr, Jörg; Schreiber, Lukas

    2004-10-20

    Potassium and calcium salts of glyphosate were obtained by titrating glyphosate acid with the respective bases to pH 4.0, and rates of penetration of these salts across isolated astomatous cuticular membranes (CMs) were measured at 20 degrees C and 70, 80, 90, and 100% humidity. K-glyphosate exhibited first-order penetration kinetics, and rate constants (k) increased with increasing humidity. Ca-glyphosate penetrated only when the humidity above the salt residue was 100%. At 90% humidity and below, Ca-glyphosate formed a solid residue on the CMs and penetration was not measurable. With Ca-glyphosate, the k value at 100% humidity decreased with time and the initial rates were lower than for K-glyphosate by a factor of 3.68. After equimolar concentrations of ammonium oxalate were added to Ca-glyphosate, high penetration rates close to those measured with K-glyphosate were measured at all humidities. Adding ammonium sulfate or potassium carbonate also increased rates between 70 and 100% humidity, but they were not as high as with ammonium oxalate. The data indicate that at pH 4.0 one Ca2+ ion is bound to two glyphosate anions. This salt has its deliquescence point near 100% humidity. Therefore, it is a solid at lower humidity and does not penetrate. Its molecular weight is 1.82 times larger than that of K-glyphosate, and this greatly slows down rates of penetration, even at 100% humidity. The additives tested have low solubility products and form insoluble precipitates with Ca2+ ions, but only ammonium oxalate binds Ca2+ quantitatively. The resulting ammonium salt of glyphosate penetrates at 70-100% humidity and at rates comparable to K-glyphosate. The results contribute to a better understanding of the hard water antagonism observed with glyphosate. It is argued that other pesticides and hormones with carboxyl functions are likely to respond to Ca2+ ions in a similar fashion. In all of these cases, ammonium oxalate is expected to overcome hard water antagonism

  15. Gene Expression Profiling of Human Vaginal Cells In Vitro Discriminates Compounds with Pro-Inflammatory and Mucosa-Altering Properties: Novel Biomarkers for Preclinical Testing of HIV Microbicide Candidates.

    Directory of Open Access Journals (Sweden)

    Irina A Zalenskaya

    Full Text Available Inflammation and immune activation of the cervicovaginal mucosa are considered factors that increase susceptibility to HIV infection. Therefore, it is essential to screen candidate anti-HIV microbicides for potential mucosal immunomodulatory/inflammatory effects prior to further clinical development. The goal of this study was to develop an in vitro method for preclinical evaluation of the inflammatory potential of new candidate microbicides using a microarray gene expression profiling strategy.To this end, we compared transcriptomes of human vaginal cells (Vk2/E6E7 treated with well-characterized pro-inflammatory (PIC and non-inflammatory (NIC compounds. PICs included compounds with different mechanisms of action. Gene expression was analyzed using Affymetrix U133 Plus 2 arrays. Data processing was performed using GeneSpring 11.5 (Agilent Technologies, Santa Clara, CA.Microarraray comparative analysis allowed us to generate a panel of 20 genes that were consistently deregulated by PICs compared to NICs, thus distinguishing between these two groups. Functional analysis mapped 14 of these genes to immune and inflammatory responses. This was confirmed by the fact that PICs induced NFkB pathway activation in Vk2 cells. By testing microbicide candidates previously characterized in clinical trials we demonstrated that the selected PIC-associated genes properly identified compounds with mucosa-altering effects. The discriminatory power of these genes was further demonstrated after culturing vaginal cells with vaginal bacteria. Prevotella bivia, prevalent bacteria in the disturbed microbiota of bacterial vaginosis, induced strong upregulation of seven selected PIC-associated genes, while a commensal Lactobacillus gasseri associated to vaginal health did not cause any changes.In vitro evaluation of the immunoinflammatory potential of microbicides using the PIC-associated genes defined in this study could help in the initial screening of candidates prior

  16. Somatoform dissociation and posttraumatic stress syndrome - two sides of the same medal? A comparison of symptom profiles, trauma history and altered affect regulation between patients with functional neurological symptoms and patients with PTSD.

    Science.gov (United States)

    Kienle, Johanna; Rockstroh, Brigitte; Bohus, Martin; Fiess, Johanna; Huffziger, Silke; Steffen-Klatt, Astrid

    2017-07-11

    History of traumatic experience is common in dissociative disorder (DD), and similarity of symptoms and characteristics between DD and posttraumatic stress disorder (PTSD) encouraged to consider DD as trauma-related disorder. However, conceptualization of DD as a trauma-related syndrome would critically affect diagnosis and treatment strategies. The present study addressed overlap and disparity of DD and PTSD by directly comparing correspondence of symptoms, adverse/traumatic experience, and altered affect regulation between patients diagnosed with dissociative disorder (characterized by negative functional neurological symptoms) and patients diagnosed with PTSD. Somatoform and psychoform dissociation, symptoms of posttraumatic stress, general childhood adversities and lifetime traumata, and alexithymia as index of altered affect regulation were screened with standardized questionnaires and semi-structured interviews in 60 patients with DD (ICD-codes F44.4, F44.6, F44.7), 39 patients with PTSD (ICD-code F43.1), and 40 healthy comparison participants (HC). DD and PTSD patients scored higher than HC on somatoform and psychoform dissociative symptom scales and alexithymia, and reported more childhood adversities and higher trauma load. PTSD patients reported higher symptom severity and more traumata than DD patients. Those 20 DD patients who met criteria of co-occuring PTSD did not differ from PTSD patients in the amount of reported symptoms of somatoform dissociation, physical and emotional childhood adversities and lifetime traumata, while emotional neglect/abuse in childhood distinguished DD patients with and without co-occuring PTSD (DD patients with co-occuring PTSD reporting more emotional maltreatment). The pattern of distinctive somatoform and psychoform dissociative symptom severity, type of childhood and lifetime traumata, and amount of alexithymia suggests that DD and PTSD are distinctive syndromes and, therefore, challenges the conceptualization of DD as

  17. Extensive alterations of the whole-blood transcriptome are associated with body mass index: results of an mRNA profiling study involving two large population-based cohorts.

    Science.gov (United States)

    Homuth, Georg; Wahl, Simone; Müller, Christian; Schurmann, Claudia; Mäder, Ulrike; Blankenberg, Stefan; Carstensen, Maren; Dörr, Marcus; Endlich, Karlhans; Englbrecht, Christian; Felix, Stephan B; Gieger, Christian; Grallert, Harald; Herder, Christian; Illig, Thomas; Kruppa, Jochen; Marzi, Carola S; Mayerle, Julia; Meitinger, Thomas; Metspalu, Andres; Nauck, Matthias; Peters, Annette; Rathmann, Wolfgang; Reinmaa, Eva; Rettig, Rainer; Roden, Michael; Schillert, Arne; Schramm, Katharina; Steil, Leif; Strauch, Konstantin; Teumer, Alexander; Völzke, Henry; Wallaschofski, Henri; Wild, Philipp S; Ziegler, Andreas; Völker, Uwe; Prokisch, Holger; Zeller, Tanja

    2015-10-15

    Obesity, defined as pathologically increased body mass index (BMI), is strongly related to an increased risk for numerous common cardiovascular and metabolic diseases. It is particularly associated with insulin resistance, hyperglycemia, and systemic oxidative stress and represents the most important risk factor for type 2 diabetes (T2D). However, the pathophysiological mechanisms underlying these associations are still not completely understood. Therefore, in order to identify potentially disease-relevant BMI-associated gene expression signatures, a transcriptome-wide association study (TWAS) on BMI was performed. Whole-blood mRNA levels determined by array-based transcriptional profiling were correlated with BMI in two large independent population-based cohort studies (KORA F4 and SHIP-TREND) comprising a total of 1977 individuals. Extensive alterations of the whole-blood transcriptome were associated with BMI: More than 3500 transcripts exhibited significant positive or negative BMI-correlation. Three major whole-blood gene expression signatures associated with increased BMI were identified. The three signatures suggested: i) a ratio shift from mature erythrocytes towards reticulocytes, ii) decreased expression of several genes essentially involved in the transmission and amplification of the insulin signal, and iii) reduced expression of several key genes involved in the defence against reactive oxygen species (ROS). Whereas the first signature confirms published results, the other two provide possible mechanistic explanations for well-known epidemiological findings under conditions of increased BMI, namely attenuated insulin signaling and increased oxidative stress. The putatively causative BMI-dependent down-regulation of the expression of numerous genes on the mRNA level represents a novel finding. BMI-associated negative transcriptional regulation of insulin signaling and oxidative stress management provide new insights into the pathogenesis of metabolic

  18. Smectite alteration

    International Nuclear Information System (INIS)

    Anderson, D.M.

    1984-11-01

    This report contains the proceedings of a second workshop in Washington DC December 8-9, 1983 on the alteration of smectites intended for use as buffer materials in the long-term containment of nuclear wastes. It includes extended summaries of all presentations and a transcript of the detailed scientific discussion. The discussions centered on three main questions: What is the prerequisite for and what is the precise mechanism by which smectite clays may be altered to illite. What are likly sources of potassium with respect to the KBS project. Is it likely that the conversion of smectite to illite will be of importance in the 10 5 to the 10 6 year time frame. The workshop was convened to review considerations and conclusions in connection to these questions and also to broaden the discussion to consider the use of smectite clays as buffer materials for similar applications in different geographical and geological settings. SKBF/KBS technical report 83-03 contains the proceedings from the first workshop on these matters that was held at the State University of New York, Buffalo May 26-27, 1982. (Author)

  19. Tensor GSVD of Patient- and Platform-Matched Tumor and Normal DNA Copy-Number Profiles Uncovers Chromosome Arm-Wide Patterns of Tumor-Exclusive Platform-Consistent Alterations Encoding for Cell Transformation and Predicting Ovarian Cancer Survival

    Science.gov (United States)

    Sankaranarayanan, Preethi; Schomay, Theodore E.; Aiello, Katherine A.; Alter, Orly

    2015-01-01

    The number of large-scale high-dimensional datasets recording different aspects of a single disease is growing, accompanied by a need for frameworks that can create one coherent model from multiple tensors of matched columns, e.g., patients and platforms, but independent rows, e.g., probes. We define and prove the mathematical properties of a novel tensor generalized singular value decomposition (GSVD), which can simultaneously find the similarities and dissimilarities, i.e., patterns of varying relative significance, between any two such tensors. We demonstrate the tensor GSVD in comparative modeling of patient- and platform-matched but probe-independent ovarian serous cystadenocarcinoma (OV) tumor, mostly high-grade, and normal DNA copy-number profiles, across each chromosome arm, and combination of two arms, separately. The modeling uncovers previously unrecognized patterns of tumor-exclusive platform-consistent co-occurring copy-number alterations (CNAs). We find, first, and validate that each of the patterns across only 7p and Xq, and the combination of 6p+12p, is correlated with a patient’s prognosis, is independent of the tumor’s stage, the best predictor of OV survival to date, and together with stage makes a better predictor than stage alone. Second, these patterns include most known OV-associated CNAs that map to these chromosome arms, as well as several previously unreported, yet frequent focal CNAs. Third, differential mRNA, microRNA, and protein expression consistently map to the DNA CNAs. A coherent picture emerges for each pattern, suggesting roles for the CNAs in OV pathogenesis and personalized therapy. In 6p+12p, deletion of the p21-encoding CDKN1A and p38-encoding MAPK14 and amplification of RAD51AP1 and KRAS encode for human cell transformation, and are correlated with a cell’s immortality, and a patient’s shorter survival time. In 7p, RPA3 deletion and POLD2 amplification are correlated with DNA stability, and a longer survival. In Xq

  20. GC-MS analysis of cuticular lipids in recent and older scavenger insect puparia. An approach to estimate the postmortem interval (PMI).

    Science.gov (United States)

    Frere, B; Suchaud, F; Bernier, G; Cottin, F; Vincent, B; Dourel, L; Lelong, A; Arpino, P

    2014-02-01

    An analytical method was developed to characterize puparia cuticular lipids (hydrocarbons, waxes) and to compare the molecular distribution patterns in the extracts from either recent or older puparia. Acid-catalyzed transesterification and solvent extraction and purification, followed by combined gas chromatography coupled to mass spectrometry, were optimized for the determination of hydrocarbons and fatty acid ethyl esters from transesterified waxes, extracted from a single species of a fly scavenger (Hydrotaea aenescens Wiedemann, 1830). Comparison between recent (2012) or older (1997) puparia contents has highlighted significant composition differences, in particular, a general decrease of the chain length in the n-alkane distribution pattern and, on the contrary, an increase of the ester chain length. Both extracts contain traces of three hopane hydrocarbon congeners. Preliminary results evidence the change in puparia lipid composition over time, thus potentially providing new indices for estimating postmortem interval.

  1. Minimum cuticular conductance and cuticle features of Picea abies and Pinus cembra needles along an altitudinal gradient in the Dolomites (NE Italian Alps).

    Science.gov (United States)

    Anfodillo, Tommaso; Pasqua di Bisceglie, D; Urso, T

    2002-05-01

    Winter desiccation is believed to contribute to stress in coniferous trees growing at the treeline because cuticular conductance increases with altitude. To test whether winter desiccation occurs in high-altitude conifers of the Dolomites (NE Italian Alps), we measured minimum cuticular conductance (g(min)), needle wettability (contact angle) and cuticle thickness in Picea abies (L.) Karst. and Pinus cembra L. needles from December to August. Samples were collected from adult trees along an altitudinal gradient from valley bottom (1050 m a.s.l.) to the treeline (2170 m a.s.l.). The treeline site is one of the highest in the area and is characterized by a generally low wind exposure. Altitude had no effect on g(min) in either species. In P. abies, large seasonal variations in g(min) were recorded but no changes were related to needle age class. Pinus cembra had a low g(min) and appeared to be efficient in reducing needle water losses. There was a significant increase in g(min) with needle aging in P. cembra growing at low altitude that could be related to a shorter needle longevity compared with P. abies. High contact angles (> 110-120 ) suggested the presence of tubular epicuticular waxes on needles of both species. Contact angles were higher (low wettability) in high-altitude needles than in low-altitude needles. By the end of winter, there was no difference in contact angles between needles in the windward and leeward positions. Wax structures transformed toward planar shapes as demonstrated by the decrease in contact angle from winter to summer. In both species, the cuticle was thicker in needles of high-altitude trees than in needles of low-altitude trees and there was no correlation between g(min) and cuticle thickness. Because desiccation resistance did not decrease with altitude in either species, we conclude that they are not susceptible to winter desiccation at the tree line.

  2. Mass spectrometric profiling of glucosamine, glucosamine polymers and their catecholamine adducts. Model reactions and cuticular hydrolysates of Toxorhynchites amboinensis (Culicidae) pupae.

    Science.gov (United States)

    Kerwin, J L; Whitney, D L; Sheikh, A

    1999-07-01

    Glucosamine (Gln), glucosamine polymers, and their catecholamine adducts were characterized using positive ion electrospray mass spectrometry (ESMS) and tandem mass spectrometry (ESMS-MS). N-acetyldopamine (NADA), a catecholamine found in many insect cuticles, was oxidized using mushroom tyrosinase, and the resulting quinone derivatives were reacted with Gln, (Gln)3, and polymeric glucosamine (chitosan). Adducts of glucosamine and its trisaccharide with NADA were readily identified as [M + H]+ ions in ESMS spectra, and ESMS-MS of selected ions confirmed the condensation of 1-3 NADA residues with Gln. In addition to Gln modification by the quinone derivatives of NADA, other spectra were consistent with the formation of adducts with N-acetylnoradrenaline and moieties formed by intramolecular cyclization following oxidation. The primary amine of glucosamine was involved in initial adduct formation, but the sites for subsequent additions of oxidized NADA to glucosamine, presumably via hydroxyl groups, could not be identified by ESMS alone. The ESMS spectra of chitosan films infused into the spectrometer following solubilization in acidic methanol/water produced spectra similar to that of (Gln)3 up to m/z 502. Ions of gradually decreasing intensity consistent with (Gln)x, where x = 4-8, were observed. Modification of chitosan films following incubation with NADA plus tyrosinase rendered the films insoluble in dilute acid, simulating the cross-linking process proposed to occur during insect cuticle sclerotization. Acid hydrolysates of the pupal stage of the mosquito Toxorhynchites amboinensis, using only two pupal exuviae for the hydrolyses, were infused into the mass spectrometer without preliminary chromatography. Eight amino acids, glucosamine, N-acetylglucosamine, catecholamines, and a variety of polymers incorporating these compound classes were identified.

  3. Courtship pheromones in parasitic wasps: comparison of bioactive and inactive hydrocarbon profiles by multivariate statistical methods

    NARCIS (Netherlands)

    Steiner, S.; Mumm, R.; Ruther, J.

    2007-01-01

    Cuticular hydrocarbons play a significant role in the regulation of cuticular permeability and also in the chemical communication of insects. In the parasitoid Lariophagus distinguendus (Hymenoptera: Pteromalidae), male courtship behavior is mediated by a female-produced sex pheromone. Previous

  4. RDR1 and SGS3, Components of RNA-Mediated Gene Silencing, Are Required for the Regulation of Cuticular Wax Biosynthesis in Developing Inflorescence Stems of Arabidopsis1[W][OA

    Science.gov (United States)

    Lam, Patricia; Zhao, Lifang; McFarlane, Heather E.; Aiga, Mytyl; Lam, Vivian; Hooker, Tanya S.; Kunst, Ljerka

    2012-01-01

    The cuticle is a protective layer that coats the primary aerial surfaces of land plants and mediates plant interactions with the environment. It is synthesized by epidermal cells and is composed of a cutin polyester matrix that is embedded and covered with cuticular waxes. Recently, we have discovered a novel regulatory mechanism of cuticular wax biosynthesis that involves the ECERIFERUM7 (CER7) ribonuclease, a core subunit of the exosome. We hypothesized that at the onset of wax production, the CER7 ribonuclease degrades an mRNA specifying a repressor of CER3, a wax biosynthetic gene whose protein product is required for wax formation via the decarbonylation pathway. In the absence of this repressor, CER3 is expressed, leading to wax production. To identify the putative repressor of CER3 and to unravel the mechanism of CER7-mediated regulation of wax production, we performed a screen for suppressors of the cer7 mutant. Our screen resulted in the isolation of components of the RNA-silencing machinery, RNA-DEPENDENT RNA POLYMERASE1 and SUPPRESSOR OF GENE SILENCING3, implicating RNA silencing in the control of cuticular wax deposition during inflorescence stem development in Arabidopsis (Arabidopsis thaliana). PMID:22689894

  5. The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in dessication damage at the alpine treeline.

    Science.gov (United States)

    Baig, M N; Tranquillini, W

    1980-01-01

    The importance of high winter winds and plant temperatures as causes of winter desiccation damage at the alpine treeline were studied in the Austrian Alps. Samples of 1- and 2-year twigs of Picea abies and Pinus cembra were collected from the valley bottom (1,000 m a.s.l.), forestline (1,940 m a.s.l.), kampfzone (2.090 m a.s.l.), wind-protected treeline (2,140 m a.s.l.), and wind-exposed treeline (2,140 m a.s.l.). Cuticular transpiration was measured at three different levels of wind speed (4, 10, and 15 ms -1 ) and temperature (15°, 20°, and 25° C). At elevated wind speeds slight increases in water loss were observed, whereas at higher temperatures much greater increases occurred. Studies on winter water relations show a significant decline in the actual moisture content and osmotic potentials of twigs, especially in the kampfzone and at treeline. The roles of high winds and temperatures in depleting the winter water economy and causing desiccation damage in the alpine treeline environment are discussed.

  6. Dependence of Plant Uptake and Diffusion of Polycyclic Aromatic Hydrocarbons on the Leaf Surface Morphology and Micro-structures of Cuticular Waxes

    Science.gov (United States)

    Li, Qingqing; Li, Yungui; Zhu, Lizhong; Xing, Baoshan; Chen, Baoliang

    2017-04-01

    The uptake of organic chemicals by plants is considered of great significance as it impacts their environmental transport and fate and threatens crop growth and food safety. Herein, the dependence of the uptake, penetration, and distribution of sixteen polycyclic aromatic hydrocarbons (PAHs) on the morphology and micro-structures of cuticular waxes on leaf surfaces was investigated. Plant surface morphologies and wax micro-structures were examined by scanning emission microscopy, and hydrophobicities of plant surfaces were monitored through contact angle measurements. PAHs in the cuticles and inner tissues were distinguished by sequential extraction, and the cuticle was verified to be the dominant reservoir for the accumulation of lipophilic pollutants. The interspecies differences in PAH concentrations cannot be explained by normalizing them to the plant lipid content. PAHs in the inner tissues became concentrated with the increase of tissue lipid content, while a generally negative correlation between the PAH concentration in cuticles and the epicuticular wax content was found. PAHs on the adaxial and abaxial sides of a leaf were differentiated for the first time, and the divergence between these two sides can be ascribed to the variations in surface morphologies. The role of leaf lipids was redefined and differentiated.

  7. Effects of coal-smoke pollutants from different sources on the growth, chlorophyll content, stem anatomy and cuticular of Euphorbia hirta L

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, M.C.; Ghouse, A.K.M.

    1987-01-01

    Variations occurred in the growth, assimilate partitioning, chlorophyll content, stem anatomy and leaf cuticular traits of Euphorbia hirta L. on longterm exposure to coal-smoke pollutants prevailing at two sites, one situated close to a railway loco shed (site B) and another in the vicinity of a thermal power plant (site C). The Botanical Garden of Aligarh Muslim University was considered as a control site (A). Site C possessed a greater load of coal-smoke pollutants than site B. The present study had shown that coal-smoke pollutants have led to a decrease in plant height, jeopardised the production of leaves and enhanced their fall, and caused a reduction in leaf area, leading to decreases of the total photosynthetic area of the plants, with increasing pollution load. The losses incurred in chlorophyll a were relatively more than chlorophyll b and, as a result, the total chlorophyll contents of leaves were decreased in polluted plants. The dry weights of stems, roots and leaves were decreased to different degrees, whereas the shoot/root dry weight ratio was found to increase in the polluted environment. The growth of stem cortex and pith was slightly affected on site B, but showed significant decreases on site C, due to a greater load of pollutants. Decreased area of xylem tissue was found to couple with an increasing number of vessels of reduced sizes. The stomatal density, pore size and index showed decreases. 20 refs., 4 tabs.

  8. Varying importance of cuticular hydrocarbons and iridoids in the species-specific mate recognition pheromones of three closely related Leptopilina species

    Directory of Open Access Journals (Sweden)

    Ingmar eWeiss

    2015-03-01

    Full Text Available Finding a suitable mate for reproduction is one of the most important tasks for almost all animals. In insects this task is often facilitated by pheromone-mediated communication. While insect pheromones in general show enormous chemical diversity, closely related species often use structurally similar compounds in their pheromones. Despite this similarity, pheromones of congeneric species living in sympatry need to be species specific.We investigated the pheromone-mediated mate recognition by males of three closely related species of Leptopilina, a genus of parasitoid wasps that utilize the larvae of Drosophila as hosts. The study species, L. heterotoma, L. boulardi, and L. victoriae, occur sympatrically and have a similar ecology and life history. We have found that mate recognition is species specific in all three species. This species specificity is achieved by a differing importance of cuticular hydrocarbons (CHCs and iridoids in the female mate recognition pheromones. In L. heterotoma the iridoids are of major importance while CHCs play a negligible role. In L. boulardi, however, the CHCs are as important as the iridoids, while in L. victoriae, the CHCs alone elicit a full behavioral response of males.Our results provide novel insights into pheromone evolution in insects by showing that selection on two completely different classes of chemical compounds may generate conditions where compounds from both classes contribute to a varying degree to the chemical communication of closely related species and that this variation also generates the species specificity of the signals.

  9. A male-predominant cuticular hydrocarbon, 7-methyltricosane, is used as a contact pheromone in the western flower thrips Frankliniella occidentalis.

    Science.gov (United States)

    Olaniran, Oladele A; Sudhakar, Akella V S; Drijfhout, Falko P; Dublon, Ian A N; Hall, David R; Hamilton, James G C; Kirk, William D J

    2013-04-01

    In a laboratory bioassay, adult female Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) spent more time near filter paper disks that had been exposed to adult males than near unexposed disks; this effect was not observed on disks exposed to adult females. The response could only partly be explained by the known male-produced aggregation pheromone, neryl (S)-2-methylbutanoate, suggesting the presence of an unknown male-produced compound. In gas chromatography/mass spectrometry analyses, 7-methyltricosane was detected on disks exposed to males, but not on disks exposed to females. Extracts of cuticular lipids also showed relatively large amounts of 7-methyltricosane on males, whereas only trace amounts were found on females and none on larvae. Bioassays of synthetic 7-methyltricosane showed that adults responded only after contact. The response to this compound was clearly different from that to n-tricosane or hexane-only controls. Females that contacted 7-methyltricosane on glass beads stayed in the vicinity and frequently raised the abdomen, a behavior that rejects mating attempts by males. Males stayed in the vicinity and wagged the abdomen sideways, a behavior used in fighting between males. This is the first identification of a contact pheromone in the order Thysanoptera.

  10. Methionine and Choline Supply during the Periparturient Period Alter Plasma Amino Acid and One-Carbon Metabolism Profiles to Various Extents: Potential Role in Hepatic Metabolism and Antioxidant Status

    Directory of Open Access Journals (Sweden)

    Zheng Zhou

    2016-12-01

    Full Text Available The objective of this study was to profile plasma amino acids (AA and derivatives of their metabolism during the periparturient period in response to supplemental rumen-protected methionine (MET or rumen-protected choline (CHOL. Forty cows were fed from −21 through 30 days around parturition in a 2 × 2 factorial design a diet containing MET or CHOL. MET supply led to greater circulating methionine and proportion of methionine in the essential AA pool, total AA, and total sulfur-containing compounds. Lysine in total AA also was greater in these cows, indicating a better overall AA profile. Sulfur-containing compounds (cystathionine, cystine, homocystine, and taurine were greater in MET-fed cows, indicating an enriched sulfur-containing compound pool due to enhanced transsulfuration activity. Circulating essential AA and total AA concentrations were greater in cows supplied MET due to greater lysine, arginine, tryptophan, threonine, proline, asparagine, alanine, and citrulline. In contrast, CHOL supply had no effect on essential AA or total AA, and only tryptophan and cystine were greater. Plasma 3-methylhistidine concentration was lower in response to CHOL supply, suggesting less tissue protein mobilization in these cows. Overall, the data revealed that enhanced periparturient supply of MET has positive effects on plasma AA profiles and overall antioxidant status.

  11. Replacing dietary nonessential amino acids with ammonia nitrogen does not alter amino acid profile of deposited protein in the carcass of growing pigs fed a diet deficient in nonessential amino acid nitrogen.

    Science.gov (United States)

    Mansilla, W D; Htoo, J K; de Lange, C F M

    2017-10-01

    Amino acid usage for protein retention, and, consequently, the AA profile of retained protein, is the main factor for determining AA requirements in growing animals. The objective of the present study was to determine the effect of supplementing ammonia N on whole-body N retention and the AA profile of retained protein in growing pigs fed a diet deficient in nonessential AA (NEAA) N. In total, 48 barrows with a mean initial BW of 13.6 kg (SD 0.7) were used. At the beginning of the study, 8 pigs were euthanized for determination of initial protein mass. The remaining animals were individually housed and fed 1 of 5 dietary treatments. A common basal diet (95% of experimental diets) was formulated to meet the requirements for all essential AA (EAA) but to be deficient in NEAA N (CP = 8.01%). The basal diet was supplemented (5%) with cornstarch (negative control) or 2 N sources (ammonia or NEAA) at 2 levels each to supply 1.35 or 2.70% extra CP. The final standardized ileal digestible (SID) NEAA content in the high-NEAA-supplemented diet (positive control) was based on the NEAA profile of whole-body protein of 20-kg pigs, and it was expected to reduce the endogenous synthesis of NEAA. Pigs were fed at 3.0 times maintenance energy requirements for ME in 3 equal meals daily. At the end of a 3-wk period, pigs were euthanized and the carcass and visceral organs were weighed, frozen, and ground for determination of protein mass. From pigs in the initial, negative control, high-ammonia, and high-NEAA groups, AA contents in the carcass and pooled visceral organs were analyzed to determine the total and deposited protein AA profile, dietary EAA efficiencies, and minimal de novo synthesis of NEAA. Carcass weight and whole-body N retention linearly increased ( 0.10) between N sources, but Cys content increased ( ammonia in visceral organ protein and deposited protein. The dietary SID EAA efficiency for increasing EAA deposition in whole-body protein increased ( 0.10) between N

  12. Mechanical Control of Whole Body Shape by a Single Cuticular Protein Obstructor-E in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Reiko Tajiri

    2017-01-01

    Full Text Available Body shapes are much more variable than body plans. One way to alter body shapes independently of body plans would be to mechanically deform bodies. To what extent body shapes are regulated physically, or molecules involved in physical control of morphogenesis, remain elusive. During fly metamorphosis, the cuticle (exoskeleton covering the larval body contracts longitudinally and expands laterally to become the ellipsoidal pupal case (puparium. Here we show that Drosophila melanogaster Obstructor-E (Obst-E is a protein constituent of the larval cuticle that confers the oriented contractility/expandability. In the absence of obst-E function, the larval cuticle fails to undergo metamorphic shape change and finally becomes a twiggy puparium. We present results indicating that Obst-E regulates the arrangement of chitin, a long-chain polysaccharide and a central component of the insect cuticle, and directs the formation of supracellular ridges on the larval cuticle. We further show that Obst-E is locally required for the oriented shape change of the cuticle during metamorphosis, which is associated with changes in the morphology of those ridges. Thus, Obst-E dramatically affects the body shape in a direct, physical manner by controlling the mechanical property of the exoskeleton.

  13. Lipid Profile

    Science.gov (United States)

    ... Known As Coronary Risk Panel Formal Name Lipid Profile This article was last reviewed on June 29, ... phospholipid molecules. The particles measured with a lipid profile are classified by their density into high-density ...

  14. Data Profiling

    OpenAIRE

    Hladíková, Radka

    2010-01-01

    Title: Data Profiling Author: Radka Hladíková Department: Department of Software Engineering Supervisor: Ing. Vladimír Kyjonka Supervisor's e-mail address: Abstract: This thesis puts mind on problems with data quality and data profiling. This Work analyses and summarizes problems of data quality, data defects, process of data quality, data quality assessment and data profiling. The main topic is data profiling as a process of researching data available in existing...

  15. SUPERKILLER Complex Components Are Required for the RNA Exosome-Mediated Control of Cuticular Wax Biosynthesis in Arabidopsis Inflorescence Stems1[OPEN

    Science.gov (United States)

    Zhao, Lifang; Kunst, Ljerka

    2016-01-01

    ECERIFERUM7 (CER7)/AtRRP45B core subunit of the exosome, the main cellular 3′-to-5′ exoribonuclease, is a positive regulator of cuticular wax biosynthesis in Arabidopsis (Arabidopsis thaliana) inflorescence stems. CER7-dependent exosome activity determines stem wax load by controlling transcript levels of the wax-related gene CER3. Characterization of the second-site suppressors of the cer7 mutant revealed that small interfering RNAs (siRNAs) are direct effectors of CER3 expression. To explore the relationship between the exosome and posttranscriptional gene silencing (PTGS) in regulating CER3 transcript levels, we investigated two additional suppressor mutants, wax restorer1 (war1) and war7. We show that WAR1 and WAR7 encode Arabidopsis SUPERKILLER3 (AtSKI3) and AtSKI2, respectively, components of the SKI complex that associates with the exosome during cytoplasmic 3′-to-5′ RNA degradation, and that CER7-dependent regulation of wax biosynthesis also requires participation of AtSKI8. Our study further reveals that it is the impairment of the exosome-mediated 3′-5′ decay of CER3 transcript in the cer7 mutant that triggers extensive production of siRNAs and efficient PTGS of CER3. This identifies PTGS as a general mechanism for eliminating highly abundant endogenous transcripts that is activated when 3′-to-5′ mRNA turnover by the exosome is disrupted. Diminished efficiency of PTGS in ski mutants compared with cer7, as evidenced by lower accumulation of CER3-related siRNAs, suggests that reduced amounts of CER3 transcript are available for siRNA synthesis, possibly because CER3 mRNA that does not interact with SKI is degraded by 5′-to-3′ XRN4 exoribonuclease. PMID:27208312

  16. Effects of coal-smoke pollutants from different sources on the growth, chlorophyll content, stem anatomy and cuticular traits of Euphorbia hirta L.

    Science.gov (United States)

    Gupta, M C; Ghouse, A K

    1987-01-01

    Variations occurred in the growth, assimilate partitioning, chlorophyll content, stem anatomy and leaf cuticular traits of Euphorbia hirta L. on long-term exposure to coal-smoke pollutants prevailing at two sites, one situated close to a railway loco shed (site B) and another in the vicinity of a thermal power plant (site C). The Botanical Garden of Aligarh Muslim University, Aligarh, was considered as a control site (A). Site C possessed a greater load of coal-smoke pollutants than site B. The present study had shown that coal-smoke pollutants have led to a decrease in plant height, jeopardised the production of leaves and enhanced their fall, and caused a reduction in leaf area, leading to decreases of the total photosynthetic area of the plants, with increasing pollution load. The losses incurred in chlorophyll a were relatively more than chlorophyll b and, as a result, the total chlorophyll contents of leaves were decreased in polluted plants. The dry weights of stems, roots and leaves were decreased to different degrees, whereas the shoot/root dry weight ratio was found to increase in the polluted environment. The growth of stem cortex and pith were slightly affected on site B, but showed significant decreases on site C, due to a greater load of pollutants. Decreased area of xylem tissue was found to couple with an increasing number of vessels of reduced sizes. The stomatal density, pore size and index showed decreases, while the epidermal cells were larger and trichomes longer, on both surfaces of polluted leaves.

  17. The expression profile of miR-23b is not altered in peripheral blood mononuclear cells of patients with idiopathic inflammatory myopathies [v1; ref status: indexed, http://f1000r.es/20z

    Directory of Open Access Journals (Sweden)

    Martina Remakova

    2013-10-01

    Full Text Available Idiopathic inflammatory myopathies (IIM belong to a group of autoimmune disorders, primarily characterized by chronic inflammation of human skeletal muscle tissue. The etiology of these diseases is unknown, however, genetic predisposition plays a significant role in disease onset. Beside the known genetic risk located in the MHC complex, the epigenetic modifications including changes in miRNAs expression profiles have been recently implicated recently in many autoimmune diseases. Micro RNA molecules are involved in many physiological processes, including the regulation of the immune response. In our study we have focused on the miR-23b, as it represents a novel promising autoimmunity regulator molecule. Downregulation of miR-23b was recently described in patients with rheumatoid arthritis and systemic lupus erythematosus. We have measured the expression miR-23b peripheral blood mononuclear cells of patients with dermatomyositis and polymyositis. No meaningful difference was found in comparison with healthy controls.

  18. Karolinske psychodynamic profile (KAPP)

    DEFF Research Database (Denmark)

    Mathiesen, Birgit Bork; Søgaard, Ulf

    2006-01-01

    psykologiske testmetoder, assesment, Karolinska psychodynamic profile (KAPP), psykodynamisk profil......psykologiske testmetoder, assesment, Karolinska psychodynamic profile (KAPP), psykodynamisk profil...

  19. Modulatory Effect of Taurine on 7,12-Dimethylbenz(a)Anthracene-Induced Alterations in Detoxification Enzyme System, Membrane Bound Enzymes, Glycoprotein Profile and Proliferative Cell Nuclear Antigen in Rat Breast Tissue.

    Science.gov (United States)

    Vanitha, Manickam Kalappan; Baskaran, Kuppusamy; Periyasamy, Kuppusamy; Selvaraj, Sundaramoorthy; Ilakkia, Aruldoss; Saravanan, Dhiravidamani; Venkateswari, Ramachandran; Revathi Mani, Balasundaram; Anandakumar, Pandi; Sakthisekaran, Dhanapal

    2016-08-01

    The modulatory effect of taurine on 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer in rats was studied. DMBA (25 mg/kg body weight) was administered to induce breast cancer in rats. Protein carbonyl levels, activities of membrane bound enzymes (Na(+) /K(+) ATPase, Ca(2+) ATPase, and Mg(2+) ATPase), phase I drug metabolizing enzymes (cytochrome P450, cytochrome b5, NADPH cytochrome c reductase), phase II drug metabolizing enzymes (glutathione-S-transferase and UDP-glucuronyl transferase), glycoprotein levels, and proliferative cell nuclear antigen (PCNA) were studied. DMBA-induced breast tumor bearing rats showed abnormal alterations in the levels of protein carbonyls, activities of membrane bound enzymes, drug metabolizing enzymes, glycoprotein levels, and PCNA protein expression levels. Taurine treatment (100 mg/kg body weight) appreciably counteracted all the above changes induced by DMBA. Histological examination of breast tissue further supported our biochemical findings. The results of the present study clearly demonstrated the chemotherapeutic effect of taurine in DMBA-induced breast cancer. © 2016 Wiley Periodicals, Inc.

  20. Overexpression of nuclear apoptosis-inducing factor 1 altered the proteomic profile of human gastric cancer cell MKN45 and induced cell cycle arrest at G1/S phase.

    Directory of Open Access Journals (Sweden)

    Mei Yang

    Full Text Available Nuclear apoptosis-inducing factor 1 (NAIF1 was previously reported to induce apoptosis. Moreover, the expression of NAIF1 was significantly down-regulated in human gastric cancer tissues compared to adjacent normal tissues. However, the mechanism by which the NAIF1 gene induces apoptosis is not fully understood. Our results show that NAIF1 was minimally expressed in all the tested gastric cancer cell lines. Our data also demonstrates that NAIF1 is localized in the nuclei of cells as detected by monitoring the green fluorescence of NAIF1-GFP fusion protein using fluorescent confocal microscopy. Next, a comparative proteomic approach was used to identify the differential expression of proteins between gastric cancer cell lines MKN45/NAIF1 (- and MKN45/NAIF1 (+. We found five proteins (proteasome 26S subunit 2, proteasome 26S subunit 13, NADH dehydrogenase Fe-S protein 1, chaperonin containing TCP1 subunit 3 and thioredoxin reductase 1 that were up-regulated and three proteins (ribonuclease inhibitor 1, 14-3-3 protein epsilon isoform and apolipoprotein A-I binding protein that were down-regulated in the MKN45 cells overexpressing NAIF1. We also discovered that NAIF1 could induce cell cycle arrest at G1/S phase by altering the expression of cell cycle proteins cyclinD1, cdc2 and p21. The differentially expressed proteins identified here are related to various cellular programs involving cell cycle, apoptosis, and signal transduction regulation and suggest that NAIF1 may be a tumor suppressor in gastric cancer. Our research provides evidence that elucidates the role of how NAIF1 functions in gastric cancer.

  1. Abnormal morphology of the penis in male rats exposed neonatally to diethylstilbestrol is associated with altered profile of estrogen receptor-alpha protein, but not of androgen receptor protein: a developmental and immunocytochemical study.

    Science.gov (United States)

    Goyal, H O; Braden, T D; Williams, C S; Dalvi, P; Mansour, M M; Mansour, M; Williams, J W; Bartol, F F; Wiley, A A; Birch, L; Prins, G S

    2004-05-01

    Objectives of the study were to determine developmental changes in morphology and expression of androgen receptor (AR) and estrogen receptor (ER)alpha in the body of the rat penis exposed neonatally to diethylstilbestrol (DES). Male pups received DES at a dose of 10 microg per rat on alternate days from Postnatal Day 2 to Postnatal Day 12. Controls received olive oil vehicle only. Tissue samples were collected on Days 18 (prepuberty), 41 (puberty), and 120 (adult) of age. DES-induced abnormalities were evident at 18 days of age and included smaller, lighter, and thinner penis, loss of cavernous spaces and associated smooth muscle cells, and increased deposition of fat cells in the corpora cavernosa penis. Fat cells virtually filled the entire area of the corpora cavernosa at puberty and adulthood. Plasma testosterone (T) was reduced to an undetectable level, while LH was unaltered in all treated groups. AR-positive cells were ubiquitous and their profile (incidence and staining intensity) did not differ between control and treated rats of the respective age groups. Conversely, ERalpha-positive cells were limited to the stroma of corpus spongiosus in all age groups of both control and treated rats, but the expression in treated rats at 18 days was up-regulated in stromal cells of corpora cavernosa, coincident with the presence of morphological abnormalities. Hence, this study reports for the first time DES-induced developmental, morphological abnormalities in the body of the penis and suggests that these abnormalities may have resulted from decreased T and/or overexpression of ERalpha.

  2. Alteration of the miRNA expression profile in male porcine anterior pituitary cells in response to GHRH and CST and analysis of the potential roles for miRNAs in regulating GH.

    Science.gov (United States)

    Qi, Qi-En; Xi, Qian-Yun; Ye, Rui-Song; Chen, Ting; Cheng, Xiao; Li, Chao-Yun; Zhu, Xiao-Tong; Shu, Gang; Wang, Li-Na; Jiang, Qing-Yan; Zhang, Yong-Liang

    2015-04-01

    Growth hormone releasing hormone (GHRH) is a major positive regulator of growth hormone (GH) in the anterior pituitary gland, while cortistatin's (CST) role is negative. miRNAs (microRNAs or miRs) are small RNA molecules modulating gene expression at the post-transcriptional level. However, little is known about the function of miRNAs in the regulation of GH synthesis and/or secretion. This study investigated potential functional miRNAs involved in GH secretion in the normal porcine pituitary. Primary porcine anterior pituitary cells were cultivated and then treated with 10 nmol/L GHRH and 100 nmol/L CST, respectively. The effects of GHRH and CST on GH secretion were determined using RIA. miRNA microarrays were employed to analyze miRNA expression after treatment and then differentially expressed miRNAs were screened. Bioinformatics analysis was used to analyze the potential targets in growth hormone regulation of altered miRNAs. Furthermore, functional experiments were conducted to study the function of ssc-let-7c. GHRH significantly promoted GH secretion, while CST suppressed GH secretion. 19 and 35 differentially expressed miRNAs were identified in response to GHRH and CST treatments respectively. Verification of 5 randomly selected miRNAs by quantitative real-time PCR (qRT-PCR) showed similar changes with microarray analysis. Target analysis showed that some miRNAs may be involved in GH secretion-related pathways. Importantly, ssc-let-7c was predicted to target GH1 and GHRHR mRNA 3'untranslated regions (3'UTRs), which was supported by luciferase reporter assay. Furthermore, functional experimental results showed that ssc-let-7c was involved in GH secretion regulation, and overexpression of ssc-let-7c inhibited GH secretion in porcine anterior pituitary cells. GHRH and CST modulated porcine pituitary cell miRNA expression. Bioinformatics analysis revealed a complicated network among differentially expressed miRNAs, GH regulation-related genes and hormones. More

  3. Biophysical Profile

    Science.gov (United States)

    ... and pregnancy High-risk pregnancy Biophysical profile About Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  4. Profiling cancer

    DEFF Research Database (Denmark)

    Ciro, Marco; Bracken, Adrian P; Helin, Kristian

    2003-01-01

    In the past couple of years, several very exciting studies have demonstrated the enormous power of gene-expression profiling for cancer classification and prediction of patient survival. In addition to promising a more accurate classification of cancer and therefore better treatment of patients......, gene-expression profiling can result in the identification of novel potential targets for cancer therapy and a better understanding of the molecular mechanisms leading to cancer....

  5. Oncometabolites: linking altered metabolism with cancer

    Science.gov (United States)

    Yang, Ming; Soga, Tomoyoshi; Pollard, Patrick J.

    2013-01-01

    The discovery of cancer-associated mutations in genes encoding key metabolic enzymes has provided a direct link between altered metabolism and cancer. Advances in mass spectrometry and nuclear magnetic resonance technologies have facilitated high-resolution metabolite profiling of cells and tumors and identified the accumulation of metabolites associated with specific gene defects. Here we review the potential roles of such “oncometabolites” in tumor evolution and as clinical biomarkers for the detection of cancers characterized by metabolic dysregulation. PMID:23999438

  6. Proximal nailfold microhemorrhage events are manifested as distal cuticular (eponychial) hemosiderin-containing deposits (CEHD) (syn. Maricq sign) and can aid in the diagnosis of dermatomyositis and systemic sclerosis.

    Science.gov (United States)

    McBride, Jeffrey D; Sontheimer, Richard D

    2016-02-17

    Many patients present with cutaneous signs and symptoms that suggest a diagnosis on the autoimmune disease spectrum. During the "acute phase" of disease activity, patients with systemic sclerosis (SSc) and dermatomyositis (DM) have characteristic nailfold findings, including dilated capillaries, microhemorrhages, and hemosiderin deposits. To review the literature on the presentation of microhemorrhages and to highlight the differences (in terms of terminology, characterization, and clinical relevance) between proximal microhemorrhage events and the distal products, often thought of as "hemosiderin deposits" located in the cuticle (eponychium). Because we found no studies directly showing these cuticular products are in fact "hemosiderin-containing," we conducted a direct staining experiment in vivo using Prussian blue in order to increase our confidence that these products are indeed hemosiderin-containing and that the terminology is accurate for further use. In July-December 2014, the MeSH function in PubMed was used to identify approximately 165 articles relating to capillaroscopy. We reviewed these articles for mention of microhemorrhages and hemosiderin deposits. In addition, we used PubMed and Google Scholar searches for "hemosiderin + nail", "Prussian Blue + nail", and "hemosiderin deposit." We found no papers reporting the use of Prussian Blue directly on nailfolds of patients with SSc and DM in vivo. In our literature review, "microhemorrhages" and "hemosiderin deposits" were often used synonymously, yet they are clearly distinct entities. We present a case in which the presence of these deposits supported a diagnosis of amyopathic DM. We used Prussian blue staining solution to visualize the cuticular (eponychial) hemosoderin-containing deposits (CEHD) - distal cuticular products that reflect previous proximal nailfold microhemorrhage events. CEHD can serve as an indicator of active autoimmune disease, particularly in SSc and DM. CEHD are in fact

  7. Epigenetic Alterations in Parathyroid Cancers

    Directory of Open Access Journals (Sweden)

    Chiara Verdelli

    2017-02-01

    Full Text Available Parathyroid cancers (PCas are rare malignancies representing approximately 0.005% of all cancers. PCas are a rare cause of primary hyperparathyroidism, which is the third most common endocrine disease, mainly related to parathyroid benign tumors. About 90% of PCas are hormonally active hypersecreting parathormone (PTH; consequently patients present with complications of severe hypercalcemia. Pre-operative diagnosis is often difficult due to clinical features shared with benign parathyroid lesions. Surgery provides the current best chance of cure, though persistent or recurrent disease occurs in about 50% of patients with PCas. Somatic inactivating mutations of CDC73/HRPT2 gene, encoding parafibromin, are the most frequent genetic anomalies occurring in PCas. Recently, the aberrant DNA methylation signature and microRNA expression profile have been identified in PCas, providing evidence that parathyroid malignancies are distinct entities from parathyroid benign lesions, showing an epigenetic signature resembling some embryonic aspects. The present paper reviews data about epigenetic alterations in PCas, up to now limited to DNA methylation, chromatin regulators and microRNA profile.

  8. Radiation protection philosophy alters

    International Nuclear Information System (INIS)

    Firmin, G.

    1977-01-01

    Two significant events that have taken place this year in the field of radiation protection are reported. New SI units have been proposed (and effectively adopted), and the ICRP has revised its recommendations. Changes of emphasis in the latest recommendations (ICRP Publication 26) imply an altered radiation protection philosophy, in particular the relation of dose limits to estimates of average risk, an altered view of the critical organ approach and a new attitude to genetic dose to the population. (author)

  9. Distinguishing Ichthyoses by Protein Profiling

    Science.gov (United States)

    Rice, Robert H.; Bradshaw, Katie M.; Durbin-Johnson, Blythe P.; Rocke, David M.; Eigenheer, Richard A.; Phinney, Brett S.; Schmuth, Matthias; Gruber, Robert

    2013-01-01

    To explore the usefulness of protein profiling for characterization of ichthyoses, we here determined the profile of human epidermal stratum corneum by shotgun proteomics. Samples were analyzed after collection on tape circles from six anatomic sites (forearm, palm, lower leg, forehead, abdomen, upper back), demonstrating site-specific differences in profiles. Additional samples were collected from the forearms of subjects with ichthyosis vulgaris (filaggrin (FLG) deficiency), recessive X-linked ichthyosis (steroid sulfatase (STS) deficiency) and autosomal recessive congenital ichthyosis type lamellar ichthyosis (transglutaminase 1 (TGM1) deficiency). The ichthyosis protein expression patterns were readily distinguishable from each other and from phenotypically normal epidermis. In general, the degree of departure from normal was lower from ichthyosis vulgaris than from lamellar ichthyosis, parallel to the severity of the phenotype. Analysis of samples from families with ichthyosis vulgaris and concomitant modifying gene mutations (STS deficiency, GJB2 deficiency) permitted correlation of alterations in protein profile with more complex genetic constellations. PMID:24130705

  10. 95 Alteration of Plasma Lipid Profile and Atherogenic Indices of ...

    African Journals Online (AJOL)

    JTEkanem

    2009-07-15

    Jul 15, 2009 ... 4. Hemalatha, R. (2008) Anti-hepatotoxic and anti-oxidant defense potential of. Tridax procumbens. Int. J. Green Pharm. 2:164-169. 5. Zicha, J., Kunes, J. and Devynck, M. A.. (1999) Abnormalities of membrane function and lipid metabolism in hypertension: a review. Am. J. Hypertens. 12: 315-331. 6. Franz ...

  11. Defatted Detarium senegalense seed-based diet alters lipid profile ...

    African Journals Online (AJOL)

    Due to high cost of protein relative to other major nutrients, as part of search for cheaper alternative source for good quality protein for dietary purposes, we evaluated Detarium senegalense seed meal by comparing growth performance, tissue and reproductive toxicity markers in rats with those on soybean. Defatted ...

  12. Obesity Alters the Microbial Community Profile in Korean Adolescents.

    Directory of Open Access Journals (Sweden)

    Hae-Jin Hu

    Full Text Available Obesity is an increasing public health concern worldwide. According to the latest Organization for Economic Co-operation and Development (OECD report (2014, the incidence of child obesity in Korea has exceeded the OECD average. To better understand and control this condition, the present study examined the composition of the gut microbial community in normal and obese adolescents. Fecal samples were collected from 67 obese (body mass index [BMI] ≥ 30 kg/m2, or ≥ 99th BMI percentile and 67 normal (BMI < 25 kg/m2 or < 85th BMI percentile Korean adolescents aged 13-16 years and subjected to 16S rRNA gene sequencing. Analysis of bacterial composition according to taxonomic rank (genus, family, and phylum revealed marked differences in the Bacteroides and Prevotella populations in normal and obese samples (p < 0.005 at the genus and family levels; however, there was no difference in the Firmicutes-to-Bacteroidetes (F/B ratio between normal and obese adolescents samples at the phylum level (F/B normal = 0.50 ± 0.53; F/B obese = 0.56 ± 0.86; p = 0.384. Statistical analysis revealed a significant association between the compositions of several bacterial taxa and child obesity. Among these, Bacteroides and Prevotella showed the most significant association with BMI (p < 0.0001 and 0.0001, respectively. We also found that the composition of Bacteroides was negatively associated with triglycerides (TG, total cholesterol, and high-sensitive C-reactive protein (hs-crp (p = 0.0049, 0.0023, and 0.0038, respectively levels, whereas that of Prevotella was positively associated with TG and hs-crp levels (p = 0.0394 and 0.0150, respectively. We then applied the association rule mining algorithm to generate "rules" to identify the association between the populations of multiple bacterial taxa and obesity; these rules were able to discriminate obese from normal states. Therefore, the present study describes a systemic approach to identify the association between bacterial populations in the gut and childhood obesity.

  13. Allopregnanolone Alters the Gene Expression Profile of Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Carmen J. Zamora-Sánchez

    2018-03-01

    Full Text Available Glioblastomas (GBM are the most frequent and aggressive brain tumors. In these malignancies, progesterone (P4 promotes proliferation, migration, and invasion. The P4 metabolite allopregnanolone (3α-THP similarly promotes cell proliferation in the U87 human GBM cell line. Here, we evaluated global changes in gene expression of U87 cells treated with 3α-THP, P4, and the 5α-reductase inhibitor, finasteride (F. 3α-THP modified the expression of 137 genes, while F changed 90. Besides, both steroids regulated the expression of 69 genes. After performing an over-representation analysis of gene ontology terms, we selected 10 genes whose products are cytoskeleton components, transcription factors, and proteins involved in the maintenance of DNA stability and replication to validate their expression changes by RT-qPCR. 3α-THP up-regulated six genes, two of them were also up-regulated by F. Two genes were up-regulated by P4 alone, however, such an effect was blocked by F when cells were treated with both steroids. The remaining genes were regulated by the combined treatments of 3α-THP + F or P4 + F. An in-silico analysis revealed that promoters of the six up-regulated genes by 3α-THP possess cyclic adenosine monophosphate (cAMP responsive elements along with CCAAT/Enhancer binding protein alpha (CEBPα binding sites. These findings suggest that P4 and 3α-THP regulate different sets of genes that participate in the growth of GBMs.

  14. Music and Alterity Processes

    Directory of Open Access Journals (Sweden)

    Josep Martí

    2014-10-01

    Full Text Available The concept of alterity constitutes an important issue in anthropological research and, therefore, in the study of musical practices, as well. Without it, we could hardly understand other kinds of music situated in different spaces and time from the observer. In order to effectively approach these musical practices, we have to develop strategies to help us reduce as much as possible that which distorts the vision of the other. However, beyond the strictly epistemological and methodological issues, the study of music cannot ignore the ethical question related to the manner in which Western thought has understood and treated the other: through a hierarchical and stereotypical type of thinking based on the condition of otherness. Throughout the article, different alterity procedures are presented and discussed, such as synecdochization, exoticization, undervaluation, overvaluation, misunderstanding and exclusion. Taking these different alterity strategies into account may help us to better understand how the musical other is constructed, used and ultimately instrumentalized.

  15. Fellow Profile

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 1977 Section: Animal Sciences. Nair, Prof. Narayana Balakrishnan Ph.D and D.Sc. (Madras), D.Sc. (h.c.), FNA, FNASc, FNAAS, FTWAS. Date of birth: 6 July 1927. Date of death: 21 April 2010. Specialization: Aquatic Biology & Fisheries and Ecology Last known address: Swathi, ...

  16. Fellow Profile

    Indian Academy of Sciences (India)

    Fellow Profile. Elected: 1977 Section: Animal Sciences. Nair, Prof. Narayana Balakrishnan Ph.D and D.Sc. (Madras), D.Sc. (h.c.), FNA, FNASc, FNAAS, FTWAS. Date of birth: 6 July 1927. Date of death: 21 April 2010. Specialization: Aquatic Biology & Fisheries and Ecology Last known address: Swathi, Residency Road, ...

  17. Fellow Profile

    Indian Academy of Sciences (India)

    Fellow Profile. Elected: 1974 Section: Earth & Planetary Sciences. Koteswaram, Prof. Pancheti D.Sc. (Madras), FNA. Date of birth: 25 March 1915. Date of death: 11 January 1997. Specialization: Atmospheric Physics Meteorology and Hydrology Last known address: 'Varsha', 8-1-11, University Road, Waltair Uplands, ...

  18. Fellow Profile

    Indian Academy of Sciences (India)

    Fellow Profile. Elected: 1957 Section: Earth & Planetary Sciences. Rao, Mr Mandagere Bharadwaj Ramachandra M.Sc. (Mysore). Date of birth: 5 August 1906. Date of death: 4 September 1992. Specialization: Geology and Exploration Geophysics Last known address: 669, Third Block, Rajajinagar, Bengaluru 560 010.

  19. Environmental and simulation facility conditions can modulate a behavioral-driven altered gravity response of Drosophila imagoes transcriptome

    Data.gov (United States)

    National Aeronautics and Space Administration — Genome-wide transcriptional profiling shows that reducing gravity levels in the International Space Station (ISS) causes important alterations in Drosophila gene...

  20. Alters in dissociative identity disorder. Metaphors or genuine entities?

    Science.gov (United States)

    Merckelbach, Harald; Devilly, Grant J; Rassin, Eric

    2002-05-01

    How should the different identities (i.e., alters) that are thought to be typical for dissociative identity disorder (DID) be interpreted? Are they just metaphors for different emotional states or are they truly autonomous entities that are capable of willful action? This issue is important because it has implications for the way in which courts may handle cases that involve DID patients. Referring to studies demonstrating that alters of DID patients differ in their memory performance or physiological profile, some authors have concluded that alters are more than just metaphors. We argue that such line of reasoning is highly problematic. There is little consensus among authors about the degree to which various types of memory information (implicit, explicit, procedural) may leak from one to the other alter. Without such theoretical accord, any given outcome of memory studies on DID may be taken as support for the assumption that alters are in some sense "real." As physiological studies on alter activity often lack proper control conditions, most of them are inconclusive as to the status of alters. To date, neither memory studies nor psychobiological studies have delivered compelling evidence that alters of DID patients exist in a factual sense. As a matter of fact, results of these studies are open to multiple interpretations and in no way refute an interpretation of alters in terms of metaphors for different emotional states.

  1. Altered metabolism in cancer

    Directory of Open Access Journals (Sweden)

    Locasale Jason W

    2010-06-01

    Full Text Available Abstract Cancer cells have different metabolic requirements from their normal counterparts. Understanding the consequences of this differential metabolism requires a detailed understanding of glucose metabolism and its relation to energy production in cancer cells. A recent study in BMC Systems Biology by Vasquez et al. developed a mathematical model to assess some features of this altered metabolism. Here, we take a broader look at the regulation of energy metabolism in cancer cells, considering their anabolic as well as catabolic needs. See research article: http://www.biomedcentral.com/1752-0509/4/58/

  2. Evolução geoquímica e mineralógica em perfis de alteração sobre rochas serpentinizadas no sudoeste de Minas Gerais Geochemical and mineralogical evolution in alteration profiles on serpentinized rocks in southwestern Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Pablo Vidal-Torrado

    2007-10-01

    Full Text Available Estudou-se a evolução geoquímica e mineralógica em três perfis distintos de alteração de rochas serpentinizadas que ocorrem nas imediações dos municípios de Alpinópolis e Fortaleza de Minas, no sudoeste do Estado de Minas Gerais, sob regimes de umidade e de temperatura údico e térmico, respectivamente. Nas condições atuais, o grau de evolução química e mineralógica é moderado em relação ao desenvolvido sobre outros tipos de rochas básicas e ultrabásicas da mesma área, caracterizando-se por uma importante perda de Na e Mg e, em menor proporção, de Ca e Si. O Al (localmente também o Fe é o elemento menos móvel dos sistemas. O K é escasso no material de origem e nas zonas de alteração, e ocorre enriquecimento desse elemento nos horizontes superficiais por aporte externo. Os minerais primários mais facilmente intemperizáveis, como o talco, a tremolita e a clorita trioctaédrica, são abundantes ainda na fração argila desses solos tropicais com composição mineralógica pouco comum, mas são todos termodinamicamente instáveis. Do ponto de vista geoquímico, o processo de alteração atual pode ser definido como uma bissialitização, que pode coincidir com ferruginização, com formação de minerais trioctaédricos secundários por transformação direta de estrutura e também por neoformação, todos coexistindo com os minerais primários residuais. No entanto, as fases de maior evolução, em volumes com drenagem mais eficiente, tendem à monossialitização, com formação de caulinitas de diferentes graus de cristalinidade. A assembléia mineralógica existente evidencia a metaestabilidade e o caráter incipiente do sistema pedogenético.The geochemical and mineralogical evolution was studied in three different alteration profiles of ultramafic (serpentine rocks near Alpinópolis and Fortaleza de Minas, in southwestern Minas Gerais State (Brazil. Soil moisture and temperature regimes are udic and thermic

  3. Altered gut microbiota in Rett syndrome.

    Science.gov (United States)

    Strati, Francesco; Cavalieri, Duccio; Albanese, Davide; De Felice, Claudio; Donati, Claudio; Hayek, Joussef; Jousson, Olivier; Leoncini, Silvia; Pindo, Massimo; Renzi, Daniela; Rizzetto, Lisa; Stefanini, Irene; Calabrò, Antonio; De Filippo, Carlotta

    2016-07-30

    The human gut microbiota directly affects human health, and its alteration can lead to gastrointestinal abnormalities and inflammation. Rett syndrome (RTT), a progressive neurological disorder mainly caused by mutations in MeCP2 gene, is commonly associated with gastrointestinal dysfunctions and constipation, suggesting a link between RTT's gastrointestinal abnormalities and the gut microbiota. The aim of this study was to evaluate the bacterial and fungal gut microbiota in a cohort of RTT subjects integrating clinical, metabolomics and metagenomics data to understand if changes in the gut microbiota of RTT subjects could be associated with gastrointestinal abnormalities and inflammatory status. Our findings revealed the occurrence of an intestinal sub-inflammatory status in RTT subjects as measured by the elevated values of faecal calprotectin and erythrocyte sedimentation rate. We showed that, overall, RTT subjects harbour bacterial and fungal microbiota altered in terms of relative abundances from those of healthy controls, with a reduced microbial richness and dominated by microbial taxa belonging to Bifidobacterium, several Clostridia (among which Anaerostipes, Clostridium XIVa, Clostridium XIVb) as well as Erysipelotrichaceae, Actinomyces, Lactobacillus, Enterococcus, Eggerthella, Escherichia/Shigella and the fungal genus Candida. We further observed that alterations of the gut microbiota do not depend on the constipation status of RTT subjects and that this dysbiotic microbiota produced altered short chain fatty acids profiles. We demonstrated for the first time that RTT is associated with a dysbiosis of both the bacterial and fungal component of the gut microbiota, suggesting that impairments of MeCP2 functioning favour the establishment of a microbial community adapted to the costive gastrointestinal niche of RTT subjects. The altered production of short chain fatty acids associated with this microbiota might reinforce the constipation status of RTT

  4. Radiation induced changes in the cuticular hydrocarbons of the granary weevil and their relationships to desiccation and adult mortality: Annual progress report, February 15, 1986 to February 14, 1987

    International Nuclear Information System (INIS)

    Sriharan, S.

    1987-03-01

    The effects of gamma-ray irradiation on granary weevil Sitophilus granarius was studied. Cesium-137 was investigated with regard to its effectiveness in insect disinfestation of grains. The cuticular hydrocarbons of treated and control weevils were analyzed by gas chromatography, mass spectrometry (Gc/Ms). The effects of different dose rates and Relative Humidity (RH) conditions on desiccation were studied by determining body weight and moisture loss. Observations on germination of irradiated wheat seeds were made as complementary to the above studies. The weevils of older age group were more sensitive to gamma radiation. With dose-rate exceeding .15 kGy the mortality is higher during 11 to 15 days after irradiation. While at lower dose-rates 0.01 kGy and 0.05 kGy lower age group insect tend to prolong and survive longer. Analysis of epicuticular hydrocarbons of adult Sitophilus granarius showed that hydrocarbons C 25 to C 33 were present in significant amount. The qualitative and quantitative analysis of irradiated and control weevils suggests that there was little qualitative but considerable quantitative differences between the hydrocarbon fraction (C 25 to C 33 ) in these two groups. 3 refs., 6 figs., 5 tabs

  5. Autoantibody profile and other immunological parameters in ...

    African Journals Online (AJOL)

    Background: An autoimmune cause and related immunological alterations resulting in recurrent spontaneous abortion (RSA) have been suggested in patients with unknown etiology. Materials and Methods: This study evaluated the autoantibody profile and other immunological parameters among RSA patients and normal ...

  6. Extracellular matrix alterations in the Peyronie's disease.

    Science.gov (United States)

    Watanabe, Marcelo Silva; Theodoro, Thérèse Rachel; Coelho, Natália Lima; Mendes, Aline; Leonel, Monica Luzia Pereira; Mader, Ana Maria; Nader, Helena Bonciani; Glina, Sidney; Pinhal, Maria Aparecida Silva

    2017-07-01

    Peyronie's disease is characterized by fibrous plaque formation of the tunica albuginea, causing penile deformity and fertility problems. The aim of the present study was to investigate alterations in the extracellular matrix in Peyronie's disease. The study used tissues collected by surgical procedure from individuals that presented a well-established disease, while control samples were obtained by biopsies of fresh cadavers. Immunohistochemistry analysis followed by digital quantification was performed to evaluate TGF-β, heparanases and metalloproteinases (MMPs). The profile of sulfated glycosaminoglycans, chondroitin sulfate and dermatan sulfate was determined by agarose gel electrophoresis, while hyaluronic acid quantification was obtained by an ELISA-like assay. The expression of mRNA was investigated for syndecan-1 proteoglycan (Syn-1), interleukine-6 (IL-6), hyaluronic acid synthases, and hyaluronidases. Pathologic features showed decreased apoptosis and blood vessel number in Peyronie's tissues. TGF-β and IL-6 were significantly enhanced in Peyronie's disease. There was an increased expression of heparanases, though no alteration was observed for MMPs. Hyaluronic acid as well as hyaluronic acid synthases, hyaluronidases, and dermatan sulfate were not changed, while the level of chondroitin sulfate was significantly ( P  = 0.008, Mann-Whitney test) increased in Peyronie's samples. Heparanases and sulfated glycosaminoglycans seem to be involved in extracellular matrix alterations in Peyronie's disease.

  7. Characterizing genomic alterations in cancer by complementary functional associations.

    Science.gov (United States)

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes.

  8. Altered Perspectives: Immersive Environments

    Science.gov (United States)

    Shipman, J. S.; Webley, P. W.

    2016-12-01

    Immersive environments provide an exciting experiential technology to visualize the natural world. Given the increasing accessibility of 360o cameras and virtual reality headsets we are now able to visualize artistic principles and scientific concepts in a fully immersive environment. The technology has become popular for photographers as well as designers, industry, educational groups, and museums. Here we show a sci-art perspective on the use of optics and light in the capture and manipulation of 360o images and video of geologic phenomena and cultural heritage sites in Alaska, England, and France. Additionally, we will generate intentionally altered perspectives to lend a surrealistic quality to the landscapes. Locations include the Catacombs of Paris, the Palace of Versailles, and the Northern Lights over Fairbanks, Alaska. Some 360o view cameras now use small portable dual lens technology extending beyond the 180o fish eye lens previously used, providing better coverage and image quality. Virtual reality headsets range in level of sophistication and cost, with the most affordable versions using smart phones and Google Cardboard viewers. The equipment used in this presentation includes a Ricoh Theta S spherical imaging camera. Here we will demonstrate the use of 360o imaging with attendees being able to be part of the immersive environment and experience our locations as if they were visiting themselves.

  9. Music alters visual perception.

    Science.gov (United States)

    Jolij, Jacob; Meurs, Maaike

    2011-04-21

    Visual perception is not a passive process: in order to efficiently process visual input, the brain actively uses previous knowledge (e.g., memory) and expectations about what the world should look like. However, perception is not only influenced by previous knowledge. Especially the perception of emotional stimuli is influenced by the emotional state of the observer. In other words, how we perceive the world does not only depend on what we know of the world, but also by how we feel. In this study, we further investigated the relation between mood and perception. We let observers do a difficult stimulus detection task, in which they had to detect schematic happy and sad faces embedded in noise. Mood was manipulated by means of music. We found that observers were more accurate in detecting faces congruent with their mood, corroborating earlier research. However, in trials in which no actual face was presented, observers made a significant number of false alarms. The content of these false alarms, or illusory percepts, was strongly influenced by the observers' mood. As illusory percepts are believed to reflect the content of internal representations that are employed by the brain during top-down processing of visual input, we conclude that top-down modulation of visual processing is not purely predictive in nature: mood, in this case manipulated by music, may also directly alter the way we perceive the world.

  10. Music alters visual perception.

    Directory of Open Access Journals (Sweden)

    Jacob Jolij

    Full Text Available BACKGROUND: Visual perception is not a passive process: in order to efficiently process visual input, the brain actively uses previous knowledge (e.g., memory and expectations about what the world should look like. However, perception is not only influenced by previous knowledge. Especially the perception of emotional stimuli is influenced by the emotional state of the observer. In other words, how we perceive the world does not only depend on what we know of the world, but also by how we feel. In this study, we further investigated the relation between mood and perception. METHODS AND FINDINGS: We let observers do a difficult stimulus detection task, in which they had to detect schematic happy and sad faces embedded in noise. Mood was manipulated by means of music. We found that observers were more accurate in detecting faces congruent with their mood, corroborating earlier research. However, in trials in which no actual face was presented, observers made a significant number of false alarms. The content of these false alarms, or illusory percepts, was strongly influenced by the observers' mood. CONCLUSIONS: As illusory percepts are believed to reflect the content of internal representations that are employed by the brain during top-down processing of visual input, we conclude that top-down modulation of visual processing is not purely predictive in nature: mood, in this case manipulated by music, may also directly alter the way we perceive the world.

  11. Molecular profiling of intrahepatic cholangiocarcinoma

    DEFF Research Database (Denmark)

    Oliveira, Douglas V N P; Zhang, Shanshan; Chen, Xin

    2017-01-01

    . Areas covered: The present review article outlines the main studies and resulting discoveries on the molecular profiling of iCCA, with a special emphasis on the different techniques used for this purpose, the diagnostic and prognostic markers identified, as well as the genes and pathways that could......INTRODUCTION: Intrahepatic cholangiocarcinoma (iCCA) is the second most frequent primary tumor of the liver and a highly lethal disease. Therapeutic options for advanced iCCA are limited and ineffective due to the largely incomplete understanding of the molecular pathogenesis of this deadly tumor...... be potentially targeted with innovative therapies. Expert commentary: Molecular profiling has led to the identification of distinct iCCA subtypes, characterized by peculiar genetic alterations and transcriptomic features. Targeted therapies against some of the identified genes are ongoing and hold great promise...

  12. Profiling and Racial Profiling: An Interactive Exercise

    Science.gov (United States)

    Semple, Philip

    2013-01-01

    Racial Profiling has been recognized as a serious problem that affects many segments of our society and is especially notable in law enforcement. Governments and police services have pronounced that racial profiling is not acceptable and will not be tolerated. They have gone to great lengths in trying to eradicate racial profiling through…

  13. Molecular alterations of parotid saliva in infantile chronic recurrent parotitis.

    Science.gov (United States)

    Morales-Bozo, Irene; Urzúa-Orellana, Blanca; Landaeta, Mirtha; Montalbán, Raúl; Torres, Jimena; Pinochet, Alvaro; Valverde, Gustavo; Muñoz-Martínez, Andrea

    2007-02-01

    Infantile chronic recurrent parotitis (ICRP) is an insidious disease whose etiopathogenesis remains an enigma. Alterations in the physical appearance of parotid saliva from ICRP patients have been frequently reported. However, sialochemical studies in regard to ICRP are very rare. The aim of this study was to determine whether saliva of ICRP patients presents major physicochemical and biochemical alterations compared with saliva from paired healthy controls. Parotid, whole, and submandibular/sublingual saliva was collected at an asymptomatic stage from 33 ICRP patients (5-16 y old, both sexes) and from 33 sex- and age-matched healthy controls. Saliva was analyzed for protein concentration, mode of protein diffusion on cellulose membranes, unidimensional sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis protein profiles and zymographic profiles of metalloproteinase 2 (MMP-2) and metalloproteinase 9 (MMP-9). Parotid saliva of ICRP patients showed an increased protein concentration, altered mode of protein diffusion, a higher frequency of polypeptide bands of 43, 37, 33, 29, 26, 16, and 10 kD, higher asymmetry in the polypeptide profiles of both contralateral parotid saliva, and an increase in the frequency of MMP-2 and MMP-9. Parotid saliva of patients with ICRP is molecularly altered with respect to normal saliva. Some of the molecular differences could be related to the etiopathogenesis of the disease.

  14. Psychological profile of laryngectomized patients

    Directory of Open Access Journals (Sweden)

    Bogdan Popescu

    2016-04-01

    Full Text Available Larynx cancer is one of the most susceptible form of cancer susceptible to induce alteration of the patient’s psychological profile due to the social role that the larynx has in communication. Oral communication is severely impaired even after voice rehabilitation of the laryngectomized patients, so that the social rehabilitation is somewhat not only a medical but also a social problem. The psychological profile of these patients is altered in a way that dealing with the disease is sometimes neglected and the interaction with the outside world in terms of oral communication is totally abandoned. The starting point for depression in these cases is the acknowledgement of the disease and is, in some cases, the entire medical environment. Facial scarring, the inability to verbally interact with other human, as well as the presence of the tracheostoma, are all deciding factors in the presence of a low self-esteem for these particular patients. Psychological counseling is a mandatory approach for laryngectomized patients, in order to improve their ability to cope with cancer and providing better recovery chances.

  15. The Inhibitor of wax 1 locus (Iw1) prevents formation of β- and OH-β-diketones in wheat cuticular waxes and maps to a sub-cM interval on chromosome arm 2BS

    DEFF Research Database (Denmark)

    Adamski, Nikolai; Bush, Maxwell; Simmonds, James

    2013-01-01

    Glaucousness is described as the scattering effect of visible light from wax deposited on the cuticle of plant aerial organs. In wheat, two dominant genes lead to non-glaucous phenotypes: Inhibitor of wax 1 (Iw1) and Iw2. The molecular mechanisms and the exact extent (beyond visual assessment...... chromosome arm 2BS, which includes a single collinear gene from the corresponding Brachypodium and rice physical maps. The major components of flag leaf and peduncle cuticular waxes included primary alcohols, β-diketones and n-alkanes. Small amounts of C19-C27 alkyl and methylalkylresorcinols that have...

  16. Reinforced aerodynamic profile

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to the prevention of deformations in an aerodynamic profile caused by lack of resistance to the bending moment forces that are created when such a profile is loaded in operation. More specifically, the invention relates to a reinforcing element inside an aerodynamic...... profile and a method for the construction thereof. The profile is intended for, but not limited to, useas a wind turbine blade, an aerofoil device or as a wing profile used in the aeronautical industry....

  17. Genetic alteration in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoo Chul; Kang, Tae Woong; Lee, Jin Oh [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Seoul (Korea, Republic of)

    1994-12-01

    Cancer of stomach, colon and liver are a group of the most common cancer in Korea. However, results with current therapeutic modalities are still unsatisfactory. The intensive efforts have been made to understand basic pathogenesis and to find better therapeutic tools for the treatment of this miserable disease. We studied the alteration of tumor suppressor genes and oncogenes in hepatocellular carcinoma in Korea. We found that alteration of Rb gene, APC were 33 %, 13 % respectively. But alterations of oncogenes such as myc, ras and mdm2 were rarely found. Our results suggests that HBV may act as oncogenic role in hepatocarcinogenesis instead of oncogenes. 6 figs, 2 tabs. (Author).

  18. Hemorheological alterations related to training and overtraining.

    Science.gov (United States)

    Brun, Jean-Frédéric; Varlet-Marie, Emmanuelle; Connes, Philippe; Aloulou, Ikram

    2010-01-01

    Alterations of blood rheology related to muscular activity have been extensively studied over the last 20 years. It has been shown that exercise exerts a "triphasic" action on the rheological properties of blood. In the short term, exercise induces a transient hyperviscosity, mostly due to a rise in hematocrit and plasma viscosity, but also to alterations in erythrocyte rheology. Reversal of this hyperviscosity pattern over the following 24 h can be described as an "autohemodilution". Later, training results in several profiles of "hemorheologic fitness" with a low hematocrit reflecting an expansion in plasma volume, and improvements in red cell rheology (increased deformability, decreased aggregation, reduced disaggregation shear rate). Some specific aspects of these long-term adaptations have been described, such as the intriguing occurrence of a paradoxical improvement in RBC deformability during exercise in some athletes, and overtraining, which is associated with higher plasma viscosity. Given the variety of modes of exercise and the wide heterogeneity of their effects on blood rheology in the short and long term, many investigations remain to be performed in this area of clinical hemorheology.

  19. Vitamin D alteration associated with obesity and bariatric surgery

    OpenAIRE

    Lespessailles, Eric; Toumi, Hechmi

    2017-01-01

    Obesity and severe obesity constitute growing serious health problems reaching epidemic proportion in most countries. Interactions and relationships between obesity and bone tissue and its metabolism are complex but are more and more studied and recognized. Obesity is associated with an altered hormonal profile including particularly bone-regulating hormones like vitamin D. Bariatric surgery procedures, thanks to their effectiveness to achieve therapeutic endpoints for comorbidities associate...

  20. Perception of facial profile attractiveness by a Saudi sample

    International Nuclear Information System (INIS)

    Talic, Nabeel; Alshakhs, Mohammad S.

    2008-01-01

    Previous studies have reported different levels of perception of attractiveness among different ethnicities and among varying education-level groups on facial profile rating.To study the perception of facial profile attractiveness among Saudi dentists and lay-individuals. Digital facial profile images with altered degree of prognathism and retrognathism were presented to a sample of 60 Saudi dentists and 60 lay-persons with equal gender distribution. High reliability of repeated assessment of profile images was detected (ICC=0.982). Significant difference in perception of facial profile was found between genders (P<0.05) and among the groups with different education backgrounds (P<0.001). General agreement was established in both sample groups on average facial profile to be the most attractive and on the most retrognathic profile to be the least attractive. (author)

  1. Genetic profiles distinguish different types of hereditary ovarian cancer

    DEFF Research Database (Denmark)

    Domanska, Katarina; Malander, Susanne; Staaf, Johan

    2010-01-01

    Heredity represents the strongest risk factor for ovarian cancer with disease predisposing mutations identified in 15% of the tumors. With the aim to identify genetic classifiers for hereditary ovarian cancer, we profiled hereditary ovarian cancers linked to the hereditary breast and ovarian cancer...... as a control group. Unsupervised cluster analysis identified two distinct subgroups related to genetic complexity. Sporadic and HBOC associated tumors had complex genetic profiles with an average 41% of the genome altered, whereas the mismatch repair defective tumors had stable genetic profiles...... that HBOC and HNPCC associated ovarian cancer develop along distinct genetic pathways and genetic profiles can thus be applied to distinguish between different types of hereditary ovarian cancer....

  2. HOPWA Performance Profiles

    Data.gov (United States)

    Department of Housing and Urban Development — HOPWA Performance Profiles are generated quarterly for all agencies receiving HOPWA formula or competitive grants. Performance Profiles are available at the national...

  3. Hydrocarbon profiles throughout adult Calliphoridae aging: A promising tool for forensic entomology.

    Science.gov (United States)

    Pechal, Jennifer L; Moore, Hannah; Drijfhout, Falko; Benbow, M Eric

    2014-12-01

    Blow flies (Diptera: Calliphoridae) are typically the first insects to arrive at human remains and carrion. Predictable succession patterns and known larval development of necrophagous insects on vertebrate remains can assist a forensic entomologist with estimates of a minimum post-mortem interval (PMImin) range. However, adult blow flies are infrequently used to estimate the PMImin, but rather are used for a confirmation of larval species identification. Cuticular hydrocarbons have demonstrated potential for estimating adult blow fly age, as hydrocarbons are present throughout blow fly development, from egg to adult, and are stable structures. The goal of this study was to identify hydrocarbon profiles associated with the adults of a North American native blow fly species, Cochliomyia macellaria (Fabricius) and a North American invasive species, Chrysomya rufifacies (Macquart). Flies were reared at a constant temperature (25°C), a photoperiod of 14:10 (L:D) (h), and were provided water, sugar and powdered milk ad libitum. Ten adult females from each species were collected at day 1, 5, 10, 20, and 30 post-emergence. Hydrocarbon compounds were extracted and then identified using gas chromatography-mass spectrometry (GC-MS) analysis. A total of 37 and 35 compounds were detected from C. macellaria and Ch. rufifacies, respectively. There were 24 and 23 n-alkene and methyl-branched alkane hydrocarbons from C. macellaria and Ch. rufifacies, respectively (10 compounds were shared between species), used for statistical analysis. Non-metric multidimensional scaling analysis and permutational multivariate analysis of variance were used to analyze the hydrocarbon profiles with significant differences (P<0.001) detected among post-emergence age cohorts for each species, and unique hydrocarbon profiles detected as each adult blow fly species aged. This work provides empirical data that serve as a foundation for future research into improving PMImin estimates made by forensic

  4. On the pathologically altered pulmonary pattern

    International Nuclear Information System (INIS)

    Ginzburg, M.A.; Kinoshenko, Yu.T.

    1982-01-01

    The notions ''normal'' and ''pathologically altered pulmonary pattern'' are specified. A grouping of lung pattern alterations based on morphopathogenetic features is provided: blood and lymphatic vascular alterations, changes in the bronchi, lung stroma, and combined alterations. Radiologic appearance of the altered pulmonary pattern is classified in keeping with the basic principles of an X-ray shade examination. The terms, such as ''enriching'', ''strengthening'', ''deformation'', etc., used for describing the pathologically altered pulmonary pattern are defined

  5. Homogenization of the lipid profile values.

    Science.gov (United States)

    Pedro-Botet, Juan; Rodríguez-Padial, Luis; Brotons, Carlos; Esteban-Salán, Margarita; García-Lerín, Aurora; Pintó, Xavier; Lekuona, Iñaki; Ordóñez-Llanos, Jordi

    Analytical reports from the clinical laboratory are essential to guide clinicians about what lipid profile values should be considered altered and, therefore, require intervention. Unfortunately, there is a great heterogeneity in the lipid values reported as "normal, desirable, recommended or referenced" by clinical laboratories. This can difficult clinical decisions and be a barrier to achieve the therapeutic goals for cardiovascular prevention. A recent international recommendation has added a new heterogeneity factor for the interpretation of lipid profile, such as the possibility of measuring it without previous fasting. All this justifies the need to develop a document that adapts the existing knowledge to the clinical practice of our health system. In this regard, professionals from different scientific societies involved in the measurement and use of lipid profile data have developed this document to establish recommendations that facilitate their homogenization. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  6. Profile consistency on TFTR

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; McGuire, K.M.; Goldston, R.J.

    1987-01-01

    Electron heat transport on TFTR and other tokamaks is several orders of magnitude larger than neoclassical calculations predict. Despite considerable effort, there is still no clear theoretical understanding of this anomalous transport. The electron temperature profile, T e (r), has shown a marked consistency on many machines for a wide range of plasma parameters and heating profiles. This could be an important clue as to the process responsible for this enhanced thermal transport. In the first section of the paper the result is presented that TFTR electron temperature profile shapes are even more constrained than previous models of profile consistency suggested. The profile shapes, T e (r)/T e (a/2), are found to be invariant (for r>0.4 a) for a wide range of parameters, including q(a). In the second section, an experiment is discussed which uses a fast current ramp to transiently decouple the current density profile, J(r), and the T e (r) profiles. From this experiment, it has been determined that the J(r) profile can be strongly modified with no measureable effect on the electron temperature profile shape. Thus, while the electron temperature profile is apparently constrained, the current profile is not. (author). Letter-to-the-editor. 25 refs, 9 figs

  7. Wound trauma alters ionizing radiation dose assessment

    Directory of Open Access Journals (Sweden)

    Kiang Juliann G

    2012-06-01

    Full Text Available Abstract Background Wounding following whole-body γ-irradiation (radiation combined injury, RCI increases mortality. Wounding-induced increases in radiation mortality are triggered by sustained activation of inducible nitric oxide synthase pathways, persistent alteration of cytokine homeostasis, and increased susceptibility to bacterial infection. Among these factors, cytokines along with other biomarkers have been adopted for biodosimetric evaluation and assessment of radiation dose and injury. Therefore, wounding could complicate biodosimetric assessments. Results In this report, such confounding effects were addressed. Mice were given 60Co γ-photon radiation followed by skin wounding. Wound trauma exacerbated radiation-induced mortality, body-weight loss, and wound healing. Analyses of DNA damage in bone-marrow cells and peripheral blood mononuclear cells (PBMCs, changes in hematology and cytokine profiles, and fundamental clinical signs were evaluated. Early biomarkers (1 d after RCI vs. irradiation alone included significant decreases in survivin expression in bone marrow cells, enhanced increases in γ-H2AX formation in Lin+ bone marrow cells, enhanced increases in IL-1β, IL-6, IL-8, and G-CSF concentrations in blood, and concomitant decreases in γ-H2AX formation in PBMCs and decreases in numbers of splenocytes, lymphocytes, and neutrophils. Intermediate biomarkers (7 – 10 d after RCI included continuously decreased γ-H2AX formation in PBMC and enhanced increases in IL-1β, IL-6, IL-8, and G-CSF concentrations in blood. The clinical signs evaluated after RCI were increased water consumption, decreased body weight, and decreased wound healing rate and survival rate. Late clinical signs (30 d after RCI included poor survival and wound healing. Conclusion Results suggest that confounding factors such as wounding alters ionizing radiation dose assessment and agents inhibiting these responses may prove therapeutic for radiation combined

  8. Systemic dystrophic alterations of skeleton

    International Nuclear Information System (INIS)

    Zedgenidze, G.A.; Kishkovskij, A.N.; Elashov, Yu.G.

    1984-01-01

    A roentgenologic picture of dystrophic alterations of bones following hard, acute and chronic infections diseases, distinct disorders of vitanium balance, diseases of endocrine system, disorder of metabolism and diet, long-term exogenous intoxications including medicinal is given. Distinct dystrophic disorders are characterized both by quantitative and qualitative deviations in physiological change of bones

  9. Art as Alterity in Education

    Science.gov (United States)

    Zhao, Guoping

    2014-01-01

    In education, art has often been perceived as entertainment and decoration and is the first subject to go when there are budget cuts or test-score pressures. Drawing on Emmanuel Lévinas's idea of the primacy of radical alterity that breaks the totality of our being, enables self-transformation and ethics, and ensures community as a totality…

  10. Peary, Verifiability, and Altered Data

    Science.gov (United States)

    Rawlins, Dennis

    1991-01-01

    Robert Peary's alleged 1909 sledge-achievement of the North Pole is critically examined for credibility and consistency, with respect to terrestrial magnetism, solar-altitude, drift, and written & eyewitness testimony. Several alterations of the record are detected, and the dubiousness of navigation without determining longitude is emphasized.

  11. Expression and Genomic Profiling of Minute Breast Cancer Samples

    Science.gov (United States)

    2006-07-01

    Alteration of gene expression profiles of peripheral mononuclear blood cells by tobacco smoke : implications for periodontal diseases . Oral...potentially revolutionize (2) the existing cancer staging system and the management of early disease . Microarray- based gene expression profiling and...2002) Understanding disease cell by cell. Science, 296, 1329-1330. 15. Emmert-Buck, M.R., Bonner, R.F., Smith, P.D., Chuaqui, R.F., Zhuang, Z

  12. Alteration and alterability of the anorthosite from Angola

    OpenAIRE

    Simão, J.; Silva, Z. C. G.

    2010-01-01

    Siliceous rocks are widely used as dimension stone but the last decades have registered an increase rate of their alteration when exposed to polluted environments. Anorthosites were treated by acidified solutions of HCl, HN03 and H2S04 simulating acid rain and the response was recorded through different experiments such as on the surface of the polished rock and on the surface of uncovered thin sections. The main components, plagioclase and olivine, both responded in similar ways to each acid...

  13. Weight loss is associated with plasma free amino acid alterations in subjects with metabolic syndrome

    OpenAIRE

    Tochikubo, O; Nakamura, H; Jinzu, H; Nagao, K; Yoshida, H; Kageyama, N; Miyano, H

    2016-01-01

    Objectives: The prevalence of metabolic syndrome is increasing worldwide, especially in Asian populations. Early detection and effective intervention are vital. Plasma free amino acid profile is a potential biomarker for the early detection for lifestyle-related diseases. However, little is known about whether the altered plasma free amino acid profiles in subjects with metabolic syndrome are related to the effectiveness of dietary and exercise interventions. Methods: Eighty-five Japanese sub...

  14. Characterizing Exposures of Fish to Wastewater Treatment Plant Effluent: An Integrated Metabolite and Lipid Profiling Approach

    Science.gov (United States)

    Metabolite and lipid profiling are well established techniques for studying chemical-induced alterations to normal biological function in numerous organisms. These techniques have been used successfully to identify biomarkers of chemical exposure, screen for chemical potency, or ...

  15. Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Iven, Tim; Herrfurth, Cornelia; Hornung, Ellen; Heilmann, Mareike; Hofvander, Per; Stymne, Sten; Zhu, Li-Hua; Feussner, Ivo

    2013-07-06

    Wax esters are highly hydrophobic neutral lipids that are major constituents of the cutin and suberin layer. Moreover they have favorable properties as a commodity for industrial applications. Through transgenic expression of wax ester biosynthetic genes in oilseed crops, it is possible to achieve high level accumulation of defined wax ester compositions within the seed oil to provide a sustainable source for such high value lipids. The fatty alcohol moiety of the wax esters is formed from plant-endogenous acyl-CoAs by the action of fatty acyl reductases (FAR). In a second step the fatty alcohol is condensed with acyl-CoA by a wax synthase (WS) to form a wax ester. In order to evaluate the specificity of wax ester biosynthesis, analytical methods are needed that provide detailed wax ester profiles from complex lipid extracts. We present a direct infusion ESI-tandem MS method that allows the semi-quantitative determination of wax ester compositions from complex lipid mixtures covering 784 even chain molecular species. The definition of calibration prototype groups that combine wax esters according to their fragmentation behavior enables fast quantitative analysis by applying multiple reaction monitoring. This provides a tool to analyze wax layer composition or determine whether seeds accumulate a desired wax ester profile. Besides the profiling method, we provide general information on wax ester analysis by the systematic definition of wax ester prototypes according to their collision-induced dissociation spectra. We applied the developed method for wax ester profiling of the well characterized jojoba seed oil and compared the profile with wax ester-accumulating Arabidopsis thaliana expressing the wax ester biosynthetic genes MaFAR and ScWS. We developed a fast profiling method for wax ester analysis on the molecular species level. This method is suitable to screen large numbers of transgenic plants as well as other wax ester samples like cuticular lipid extracts to

  16. Chemosensory alterations and cancer therapies

    International Nuclear Information System (INIS)

    Bartoshuk, L.M.

    1990-01-01

    Taste and olfaction provide sensory information and sensory pleasure. Cancer therapies affect both. Chemotherapy has not been shown to produce dramatic losses of taste or smell, but systematic studies on various chemotherapeutic agents and types of cancer are lacking. Radiation therapy does produce clear losses of both taste and smell. Both chemotherapy and radiation therapy alter the pleasure produced by taste and smell through the formation of conditioned aversions. That is, foods consumed in proximity with the nausea of therapy come to be unpleasant. The impact of conditioned aversions can be diminished by providing a scapegoat food just before therapy. Alterations in foods may be beneficial to the cancer patient. Increasing the concentrations of flavor ingredients can compensate for sensory losses, and providing pureed foods that retain the cognitive integrity of a meal can benefit the patient who has chewing or swallowing problems

  17. Enteric Helminths Promote Salmonella Coinfection by Altering the Intestinal Metabolome.

    Science.gov (United States)

    Reynolds, Lisa A; Redpath, Stephen A; Yurist-Doutsch, Sophie; Gill, Navkiran; Brown, Eric M; van der Heijden, Joris; Brosschot, Tara P; Han, Jun; Marshall, Natalie C; Woodward, Sarah E; Valdez, Yanet; Borchers, Christoph H; Perona-Wright, Georgia; Finlay, B Brett

    2017-04-15

    Intestinal helminth infections occur predominantly in regions where exposure to enteric bacterial pathogens is also common. Helminth infections inhibit host immunity against microbial pathogens, which has largely been attributed to the induction of regulatory or type 2 (Th2) immune responses. Here we demonstrate an additional 3-way interaction in which helminth infection alters the metabolic environment of the host intestine to enhance bacterial pathogenicity. We show that an ongoing helminth infection increased colonization by Salmonella independently of T regulatory or Th2 cells. Instead, helminth infection altered the metabolic profile of the intestine, which directly enhanced bacterial expression of Salmonella pathogenicity island 1 (SPI-1) genes and increased intracellular invasion. These data reveal a novel mechanism by which a helminth-modified metabolome promotes susceptibility to bacterial coinfection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  18. Functional lymphatic alterations in patients suffering from lipedema.

    Science.gov (United States)

    Bilancini, S; Lucchi, M; Tucci, S; Eleuteri, P

    1995-04-01

    Lipedema is a chronic vascular disease almost exclusively of female sex, characterized by the deposit of fat on the legs, with an "Egyptian column" shape, orthostatic edema, hypothermia of the skin, alteration of the plantar support, and negativity of Stemmer's sign. The etiology and pathogenesis of this disease are still the object of study, and therapy is very difficult. Various authors have described morphologic and functional alterations of prelymphatic structures and of lymphatic vessels. The big veins remain untouched in the phlebograms and an alteration of the skin elasticity is demonstrated. The present authors have studied by dynamic lymphoscintigraphy 12 women patients suffering from lipedema, and compared the results with those of 5 normal subjects and 5 patients suffering from idiopathic lymphedema who were sex and age matched with the patients suffering from lipedema. The patients suffering from lipedema showed an abnormal lymphoscintigraphic pattern with a slowing of the lymphatic flow that presented some analogies to the alterations found in the patients suffering from lymphedema. A frequent asymmetry was also noticed in the lymphoscintigraphic findings that is in contrast to the symmetry of the clinical profile.

  19. Criminal Psychological Profiling

    Science.gov (United States)

    1993-10-18

    landmark report became known to the general population. Dr. Langer’s profile broke new ground. While the practice of psychoanalysis was not new, this marked...school or college dropout. Suspect is probably suffering from one or more forms of paranoid psychosis .6 Perpetrator: Based on this profile, the police

  20. Chemical profiling of explosives

    NARCIS (Netherlands)

    Brust, G.M.H.

    2014-01-01

    The primary goal of this thesis is to develop analytical methods for the chemical profiling of explosives. Current methodologies for the forensic analysis of explosives focus on identification of the explosive material. However, chemical profiling of explosives becomes increasingly important, as

  1. Household electricity demand profiles

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Heiselberg, Per Kvols; Larsen, Olena Kalyanova

    2016-01-01

    Highlights •A 1-min resolution household electricity load model is presented. •Model adapts a bottom-up approach with single appliance as the main building block. •Load profiles are used to analyse the flexibility potential of household appliances. •Load profiles can be applied in other domains, e...

  2. Stability of cocaine impurity profiles during 12 months of storage

    DEFF Research Database (Denmark)

    Nielsen, Louise Stride; Villesen, Palle; Lindholst, Christian

    2016-01-01

    During the lifetime of a cocaine batch from production end to consumption, several alterations may occur, leading to possible changes in the original impurity profile. Such profile changes may eventually result in erroneous forensic evaluations. In the present study, the stability of both...... the alkaloid and the residual solvent impurity profiles of cocaine were evaluated over a period of 12 months under different storage conditions (temperature, purity and weight) using GC-MS and HS-GC-MS, respectively. The sample purity (p ... profile. The most significant change was observed in low purity samples stored at 37 °C. In contrast, no changes were observed in the residual solvent profile at all storage conditions for the entire 12-month study period. This finding indicates...

  3. Altering prolactin concentrations in sows.

    Science.gov (United States)

    Farmer, C

    2016-07-01

    Prolactin has a multiplicity of actions, but it is of particular importance in gestating and lactating animals. In sows, it is involved in the control of mammary development and also holds essential roles in the lactogenic and galactopoietic processes. Furthermore, low circulating concentrations of prolactin are associated with the agalactia syndrome. The crucial role of prolactin makes it important to understand the various factors that can alter its secretion. Regulation of prolactin secretion is largely under the negative control of dopamine, and dopamine agonists consistently decrease prolactin concentrations in sows. On the other hand, injections of dopamine antagonists can enhance circulating prolactin concentrations. Besides pharmacologic agents, many other factors can also alter prolactin concentrations in sows. The use of Chinese-derived breeds, for instance, leads to increased prolactin concentrations in lactating sows compared with standard European white breeds. Numerous husbandry and feeding practices also have a potential impact on prolactin concentrations in sows. Factors, such as provision of nest-building material prepartum, housing at farrowing, high ambient temperature, stress, transient weaning, exogenous thyrotropin-releasing factor, exogenous growth hormone-releasing factor, nursing frequency, prolonged photoperiod, fasting, increased protein and/or energy intake, altered energy sources, feeding high-fiber diets, sorghum ergot or plant extracts, were all studied with respect to their prolactinemic properties. Although some of these practices do indeed affect circulating prolactin concentrations, none leads to changes as drastic as those brought about by dopamine agonists or antagonists. It appears that the numerous factors regulating prolactin concentrations in sows are still not fully elucidated, and that studies to develop novel applicable ways of increasing prolactin concentrations in sows are warranted. Crown Copyright © 2015. Published

  4. Earth Based Views of Solute Profiles on Mars (Invited)

    Science.gov (United States)

    Amundson, R.

    2013-12-01

    'Historical accounts of planetary evolution are mostly written in stone' (1), but the last chapter of that history is embedded in its soil. Soil properties reflect the effects of prevailing environmental boundary conditions. Solute profiles are powerful indicators of the direction and magnitude of water flow. I briefly review the chemistry of salt profiles from deserts formed by upward vs. downward migrating water, use this as a basis for interpreting aspects of Mars hydrological history. The Noachian-aged Meridiani Planum land surface is exposed in the Endurance and Victoria Craters. These craters have been estimated to be ~ craters and the pre-excavation alteration of the landscape by aqueous processes. Crater profiles include APXS 'asis' (fresh surface), brushed , and RAT'd samples. Using RAT'd samples as a baseline, the gains and losses of elements in the surficial samples can be assessed (Fig. 1). The calculations reveal similar trends of surface alteration within a crater (Victoria) and between two craters (Fig. 1). The asis samples are enriched in Na2O, Al2O3, CaO, and Br (and depleted in MgO, SO3, Cl, K2O, MnO, FeO) relative to the RAT'd material. Brushing drastically reduces these differences. These data show that the alteration is very surficial. The RAT'd samples appear to represent pre-impact chemical profiles of the sediment (Fig. 2). It has previously been reported that the upper ~1m at Victoria has been visibly altered by diagenesis (3). Both Endurance (4) and Victoria craters have remarkably similar depth profiles (relative to the lowest sampling point) of SO3, Cl, and Br. The salt profiles, combined with observations of physical alteration, suggest modest pedogenic alteration of the landsurface sometime prior to impact. The sequence of the SO3 and Cl is consistent only with downward aqueous transport, as clearly illustrated by comparison to Earth soils that form by groundwater evaporation vs. downward moving meteoric water. While the total water

  5. Acid Sulfate Alteration on Mars

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  6. Contribution of the bees and combs to honey volatiles: blank-trial probe for chemical profiling of honey biodiversity.

    Science.gov (United States)

    Jerković, Igor; Marijanović, Zvonimir; Ljubicić, I; Gugić, M

    2010-05-01

    This research is focused on the immediate contribution of the bees and combs to honey volatiles in order to exclude these compounds as botanical-origin biomarkers for honey authentification. Therefore, the bees were closed in a hive containing empty combs under controlled food-flow conditions (saccharose solution). The obtained 'saccharose honey' probe samples were subjected to ultrasonic solvent extraction (USE), followed by gas chromatography and mass spectrometry analyses (GC and GC/MS). A total of 66 compounds were identified. Higher alcohols made up ca. 50% of the total volatiles, mainly (Z)-octadec-9-en-1-ol, hexadecan-1-ol, and octadecan-1-ol, with minor percentages of undecan-1-ol, dode