WorldWideScience

Sample records for alternative vehicle technologies

  1. Advanced Technology and Alternative Fuel Vehicles

    International Nuclear Information System (INIS)

    Tuttle, J.

    2001-01-01

    This fact sheet provides a basic overview of today's alternative fuel choices--including biofuels, biodiesel, electricity, and hydrogen--alternative fuel vehicles, and advanced vehicle technology, such as hybrid electric vehicles, fuel cells and advanced drive trains

  2. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.

    Science.gov (United States)

    Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M

    2009-11-01

    This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed.

  3. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    1998-01-01

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions

  4. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  5. Alternative fuels and advanced technology vehicles : issues in Congress

    Science.gov (United States)

    2009-02-13

    Alternative fuels and advanced technology vehicles are seen by proponents as integral to improving urban air quality, decreasing dependence on foreign oil, and reducing emissions of greenhouse gases. However, major barriers especially economics curre...

  6. Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands

    International Nuclear Information System (INIS)

    Kyle, Page; Kim, Son H.

    2011-01-01

    This study assesses global light-duty vehicle (LDV) transport in the upcoming century, and the implications of vehicle technology advancement and fuel-switching on greenhouse gas emissions and primary energy demands. Five different vehicle technology scenarios are analyzed with and without a CO 2 emissions mitigation policy using the GCAM integrated assessment model: a reference internal combustion engine vehicle scenario, an advanced internal combustion engine vehicle scenario, and three alternative fuel vehicle scenarios in which all LDVs are switched to natural gas, electricity, or hydrogen by 2050. The emissions mitigation policy is a global CO 2 emissions price pathway that achieves 450 ppmv CO 2 at the end of the century with reference vehicle technologies. The scenarios demonstrate considerable emissions mitigation potential from LDV technology; with and without emissions pricing, global CO 2 concentrations in 2095 are reduced about 10 ppmv by advanced ICEV technologies and natural gas vehicles, and 25 ppmv by electric or hydrogen vehicles. All technological advances in vehicles are important for reducing the oil demands of LDV transport and their corresponding CO 2 emissions. Among advanced and alternative vehicle technologies, electricity- and hydrogen-powered vehicles are especially valuable for reducing whole-system emissions and total primary energy. - Highlights: → Alternative-fuel LDVs reduce whole-system CO 2 emissions, even without carbon pricing. → Alternative-fuel LDVs enhance the CO 2 mitigation capacity of the transportation sector. → Electric and hydrogen vehicles reduce whole-system primary energy supporting LDV transport.

  7. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  8. Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF`s) and alternative fuel vehicles (AFV`s) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There wig be true differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV`S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available ``practical``. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

  9. 2014 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Diegel, Susan W [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    This is the sixth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. The discussion of Medium and Heavy Trucks offers information on truck sales and technologies specific to heavy trucks. The Technology section offers information on alternative fuel vehicles and infrastructure, and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible tables and figures.

  10. Alternative vehicles and infrastructure requirements conference.

    Science.gov (United States)

    2011-11-01

    "A conference entitled Alternative Fuel / Advanced Vehicles Technologies & Infrastructure Requirements: Bringing Innovation to Our Streets was held in New York, NY at New York University on June 14, 2011. The conference addressed several of the...

  11. 2015 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert G. [Roltek, Inc., Clinton, TN (United States); Moore, Sheila [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    This is the seventh edition of the Vehicle Technologies Market Report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 22 and 23 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 27 through 63 offer snapshots of major light-duty vehicle brands in the United States and Figures 70 through 81 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 90 through 94) and fuel use (Figures 97 through 100). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 105 through 118), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 130 through 137). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets. Suggestions for future expansion, additional information, or other improvements are most welcome.

  12. Exchange program. Alternative options for purchase of environmentally friendly vehicles in Stockholm

    Energy Technology Data Exchange (ETDEWEB)

    Rader Olsson, Amy [Inregia AB, Stockholm (Sweden); Elam, N. [Atrax Energi AB, Goeteborg (Sweden)

    1999-11-01

    The city of Stockholm has decided to exchange 300 of its gasoline-driven vehicles for vehicles which emit fewer hazardous pollutants. A vehicle exchange program is being developed based on analyses which describe the driving patterns of Stockholm's vehicles, alternative fuel technology status, and financing alternatives. This report comprises the first two analyses, that of Stockholm's fleet driving patterns and alternative fuel technology options. The report has four major sections: * a technical analysis of the status of certain fuels and vehicles, including prognoses of availability in Sweden and the future development potential of each. (electric, biogas, ethanol, RME), * a driving study, which identifies those vehicles currently in Stockholm's fleet which could be exchanged for alternatively-fueled vehicles, * an analysis of five purchase package alternatives, and * a location analysis, which describes the accessibility of vehicles in each alternative to alternative fuel refueling facilities in Stockholm. Given current prices and availability of the alternative fuels and vehicles studied, we recommend a high share of electric and biogas vehicles for purchases during 1997. The cost-effectiveness of different vehicle types in their reduction of various hazardous pollutants, may however change dramatically as prices and availability of vehicles changes and the market for alternative fuels develops. Accessibility to alternative fuel refueling facilities is adequate in Stockholm, though not always ideal. To improve the accessibility of biogas vehicles further, we suggest a third biogas refueling facility in the city's northeastern area (Ropsten, Vaertahamnen). If MFO chooses to purchase a significant number of diesel passenger vehicles to be driven on RME; we propose that a facility in the northeastern area would improve accessibility more than another facility in southern Stockholm.

  13. Modular Energy Storage System for Alternative Energy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna Electronics Inc., Auburn Hills, MI (United States); Ervin, Frank [Magna Electronics Inc., Auburn Hills, MI (United States)

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  14. Box Energy: rental of energy-storage systems and alternative fuel technologies for vehicles; Box-energy. Rental of energy. Storage systems and alternative-fuel. Technologies for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bautz, R.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of study on the rental of energy-storage systems and alternative fuel technologies for vehicles. Experience gained in the area of battery-rental is discussed. The aims of the 'Box Energy' project are described, as is its market environment. The 'Box Energy' concept is described and possible customers and partners listed. Logistics aspects are discussed. The organisation of 'Box Energy' is described and the concept's chances and weaknesses are discussed. The launching of a pilot project in Switzerland is discussed. Recommendations on further work to be done are made.

  15. 2016 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    This is the seventh edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 27 through 69 offer snapshots of major light-duty vehicle brands in the United States and Figures 73 through 85 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 94 through 98) and fuel use (Figures 101 through 104). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 109 through 123), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 135 through 142). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets. Suggestions for future expansion, additional information, or other improvements are most welcome.

  16. 2013 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    This is the fifth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 24 through 51 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 56 through 64 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 73 through 75) and fuel use (Figures 78 through 81). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 84 through 95), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 106 through 110). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  17. Demand for alternative-fuel vehicles when registration taxes are high

    DEFF Research Database (Denmark)

    Mabit, Stefan Lindhard; Fosgerau, Mogens

    2011-01-01

    This paper investigates the potential futures for alternative-fuel vehicles in Denmark, where the vehicle registration tax is very high and large tax rebates can be given. A large stated choice dataset has been collected concerning vehicle choice among conventional, hydrogen, hybrid, bio......-diesel, and electric vehicles. We estimate a mixed logit model that improves on previous contributions by controlling for reference dependence and allowing for correlation of random effects. Both improvements are found to be important. An application of the model shows that alternative-fuel vehicles with present...... technology could obtain fairly high market shares given tax regulations possible in the present high-tax vehicle market....

  18. TAFV Alternative Fuels and Vehicles Choice Model Documentation; TOPICAL

    International Nuclear Information System (INIS)

    Greene, D.L.

    2001-01-01

    A model for predicting choice of alternative fuel and among alternative vehicle technologies for light-duty motor vehicles is derived. The nested multinomial logit (NML) mathematical framework is used. Calibration of the model is based on information in the existing literature and deduction based on assuming a small number of key parameters, such as the value of time and discount rates. A spreadsheet model has been developed for calibration and preliminary testing of the model

  19. Life cycle cost analysis of alternative vehicles and fuels in Thailand

    International Nuclear Information System (INIS)

    Goedecke, Martin; Therdthianwong, Supaporn; Gheewala, Shabbir H.

    2007-01-01

    High crude oil prices and pollution problems have drawn attention to alternative vehicle technologies and fuels for the transportation sector. The question is: What are the benefits/costs of these technologies for society? To answer this question in a quantitative way, a web-based model (http://vehiclesandfuels.memebot.com) has been developed to calculate the societal life cycle costs, the consumer life cycle costs and the tax for different vehicle technologies. By comparing these costs it is possible to draw conclusions about the social benefit and the related tax structure. The model should help to guide decisions toward optimality, which refers to maximum social benefit. The model was applied to the case of Thailand. The life cycle cost of 13 different alternative vehicle technologies in Thailand have been calculated and the tax structure analyzed

  20. 2012 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

    2013-03-01

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  1. Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes. [Public fleet groups--information needs

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF's) and alternative fuel vehicles (AFV's) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There wig be true differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV'S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available practical''. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

  2. Fuel cell vehicles: technological solution

    International Nuclear Information System (INIS)

    Lopez Martinez, J. M.

    2004-01-01

    Recently it takes a serious look at fuel cell vehicles, a leading candidate for next-generation vehicle propulsion systems. The green house effect and air quality are pressing to the designers of internal combustion engine vehicles, owing to the manufacturers to find out technological solutions in order to increase the efficiency and reduce emissions from the vehicles. On the other hand, energy source used by currently propulsion systems is not renewable, the well are limited and produce CO 2 as a product from the combustion process. In that situation, why fuel cell is an alternative of internal combustion engine?

  3. Energy security and climate change: How oil endowment influences alternative vehicle innovation

    International Nuclear Information System (INIS)

    Kim, Jung Eun

    2014-01-01

    Fast growing global energy needs raise concerns on energy supply security and climate change. Although policies addressing the two issues sometimes benefit one at the expense of the other, technology innovation, especially in alternative energy, provides a win–win solution to tackle both issues. This paper examines the effect of oil endowment on the patterns of technology innovation in the transportation sector, attempting to identify drivers of technology innovation in alternative energy. The analysis employs panel data constructed from patent data on five different types of automobile-related technologies from 1990 to 2002: oil extraction, petroleum refining, fuel cells, electric and hybrid vehicles (EHV) and vehicle energy efficiency. I find that countries with larger oil endowments perform less innovation on refining and alternative technologies. Conversely, higher gasoline prices positively impact the patent counts of alternative technologies and energy efficiency technology. The findings highlight the challenges and importance of policy designs in international climate change agreements. - Highlights: • I examine the effect of oil endowment on technology innovation in the transportation sector. • An empirical model was developed for a cross-country analysis of oil endowments. • A country's oil endowment is a negative driver of alternative technologies. • Energy price is a positive driver of alternative technologies and energy efficiency technology. • Implications for domestic and international climate policy are discussed

  4. Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

  5. Heavy Vehicle Technologies Program Retrospective and Outlook

    International Nuclear Information System (INIS)

    James J. Eberhardt

    1999-01-01

    OHVT Mission is to conduct, in collaboration with our heavy vehicle industry partners and their suppliers, a customer-focused national program to research and develop technologies that will enable trucks and other heavy vehicles to be more energy efficient and able to use alternative fuels while simultaneously reducing emissions

  6. Alternative Fuels Data Center: Natural Gas Vehicles

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles on Twitter Bookmark Alternative

  7. Emissions deterioration for three alternative fuel vehicle types: Natural gas, ethanol, and methanol vehicles

    International Nuclear Information System (INIS)

    Winebrake, J.J.; Deaton, M.L.

    1997-01-01

    Although there have been several studies examining emissions from in-use alternative fuel vehicles (AFVs), little is known about the deterioration of these emissions over vehicle lifetimes and how this deterioration compares with deterioration from conventional vehicles (CVs). This paper analyzes emissions data from 70 AFVs and 70 CVs operating in the federal government fleet to determine whether AFV emissions deterioration differs significantly from CV emissions deterioration. The authors conduct the analysis on three alternative fuel types (natural gas, methanol, and ethanol) and on five pollutants (carbon monoxide, carbon dioxide, total hydrocarbons, non-methane hydrocarbons, and nitrogen oxides). They find that for most cases they studied, deterioration differences are not statistically significant; however, several exceptions suggest that air quality planners and regulators must further analyze AFV emissions deterioration in order to properly include these technologies into broader air quality management schemes

  8. Well-to-wheels life-cycle analysis of alternative fuels and vehicle technologies in China

    International Nuclear Information System (INIS)

    Shen Wei; Han Weijian; Chock, David; Chai Qinhu; Zhang Aling

    2012-01-01

    A well-to-wheels life cycle analysis on total energy consumptions and greenhouse-gas (GHG) emissions for alternative fuels and accompanying vehicle technologies has been carried out for the base year 2010 and projected to 2020 based on data gathered and estimates developed for China. The fuels considered include gasoline, diesel, natural gas, liquid fuels from coal conversion, methanol, bio-ethanol and biodiesel, electricity and hydrogen. Use of liquid fuels including methanol and Fischer–Tropsch derived from coal will significantly increase GHG emissions relative to use of conventional gasoline. Use of starch-based bio-ethanol will incur a substantial carbon disbenefit because of the present highly inefficient agricultural practice and plant processing in China. Electrification of vehicles via hybrid electric, plug-in hybrid electric (PHEV) and battery electric vehicle technologies offers a progressively improved prospect for the reduction of energy consumption and GHG emission. However, the long-term carbon emission reduction is assured only when the needed electricity is generated by zero- or low-carbon sources, which means that carbon capture and storage is a necessity for fossil-based feedstocks. A PHEV that runs on zero- or low-carbon electricity and cellulosic ethanol may be one of the most attractive fuel-vehicle options in a carbon-constrained world. - Highlights: ► Data and estimates unique to China are used in this analysis. ► Use of starch-based bio-ethanol will incur a substantial carbon disbenefit in China. ► Use of methanol derived from coal will incur even more carbon disbenefit. ► Plug-in-hybrid with cellulosic ethanol and clean electricity may be a viable option.

  9. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Alternative vehicle fuel rating. 309.10... LABELING REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Duties of Importers, Producers, and Refiners of Non-Liquid Alternative Vehicle Fuels (other Than...

  10. 2011 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL

    2012-02-01

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and

  11. Environmental and Financial Evaluation of Passenger Vehicle Technologies in Belgium

    OpenAIRE

    Messagie, Maarten; Lebeau, Kenneth; Coosemans, Thierry; Macharis, Cathy; Mierlo, Joeri van

    2013-01-01

    Vehicles with alternative drive trains are regarded as a promising substitute for conventional cars, considering the growing concern about oil depletion and the environmental impact of our transportation system. However, “clean” technologies will only be viable when they are cost-efficient. In this paper, the environmental impacts and the financial costs of different vehicle technologies are calculated for an average Belgian driver. Environmentally friendly vehicles are compared with conventi...

  12. Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles

    Directory of Open Access Journals (Sweden)

    Nuri Cihat Onat

    2014-12-01

    Full Text Available Sustainable transportation and mobility are key components and central to sustainable development. This research aims to reveal the macro-level social, economic, and environmental impacts of alternative vehicle technologies in the U.S. The studied vehicle technologies are conventional gasoline, hybrid, plug-in hybrid with four different all-electric ranges, and full battery electric vehicles (BEV. In total, 19 macro level sustainability indicators are quantified for a scenario in which electric vehicles are charged through the existing U.S. power grid with no additional infrastructure, and an extreme scenario in which electric vehicles are fully charged with solar charging stations. The analysis covers all life cycle phases from the material extraction, processing, manufacturing, and operation phases to the end-of-life phases of vehicles and batteries. Results of this analysis revealed that the manufacturing phase is the most influential phase in terms of socio-economic impacts compared to other life cycle phases, whereas operation phase is the most dominant phase in the terms of environmental impacts and some of the socio-economic impacts such as human health and economic cost of emissions. Electric vehicles have less air pollution cost and human health impacts compared to conventional gasoline vehicles. The economic cost of emissions and human health impact reduction potential can be up to 45% and 35%, respectively, if electric vehicles are charged through solar charging stations. Electric vehicles have potential to generate income for low and medium skilled workers in the U.S. In addition to quantified sustainability indicators, some sustainability metrics were developed to compare relative sustainability performance alternative passenger vehicles. BEV has the lowest greenhouse gas emissions and ecological land footprint per $ of its contribution to the U.S. GDP, and has the lowest ecological footprint per unit of its energy consumption. The

  13. Transportable Emissions Testing Laboratory for Alternative Vehicles Emissions Testing

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Nigel

    2012-01-31

    The overall objective of this project was to perform research to quantify and improve the energy efficiency and the exhaust emissions reduction from advanced technology vehicles using clean, renewable and alternative fuels. Advanced vehicle and alternative fuel fleets were to be identified, and selected vehicles characterized for emissions and efficiency. Target vehicles were to include transit buses, school buses, vocational trucks, delivery trucks, and tractor-trailers. Gaseous species measured were to include carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter. An objective was to characterize particulate matter more deeply than by mass. Accurate characterization of efficiency and emissions was to be accomplished using a state-of-the-art portable emissions measurement system and an accompanying chassis dynamometer available at West Virginia University. These two units, combined, are termed the Transportable Laboratory. An objective was to load the vehicles in a real-world fashion, using coast down data to establish rolling resistance and wind drag, and to apply the coast down data to the dynamometer control. Test schedules created from actual vehicle operation were to be employed, and a specific objective of the research was to assess the effect of choosing a test schedule which the subject vehicle either cannot follow or can substantially outperform. In addition the vehicle loading objective was to be met better with an improved flywheel system.

  14. Effects of alternative-fuel vehicles on air quality in Ontario, Canada

    International Nuclear Information System (INIS)

    Kantor, I.; Fowler, M.; Hajimiragha, A.; Canizares, C.; Elkamel, A.

    2009-01-01

    The economies of the developed world are increasingly including green technologies and processes that consider social, environmental and economic consequences. Hybrid electric vehicles and other fuel-efficient vehicle types can supply consumers with vehicles that decrease their ecological footprint and reduce the cost of fuel. However, one of the societal concerns often overlooked is the impact of alternative-fuel vehicle usage on the air quality in the urban environment. This paper presented a study that assessed the impact on air quality stemming from the operation of alternative fuel vehicles in urban environments. The study specifically focused on the province-wide emissions in Ontario and urban air pollution in the city of Toronto. The paper considered the life-cycle impacts of using alternative fuels for transportation purposes in terms of six major stressors for climate change, acidification and urban air quality. The two types of vehicles that were studied were plug-in hybrid electric vehicles (PHEVs) and fuel cell vehicles. Modeling of the penetration rates for both types of vehicles was completed based on the maximum capacity of the electrical grid including planned improvements. The scope of the study and discussion of health effects was first presented followed by data gathering and usage, methodology, results of supportable penetration and vehicle growth, and pollution abatement results. It was concluded that fuel cell vehicles have an advantage over, or near-equality with, PHEVs in almost every aspect of their emissions. 13 refs., 2 tabs., 10 figs

  15. What Fleets Need to Know About Alternative Fuel Vehicle Conversions, Retrofits, and Repowers

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K.; Gonzales, J.

    2017-10-02

    Many fleet managers have opted to incorporate alternative fuels and advanced vehicles into their lineup. Original equipment manufacturers (OEMs) offer a variety of choices, and there are additional options offered by aftermarket companies. There are also a myriad of ways that existing vehicles can be modified to utilize alternative fuels and other advanced technologies. Vehicle conversions and retrofit packages, along with engine repower options, can offer an ideal way to lower vehicle operating costs. This can result in long term return on investment, in addition to helping fleet managers achieve emissions and environmental goals. This report summarizes the various factors to consider when pursuing a conversion, retrofit, or repower option.

  16. What Fleets Need to Know About Alternative Fuel Vehicle Conversions, Retrofits, and Repowers

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kay L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gonzales, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-10-17

    Many fleet managers have opted to incorporate alternative fuels and advanced vehicles into their lineup. Original equipment manufacturers (OEMs) offer a variety of choices, and there are additional options offered by aftermarket companies. There are also a myriad of ways that existing vehicles can be modified to utilize alternative fuels and other advanced technologies. Vehicle conversions and retrofit packages, along with engine repower options, can offer an ideal way to lower vehicle operating costs. This can result in long term return on investment, in addition to helping fleet managers achieve emissions and environmental goals. This report summarizes the various factors to consider when pursuing a conversion, retrofit, or repower option.

  17. Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

    Science.gov (United States)

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center : Diesel Vehicles Using Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

  18. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  19. Consumer Views on Transportation and Advanced Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from countries around the globe are pursuing advanced vehicle technologies that aim to reduce gasoline and diesel consumption. This report details study findings of broad American public sentiments toward issues surrounding advanced vehicle technologies and is supported by the U.S. Department of Energy Vehicle Technology Office (VTO) in alignment with its mission to develop and deploy these technologies to improve energy security, increase mobility flexibility, reduce transportation costs, and increase environmental sustainability. Understanding and tracking consumer sentiments can influence the prioritization of development efforts by identifying barriers to and opportunities for broad acceptance of new technologies. Predicting consumer behavior toward developing technologies and products is inherently inexact. A person's stated preference given in an interview about a hypothetical setting may not match the preference that is demonstrated in an actual situation. This difference makes tracking actual consumer actions ultimately more valuable in understanding potential behavior. However, when developing technologies are not yet available and actual behaviors cannot be tracked, stated preferences provide some insight into how consumers may react in new circumstances. In this context this report provides an additional source to validate data and a new resource when no data are available. This report covers study data captured from December 2005 through June 2015 relevant to VTO research efforts at the time of the studies. Broadly the report covers respondent sentiments about vehicle fuel economy, future vehicle technology alternatives, ethanol as a vehicle fuel, plug-in electric vehicles, and willingness to pay for vehicle efficiency. This report represents a renewed effort to publicize study findings and make consumer sentiment data available to

  20. Electric vehicle propulsion alternatives

    Science.gov (United States)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  1. Review and analysis of potential safety impacts of and regulatory barriers to fuel efficiency technologies and alternative fuels in medium- and heavy-duty vehicles

    Science.gov (United States)

    2015-06-01

    This report summarizes a safety analysis of medium- and heavy-duty vehicles (MD/HDVs) equipped with fuel efficiency (FE) technologies and/or using alternative fuels (natural gas-CNG and LNG, propane, biodiesel and power train electrification). The st...

  2. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  3. Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries

    Science.gov (United States)

    for Solar Power Yellowstone Park Recycles Vehicle Batteries for Solar Power to someone by E -mail Share Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries for Solar Power on Facebook Tweet about Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries

  4. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Science.gov (United States)

    Conversions Hybrid and Plug-In Electric Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Twitter Bookmark Alternative

  5. Alternative Fuel Fleet Vehicle Evaluations | Transportation Research | NREL

    Science.gov (United States)

    delivery, transit, and freight vehicles. Although biodiesel is the most commonly used alternative fuel in Diesel and Biodiesel Renewable diesel is a conventional petroleum diesel substitute produced from alternative to conventional diesel and does not require any vehicle modifications. Biodiesel is an oxygenated

  6. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Science.gov (United States)

    . A wide variety of hybrid electric vehicle models is currently available. Although HEVs are often -go traffic), further improving fuel economy. Mild hybrid systems cannot power the vehicle using Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric

  7. Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle

    Science.gov (United States)

    Send a link to Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle

  8. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    OpenAIRE

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquified petroleum gas, compressed natural gas, and electricity. Vehicle emission es...

  9. Advancing electric-vehicle development with pure-lead-tin battery technology

    Science.gov (United States)

    O'Brien, W. A.; Stickel, R. B.; May, G. J.

    Electric-vehicle (EV) development continues to make solid progress towards extending vehicle range, reliability and ease of use, aided significantly by technological advances in vehicle systems. There is, however, a widespread misconception that current battery technologies are not capable of meeting even the minimum user requirements that would launch EVs into daily use. Existing pure-lead-tin technology is moving EVs out of research laboratories and onto the streets, in daily side-by-side operation with vehicles powered by conventional gasoline and alternative fuels. This commercially available battery technology can provide traffic-compatible performance in a reliable and affordable manner, and can be used for either pure EVs or hybrid electric vehicles (HEVs). Independent results obtained when applying lead-tin batteries in highly abusive conditions, both electrically and environmentally, are presented. The test fleet of EVs is owned and operated by Arizona Public Service (APS), an electric utility in Phoenix, AZ, USA. System, charger and battery development will be described. This gives a single charge range of up to 184 km at a constant speed of 72 km h -1, and with suitable opportunity charging, a 320 km range in a normal 8 h working day.

  10. Potential vehicle fleet CO2 reductions and cost implications for various vehicle technology deployment scenarios in Europe

    International Nuclear Information System (INIS)

    Pasaoglu, Guzay; Honselaar, Michel; Thiel, Christian

    2012-01-01

    The continuous rise in demand for road transportation has a significant effect on Europe's oil dependency and emissions of greenhouse gases. Alternative fuels and vehicle technology can mitigate these effects. This study analyses power-train deployment scenarios for passenger cars and light commercial vehicles in EU-27 until 2050. It considers European policy developments on vehicle CO 2 emissions, bio-energy mandates and reductions in the CO 2 footprint of the European energy mix and translates these into comprehensive scenarios for the road transport sector. It quantifies and assesses the potential impact of these scenarios on well-to-wheel (WtW) CO 2 emission reductions primary energy demand evolution, and cost aspects for the prospective vehicle owners. The study reveals that, under the deployed scenarios, the use of bio-fuel blends, technological learning and the deployment of hybrids, battery electric, plug-in hybrid and fuel cell vehicles can decrease WtW CO 2 emissions in EU-27 passenger road transport by 35–57% (compared to 2010 levels) and primary energy demand by 29–51 Mtoe as they would benefit from a future assumed decarbonised electricity and hydrogen mix in Europe. Learning effects can lead to acceptable payback periods for vehicle owners of electric drive vehicles. - Highlights: ► Power-train penetration scenarios for 2010–2050 passenger road transport in Europe. ► A dedicated tool is developed to analyse H 2 production and distribution mix till 2050. ► Alternative vehicles can drastically reduce CO 2 emissions and energy demand. ► Electric vehicles could become cost competitive to conventional vehicles by 2030. ► Policies needed to create adequate momentum and guarantee decarbonised transport.

  11. Multiple criteria decision making of alternative fuels for waste collection vehicles in southeast region of Serbia

    Directory of Open Access Journals (Sweden)

    Petrović Goran S.

    2016-01-01

    Full Text Available In this paper multiple criteria decision making approach of alternative fuels for waste collection vehicles in southeast region of Serbia was presented. Eight alternative fuels and advanced vehicle technologies were ranked according to thirteen criteria, including financial, socio-technical, and environmental. Assessment of alternatives was performed by using the weighted aggregated sum product assessment method and results were verified using multi-objective optimization on the basis of ratio analysis method. Considered criteria were obtained from previous researches and by assessment of professional experts from manufacturing industries, public utility companies, and academics institutions. The analysis showed that both biodiesel fuels - derived from used cooking oil or from vegetable oils are the best alternative fuels for Serbian waste collection vehicles in this point of time. Compressed natural gas-powered vehicles were also ranked high in this analysis, but due to the lack of financial capability for their purchase (especially in southeast region of Serbia, their gradual introduction into the waste collection fleet was proposed.

  12. Fuel and vehicle technology choices for passenger vehicles in achieving stringent CO2 targets: connections between transportation and other energy sectors.

    Science.gov (United States)

    Grahn, M; Azar, C; Williander, M I; Anderson, J E; Mueller, S A; Wallington, T J

    2009-05-01

    The regionalized Global Energy Transition (GET-R 6.0) model has been modified to include a detailed description of light-duty vehicle options and used to investigate the potential impact of carbon capture and storage (CCS) and concentrating solar power (CSP) on cost-effective fuel/vehicle technologies in a carbon-constrained world. Total CO2 emissions were constrained to achieve stabilization at 400-550 ppm, by 2100, at lowesttotal system cost The dominantfuel/vehicle technologies varied significantly depending on CO2 constraint future cost of vehicle technologies, and availability of CCS and CSP. For many cases, no one technology dominated on a global scale. CCS provides relatively inexpensive low-CO2 electricity and heatwhich prolongs the use of traditional ICEVs. CSP displaces fossil fuel derived electricity, prolongs the use of traditional ICEVs, and promotes electrification of passenger vehicles. In all cases considered, CCS and CSP availability had a major impact on the lowest cost fuel/vehicle technologies, and alternative fuels are needed in response to expected dwindling oil and natural gas supply potential by the end of the century.

  13. Environmental and Financial Evaluation of Passenger Vehicle Technologies in Belgium

    Directory of Open Access Journals (Sweden)

    Maarten Messagie

    2013-11-01

    Full Text Available Vehicles with alternative drive trains are regarded as a promising substitute for conventional cars, considering the growing concern about oil depletion and the environmental impact of our transportation system. However, “clean” technologies will only be viable when they are cost-efficient. In this paper, the environmental impacts and the financial costs of different vehicle technologies are calculated for an average Belgian driver. Environmentally friendly vehicles are compared with conventional petrol and diesel vehicles. The assessments are done from a life cycle perspective. The effect on human health, resources and ecosystems is considered when calculating the environmental impact. The total cost of ownership (TCO model includes the purchase price, registration and road taxes, insurance, fuel or electricity cost, maintenance, tires replacement, technical control, battery leasing and battery replacement. In the presented analysis different vehicle technologies and fuels are compared (petrol, diesel, hybrid electric vehicles (HEVs, battery electric vehicles (BEVs and plug-in hybrid electric vehicles (PHEVs on their level of environmental impact and cost per kilometer. The analysis shows a lower environmental impact for electric vehicles. However, electric vehicles have a higher total cost of ownership compared to conventional vehicles, even though the fuel operating costs are significantly lower. The purchase cost of electric vehicles is highly linked to the size of the battery pack, and not to the size of the electric vehicle. This explains the relative high cost for the electric city cars and the comparable cost for the medium and premium cars.

  14. Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to

    Science.gov (United States)

    Coast Hybrid and Electric Vehicles Boom Coast to Coast to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Twitter Bookmark Alternative

  15. Alternative Fuels Data Center: How Do Diesel Vehicles Work Using Biodiesel?

    Science.gov (United States)

    Diesel Vehicles Work Using Biodiesel? to someone by E-mail Share Alternative Fuels Data Center: How Do Diesel Vehicles Work Using Biodiesel? on Facebook Tweet about Alternative Fuels Data Center: How Do Diesel Vehicles Work Using Biodiesel? on Twitter Bookmark Alternative Fuels Data Center: How Do

  16. 75 FR 29605 - Clean Alternative Fuel Vehicle and Engine Conversions

    Science.gov (United States)

    2010-05-26

    ... Part II Environmental Protection Agency 40 CFR Parts 85 and 86 Clean Alternative Fuel Vehicle and...-0299; FRL-9149-9] RIN 2060-AP64 Clean Alternative Fuel Vehicle and Engine Conversions AGENCY... streamline the process by which manufacturers of clean alternative fuel conversion systems may demonstrate...

  17. Preferences for alternative fuel vehicles by Dutch local governments

    NARCIS (Netherlands)

    Rijnsoever, F.J. van; Hagen, P.; Willems, M

    2013-01-01

    Using a choice model, we estimate the preferences for alternative fuel vehicles by Dutch local governments. The analysis shows that local governments are willing to pay between 25% and 50% extra for an alternative fuel vehicle without a serious loss of utility. Further, local emissions are an

  18. The importance of grid integration for achievable greenhouse gas emissions reductions from alternative vehicle technologies

    International Nuclear Information System (INIS)

    Tarroja, Brian; Shaffer, Brendan; Samuelsen, Scott

    2015-01-01

    Alternative vehicles must appropriately interface with the electric grid and renewable generation to contribute to decarbonization. This study investigates the impact of infrastructure configurations and management strategies on the vehicle–grid interface and vehicle greenhouse gas reduction potential with regard to California's Executive Order S-21-09 goal. Considered are battery electric vehicles, gasoline-fueled plug-in hybrid electric vehicles, hydrogen-fueled fuel cell vehicles, and plug-in hybrid fuel cell vehicles. Temporally resolved models of the electric grid, electric vehicle charging, hydrogen infrastructure, and vehicle powertrain simulations are integrated. For plug-in vehicles, consumer travel patterns can limit the greenhouse gas reductions without smart charging or energy storage. For fuel cell vehicles, the fuel production mix must be optimized for minimal greenhouse gas emissions. The plug-in hybrid fuel cell vehicle has the largest potential for emissions reduction due to smaller battery and fuel cells keeping efficiencies higher and meeting 86% of miles on electric travel keeping the hydrogen demand low. Energy storage is required to meet Executive Order S-21-09 goals in all cases. Meeting the goal requires renewable capacities of 205 GW for plug-in hybrid fuel cell vehicles and battery electric vehicle 100s, 255 GW for battery electric vehicle 200s, and 325 GW for fuel cell vehicles. - Highlights: • Consumer travel patterns limit greenhouse gas reductions with immediate charging. • Smart charging or energy storage are required for large greenhouse gas reductions. • Fuel cells as a plug-in vehicle range extender provided the most greenhouse gas reductions. • Energy storage is required to meet greenhouse gas goals regardless of vehicle type. • Smart charging reduces the required energy storage size for a given greenhouse gas goal

  19. A Range-Based Vehicle Life Cycle Assessment Incorporating Variability in the Environmental Assessment of Different Vehicle Technologies and Fuels

    Directory of Open Access Journals (Sweden)

    Maarten Messagie

    2014-03-01

    Full Text Available How to compare the environmental performance of different vehicle technologies? Vehicles with lower tailpipe emissions are perceived as cleaner. However, does it make sense to look only to tailpipe emissions? Limiting the comparison only to these emissions denies the fact that there are emissions involved during the production of a fuel and this approach gives too much advantage to zero-tailpipe vehicles like battery electric vehicles (BEV and fuel cell electric vehicle (FCEV. Would it be enough to combine fuel production and tailpipe emissions? Especially when comparing the environmental performance of alternative vehicle technologies, the emissions during production of the specific components and their appropriate end-of-life treatment processes should also be taken into account. Therefore, the complete life cycle of the vehicle should be included in order to avoid problem shifting from one life stage to another. In this article, a full life cycle assessment (LCA of petrol, diesel, fuel cell electric (FCEV, compressed natural gas (CNG, liquefied petroleum gas (LPG, hybrid electric, battery electric (BEV, bio-diesel and bio-ethanol vehicles has been performed. The aim of the manuscript is to investigate the impact of the different vehicle technologies on the environment and to develop a range-based modeling system that enables a more robust interpretation of the LCA results for a group of vehicles. Results are shown for climate change, respiratory effects, acidification and mineral extraction damage of the different vehicle technologies. A broad range of results is obtained due to the variability within the car market. It is concluded that it is essential to take into account the influence of all the vehicle parameters on the LCA results.

  20. A Hydraulic Motor-Alternator System for Ocean-Submersible Vehicles

    Science.gov (United States)

    Aintablian, Harry O.; Valdez, Thomas I.; Jones, Jack A.

    2012-01-01

    An ocean-submersible vehicle has been developed at JPL that moves back and forth between sea level and a depth of a few hundred meters. A liquid volumetric change at a pressure of 70 bars is created by means of thermal phase change. During vehicle ascent, the phase-change material (PCM) is melted by the circulation of warm water and thus pressure is increased. During vehicle descent, the PCM is cooled resulting in reduced pressure. This pressure change is used to generate electric power by means of a hydraulic pump that drives a permanent magnet (PM) alternator. The output energy of the alternator is stored in a rechargeable battery that powers an on-board computer, instrumentation and other peripherals.The focus of this paper is the performance evaluation of a specific hydraulic motor-alternator system. Experimental and theoretical efficiency data of the hydraulic motor and the alternator are presented. The results are used to evaluate the optimization of the hydraulic motor-alternator system. The integrated submersible vehicle was successfully operated in the Pacific Ocean near Hawaii. A brief overview of the actual test results is presented.

  1. Trust in vehicle technology

    OpenAIRE

    Walker, Guy, H.; Stanton, Neville, A.; Salmon, Paul

    2016-01-01

    Driver trust has potentially important implications for how vehicle technology is used and interacted with. In this paper it will be seen how driver trust functions and how it can be understood and manipulated by insightful vehicle design. It will review the theoretical literature to define steps that can be taken establish trust in vehicle technology in the first place, maintain trust in the long term, and even re-establish trust that has been lost along the way. The implication throughout i...

  2. Disaggregate demand for conventional and alternative fuelled vehicles in the Census Metropolitan Area of Hamilton, Canada

    Science.gov (United States)

    Potoglou, Dimitrios

    The focus of this thesis is twofold. First, it offers insight on how households' car-ownership behaviour is affected by urban form and availability of local-transit at the place of residence, after controlling for socio-economic and demographic characteristics. Second, it addresses the importance of vehicle attributes, household and individual characteristics as well as economic incentives and urban form to potential demand for alternative fuelled vehicles. Data for the empirical analyses of the aforementioned research activities were obtained through an innovative Internet survey, which is also documented in this thesis, conducted in the Census Metropolitan Area of Hamilton. The survey included a retrospective questionnaire of households' number and type of vehicles and a stated choices experiment for assessing the potential demand for alternative fuelled vehicles. Established approaches and emerging trends in automobile demand modelling identified early on in this thesis suggest a disaggregate approach and specifically, the estimation of discrete choice models both for explaining car ownership and vehicle-type choice behaviour. It is shown that mixed and diverse land uses as well as short distances between home and work are likely to decrease the probability of households to own a large number of cars. Regarding the demand for alternative fuelled vehicles, while vehicle attributes are particularly important, incentives such as free parking and access to high occupancy vehicle lanes will not influence the choice of hybrids or alternative fuelled vehicles. An improved understating of households' behaviour regarding the number of cars as well as the factors and trade-offs for choosing cleaner vehicles can be used to inform policy designed to reduce car ownership levels and encourage adoption of cleaner vehicle technologies in urban areas. Finally, the Internet survey sets the ground for further research on implementation and evaluation of this data collection method.

  3. 77 FR 36423 - Labeling Requirements for Alternative Fuels and Alternative Fueled Vehicles

    Science.gov (United States)

    2012-06-19

    ... delivered to the following address: Federal Trade Commission, Office of the Secretary, Room H-113 (Annex N... cell, advanced lean burn, and hybrid motor vehicles) that were added to the definition of ``alternative... legislation (i.e., lean burn, hybrid, and fuel cell vehicles). No comments opposed this approach. Edison...

  4. Alternate-Fuel Vehicles and Their Application in Schools.

    Science.gov (United States)

    Taggart, Chip

    1991-01-01

    Alternative fuels are becoming increasingly attractive from environmental, energy independence, and economic perspectives. Addresses the following topics: (1) federal and state legislation; (2) alternative fuels and their attributes; (3) practical experience with alternative-fuel vehicles in pupil transportation; and (4) options for school…

  5. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  6. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  7. Electric and hybrid vehicle technology: TOPTEC

    Science.gov (United States)

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between 'refueling' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of 'Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  8. Maintenance & Repair Cost Calculation and Assessment of Resale Value for Different Alternative Commercial Vehicle Powertrain Technologies

    OpenAIRE

    Kleiner, Florian; Friedrich, Horst E.

    2017-01-01

    For detailed evaluation of the Total Cost of Ownership, expenditures for Maintenance & Repair as well as the resale value are important to consider and should not be neglected. However, information on Maintenance & Repair costs as well as residual values for commercial vehicles with alternative powertrains is missing and data on this issue is rare. There is a lack of information and consolidated knowledge. In order to enable a holistic cost assessment for commercial vehicles, a comprehensive ...

  9. Development of a multi-criteria evaluation framework for alternative light-duty vehicles technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fazeli, R.; Leal, V.; Sousa, J.P.

    2011-07-15

    Multi-Attribute Utility Theory (MAUT) is very popular in the context of multi-criteria decision making because it easily incorporates the decision maker's preferences. The basic goal of MAUT is to replace available information by ''utility values'' allowing the comparison of alternatives. For the basic MCDA problem of choosing the best alternative, it is useful for a DM to start by eliminating those alternatives that do not seem to be interesting. This procedure is often called ''screening''. Screening helps by allowing the DM to concentrate on a smaller set that (very likely) contains the best alternative. In this work we have applied a sequential screening process, starting with a Pareto Optimal (PO) approach, followed by a Data Envelopment Analysis (DEA) based screening and Trade-off Weights (TW) procedure. To illustrate the approach, Portugal was chosen as a case study. Besides, at this preliminary stage of the research, we just considered alternatives with 100% of one specific fuel/technology combination (alternatives with fleets combining different shares of fuels/technologies will be analyzed in the next phase of the research). MAUT was applied to identify the utility values of each alternative for each group of attributes. Then the sequential screening approach was applied. The final screening set includes DICI-DME, Fuel Cell using Hydrogen, the Fuel Cell with reformer using Methanol, and Hybrid Gasoline. As a conclusion, preliminary results clearly show the potential of the developed approach in setting a framework for supporting better and sounder decision-making on which AFV technologies should be supported. (Author)

  10. Status and outlook for biofuels, other alternative fuels and new vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N -O; Aakko-Saksa, P; Sipilae, K

    2008-03-15

    The report presents an outlook for alternative motor fuels and new vehicles. The time period covered extends up to 2030. The International Energy Agency and the U.S. Energy Information Administration predict that the world energy demand will increase by over 50% from now to 2030, if policies remain unchanged. Most of the growth in demand for energy in general, as well as for transport fuels, will take place in non-OECD countries. Gasoline and diesel are projected to remain the dominant automotive fuels until 2030. Vehicle technology and high quality fuels will eventually solve the problem of harmful exhaust emissions. However, the problem with CO{sub 2} still remains, and much attention will be given to increase efficiency. Hybrid technology is one option to reduce fuel consumption. Diesel engines are fuel efficient, but have high emissions compared with advanced gasoline engines. New combustion systems combining the best qualities of gasoline and diesel engines promise low emissions as well as high efficiency. The scenarios for alternative fuels vary a lot. By 2030, alternative fuels could represent a 10- 30% share of transport fuels, depending on policies. Ambitious goals for biofuels in transport have been set. As advanced biofuels are still in their infancy, it seems probable that traditional biofuels will also be used in 2030. Ethanol is the fastest growing biofuel. Currently the sustainability of biofuels is discussed extensively. Synthetic fuels promise excellent end-use properties, reduced emissions, and if produced from biomass, also reduced CO{sub 2} emissions. The report presents an analysis of technology options to meet the requirements for energy security, reduced CO{sub 2} emissions, reduced local emissions as well as sustainability in general in the long run. In the short term, energy savings will be the main measure for CO{sub 2} reductions in transport, fuel switches will have a secondary role. (orig.)

  11. Performance evaluation of alternative fuel/engine concepts 1990- 1995. Final report including addendum of diesel vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.O.; Ikonen, M.; Kytoe, M.; Lappi, M.; Westerholm, M.; Laurikko, J. [VTT Energy, Espoo (Finland). Energy Use

    1996-12-31

    Annex V within the IEA Agreement on Alternative Motor Fuels is the first subtask to generate new experimental data. The objective of the task is to generate information on the emission potential of alternative fuels in severe operating conditions and to evaluate new emission measurement methods. The work was carried out in three phases, Engine Tests, Vehicle Tests and Addendum of Diesel Vehicles. The work was carried out at VTT (Technical Research Centre of Finland) as a cost shared operation. Participants were Belgium (Parts Two and Three), Canada (Parts One and Two), Finland, Italy (Part One), Japan, the Netherlands Sweden and USA. The United Kingdom also joined at the end of the Annex. The work included 143 different vehicle/fuel/temperature combinations. FTP type emission tests were run on 14 vehicles powered with different gasoline compositions, methanol (M50 and M85), ethanol (E85), LPG, CNG and diesel. Both regulated and unregulated emission components were measured using the most up-to-date emissions measurement technology. The results indicated, that today`s advanced gasoline vehicles must be considered rather clean. Diesel is comparable with gasoline in the case of CO and HC. M85 gives low emissions in warm conditions, but unburned methanol must be controlled. Natural gas and LPG are inherently clean fuels which, using up-to-date engine technology, give low emissions in all conditions. (orig.) (29 refs.)

  12. Reusable Launch Vehicle Technology Program

    Science.gov (United States)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1997-01-01

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight test. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost effective, reusable launch vehicle systems.

  13. Vehicle technology under CO2 constraint: a general equilibrium analysis

    International Nuclear Information System (INIS)

    Schaefer, Andreas; Jacoby, Henry D.

    2006-01-01

    A study is presented of the rates of penetration of different transport technologies under policy constraints on CO 2 emissions. The response of this sector is analyzed within an overall national level of restriction, with a focus on automobiles, light trucks, and heavy freight trucks. Using the US as an example, a linked set of three models is used to carry out the analysis: a multi-sector computable general equilibrium model of the economy, a MARKAL-type model of vehicle and fuel supply technology, and a model simulating the split of personal and freight transport among modes. Results highlight the importance of incremental improvements in conventional internal combustion engine technology, and, in the absence of policies to overcome observed consumer discount rates, the very long time horizons before radical alternatives like the internal combustion engine hybrid drive train vehicle are likely to take substantial market share

  14. 2010 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Jacob [U.S. Department of Energy; Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

    2011-06-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  15. 2008 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.; Davis, S.

    2009-07-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  16. An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles

    International Nuclear Information System (INIS)

    Yeh, Sonia

    2007-01-01

    The adoption of alternative fuel vehicles (AFVs) has been regarded as one of the most important strategies to address the issues of energy dependence, air quality, and, more recently, climate change. Despite decades of effort, we still face daunting challenges to promote wider acceptance of AFVs by the general public. More empirical analyses are needed to understand the technology adoption process associated with different market structures, the effectiveness of regulations and incentives, and the density of infrastructure adequate to reach sustainable commercial application. This paper compares the adoption of natural gas vehicles (NGVs) in eight countries: Argentina, Brazil, China, India, Italy, New Zealand, Pakistan, and the US. It examines the major policies aimed at promoting the use of NGVs, instruments for implementing those policies and targeting likely stakeholders, and a range of factors that influence the adoption of NGVs. The findings in this paper should be applicable to other AFVs

  17. Prevalence, attitudes, and knowledge of in-vehicle technologies and vehicle adaptations among older drivers.

    Science.gov (United States)

    Eby, David W; Molnar, Lisa J; Zakrajsek, Jennifer S; Ryan, Lindsay H; Zanier, Nicole; Louis, Renée M St; Stanciu, Sergiu C; LeBlanc, David; Kostyniuk, Lidia P; Smith, Jacqui; Yung, Raymond; Nyquist, Linda; DiGuiseppi, Carolyn; Li, Guohua; Mielenz, Thelma J; Strogatz, David

    2018-04-01

    The purpose of the present study was to gain a better understanding of the types of in-vehicle technologies being used by older drivers as well as older drivers' use, learning, and perceptions of safety related to these technologies among a large cohort of older drivers at multiple sites in the United States. A secondary purpose was to explore the prevalence of aftermarket vehicle adaptations and how older adults go about making adaptations and how they learn to use them. The study utilized baseline questionnaire data from 2990 participants from the Longitudinal Research on Aging Drivers (LongROAD) study. Fifteen in-vehicle technologies and 12 aftermarket vehicle adaptations were investigated. Overall, 57.2% of participants had at least one advanced technology in their primary vehicle. The number of technologies in a vehicle was significantly related to being male, having a higher income, and having a higher education level. The majority of respondents learned to use these technologies on their own, with "figured-it-out-myself" being reported by 25%-75% of respondents across the technologies. Overall, technologies were always used about 43% of the time, with wide variability among the technologies. Across all technologies, nearly 70% of respondents who had these technologies believed that they made them a safer driver. With regard to vehicle adaptations, less than 9% of respondents had at least one vehicle adaptation present, with the number of adaptations per vehicle ranging from 0 to 4. A large majority did not work with a professional to make or learn about the aftermarket vehicle adaptation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Performance Evaluation of Lower-Energy Energy Storage Alternatives for Full-Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Cosgrove, J.; Pesaran, A.

    2014-02-11

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle fuel use. However, the incremental cost of HEVs such as the Toyota Prius or Ford Fusion Hybrid remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The b b b b battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can correspondingly improve the vehicle-level cost/benefit relationship. Such an improvement would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The United States Advanced Battery Consortium (USABC) and the U.S. Department of Energy (DOE) Energy Storage Program managers asked the National Renewable Energy Laboratory (NREL) to collaborate with a USABC Workgroup and analyze the trade-offs between vehicle fuel economy and reducing the decade-old minimum energy requirement for power-assist HEVs. NREL’s analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than the previous targets, which prompted USABC to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform, and laboratory as well as in-vehicle evaluation results with alternate energy storage configurations as compared to the production battery system. The alternate energy storage technologies considered include lithium-ion capacitors -- i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery

  19. Alternative Fuel Vehicles: How Do They Really Measure Up?

    Science.gov (United States)

    similar to that of comparable gasoline vehicles. The publication is available in .pdf format through DOE's Alternative Fuels Data Center home page on the World Wide Web. For a hard copy, call the National Alternative

  20. Gas detection for alternate-fuel vehicle facilities.

    Science.gov (United States)

    Ferree, Steve

    2003-05-01

    Alternative fuel vehicles' safety is driven by local, state, and federal regulations in which fleet owners in key metropolitan [table: see text] areas convert much of their fleet to cleaner-burning fuels. Various alternative fuels are available to meet this requirement, each with its own advantages and requirements. This conversion to alternative fuels leads to special requirements for safety monitoring in the maintenance facilities and refueling stations. A comprehensive gas and flame monitoring system needs to meet the needs of both the user and the local fire marshal.

  1. X-43 Hypersonic Vehicle Technology Development

    Science.gov (United States)

    Voland, Randall T.; Huebner, Lawrence D.; McClinton, Charles R.

    2005-01-01

    NASA recently completed two major programs in Hypersonics: Hyper-X, with the record-breaking flights of the X-43A, and the Next Generation Launch Technology (NGLT) Program. The X-43A flights, the culmination of the Hyper-X Program, were the first-ever examples of a scramjet engine propelling a hypersonic vehicle and provided unique, convincing, detailed flight data required to validate the design tools needed for design and development of future operational hypersonic airbreathing vehicles. Concurrent with Hyper-X, NASA's NGLT Program focused on technologies needed for future revolutionary launch vehicles. The NGLT was "competed" by NASA in response to the President s redirection of the agency to space exploration, after making significant progress towards maturing technologies required to enable airbreathing hypersonic launch vehicles. NGLT quantified the benefits, identified technology needs, developed airframe and propulsion technology, chartered a broad University base, and developed detailed plans to mature and validate hypersonic airbreathing technology for space access. NASA is currently in the process of defining plans for a new Hypersonic Technology Program. Details of that plan are not currently available. This paper highlights results from the successful Mach 7 and 10 flights of the X-43A, and the current state of hypersonic technology.

  2. Vehicle positioning based on UWB technology

    Science.gov (United States)

    Hu, Siquan; Kang, Min; She, Chundong

    2017-08-01

    In recent years, with the rapid increase of the number of urban cars, the vehicle internet is becoming a trend of smart transportion. In such vehicle network, accurate location is very crucial in many new applications such as autopilot, semi-autopilot and Car-to-x communications. UWB technology has been used for indoor closed range positioning and ranging widely, while UWB outdoor positioning and ranging research is relatively less. This paper proposed UWB as the vehicle positioning technology and developed a method based on two-way-ranging (TWR) to solve the ranging problem between vehicles. At the same time, the improved TOA method was used to locate vehicles, which has higher precision compared with traditional GPS or LBS. A hardware module is introduced and the simulation results show that the modules are capable of precise positioning for vehicles in vehicle network.

  3. Potential demand for household alternative fuelled vehicles in Hamilton, Canada : a stated choices experiment and survey

    Energy Technology Data Exchange (ETDEWEB)

    Potoglou, D.; Kanaroglou, P.S. [McMaster Univ., Hamilton, ON (Canada). Centre for Spatial Analysis]|[McMaster Univ., Hamilton, ON (Canada). School of Geography and Earth Science

    2005-07-01

    Alternative fuelled vehicle (AFV) technologies are a key strategy towards improved air quality and sustainable development. These fuel-efficient, low- or zero-emission vehicles have the potential to reduce greenhouse gas emissions and other negative externalities linked with the transportation sector. They include battery electric vehicles, fuel cell vehicles, and hybrid electric vehicles with internal combustion engines. This paper discussed AFVs development trends and modelling the demand for AFVs. It was noted that before creating policy measures that promote new vehicle technologies, one should first evaluate the demand for AFVs and the effectiveness of incentives and marketing promotions. This paper discussed the design and application of a stated choices experiment in which urban level surveys were conducted on the Internet to obtain data and public opinion on the demand for AFVs. A Choice Internet Based Experiment for Research on Cars (CIBER-CARS) was designed. This self-administered online questionnaire was used in Hamilton, Ontario. The survey design was described in detail and its implementation and data collection procedures were reviewed. Measures for evaluating the efficiency of the Internet survey were also highlighted and the characteristics of the collected information were summarized with emphasis on the profiles of respondents and households. The purpose was to determine the impact of vehicle attributes and household characteristics to the actual choice of certain vehicles. 28 refs., 2 tabs., 4 figs.

  4. Alternative transportation fuels in the USA: government hydrogen vehicle programs

    International Nuclear Information System (INIS)

    Cannon, J.S.

    1993-01-01

    The linkage between natural gas-based transportation and hydrogen-based transportation strategies, two clean burning gaseous fuels, provides a strong policy rationale for increased government sponsorship of hydrogen vehicle research and demonstration programs. Existing federal and state government hydrogen vehicle projects are discussed in this paper: research at the NREL, alternate-fueled buses, Renewable Hydrogen for the State of Hawaii program, New York state alternative transportation fuels program, Colorado program. 9 refs

  5. Successes and Challenges in the Resale of Alternative Fuel Vehicles: July 2001 - March 2002

    Energy Technology Data Exchange (ETDEWEB)

    2002-05-01

    This report provides the outcome of Dorfman & O'Neal's effort to examine the resale market for automobiles as it relates to the resale of late-model, original equipment manufacture (OEM), alternative fuel vehicles. Auctions provide an exceptionally rapid, effective, and efficient market for the transfer of property between buyers and sellers at reasonable prices. The first automobile auction in the United States was successful because used cars were in reasonably constant supply, were uniformly packaged, and were easily graded for quality. Also, the auction had sufficient volume to significantly lower the handling and transaction costs for wholesalers and dealers. To this day, the automobile auction industry conducts business primarily with registered wholesalers and dealers. Except for the U.S. General Services Administration (GSA) auctions and some consignment auctions, nearly all automobile auctions are closed to the public. The auction system represents a near-perfect market, validated by the lack of statistical price differences in value of specific model cars between various regions of the country. However, specialty cars may be subject to arbitrage. The buyer purchases the vehicle believing that it can be sold immediately at a profit in another region. A variety of vehicle pricing services are available to serve the consumer and the wholesale automobile industry. Each has a different philosophy for collecting, analyzing, and reporting data. ''The Automobile Lease Guide'' (ALG) is clearly the authority on vehicle residual values. Auction companies continue to apply automated technologies to lower transaction costs. Automated technologies are the only way to track the increasing number of transactions in the growing industry. Nevertheless, people-to-people relationships remain critical to the success of all auction companies. Our assessment is that everyone in the secondary automobile market is aware of alternative fuel vehicles

  6. Does habitual behavior affect the choice of alternative fuel vehicles?

    DEFF Research Database (Denmark)

    Valeri, Eva; Cherchi, Elisabetta

    2016-01-01

    Because of the recent improvements in the electrification process of cars, several types of alternative fuel vehicles are appearing in the car market. However, these new engine technologies are not easily penetrating the market around the world and the conventional ones are still the leaders....... A vast literature has explored the reasons for such low market penetration, due mainly to car's features. Using a hybrid choice model approach, in this research we study if, and to which extent, habitual car use influences individual propensity to buy a specific type of engine technology. We found...... of a conventional one. The importance of taking into account this latent construct is demonstrated also with the results of the simulated elasticity measures. In fact, the exclusion of latent habitual effect significantly underestimates the elasticity of diesel and hybrid cars and overestimates the elasticity...

  7. Transitioning to Low-GWP Alternatives in Motor Vehicle Air Conditioning Systems

    Science.gov (United States)

    This fact sheet provides information on low-GWP alternatives in newly manufactured motor vehicle air conditioning systems. It discusses HFC alternatives, market trends, challenges to market entry for alternatives, and potential solutions.

  8. Emissions from US waste collection vehicles

    International Nuclear Information System (INIS)

    Maimoun, Mousa A.; Reinhart, Debra R.; Gammoh, Fatina T.; McCauley Bush, Pamela

    2013-01-01

    Highlights: ► Life-cycle emissions for alternative fuel technologies. ► Fuel consumption of alternative fuels for waste collection vehicles. ► Actual driving cycle of waste collection vehicles. ► Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving

  9. Alternative Fuels Data Center: How Do Fuel Cell Electric Vehicles Work

    Science.gov (United States)

    vehicles. Hydrogen car image Key Components of a Hydrogen Fuel Cell Electric Car Battery (auxiliary): In an Using Hydrogen? Fuel Cell Electric Vehicles Work Using Hydrogen? to someone by E-mail Share Alternative Fuels Data Center: How Do Fuel Cell Electric Vehicles Work Using Hydrogen? on Facebook Tweet about

  10. Societal megatrends and trends in vehicle technologies

    OpenAIRE

    Duysinx, Pierre

    2018-01-01

    The confrence enviions the future trends in automotive technologies at the light of societal megatrends. Different emerging technologies for the vehicle powertrain are envisionned for the next decade: piston engines with natural gas, battery electric vehicles, plug-in hybrid electric vehicles, fuel cells systems. In addition one must also consider the arrival of autonomous driving and of the race for lightweight design of cars.

  11. Innovative Vehicle Concept for the Integration of Alternative Power Trains

    OpenAIRE

    Steinle, Philipp; Kriescher, Michael; Friedrich, Horst E.

    2010-01-01

    Abstract: The Institute of Vehicle Concepts is developing a safe, modularisable vehicle concept in rib and space frame design for tomorrow’s vehicles with alternative power trains. The vehicle can be powered either by a fuel cell system, a free-piston linear generator developed at the DLR, or a traction battery. Taking into account the given boundary conditions, the challenge is to design a body structure that is light and performs well in the event of an accident. The rib and space fra...

  12. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles

    Science.gov (United States)

    primary fuel or to improve the efficiency of conventional vehicle designs. Hybrid Electric Vehicles Icon cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Propane (LPG) Next Vehicle Cost

  13. Fifth annual report to congress. Federal alternative motor fuels programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report presents the status of the US Department of Energy`s alternative fuel vehicle demonstration and performance tracking programs being conducted in accordance with the Energy Policy and Conservation Act. These programs comprise the most comprehensive data collection effort ever undertaken on alternative transportation fuels and alternative fuel vehicles. The report summarizes tests and results from the fifth year. Electric vehicles are not included in these programs, and the annual report does not include information on them. Since the inception of the programs, great strides have been made in developing commercially viable alternative fuel vehicle technologies. However, as is the case in the commercialization of all new technologies, some performance problems have been experienced on vehicles involved in early demonstration efforts. Substantial improvements have been recorded in vehicle practicality, safety, and performance in real-world demonstrations. An aspect of particular interest is emissions output. Results from light duty alternative fuel vehicles have demonstrated superior inservice emissions performance. Heavy duty alternative fuel vehicles have demonstrated dramatic reductions in particulate emissions. However, emissions results from vehicles converted to run on alternative fuel have not been as promising. Although the technologies available today are commercially viable in some markets, further improvements in infrastructure and economics will result in greater market expansion. Information is included in this report on light and heavy duty vehicles, transit buses, vehicle conversions, safety, infrastructure support, vehicle availability, and information dissemination.

  14. Environmental Evaluation of New Generation Vehicles and Vehicle Components

    Energy Technology Data Exchange (ETDEWEB)

    Schexnayder, S.M.

    2002-02-06

    This report documents assessments that address waste issues and life cycle impacts associated with the vehicle materials and vehicle technologies being developed under the Partnership for a New Generation of Vehicles (PNGV) program. We refer to these vehicles as 3XVs, referring to the PNGV goal that their fuel mileage be three times better than the baseline vehicle. To meet the program's fuel consumption goals, these vehicles substitute lightweight materials for heavier materials such as steel and iron that currently dominate the composition of vehicles, and use engineering and power system changes. Alternative power systems being developed through the PNGV program include batteries for hybrid electric vehicles and fuel cells. With respect to all these developments, it is imperative to learn what effects they will have on the environment before adopting these designs and technologies on a large-scale basis.

  15. Vehicle-to-Vehicle crash avoidance technology : public acceptance final report.

    Science.gov (United States)

    2015-12-01

    The Vehicle-to-Vehicle (V2V) Crash Avoidance Public Acceptance report summarizes data from a survey of the current level of awareness and acceptance of V2V technology. The survey was guided by findings from prior studies and 12 focus groups. A total ...

  16. 2012 DOE Vehicle Technologies Program Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-10-26

    The 2012 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting was held May 14-18, 2012 in Crystal City, Virginia. The review encompassed all of the work done by the Hydrogen Program and the Vehicle Technologies Program: a total of 309 individual activities were reviewed for Vehicle Technologies, by a total of 189 reviewers. A total of 1,473 individual review responses were received for the technical reviews.

  17. Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China

    International Nuclear Information System (INIS)

    Ou, Xunmin; Yan, Xiaoyu; Zhang, Xiliang; Liu, Zhen

    2012-01-01

    Highlights: ► We analyzed the life cycle energy intensity and GHG emissions of about 40 pathways of alternative vehicle fuels in China. ► Coal-based liquid fuel has higher life cycle energy intensities and first generation technology bio-fuel has relatively lower intensity. ► By 2020 electricity will have significantly lower GHG intensity and second generation technology bio-fuel will have near zero intensities. -- Abstract: Fossil energy consumption (FEC) and greenhouse gas (GHG) emission intensities of major alternative vehicle fuels (AVFs) in China are calculated and compared with conventional fuels by means of full life-cycle analysis. Currently most of the AVFs have not relatively obvious GHG emission reduction when compared to the gasoline pathway: (1) coal-based AVF has higher intensities in terms of both the FEC and GHG emissions; (2) electricity from the average Chinese grid has the GHG emission intensity similar to that of gasoline pathway although relatively lower FEC intensity; and (3) first generation technology bio-fuel has relatively lower GHG emission intensity and substantially lower FEC intensity. It is forecasted that by 2020 when still comparing to the gasoline pathway: (1) coal-based AVF will still have FEC and GHG emission intensities that are 1.5–1.8 and 1.8–2.5 time those of gasoline pathway, and the application of carbon capture and storage technology can reduce the GHG emission intensity of coal-based AVF; (2) electricity will have significantly lower GHG intensity; and (3) second generation technology bio-fuel will have near zero FEC and GHG intensities.

  18. Connected Vehicle Technologies for Efficient Urban Transportation

    Science.gov (United States)

    2016-10-24

    Connected vehicle technology is employed to optimize the vehicle's control system in real-time to reduce congestion, improve fuel economy, and reduce emissions. This project's goal was to develop a two-way communication system to upload vehicle data ...

  19. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  20. Refueling availability for alternative fuel vehicle markets: Sufficient urban station coverage

    International Nuclear Information System (INIS)

    Melaina, Marc; Bremson, Joel

    2008-01-01

    Alternative fuel vehicles can play an important role in addressing the challenges of climate change, energy security, urban air pollution and the continued growth in demand for transportation services. The successful commercialization of alternative fuels for vehicles is contingent upon a number of factors, including vehicle cost and performance. Among fuel infrastructure issues, adequate refueling availability is one of the most fundamental to successful commercialization. A commonly cited source reports 164,300 refueling stations in operation nationwide. However, from the perspective of refueling availability, this nationwide count tends to overstate the number of stations required to support the widespread deployment of alternative fuel vehicles. In terms of spatial distribution, the existing gasoline station networks in many urban areas are more than sufficient. We characterize a sufficient level of urban coverage based upon a subset of cities served by relatively low-density station networks, and estimate that some 51,000 urban stations would be required to provide this sufficient level of coverage to all major urban areas, 33 percent less than our estimate of total urban stations. This improved characterization will be useful for engineering, economic and policy analyses. (author)

  1. Canadians' perceptions of electric vehicle technology : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-03-15

    While Canadians seem to appreciate some of the possible benefits of electric vehicle technology (EVT), they generally lack knowledge or understanding of EVTs, in terms of how they operate and what types of EVT vehicles are currently available. This paper described the challenges associated with the adoption of EVT in Canada. In particular, it described a research program that was designed to assess Canadians' attitudes towards electric vehicle technology, in order to provide input into the development of a technology roadmap and its implementation plan, to provide input into communications plans and strategies to promote greater awareness and acceptance of the technology, and to establish baseline attitudinal indicators that could be tracked over time. Specifically, the objectives of the paper were to measure the Canadian public's levels of awareness, knowledge and comfort with EVTs; determine the motivators to adoption of EVT; determine the barriers to broader acceptance and market diffusion of EVT; and identify key group differences. Topics that were discussed included public awareness and knowledge of electric vehicle technology; and interest in plug-in hybrid vehicles and battery-electric vehicles, including perceived advantages and barriers. A profile of drivers consisted of a review of vehicle type; vehicle use profile; size of vehicle; considerations when choosing a vehicle; personal orientation to vehicle ownership; attitudes about vehicle choice; and attitudes about vehicles and air quality. Descriptions of the quantitative and qualitative methods employed in conducting the research, as well as the survey questionnaire and discussion guide were included as appendices. It was concluded that the small proportion of Canadian drivers who see vehicles as a form of personal expression are more likely to be interested in a future plug-in hybrid electric vehicles purchase or rental. tabs., figs., appendices.

  2. International Conference on Heavy Vehicles HVParis 2008 : Heavy Vehicle Transport Technology (HVTT 10)

    OpenAIRE

    JACOB, Bernard; NORDENGEN, Paul; O'CONNOR, Alan; BOUTELDJA, Mohamed

    2008-01-01

    Sommaire : Heavy vehicles and WIM technology, testing and standards. Interactions between heavy vehicles or trains and the infrastructure, environment and other system users. Heavy vehicle and road management information: measurements, data quality, data management. Freight mobility and safety. Vehicle classification, size and weight evaluation, regulations and enforcement. Traffic and road safety. WIM of road vehicles, trains and aeroplanes.

  3. Technology and implementation of electric vehicles and plug‐in hybrid electric vehicles

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Mathiesen, Brian Vad; Connolly, David

    2011-01-01

    In this report state of the art electric vehicle and plug‐in hybrid electric vehicle technology is presented to clarify the current and near term development. The current status of diffusion for electric vehicles in Denmark, Sweden and internationally is presented as well as the expected......‐2013). Also the power capabilities may increase meaning that e.g. acceleration capabilities will improve as well as the top speed. This development occurs due to new battery technology that may experience substantial improvements in the coming years. When looking at plug‐in hybrid electric vehicles...... developments. Different business models and policies are also outlined along with a description of the on‐going research and demonstration projects. An analysis of the current and near term electric and plug‐in hybrid electric vehicles indicate that the cost for family cars will not change much, while...

  4. Narrative text analysis to identify technologies to prevent motor vehicle crashes: examples from military vehicles.

    Science.gov (United States)

    Pollack, Keshia M; Yee, Nathan; Canham-Chervak, Michelle; Rossen, Lauren; Bachynski, Kathleen E; Baker, Susan P

    2013-02-01

    The purpose of this research is to describe the leading circumstances of military vehicle crashes to guide prioritization and implementation of crash avoidance and/or warning technologies. A descriptive study using narrative text analysis on 3,944 military vehicle crash narratives. Crash data on drivers, from 2001 to 2006, were assembled from the U.S. Army Combat Readiness/Safety Center. Reviewers collected information on the circumstances of crashes and determined if vehicle technology could have prevented the crash. Nearly 98% of the crashes were nonfatal; 63% occurred in the U.S. and 24% in Iraq. Among crash events where the direction of the impact was recorded, 32% were to the front of the vehicle and 16% involved a vehicle being rear-ended. Rollovers were mentioned in 20% of the narratives. Technology was determined to have the potential to prevent 26% of the crashes, with the forward collision warning system, rear end collision avoidance, emergency brake assistance, and rollover stability control system likely to have the greatest impacts. Some technologies available for civilian vehicles may prevent certain military crash circumstances. The results of this research are significant in light of ongoing global military operations that rely on military vehicles. Improving the preventive technology featured on military vehicles may be an effective strategy to reduce the occurrence of military crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Alternative Fuel News, Vol. 2, No. 7

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    1999-05-20

    What's in store for alternative Fuels and advanced technology vehicles in the new millennium? The Clean Cities Coalitions now operate more than 240,000 alternative fuel vehicles in both public and private sectors and have access to more than 4,000 alternative refueling stations. DOE recently announced the selection of 15 proposals that will receive just under $1.7 million in financial assistance to help expand DOE's information dissemination and public outreach efforts for alternative fuels and advanced transportation technologies.

  6. Vehicle Technologies Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-09-05

    Overview of the Vehicle Technologies Program including external assessment and market view; internal assessment, program history and progress; program justification and federal role; program vision, mission, approach, strategic goals, outputs, and outcomes; and performance goals.

  7. Multi-criteria analysis of alternative-fuel buses for public transportation

    International Nuclear Information System (INIS)

    Tzeng, G.-H.; Lin, C.-W.; Opricovic, Serafim

    2005-01-01

    The technological development of buses with new alternative fuels is considered in this paper. Several types of fuels are considered as alternative-fuel modes, i.e., electricity, fuel cell (hydrogen), and methanol. Electric vehicles may be considered the alternative-fuel vehicles with the lowest air pollution. Hybrid electric vehicles provide an alternate mode, at least for the period of improving the technology of electric vehicles. A hybrid electric vehicle is defined as a vehicle with the conventional internal combustion engine and an electric motor as its major sources of power. Experts from different decision-making groups performed the multiple attribute evaluation of alternative vehicles. AHP is applied to determine the relative weights of evaluation criteria. TOPSIS and VIKOR are compared and applied to determine the best compromise alternative fuel mode. The result shows that the hybrid electric bus is the most suitable substitute bus for Taiwan urban areas in the short and median term. But, if the cruising distance of the electric bus extends to an acceptable range, the pure electric bus could be the best alternative

  8. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Science.gov (United States)

    2010-01-01

    ... Efficiency and Renewable Energy, EE-33, 1000 Independence Ave., SW., Washington, DC 20585, or to such other... 10 Energy 3 2010-01-01 2010-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM...

  9. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    OpenAIRE

    Abbanat, Brian A.

    2001-01-01

    Compressed natural gas (CNG) vehicles have been used internationally by fleets and households for decades. The use of CNG vehicles results in less petroleum consumption, and fewer air pollutant and greenhouse gas emissions in most applications. In the United States, the adoption of CNG technology has been slowed by the availability of affordable gasoline and diesel fuel. This study addresses the potential market for CNG vehicles at the consumer level in California. Based on semi-structured pe...

  10. Vehicle Technologies and Fuel Cell Technologies Program: Prospective Benefits Assessment Report for Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Taylor, C. H. [TA Engineering, Inc., Catonsville, MD (United States); Moore, J. S. [TA Engineering, Inc., Catonsville, MD (United States); Ward, J. [United States Department of Energy, Washington, DC (United States). Office of Energy Efficiency and Renewable Energy

    2016-02-23

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies offices of DOE’s Office of Energy Efficiency and Renewable Energy invest in research, development, demonstration, and deployment of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies. This report estimates the benefits of successfully developing and deploying these technologies (a “Program Success” case) relative to a base case (the “No Program” case). The Program Success case represents the future with completely successful deployment of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies. The No Program case represents a future in which there is no contribution after FY 2016 by the VTO or FCTO to these technologies. The benefits of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies were estimated on the basis of differences in fuel use, primary energy use, and greenhouse gas (GHG) emissions from light-, medium- and heavy-duty vehicles, including energy and emissions from fuel production, between the base case and the Program Success case. Improvements in fuel economy of various vehicle types, growth in the stock of fuel cell vehicles and other advanced technology vehicles, and decreased GHG intensity of hydrogen production and delivery in the Program Success case over the No Program case were projected to result in savings in petroleum use and GHG emissions. Benefits were disaggregated by individual program technology areas, which included the FCTO program and the VTO subprograms of batteries and electric drives; advanced combustion engines; fuels and lubricants; materials (for reduction in vehicle mass, or “lightweighting”); and, for medium- and heavy-duty vehicles, reduction in rolling and aerodynamic resistance. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 47% to 76

  11. Implications of advanced vehicle technologies for older drivers.

    Science.gov (United States)

    Molnar, Lisa J; Eby, David W

    2017-09-01

    Advances are being made in vehicle technologies that may help older adults compensate for some of the declines in abilities associated with aging. These advances hold promise for increasing vehicle safety, reducing injuries, and making the driving task more comfortable. However, important research gaps remain with regard to how various advanced technologies impact the safety of older drivers, as well as older drivers' perceptions about these technologies. This special issue contains seven original contributions that address these issues. Specific topics include the: congruence of design guidelines with the needs and abilities of older drivers, transfer of control between automated and manual driving, use of in-vehicle monitoring technology, motivations for technology use and assigned meanings, technology valuation, and effects on driving behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Policy of developing alternate vehicles; La politique de developpement des vehicules alternatifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-15

    In most western cities the present-day car is by far the principal mode of transport. The wrong side of it is that automobile circulation is a source of air-pollution, noise and traffic jam, inconveniences against which public opinion shows itself more and more susceptible. Facing this situation governments in succession have since several years encouraged by different measures the development of fitted or alternative vehicles: electric, natural gas (NG) fuelled and liquefied petroleum gas (LPG) vehicles. These vehicles have the advantage of responding both to pollution problem and energy diversification challenge. The present-day regulation system gathers a number of attractive provisions: - maintaining para-fiscal taxes upon gas fuels at a level much lower than for other fuels; - VAT refunding for these gas fuels and electricity consumed by vehicles of this type; - general councils can be totally or partially exonerated from automobile taxation; - assigning future green label allowing these vehicles to be excepted from traffic restrictions applied to cope with pollution peaks. Other additional advantages are provided by the law on air and rational use of energy of 30 December 1996. Merits and drawbacks of each of the mentioned types of alternative vehicles are reviewed. So, although entirely un-polluting the electric cars are not cheap and what is even more hindering is their very limited range which for current batteries does not exceed 80 km. Only little over 3000 electric vehicles were sold, a third of them to EDF. The natural gas is rather pure a fuel at burning of which the release of sulfur and solid particles are practically negligible. Due to its characteristics, the short and medium term development of this alternative seems to reside only in buses and service vehicles, the only able to support the supplementary load of high pressure gas tanks. Being formed of liquefied butane and propane at low pressure, LPG is as attractive as NG, with respect to the

  13. Routing strategies for efficient deployment of alternative fuel vehicles for freight delivery.

    Science.gov (United States)

    2017-02-01

    With increasing concerns on environmental issues, recent research on Vehicle Routing Problems : (VRP) has added new factors such as greenhouse gas emissions and alternative fuel vehicles into : the models. In this report, we consider one such promisi...

  14. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  15. Two-wheeled motor vehicle technology in India: Evolution, prospects and issues

    International Nuclear Information System (INIS)

    Iyer, Narayan V.; Badami, Madhav G.

    2007-01-01

    By providing affordable mobility to millions of people, two-wheeled motor (M2W) vehicles play a vital role in urban transport in India and other low-income Asian countries. At the same time, these vehicles contribute significantly to urban transport impacts and energy consumption, and are characterized by high emissions and traffic mortalities per passenger-kilometre. Given the importance of technology in the popularity of these vehicles and their transport impacts, this paper discusses the evolution of M2W vehicle technology in India, and contributory factors including market forces, environmental regulation, and industry R and D efforts. It then discusses technologies that we expect to be implemented for M2W vehicles in India over the next two or three decades, the likely implications of these technologies in terms of vehicle price, emissions, fuel economy and service life, and issues related to vehicle technology development and implementation. The paper shows that while the Indian M2W vehicle industry has achieved a transformation in innovation, product development and quality in response to market demands and environmental concerns, various technological and institutional challenges need to be addressed by this and the oil and vehicle servicing industries, and government agencies at all levels, to successfully deploy advanced vehicle technologies

  16. Guide to alternative fuel vehicle incentives and laws: September 1998

    Energy Technology Data Exchange (ETDEWEB)

    Riley, C.; O' Connor, K.

    1998-12-22

    This guide provides information in support of the National Clean Cities Program, which will assist one in becoming better informed about the choices and options surrounding the use of alternative fuels and the purchase of alternative fuel vehicles. The information printed in this guide is current as of September 15, 1998. For recent additions or more up-to-date information, check the Alternative Fuels Data Center Web site at http://www.afdc.doe.gov

  17. Advanced protection technology for ground combat vehicles.

    Science.gov (United States)

    Bosse, Timothy G

    2012-01-01

    Just as highway drivers use radar detectors to attempt to stay ahead of police armed with the latest radar technology, the Armed Forces are locked in a spiral to protect combat vehicles and their crews against the latest threats in both the contemporary operating environment and the anticipated operating environment (ie, beyond 2020). In response to bigger, heavier, or better-protected vehicles, adversaries build and deploy larger explosive devices or bombs. However, making improvements to combat vehicles is much more expensive than deploying larger explosives. In addition, demand is increasing for lighter-weight vehicles capable of rapid deployment. Together, these two facts give the threat a clear advantage in the future. To protect vehicles and crews, technologies focusing on detection and hit avoidance, denial of penetration, and crew survivability must be combined synergistically to provide the best chance of survival on the modern battlefield.

  18. Vehicle technologies, fuel-economy policies, and fuel-consumption rates of Chinese vehicles

    International Nuclear Information System (INIS)

    Huo Hong; He Kebin; Wang, Michael; Yao Zhiliang

    2012-01-01

    One of the principal ways to reduce transport-related energy use is to reduce fuel-consumption rates of motor vehicles (usually measured in liters of fuel per 100 km). Since 2004, China has implemented policies to improve vehicle technologies and lower the fuel-consumption rates of individual vehicles. Policy evaluation requires accurate and adequate information on vehicle fuel-consumption rates. However, such information, especially for Chinese vehicles under real-world operating conditions, is rarely available from official sources in China. For each vehicle type we first review the vehicle technologies and fuel-economy policies currently in place in China and their impacts. We then derive real-world (or on-road) fuel-consumption rates on the basis of information collected from various sources. We estimate that the real-world fuel-consumption rates of vehicles in China sold in 2009 are 9 L/100 km for light-duty passenger vehicles, 11.4 L/100 km for light-duty trucks, 22 L/100 km for inter-city transport buses, 40 L/100 km for urban transit buses, and 24.9 L/100 km for heavy-duty trucks. These results aid in understanding the levels of fuel consumption of existing Chinese vehicle fleets and the effectiveness of policies in reducing on-road fuel consumption, which can help in designing and evaluating future vehicle energy-efficiency policies. - Highlights: ► Vehicle fuel-consumption rate (VFCR) data are rarely available in China. ► We review the fuel-economy policies currently in place in China and their impacts. ► We derive real-world VFCRs on the basis of information collected from various sources. ► Results aid in understanding the fuel consumption levels of Chinese vehicle fleets. ► Results help in designing and evaluating future vehicle energy-efficiency policies.

  19. Uncertainty-embedded dynamic life cycle sustainability assessment framework: An ex-ante perspective on the impacts of alternative vehicle options

    International Nuclear Information System (INIS)

    Onat, Nuri Cihat; Kucukvar, Murat; Tatari, Omer

    2016-01-01

    Alternative vehicle technologies have a great potential to minimize the transportation-related environmental impacts, reduce the reliance of the U.S. on imported petroleum, and increase energy security. However, they introduce new uncertainties related to their environmental, economic, and social impacts and certain challenges for widespread adoption. In this study, a novel method, uncertainty-embedded dynamic life cycle sustainability assessment framework, is developed to address both methodological challenges and uncertainties in transportation sustainability research. The proposed approach provides a more comprehensive, system-based sustainability assessment framework by capturing the dynamic relations among the parameters within the U.S. transportation system as a whole with respect to its environmental, social, and economic impacts. Using multivariate uncertainty analysis, likelihood of the impact reduction potentials of different vehicle types, as well as the behavioral limits of the sustainability potentials of each vehicle type are analyzed. Seven sustainability impact categories are dynamically quantified for four different vehicle types (internal combustion, hybrid, plug-in hybrid, and battery electric vehicles) from 2015 to 2050. Although impacts of electric vehicles have the largest uncertainty, they are expected (90% confidence) to be the best alternative in long-term for reducing human health impacts and air pollution from transportation. While results based on deterministic (average) values indicate that electric vehicles have greater potential of reducing greenhouse gas emissions, plug-in hybrid vehicles have the largest potential according to the results with 90% confidence interval. - Highlights: • Uncertainty-embedded dynamic sustainability assessment framework, is developed. • Methodological challenges and uncertainties are addressed. • Seven impact categories are quantified for four different vehicle types.

  20. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs

    International Nuclear Information System (INIS)

    Askin, Amanda C.; Barter, Garrett E.; West, Todd H.; Manley, Dawn K.

    2015-01-01

    We present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 7–8 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. The model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed natural gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives. -- Highlights: •We present a parametric analysis of factors U.S. Class 7–8 trucks through 2050. •Conventional diesels will be more than 70% of U.S. heavy-duty vehicles through 2050. •CNG trucks are well suited to large, urban fleets with private refueling. •Ultra-efficient long haul diesel trucks are preferred over LNG at current fuel prices

  1. 40 CFR 1051.650 - What special provisions apply for converting a vehicle to use an alternate fuel?

    Science.gov (United States)

    2010-07-01

    ... converting a vehicle to use an alternate fuel? 1051.650 Section 1051.650 Protection of Environment... vehicle to use an alternate fuel? A certificate of conformity is no longer valid for a vehicle if the... applies if such modifications are done to convert the vehicle to run on a different fuel type. Such...

  2. Electric vehicles: Technology assessment and commercialization

    International Nuclear Information System (INIS)

    Zabot, S.

    1991-01-01

    This article traces the history of commercialization efforts relative to electric vehicles, assesses the state-of-the-art of electric vehicle technology and identifies the industrial firms that are investing heavily in this field. The main design problems affecting the commercialization of these vehicles (e.g., battery weight, autonomy, operating safety and toxicity) are pointed out. Comparisons of commercialization prospects are made with those for hydrogen fuelled vehicles. With regard to investments in research programs, it is argued that, in addition to car manufacturers and oil companies, the usual active participants in the transport sector, new participants are needed to give added support to the development of electric vehicles, namely, electric utilities and battery manufacturers

  3. California's experience with alternative fuel vehicles

    International Nuclear Information System (INIS)

    Sullivan, C.

    1993-01-01

    California is often referred to as a nation-state, and in many aspects fits that description. The state represents the seventh largest economy in the world. Most of California does not have to worry about fuel to heat homes in the winter. What we do worry about is fuel for our motor vehicles, approximately 24 million of them. In fact, California accounts for ten percent of new vehicle sales in the United States each year, much of it used in the transportation sector. The state is the third largest consumer of gasoline in the world, only exceeded by the United States as a whole and the former Soviet Union. California is also a leader in air pollution. Of the nine worst ozone areas in the country cited in the 1990 Clean Air Act Amendments, two areas the Los Angeles Basin and San Diego are located in California. Five of California's cities made the top 20 smoggiest cities in the United States. In reality, all of California's major metropolitan areas have air quality problems. This paper will discuss the beginnings of California's investigations of alternative fuels use in vehicles; the results of the state's demonstration programs; and future plans to improve California's air quality and energy security in the mobile sector

  4. The impact of electric vehicles on CO2 emissions

    International Nuclear Information System (INIS)

    Bentley, J.M.; Teagan, P.; Walls, D.; Balles, E.; Parish, T.

    1992-05-01

    A number of recent studies have examined the greenhouse gas emissions of various light duty vehicle alternatives in some detail. These studies have highlighted the extreme range of predicted net greenhouse gas emissions depending on scenarios for fuel types, vehicle and power generation efficiencies, the relative greenhouse contributions of emitted gases and a number of uncertainties in fuel chain efficiencies. Despite the potential range of results, most studies have confirmed that electric vehicles generally have significant potential for reducing greenhouse gas emissions relative to gasoline and most alternative fuels under consideration. This report summarizes the results of a study which builds on previous efforts with a particular emphasis on: (1) A detailed analysis of ICEV, FCV, and EV vehicle technology and electric power generation technology. Most previous transportation greenhouse studies have focused on characterization of fuel chains that have relatively high efficiency (65--85%) when compared with power generation (30--40%) and vehicle driveline (13--16%) efficiencies. (2) A direct comparison of EVs, FCVs with gasoline and dedicated alternative fuel, ICEVs using equivalent vehicle technology assumptions with careful attention to likely technology improvements in both types of vehicles. (3) Consideration of fuel cell vehicles and associated hydrogen infrastructure. (4) Extension of analyses for several decades to assess the prospects for EVs with a longer term prospective

  5. Technology Roadmap: Fuel Economy of Road Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    This roadmap explores the potential improvement of existing technologies to enhance the average fuel economy of motorised vehicles; the roadmap’s vision is to achieve a 30% to 50% reduction in fuel use per kilometre from new road vehicles including 2-wheelers, LDV s and HDV s) around the world in 2030, and from the stock of all vehicles on the road by 2050. This achievement would contribute to significant reductions in GHG emissions and oil use, compared to a baseline projection. Different motorised modes are treated separately, with a focus on LDV s, HDV s and powered two-wheelers. A section on in-use fuel economy also addresses technical and nontechnical parameters that could allow fuel economy to drastically improve over the next decades. Technology cost analysis and payback time show that significant progress can be made with low or negative cost for fuel-efficient vehicles over their lifetime use. Even though the latest data analysed by the IEA for fuel economy between 2005 and 2008 showed that a gap exists in achieving the roadmap’s vision, cutting the average fuel economy of road motorised vehicles by 30% to 50% by 2030 is achievable, and the policies and technologies that could help meet this challenge are already deployed in many places around the world.

  6. Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions

    International Nuclear Information System (INIS)

    Ou Xunmin; Zhang Xiliang; Chang Shiyan

    2010-01-01

    The rapid growth of vehicles has resulted in continuing growth in China's oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China's road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology.

  7. Alternative fuels for vehicles; Alternative drivmidler

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-15

    Up until 2020 and onwards the analysis indicates that especially electricity, biogas and natural gas as propellants is economically attractive compared to conventional gasoline and diesel while other fuels have the same or higher costs for petrol and diesel. Especially biogas and electricity will also offer significant reductions in CO{sub 2} emissions, but also hydrogen, methanol, DME and to a lesser extent the second generation bioethanol and most of the other alternative fuels reduce CO{sub 2} emissions. Use of the traditional food-based first generation biofuels involves, at best, only modest climate benefits if land use changes are counted, and at worst, significant negative climate effects. Natural gas as a propellant involves a moderate climate gain, but may play a role for building infrastructure and market for gaseous fuels in large fleets, thereby contributing to the phasing in of biogas for transport. The electric-based automotive fuels are the most effective due to a high efficiency of the engine and an increasing proportion of wind energy in the electricity supply. The methanol track also has a relatively high efficiency. Among the others, the track based on diesel engines (biodiesel) is more effective than the track based on gasoline/Otto engines (gas and ethanol) as a result of the diesel engine's better efficiency. For the heavy vehicles all the selected alternative fuels to varying degrees reduce emissions of CO{sub 2}, particularly DME based on wood. The only exception to this is - as for passenger cars - the propellant synthetic diesel based on coal. (LN).

  8. The reusable launch vehicle technology program

    Science.gov (United States)

    Cook, S.

    1995-01-01

    Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).

  9. The reusable launch vehicle technology program

    Science.gov (United States)

    Cook, S.

    Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).

  10. A Choice Experiment on Alternative Fuel Vehicle Preferences of Private Car Owners in the Netherlands

    NARCIS (Netherlands)

    Hoen, A.; Koetse, M.J.

    2014-01-01

    This paper presents results of an online stated choice experiment on preferences of Dutch private car owners for alternative fuel vehicles (AFVs) and their characteristics. Results show that negative preferences for alternative fuel vehicles are large, especially for the electric and fuel cell car,

  11. Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, A.

    2011-04-01

    A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

  12. Vehicle modeling and duty cycle analysis to validate technology feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, S. [National Centre for Advanced Transportation, Saint-Jerome, PQ (Canada)

    2010-07-01

    The National Centre for Advanced Transportation (CNTA) is a non-profit organization with a board consisting of representatives from the transportation industry, public service and public transit organizations, research and teaching institutions, and from municipal and economic development organizations. The objectives of the CNTA are to accelerate the introduction of electric and hybrid vehicles; act as a catalyst in projects; assist in increasing Canadian technology assets; initiate and support electric vehicle conversion projects; increase Canadian business for electric vehicles, hybrid vehicles, and plug-in electric vehicles; and provide a cost-effective solution and aggressive payback for road/off-road vehicles. This presentation provided an overview of the objectives and services of the CNTA. It discussed various road and off-road vehicles, duty cycle and technology of electric vehicles. Specific topics related to the technology were discussed, including configuration; controls and interface; efficiency maps; models and simulation; validation; and support. figs.

  13. Toxic emissions from mobile sources: a total fuel-cycle analysis for conventional and alternative fuel vehicles.

    Science.gov (United States)

    Winebrake, J J; Wang, M Q; He, D

    2001-07-01

    Mobile sources are among the largest contributors of four hazardous air pollutants--benzene, 1,3-butadiene, acetaldehyde, and formaldehyde--in urban areas. At the same time, federal and state governments are promoting the use of alternative fuel vehicles as a means to curb local air pollution. As yet, the impact of this movement toward alternative fuels with respect to toxic emissions has not been well studied. The purpose of this paper is to compare toxic emissions from vehicles operating on a variety of fuels, including reformulated gasoline (RFG), natural gas, ethanol, methanol, liquid petroleum gas (LPG), and electricity. This study uses a version of Argonne National Laboratory's Greenhouse Gas, Regulated Emissions, and Energy Use in Transportation (GREET) model, appropriately modified to estimate toxic emissions. The GREET model conducts a total fuel-cycle analysis that calculates emissions from both downstream (e.g., operation of the vehicle) and upstream (e.g., fuel production and distribution) stages of the fuel cycle. We find that almost all of the fuels studied reduce 1,3-butadiene emissions compared with conventional gasoline (CG). However, the use of ethanol in E85 (fuel made with 85% ethanol) or RFG leads to increased acetaldehyde emissions, and the use of methanol, ethanol, and compressed natural gas (CNG) may result in increased formaldehyde emissions. When the modeling results for the four air toxics are considered together with their cancer risk factors, all the fuels and vehicle technologies show air toxic emission reduction benefits.

  14. Complex multidisciplinary systems decomposition for aerospace vehicle conceptual design and technology acquisition

    Science.gov (United States)

    Omoragbon, Amen

    Although, the Aerospace and Defense (A&D) industry is a significant contributor to the United States' economy, national prestige and national security, it experiences significant cost and schedule overruns. This problem is related to the differences between technology acquisition assessments and aerospace vehicle conceptual design. Acquisition assessments evaluate broad sets of alternatives with mostly qualitative techniques, while conceptual design tools evaluate narrow set of alternatives with multidisciplinary tools. In order for these two fields to communicate effectively, a common platform for both concerns is desired. This research is an original contribution to a three-part solution to this problem. It discusses the decomposition step of an innovation technology and sizing tool generation framework. It identifies complex multidisciplinary system definitions as a bridge between acquisition and conceptual design. It establishes complex multidisciplinary building blocks that can be used to build synthesis systems as well as technology portfolios. It also describes a Graphical User Interface Designed to aid in decomposition process. Finally, it demonstrates an application of the methodology to a relevant acquisition and conceptual design problem posed by the US Air Force.

  15. Heavy Duty Vehicle Futures Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Askin, Amanda Christine; Barter, Garrett.; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  16. Hybrid electric vehicles TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  17. Exporting automatic vehicle SNM monitoring technology

    International Nuclear Information System (INIS)

    York, R.L.; Fehlau, P.E.; Close, D.A.

    1995-01-01

    Controlling the transportation of nuclear materials is still one of the most effective nuclear proliferation barriers. The recent increase of global nuclear material proliferation has expanded the application of vehicle monitor technology to prevent the diversion of special nuclear material across international borders. To satisfy this new application, a high-sensitivity vehicle monitor, which is easy to install and capable of operating in high-traffic areas, is required. A study of a new detector configuration for a drive-through vehicle monitor is discussed in this paper

  18. Consumer Views: Fuel Economy, Plug-in Electric Vehicle Battery Range, and Willingness to Pay for Vehicle Technology

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-11

    This presentation includes data captured by the National Renewable Energy Laboratory (NREL) to support the U.S. Department of Energy's Vehicle Technologies Office (VTO) research efforts. The data capture consumer views on fuel economy, plug-in electric vehicle battery range, and willingness to pay for advanced vehicle technologies.

  19. Cost and benefit estimates of partially-automated vehicle collision avoidance technologies.

    Science.gov (United States)

    Harper, Corey D; Hendrickson, Chris T; Samaras, Constantine

    2016-10-01

    Many light-duty vehicle crashes occur due to human error and distracted driving. Partially-automated crash avoidance features offer the potential to reduce the frequency and severity of vehicle crashes that occur due to distracted driving and/or human error by assisting in maintaining control of the vehicle or issuing alerts if a potentially dangerous situation is detected. This paper evaluates the benefits and costs of fleet-wide deployment of blind spot monitoring, lane departure warning, and forward collision warning crash avoidance systems within the US light-duty vehicle fleet. The three crash avoidance technologies could collectively prevent or reduce the severity of as many as 1.3 million U.S. crashes a year including 133,000 injury crashes and 10,100 fatal crashes. For this paper we made two estimates of potential benefits in the United States: (1) the upper bound fleet-wide technology diffusion benefits by assuming all relevant crashes are avoided and (2) the lower bound fleet-wide benefits of the three technologies based on observed insurance data. The latter represents a lower bound as technology is improved over time and cost reduced with scale economies and technology improvement. All three technologies could collectively provide a lower bound annual benefit of about $18 billion if equipped on all light-duty vehicles. With 2015 pricing of safety options, the total annual costs to equip all light-duty vehicles with the three technologies would be about $13 billion, resulting in an annual net benefit of about $4 billion or a $20 per vehicle net benefit. By assuming all relevant crashes are avoided, the total upper bound annual net benefit from all three technologies combined is about $202 billion or an $861 per vehicle net benefit, at current technology costs. The technologies we are exploring in this paper represent an early form of vehicle automation and a positive net benefit suggests the fleet-wide adoption of these technologies would be beneficial

  20. Vehicle Technologies Office FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Transportation accounts for two-thirds of U.S. petroleum use, and on-road vehicles are responsible for nearly 85% of this amount. U.S. dependence on petroleum affects the national economy and potential for future growth—making it a high-value opportunity for change. The Vehicle Technologies Office (VTO) develops and overcomes barriers to the widespread use of advanced highway transportation technologies that reduce petroleum consumption and greenhouse gas emissions, while meeting or exceeding vehicle performance expectations.

  1. 16 CFR 309.15 - Posting of non-liquid alternative vehicle fuel rating.

    Science.gov (United States)

    2010-01-01

    ... rating. (a) If you are a retailer who offers for sale or sells non-liquid alternative vehicle fuel (other... fuel. If you are a retailer who offers for sale or sells electricity to consumers through an electric... vehicle fuel dispensing system, either by letter or on the delivery ticket or other paper, or by a...

  2. Sandy Hook : alternative access concept plan and vehicle replacement study

    Science.gov (United States)

    2009-06-01

    This study addresses two critical issues of concern to the Sandy Hook Unit of Gateway National : Recreational Area: (1) options for alternative access to Sandy Hook during peak summer season, : particularly when the park is closed to private vehicles...

  3. Alternative vehicle detection technologies for traffic signal systems : technical report.

    Science.gov (United States)

    2009-02-01

    Due to the well-documented problems associated with inductive loops, most jurisdictions have : replaced many intersection loops with video image vehicle detection systems (VIVDS). While VIVDS : have overcome some of the problems with loops such as tr...

  4. Development of an Autonomous Navigation Technology Test Vehicle

    National Research Council Canada - National Science Library

    Tobler, Chad K

    2004-01-01

    .... In order to continue these research activities at CIMAR, a new Kawasaki Mule All-Terrain Vehicle was chosen to be automated as a test-bed for the purpose of developing and testing autonomous vehicle technologies...

  5. Design and Implementation of an Emergency Vehicle Signal Preemption System Based on Cooperative Vehicle-Infrastructure Technology

    OpenAIRE

    Yinsong Wang; Zhizhou Wu; Xiaoguang Yang; Luoyi Huang

    2013-01-01

    Emergency vehicle is an important part of traffic flow. The efficiency, reliability, and safety of emergency vehicle operations dropped due to increasing traffic congestion. With the advancement of the wireless communication technologies and the development of the vehicle-to-vehicle (v2v) and vehicle-to-infrastructure (v2i) systems, called Cooperative Vehicle-Infrastructure System (CVIS), there is an opportunity to provide appropriate traffic signal preemption for emergency vehicle based on r...

  6. Proceedings of the 1991 Windsor workshop on alternative fuels

    International Nuclear Information System (INIS)

    1991-01-01

    A workshop was held to exchange information among engine and vehicle manufacturers, fuel suppliers, research organizations, and academic and regulatory bodies on various aspects of alternative transportation fuels development. Papers were presented on alternative fuels policies and programs, zero-emission vehicles, emission control technologies, field evaluations of alternative fuel systems, and heavy duty alternate-fuel engines. Separate abstracts have been prepared for nine papers from this workshop

  7. Motorcycle crashes potentially preventable by three crash avoidance technologies on passenger vehicles.

    Science.gov (United States)

    Teoh, Eric R

    2018-07-04

    The objective of this study was to identify and quantify the motorcycle crash population that would be potential beneficiaries of 3 crash avoidance technologies recently available on passenger vehicles. Two-vehicle crashes between a motorcycle and a passenger vehicle that occurred in the United States during 2011-2015 were classified by type, with consideration of the functionality of 3 classes of passenger vehicle crash avoidance technologies: frontal crash prevention, lane maintenance, and blind spot detection. Results were expressed as the percentage of crashes potentially preventable by each type of technology, based on all known types of 2-vehicle crashes and based on all crashes involving motorcycles. Frontal crash prevention had the largest potential to prevent 2-vehicle motorcycle crashes with passenger vehicles. The 3 technologies in sum had the potential to prevent 10% of fatal 2-vehicle crashes and 23% of police-reported crashes. However, because 2-vehicle crashes with a passenger vehicle represent fewer than half of all motorcycle crashes, these technologies represent a potential to avoid 4% of all fatal motorcycle crashes and 10% of all police-reported motorcycle crashes. Refining the ability of passenger vehicle crash avoidance systems to detect motorcycles represents an opportunity to improve motorcycle safety. Expanding the capabilities of these technologies represents an even greater opportunity. However, even fully realizing these opportunities can affect only a minority of motorcycle crashes and does not change the need for other motorcycle safety countermeasures such as helmets, universal helmet laws, and antilock braking systems.

  8. 2015 Vehicle Buyer's Guide (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2015-02-01

    Drivers and fleets are increasingly turning to the hundreds of light-duty, alternative fuel, and advanced technology vehicle models that reduce petroleum use, save on fuel costs, and cut emissions. This guide provides a comprehensive list of the 2015 light-duty models that use alternative fuels or advanced fuel-saving technologies.

  9. Communication Technologies for Vehicles

    DEFF Research Database (Denmark)

    Vinel, Alexey

    This book constitutes the proceedings of the 8th International Workshop on Communication Technologies for Vehicles, Nets4Cars/Nets4Trains/Nets4Aircraft 2015, held in Sousse, Tunisia, in May 2015. The 20 papers presented in this volume were carefully reviewed and selected from 27 submissions....... The contributions are organized in topical sections named: road; rail; and air....

  10. Evaluating the development of life and progress of heavy vehicles ...

    African Journals Online (AJOL)

    Regarding the investigation of new technologies, we have to think to make changes in vehicle technology or finding alternative technology. According to the first priority, criteria and the weight of analytic hierarchy process, the technical criteria, first the action should be done in technical improvements of the vehicle, and also ...

  11. Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ou Xunmin, E-mail: oxm07@mails.tsinghua.edu.c [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); Zhang Xiliang, E-mail: zhang_xl@tsinghua.edu.c [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Chang Shiyan [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China)

    2010-08-15

    The rapid growth of vehicles has resulted in continuing growth in China's oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China's road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology.

  12. Scenario analysis on alternative fuel/vehicle for China's future road transport. Life-cycle energy demand and GHG emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Xunmin [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); Zhang, Xiliang; Chang, Shiyan [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China)

    2010-08-15

    The rapid growth of vehicles has resulted in continuing growth in China's oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China's road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology. (author)

  13. Evaluation of automated vehicle technology for transit.

    Science.gov (United States)

    2015-01-01

    The purpose of this report is to provide an overview of the state of automated vehicle (AV) technology : in transit. The Florida Department of Transportation (FDOT) wishes to know what AV technology is : currently available that could be used in tran...

  14. Energy storage technology for electric and hybrid vehicles. Matching technology to design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, J. [Sycon Energikonsult AB, Malmoe (Sweden)

    1999-12-01

    A central issue when dealing with electrical vehicles has always been how to store energy in sufficient quantities. On April 27 through 28 1999 a workshop was held on this matter at University of California Davis (UC Davis). Organizer and host was Dr. Andrew Burke and the Institute of Transportation Studies (ITS) at UC Davis. The workshop included battery technology, ultra capacitors and fly wheels, but did not include fuel cell technology. In this paper the conference is reviewed with the emphasis on battery development. A section on ultra capacitors and flywheels is also included. The overall observation made at the conference is that most of the effort on energy storage in electric and hybrid vehicles are put into batteries. There is some development on ultra capacitors but almost none on flywheels. The battery also seems to be the choice of the car industry at this point, especially the pulse battery for engine dominant hybrid vehicles, like the Toyota Prius. The battery manufacturers seem to focus more on technology development than cost reduction at this point. An important technological issue as of now is to improve thermal management in order to increase life of the batteries. But when the technological goals are met focus must shift to cost minimization and marketing if the battery electric vehicle shall make a market break through.

  15. Life cycle assessment for next generating vehicles. Feasibility study of alternative fuel vehicles and electric vehicles; Jisedai jidosha no life cycle assessment. Daitai nenryo jidosha oyobi denki jidosha no feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, T; Iida, N [Keio University, Tokyo (Japan)

    1997-10-01

    To show environmental assessment of introduction of substitute fuel vehicles is important information to formulate the future vehicles policy. Life cycle assessment (LCA) is put forward to simulate such potential, allows us to state the reduction environmental impacts of substitute vehicles on their total life cycle. The purpose of this study is assessment and analysis of the life cycle CO2 emission for substitute fuel vehicles, such as, alternative fuel vehicles, electric vehicles, and hybrid electric vehicles. 8 refs., 9 figs., 3 tabs.

  16. Minimizing the Carbon Footprint for the Time-Dependent Heterogeneous-Fleet Vehicle Routing Problem with Alternative Paths

    Directory of Open Access Journals (Sweden)

    Wan-Yu Liu

    2014-07-01

    Full Text Available Torespondto the reduction of greenhouse gas emissions and global warming, this paper investigates the minimal-carbon-footprint time-dependent heterogeneous-fleet vehicle routing problem with alternative paths (MTHVRPP. This finds a route with the smallestcarbon footprint, instead of the shortestroute distance, which is the conventional approach, to serve a number of customers with a heterogeneous fleet of vehicles in cases wherethere may not be only one path between each pair of customers, and the vehicle speed differs at different times of the day. Inheriting from the NP-hardness of the vehicle routing problem, the MTHVRPP is also NP-hard. This paper further proposes a genetic algorithm (GA to solve this problem. The solution representedbyour GA determines the customer serving ordering of each vehicle type. Then, the capacity check is used to classify multiple routes of each vehicle type, and the path selection determines the detailed paths of each route. Additionally, this paper improves the energy consumption model used for calculating the carbon footprint amount more precisely. Compared with the results without alternative paths, our experimental results show that the alternative path in this experimenthas a significant impact on the experimental results in terms of carbon footprint.

  17. Alternative Fuels Data Center: Federal Laws and Incentives for Electricity

    Science.gov (United States)

    and 49 U.S. Code 47136a) Advanced Technology Vehicle (ATV) and Alternative Fuel Infrastructure Manufacturing Loan Program website and the Alternative Fuel Infrastructure fact sheet. (Reference 42 U.S. Code vehicles and infrastructure. Projects supported with CMAQ funds must demonstrate emissions reductions, be

  18. Future orbital transfer vehicle technology study. Volume 2: Technical report

    Science.gov (United States)

    Davis, E. E.

    1982-01-01

    Missions for future orbit transfer vehicles (1995-2010) are identified and the technology, operations and vehicle concepts that satisfy the transportation requirements are defined. Comparison of reusable space and ground based LO2/LH2 OTV's was made. Both vehicles used advanced space engines and aero assist capability. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. Comparison of an all LO2/LH2 OTV fleet with a fleet of LO2/LH2 OTVs and electric OTV's was also made. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. This provided a 23% advantage in total transportation cost. The impact of accelerated technology was considered in terms of improvements in performance and cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on-orbit propellant storage and transfer and on-orbit maintenance capability.

  19. Comparison of Vehicle Efficiency Technology Attributes and Synergy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Duleep, G. [ICF Incorporated, LLC., Fairfax, VA (United States)

    2011-02-01

    Analyzing the future fuel economy of light-duty vehicles (LDVs) requires detailed knowledge of the vehicle technologies available to improve LDV fuel economy. The National Highway Transportation Safety Administration (NHTSA) has been relying on technology data from a 2001 National Academy of Sciences (NAS) study (NAS 2001) on corporate average fuel economy (CAFE) standards, but the technology parameters were updated in the new proposed rulemaking (EPA and NHTSA 2009) to set CAFE and greenhouse gas standards for the 2011 to 2016 period. The update is based largely on an Environmental Protection Agency (EPA) analysis of technology attributes augmented by NHTSA data and contractor staff assessments. These technology cost and performance data were documented in the Draft Joint Technical Support Document (TSD) issued by EPA and NHTSA in September 2009 (EPA/NHTSA 2009). For these tasks, the Energy and Environmental Analysis (EEA) division of ICF International (ICF) examined each technology and technology package in the Draft TSD and assessed their costs and performance potential based on U.S. Department of Energy (DOE) program assessments. ICF also assessed the technologies, other relevant attributes based on data from actual production vehicles, and recently published technical articles in engineering journals. ICF examined technology synergy issues through an ICF in-house model that uses a discrete parameter approach.

  20. Comparison of Vehicle Efficiency Technology Attributes and Synergy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Duleep, G.

    2011-02-01

    Analyzing the future fuel economy of light-duty vehicles (LDVs) requires detailed knowledge of the vehicle technologies available to improve LDV fuel economy. The National Highway Transportation Safety Administration (NHTSA) has been relying on technology data from a 2001 National Academy of Sciences (NAS) study (NAS 2001) on corporate average fuel economy (CAFE) standards, but the technology parameters were updated in the new proposed rulemaking (EPA and NHTSA 2009) to set CAFE and greenhouse gas standards for the 2011 to 2016 period. The update is based largely on an Environmental Protection Agency (EPA) analysis of technology attributes augmented by NHTSA data and contractor staff assessments. These technology cost and performance data were documented in the Draft Joint Technical Support Document (TSD) issued by EPA and NHTSA in September 2009 (EPA/NHTSA 2009). For these tasks, the Energy and Environmental Analysis (EEA) division of ICF International (ICF) examined each technology and technology package in the Draft TSD and assessed their costs and performance potential based on U.S. Department of Energy (DOE) program assessments. ICF also assessed the technologies? other relevant attributes based on data from actual production vehicles and from recently published technical articles in engineering journals. ICF examined technology synergy issues through an ICF in-house model that uses a discrete parameter approach.

  1. The development of low-carbon vehicles in China

    International Nuclear Information System (INIS)

    Yao Mingfa; Liu Haifeng; Feng Xuan

    2011-01-01

    Reducing CO 2 emissions from vehicles in China is crucial and will significantly alleviate the environmental burden of the Earth. Some promising technologies that make possible low-carbon vehicles are reviewed in this work, including electric vehicles, fuel cell vehicles, hybrid vehicles, biofuels vehicles, other alternative fuel vehicles, and conventional internal combustion engine vehicles with improvement. In the short term, expanding the use of mature technologies in conventional gasoline or diesel vehicles is the most realistic, effective, and timely solution for China to meeting the urgent challenges of energy saving and greenhouse gas reduction; while in the long run biofuel is a promising candidate due to their renewability and carbon neutrality. The blueprint of low-carbon vehicles for China depends on three aspects: breakthroughs in technology, awareness of public, and government guidance. - Highlights: → Reducing CO 2 emissions and saving energy from vehicles in China is crucial. → Low-carbon depends on technology breakthrough, public awareness, and government guidance. → Use of mature technologies in ICEVs is the most realistic solution for China. → Biofuels are the key to realize neutral carbon emission in the long run.

  2. Clean Cities 2016 Vehicle Buyer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    2016-02-01

    Drivers and fleets are increasingly turning to the hundreds of light-duty, alternative fuel, and advanced technology vehicle models that reduce petroleum use, save on fuel costs, and cut emissions. This guide provides a comprehensive list of the 2016 light-duty models that use alternative fuels or advanced fuel-saving technologies.

  3. Clean Cities 2015 Vehicle Buyer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-02-11

    Drivers and fleets are increasingly turning to the hundreds of light-duty, alternative fuel, and advanced technology vehicle models that reduce petroleum use, save on fuel costs, and cut emissions. This guide provides a comprehensive list of the 2015 light-duty models that use alternative fuels or advanced fuel-saving technologies.

  4. Advanced Vehicle Testing and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Garetson, Thomas [The Clarity Group, Incorporated, Chicago, IL (United States)

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  5. Enhancing the Use of Vehicle Alcohol Interlocks With Emerging Technology.

    Science.gov (United States)

    Voas, Robert B

    2014-01-01

    Among the earliest applications of health technologies to a safety program was the development of blood alcohol content (BAC) tests for use in impaired-driving enforcement. This led to the development of miniature, highly accurate devices that officers could carry in their pockets. A natural extension of this technology was the vehicle alcohol interlock, which is used to reduce recidivism among drivers convicted of driving under the influence (DUI) by requiring them to install the devices (which will not allow someone with a positive BAC to drive) on their vehicles. While on the vehicle, interlocks have been shown to reduce recidivism by two-thirds. Use of these devices has been growing at the rate of 10 to 15 percent a year, and there currently are more than 300,000 units in use. This expansion in the application of interlocks has benefited from the integration of other emerging technologies into interlock systems. Such technologies include data systems that record both driver actions and vehicle responses, miniature cameras and face recognition to identify the user, Wi-Fi systems to provide rapid reporting on offender performance and any attempt to circumvent the device, GPS tracking of the vehicle, and more rapid means for monitoring the integrity of the interlock system. This article describes how these health technologies are being applied in interlock programs and the outlook for new technologies and new court sanctioning programs that may influence the growth in the use of interlocks in the future.

  6. Technology updates from the OEMs (tires, rims, automation inflation systems, and alternative fuels for heavy vehicles)

    Energy Technology Data Exchange (ETDEWEB)

    White, N. [Charonic Canada Inc., Ottawa, ON (Canada)

    2001-07-01

    This power point presentation outlined a project at Charonic Canada Inc., which demonstrated and evaluated innovations in the areas of vehicle safety, operating economy and diesel fuel substitution. It also presented a range of results that demonstrate some of the trends that may be used on vehicles, particularly trucks, in the near future. The demonstration involved a 2 year observation of a five truck fleet hauling refuse from Toronto to Michigan. The trucks completed 2,500 round trips of 540 miles and used 115 tonnes of natural gas fuel replacing diesel fuel. Safety innovations included tire pressure monitoring, hazard locator radar system, anti-spray system, wheel nut and bearing temperature indicators and brake safe indicators. These features were reported as being worthwhile investments. Economy innovations included a dual-fuel engine system, wide base tires, light weight CNG tanks, centrifugal oil cleaner and an oil and lubrication system. Although the technology continues to improve, the dual-engine system requires further work. Difficulties were encountered when trying to meet performance, fuel economy and emission targets at the same time. 18 figs.

  7. The Reusable Launch Vehicle Technology Program and the X-33 Advanced Technology Demonstrator

    Science.gov (United States)

    Cook, Stephen A.

    1995-01-01

    The goal of the Reusable Launch Vehicle (RLV) technology program is formulated, and the primary objectives of RLV are listed. RLV technology program implementation phases are outlined. X-33 advanced technology demonstrator is described. Program management is addressed.

  8. Principles of topical treatment: advancement in gel vehicle technology.

    Science.gov (United States)

    Feldman, Steven R

    2014-04-01

    Topical treatment is a pillar of dermatologic practice. The delivery of drug by a topical vehicle is dependent on complex physical chemistry and on how well patients apply the product. The potency of topical agents is not solely dependent on the concentration of active drug in the vehicle. A corticosteroid molecule may have vastly different potency depending on what vehicle is used to deliver it. Similarly, a new gel vehicle is able to deliver considerably more active antifungal than an older vehicle technology and may represent a promising vehicle for other novel formulations. The use of new vehicles can provide more effective means for treating patients with skin disease.

  9. A cost-benefit analysis of alternatively fueled buses with special considerations for V2G technology

    International Nuclear Information System (INIS)

    Shirazi, Yosef; Carr, Edward; Knapp, Lauren

    2015-01-01

    Motivated by climate, health and economic considerations, alternatively-fueled bus fleets have emerged worldwide. Two popular alternatives are compressed natural gas (CNG) and electric vehicles. The latter provides the opportunity to generate revenue through vehicle-to-grid (V2G) services if properly equipped. This analysis conducts a robust accounting of the costs of diesel, CNG and battery-electric powertrains for school buses. Both marginal and fleet-wide scenarios are explored. Results indicate that the marginal addition of neither a small CNG nor a small V2G-enabled electric bus is cost effective at current prices. Contrary to previous findings, a small V2G-enabled electric bus increases net present costs by $7,200/seat relative to diesel for a Philadelphia, PA school district. A small CNG bus increases costs by $1,200/seat relative to diesel. This analysis is the first to quantify and include the economic implications of cold temperature extremes on electric vehicle battery operations, and the lower V2G revenues that result. Additional costs and limitations imposed by electric vehicles performing V2G are frequently overlooked in the literature and are explored here. If a variety of technical, legal, and economic challenges are overcome, a future eBus may be economical. - Highlights: • We present a robust cost-benefit analysis of various bus technologies. • Diesel is a low-cost technology at current prices. • CNG represents slightly higher costs on a marginal bus basis. • V2G-enabled electric buses are not cost-effective at current prices. • We identify frequently overlooked costs and challenges to V2G implementation.

  10. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

  11. Vehicle Technologies and Fuel Cell Technologies Office Research and Development Programs: Prospective Benefits Assessment Report for Fiscal Year 2018

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Birky, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Gohlke, David [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-01

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies Offices of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy invest in early-stage research of advanced batteries and electrification, engines and fuels, materials, and energy-efficient mobility systems; hydrogen production, delivery, and storage; and fuel cell technologies. This report documents the estimated benefits of successful development and implementation of advanced vehicle technologies. It presents a comparison of a scenario with completely successful implementation of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies (the Program Success case) to a future in which there is no contribution after Fiscal Year 2017 by the VTO or FCTO to these technologies (the No Program case). Benefits were attributed to individual program technology areas, which included FCTO research and development and the VTO programs of electrification, advanced combustion engines and fuels, and materials technology. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 24% to 30% higher than in the No Program case, while fuel economy for on-road medium- and heavy-duty vehicle stock could be as much as 13% higher. The resulting petroleum savings in 2035 were estimated to be as high as 1.9 million barrels of oil per day, and reductions in greenhouse gas emissions were estimated to be as high as 320 million metric tons of carbon dioxide equivalent per year. Projections of light-duty vehicle adoption indicate that although advanced-technology vehicles may be somewhat more expensive to purchase, the fuel savings result in a net reduction of consumer cost. In 2035, reductions in annual fuel expenditures for vehicles (both light- and heavy-duty) are projected to range from $86 billion to $109 billion (2015$), while the projected increase in new vehicle

  12. Tanadgusix Foundation Hydrogen / Plug In Electric Vehicle Project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Martin [TDX Power Inc., Anchorage, AK (United States)

    2013-09-27

    TDX Foundation undertook this project in an effort to evaluate alternative transportation options and their application in the community of Saint Paul, Alaska an isolated island community in the Bering Sea. Both hydrogen and electric vehicle technology was evaluated for technical and economic feasibility. Hydrogen technology was found to be cost prohibitive. TDX demonstrated the implementation of various types of electric vehicles on St. Paul Island, including side-by-side all terrain vehicles, a Chevrolet Volt (sedan), and a Ford Transit Connect (small van). Results show that electric vehicles are a promising solution for transportation needs on St. Paul Island. Limited battery range and high charging time requirements result in decreased usability, even on a small, isolated island. These limitations were minimized by the installation of enhanced charging stations for the car and van. In collaboration with the University of Alaska Fairbanks (UAF), TDX was able to identify suitable technologies and demonstrate their applicability in the rural Alaskan environment. TDX and UAF partnered to engage and educate the entire community of Saint Paul – fom school children to elders – through presentation of research, findings, demonstrations, first hand operation of alternative fuel vehicles.

  13. The 'neighbor effect'. Simulating dynamics in consumer preferences for new vehicle technologies

    International Nuclear Information System (INIS)

    Mau, Paulus; Eyzaguirre, Jimena; Jaccard, Mark; Tiedemann, Kenneth; Collins-Dodd, Colleen

    2008-01-01

    Understanding consumer behaviour is essential in designing policies that efficiently increase the uptake of clean technologies over the long-run. Expert opinion or qualitative market analyses have tended to be the sources of this information. However, greater scrutiny on governments increasingly demands the use of reliable and credible evidence to support policy decisions. While discrete choice research and modeling techniques have been applied to estimate consumer preferences for technologies, these methods often assume static preferences. This study builds on the application of discrete choice research and modeling to capture dynamics in consumer preferences. We estimate Canadians' preferences for new vehicle technologies under different market assumptions, using responses from two national surveys focused on hybrid gas-electric vehicles and hydrogen fuel cell vehicles. The results support the relevance of a range of vehicle attributes beyond the purchase price in shaping consumer preferences towards clean vehicle technologies. They also corroborate our hypothesis that the degree of market penetration of clean vehicle technologies is an influence on people's preferences ('the neighbor effect'). Finally, our results provide behavioural parameters for the energy-economy model CIMS, which we use here to show the importance of including consumer preference dynamics when setting policies to encourage the uptake of clean technologies. (author)

  14. Clean Cities 2014 Vehicle Buyer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-01

    The Clean Cities 2014 Vehicle Buyer's Guide is an annual guide which features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  15. Proceedings of the 1993 Windsor Workshop on Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report contains viewgraph papers on the following topics on alternative fuels: availability of alternative fueled engines and vehicles; emerging technologies; overcoming barriers to alternative fuels commercialization; infrastructure issues; and new initiatives in research and development.

  16. Innovative and Alternative Technology Assessment Manual

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    This four chapter, six appendix manual presents the procedures and methodology as well as the baseline costs and energy information necessary for the analysis and evaluation of innovative and alternative technology applications submitted for federal grant assistance under the innovative and alternative technology provisions of the Clean Water Act of 1977. The manual clarifies and interprets the intent of Congress and the Environmental Protection Agency in carrying out the mandates of the innovative and alternative provisions of the Clean Water Act of 1977. [DJE 2005

  17. METHOD OF CHOOSING THE TECHNOLOGY OF VEHICLE OPERATION ON DELIVERY ROUTES

    Directory of Open Access Journals (Sweden)

    Ye. Nagornyi

    2014-10-01

    Full Text Available A method for determining the technology of vehicles operation on delivery (team routes, which allows to determine the optimal sequence of cargo delivery to customers by vehicles of certain capacity in order to meet the requirements of cargo owners regarding the conditions of service is offered. Recommendations for creation of an automated system of forming the technology of vehicles operation on delivery routes are developed.

  18. Niobium technological alternatives

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Dainesi, C.R.

    1981-01-01

    The process-product matrix of Niobium is presented, through which the technological alternatives for Niobium are identified. It is shown that the three axes of Niobium application, steels, superalloys and metallic Niobium have a tendency to be economical by equivalent. The critical points where technological development of Niobium is needed are analyzed and results are presented on the following products: Nb 2 O 5 by volatilization, metalic Niobium, Niobium powder, bars and sheets, NbTi alloy, corrosion resistent Niobium alloys and superconductor cable and wires. (Author) [pt

  19. National measures fostering alternative vehicles: electric, natural gas, liquefied oil gas vehicles; Dispositions nationales en faveur des vehicules alternatifs: vehicules electriques, au gaz naturel (GNv) et au gaz de petrole liquefie (GPLc)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-07

    This document, issued by the French Ministry of Economy, Finances and Industry, presents national measures fostering alternative vehicles, i.e., electric, natural gas and liquefied oil gas vehicles. Financial supports for studies aiming at optimizing the fleet and choosing the alternative vehicles as well as for purchasing vehicles both by counter procedure and for demonstration programmes are provided. Amount of subsidies, conditions of obtaining and categories of addressees are indicated. The document contains also two relating studies. The first one is titled 'the policy of developing alternative vehicles'. The following four items are addressed: - the present frame favouring the alternative vehicles; - the electric vehicles; - natural gas fuelled vehicles (GNV); - liquefied oil gas fuelled vehicles (GPLc). Although non-polluting the electric vehicles are not tempting because of their rather limited range (80 Km at a battery charging). So far only around 3,000 vehicles were sold. Fifty GNV buses were ordered by RATP and the figure raised at 70 in 1998 and 1999. The GPLc fleet amounts up to 70,000 vehicles and by the end of 2000 it is foreseen to reach the level of 300,000 vehicles. The second study addresses to the issue of natural gas for vehicles. It presents: - its advantages; - its peculiarities; - the action of public authorities; -the current state and trends of GNV vehicles. In a joint effort public authorities and partners of this option are aiming at a fleet of 2500 light service vehicles and 300 bus for urban transport by the end of 1999.

  20. Prospects for Chinese electric vehicle technologies in 2016–2020: Ambition and rationality

    International Nuclear Information System (INIS)

    Du, Jiuyu; Ouyang, Minggao; Chen, Jingfu

    2017-01-01

    As the world's largest market for vehicles, China is facing challenges related to energy security and urban air pollution. The development of electric vehicles has been determined to be the national strategy for solving these problems. By the end of 2015, China had become the world's largest electric vehicles market, but its core technologies are still less competitive in the global marketplace. A scientific national strategy for 2016 to 2020 is expected to play a critical role in China becoming the global leader in the electric vehicle industry. The research process for this strategy includes a review of the technologies for electric vehicles, market analyses, benchmarking of the top levels in the field, and expert interviews. By these approaches, the strengths and weaknesses of China's electric vehicle technologies and industry are assessed. Competitive and feasible quantitative goals for key components and powertrains are proposed by this paper, and a core issue has been determined to be the need to improve the safety of high-energy density traction batteries. Improving the power density of electric control units is expected to the core for electric vehicles' electronics and control systems. Key problems for the fuel cell stacks used in cars and buses have been identified by this paper to be, respectively, power density and durability. Long-range plug-in hybrid electric powertrains are the optimal candidate for Chinese plug-in hybrid electric vehicles. Lightweight material, intelligent driving technologies and special electric chassis are set to be the focus for improving the energy efficiency of battery electric vehicles. Comprehensive safety and recyclable electric vehicle technologies are set to become key issues in the future, and the Chinese government should research and develop these in advance. - Highlights: • The key technologies of new energy vehicles are comprehensively reviewed. • The global technical status of key components is reviewed.

  1. Assessment of Vehicle Sizing, Energy Consumption and Cost Through Large Scale Simulation of Advanced Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moawad, Ayman [Argonne National Lab. (ANL), Argonne, IL (United States); Kim, Namdoo [Argonne National Lab. (ANL), Argonne, IL (United States); Shidore, Neeraj [Argonne National Lab. (ANL), Argonne, IL (United States); Rousseau, Aymeric [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. This report reviews the results of the DOE VTO. It gives an assessment of the fuel and light-duty vehicle technologies that are most likely to be established, developed, and eventually commercialized during the next 30 years (up to 2045). Because of the rapid evolution of component technologies, this study is performed every two years to continuously update the results based on the latest state-of-the-art technologies.

  2. 77 FR 73458 - Vehicle Technologies Program; Request for Information

    Science.gov (United States)

    2012-12-10

    ... improving the electronic tools it makes available to assist fleets and consumers in reducing petroleum consumption in vehicles. DOE is seeking partners interested in including customized versions of the electronic...-0049] Vehicle Technologies Program; Request for Information AGENCY: Office of Energy Efficiency and...

  3. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Directory of Open Access Journals (Sweden)

    Philippe Lebeau

    2015-01-01

    Full Text Available Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks and vehicle technology (petrol, hybrid, diesel, and electric vehicles. Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile.

  4. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Science.gov (United States)

    Lebeau, Philippe; De Cauwer, Cedric; Van Mierlo, Joeri; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry

    2015-01-01

    Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile.

  5. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Science.gov (United States)

    Lebeau, Philippe; De Cauwer, Cedric; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry

    2015-01-01

    Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile. PMID:26236769

  6. Technology Improvement for the High Reliability LM-2F Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    QIN Tong; RONG Yi; ZHENG Liwei; ZHANG Zhi

    2017-01-01

    The Long March 2F (LM-2F) launch vehicle,the only launch vehicle designed for manned space flight in China,successfully launched the Tiangong 2 space laboratory and the Shenzhou ll manned spaceship into orbits in 2016 respectively.In this study,it introduces the technological improvements for enhancing the reliability of the LM-2F launch vehicle in the aspects of general technology,control system,manufacture and ground support system.The LM2F launch vehicle will continue to provide more contributions to the Chinese Space Station Project with its high reliability and 100% success rate.

  7. Alternative energy development strategies for China towards 2030

    Institute of Scientific and Technical Information of China (English)

    Linwei MA; Zheng LI; Feng FU; Xiliang ZHANG; Weidou NI

    2009-01-01

    The purposes, objectives and technology path-ways for alternative energy development are discussed with the aim of reaching sustainable energy development in China. Special attention has been paid to alternative power and alternative vehicle fuels. Instead of limiting alternative energy to energy sources such as nuclear and renewable energy, the scope of discussion is extended to alternative technologies such as coal power with carbon capture and sequestration (CCS), electric and hydrogen vehicles. In order to take account of the fact that China's sustainable energy development involves many dimen-sions, a six-dimensional indicator set has been established and applied with the aim of comprehensively evaluating different technology pathways in a uniform way. The ana-lysis reaches the following conclusions: (a) in the power sector, wind power, nuclear power and hydro power should be developed as much as possible, while R&D of solar power and coal power with CCS should be strengthened continuously for future deployment. (b) in the transporta-tion sector, there is no foreseeable silver bullet to replace oil on a large scale within the time frame of 20 to 30 years. To ease the severe energy security situation, expedient choices like coal derived fuels could be developed. However, its scale should be optimized in accordance to the trade-off of energy security benefits, production costs and environmental costs. Desirable alternative fuels (or technologies) like 2nd generation biofuels and electrical vehicles should be the subject of intensive R&D with the objective to be cost effective as early as possible.

  8. Spent Nuclear Fuel Alternative Technology Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  9. Spent Nuclear Fuel Alternative Technology Risk Assessment

    International Nuclear Information System (INIS)

    Perella, V.F.

    1999-01-01

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment

  10. Opportunities of the new technological model of light vehicle fuels in South America; Oportunidades futuras no novo modelo tecnologico de combustiveis para veiculos leves na America do Sul

    Energy Technology Data Exchange (ETDEWEB)

    Dourado, Jose Diamantino de A. [Centro Federal de Educacao Tecnologica Celso Sukow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil); Chaves, Hernani Aquini F.; Jones, Cleveland Maximino [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Dept. de Estratigrafia e Paleontologia (DEPA)

    2008-07-01

    The purpose of this work is to show which solutions the South American market is putting forth for the new technological model of the automotive fuel for light duty vehicles. A strong and irreversible trend is underway, which is seeking more environmentally friendly and economically attractive alternatives for the conventional automotive technology, based on the consumption of gasoline and diesel fuel. This trend is evident not only in Latin America, but also in many other countries and regions, and has resulted in a great number of vehicle conversions, so as to operate with vehicular natural gas. Another important way in which this trend has expressed itself is the commercial acceptance and success of the tetra fuel technology vehicles. (author)

  11. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alex [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-26

    Motor fuel taxes were established to finance our nation’s transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  12. Clean Cities 2014 Vehicle Buyer's Guide (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-12-01

    This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  13. Survey on In-vehicle Technology Use: Results and Findings

    Directory of Open Access Journals (Sweden)

    Raj K. Kamalanathsharma

    2015-06-01

    Full Text Available The use of advanced technology in automobiles has increased dramatically in the past couple of years. Driver-assisting gadgets such as navigation systems, advanced cruise control, collision avoidance systems, and other safety systems have moved down the ladder from luxury to more basic vehicles. Concurrently, auto manufacturers are also designing and testing driving algorithms that can assist with basic driving tasks, many of which are being continuously scrutinized by traffic safety agencies to ensure that these systems do not pose a safety hazard. The research presented in this paper brings a third perspective to in-vehicle technology by conducting a two-stage survey to collect public opinion on advanced in-vehicle technology. Approximately 64 percent of the respondents used a smartphone application to assist with their travel. The top-used applications were navigation and real-time traffic information systems. Among those who used smartphones during their commutes, the top-used applications were navigation and entertainment.

  14. Application of lap laser welding technology on stainless steel railway vehicles

    Science.gov (United States)

    Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo

    2016-10-01

    Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big

  15. 40 CFR 80.583 - What alternative sampling and testing requirements apply to importers who transport motor vehicle...

    Science.gov (United States)

    2010-07-01

    ... requirements apply to importers who transport motor vehicle diesel fuel, NRLM diesel fuel, or ECA marine fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... alternative sampling and testing requirements apply to importers who transport motor vehicle diesel fuel, NRLM...

  16. Virtual Laboratory Enabling Collaborative Research in Applied Vehicle Technologies

    Science.gov (United States)

    Lamar, John E.; Cronin, Catherine K.; Scott, Laura E.

    2005-01-01

    The virtual laboratory is a new technology, based on the internet, that has had wide usage in a variety of technical fields because of its inherent ability to allow many users to participate simultaneously in instruction (education) or in the collaborative study of a common problem (real-world application). The leadership in the Applied Vehicle Technology panel has encouraged the utilization of this technology in its task groups for some time and its parent organization, the Research and Technology Agency, has done the same for its own administrative use. This paper outlines the application of the virtual laboratory to those fields important to applied vehicle technologies, gives the status of the effort, and identifies the benefit it can have on collaborative research. The latter is done, in part, through a specific example, i.e. the experience of one task group.

  17. U.S. advanced launch vehicle technology programs : Quarterly Launch Report : special report

    Science.gov (United States)

    1996-01-01

    U.S. firms and U.S. government agencies are jointly investing in advanced launch vehicle technology. This Special Report summarizes U.S. launch vehicle technology programs and highlights the changing : roles of government and industry players in pick...

  18. UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project

    International Nuclear Information System (INIS)

    Walkowicz, K.

    2001-01-01

    UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies

  19. Consumer preferences for alternative fuel vehicles: Comparing a utility maximization and a regret minimization model

    International Nuclear Information System (INIS)

    Chorus, Caspar G.; Koetse, Mark J.; Hoen, Anco

    2013-01-01

    This paper presents a utility-based and a regret-based model of consumer preferences for alternative fuel vehicles, based on a large-scale stated choice-experiment held among company car leasers in The Netherlands. Estimation and application of random utility maximization and random regret minimization discrete choice models shows that while the two models achieve almost identical fit with the data and differ only marginally in terms of predictive ability, they generate rather different choice probability-simulations and policy implications. The most eye-catching difference between the two models is that the random regret minimization model accommodates a compromise-effect, as it assigns relatively high choice probabilities to alternative fuel vehicles that perform reasonably well on each dimension instead of having a strong performance on some dimensions and a poor performance on others. - Highlights: • Utility- and regret-based models of preferences for alternative fuel vehicles. • Estimation based on stated choice-experiment among Dutch company car leasers. • Models generate rather different choice probabilities and policy implications. • Regret-based model accommodates a compromise-effect

  20. Emerging vehicle technologies & the search for urban mobility solutions

    Directory of Open Access Journals (Sweden)

    Jitendra N. Bajpai

    2016-01-01

    Full Text Available The convergence of the ongoing innovations to make vehicles driverless, carbon free and accessible on ‘as needed’ basis, is evolving fast. A review of available information suggests that these technologies have substantial potential to generate positive externalities by improving road safety, lowering of fuel consumption and emissions in vehicles, and providing mobility options for vulnerable population including young, old and persons with disability. However, given the limited commercialization it is difficult to discern the nature of impact these technologies will have in reducing the two negative travel externalities, road congestion and low density expansion of cities. Gradual mainstreaming of these technologies will offer opportunities for further research in understanding the behavioral responses of their end users, and the risks that these technologies may pose to manufacturers, consumers, and stakeholders.

  1. Transit signal priority with connected vehicle technology.

    Science.gov (United States)

    2014-01-01

    A new TSP logic was proposed, taking advantage of the resources provided by Connected Vehicle (CV) : technology, including two-way communication between the bus and the traffic signal controller, accurate bus : location detection and prediction, and ...

  2. Sustainable Mobility: Using a Global Energy Model to Inform Vehicle Technology Choices in a Decarbonized Economy

    Directory of Open Access Journals (Sweden)

    Timothy Wallington

    2013-04-01

    Full Text Available The reduction of CO2 emissions associated with vehicle use is an important element of a global transition to sustainable mobility and is a major long-term challenge for society. Vehicle and fuel technologies are part of a global energy system, and assessing the impact of the availability of clean energy technologies and advanced vehicle technologies on sustainable mobility is a complex task. The global energy transition (GET model accounts for interactions between the different energy sectors, and we illustrate its use to inform vehicle technology choices in a decarbonizing economy. The aim of this study is to assess how uncertainties in future vehicle technology cost, as well as how developments in other energy sectors, affect cost-effective fuel and vehicle technology choices. Given the uncertainties in future costs and efficiencies for light-duty vehicle and fuel technologies, there is no clear fuel/vehicle technology winner that can be discerned at the present time. We conclude that a portfolio approach with research and development of multiple fuel and vehicle technology pathways is the best way forward to achieve the desired result of affordable and sustainable personal mobility. The practical ramifications of this analysis are illustrated in the portfolio approach to providing sustainable mobility adopted by the Ford Motor Company.

  3. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  4. Hydrogen storage alternatives - a technological and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Joakim; Hjortsberg, Ove [Volvo Teknisk Utveckling AB, Goeteborg (Sweden)

    1999-12-01

    This study reviews state-of-the-art of hydrogen storage alternatives for vehicles. We will also discuss the prospects and estimated cost for industrial production. The study is based on published literature and interviews with active researchers. Among the alternatives commercially available today, we suggest using a moderate-pressure chamber for seasonal stationary energy storage; metal hydride vessels for small stationary units; a roof of high-pressure cylinders for buses, trucks and ferries; cryogenic high-pressure vessels or methanol reformers for cars and tractors; and cryogenic moderate-pressure vessels for aeroplanes. Initial fuel dispensing systems should be designed to offer hydrogen in pressurised form for good fuel economy, but also as cryogenic liquid for occasional needs of extended driving range and as methanol for reformer-equipped vehicles. It is probable that hydrogen can be stored efficiently in adsorbents for use in recyclable hydrogen fuel containers or rechargeable hydrogen vessels operating at ambient temperature and possibly ambient pressure by year 2004, and at reasonable or even low cost by 2010. The most promising alternatives involve various forms of activated graphite nanostructures. Recommendations for further research and standardisation activities are given.

  5. ITS Technologies in Military Wheeled Tactical Vehicles: Status Quo and the Future

    International Nuclear Information System (INIS)

    Knee, H.E.

    2001-01-01

    The U.S. Army operates and maintains the largest trucking fleet in the United States. Its fleet consists of over 246,000 trucks, and it is responsible for buying and developing trucks for all branches of the armed forces. The Army's tactical wheeled vehicle fleet is the logistical backbone of the Army, and annually, the fleet logs about 823 million miles. The fleet consists of a number of types of vehicles. They include eight different families of trucks from the High Mobility Multi-Purpose Wheeled Vehicles to M900 series line haul tractors and special bodies. The average age of all the trucks within the Army fleet is 15 years, and very few have more than traditional driving instrumentation on-board. Over the past decade, the Department of Transportation's (DOT's) Intelligent Transportation Systems (ITS) Program has conducted research and deployment activities in a number of areas including in-vehicle systems, communication and telematics technologies. Many current model passenger vehicles have demonstrated the assimilation of these technologies to enhance safety and trip quality. Commercial vehicles are also demonstrating many new electronic devices that are assisting in making them safer and more efficient. Moreover, a plethora of new technologies are about to be introduced to drivers that promise greater safety, enhanced efficiency, congestion avoidance, fuel usage reduction, and enhanced trip quality. The U.S. Army has special needs with regard to fleet management, logistics, sustainability, reliability, survivability, and fuel consumption that goes beyond similar requirements within the private industry. In order to effectively apply emerging ITS technologies to the special needs of the U.S. Army, planning for the conduct of the Army's Vehicle Intelligence Program (AVIP) has now commenced. The AVIP will be focused on the conduct of research that: (1) will apply ITS technologies to the special needs of the Army, and (2) will conduct research for special needs

  6. Off-highway vehicle technology roadmap.; TOPICAL

    International Nuclear Information System (INIS)

    NONE

    2002-01-01

    The off-highway sector is under increasing pressure to reduce operating costs (including fuel costs) and to reduce emissions. Recognizing this, the Society of Automotive Engineers and the U.S. Department of Energy (DOE) convened a workshop in April 2001 (ANL 2001) to (1) determine the interest of the off-highway sector (consisting of agriculture, construction, surface mining, inland marine) in crafting a shared vision of off-highway, heavy machines of the future and (2) identify critical research and development (R and D) needs for minimizing off-highway vehicle emissions while cost-effectively maintaining or enhancing system performance. The workshop also enabled government and industry participants to exchange information. During the workshop, it became clear that the challenges facing the heavy, surface-based off-highway sector can be addressed in three major machine categories: (1) engine/aftertreatment and fuels/lubes, (2) machine systems, and (3) thermal management. Working groups convened to address these topical areas. The status of off-highway technologies was determined, critical technical barriers to achieving future emission standards were identified, and strategies and technologies for reducing fuel consumption were discussed. Priority areas for R and D were identified. Given the apparent success of the discussions at the workshop, several participants from industry agreed to help in the formation of a joint industry/government ''roadmap'' team. The U.S. Department of Energy's Office of Heavy Vehicle Technologies has an extensive role in researching ways to make heavy-duty trucks and trains more efficient, with respect to both fuel usage and air emissions. The workshop participants felt that a joint industry/government research program that addresses the unique needs of the off-highway sector would complement the current research program for highway vehicles. With industry expertise, in-kind contributions, and federal government funding (coupled with

  7. Autonomous vehicles: from paradigms to technology

    Science.gov (United States)

    Ionita, Silviu

    2017-10-01

    Mobility is a basic necessity of contemporary society and it is a key factor in global economic development. The basic requirements for the transport of people and goods are: safety and duration of travel, but also a number of additional criteria are very important: energy saving, pollution, passenger comfort. Due to advances in hardware and software, automation has penetrated massively in transport systems both on infrastructure and on vehicles, but man is still the key element in vehicle driving. However, the classic concept of ‘human-in-the-loop’ in terms of ‘hands on’ in driving the cars is competing aside from the self-driving startups working towards so-called ‘Level 4 autonomy’, which is defined as “a self-driving system that does not requires human intervention in most scenarios”. In this paper, a conceptual synthesis of the autonomous vehicle issue is made in connection with the artificial intelligence paradigm. It presents a classification of the tasks that take place during the driving of the vehicle and its modeling from the perspective of traditional control engineering and artificial intelligence. The issue of autonomous vehicle management is addressed on three levels: navigation, movement in traffic, respectively effective maneuver and vehicle dynamics control. Each level is then described in terms of specific tasks, such as: route selection, planning and reconfiguration, recognition of traffic signs and reaction to signaling and traffic events, as well as control of effective speed, distance and direction. The approach will lead to a better understanding of the way technology is moving when talking about autonomous cars, smart/intelligent cars or intelligent transport systems. Keywords: self-driving vehicle, artificial intelligence, deep learning, intelligent transport systems.

  8. Analysis of the Effects of Connected–Automated Vehicle Technologies on Travel Demand

    Energy Technology Data Exchange (ETDEWEB)

    Auld, Joshua [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439; Sokolov, Vadim [Department of Systems Engineering and Operations Research, Volgenau School of Engineering, George Mason University, MS 4A6, 4400 University Drive, Fairfax, VA 22030; Stephens, Thomas S. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439

    2017-01-01

    Connected–automated vehicle (CAV) technologies are likely to have significant effects not only on how vehicles operate in the transportation system, but also on how individuals behave and use their vehicles. While many CAV technologies—such as connected adaptive cruise control and ecosignals—have the potential to increase network throughput and efficiency, many of these same technologies have a secondary effect of reducing driver burden, which can drive changes in travel behavior. Such changes in travel behavior—in effect, lowering the cost of driving—have the potential to increase greatly the utilization of the transportation system with concurrent negative externalities, such as congestion, energy use, and emissions, working against the positive effects on the transportation system resulting from increased capacity. To date, few studies have analyzed the potential effects on CAV technologies from a systems perspective; studies often focus on gains and losses to an individual vehicle, at a single intersection, or along a corridor. However, travel demand and traffic flow constitute a complex, adaptive, nonlinear system. Therefore, in this study, an advanced transportation systems simulation model—POLARIS—was used. POLARIS includes cosimulation of travel behavior and traffic flow to study the potential effects of several CAV technologies at the regional level. Various technology penetration levels and changes in travel time sensitivity have been analyzed to determine a potential range of effects on vehicle miles traveled from various CAV technologies.

  9. Reducing environmental damage through the use of unmanned aerial vehicles as the best available technology

    Science.gov (United States)

    Fedulova, E. A.; Akulov, A. O.; Rada, A. O.; Alabina, T. A.; Savina, Ju Ju

    2018-01-01

    The article examines the possibilities of using unmanned aerial vehicles as the best available technologies in the field of agriculture and mining. The object of the study is the use of unmanned aerial vehicles as the best available technology. The main areas of application of this technology are identified: agro technical operations, aerial photography of mining operations. The technology of unmanned aerial vehicles is compared with the technologies of ground agricultural machinery. The research methodology includes an expert evaluation of the unmanned aerial vehicle technology belonging to the class of the best available technologies by the criteria: the level of environmental impact, resource saving, the use of low-waste, non-waste processes, the existence of at least two objects, economic efficiency. Expert evaluations were processed using the apparatus of fuzzy sets, which make it possible to construct membership functions. This allowed us to prove that the technology of unmanned aerial vehicles belongs to a fuzzy set of the best available technologies. The results of the research show that the use of unmanned aerial vehicles provides a saving of resources, especially non-renewable combustible minerals, reduces emissions and discharges of pollutants into the atmosphere, and also reduces soil erosion. Unmanned aerial vehicles should be included in the national directories of the best available technologies for the mining industry and agriculture.

  10. A trial of retrofitted advisory collision avoidance technology in government fleet vehicles.

    Science.gov (United States)

    Thompson, James P; Mackenzie, Jamie R R; Dutschke, Jeffrey K; Baldock, Matthew R J; Raftery, Simon J; Wall, John

    2018-06-01

    In-vehicle collision avoidance technology (CAT) has the potential to prevent crash involvement. In 2015, Transport for New South Wales undertook a trial of a Mobileye 560 CAT system that was installed in 34 government fleet vehicles for a period of seven months. The system provided headway monitoring, lane departure, forward collision and pedestrian collision warnings, using audio and visual alerts. The purpose of the trial was to determine whether the technology could change the driving behaviour of fleet vehicle drivers and improve their safety. The evaluation consisted of three components: (1) analysis of objective data to examine effects of the technology on driving behaviour, (2) analysis of video footage taken from a sample of the vehicles to examine driving circumstances that trigger headway monitoring and forward collision warnings, and (3) a survey completed by 122 of the 199 individuals who drove the trial vehicles to examine experiences with, and attitudes to, the technology. Analysis of the objective data found that the system resulted in changes in behaviour with increased headway and improved lane keeping, but that these improvements dissipated once the warning alerts were switched off. Therefore, the system is capable of altering behaviour but only when it is actively providing alerts. In-vehicle video footage revealed that over a quarter of forward collision warnings were false alarms, in which a warning event was triggered despite there being no vehicle travelling ahead. The surveyed drivers recognised that the system could improve safety but most did not wish to use it themselves as they found it to be distracting and felt that it would not prevent them from having a crash. The results demonstrate that collision avoidance technology can improve driving behaviour but drivers may need to be educated about the potential benefits for their driving in order to accept the technology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Spent Nuclear Fuel Alternative Technology Decision Analysis

    International Nuclear Information System (INIS)

    Shedrow, C.B.

    1999-01-01

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology

  12. The real-world safety potential of connected vehicle technology.

    Science.gov (United States)

    Doecke, Sam; Grant, Alex; Anderson, Robert W G

    2015-01-01

    This article estimates the safety potential of a current commercially available connected vehicle technology in real-world crashes. Data from the Centre for Automotive Safety Research's at-scene in-depth crash investigations in South Australia were used to simulate the circumstances of real-world crashes. A total of 89 crashes were selected for inclusion in the study. The crashes were selected as representative of the most prevalent crash types for injury or fatal crashes and had potential to be mitigated by connected vehicle technology. The trajectory, speeds, braking, and impact configuration of the selected in-depth cases were replicated in a software package and converted to a file format allowing "replay" of the scenario in real time as input to 2 Cohda Wireless MK2 onboard units. The Cohda Wireless onboard units are a mature connected vehicle technology that has been used in both the German simTD field trial and the U.S. Department of Transport's Safety Pilot project and have been tuned for low false alarm rates when used in the real world. The crash replay was achieved by replacing each of the onboard unit Global Positioning System (GPS) inputs with the simulated data of each of the involved vehicles. The time at which the Cohda Wireless threat detection software issued an elevated warning was used to calculate a new impact speed using 3 different reaction scenarios and 2 levels of braking. It was found that between 37 and 86% of the simulated crashes could be avoided, with highest percentage due a fully autonomous system braking at 0.7 g. The same system also reduced the impact speed relative to the actual crash in all cases. Even when a human reaction time of 1.2 s and moderate braking of 0.4 g was assumed, the impact speed was reduced in 78% of the crashes. Crash types that proved difficult for the threat detection engine were head-on crashes where the approach angle was low and right turn-opposite crashes. These results indicate that connected vehicle

  13. A Comparative Study on Emerging Electric Vehicle Technology Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Jonathan [Sentech, Inc.; Khowailed, Gannate [Sentech, Inc.; Blackburn, Julia [Sentech, Inc.; Sikes, Karen [Sentech, Inc.

    2011-03-01

    Numerous organizations have published reports in recent years that investigate the ever changing world of electric vehicle (EV) technologies and their potential effects on society. Specifically, projections have been made on greenhouse gas (GHG) emissions associated with these vehicles and how they compare to conventional vehicles or hybrid electric vehicles (HEVs). Similar projections have been made on the volumes of oil that these vehicles can displace by consuming large amounts of grid electricity instead of petroleum-based fuels. Finally, the projected rate that these new vehicle fleets will enter the market varies significantly among organizations. New ideas, technologies, and possibilities are introduced often, and projected values are likely to be refined as industry announcements continue to be made. As a result, over time, a multitude of projections for GHG emissions, oil displacement, and market penetration associated with various EV technologies has resulted in a wide range of possible future outcomes. This leaves the reader with two key questions: (1) Why does such a collective range in projected values exist in these reports? (2) What assumptions have the greatest impact on the outcomes presented in these reports? Since it is impractical for an average reader to review and interpret all the various vehicle technology reports published to date, Sentech Inc. and the Oak Ridge National Laboratory have conducted a comparative study to make these interpretations. The primary objective of this comparative study is to present a snapshot of all major projections made on GHG emissions, oil displacement, or market penetration rates of EV technologies. From the extensive data found in relevant publications, the key assumptions that drive each report's analysis are identified and 'apples-to-apples' comparisons between all major report conclusions are attempted. The general approach that was taken in this comparative study is comprised of six primary

  14. Insurance issues and natural gas vehicles. Final report, January 1992

    International Nuclear Information System (INIS)

    Squadron, W.F.; Ward, C.O.; Brown, M.H.

    1992-01-01

    GRI has been funding research on natural gas vehicle (NGV) technology since 1986. To support the activity, GRI is evaluating a number of NGV issues including fuel storage, tank inspection, system safety, refueling, U.S. auto and truck use characteristics, and the fleet vehicle infrastructure. In addition, insurance and leasing companies will require new regulations and policies to address clean-fueled vehicle fleets' emergence into the marketplace. These policies may influence and partially determine the structure of the alternatively fueled vehicle industry, and the requirements, if any, imposed upon vehicle technologies. The report asseses the insurance and leasing industries' infrastructure/institutional barriers as they relate to the introduction of natural gas fueled vehicle fleets

  15. Free Flight Rotorcraft Flight Test Vehicle Technology Development

    Science.gov (United States)

    Hodges, W. Todd; Walker, Gregory W.

    1994-01-01

    A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

  16. An assessment of electric vehicles: technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives.

    Science.gov (United States)

    Delucchi, M A; Yang, C; Burke, A F; Ogden, J M; Kurani, K; Kessler, J; Sperling, D

    2014-01-13

    Concerns about climate change, urban air pollution and dependence on unstable and expensive supplies of foreign oil have led policy-makers and researchers to investigate alternatives to conventional petroleum-fuelled internal-combustion-engine vehicles in transportation. Because vehicles that get some or all of their power from an electric drivetrain can have low or even zero emissions of greenhouse gases (GHGs) and urban air pollutants, and can consume little or no petroleum, there is considerable interest in developing and evaluating advanced electric vehicles (EVs), including pure battery-electric vehicles, plug-in hybrid electric vehicles and hydrogen fuel-cell electric vehicles. To help researchers and policy-makers assess the potential of EVs to mitigate climate change and reduce petroleum use, this paper discusses the technology of EVs, the infrastructure needed for their development, impacts on emissions of GHGs, petroleum use, materials use, lifetime costs, consumer acceptance and policy considerations.

  17. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  18. A PEMFC hybrid electric vehicle real time control system

    Science.gov (United States)

    Sun, Hongqiao

    In recent years, environmental friendly technologies and alternative energy solutions have drawn a lot of public attentions due to global energy crisis and pollution issues. Fuel cell (FC), a technology invented almost at the same time as the internal combustion (IC) engine, is now the focus of the automotive industry again. The fuel cell vehicle (FCV) has zero emission and its efficiency is significantly higher than the conventional IC engine power vehicles. Among a variety of FCV technologies, proton exchange membrane (PEM) FC vehicle appears to be far more attractive and mature. The prototype PEMFC vehicle has been developed and demonstrated to the public by nearly all the major automotive manufacturers in recent years. However, to the interest of the public research, publications and documentations on the PEMFC vehicle technology are rarely available due to its proprietary nature, which essentially makes it a secured technology. This dissertation demonstrates a real world application of a PEMFC hybrid electric vehicle. Through presenting the vehicle design concept, developing the real time control system and generating generic operation principles, this dissertation targets at establishing the public knowledge base on this new technology. A complete PEMFC hybrid electric vehicle design, including vehicle components layout, process flow diagram, real time control system architecture, subsystem structures and control algorithms, is presented in order to help understand the whole vehicle system. The design concept is validated through the vehicle demonstration. Generic operating principles are established along with the validation process, which helps populate this emerging technology. Thereafter, further improvements and future research directions are discussed.

  19. 78 FR 31535 - Assistive Technology Alternative Financing Program

    Science.gov (United States)

    2013-05-24

    ... DEPARTMENT OF EDUCATION Assistive Technology Alternative Financing Program AGENCY: Office of Special Education and Rehabilitative Services, Department of Education. ACTION: Notice. Catalog of Federal... developed for the Assistive Technology (AT) Alternative Financing Program (AFP) in fiscal year (FY) 2012 to...

  20. Clean Cities Plug-In Electric Vehicle Handbook for Fleet Managers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  1. Development and use of GREET 1.6 fuel-cycle model for transportation fuels and vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    2001-01-01

    Since 1995, with funds from the U.S. Department of Energy's (DOE's) Office of Transportation Technologies (OTT), Argonne National Laboratory has been developing the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The model is intended to serve as an analytical tool for use by researchers and practitioners in estimating fuel-cycle energy use and emissions associated with alternative transportation fuels and advanced vehicle technologies. Argonne released the first version of the GREET mode--GREET 1.0--in June 1996. Since then, it has released a series of GREET versions with revisions, updates, and upgrades. In February 2000, the latest public version of the model--GREET 1.5a--was posted on Argonne's Transportation Technology Research and Development Center (TTRDC) Web site (www.transportation.anl.gov/ttrdc/greet)

  2. Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure

    Science.gov (United States)

    Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew

    2004-01-01

    This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.

  3. EHV systems technology - A look at the principles and current status. [Electric and Hybrid Vehicle

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1983-01-01

    An examination of the basic principles and practices of systems engineering is undertaken in the context of their application to the component and subsystem technologies involved in electric and hybrid vehicle (EHV) development. The limitations of purely electric vehicles are contrasted with hybrid, heat engine-incorporating vehicle technology, which is inherently more versatile. A hybrid vehicle concept assessment methodology is presented which employs current technology and yet fully satisfies U.S. Department of Energy petroleum displacement goals.

  4. Batteries and fuel cells for emerging electric vehicle markets

    Science.gov (United States)

    Cano, Zachary P.; Banham, Dustin; Ye, Siyu; Hintennach, Andreas; Lu, Jun; Fowler, Michael; Chen, Zhongwei

    2018-04-01

    Today's electric vehicles are almost exclusively powered by lithium-ion batteries, but there is a long way to go before electric vehicles become dominant in the global automotive market. In addition to policy support, widespread deployment of electric vehicles requires high-performance and low-cost energy storage technologies, including not only batteries but also alternative electrochemical devices. Here, we provide a comprehensive evaluation of various batteries and hydrogen fuel cells that have the greatest potential to succeed in commercial applications. Three sectors that are not well served by current lithium-ion-powered electric vehicles, namely the long-range, low-cost and high-utilization transportation markets, are discussed. The technological properties that must be improved to fully enable these electric vehicle markets include specific energy, cost, safety and power grid compatibility. Six energy storage and conversion technologies that possess varying combinations of these improved characteristics are compared and separately evaluated for each market. The remainder of the Review briefly discusses the technological status of these clean energy technologies, emphasizing barriers that must be overcome.

  5. Hybrid Vehicle Technologies and their potential for reducing oil use

    Science.gov (United States)

    German, John

    2006-04-01

    Vehicles with hybrid gasoline-electric powertrains are starting to gain market share. Current hybrid vehicles add an electric motor, battery pack, and power electronics to the conventional powertrain. A variety of engine/motor configurations are possible, each with advantages and disadvantages. In general, efficiency is improved due to engine shut-off at idle, capture of energy during deceleration that is normally lost as heat in the brakes, downsizing of the conventional engine, and, in some cases, propulsion on the electric motor alone. Ongoing increases in hybrid market share are dependent on cost reduction, especially the battery pack, efficiency synergies with other vehicle technologies, use of the high electric power to provide features desired by customers, and future fuel price and availability. Potential barriers include historically low fuel prices, high discounting of the fuel savings by new vehicle purchasers, competing technologies, and tradeoffs with other factors desired by customers, such as performance, utility, safety, and luxury features.

  6. How alternative are alternative fuels?

    OpenAIRE

    Soffritti, Tiziana; Danielis, Romeo

    1998-01-01

    Could alternative fuel vehicles contribute to a substantial reduction of air pollution? Is there a market for alternative fuel vehicles? Could a market be created via a pollution tax? The article answers these questions on the basis of the available estimates.

  7. A Framework for Integration of IVHM Technologies for Intelligent Integration for Vehicle Management

    Science.gov (United States)

    Paris, Deidre E.; Trevino, Luis; Watson, Mike

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of IIVM. These real-time responses allow the IIVM to modify the effected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the IIVM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission

  8. Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles.

    Science.gov (United States)

    Thiruvengadam, Arvind; Besch, Marc; Carder, Daniel; Oshinuga, Adewale; Pasek, Randall; Hogo, Henry; Gautam, Mridul

    2016-11-01

    The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions. Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to

  9. Evaluation of automated vehicle technology for transit : [summary].

    Science.gov (United States)

    2014-01-01

    Automated transportation has been portrayed in : futuristic literature since the 19th century, but : making vehicles truly autonomous has only been : possible in recent decades with advanced control : and computer technologies. Automating cars is a :...

  10. Reducing the fuel use and greenhouse gas emissions of the US vehicle fleet

    International Nuclear Information System (INIS)

    Bandivadekar, Anup; Cheah, Lynette; Evans, Christopher; Groode, Tiffany; Heywood, John; Kasseris, Emmanuel; Kromer, Matthew; Weiss, Malcolm

    2008-01-01

    The unrelenting increase in the consumption of oil in the US light-duty vehicle fleet (cars and light trucks) presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce petroleum use and greenhouse gas emissions from motor vehicles. Even so, achieving a noticeable reduction on both fronts in the near term will require rapid penetration of these technologies into the vehicle fleet, and not all alternatives can meet both objectives simultaneously. Placing a much greater emphasis on reducing fuel consumption rather than improving vehicle performance can greatly reduce the required market penetration rates. Addressing the vehicle performance-size-fuel consumption trade-off should be the priority for policymakers rather than promoting specific vehicle technologies and fuels

  11. Alternative technology for arsenic removal from drinking water

    Directory of Open Access Journals (Sweden)

    Purenović Milovan

    2007-01-01

    Full Text Available Arsenic is a naturally occurring element in water, food and air. It is known as a poison, but in very small quantities it is showed to be an essential element. Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1. Because of rivers and lakes pollution, in a number of plants for natural water purification, average concentrations of arsenic in water are up to 100 ug/1. According to MCL, present technologies are unadjusted for safely arsenic removal for concentrations below of 10 ug/1. This fact has inspired many companies to solve this problem adequately, by using an alternative technologies and new process able materials. In this paper the observation of conventional and the alternative technologies will be given, bearing in mind complex chemistry and electrochemistry of arsenic, formation of colloidal arsenic, which causes the biggest problems in water purification technologies. In this paper many results will be presented, which are obtained using the alternative technologies, as well as the newest results of original author's investigations. Using new nanomaterials, on Pilot plant "VALETA H2O-92", concentration of arsenic was removed far below MLC value.

  12. Cost-benefit analysis of electrical vehicles. Cars

    International Nuclear Information System (INIS)

    Taszka, Stephane; Domergue, Silvano; Poret, Mathilde; Monnoyer-Smith, Laurence

    2017-07-01

    This study aims at assessing technologies of electrical or hybrid vehicle from a social-economic point of view as well as from a user's point of view by 2020 and 2030, and thus at identifying relevant fields for these technologies. After having recalled some elements of context (Paris agreement, climate change issues for which transport is an important matter of concern, necessity to reduce CO 2 emissions, atmospheric pollution, and sound pollutions), and envisaged solutions (technological advances in engines and motorizations, evolution of mobility behaviours, use of alternate fuels and more particularly of electric and hybrid vehicles), the authors report a social-economic analysis which compares costs and benefits while taking environmental externalities into account, and an analysis of consumer's or user's point of view by using a total cost of ownership (TCO) approach which takes taxation into account. Four technologies are thus studied: thermal vehicles (petrol and diesel), hybrid vehicles, reloadable hybrid vehicles, and fully electrical vehicles. The implemented methodology and general hypotheses are presented. Results are presented and discussed. They show that an electric vehicle could be already profitable in a dense urban environment in 2020, and hybrid technology in 2030. A mixed use (electric propulsion in urban environment, thermal propulsion for inter-urban trips) seems to be the best solution before these both horizons. The study also reports some elements of assessment of the 'smart grid' value of electric vehicle batteries. Appendices propose detailed assessments and indications of sources of pollutant emissions

  13. Energy and environmental impacts of alternative pathways for the Portuguese road transportation sector

    International Nuclear Information System (INIS)

    Baptista, Patrícia C.; Silva, Carla M.; Farias, Tiago L.; Heywood, John B.

    2012-01-01

    This study presents a methodology to develop scenarios of evolution from 2010 to 2050, for energy consumption and emissions (CO 2 , HC, CO, NO x , PM) of the road transportation sector (light-duty and heavy-duty vehicles). The methodology is applied to Portugal and results are analyzed in a life-cycle perspective. A BAU trend and 5 additional scenarios are explored: Policy-based (Portuguese political targets considered); Liquid fuels-based (dependency on liquid fuels and no deployment of alternative refueling infrastructure); Diversified (introduction of a wide diversity of alternative vehicle technology/energy sources); Electricity vision (deployment of a wide spread electricity recharging infrastructure); Hydrogen pathway (a broad hydrogen refueling infrastructure is deployed). Total life-cycle energy consumption could decrease between 2 and 66% in 2050 relatively to 2010, while CO 2 emissions will decrease between 7 and 73% in 2050 relatively to 2010. In 2050 the BAU scenario remains 30% above the 1990 level for energy consumption and CO 2 emissions; the other considered scenarios lead to 4 to 29% reductions for energy consumption and 10 to 33% for CO 2 emissions in 2050 compared to the BAU. Therefore, alternative vehicle technologies are required in the long-term, but changes in taxation and alternative transportation modes policies are crucial for achieving short-term impacts. - Highlight: ► Assess future energy consumption and emissions scenarios for road transportation. ► LCA energy consumption could decrease 2 to 66% in 2050 relatively to 2010. ► Alternative vehicle technologies can help to lower the BAU scenario impacts. ► Different deployments of alternative technologies can lead to similar impacts.

  14. Zero-emission vehicle technology assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Woods, T.

    1995-08-01

    This is the final report in the Zero-Emission Vehicle (ZEV) Technology Assessment, performed for NYSERDA by Booz-Allen & Hamilton Inc. Booz-Allen wrote the final report, and performed the following tasks as part of the assessment: assembled a database of key ZEV organizations, their products or services, and plans; described the current state of ZEV technologies; identified barriers to widespread ZEV deployment and projected future ZEV technical capabilities; and estimated the cost of ZEVs from 1998 to 2004. Data for the ZEV Technology Assessment were obtained from several sources, including the following: existing ZEV industry publications and Booz-Allen files; major automotive original equipment manufacturers; independent electric vehicle manufacturers; battery developers and manufacturers; infrastructure and component developers and manufacturers; the U.S. Department of Energy, the California Air Resources Board, and other concerned government agencies; trade associations such as the Electric Power Research Institute and the Electric Transportation Coalition; and public and private consortia. These sources were contacted by phone, mail, or in person. Some site visits of manufacturers also were conducted. Where possible, raw data were analyzed by Booz-Allen staff and/or verified by independent sources. Performance data from standardized test cycles were used as much as possible.

  15. Alternative food safety intervention technologies

    Science.gov (United States)

    Alternative nonthermal and thermal food safety interventions are gaining acceptance by the food processing industry and consumers. These technologies include high pressure processing, ultraviolet and pulsed light, ionizing radiation, pulsed and radiofrequency electric fields, cold atmospheric plasm...

  16. Production Costs of Alternative Transportation Fuels. Influence of Crude Oil Price and Technology Maturity

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, Pierpaolo; Morrison, Geoff; Kaneko, Hiroyuki; Cuenot, Francois; Ghandi, Abbas; Fulton, Lewis

    2013-07-01

    This study examines the production costs of a range of transport fuels and energy carriers under varying crude oil price assumptions and technology market maturation levels. An engineering ''bottom-up'' approach is used to estimate the effect of the input cost of oil and of various technological assumptions on the finished price of these fuels. In total, the production costs of 20 fuels are examined for crude oil prices between USD 60 and USD 150 per barrel. Some fuel pathways can be competitive with oil as their production, transport and storage technology matures, and as oil price increases. Rising oil prices will offer new opportunities to switch to alternative fuels for transport, to diversify the energy mix of the transport sector, and to reduce the exposure of the whole system to price volatility and potential distuption of supply. In a time of uncertainty about the leading vehicle technology to decarbonize the transport sector, looking at the fuel cost brings key information to be considered to keep mobility affordable yet sustainable.

  17. The latest technical solutions in rail vehicles drives

    Directory of Open Access Journals (Sweden)

    Andrzejewski Maciej

    2017-01-01

    Full Text Available The article discusses the latest trends and solutions used in the offers of rail vehicles manufacturers. The study is mainly concerned with the technical solutions used in hybrid rail vehicles, whose development has become one of the priorities for the development of rail vehicles in the European Union in recent years. Stricter emissions standards for harmful compounds in the European Union have forced manufacturers to use increasingly sophisticated technology, including hybrid drives and alternative fuels. The products and solutions offered by the major manufacturers on the market, along with their capabilities and future applications are described. The predicted trends in the development of propulsion technology for rail and road-rail vehicles are also indicated in view of the current legislative aspirations among the EU Member States.

  18. Effective public resource allocation to escape lock-in: the case of infrastructure-dependent vehicle technologies

    NARCIS (Netherlands)

    Vooren, A. van der; Alkemade, F.; Hekkert, M.P.

    2012-01-01

    A multi-stage technological substitution model of infrastructure-dependent vehicle technologies is developed. This is used to examine how the allocation of public, financial resources to RD&D support and infrastructure development affects the replacement of a locked-in vehicle technology by more

  19. EXPERIENCES WITH ACQUIRING HIGHLY REDUNDANT SPATIAL DATA TO SUPPORT DRIVERLESS VEHICLE TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Z. Koppanyi

    2018-05-01

    Full Text Available As vehicle technology is moving towards higher autonomy, the demand for highly accurate geospatial data is rapidly increasing, as accurate maps have a huge potential of increasing safety. In particular, high definition 3D maps, including road topography and infrastructure, as well as city models along the transportation corridors represent the necessary support for driverless vehicles. In this effort, a vehicle equipped with high-, medium- and low-resolution active and passive cameras acquired data in a typical traffic environment, represented here by the OSU campus, where GPS/GNSS data are available along with other navigation sensor data streams. The data streams can be used for two purposes. First, high-definition 3D maps can be created by integrating all the sensory data, and Data Analytics/Big Data methods can be tested for automatic object space reconstruction. Second, the data streams can support algorithmic research for driverless vehicle technologies, including object avoidance, navigation/positioning, detecting pedestrians and bicyclists, etc. Crucial cross-performance analyses on map database resolution and accuracy with respect to sensor performance metrics to achieve economic solution for accurate driverless vehicle positioning can be derived. These, in turn, could provide essential information on optimizing the choice of geospatial map databases and sensors’ quality to support driverless vehicle technologies. The paper reviews the data acquisition and primary data processing challenges and performance results.

  20. Experiences with Acquiring Highly Redundant Spatial Data to Support Driverless Vehicle Technologies

    Science.gov (United States)

    Koppanyi, Z.; Toth, C. K.

    2018-05-01

    As vehicle technology is moving towards higher autonomy, the demand for highly accurate geospatial data is rapidly increasing, as accurate maps have a huge potential of increasing safety. In particular, high definition 3D maps, including road topography and infrastructure, as well as city models along the transportation corridors represent the necessary support for driverless vehicles. In this effort, a vehicle equipped with high-, medium- and low-resolution active and passive cameras acquired data in a typical traffic environment, represented here by the OSU campus, where GPS/GNSS data are available along with other navigation sensor data streams. The data streams can be used for two purposes. First, high-definition 3D maps can be created by integrating all the sensory data, and Data Analytics/Big Data methods can be tested for automatic object space reconstruction. Second, the data streams can support algorithmic research for driverless vehicle technologies, including object avoidance, navigation/positioning, detecting pedestrians and bicyclists, etc. Crucial cross-performance analyses on map database resolution and accuracy with respect to sensor performance metrics to achieve economic solution for accurate driverless vehicle positioning can be derived. These, in turn, could provide essential information on optimizing the choice of geospatial map databases and sensors' quality to support driverless vehicle technologies. The paper reviews the data acquisition and primary data processing challenges and performance results.

  1. Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling for Vehicle Lightweighting

    Energy Technology Data Exchange (ETDEWEB)

    Mascarin, Anthony [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hannibal, Ted [Idaho National Lab. (INL), Idaho Falls, ID (United States); Raghunathan, Anand [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ivanic, Ziga [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, James [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The U.S. Department of Energy’s Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. The strategic targets were a 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. The baseline vehicle was an average of several available vehicles in this class. Mass and cost breakdowns from several sources were used, including original equipment manufacturers’ (OEMs’) input through U.S. Department of Energy’s Vehicle Technologies Office programs and public presentations, A2Mac1 LLC’s teardown information, Lotus Engineering Limited and FEV, Inc. breakdowns in their respective lightweighting studies, and IBIS Associates, Inc.’s decades of experience in automotive lightweighting and materials substitution analyses. Information on lightweighting strategies in this analysis came from these same sources and the ongoing U.S. Department of Energy-funded Vehma International of America, Inc. /Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, and many United States Council for Automotive Research’s/United States Automotive Materials Partnership LLC lightweight materials programs.

  2. Outlook on Standardization of Alternative Vehicle Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Rehnlund, B [Atrax Energi AB (Sweden)

    2008-10-15

    The use of fossil but in first hand biobased alternative fuels in transportation has increased over the last decades. This change is primarily driven by concerns about climate change that is caused by emissions of fossil carbon dioxide and other greenhouse gases, but also by the impact on health and environment, caused by emissions of regulated as well as non-regulated emissions from the transport sector. Most alternative fuels will help to reduce the emissions of regulated and non-regulated emissions, while alternative fuels based on biomass also will contribute to reduced net emissions of carbon dioxide. Since the mid 1990s, the use of biomass based fuels such as ethanol and biodiesel has reached levels high enough in for example Europe, Brazil and the U.S. to motivate national or regional specifications/standards. Especially from the vehicle/engine manufacturer's point of view standards are of high importance. From early 2000 onwards, the international trade of biofuels (for example from Brazil to the U.S. and Europe) has grown, and this has created a need for common international specifications/standards. This report presents information about national and regional standards for alternative fuels, but also, when existing and reported, standards on a global level are described and discussed. Ongoing work concerning new or revised standards on alternative fuels on national, regional or global level is also discussed. In this report we have covered standards on all kind of alternative fuels, exemplified below. However, the focus is on liquid biofuels for diesel engines and Otto engines. 1) Liquid fuels for diesel engines (compression ignition engines), such as Fatty Acid Methyl Esters (FAME), Fatty Acid Ethyl Esters (FAEE), alcohols, alcohol derivates and synthetic diesel fuels. 2) Liquid fuels for Otto engines (spark ignition engines), such as alcohols, ethers and synthetic gasoline. 3) Liquefied fossil petroleum gas (LPG). 4) Di-Methyl Ether (DME). 5) Fossil

  3. Outlook on Standardization of Alternative Vehicle Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Rehnlund, B. [Atrax Energi AB (Sweden)

    2008-10-15

    The use of fossil but in first hand biobased alternative fuels in transportation has increased over the last decades. This change is primarily driven by concerns about climate change that is caused by emissions of fossil carbon dioxide and other greenhouse gases, but also by the impact on health and environment, caused by emissions of regulated as well as non-regulated emissions from the transport sector. Most alternative fuels will help to reduce the emissions of regulated and non-regulated emissions, while alternative fuels based on biomass also will contribute to reduced net emissions of carbon dioxide. Since the mid 1990s, the use of biomass based fuels such as ethanol and biodiesel has reached levels high enough in for example Europe, Brazil and the U.S. to motivate national or regional specifications/standards. Especially from the vehicle/engine manufacturer's point of view standards are of high importance. From early 2000 onwards, the international trade of biofuels (for example from Brazil to the U.S. and Europe) has grown, and this has created a need for common international specifications/standards. This report presents information about national and regional standards for alternative fuels, but also, when existing and reported, standards on a global level are described and discussed. Ongoing work concerning new or revised standards on alternative fuels on national, regional or global level is also discussed. In this report we have covered standards on all kind of alternative fuels, exemplified below. However, the focus is on liquid biofuels for diesel engines and Otto engines. 1) Liquid fuels for diesel engines (compression ignition engines), such as Fatty Acid Methyl Esters (FAME), Fatty Acid Ethyl Esters (FAEE), alcohols, alcohol derivates and synthetic diesel fuels. 2) Liquid fuels for Otto engines (spark ignition engines), such as alcohols, ethers and synthetic gasoline. 3) Liquefied fossil petroleum gas (LPG). 4) Di-Methyl Ether (DME). 5

  4. Alternative Fuel News: Official Publication of the Clean Cities Network and the Alternative Fuels Data Center, Vol. 5, No. 3

    Energy Technology Data Exchange (ETDEWEB)

    2001-11-01

    A quarterly magazine with articles on alternative fuel school buses, the market growth of biodiesel fuel, National AFV Day 2002, model year 2002 alternative fuel passenger cars and light trucks, the Michelin Challenge Bibendum road rally, and advanced technology vehicles at Robins Air Force Base, the Top Ten Clean Cities coalitions for 2000, and AFVs on college campuses.

  5. Alternative Fuel Guidelines for Alternative Transportation Systems.

    Science.gov (United States)

    2011-01-31

    The Volpe Center documented the increased use of alternative fuels on vehicles owned and operated by federal land management agencies. For each alternative fuel type, the Volpe Center documented the availability of vehicles, fueling mechanisms and pr...

  6. 2009 DOE Vehicle Technologies Program Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-01

    Annual Merit Review and Peer Evaluation Meeting to review the FY2008 accomplishments and FY2009 plans for the Vehicle Technologies Program, and provide an opportunity for industry, government, and academic to give inputs to DOE on the Program with a structured and formal methodology.

  7. [Fuel substitution of vehicles by natural gas: Summaries of four final technical reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This report contains summary information on three meetings and highlights of a fourth meeting held by the Society of Automotive Engineers on natural gas fueled vehicles. The meetings covered the following: Natural gas engine and vehicle technology; Safety aspects of alternately fueled vehicles; Catalysts and emission control--Meeting the legislative standards; and LNG--Strengthening the links.

  8. Planning of Vehicle Routing with Backup Provisioning Using Wireless Sensor Technologies

    Directory of Open Access Journals (Sweden)

    Noélia Correia

    2017-08-01

    Full Text Available Wireless sensor technologies can be used by intelligent transportation systems to provide innovative services that lead to improvements in road safety and congestion, increasing end-user satisfaction. In this article, we address vehicle routing with backup provisioning, where the possibility of reacting to overloading/overcrowding of vehicles at certain stops is considered. This is based on the availability of vehicle load information, which can be captured using wireless sensor technologies. After discussing the infrastructure and monitoring tool, the problem is mathematically formalized, and a heuristic algorithm using local search procedures is proposed. Results show that planning routes with backup provisioning can allow fast response to overcrowding while reducing costs. Therefore, sustainable urban mobility, with efficient use of resources, can be provided while increasing the quality of service perceived by users.

  9. Testing Low-Energy, High-Power Energy Storage Alternatives in a Full-Hybrid Vehicle (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Cosgrove, J.; Gonger, J.

    2014-01-01

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle gasoline use. However, the battery cost in HEVs contribute to higher incremental cost of HEVs (a few thousand dollars) than the cost of comparable conventional vehicles, which has limited HEV market penetration. Significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost vs. benefit relationship for HEVs. Such an improvement could lead to larger HEV market penetration and greater aggregate gasoline savings. After significant analysis by the National Renewable Energy Laboratory (NREL), the United States Advanced Battery Consortium (USABC) and Department of Energy (DOE) Energy Storage program suggested a new set of requirements for ESS for power-assist HEVs for cost reduction without impacting performance and fuel economy significantly. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This poster will describe development of the LEESS HEV test platform, and LEESS laboratory as well as in-vehicle evaluation results. The first LEESS technology tested was lithium-ion capacitors (LICs) - i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). We will discuss the performance and fuel saving results with LIC with comparison with original NiMH battery.

  10. Nonlinear approaches in engineering applications advanced analysis of vehicle related technologies

    CERN Document Server

    Dai, Liming

    2016-01-01

    This book looks at the broad field of engineering science through the lens of nonlinear approaches. Examples focus on issues in vehicle technology, including vehicle dynamics, vehicle-road interaction, steering, and control for electric and hybrid vehicles. Also included are discussions on train and tram systems, aerial vehicles, robot-human interaction, and contact and scratch analysis at the micro/nanoscale. Chapters are based on invited contributions from world-class experts in the field who advance the future of engineering by discussing the development of more optimal, accurate, efficient, and cost and energy effective systems. This book is appropriate for researchers, students, and practicing engineers who are interested in the applications of nonlinear approaches to solving engineering and science problems.

  11. Review and evaluation of alternative chemical disposal technologies

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Engineering and Technical Systems; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    .... In light of the fact that alternative technologies have evolved since the 1994 study, this new volume evaluates five Army-chosen alternatives to the baseline incineration system for the disposal...

  12. Alternative control technologies: Technologies de contrôle non conventionnelles

    National Research Council Canada - National Science Library

    Hudgins, Bernard

    1998-01-01

    .... Through different chapters, the various human factors issues related to the introduction of alternative control technologies into military cockpits are reviewed, in conjunction with more technical...

  13. Review of automated vehicle technology : policy and implementation implications.

    Science.gov (United States)

    2016-03-14

    The goals of this project were to undergo a systematic review of automated vehicle technologies with a focus on policy : implications, methods of implementation, regulation by states, and developments occurring on legal fronts, ultimately creating a ...

  14. Developing Markets for Zero-Emission Vehicles in Goods Movement

    Science.gov (United States)

    2018-03-01

    This report evaluates the market status and potential freight market penetration of zero emission vehicles (ZEVs) and near ZEVs in the medium and heavy duty class within the California market. It evaluates alternative technologies, primarily battery ...

  15. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  16. Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study

    NARCIS (Netherlands)

    van der Kam, M.J.; van Sark, Wilfried

    2015-01-01

    We present a model developed to study the increase of self-consumption of photovoltaic (PV) power by smart charging of electric vehicles (EVs) and vehicle-to-grid (V2G) technology. Whereas previous studies mostly use large EV fleets in their models, our focus is on a smaller scale. We apply the

  17. 49 CFR 536.10 - Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538.

    Science.gov (United States)

    2010-10-01

    ... vehicles-consistency with 49 CFR part 538. 536.10 Section 536.10 Transportation Other Regulations Relating... vehicles—consistency with 49 CFR part 538. (a) Statutory alternative fuel and dual-fuel vehicle fuel... economy in a particular compliance category by more than the limits set forth in 49 U.S.C. 32906(a), the...

  18. Hybrid vehicles - an alternative for the Swedish market; Hybridfordon - ett alternativ foer den svenska bilparken

    Energy Technology Data Exchange (ETDEWEB)

    Egebaeck, Karl-Erik; Bucksch, S

    2000-06-01

    The object of this report is to assemble information on and describe the situation for the development of hybrid vehicles and various alternatives within this field of development. In the report the description is concentrated mainly on the combination of combustion engine and electric battery, which is the most common combination in present day hybrid vehicles. In order to take a glimpse into the future even the combination of fuel cells and electric battery is described. The light duty electric hybrid vehicles which have been developed up to now are mainly parallel hybrids. If the development of hybrid systems takes place it will most certainly concern light duty vehicles which will come to be parallel hybrids equipped with an Otto or a diesel engine, depending on what the manufacturers wish to back. In the report the use of series hybrid vehicles is estimated to be limited to heavy-duty hybrid vehicles. Hybrids will not be likely to be relevant for heavy-duty vehicles, with the exception of those lorries which operate in city centres, i.e. lorries which are used to distribute goods to shops, garbage vehicles and certain types of working vehicle for service purposes. Continued development of the hybrid system for buses seems uncertain for various reasons. If there is a technical breakthrough in the manufacture of batteries and simultaneously the manufacturers increase their efforts to develop hybrid vehicles, the situation can be changed so that there is a speedier introduction of hybrid vehicles for heavy-duty vehicles.

  19. Advanced testing and validation centre gets electric vehicle technology to market faster

    Energy Technology Data Exchange (ETDEWEB)

    Astil, T.; Girard, F. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2010-07-01

    The National Research Council (NRC) Institute for Fuel Cell Innovation is advancing Canada's clean energy advantage through NRC's technology cluster initiatives, which help Canadian small and medium enterprises achieve commercialization breakthroughs in key sectors. This presentation discussed the technology evaluation program (TEP) offered by the NRC Institute for Fuel Cell Innovation. The presentation discussed the TEPs mission, advanced testing and validation centre (ATVC), previous ATVC clients, environmental chamber, dynamometer, vibration table, electrochemical battery testing, and electrochemical testing laboratory. The ATVC is a specialized and safe environment for objective, reliable and accurate standardized testing applications of electric vehicle technologies. It offers independent test services to external organizations, making it easier to prove that electric vehicle technologies will perform under specific operating conditions. figs.

  20. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    International Nuclear Information System (INIS)

    Henzlova, Daniela; Kouzes, R.; McElroy, R.; Peerani, P.; Baird, K.; Bakel, A.; Borella, M.; Bourne, M.; Bourva, L.; Cave, F.; Chandra, R.; Chernikova, D.; Croft, S.; Dermody, G.; Dougan, A.; Ely, J.; Fanchini, E.; Finocchiaro, P.; Gavron, Victor; Kureta, M.; Ianakiev, Kiril Dimitrov; Ishiyama, K.; Lee, T.; Martin, Ch.; McKinny, K.; Menlove, Howard Olsen; Orton, Ch.; Pappalardo, A.; Pedersen, B.; Plenteda, R.; Pozzi, S.; Schear, M.; Seya, M.; Siciliano, E.; Stave, S.; Sun, L.; Swinhoe, Martyn Thomas; Tagziria, H.; Takamine, J.; Weber, A.-L.; Yamaguchi, T.; Zhu, H.

    2015-01-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3 He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3 He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3 He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3 He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3 He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3 He-alternative technologies.

  1. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kouzes, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peerani, P. [European Commission, Ispra (Italy). Joint Research Centre; Aspinall, M. [Hybrid Instruments Ltd., Birmingham (United Kingdom); Baird, K. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Bakel, A. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Borella, M. [SCK.CEN, Mol (Belgium); Bourne, M. [Univ. of Michigan, Ann Arbor, MI (United States); Bourva, L. [Canberra Ltd., Oxford (United Kingdom); Cave, F. [Hybrid Instruments Ltd., Birmingham (United Kingdom); Chandra, R. [Arktis Radiation Detectors Ltd., Zurich (Sweden); Chernikova, D. [Chalmers Univ. of Technology (Sweden); Croft, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dermody, G. [Symetrica Inc., Maynard, MA (United States); Dougan, A. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Ely, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fanchini, E. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Finocchiaro, P. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Gavron, Victor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kureta, M. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Ianakiev, Kiril Dimitrov [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ishiyama, K. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Lee, T. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Martin, Ch. [Symetrica Inc., Maynard, MA (United States); McKinny, K. [GE Reuter-Stokes, Twinsburg, OH (United States); Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Orton, Ch. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Pappalardo, A. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Pedersen, B. [European Commission, Ispra (Italy). Joint Research Centre; Peranteau, D. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Plenteda, R. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Pozzi, S. [Univ. of Michigan, Ann Arbor, MI (United States); Schear, M. [Symetrica Inc., Maynard, MA (United States); Seya, M. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Siciliano, E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sun, L. [Proportional Technologies Inc., Houston, TX (United States); Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tagziria, H. [European Commission, Ispra (Italy). Joint Research Centre; Vaccaro, S. [DG Energy (Luxembourg); Takamine, J. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Weber, A. -L. [Inst. for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses (France); Yamaguchi, T. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Zhu, H. [National Nuclear Security Administration (NNSA), Washington, DC (United States)

    2015-12-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency {IAEA}, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3He-alternative

  2. Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

    2007-12-01

    This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

  3. Solar electric propulsion for Mars transport vehicles

    Science.gov (United States)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.

    1990-01-01

    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  4. Life cycle models of conventional and alternative-fueled automobiles

    Science.gov (United States)

    Maclean, Heather Louise

    This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology

  5. Benefits of high aerodynamic efficiency to orbital transfer vehicles

    Science.gov (United States)

    Andrews, D. G.; Norris, R. B.; Paris, S. W.

    1984-01-01

    The benefits and costs of high aerodynamic efficiency on aeroassisted orbital transfer vehicles (AOTV) are analyzed. Results show that a high lift to drag (L/D) AOTV can achieve significant velocity savings relative to low L/D aerobraked OTV's when traveling round trip between low Earth orbits (LEO) and alternate orbits as high as geosynchronous Earth orbit (GEO). Trajectory analysis is used to show the impact of thermal protection system technology and the importance of lift loading coefficient on vehicle performance. The possible improvements in AOTV subsystem technologies are assessed and their impact on vehicle inert weight and performance noted. Finally, the performance of high L/D AOTV concepts is compared with the performances of low L/D aeroassisted and all propulsive OTV concepts to assess the benefits of aerodynamic efficiency on this class of vehicle.

  6. Review and evaluation of alternative chemical disposal technologies

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Engineering and Technical Systems; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    ... in comparison to the Army's baseline incineration system. The volume's main finding was that no alternative technology was preferable to incineration but that work should continue on the neutralization technologies under Army consideration...

  7. Review and Evaluation of Alternative Chemical Disposal Technologies

    National Research Council Canada - National Science Library

    2000-01-01

    ... in comparison to the Army's baseline incineration system. The volume's main finding was that no alternative technology was preferable to incineration but that work should continue on the neutralization technologies under Army consideration...

  8. Second interim report of the Interagency Commission on Alternative Motor Fuels

    International Nuclear Information System (INIS)

    1991-09-01

    This report describes progress the commission and government agencies have made in implementing the provisions of the Alternative Motor Fuels Act of 1988, assessing the role of alternative motor fuels in the US transportation sector, and developing policies to promote the use of alternative fuels. The alternative motor-fuels policies proposed in the National Energy Strategy (NES) are described and shows how they compose an effective long-term plan to encourage the widespread use of alternative motor fuels. The progress to date of the Department of Energy (DOE) and other agencies in implementing the programs required by the AMFA is reported. A detailed scenario of future alternative-fuel use that displaces 2.5 million barrels per day (MMBD) of petroleum and a feasible path of vehicle production and fuel supply leading to that goal is described. An analytical tool for exploring and quantifying the energy market impacts of alternative fuels, the Alternative Fuels Trade Model (AFTM), is described. The AFTM provides a means of investigating the impacts of alternative fuels in interrelated world energy markets for petroleum and natural gas. Several major initiatives have recently been enacted that have important ramifications for alternative-fuels policy. The Clean Air Act Amendments of 1990 contain provisions mandating the use of nonpetroleum oxygenates in reformulated gasoline. Other provisions for much more stringent emissions standards may affect the ability of manufacturers to make and sell conventional-fuel vehicles or, at the very least, affect their cost-effectiveness in comparison to cleaner alternative-fuel vehicles (AFV's). Finally, the key areas in which technological advances could substantially improve the competitiveness of AFV technologies in the marketplace are reviewed

  9. Technological perspectives of clean vehicles

    International Nuclear Information System (INIS)

    Juanico, Luis

    2005-01-01

    The main characteristics of the different technologies of available commercially cars were studied (now or in the halfway through time limit) of smaller contaminants gases generation, with the objective to carry out a comparative evaluation of their competitiveness and feasibilities of real insertion.They were studied thus the self-electric 'pure' and hybrid, from motors of conventional combustion and of cells of fuels with reformers; as well as them fed by hydrogen, utilized in motors of combustion and in direct conversion fuels cells. It is appreciated that the cars hibridos conventional present large advantages that are permitting their effective insertion in the market. Of the remainders, only the conventional motor of hydrogen does not present technological obstacles and has real potentiality in the medium time limit.The electric cars have strong limitations owed al poor performance of the batteries set against the liquid fuels, that have shown do not they permit him to be inserted in the real market in spite of the enormous efforts carried out.The fuel cells continue being very costly. Being that the technologies selected for electric vehicles (of polimer membrane) use essentially hydrogen as fuel, which (besides other disadvantages) has a prohibitive cost set against the hydrocarbons, their possibility of massive insertion is little probable, still low environmental incentives.There are several reasons to think that the EVs with fuel cells of hydrogen (PEM) can run the same luck that the EVs of batteries.The use of internal converters of gasoline or the cells of metanol direct appear with an interesting horizon, although they will need still strong investments in basic investigations associates to be competitive.The hydrogen is a vector energy, not a resource, and being its main producing market and consumer the industry of the petroleum, very with difficulty this return competitive before an increase in the oil price.Their use in vehicles way the adaptation

  10. INERTIAL TECHNOLOGIES IN SYSTEMS FOR STABILIZATION OF GROUND VEHICLES EQUIPMENT

    Directory of Open Access Journals (Sweden)

    Olha Sushchenko

    2016-12-01

    Full Text Available Purpose: The vibratory inertial technology is a recent modern inertial technology. It represents the most perspective approach to design of inertial sensors, which can be used in stabilization and tracking systems operated on vehicles of the wide class. The purpose of the research is to consider advantages of this technology in comparison with laser and fiber-optic ones. Operation of the inertial sensors on the ground vehicles requires some improvement of the Coriolis vibratory gyroscope with the goal to simplify information processing, increase reliability, and compensate bias. Methods: Improvement of the Coriolis vibratory gyroscope includes introducing of the phase detector and additional excitation unit. The possibility to use the improved Coriolis vibratory gyroscope in the stabilization systems operated on the ground vehicles is shown by means of analysis of gyroscope output signal. To prove efficiency of the Coriolis vibratory gyroscope in stabilization system the simulation technique is used. Results: The scheme of the improved Coriolis vibratory gyroscope including the phase detector and additional excitation unit is developed and analyzed. The way to compensate bias is determined. Simulation of the stabilization system with the improved Coriolis vibratory gyroscope is carried out. Expressions for the output signals of the improved Coriolis vibratory gyroscope are derived. The error of the output signal is estimated and the possibility to use the modified Coriolis vibratory gyroscope in stabilization systems is proved. The results of stabilization system simulation are given. Their analysis is carried out. Conclusions: The represented results prove efficiency of the proposed technical decisions. They can be useful for design of stabilization platform with instrumental equipment operated on moving vehicles of the wide class.

  11. Government policy and the development of electric vehicles in Japan

    International Nuclear Information System (INIS)

    Ahman, Max

    2006-01-01

    The aim of this paper is to analyse the role that the Japanese Government has played in the development of alternatives to conventional vehicles, the effect of government programmes, and the importance of technical flexibility in government support schemes. The focus is on battery-powered electric vehicles (BPEVs), hybrid electric vehicles (HEVs), and fuel cell electric vehicles. The effects of government policy and the process of innovation are analysed from a systems approach drawing on the literature regarding technical change and innovation. The whole chain of government support, including the context in which these different policies have been implemented since the early 1970s, is studied. The Japanese Government has adopted a comprehensive strategy including R and D, demonstration programmes and market support guided by long-term strategic plans. The role of the Government has been that of a conductor in the development process supplying both R and D support and artificially created niche markets, and easing the way for targeted technologies by means of legislation and standards. Despite this, the targeted technology (the BPEV) has not been established on the market. However, the recent market success of the HEV can partly be attributed to the government support of the BPEV technology. The enabling component, the electric drivetrain, was developed for automotive use within the BPEV programmes offered by the MITI. This technology was later utilised in the HEV. The history of BPEVs in Japan demonstrates that 'picking winners' in government policy is not easy. Despite a sustained and ambitious policy by the MITI, the development of alternative vehicles never unfolded according to plan. The success factors for policy seem more related to technology specific features than the particular policy style. Our conclusion is that flexibility, adaptability and cooperation in terms of technical choice is necessary in policy. This increases the chances of a technology

  12. Assessment of a satellite power system and six alternative technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L.S.; Levine, E.; Tanzman, E.

    1981-04-01

    The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and insitutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included. (LEW)

  13. National arrangements in favour of the alternative vehicles: electrical , natural gas (NGV) and liquefied petroleum gases (LPG) vehicles; Dispositions nationales en faveur des vehicules alternatifs: vehicules electriques, au gaz naturel (GNv) et au gaz de petrole liquefie (GPLc)

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-01-01

    The public will find in this document all the financial assistances concerning the acquisition and the maintenance of an alternative vehicle, at the date of january 2000. The vehicles concerned are: all type of electrical vehicles, NGV vehicles and LPG vehicles. (A.L.B.)

  14. Evaluation Framework for Alternative Fuel Vehicles: Sustainable Development Perspective

    Directory of Open Access Journals (Sweden)

    Dong-Shang Chang

    2015-08-01

    Full Text Available Road transport accounts for 72.06% of total transport CO2, which is considered a cause of climate change. At present, the use of alternative fuels has become a pressing issue and a significant number of automakers and scholars have devoted themselves to the study and subsequent development of alternative fuel vehicles (AFVs. The evaluation of AFVs should consider not only air pollution reduction and fuel efficiency but also AFV sustainability. In general, the field of sustainable development is subdivided into three areas: economic, environmental, and social. On the basis of the sustainable development perspective, this study presents an evaluation framework for AFVs by using the DEMATEL-based analytical network process. The results reveal that the five most important criteria are price, added value, user acceptance, reduction of hazardous substances, and dematerialization. Price is the most important criterion because it can improve the popularity of AFVs and affect other criteria, including user acceptance. Additional, the energy usage criterion is expected to significantly affect the sustainable development of AFVs. These results should be seriously considered by automakers and governments in developing AFVs.

  15. MODULTEC - Modular technology for lightweight vehicles; MODULTEC - Modultechnologie fuer Leichtmobile

    Energy Technology Data Exchange (ETDEWEB)

    Horlacher, M.; Efler, T.; Wegmann, S.

    2003-07-01

    This final report for the Swiss Federal Office of Energy presents the results of two research projects (MODULTEC I and II) that were carried out between 1995 and 2002. The project's aims were to develop and assess components for light-weight car bodies, study and test novel reinforced plastic materials and to examine the industrial implementation of light-weight vehicles. The report presents details on prototype vehicles and transport systems, as well as crash tests. The development of compound plastics and appropriate adhesives is discussed as is the co-operation with various industrial partners. Various prototype components are described and other associated topics such as recycling, storage of alternative fuels and pedestrian protection issues are discussed.

  16. Design Concept for a Minimal Volume Spacecraft Cabin to Serve as a Mars Ascent Vehicle Cabin and Other Alternative Pressurized Vehicle Cabins

    Science.gov (United States)

    Howard, Robert L., Jr.

    2016-01-01

    The Evolvable Mars Campaign is developing concepts for human missions to the surface of Mars. These missions are round-trip expeditions, thereby requiring crew launch via a Mars Ascent Vehicle (MAV). A study to identify the smallest possible pressurized cabin for this mission has developed a conceptual vehicle referred to as the minimal MAV cabin. The origin of this concept will be discussed as well as its initial concept definition. This will lead to a description of possible configurations to integrate the minimal MAV cabin with ascent vehicle engines and propellant tanks. Limitations of this concept will be discussed, in particular those that argue against the use of the minimal MAV cabin to perform the MAV mission. However, several potential alternative uses for the cabin are identified. Finally, recommended forward work will be discussed, including current work in progress to develop a full scale mockup and conduct usability evaluations.

  17. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    The M. Nguyen

    2008-01-01

    Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

  18. A propulsion technology challenge — An abortable. Continuous use vehicle

    Science.gov (United States)

    Czysz, Paul A.; Froning, H. David

    1996-02-01

    Propulsion is the enabling technology for an abortable, continuous use vehicle. Propulsion performance purchases margin in the other material, structural, and system requirements. But what is abortability, and continuous use? Why is it necessary? What are its characteristics? And, what specifically is required in the propulsion system to enable these characteristics? Is the cost of the launcher really trivial, or is that the incomplete cost analysis limited to expendables and rebuilt, reusables. This paper identifies what constitutes an abortable, continuous use vehicle, the propulsion characteristics required, and the technology necessary to provide those characteristics. The proposition resulting is that this is not a technology issue, it is a concept of operation and a bureaucratic issue. The required goal is not as distant as some might propose, and the technology not as unprepared for commercial application as some assumed. The conclusion is that clearly we cannot continue to base the next century's orbital operations on an expendable rebuilt for reuse concept. What is required is a rocket based combined cycle (RBCC) engine based on those now in space operation 1,2; not a combination of cycles that remains to be shown as a practical, achievable reality.

  19. The future of automotive technology

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.A.Jr.; Hamilton, D. [USDOE, Washington, DC (United States); Shah, R.; Belanger, M. [Computer Systems Management Inc., Alexandria, VA (United States)

    2000-07-01

    An overview of the technological advances that have been made in the automotive industry worldwide in recent years were presented with a brief insight into the potential ramifications in terms of fuel efficiency and pollution abatement. Developments in power trains, materials and alternative fuels were reviewed. Up to and including the 1980's most vehicles consisted of internal combustion engines. Today, advanced spark ignition and electric vehicles/hybrid electric vehicles are already in production in Japan, North America and Europe and all major automakers are working on vehicles powered by fuel cells. The use of alternative fuels such as natural gas, propane, alcohols, biodiesel and hydrogen will be encouraged for economic, environmental and energy security reasons. These alternative fuels, however, will not reduce emissions of carbon dioxide as long as they are made from fossil-carbon sources. Cars with all aluminum or fiber-reinforced polymetric-matrix composite bodies and aluminum chassis are emerging as a challenge to steel's domination. Also family sedans with fuel efficiencies of 80 miles per US gallon will be common place. It was emphasized that the extent to which these new technologies will be implemented will depend on consumer acceptance and on governmental regulations. 8 refs., 1 tab.

  20. Alternative food-preservation technologies: efficacy and mechanisms.

    Science.gov (United States)

    Lado, Beatrice H; Yousef, Ahmed E

    2002-04-01

    High-pressure processing, ionizing radiation, pulsed electric field and ultraviolet radiation are emerging preservation technologies designed to produce safe food, while maintaining its nutritional and sensory qualities. A sigmoid inactivation pattern is observed in most kinetic studies. Damage to cell membranes, enzymes or DNA is the most commonly cited cause of death of microorganisms by alternative preservation technologies.

  1. A system model for assessing vehicle use-phase water consumption in urban mobility networks

    International Nuclear Information System (INIS)

    Yen, Jeff; Bras, Bert

    2012-01-01

    Water consumption is emerging as an important issue potentially influencing the composition of future urban transportation networks, especially as projected urban populations are expected to outpace water availability and as alternative fuels and vehicles are being implemented in such regions. National and State policies aimed at reducing dependence on imported fuels and energy can increase local production of fuels and energy, impacting demand on local water resources. This article details the development of a model-based assessment on water consumption and withdrawal pertaining to the use-phase of conventional and alternative transportation modes based on regional energy and fuel production. An extensive literature review details water consumption from fuel extraction, processing, and distribution as well as power plant operations. Using Model-Based Systems Engineering principles and the Systems Modeling Language, a multi-level, multi-modal framework was developed and applied to the Metro Atlanta transportation system consisting of conventional and alternative vehicles across varying conditions. According to the analysis, vehicles powered by locally produced biofuels and electricity (assuming average local grid mix for charging) consume more water than locally refined gasoline and CNG-powered vehicles. Improvements in power plant technologies, electricity generation (e.g., use of solar and wind versus hydro power) and vehicle efficiencies can reduce such water consumption significantly. Total water withdrawal for each vehicle and fuel is significantly greater than water consumption. - Highlights: ► A model was made to assess the local water consumption due to conventional and alternatively powered vehicles in a city. ► Water consumed in the local and external production of various fuels was reviewed and included. ► Basic battery electric and biofuel powered vehicles consume on average more water than conventional gasoline and Compressed Natural Gas (CNG

  2. Bantam: A Systematic Approach to Reusable Launch Vehicle Technology Development

    Science.gov (United States)

    Griner, Carolyn; Lyles, Garry

    1999-01-01

    The Bantam technology project is focused on providing a low cost launch capability for very small (100 kilogram) NASA and University science payloads. The cost goal has been set at one million dollars per launch. The Bantam project, however, represents much more than a small payload launch capability. Bantam represents a unique, systematic approach to reusable launch vehicle technology development. This technology maturation approach will enable future highly reusable launch concepts in any payload class. These launch vehicle concepts of the future could deliver payloads for hundreds of dollars per pound, enabling dramatic growth in civil and commercial space enterprise. The National Aeronautics and Space Administration (NASA) has demonstrated a better, faster, and cheaper approach to science discovery in recent years. This approach is exemplified by the successful Mars Exploration Program lead by the Jet Propulsion Laboratory (JPL) for the NASA Space Science Enterprise. The Bantam project represents an approach to space transportation technology maturation that is very similar to the Mars Exploration Program. The NASA Advanced Space Transportation Program (ASTP) and Future X Pathfinder Program will combine to systematically mature reusable space transportation technology from low technology readiness to system level flight demonstration. New reusable space transportation capability will be demonstrated at a small (Bantam) scale approximately every two years. Each flight demonstration will build on the knowledge derived from the previous flight tests. The Bantam scale flight demonstrations will begin with the flights of the X-34. The X-34 will demonstrate reusable launch vehicle technologies including; flight regimes up to Mach 8 and 250,000 feet, autonomous flight operations, all weather operations, twenty-five flights in one year with a surge capability of two flights in less than twenty-four hours and safe abort. The Bantam project will build on this initial

  3. METEV: Measurement Technologies for Emissions from Ethanol Fuelled Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sandtroem-Dahl, Charlotte

    2009-11-15

    The interest of using alcohols, and especially ethanol, as vehicle fuel is high in Sweden. The advantages are many, such as; being renewable, the ethanol can be produced locally and it is easily mixed with gasoline. Alcohol fuels are considered to be a substantial part of the alternative fuel market, especially in Brazil, USA and Sweden. With this growing interest it is of most importance to investigate the emission performance of vehicles fuelled with alcohols. The focus in this study is on measurement and calculation of hydrocarbon emissions. The emission regulations in different countries have different ways to treat alcohol fuelled vehicles. When alcohols are used as blending components in gasoline, uncombusted alcohols from the fuel are emitted in the exhaust in various amounts. If a Flame Ionization Detector (FID) is used to measure hydrocarbons, the uncombusted alcohol will be included in the measurement. The alcohol is, per definition, however not a hydrocarbon (hydrocarbons contains only hydrogen and carbon). In the US regulations, the alcohol content is measured separately, and the FID measurement is adjusted for the alcohol part. This is not performed in the European regulations. The aim of this project is to highlight the need for a discussion regarding the methodology for measuring hydrocarbon and alcohol emissions from flexible fuelled vehicles operating on alcohol fuel blends.

  4. The effect of attitudes on reference-dependent preferences: Estimation and validation for the case of alternative-fuel vehicles

    DEFF Research Database (Denmark)

    Mabit, Stefan Lindhard; Cherchi, Elisabetta; Jensen, Anders Fjendbo

    2015-01-01

    reference-dependent preferences and attitudes together may explain individual choices. In a modelling framework based on a hybrid choice model allowing for both concepts, we investigate how attitudes and reference-dependent preferences interact and how they affect willingness-to-pay measures and demand...... elasticities. Using a data set with stated choices among alternative-fuel vehicles, we see that allowing for reference-dependent preferences improves our ability to explain the stated choices in the data and that the attitude (appreciation of car features) explains part of the preference heterogeneity across...... with varying attitudes and reference values will act differently when affected by policy instruments related to the demand for alternative-fuel vehicles, e.g. subsidies....

  5. Vehicle test report: South Coast technology electric conversion of a Volkswagen Rabbit

    Science.gov (United States)

    Price, T. W.; Shain, T. W.; Bryant, J. A.

    1981-01-01

    The South Coast Technology Volkswagen Rabbit, was tested at the Jet Propulsion Laboratory's (JPL) dynamometer facility and at JPL's Edwards Test Station (ETS). The tests were performed to characterize certain parameters of the South Coast Rabbit and to provide baseline data that will be used for the comparison of near term batteries that are to be incorporated into the vehicle. The vehicle tests were concentrated on the electrical drive system; i.e., the batteries, controller, and motor. The tests included coastdowns to characterize the road load, maximum effort acceleration, and range evaluation for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle was made by comparing its constant speed range performance with those vehicles described in the document 'state of the Art assessment of Electric and Hybrid Vehicles'. The Rabbit performance was near to the best of the 1977 vehicles.

  6. Expectation dynamics: Ups and downs of alternative fuels

    NARCIS (Netherlands)

    Konrad, Kornelia Elke

    2016-01-01

    The transport sector must undergo radical changes if it is to reduce its carbon emissions, calling for alternative vehicles and fuel types. Researchers now analyse the expectation cycles for different fuel technologies and draw lessons for the role of US policy in supporting them.

  7. Natural gas vehicles in Italy

    International Nuclear Information System (INIS)

    Mariani, F.

    1991-01-01

    The technology of compressed natural gas (CNG) for road vehicles originated 50 years ago in Italy, always able to adapt itself to changes in energy supply and demand situations and national assets. Now, due to the public's growing concern for air pollution abatement and recent national energy policies calling for energy diversification, the commercialization of natural gas road vehicles is receiving new momentum. However, proper fuel taxation and an increased number of natural gas distribution stations are required to support this growing market potential. Operators of urban bus fleets stand to gain substantially from conversion to natural gas automotive fuels due to natural gas being a relatively cheap, clean alternative

  8. Potential alternative energy technologies on the Outer Continental Shelf.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Environmental Assessment

    2007-04-20

    This technical memorandum (TM) describes the technology requirements for three alternative energy technologies for which pilot and/or commercial projects on the U.S. Outer Continental Shelf (OCS) are likely to be proposed within the next five to seven years. For each of the alternative technologies--wind, wave, and ocean current--the TM first presents an overview. After each technology-specific overview, it describes the technology requirements for four development phases: site monitoring and testing, construction, operation, and decommissioning. For each phase, the report covers the following topics (where data are available): facility description, electricity generated, ocean area (surface and bottom) occupied, resource requirements, emissions and noise sources, hazardous materials stored or used, transportation requirements, and accident potential. Where appropriate, the TM distinguishes between pilot-scale (or demonstration-scale) facilities and commercial-scale facilities.

  9. Expendable launch vehicles technology: A report to the US Senate and the US House of Representatives

    Science.gov (United States)

    1990-01-01

    As directed in Public Law 100-657, Commercial Space Launch Act Amendments of 1988, and consistent with National Space Policy, NASA has prepared a report on a potential program of research on technologies to reduce the initial and recurring costs, increase reliability, and improve performance of expendable launch vehicles for the launch of commercial and government spacecraft into orbit. The report was developed in consultation with industry and in recognition of relevant ongoing and planned NASA and DoD technology programs which will provide much of the required launch systems technology for U.S. Government needs. Additional efforts which could be undertaken to strengthen the technology base are identified. To this end, focus is on needs for launch vehicle technology development and, in selected areas, includes verification to permit private-sector new technology application at reduced risk. If such a program were to be implemented, it would entail both government and private-sector effort and resources. The additional efforts identified would augment the existing launch vehicle technology programs. The additional efforts identified have not been funded, based upon agency assessments of relative priority vis-a-vis the existing programs. Throughout the consultation and review process, the industry representatives stressed the overriding importance of continuing the DoD/NASA Advanced Launch Development activity and other government technology programs as a primary source of essential launch vehicle technology.

  10. Expendable launch vehicles technology: A report to the US Senate and the US House of Representatives

    Science.gov (United States)

    1990-07-01

    As directed in Public Law 100-657, Commercial Space Launch Act Amendments of 1988, and consistent with National Space Policy, NASA has prepared a report on a potential program of research on technologies to reduce the initial and recurring costs, increase reliability, and improve performance of expendable launch vehicles for the launch of commercial and government spacecraft into orbit. The report was developed in consultation with industry and in recognition of relevant ongoing and planned NASA and DoD technology programs which will provide much of the required launch systems technology for U.S. Government needs. Additional efforts which could be undertaken to strengthen the technology base are identified. To this end, focus is on needs for launch vehicle technology development and, in selected areas, includes verification to permit private-sector new technology application at reduced risk. If such a program were to be implemented, it would entail both government and private-sector effort and resources. The additional efforts identified would augment the existing launch vehicle technology programs. The additional efforts identified have not been funded, based upon agency assessments of relative priority vis-a-vis the existing programs. Throughout the consultation and review process, the industry representatives stressed the overriding importance of continuing the DoD/NASA Advanced Launch Development activity and other government technology programs as a primary source of essential launch vehicle technology.

  11. Future Vehicle Technologies : high performance transportation innovations

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, T. [Future Vehicle Technologies Inc., Maple Ridge, BC (Canada)

    2010-07-01

    Battery management systems (BMS) were discussed in this presentation, with particular reference to the basic BMS design considerations; safety; undisclosed information about BMS; the essence of BMS; and Future Vehicle Technologies' BMS solution. Basic BMS design considerations that were presented included the balancing methodology; prismatic/cylindrical cells; cell protection; accuracy; PCB design, size and components; communications protocol; cost of manufacture; and expandability. In terms of safety, the presentation addressed lithium fires; high voltage; high voltage ground detection; crash/rollover shutdown; complete pack shutdown capability; and heat shields, casings, and impact protection. BMS bus bar engineering considerations were discussed along with good chip design. It was concluded that FVTs advantage is a unique skillset in automotive technology and the development of speed and cost effectiveness. tabs., figs.

  12. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Chauveron, S. de

    1996-01-01

    This article presents compressed natural gas for vehicles (CNG), which can provide considerable advantages both as an alternative fuel and as a clean fuel. These assets are not only economic but also technical. The first part deals with what is at stake in developing natural gas as a motor fuel. The first countries to use CNG were those with natural gas resources in their subsoil. Today, with a large number of countries having to cope with growing concern about increasing urban pollution, natural gas is also seen as a clean fuel that can help cut vehicle pollutant emissions dramatically. In the second part a brief technical descriptions is given of CNG stations and vehicles, with the aim of acquainting the reader with some of CNG's specific technical features as compared to gasoline and diesel oil. Here CNG technologies are seen to be very close to the more conventional ones. (author)

  13. Reducing supply chain energy use in next-generation vehicle lightweighting

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, Rebecca J.; Das, Sujit; Carpenter, Alberta

    2016-09-29

    Vehicle lightweighting reduces the amount of fuel consumed in a vehicle's use phase, but depending on what lightweight materials replace the conventional materials, and in what amounts, the manufacturing energy may increase or decrease. For carbon fiber reinforced polymer (CFRP), a next-generation lightweighting material, the increase in vehicle manufacturing energy is greater than the fuel savings, resulting in a net increase in energy consumption over a vehicle's manufacturing and use relative to a standard non-lightweighted car. [1] This work explores ways to reduce the supply chain energy of CFRP lightweighted vehicles through alternative production technologies and energy efficiency improvements. The objective is to determine if CFRP can offer energy savings comparable to or greater than aluminum, a conventional lightweighting material. Results of this analysis can be used to inform additional research and development efforts in CFRP production and future directions in lightweight vehicle production. The CFRP supply chain is modeled using the Material Flows through Industry (MFI) scenario modeling tool, which calculates 'mine to materials' energy consumption, material inventories and greenhouse gas emissions for industrial supply chains. In this analysis, the MFI tool is used to model the supply chains of two lightweighted vehicles, an aluminum intensive vehicle (AIV) and a carbon fiber intensive vehicle (CFV), under several manufacturing scenarios. Vehicle specifications are given in [1]. Scenarios investigated cover alternative carbon fiber (CF) feedstocks and energy efficiency improvements at various points in the vehicle supply chains. The alternative CF feedstocks are polyacrylonitrile, lignin and petroleum-derived mesophase pitch. Scenarios in which the energy efficiency of CF and CFRP production increases are explored using sector efficiency potential values, which quantify the reduction in energy consumption achievable when process

  14. The worldwide growth of launch vehicle technology and services : Quarterly Launch Report : special report

    Science.gov (United States)

    1997-01-01

    This report will discuss primarily those vehicles being introduced by the newly emerging space nations. India, Israel, and Brazil are all trying to turn launch vehicle assets into profitable businesses. In this effort, they have found the technologic...

  15. Fuels demand by light vehicles and motorcycles In Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Jose Manoel Antelo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    The purpose of this paper is to analyze the consumption of gasoline, alcohol and natural gas vehicle (NGV) by light vehicles and motorcycles in Brazil. Through the estimation of fleets per consumption class, in an environment influenced by a new engine technology (flex-fuel), this exercise estimates the fleet-elasticity of cars (and motorcycles) powered by gasoline, hydrated alcohol, natural gas vehicle (NGV) and flex-fuel, in addition to the income elasticity within the period from January, 2000 to December, 2008. This paper uses an alternative variable as income proxy and estimates the five different fleets through the combination of vehicles sales and scrapping curves. This paper's conclusion is that given specific issues of the Brazilian fuel market, in special prices and technological innovations, the fleets' equations for the consumption of the three fuels represent in a more significant manner the relationships expected between supply and demand variables than the commonly used functions of prices and income. (author)

  16. Fuels demand by light vehicles and motorcycles In Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Jose Manoel Antelo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    The purpose of this paper is to analyze the consumption of gasoline, alcohol and natural gas vehicle (NGV) by light vehicles and motorcycles in Brazil. Through the estimation of fleets per consumption class, in an environment influenced by a new engine technology (flex-fuel), this exercise estimates the fleet-elasticity of cars (and motorcycles) powered by gasoline, hydrated alcohol, natural gas vehicle (NGV) and flex-fuel, in addition to the income elasticity within the period from January, 2000 to December, 2008. This paper uses an alternative variable as income proxy and estimates the five different fleets through the combination of vehicles sales and scrapping curves. This paper's conclusion is that given specific issues of the Brazilian fuel market, in special prices and technological innovations, the fleets' equations for the consumption of the three fuels represent in a more significant manner the relationships expected between supply and demand variables than the commonly used functions of prices and income. (author)

  17. Vehicle Technologies Fact of the Week 2013

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Roltek, Inc., Clinton, TN (United States)

    2014-03-01

    Each week the U.S. Department of Energy s Vehicle Technology Office (VTO) posts a Fact of the Week on their website: http://www1.eere.energy.gov/vehiclesandfuels/ . These Facts provide statistical information, usually in the form of charts and tables, on vehicle sales, fuel economy, gasoline prices, and other transportation-related trends. Each Fact is a stand-alone page that includes a graph, text explaining the significance of the data, the supporting information on which the graph was based, and the source of the data. A link to the current week s Fact is available on the VTO homepage, but older Facts are archived and still available at: http://www1.eere.energy.gov/vehiclesandfuels/facts/. This report is a compilation of the Facts that were posted during calendar year 2013. The Facts were written and prepared by staff in Oak Ridge National Laboratory's Center for Transportation Analysis.

  18. Characterization of particle bound organic carbon from diesel vehicles equipped with advanced emission control technologies.

    Science.gov (United States)

    Pakbin, Payam; Ning, Zhi; Schauer, James J; Sioutas, Constantinos

    2009-07-01

    A chassis dynamometer study was carried out by the University of Southern California in collaboration with the Air Resources Board (CARB) to investigate the physical, chemical, and toxicological characteristics of diesel emissions of particulate matter (PM) from heavy-duty vehicles. These heavy-duty diesel vehicles (HDDV) were equipped with advanced emission control technologies, designed to meet CARB retrofit regulations. A HDDV without any emission control devices was used as the baseline vehicle. Three advanced emission control technologies; continuously regenerating technology (CRT), zeolite- and vanadium-based selective catalytic reduction technologies (Z-SCRT and V-SCRT), were tested under transient (UDDS) (1) and cruise (80 kmph) driving cycles to simulate real-world driving conditions. This paper focuses on the characterization of the particle bound organic species from the vehicle exhaust. Physical and chemical properties of PM emissions have been reported by Biswas et al. Atmos. Environ. 2008, 42, 5622-5634) and Hu et al. (Atmos. Environ. 2008, submitted) Significant reductions in the emission factors (microg/mile) of particle bound organic compounds were observed in HDDV equipped with advanced emission control technologies. V-SCRT and Z-SCRT effectively reduced PAHs, hopanes and steranes, n-alkanes and acids by more than 99%, and often to levels below detection limits for both cruise and UDDS cycles. The CRT technology also showed similar reductions with SCRT for medium and high molecular weight PAHs, acids, but with slightly lower removal efficiencies for other organic compounds. Ratios of particle bound organics-to-OC mass (microg/g) from the baseline exhaust were compared with their respective ratios in diesel fuel and lubricating oil, which revealed that hopanes and steranes originate from lubricating oil, whereas PAHs can either form during the combustion process or originate from diesel fuel itself. With the introduction of emission control

  19. Future orbital transfer vehicle technology study. Volume 1: Executive summary

    Science.gov (United States)

    Davis, E. E.

    1982-01-01

    Reusable space and ground based LO2/LH2 OTV's, both advanced space engines and aero assist capability were compared. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. An all LO2/LH2 OTV fleet was also compared with a fleet of LO2/.H2 OTV's and electric OTV's. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. In this case, the LO2/LH2 OTV fleet provided a 23% advantage in total transportation cost. An accelerated technology LF2/LH2 OTV provided improvements in performance relative to LO2/.H2 OTV but has higher DDT&E cost which negated its cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but still did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on orbit propellant storage and transfer and on orbit maintenance capability.

  20. Can Next-Generation Vehicles Sustainably Survive in the Automobile Market? Evidence from Ex-Ante Market Simulation and Segmentation

    Directory of Open Access Journals (Sweden)

    Jungwoo Shin

    2018-02-01

    Full Text Available Introduced autonomous and connected vehicles equipped with emerging technologies are expected to change the automotive market. In this study, using stated preference (SP data collected from choice experiments conducted in Korea with a mixed multiple discrete-continuous extreme value model (MDCEV, we analyzed how the advent of next-generation of vehicles with advanced vehicle technologies would affect consumer vehicle choices and usage patterns. Additionally, ex-ante market simulations and market segmentation analyses were conducted to provide specific management strategies for next-generation vehicles. The results showed that consumer preference structures of conventional and alternative fuel types primarily differed depending on whether they were drivers or non-drivers. Additionally, although the introduction of electric vehicles to the automobile market is expected to negatively affect the choice probability and mileage of other vehicles, it could have a positive influence on the probability of purchasing an existing conventional vehicle if advanced vehicle technologies are available.

  1. Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements

    Science.gov (United States)

    Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.; Jiang, Xun J.

    2013-01-01

    A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASAs science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of developing commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of an emerging commercially available capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).

  2. Vehicle technologies program Government Performance and Results Act (GPA) report for fiscal year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.; Stephens, T. S.; Birky, A. K. (Energy Systems); (DOE-EERE); (TA Engineering)

    2012-08-10

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the on-road fuel economy of both light- and heavy-duty vehicles would improve by more than 20%, and that this positive impact would be accompanied by a reduction in oil consumption of nearly 2 million barrels per day and a reduction in greenhouse gas emissions of more than 300 million metric tons of CO{sub 2} equivalent per year. These benefits would have a significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.

  3. 2015 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-11-01

    The 2015 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 8-12, 2015, in Arlington, Virginia. The review encompassed all of the work done by the FCTO and the VTO: 258 individual activities were reviewed for VTO, by 170 reviewers. A total of 1,095 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  4. The advancement of electric vehicles - case: Tesla Motors. Disruptive technology requiring systemic innovating

    OpenAIRE

    Lehtinen, Petri

    2015-01-01

    Electric vehicles have existed for over 100 years as a disruptive innovation. Even though they have always been easier to use, quieter and cleaner, gasoline cars have beaten it in price, range and faster fueling. As gasoline cars have been the technological standard for the past 150 years there has been no motivation by car manufacturers to advance electric vehicles. By producing electric vehicles Tesla Motors has appropriately become the first successful startup car manufacturer in over 100 ...

  5. Detuning Minimization of Induction Motor Drive System for Alternative Energy Vehicles

    Directory of Open Access Journals (Sweden)

    Habibur Rehman

    2015-08-01

    Full Text Available This paper evaluates different types of AC machines and various control techniques for their suitability for the drive system of Alternative Energy Vehicles (AEV. An Indirect Field Oriented (IFO drive system for the AEV application is chosen and its major problem of detuning is addressed by designing an offline and an online rotor resistance adaptation technique. The offline scheme sets the slip gain at various operating conditions based on the fact that if the rotor resistance is set correctly and field orientation is achieved, then there should be a linear relationship between the torque current and the output torque. The online technique is designed using Model Reference Adaptive System (MRAS for the rotor resistance adaptation. For an ideal field oriented machine, the rotor flux along the q-axis should be zero. This condition acts as a reference model for the proposed MRAS scheme. The current model flux observer in the synchronous frame of reference is selected as an adjustable model and its rotor resistance is tuned so that the flux along the q-axis becomes zero. The effectiveness of the offline tuning scheme is evident through performance validation of the drive system, which is implemented in a real Ford vehicle. The experimental results obtained while driving the test vehicle are included in the paper while the proposed online scheme is validated on a 3.75 kW prototype induction motor.

  6. How Safe is Vehicle Safety? The Contribution of Vehicle Technologies to the Reduction in Road Casualties in France from 2000 to 2010

    Science.gov (United States)

    Page, Yves; Hermitte, Thierry; Cuny, Sophie

    2011-01-01

    In France, over the last 10 years, road fatalities have decreased dramatically by 48%. This reduction is somewhat close to the target fixed by the European Commision in 2001 for the whole of Europe (−50 %). According to the French govnerment, 75% of this reduction was due to the implementation of automatic speed cameras on the roadsides from 2003 onwards. Yet, during this period, there was also a significantly increase in safety technology, new regulations in front and side impacts, and developments in Euro NCAP to improve passive safety in the vehicles. This paper set out to estimate the extent that vehicle safety technologies contributed to the road safety benefits over this decade. Using a combination of databases and fitment rates, the number of fatalities and hospitalized injuries saved in passenger car crashes was estimated for a number of safety technologies, individually and as a package including a 5 star EuroNCAP rating. The additional benefits from other public safety measures were also similarly estimated. The results showed that overall safety measures during this decade saved 240,676 fatalities + serious injuries, of which 173,663 were car occupants. Of these, 27,365 car occupants and 1,083 pedestrian savings could be attributed directly to vehicle safety improvements (11% overall). It was concluded that while public safety measures were responsible for the majority of the savings, enhanced vehicle safety technologies also made a significant improvement in the road toll in France during the last decade. As the take-up rate for these technologies improves, is expected to continue to provide even more benefits in the next 10-year period. PMID:22105388

  7. How Safe is Vehicle Safety? The Contribution of Vehicle Technologies to the Reduction in Road Casualties in France from 2000 to 2010.

    Science.gov (United States)

    Page, Yves; Hermitte, Thierry; Cuny, Sophie

    2011-01-01

    In France, over the last 10 years, road fatalities have decreased dramatically by 48%. This reduction is somewhat close to the target fixed by the European Commision in 2001 for the whole of Europe (-50 %). According to the French govnerment, 75% of this reduction was due to the implementation of automatic speed cameras on the roadsides from 2003 onwards. Yet, during this period, there was also a significantly increase in safety technology, new regulations in front and side impacts, and developments in Euro NCAP to improve passive safety in the vehicles. This paper set out to estimate the extent that vehicle safety technologies contributed to the road safety benefits over this decade. Using a combination of databases and fitment rates, the number of fatalities and hospitalized injuries saved in passenger car crashes was estimated for a number of safety technologies, individually and as a package including a 5 star EuroNCAP rating. The additional benefits from other public safety measures were also similarly estimated. The results showed that overall safety measures during this decade saved 240,676 fatalities + serious injuries, of which 173,663 were car occupants. Of these, 27,365 car occupants and 1,083 pedestrian savings could be attributed directly to vehicle safety improvements (11% overall). It was concluded that while public safety measures were responsible for the majority of the savings, enhanced vehicle safety technologies also made a significant improvement in the road toll in France during the last decade. As the take-up rate for these technologies improves, is expected to continue to provide even more benefits in the next 10-year period.

  8. Solar energised transport solution and customer preferences and opinions about alternative fuel Vehicles – the case of slovenia

    Directory of Open Access Journals (Sweden)

    Matjaž KNEZ

    2015-09-01

    Full Text Available Authorities in Slovenia and other EU member states are confronted with problems of city transportation. Fossil-fuel based transport poses two chief problems – local and global pollution, and dwindling supplies and ever increasing costs. An elegant solution is to gradually replace the present automobile fleet with low emission vehicles. This article first explores the economics and practical viability of the provision of solar electricity for the charging of electric vehicles by installation of economical available PV modules and secondly the customer preferences and opinions about alternative low emission vehicles. Present estimates indicate that for the prevailing solar climate of Celje – a medium-sized Slovenian town – the cost would be only 2.11€ cents/kWh of generated solar electricity. Other results have also revealed that the most relevant factor for purchasing low emission vehicle is total vehicle price.

  9. 2014 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-11-01

    The 2014 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 16-20, 2014, in Washington, DC. The review encompassed all of the work done by the FCTO and the VTO: a total of 295 individual activities were reviewed for VTO, by a total of 179 reviewers. A total of 1,354 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  10. 2013 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-10-01

    The 2013 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held May 13-17, 2013, in Crystal City, Virginia. The review encompassed all of the work done by the FCTO and the VTO: a total of 287 individual activities were reviewed for VTO, by a total of 187 reviewers. A total of 1,382 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  11. Comparing the Effects of Vehicle Automation, Policy-Making and Changed User Preferences on the Uptake of Electric Cars and Emissions from Transport

    Directory of Open Access Journals (Sweden)

    Christoph Mazur

    2018-03-01

    Full Text Available Switching energy demand for transport from liquid fuels to electricity is the most promising way to significantly improve air quality and reduce transport emissions. Previous studies have shown this is possible, that by 2035 the economics of alternative powertrain and energy vectors will have converged. However, they do not address whether the transition is likely or plausible. Using the UK as a case study, we present a systems dynamics model based study informed by transition theory and explore the effects of technology progress, policy-making, user preferences and; for the first time, automated vehicles on this transition. We are not trying to predict the future but to highlight what is necessary in order for different scenarios to become more or less likely. Worryingly we show that current policies with the expected technology progress and expectations of vehicle buyers are insufficient to reach global targets. Faster technology progress, strong financial incentives or a change in vehicle buyer expectations are crucial but still insufficient. In contrast, the biggest switch to alternatively fuelled vehicles could be achieved by the introduction of automated vehicles. The implications will affect policy makers, automotive manufactures, technology developers and broader society.

  12. Neural control systems for alternatively fuelled vehicles and natural gas fuel injection for DACIA NOVA

    Energy Technology Data Exchange (ETDEWEB)

    Sulatisky, M. [Saskatchewan Research Council, Saskatoon, SK (Canada); Ghelesel, A. [BC Gas International, Vancouver, BC (Canada)

    1999-07-01

    The elements of natural gas vehicle conversion technology are described as background to a discussion of the development of bi-fuel injection system for the Rumanian-manufactured DACIA-NOVA automobile. The bi-fuel injection system mirrors the fueling system installed by the original equipment manufacturer; it can also be easily installed on Ford, General Motors and DaimlerChrysler vehicles as well as on most imports.To meet emission standards after 2000, it is envisaged to install on the DACIA NOVA a neural control system (NCS) and a completely adaptive linear control system (ACLS). Details of natural gas vehicles development and the development of NCS and ACLS are discussed, including short-term and long-term objectives.

  13. Development of an Autonomous Vehicle for Weed and Crop Registration

    DEFF Research Database (Denmark)

    Pedersen, Tom Søndergaard; Nielsen, Kirsten Mølgaard; Andersen, Palle

    The extension of information technology and computers on farming tools results in new possibilities for crop/weed handling. In this paper a system using an autonomous field robot (vehicle) able to make images in the field is described. In the recent farming has come to rely on intensive use...... degree of autonomy. The vehicle is part of an autonomous information system for crop and weed registration in fields which is developed at Aalborg University and The Danish Institute of Agricultural Science. The system consists of the vehicle and a stationary base station as well as a wireless...... be a solution but at present the image analysis technology does not have the capability for online analysis. An alternative way is to construct a weed map prior to the spraying. In order to avoid damage to the soil a light weight vehicle carrying a camera is an obvious choice. To minimize damage to the crop...

  14. A technological review on electric vehicle DC charging stations using photovoltaic sources

    Science.gov (United States)

    Youssef, Cheddadi; Fatima, Errahimi; najia, Es-sbai; Chakib, Alaoui

    2018-05-01

    Within the next few years, Electrified vehicles are destined to become the essential component of the transport field. Consequently, the charging infrastructure should be developed in the same time. Among this substructure, Charging stations photovoltaic-assisted are attracting a substantial interest due to increased environmental awareness, cost reduction and rise in efficiency of the PV modules. The intention of this paper is to review the technological status of Photovoltaic–Electric vehicle (PV-EV) charging stations during the last decade. The PV-EV charging station is divided into two categories, which are PV-grid and PV-standalone charging systems. From a practical point view, the distinction between the two architectures is the bidirectional inverter, which is added to link the station to the smart grid. The technological infrastructure includes the common hardware components of every station, namely: PV array, dc-dc converter provided with MPPT control, energy storage unit, bidirectional dc charger and inverter. We investigate, compare and evaluate many valuable researches that contain the design and control of PV-EV charging system. Additionally, this concise overview reports the studies that include charging standards, the power converters topologies that focus on the adoption of Vehicle-to grid technology and the control for both PV–grid and PV standalone DC charging systems.

  15. HTS machines as enabling technology for all-electric airborne vehicles

    International Nuclear Information System (INIS)

    Masson, P J; Brown, G V; Soban, D S; Luongo, C A

    2007-01-01

    Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development

  16. HTS machines as enabling technology for all-electric airborne vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Masson, P J [FAMU-FSU College of Engineering and the Center for Advanced Power Systems, Tallahassee, FL 32310 (United States); Brown, G V [NASA Glenn Research Center, Cleveland, OH (United States); Soban, D S [Aerospace System Design Laboratory/Georgia Tech, Atlanta, GA 32332 (United States); Luongo, C A [FAMU-FSU College of Engineering and the Center for Advanced Power Systems, Tallahassee, FL 32310 (United States)

    2007-08-15

    Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.

  17. 1991-92 Canadian directory of efficiency and alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The 1991-1992 Canadian Directory of efficiency and alternative energy technologies. The three main sections cover Alternative Energy Companies, Energy Efficiency Companies and Energy Service Companies. Contact and company information is provided.

  18. 1991-92 Canadian directory of efficiency and alternative energy technologies

    International Nuclear Information System (INIS)

    1992-01-01

    The 1991-1992 Canadian Directory of efficiency and alternative energy technologies. The three main sections cover Alternative Energy Companies, Energy Efficiency Companies and Energy Service Companies. Contact and company information is provided

  19. Understanding the Distributional Impacts of Vehicle Policy : Who Buys New and Used Alternative Vehicles?

    Science.gov (United States)

    2018-02-02

    This research project explores the plug-in electric vehicle (PEV) market, including both Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs), and the sociodemographic characteristics of purchasing households. We use detailed...

  20. Evaluation of duty cycles for heavy-duty urban vehicles : final report of IEA AMF Annex 29

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.O.; Erkkila, K. [VTT Technical Research Centre of Finland, Espoo (Finland); Clark, N. [West Virginia Univ., Morgantown, WV (United States); Rideout, G. [Environment Canada, Ottawa, ON (Canada). Environmental Technology Centre, Emissions Research and Measurement Div

    2007-07-01

    Heavy-duty vehicles in Europe and North America will require incylinder measures or exhaust gas after-treatment technology to control emissions and meet ever stringent emission requirements. Alternatively, manufacturers can choose clean burning alternative fuels such as natural gas. Although there are no international standards for heavy-duty vehicle chassis dynamometer testing at present, the IEA Implementing Agreements offer excellent platforms for international collaborative research. Harmonization of test methods for vehicles and fuels is one important task. This paper reported on the work of 3 laboratories that have produced emission results for complete heavy-duty vehicles. VTT Technical Research of Finland, Environment Canada and West Virginia University measured standard size urban buses driving various duty cycles on chassis dynamometers. The number of transient test cycles per laboratory varied from 6 to 16. European and North American diesel and natural gas vehicles were included in the vehicle matrix. The objective was to demonstrate how the driving cycle affects the emission performance of conventional and advanced urban buses. Several driving cycles were run on urban buses to better understand the characteristics of different duty cycles; produce a key for cross-interpretation of emission results generated with different cycles; and study the interaction between vehicle, exhaust after-treatment and fuel technologies and test procedures. Fuel consumption and exhaust emissions were measured. The results varied significantly not only by test cycle, but also by vehicle technology. In general, vehicles emissions were directly proportioned to the amount of fuel consumed, with the exception of NOx-emissions from SCR-vehicles. There was a clear difference in the emission profiles of European and North American vehicles. In Europe, fuel efficiency was emphasized, while in North America, more focus was given to regulated exhaust emissions, especially low

  1. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Christophersen, Jon P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  2. Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles

    Directory of Open Access Journals (Sweden)

    Zach C. Winfield

    2012-03-01

    Full Text Available Many advanced vehicle technologies, including electric vehicles (EVs, hybrid electric vehicles (HEVs, and fuel cell vehicles (FCVs, are gaining attention throughout the World due to their capability to improve fuel efficiencies and emissions. When evaluating the operational successes of these new fuel-efficient vehicles, it is essential to consider energy usage and greenhouse gas (GHG emissions throughout the entire lifetimes of the vehicles, which are comprised of two independent cycles: a fuel cycle and a vehicle cycle. This paper intends to contribute to the assessment of the environmental impacts from the alternative technologies throughout the lifetimes of various advanced vehicles through objective comparisons. The methodology was applied to six commercial vehicles that are available in the U.S. and that have similar dimensions and performances. We also investigated the shifts in energy consumption and emissions through the use of electricity and drivers’ behavior regarding the frequencies of battery recharging for EVs and plug-in hybrid electric vehicles (PHEVs. This study thus gives insight into the impacts of the electricity grid on the total energy cycle of a vehicle lifetime. In addition, the total ownership costs of the selected vehicles were examined, including considerations of the fluctuating gasoline prices. The cost analysis provides a resource for drivers to identify optimal choices for their driving circumstances.

  3. Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles

    International Nuclear Information System (INIS)

    Bosetti, Valentina; Longden, Thomas

    2013-01-01

    With a focus on the interaction between long-term climate targets and personal transport we review the electrification of light duty vehicles (LDVs) within a model that utilizes a learning-by-researching structure. By modeling the demand of vehicles, the use of fuels and emissions implied, the model solves for the optimum RD and D investments that decrease the cost of hybrid, plug-in hybrid and electric vehicles. A range of technology and climate policy scenarios provide long term projections of vehicle use that highlight the potential synergies between innovation in the transportation sector and the energy sector. We find that even when the capital cost of electric drive vehicles (EDVs) remains higher than that of traditional combustion engine alternatives, EDVs are likely to play a key role in the decarbonisation implied by stringent climate policy. Limited innovation in batteries results in notable increases in policy costs consistent with a two degree climate policy target. - Highlights: • Significant increase in vehicles across regions in the medium to long term future. • Climate policy costs are sensitive to a lack of electric drive vehicles (EDVs). • Achieving 450ppm with no change in battery costs has a policy cost that is 2.86 percentage points higher than the base 450ppm scenario. • Climate policy hastens the introduction of electrified vehicles, however EDVs do not become the dominant vehicle of choice before the middle of the century

  4. Advanced technology mobile robotics vehicle fleet

    International Nuclear Information System (INIS)

    McGovern, D.E.

    1987-03-01

    A fleet of vehicles is being developed and maintained by Sandia National Laboratories for studies in remote control and autonomous operation. The vehicles range from modified commercial vehicles to specially constructed mobile platforms and are utilized as testbeds for developing concepts in the areas of remote control (teleoperation) and computer control (autonomy). Actuators control the vehicle speed, brakes, and steering via manual input from a remote driving station or through some level of digital computer control. On-board processing may include simple vehicle control functions or may allow for unmanned, autonomous operation. Communication links are provided for digital communication between control computers, television transmission for vehicle vision, and voice for local control. SNL can develop, test, and evaluate sensors, processing requirements, various methods of actuator implementation, operator controlled feedback requirements, and vehicle operations. A description of the major features and uses for each of the vehicles in the fleet is provided

  5. US Department of Energy workshop on future fuel technology for heavy vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The objective of the workshop described in this report was to develop consensus on a program strategy for use of alternative fuels in heavy vehicles. Participants represented fuel providers, additive suppliers, the trucking industry, engine manufacturers, and government or national laboratory staff. Breakout sessions were co-facilitated by national laboratory staff and industry representatives.

  6. Vehicle Technologies Fact of the Week 2015

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Diegel, Susan W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert G. [Roltek, Inc., Clinton, TN (United States)

    2016-05-01

    Each week the U.S. Department of Energy s Vehicle Technology Office (VTO) posts a Fact of the Week on their website: http://www1.eere.energy.gov/vehiclesandfuels/ . These Facts provide statistical information, usually in the form of charts and tables, on vehicle sales, fuel economy, gasoline prices, and other transportation-related trends. Each Fact is a stand-alone page that includes a graph, text explaining the significance of the data, the supporting information on which the graph was based, and the source of the data. A link to the current week s Fact is available on the VTO homepage, but older Facts (back to 2009) are archived and still available at: http://energy.gov/eere/vehicles/current-and-past-years-facts-week. Each Fact of the Week website page includes a link to an Excel file. That file contains the data from the Supporting Information section of the page so that researchers can easily use data from the Fact of the Week in their work. Beginning in August of 2015, a subscription list is available on the DOE website so that those interested can sign up for an email to be sent each Monday which includes the text and graphic from the current week s Fact. This report is a compilation of the Facts that were posted during calendar year 2015. The Facts were created, written and prepared by staff in Oak Ridge National Laboratory's Center for Transportation Analysis.

  7. Inductively coupled power systems for electric vehicles: a fourth dimension

    Energy Technology Data Exchange (ETDEWEB)

    Bolger, J G

    1980-09-01

    There are three traditional methods of supplying energy to electric vehicles. The inductively coupled roadway power system is a fourth method that adds important new dimensions to electric-vehicle capabilities. It efficiently transfers power to moving vehicles without physical contact, freeing the electric vehicle from most of the applicational constraints imposed by the other three methods. The single power conductor in the roadway carries several hundred amperes of alternating current. The current causes a weak magnetic flux to circulate through the air above it when a vehicle's power pickup is not present. When a vehicle's pickup is suported over the inductor, a more intense flux circulates through the steel cores in the road and in the pickup. Applications, electrical safety, and present status of the technology are discussed in the paper presented at the St. Louis EXPO '80.

  8. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Science.gov (United States)

    . Fueling and Driving Options Plug-in hybrid electric vehicle batteries can be charged by an outside sized hybrid electric vehicle. If the vehicle is driven a shorter distance than its all-electric range drives the wheels almost all of the time, but the vehicle can switch to work like a parallel hybrid at

  9. A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development

    OpenAIRE

    Fuad Un-Noor; Sanjeevikumar Padmanaban; Lucian Mihet-Popa; Mohammad Nurunnabi Mollah; Eklas Hossain

    2017-01-01

    Electric vehicles (EV), including Battery Electric Vehicle (BEV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), Fuel Cell Electric Vehicle (FCEV), are becoming more commonplace in the transportation sector in recent times. As the present trend suggests, this mode of transport is likely to replace internal combustion engine (ICE) vehicles in the near future. Each of the main EV components has a number of technologies that are currently in use or can become prominent in...

  10. Technology Roadmaps - Electric and plug-in hybrid electric vehicles (EV/PHEV)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    The mass deployment of electric and plug-in hybrid electric vehicles (EVs and PHEVs) that rely on low greenhouse gas (GHG) emission electricity generation has great potential to significantly reduce the consumption of petroleum and other high CO2-emitting transportation fuels. The vision of the Electric and Plug-in Hybrid (EV/PHEV) Vehicles Roadmap is to achieve by 2050 the widespread adoption and use of EVs and PHEVs, which together represent more than 50% of annual LDV (light duty vehicle) sales worldwide. In addition to establishing a vision, this roadmap sets strategic goals to achieve it, and identifies the steps that need to be taken to accomplish these goals. This roadmap also outlines the roles and collaboration opportunities for different stakeholders and shows how government policy can support the overall achievement of the vision. The strategic goals for attaining the widespread adoption and use of EVs and PHEVs worldwide by 2050 cover the development of the EV/PHEV market worldwide through 2030 and involve targets that align with global targets to stabilise GHG concentrations. These technology-specific goals include the following: Set targets for electric-drive vehicle sales; Develop coordinated strategies to support the market introduction of electric-drive vehicles; Improve industry understanding of consumer needs and behaviours; Develop performance metrics for characterising vehicles; Foster energy storage RD and D initiatives to reduce costs and address resource-related issues; and, Develop and implement recharging infrastructure. The roadmap outlines additional recommendations that must be considered in order to successfully meet the technology milestones and strategic goals. These recommendations include the following: Use a comprehensive mix of policies that provide a clear framework and balance stakeholder interests; Engage in international collaboration efforts; and, Address policy and industry needs at a national level. The IEA will work in an

  11. Market penetration scenarios for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  12. 2017 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-31

    The 2017 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 5-9, 2017, in Washington, DC. The review encompassed work done by the Hydrogen and Fuel Cells Program and VTO: 263 individual activities were reviewed for VTO by 191 reviewers. Exactly 1,241 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  13. 2016 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-12-01

    The 2016 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 6-9, 2016, in Washington, DC. The review encompassed work done by the Hydrogen and Fuel Cells Program and VTO: 226 individual activities were reviewed for VTO, by 171 reviewers. A total of 1,044 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  14. Preliminary study on gas-driven vehicles; Foerstudie om teknik foer gasdrivna fordon

    Energy Technology Data Exchange (ETDEWEB)

    Egebaeck, K.E. [Autoemission KE E Consultant AB, Nykoeping (Sweden); Ryden, C. [Stockholm MFO AB (Sweden)

    2001-10-01

    The use of alternative fuels for motor vehicles has been a subject of interest for a long time and alternative fuels have also been subject to extensive investigations. Studies and investigations of the alternatives have resulted in many positive and useful results in that both advantages and disadvantages of different fuels have been evaluated. An important prerequisite for an introduction of new fuels for motor vehicles is that engines and vehicles have been developed and adapted to the new fuel. In most of the cases there are specific differences in composition and physical function between alternative fuels and the commercial fuels, petrol and diesel oil. There is therefore a need for both engines and the exhaust control systems to be developed in order to take the full advantages of the positive property of the new fuel. The aim of the project was to study the technical development of natural gas and biogas fuelled engines and vehicles which had taken place during the last few years, from both a national and an international perspective. The method used has been to visit, among others, various car manufacturers in order to ascertain the state of the art concerning the development of gaseous-fuelled vehicles. In addition an extensive literature study has been carried out aiming at a widening of the knowledge about the development of natural gas fuelled vehicles in especially in USA, Europe and Japan. The results are presented in this report, which hopefully gives a broad picture of the state of the art of current gaseous-fuelled vehicles and information concerning the technology used for the development.

  15. Energy management in vehicles with alternative drives; Energiemanagement in Fahrzeugen mit alternativen Antrieben

    Energy Technology Data Exchange (ETDEWEB)

    Lange, S.; Schimanski, M.

    2007-11-21

    Within the next few years, the automotive industry will be confronted with many challenges, as for example stricter emission standards and increasing oil prices. To meet the challenges, alternative drive concepts are currently being developed and placed in the market. To ensure a secure and efficient operation of the electric components, the introduction of an integrated energy management is required. It comprises all planning, controlling and predictive measures. The first part of this dissertation presents a new system concept, which can make an online prognosis of expected driving situations, such as speed and altitude profiles by means of internal vehicle information during an operating cycle. Based on this the control strategy can calculate the future power requirement of the vehicle and initiate control commands to enable a more efficient driving. The basis of this system concept is the recognition of routes with characteristic steering angle information and the creation of a history database for the routes driven with the respective vehicle speeds and altitudes. On the basis of an extensive analysis of the vehicle's electrical system in the second part of the dissertation, different effects on the development process for dimensioning the electrical system power supply are discussed. From this follows the necessity to develop a tool chain based on simulations. The tool chain consists of commercial simulation tools and the software Avanti (Advanced Analysis Tool and Simulation Interface) which is developed within the scope of the dissertation. Avanti enables an automated and optimal procedure when dimensioning the vehicle's electrical system in consideration of different control algorithms. A substantial part of this tool chain is the integration of a verified VHDL-AMS model library for the electrical system components. (orig.)

  16. Energy management in vehicles with alternative drives; Energiemanagement in Fahrzeugen mit alternativen Antrieben

    Energy Technology Data Exchange (ETDEWEB)

    Lange, S; Schimanski, M

    2007-11-21

    Within the next few years, the automotive industry will be confronted with many challenges, as for example stricter emission standards and increasing oil prices. To meet the challenges, alternative drive concepts are currently being developed and placed in the market. To ensure a secure and efficient operation of the electric components, the introduction of an integrated energy management is required. It comprises all planning, controlling and predictive measures. The first part of this dissertation presents a new system concept, which can make an online prognosis of expected driving situations, such as speed and altitude profiles by means of internal vehicle information during an operating cycle. Based on this the control strategy can calculate the future power requirement of the vehicle and initiate control commands to enable a more efficient driving. The basis of this system concept is the recognition of routes with characteristic steering angle information and the creation of a history database for the routes driven with the respective vehicle speeds and altitudes. On the basis of an extensive analysis of the vehicle's electrical system in the second part of the dissertation, different effects on the development process for dimensioning the electrical system power supply are discussed. From this follows the necessity to develop a tool chain based on simulations. The tool chain consists of commercial simulation tools and the software Avanti (Advanced Analysis Tool and Simulation Interface) which is developed within the scope of the dissertation. Avanti enables an automated and optimal procedure when dimensioning the vehicle's electrical system in consideration of different control algorithms. A substantial part of this tool chain is the integration of a verified VHDL-AMS model library for the electrical system components. (orig.)

  17. 10 CFR 490.306 - Vehicle operation requirements.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Vehicle operation requirements. 490.306 Section 490.306... Provider Vehicle Acquisition Mandate § 490.306 Vehicle operation requirements. The alternative fueled vehicles acquired pursuant to section 490.302 of this part shall be operated solely on alternative fuels...

  18. Monitoring Technology for Vehicle Loading Status Based on the Analysis of Suspension Vibration Characters

    Directory of Open Access Journals (Sweden)

    Shiwu Li

    2014-01-01

    Full Text Available Monitoring and early warning of vehicle risk status was one of the key technologies of transportation security, and real-time monitoring load status could reduce the transportation accidents effectively. In order to obtain vehicle load status information, vehicle characters of suspension were analyzed and simulated under different working conditions. On the basis of this, the device that can detect suspension load with overload protection structure was designed and a method of monitored vehicle load status was proposed. The monitoring platform of vehicle load status was constructed and developed for a FAW truck and system was tested on level-A road and body twist lane. The results show that the measurement error is less than 5% and horizontal centre-of-mass of vehicle was positioned accurately. The platform enables providing technical support for the real-time monitoring and warning of vehicles risk status in transit.

  19. AI technology and automobile. ; Toward vehicle autonomy. AI gijutsu to jidosha. ; Sharyo no jiritsuka ni mukatte

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, A. (Mazda Motor Corp., Hiroshima (Japan))

    1991-01-01

    This report describes the vehicle autonomy by using artificial intelligence (AI) technology. Owing to a remarkable progress of AI technology, it is forecasted that driving support system will be introduced into the market till 2000, and higher autonomous navigation system will be introduced since about 2010. Autonomous vehicles have capacities of recognizing the outside world and of navigating roads by themselves, and with their enfanced environment adaptability the road transportation in the future is expected to be much more safer than in the present. The autonomous vehicle can warn its driver of potential dangers and correct operational errors of the driver. In order to realize such autonomous vehicles, extensive researches on perception systems, decision making systems and driving support systems are needed. 9 refs., 10 figs., 1 tab.

  20. Assessing the impact of policy interventions on the adoption of plug-in electric vehicles: An agent-based model

    International Nuclear Information System (INIS)

    Silvia, Chris; Krause, Rachel M.

    2016-01-01

    Heightened concern regarding climate change and energy independence has increased interest in plug-in electric vehicles as one means to address these challenges and governments at all levels have considered policy interventions to encourage their adoption. This paper develops an agent-based model that simulates the introduction of four policy scenarios aimed at promoting electric vehicle adoption in an urban community and compares them against a baseline. These scenarios include reducing vehicle purchase price via subsidies, expanding the local public charging network, increasing the number and visibility of fully battery electric vehicles (BEVs) on the roadway through government fleet purchases, and a hybrid mix of these three approaches. The results point to the effectiveness of policy options that increased awareness of BEV technology. Specifically, the hybrid policy alternative was the most successful in encouraging BEV adoption. This policy increases the visibility and familiarity of BEV technology in the community and may help counter the idea that BEVs are not a viable alternative to gasoline-powered vehicles. - Highlights: •Various policy interventions to encourage electric vehicle adoption are examined. •An agent based model is used to simulate individual adoption decisions. •Policies that increase the familiarity of electric vehicles are most effective.

  1. Vehicle Technologies' Fact of the Week 2012

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Moore, Sheila A [ORNL; Boundy, Robert Gary [ORNL

    2013-02-01

    Each week the U.S. Department of Energy s Vehicle Technology Office (VTO) posts a Fact of the Week on their website: http://www1.eere.energy.gov/vehiclesandfuels/ . These Facts provide statistical information, usually in the form of charts and tables, on vehicle sales, fuel economy, gasoline prices, and other transportation-related trends. Each Fact is a stand-alone page that includes a graph, text explaining the significance of the data, the supporting information on which the graph was based, and the source of the data. A link to the current week s Fact is available on the VTO homepage, but older Facts are archived and still available at: http://www1.eere.energy.gov/vehiclesandfuels/facts/. This report is a compilation of the Facts that were posted during calendar year 2012. The Facts were written and prepared by staff in Oak Ridge National Laboratory's Center for Transportation Analysis.

  2. Vehicle Technologies' Fact of the Week 2011

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

    2012-04-01

    Each week the U.S. Department of Energy s Vehicle Technology Program (VTP) posts a Fact of the Week on their website: http://www1.eere.energy.gov/vehiclesandfuels/. These Facts provide statistical information, usually in the form of charts and tables, on vehicle sales, fuel economy, gasoline prices, and other transportation-related trends. Each Fact is a stand-alone page that includes a graph, text explaining the significance of the data, the supporting information on which the graph was based, and the source of the data. A link to the current Fact is available Monday through Friday on the VTP homepage, but older Facts are archived and still available at: http://www1.eere.energy.gov/vehiclesandfuels/facts/. This report is a compilation of the Facts that were posted during calendar year 2011. The Facts were written and prepared by staff in Oak Ridge National Laboratory's Center for Transportation Analysis.

  3. Case Study – Idling Reduction Technologies for Emergency Service Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Owens, Russell J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    This case study explores the use of idle reduction technologies (IRTs) on emergency service vehicles in police, fire, and ambulance applications. Various commercially available IRT systems and approaches can decrease, or ultimately eliminate, engine idling. Fleets will thus save money on fuel, and will also decrease their criteria pollutant emissions, greenhouse gas emissions, and noise.

  4. Fiat Chrysler Application for Alternative Methodology for Off-Cycle Technology Credits: Engine and Transmission Warmup

    Science.gov (United States)

    FCA Group LLC request to the EPA regarding greenhouse gas, off-cycle CO2 credits for Active Engine Warm Up used in 2011-2013 model year vehicles and Active Transmission Warm Up Technologies used in 2013 model year vehicles.

  5. Regulatory adaptation: Accommodating electric vehicles in a petroleum world

    International Nuclear Information System (INIS)

    Lutsey, Nicholas; Sperling, Daniel

    2012-01-01

    This paper addresses the policy challenges of adjusting established regulations to accommodate evolving and new technologies. We examine energy and emissions regulations for older petroleum powered vehicles and newer plug-in electric vehicles. Until now, vehicle regulations across the world have ignored energy consumption and emissions upstream of the vehicle (at refineries, pipelines, etc), largely because of the convenient fact that upstream emissions and energy use are nearly uniform across petroleum-fueled vehicles and play a relatively minor role in total lifecycle emissions. Including upstream impacts would greatly complicate the regulations. But because the vast majority of emissions and energy consumption for electric vehicles (and hydrogen and, to a lesser extent, biofuels) are upstream, the old regulatory design is no longer valid. The pressing regulatory question is whether to assign upstream GHG emissions to electric vehicles, or not, and if so, how. We find that assigning zero upstream emissions—as a way of incentivizing the production and sale of PEVs—would eventually lead to an erosion of 20% of the GHG emission benefits from new vehicles, assuming fixed vehicle standards. We suggest alternative policy mechanisms and strategies to account for upstream emissions and energy use. - Highlights: ► We quantify the effects of electric vehicles within greenhouse gas (GHG) regulation. ► Electric vehicle GHG impacts are substantial and vary greatly by grid power sources. ► Existing “zero emission” electric vehicle incentives undermine regulation benefits. ► 10% electric vehicle sales leads to 20% erosion in regulation benefits by 2020–2025. ► Lifecycle crediting improves policy cost-effectiveness and technology neutrality.

  6. Development of alternative energy technologies. Entrepreneurs, new technologies, and social change

    Energy Technology Data Exchange (ETDEWEB)

    Burns, T R

    1985-01-01

    This paper discusses the introduction and development of several alternative energy technologies in countries where the innovation process has enjoyed some measure of success: solar water heating (California, Israel), windmills (Denmark), wood and peat for co-generation (Northern New England, Finland) and geo-thermal power (California) as well as heat pumps designed to save energy (West Germany). It is argued that the introduction and development of new technologies - and the socio-technical systems which utilize these technologies - depend on the initiatives of entrepreneurs and social change agents. They engage in adapting and matching technology and social structure (laws, institutions, norms, political and economic forces and social structure generally). Successful developments - as well as blocked or retarded developments - are discussed in terms of such ''compatibility analysis''. Policy implications are also discussed. (orig.).

  7. Evaluation of alternative nonflame technologies for destruction of hazardous organic waste

    International Nuclear Information System (INIS)

    Schwinkendorf, W.E.; Musgrave, B.C.; Drake, R.N.

    1997-04-01

    The US Department of Energy's Mixed Waste Focus Area (MWFA) commissioned an evaluation of mixed waste treatment technologies that are alternatives to incineration for destruction of hazardous organic wastes. The purpose of this effort is to evaluate technologies that are alternatives to open-flame, free-oxygen combustion (as exemplified by incinerators), and recommend to the Waste Type Managers and the MWFA which technologies should be considered for further development. Alternative technologies were defined as those that have the potential to: destroy organic material without use of open-flame reactions with free gas-phase oxygen as the reaction mechanism; reduce the offgas volume and associated contaminants (metals, radionuclides, and particulates) emitted under normal operating conditions; eliminate or reduce the production of dioxins and furans; and reduce the potential for excursions in the process that can lead to accidental release of harmful levels of chemical or radioactive materials. Twenty-three technologies were identified that have the potential for meeting these requirements. These technologies were rated against the categories of performance, readiness for deployment, and environment safety, and health. The top ten technologies that resulted from this evaluation are Steam Reforming, Electron Beam, UV Photo-Oxidation, Ultrasonics, Eco Logic reduction process, Supercritical Water oxidation, Cerium Mediated Electrochemical Oxidation, DETOX SM , Direct Chemical Oxidation (peroxydisulfate), and Neutralization/Hydrolysis

  8. Evaluation of the efficiency of alternative enzyme production technologies

    DEFF Research Database (Denmark)

    Albæk, Mads Orla

    Enzymes are used in an increasing number of industries. The application of enzymes is extending into the production of lignocellulosic ethanol in processes that economically can compete with fossil fuels. Since lignocellulosic ethanol is based on renewable resources it will have a positive impact...... production of cellulases and hemi-cellulases. The aim of the thesiswas to use modeling tools to identify alternative technologies that have higher energy or raw material efficiency than the current technology. The enzyme production by T. reesei was conducted as an aerobic fed-batch fermentation. The process...... of the uncertainty and sensitivity of the model indicated the biological parameters to be responsible for most of the model uncertainty. A number of alternative fermentation technologies for enzyme production were identified in the open literature. Their mass transfer capabilities and their energy efficiencies were...

  9. Evaluation of EDAR vehicle emissions remote sensing technology.

    Science.gov (United States)

    Ropkins, Karl; DeFries, Timothy H; Pope, Francis; Green, David C; Kemper, Jim; Kishan, Sandeep; Fuller, Gary W; Li, Hu; Sidebottom, Jim; Crilley, Leigh R; Kramer, Louisa; Bloss, William J; Stewart Hager, J

    2017-12-31

    Despite much work in recent years, vehicle emissions remain a significant contributor in many areas where air quality standards are under threat. Policy-makers are actively exploring options for next generation vehicle emission control and local fleet management policies, and new monitoring technologies to aid these activities. Therefore, we report here on findings from two separate but complementary blind evaluation studies of one new-to-market real-world monitoring option, HEAT LLC's Emission Detection And Reporting system or EDAR, an above-road open path instrument that uses Differential Absorption LIDAR to provide a highly sensitive and selective measure of passing vehicle emissions. The first study, by Colorado Department of Public Health and Environment and Eastern Research Group, was a simulated exhaust gas test exercise used to investigate the instrumental accuracy of the EDAR. Here, CO, NO, CH 4 and C 3 H 8 measurements were found to exhibit high linearity, low bias, and low drift over a wide range of concentrations and vehicle speeds. Instrument accuracy was high (R 2 0.996 for CO, 0.998 for NO; 0.983 for CH 4 ; and 0.976 for C 3 H 8 ) and detection limits were 50 to 100ppm for CO, 10 to 30ppm for NO, 15 to 35ppmC for CH 4 , and, depending on vehicle speed, 100 to 400ppmC 3 for C 3 H 8 . The second study, by the Universities of Birmingham and Leeds and King's College London, used the comparison of EDAR, on-board Portable Emissions Measurement System (PEMS) and car chaser (SNIFFER) system measurements collected under real-world conditions to investigate in situ EDAR performance. Given the analytical challenges associated with aligning these very different measurements, the observed agreements (e.g. EDAR versus PEMS R 2 0.92 for CO/CO 2 ; 0.97 for NO/CO 2 ; ca. 0.82 for NO 2 /CO 2 ; and, 0.94 for PM/CO 2 ) were all highly encouraging and indicate that EDAR also provides a representative measure of vehicle emissions under real-world conditions. Copyright

  10. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  11. A forecast of household ownership and use of alternative fuel vehicles: A multiple discrete-continuous choice approach

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jiwoon [Korea Energy Economics Institute, Naeson 2-dong, Uiwang-si, Gyeonggi-do, 437-713 (Korea); Jeong, Gicheol [Technology Management, Economics and Policy Program, 37-402, College of Engineering, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul, 151-744 (Korea); Kim, Yeonbae [Technology Management, Economics and Policy Program, 37-318, College of Engineering, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, South Seoul, 151-744 (Korea)

    2008-09-15

    The paper analyzes how adding alternative fuel passenger cars to the market will affect patterns in demand for passenger cars. We use conjoint analysis and a multiple discrete-continuous choice model to estimate consumer preferences regarding alternative fuel vehicles, and based on the estimates we conduct a simulation to analyze changing rates of ownership and use of variously fueled passenger cars under the effect of the introduction of alternative fuel passenger cars. In addition, we estimate changes in overall fuel consumption and the emission of pollutants. The results show that gasoline-fueled cars will still be most consumers' first choice, but alternative fuel passenger cars will nevertheless compete and offer a substitute for the purchase and use of gasoline-fueled or diesel-fueled cars. Finally, results show that adding alternative fuel cars to the market would effectively lower gasoline and diesel fuel consumption and the emission of pollutants. (author)

  12. A forecast of household ownership and use of alternative fuel vehicles: A multiple discrete-continuous choice approach

    International Nuclear Information System (INIS)

    Ahn, Jiwoon; Jeong, Gicheol; Kim, Yeonbae

    2008-01-01

    The paper analyzes how adding alternative fuel passenger cars to the market will affect patterns in demand for passenger cars. We use conjoint analysis and a multiple discrete-continuous choice model to estimate consumer preferences regarding alternative fuel vehicles, and based on the estimates we conduct a simulation to analyze changing rates of ownership and use of variously fueled passenger cars under the effect of the introduction of alternative fuel passenger cars. In addition, we estimate changes in overall fuel consumption and the emission of pollutants. The results show that gasoline-fueled cars will still be most consumers' first choice, but alternative fuel passenger cars will nevertheless compete and offer a substitute for the purchase and use of gasoline-fueled or diesel-fueled cars. Finally, results show that adding alternative fuel cars to the market would effectively lower gasoline and diesel fuel consumption and the emission of pollutants. (author)

  13. Economic and environmental impacts of alternative transportation technologies.

    Science.gov (United States)

    2013-04-01

    This project has focused on comparing alternative transportation technologies in terms of their : environmental and economic impacts. The research is data-driven and quantitative, and examines the : dynamics of impact. We have developed new theory an...

  14. Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations

    International Nuclear Information System (INIS)

    Ou Xunmin; Zhang Xiliang; Chang Shiyan

    2010-01-01

    The Chinese government has enacted policies to promote alternative vehicle fuels (AVFs) and alternative fuel vehicles (AFVs), including city bus fleets. The life cycle (LC), energy savings (ES) and GHG reduction (GR) profiles of AVFs/AFVs are critical to those policy decisions. The well-to-wheels module of the Tsinghua-CA3EM model is employed to investigate actual performance data. Compared with conventional buses, AFVs offer differences in performance in terms of both ES and GR. Only half of the AFVs analyzed demonstrate dual benefits. However, all non-oil/gas pathways can substitute oil/gas with coal. Current policies seek to promote technology improvements and market creation initiatives within the guiding framework of national-level diversification and district-level uniformity. Combined with their actual LC behavior and in keeping with near- and long-term strategies, integrated policies should seek to (1) apply hybrid electric technology to diesel buses; (2) encourage NG/LPG buses in gas-abundant cities; (3) promote commercialize electric buses or plug-in capable vehicles through battery technology innovation; (4) support fuel cell buses and hydrogen technology R and D for future potential applications; and (5) conduct further research on boosting vehicle fuel efficiency, applying low-carbon transportation technologies, and addressing all resultant implications of coal-based transportation solutions to human health and natural resources.

  15. Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Ou Xunmin, E-mail: oxm07@mails.tsinghua.edu.c [School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); Zhang Xiliang, E-mail: zhang_xl@tsinghua.edu.c [China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); Chang Shiyan [China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China)

    2010-01-15

    The Chinese government has enacted policies to promote alternative vehicle fuels (AVFs) and alternative fuel vehicles (AFVs), including city bus fleets. The life cycle (LC), energy savings (ES) and GHG reduction (GR) profiles of AVFs/AFVs are critical to those policy decisions. The well-to-wheels module of the Tsinghua-CA3EM model is employed to investigate actual performance data. Compared with conventional buses, AFVs offer differences in performance in terms of both ES and GR. Only half of the AFVs analyzed demonstrate dual benefits. However, all non-oil/gas pathways can substitute oil/gas with coal. Current policies seek to promote technology improvements and market creation initiatives within the guiding framework of national-level diversification and district-level uniformity. Combined with their actual LC behavior and in keeping with near- and long-term strategies, integrated policies should seek to (1) apply hybrid electric technology to diesel buses; (2) encourage NG/LPG buses in gas-abundant cities; (3) promote commercialize electric buses or plug-in capable vehicles through battery technology innovation; (4) support fuel cell buses and hydrogen technology R and D for future potential applications; and (5) conduct further research on boosting vehicle fuel efficiency, applying low-carbon transportation technologies, and addressing all resultant implications of coal-based transportation solutions to human health and natural resources.

  16. Alternative fuel buses currently in use in China. Life-cycle fossil energy use, GHG emissions and policy recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Xunmin [School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); Zhang, Xiliang; Chang, Shiyan [China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China)

    2010-01-15

    The Chinese government has enacted policies to promote alternative vehicle fuels (AVFs) and alternative fuel vehicles (AFVs), including city bus fleets. The life cycle (LC), energy savings (ES) and GHG reduction (GR) profiles of AVFs/AFVs are critical to those policy decisions. The well-to-wheels module of the Tsinghua-CA3EM model is employed to investigate actual performance data. Compared with conventional buses, AFVs offer differences in performance in terms of both ES and GR. Only half of the AFVs analyzed demonstrate dual benefits. However, all non-oil/gas pathways can substitute oil/gas with coal. Current policies seek to promote technology improvements and market creation initiatives within the guiding framework of national-level diversification and district-level uniformity. Combined with their actual LC behavior and in keeping with near- and long-term strategies, integrated policies should seek to (1) apply hybrid electric technology to diesel buses; (2) encourage NG/LPG buses in gas-abundant cities; (3) promote commercialize electric buses or plug-in capable vehicles through battery technology innovation; (4) support fuel cell buses and hydrogen technology R and D for future potential applications; and (5) conduct further research on boosting vehicle fuel efficiency, applying low-carbon transportation technologies, and addressing all resultant implications of coal-based transportation solutions to human health and natural resources. (author)

  17. Technology watch of fuel cells for vehicles in 2012; Teknikbevakning av braensleceller foer fordon 2012

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, Hans

    2013-03-15

    The report presents results from an international survey covering the status and development of tractionary fuel cells. Interviews, study visits, reports, journals, media coverage and participation in IEA Advanced Fuel Cells Annex 26 have served as main sources of information. The development in Korea has been devoted particular attention this period. The report covers the development during the second part of 2011 and the whole 2012. The transport sector must change to provide mobility for people and goods in a long-term sustainable way. Fuel cell technology offers an important opportunity for the vehicle manufacturer and the vehicle user to maintain the same level of performance, comfort and versatility without compromising the sustainability requirements. Fuel cell vehicles typically use polymer electrolyte fuel cells (PEFC) and pressurized hydrogen. They also use tractionary batteries for about the same reasons as other hybrid electric vehicles. For commercial vehicles fuel cells are developed for the production of auxiliary power, to be used when the vehicles are parked, for example. Until 2015, Hyundai aims at making up to 1,000 fuel cell vehicles. After 2015 the plan is for several thousand every year. Until 2025, Hyundai aims at a total delivery of more than 100,000 fuel cell vehicles and the technology is then expected to be fully competitive. A roadmap shows that Korea until 2015 has established 43 and until 2030, a total of 500 hydrogen refuelling stations are indicated. The Skaane Region has carried out the first Swedish procurement of fuel cell vehicles. Two Hyundai iX35 FCEV were purchased for delivery 2013. In addition, the city of Copenhagen has purchased 15 such vehicles. During the next few years three hydrogen refuelling stations will be established in the Copenhagen area. January 2012, the California Air Resources Board decided the new set of regulations Advanced Clean Cars. It comprises three parts; tailpipe emissions and greenhouse gases, Zero

  18. Hybrid vehicle turbine engine technology support (HVTE-TS) project. 1995--1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report presents a summary of technical work accomplished on the Hybrid Vehicle Turbine Engine--Technology Support (HVTE-TS) Project during calendar years 1995 and 1996. Work was performed under an initial National Aeronautics and Space Administration (NASA) contract DEN3-336. As of September 1996 the contract administration was transferred to the US Department of Energy (DoE) Chicago Operations Office, and renumbered as DE-AC02-96EE50553. The purpose of the HVTE-TS program is to develop gas turbine engine technology in support of DoE and automotive industry programs exploring the use of gas turbine generator sets in hybrid-electric automotive propulsion systems. The program focus is directed to the development of four key technologies to be applied to advanced turbogenerators for hybrid vehicles: Structural ceramic materials and processes; Low emissions combustion systems; Regenerators and seals systems; and Insulation systems and processes. 60 figs., 9 tabs.

  19. Future markets and technologies for natural gas vehicles; Futurs marches et technologies pour les vehicules au gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J. [Development Engineer, Lotus Engineering (United Kingdom); Carpenter, B. [Gas Applications, BG Technology (United Kingdom)

    2000-07-01

    Lotus Engineering and BG Technology recently collaborated on the conversion of the Lotus Elise for operation on natural gas. This paper considers the world-wide opportunities for natural gas as an automotive fuel by comparison with other fuels. It looks at how technology can be used to exploit this potential, by examining the special features of the gas fuelled Elise, and how other technologies such as hybrid vehicles and fuel cells can be expected to respond to this challenge in future. (authors)

  20. Automobiles and global warming: Alternative fuels and other options for carbon dioxide emissions reduction

    International Nuclear Information System (INIS)

    Sagar, A.D.

    1995-01-01

    Automobiles are a source of considerable pollution at the global level, including a significant fraction of the total greenhouse gas emissions. Alternative fuels have received some attention as potential options to curtail the carbon dioxide emissions from motor vehicles. This article discusses the feasibility and desirability (from a technical as well as a broader environmental perspective) of the large-scale production and use of alternative fuels as a strategy to mitigate automotive carbon dioxide emissions. Other options such as improving vehicle efficiency and switching to more efficient modes of passenger transportation are also discussed. These latter options offer an effective and immediate way to tackle the greenhouse and other pollutant emission from automobiles, especially as the limitations of currently available alternative fuels and the technological and other constraints for potential future alternatives are revealed

  1. New computer and communications environments for light armored vehicles

    Science.gov (United States)

    Rapanotti, John L.; Palmarini, Marc; Dumont, Marc

    2002-08-01

    Light Armoured Vehicles (LAVs) are being developed to meet the modern requirements of rapid deployment and operations other than war. To achieve these requirements, passive armour is minimized and survivability depends more on sensors, computers and countermeasures to detect and avoid threats. The performance, reliability, and ultimately the cost of these components, will be determined by the trends in computing and communications. These trends and the potential impact on DAS (Defensive Aids Suite) development were investigated and are reported in this paper. Vehicle performance is affected by communication with other vehicles and other ISTAR (Intelligence, Surveillance, Target Acquisition and Reconnaissance) battlefield assets. This investigation includes the networking technology Jini developed by SUN Microsystems, which can be used to interface the vehicle to the ISTAR network. VxWorks by Wind River Systems, is a real time operating system designed for military systems and compatible with Jini. Other technologies affecting computer hardware development include, dynamic reconfiguration, hot swap, alternate pathing, CompactPCI, and Fiber Channel serial communication. To achieve the necessary performance at reasonable cost, and over the long service life of the vehicle, a DAS should have two essential features. A fitted for, but not fitted with approach will provide the necessary rapid deployment without a need to equip the entire fleet. With an expected vehicle service life of 50 years, 5-year technology upgrades can be used to maintain vehicle performance over the entire service life. A federation of modules instead of integrated fused sensors will provide the capability for incremental upgrades and mission configurability. A plug and play capability can be used for both hardware and expendables.

  2. Hydrocarbon emission fingerprints from contemporary vehicle/engine technologies with conventional and new fuels

    Science.gov (United States)

    Montero, Larisse; Duane, Matthew; Manfredi, Urbano; Astorga, Covadonga; Martini, Giorgio; Carriero, Massimo; Krasenbrink, Alois; Larsen, B. R.

    2010-06-01

    The present paper presents results from the analysis of 29 individual C 2-C 9 hydrocarbons (HCs) specified in the European Commission Ozone Directive. The 29 HCs are measured in exhaust from common, contemporary vehicle/engine/fuel technologies for which very little or no data is available in the literature. The obtained HC emission fingerprints are compared with fingerprints deriving from technologies that are being phased out in Europe. Based on the total of 138 emission tests, thirteen type-specific fingerprints are extracted (Mean ± SD percentage contributions from individual HCs to the total mass of the 29 HCs), essential for receptor modelling source apportionment. The different types represent exhaust from Euro3 and Euro4 light-duty (LD) diesel and petrol-vehicles, Euro3 heavy-duty (HD) diesel exhaust, and exhaust from 2-stroke preEuro, Euro1 and Euro2 mopeds. The fuels comprise liquefied petroleum gas, petrol/ethanol blends (0-85% ethanol), and mineral diesel in various blends (0-100%) with fatty acid methyl esters, rapeseed methyl esters palm oil methyl esters, soybean oil methyl or sunflower oil methyl esters. Type-specific tracer compounds (markers) are identified for the various vehicle/engine/fuel technologies. An important finding is an insignificant effect on the HC fingerprints of varying the test driving cycle, indicating that combining HC fingerprints from different emission studies for receptor modelling purposes would be a robust approach. The obtained results are discussed in the context of atmospheric ozone formation and health implications from emissions (mg km -1 for LD and mopeds and mg kW h -1 for HD, all normalised to fuel consumption: mg dm -3 fuel) of the harmful HCs, benzene and 1,3-butadiene. Another important finding is a strong linear correlation of the regulated "total" hydrocarbon emissions (tot-HC) with the ozone formation potential of the 29 HCs (ΣPO 3 = (1.66 ± 0.04) × tot-RH; r2 = 0.93). Tot-HC is routinely monitored in

  3. Workshop on power conditioning for alternative energy technologies. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. R.

    1979-01-01

    As various alternative energy technologies such as photovoltaics, wind, fuel cells, and batteries are emerging as potential sources of energy for the future, the need arises for development of suitable power-conditioning systems to interface these sources to their respective loads. Since most of these sources produce dc electricity and most electrical loads require ac, an important component of the required power-conditioning units is a dc-to-ac inverter. The discussions deal with the development of power conditioners for each alternative energy technology. Discussion topics include assessments of current technology, identification of operational requirements with a comparison of requirements for each source technology, the identification of future technology trends, the determination of mass production and marketing requirements, and recommendations for program direction. Specifically, one working group dealt with source technology: photovoltaics, fuel cells and batteries, and wind followed by sessions discussing system size and application: large grid-connected systems, small grid-connected systems, and stand alone and dc applications. A combined group session provided an opportunity to discuss problems common to power conditioning development.

  4. Connected vehicles and cybersecurity.

    Science.gov (United States)

    2016-01-01

    Connected vehicles are a next-generation technology in vehicles and in infrastructure that will make travel safer, cleaner, and more efficient. The advanced wireless technology enables vehicles to share and communicate information with each other and...

  5. Evaluation of alternative nonflame technologies for destruction of hazardous organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Musgrave, B.C. [BC Musgrave, Inc. (United States); Drake, R.N. [Drake Engineering, Inc. (United States)

    1997-04-01

    The US Department of Energy`s Mixed Waste Focus Area (MWFA) commissioned an evaluation of mixed waste treatment technologies that are alternatives to incineration for destruction of hazardous organic wastes. The purpose of this effort is to evaluate technologies that are alternatives to open-flame, free-oxygen combustion (as exemplified by incinerators), and recommend to the Waste Type Managers and the MWFA which technologies should be considered for further development. Alternative technologies were defined as those that have the potential to: destroy organic material without use of open-flame reactions with free gas-phase oxygen as the reaction mechanism; reduce the offgas volume and associated contaminants (metals, radionuclides, and particulates) emitted under normal operating conditions; eliminate or reduce the production of dioxins and furans; and reduce the potential for excursions in the process that can lead to accidental release of harmful levels of chemical or radioactive materials. Twenty-three technologies were identified that have the potential for meeting these requirements. These technologies were rated against the categories of performance, readiness for deployment, and environment safety, and health. The top ten technologies that resulted from this evaluation are Steam Reforming, Electron Beam, UV Photo-Oxidation, Ultrasonics, Eco Logic reduction process, Supercritical Water oxidation, Cerium Mediated Electrochemical Oxidation, DETOX{sup SM}, Direct Chemical Oxidation (peroxydisulfate), and Neutralization/Hydrolysis.

  6. Hybrid electric vehicles and electrochemical storage systems — a technology push-pull couple

    Science.gov (United States)

    Gutmann, Günter

    In the advance of fuel cell electric vehicles (EV), hybrid electric vehicles (HEV) can contribute to reduced emissions and energy consumption of personal cars as a short term solution. Trade-offs reveal better emission control for series hybrid vehicles, while parallel hybrid vehicles with different drive trains may significantly reduce fuel consumption as well. At present, costs and marketing considerations favor parallel hybrid vehicles making use of small, high power batteries. With ultra high power density cells in development, exceeding 1 kW/kg, high power batteries can be provided by adapting a technology closely related to consumer cell production. Energy consumption and emissions may benefit from regenerative braking and smoothing of the internal combustion engine (ICE) response as well, with limited additional battery weight. High power supercapacitors may assist the achievement of this goal. Problems to be solved in practice comprise battery management to assure equilibration of individual cell state-of-charge for long battery life without maintenance, and efficient strategies for low energy consumption.

  7. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism.

    Science.gov (United States)

    Srivastav, Deepanshu; Malhotra, Sahil

    2012-07-01

    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The

  8. Clean Cities 2012 Vehicle Buyer's Guide (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-03-01

    The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying

  9. Alternatives to traditional transportation fuels: An overview

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report presents the first compilation by the Energy Information Administration (EIA) of information on alternatives to gasoline and diesel fuel. The purpose of the report is: (1) to provide background information on alternative transportation fuels and replacement fuels compared with gasoline and diesel fuel, and (2) to furnish preliminary estimates of alternative transportation fuels and alternative fueled vehicles as required by the Energy Policy Act of 1992 (EPACT), Title V, Section 503, ``Replacement Fuel Demand Estimates and Supply Information.`` Specifically, Section 503 requires the EIA to report annually on: (1) the number and type of alternative fueled vehicles in existence the previous year and expected to be in use the following year, (2) the geographic distribution of these vehicles, (3) the amounts and types of replacement fuels consumed, and (4) the greenhouse gas emissions likely to result from replacement fuel use. Alternative fueled vehicles are defined in this report as motorized vehicles licensed for on-road use, which may consume alternative transportation fuels. (Alternative fueled vehicles may use either an alternative transportation fuel or a replacement fuel.) The intended audience for the first section of this report includes the Secretary of Energy, the Congress, Federal and State agencies, the automobile manufacturing industry, the transportation fuel manufacturing and distribution industries, and the general public. The second section is designed primarily for persons desiring a more technical explanation of and background for the issues surrounding alternative transportation fuels.

  10. Joint deployment of refuelling infrastructure and vehicles

    International Nuclear Information System (INIS)

    Smith, R.

    2010-01-01

    A wide range of fuels will be used in future transportation technologies. This presentation discussed refuelling infrastructure solutions for alternative fuels. A well-placed demonstration infrastructure will help to accelerate market development. Stakeholder collaboration is needed to create high value business paradigms and identify stakeholder benefits. Infrastructure paradigms include the home; businesses; retail public refuelling forecourts; and multi-fuel waste heat recovery sites. Commercial nodes can be developed along major transportation routes. Stakeholder groups include technology providers, supply chain and service providers, commercial end-users, and government. A successful alternative fuel infrastructure model will consider market development priorities, time frames and seed investment opportunities. Applications must be market-driven in order to expand. A case study of the natural gas vehicle (NGV) program in Ontario was also discussed, as well as various hydrogen projects. tabs., figs.

  11. Diffusion of new automotive technologies for improving energy efficiency in Brazil's light vehicle fleet

    International Nuclear Information System (INIS)

    Bastin, Cristina; Szklo, Alexandre; Rosa, Luiz Pinguelli

    2010-01-01

    Historically, Brazil has promoted the development and sales of light duty vehicles running on ethanol (firstly, ethanol-dedicated cars, and recently flexfuel cars). In the 1990s, the country also favored the sales of compact cars to middle and low-income classes. However, in the last years, the profile of vehicles sold in Brazil has converged towards larger and less-efficient vehicles. In 2008, Brazil launched the vehicle labeling program. Based on the outcomes of the historical programs oriented towards the development of automotive innovations, and on a survey conducted with the country's main auto makers, this article evaluates whether the vehicle labeling program will both improve the energy efficiency of light vehicles, and introduce new technologies. Our results indicate that, despite its virtuous intentions, the program will not control the tendency of rising fuel consumption of passenger cars sold in Brazil. Therefore, other policies are needed to boost innovations in Brazil's automotive industry. (author)

  12. The prospects of natural gas vehicles in France and Europe

    International Nuclear Information System (INIS)

    Nicolle, J.M.

    2009-01-01

    Given the availability and environmental advantages of natural gas, several countries soon felt that natural gas vehicles (NGVs) were a logical way to respond to transportation needs while meeting up to the standards of sustainable development. Natural gas is now a genuine alternative to petroleum products, and NGVs are capable of using the current engine technology. (author)

  13. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Tissot-Favre, V.; Sudour, D.; Binutti, M.; Zanetta, P.; Rieussec, J.L.

    2005-01-01

    As a true alternative to oil products, and environment friendly fuel, Natural Gas for Vehicles complies with requirements for sustainable development. In addition, it is part of the European Union policy which underlines the importance of energy diversification through alternative fuels. This workshop will look into the current offer to the public transport segment, waste collection vehicles, and commercial vehicle fleets. Actions taken to spread the use of natural gas to all types of cars will also be covered. This article gathers 5 presentations about this topic given at the gas conference

  14. Technology Demonstration of Qualified Vehicle Modifier (QVM) Compressed Natural Gas (CNG) and Gasoline Fueled Ford F-150 Series Bifuel Prep Vehicles at Ft. Hood, TX

    National Research Council Canada - National Science Library

    Alvarez, R

    2000-01-01

    ...) of 1988, the Clean Air Act (CAA) Amendments of 1990, and the Energy Policy Act of 1992. The objectives of the program were to demonstrate the acceptability of alternative-fueled- vehicles in a Department of Defense (DOD) U.S...

  15. Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Alejandro Mendez

    2014-07-01

    Full Text Available Autonomous Underwater Vehicles (AUVs are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time, they are usually powered by lithium-ion secondary batteries, which have insufficient specific energies. In order for this technology to achieve a mature state, increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First, the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed, examining solutions adopted in the analogous aerial vehicle applications, as well as the underwater ones, to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally, some closing remarks on the future of this technology are given.

  16. Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.

    2012-01-01

    NASA s goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.

  17. Developing a 'Research Test Bed' to introduce innovative Emission Testing Technology to improve New Zealand's Vehicle Emission Standards

    International Nuclear Information System (INIS)

    Cox, Stephen J

    2012-01-01

    Vehicle exhaust emissions arise from the combustion of the fuel and air mixture in the engine. Exhaust emission gases generally include carbon monoxide (CO), oxides of nitrogen (NOx), hydrocarbons (HC), particulates, and the greenhouse gas carbon dioxide (CO2). In New Zealand improvements have occurred in emissions standards over the past 20 years however significant health related issues are now being discovered in Auckland as a direct effect of high vehicle emission levels. Pollution in New Zealand, especially via vehicle emissions are an increasing concern and threatens New Zealand's 'clean and green' image. Unitec Institute of Technology proposes establishing a Vehicle Emissions Testing Facility, and with an understanding with Auckland University, National Institute of Water and Atmosphere Research Ltd (NIWA) this research group can work collaboratively on vehicle emissions testing. New Zealand research providers would support an application in the UK led by the University of Huddersfield to a range of European Union Structural Funds. New Zealand has an ideal 'vehicle emissions research environment' supported by significant expertise in vehicle emission control technology and associated protocols at the University of Auckland, and the effects of high vehicle emissions on health at the National Institutes of Water and Atmosphere (NIWA).

  18. Preferences for Alternative Fuel Vehicles of Lease Car Drivers in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Koetse, M.J.; Hoen, A.

    2012-04-15

    In this paper we aim to get insight into preferences of Dutch lease car drivers for alternative fuel vehicles (AFVs) and their characteristics. Since AFVs are either not yet available on the market or have only very limited market shares, we have to rely on stated preference research. We perform a state-of-the-art conjoint analysis, based on data obtained through an online choice experiment among Dutch lease car drivers. Results show that under current tax regulations the average lease car driver is indifferent between the conventional technology, flexifuel and the hybrid car, while negative preferences exist for the plug-in hybrid, the electric and the fuel cell car. When current tax regulations would be abolished, strong negative preferences would result for all AFCs, and especially for the electric and fuel cell car. Increases in driving range, reductions in refuelling time, and reductions in additional detour time for reaching an appropriate fuel station, increase AFV preferences substantially. On average the gap between conventional technologies and AFVs remains large, however. We also find that there is considerable heterogeneity in preferences of lease car drivers, and that various market segments and potential early adopters can be identified. In this respect the most interesting finding is that preferences for electric and fuel cell cars decrease substantially, and willingness to pay for driving range increases substantially, when annual mileage increases. Annual mileage also has a substantial impact on sensitivity to monthly costs. We therefore use simulations to assess market shares of electric and fuel cell cars for different annual mileage categories. We find that people with a relatively low annual mileage are more likely to adopt than people with a relatively high annual mileage, regardless of driving range and monthly costs. For the fuel cell car we find similar results, although when driving range is high and cost differences are large, lease car

  19. Research and technology strategy to help overcome the environmental problems in relation to transport

    International Nuclear Information System (INIS)

    Martin, D.J.; Michaelis, L.A.

    1992-03-01

    This report considers global pollution issues, i.e. emissions which are of significance to global warming and stratospheric ozone depletion, and the following technology clusters: alternative fuels, engine technology and vehicle design

  20. Alternative Fuel News, Vol. 6, No. 4

    Energy Technology Data Exchange (ETDEWEB)

    2003-03-01

    Quarterly magazine with articles on Alternate Fuel Vehicles (AFVs) in India, alternative fuels for emergency preparedness, and testing of propane vehicles by UPS. Also an interview of author Jeremy Rifkin on how alternative fuels provide pathways to hydrogen.

  1. Mobile source CO2 mitigation through smart growth development and vehicle fleet hybridization.

    Science.gov (United States)

    Stone, Brian; Mednick, Adam C; Holloway, Tracey; Spak, Scott N

    2009-03-15

    This paper presents the results of a study on the effectiveness of smart growth development patterns and vehicle fleet hybridization in reducing mobile source emissions of carbon dioxide (CO2) across 11 major metropolitan regions of the Midwestern U.S. over a 50-year period. Through the integration of a vehicle travel activity modeling framework developed by researchers atthe Oak Ridge National Laboratory with small area population projections, we model mobile source emissions of CO2 associated with alternative land development and technology change scenarios between 2000 and 2050. Our findings suggest that under an aggressive smart growth scenario, growth in emissions expected to occur under a business as usual scenario is reduced by 34%, while the full dissemination of hybrid-electric vehicles throughout the light vehicle fleet is found to offset the expected growth in emissions by 97%. Our results further suggest that high levels of urban densification could achieve reductions in 2050 CO2 emissions equivalent to those attainable through the full dissemination of hybrid-electric vehicle technologies.

  2. Fuel cells for vehicle applications in cars - bringing the future closer

    Science.gov (United States)

    Panik, Ferdinand

    Among all alternative drive systems, the fuel cell electric propulsion system has the highest potential to compete with the internal combustion engine. For this reason, Daimler-Benz AG has entered into a co-operative alliance with Ballard Power Systems, with the objectives of bringing fuel cell vehicles to the market. Apart from the fuel cell itself, fuel cell vehicles require comprehensive system technology to provide fuel and air supply, cooling, energy management, electric and electronic functions. The system technology determines to a large extent the cost, weight, efficiency, performance and overall customer benefit of fuel cell vehicles. Hence, Daimler-Benz and Ballard are pooling their expertise in fuel cell system technology in a joint company, with the aim of bringing their fuel cell vehicular systems to the stage of maturity required for market entry as early as possible. Hydrogen-fuelled zero-emission fuel cell transit `buses' will be the first market segment addressed, with an emphasis on the North American and European markets. The first buses are already scheduled for delivery to customers in late 1997. Since a liquid fuel like methanol is easier to handle in passenger cars, fuel reforming technologies are developed and will shortly be demonstrated in a prototype, as well. The presentation will cover concepts of fuel cell vehicles with an emphasis on system technology, the related testing procedures and results as well as an outline of market entry strategies.

  3. Alternative oxidation technologies for organic mixed waste

    International Nuclear Information System (INIS)

    Borduin, L.C.; Fewell, T.

    1998-01-01

    The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site (SRS), and direct chemical oxidation at Lawrence Livermore National Laboratory (LLNL). All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory (LBNL), and steam reforming, a commercial process being supported by the Department of Energy (DOE). Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented

  4. Final priority; Rehabilitation Services Administration--Assistive Technology Alternative Financing Program. Final priority.

    Science.gov (United States)

    2014-08-14

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Assistive Technology Alternative Financing Program administered by the Rehabilitation Services Administration (RSA). The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. This priority is designed to ensure that the Department funds high-quality assistive technology (AT) alternative financing programs (AFPs) that meet rigorous standards in order to enable individuals with disabilities to access and acquire assistive technology devices and services necessary to achieve education, community living, and employment goals.

  5. Driving with advanced vehicle technology: A qualitative investigation of older drivers' perceptions and motivations for use.

    Science.gov (United States)

    Gish, Jessica; Vrkljan, Brenda; Grenier, Amanda; Van Miltenburg, Benita

    2017-09-01

    For older drivers, in-vehicle technology offers much potential to improve safety and increase longevity of retaining both licensure and community mobility. However, little is known about how older drivers perceive Advanced Vehicle Technologies (AVTs) based on everyday driving experience. Interviews with 35 older drivers (20 men; 15 women) aged 60-85 who owned a vehicle with at least two AVTs (e.g., back-up camera, lane departure warning) were conducted to explore the meanings that older drivers assigned to AVTs and motivations for use, including whether age-related functional changes were part of their automobile purchase decision. Findings indicate that age-related changes are not a primary reason for why older adults seek out AVTs, but they still perceived and experienced AVTs to counteract age-related changes in driving performance based upon changes they felt occurring within the body. Older drivers also described AVTs as generating a sense of comfort behind-the-wheel. Comfort with this technology was equated with convenience, ease of use, and increased feelings of safety. Discussion emphasizes how assessments of the quality of driving performance and value of technology occur in relation to an aging body. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Boosting the adoption and the reliability of renewable energy sources: Mitigating the large-scale wind power intermittency through vehicle to grid technology

    International Nuclear Information System (INIS)

    Zhao, Yang; Noori, Mehdi; Tatari, Omer

    2017-01-01

    The integration of wind energy in the electricity sector and the adoption of electric vehicles in the transportation sector both have the potential to significantly reduce greenhouse gas emissions individually as well as in tandem with Vehicle-to-Grid technology. This study aims to evaluate the greenhouse gas emission savings of mitigating intermittency resulting from the introduction of wind power through Vehicle-to-Grid technologies, as well as the extent to which the marginal electricity consumption from charging an electric vehicle fleet may weaken this overall environmental benefit. To this end, the comparisons are conducted in seven independent system operator regions. The results indicate that, in most cases, the emission savings of a combination of wind power and Vehicle-to-Grid technology outweighs the additional emissions from marginal electricity generation for electric vehicles. In addition, the fluctuations in newly-integrated wind power could be balanced in the future using EVs and V2G technology, provided that a moderate portion of EV owners is willing to provide V2G services. On the other hand, such a combination is not favorable if the Vehicle-to-Grid service participation rate is less than 5% of all electric vehicle owners within a particular region. - Highlights: • The environmental benefit of vehicle to grid systems as grid stabilizer is analyzed. • Emission savings of vehicle to grid and impacts of electric vehicles are compared. • Seven independent system operator regions are studied. • Uncertainty and sensitivity analysis are performed through a Monte Carlo Simulation.

  7. Environmental aspects of battery and fuel cell technologies

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The PA Consulting Group was commissioned by the Longer Term Studies Unit, Research and Technology Policy Division and Information and Manufacturing Technologies Division, Dept. of Trade and Industry to investigate possible environmental initiatives which might be driven by the European Commission and which could promote interest in alternative energy sources, particularly batteries and fuel cells. Findings confirmed that there is a role for fuel cells in power generation, the most commercially advanced technology being the phosphoric acid fuel cell (PAFC). Development of other systems such as Proton Exchange Membrane technology (PEMFC) and solid oxide fuel cells (SOFC) should also continue. Emissions from fuel cells are lower than those of gas turbines, their main competitors for power generation applications below 100 MW. The study concluded that there is a role for both batteries or fuel cells in powering electric vehicles. Battery powered retrofitted vehicles have an environmental impact comparable to that of internal combustion engine powered vehicles and they could become commercially viable in the context of a carbon tax scenario. Purpose built electric vehicles would be even more attractive. From an environmental viewpoint, fuels cells based on proton membrane membrane technology seemed the best option for powering vehicles if the technical targets could be met.

  8. Automated Mixed Traffic Vehicle (AMTV) technology and safety study

    Science.gov (United States)

    Johnston, A. R.; Peng, T. K. C.; Vivian, H. C.; Wang, P. K.

    1978-01-01

    Technology and safety related to the implementation of an Automated Mixed Traffic Vehicle (AMTV) system are discussed. System concepts and technology status were reviewed and areas where further development is needed are identified. Failure and hazard modes were also analyzed and methods for prevention were suggested. The results presented are intended as a guide for further efforts in AMTV system design and technology development for both near term and long term applications. The AMTV systems discussed include a low speed system, and a hybrid system consisting of low speed sections and high speed sections operating in a semi-guideway. The safety analysis identified hazards that may arise in a properly functioning AMTV system, as well as hardware failure modes. Safety related failure modes were emphasized. A risk assessment was performed in order to create a priority order and significant hazards and failure modes were summarized. Corrective measures were proposed for each hazard.

  9. Impact of Friction Reduction Technologies on Fuel Economy for Ground Vehicles

    Science.gov (United States)

    2009-08-13

    UNCLAS: Dist A. Approved for public release IMPACT OF FRICTION REDUCTION TECHNOLOGIES ON FUEL ECONOMY FOR GROUND VEHICLES G. R. Fenske , R. A. Erck...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) G.R. Fenske ; R.A. Erck; O.O. Ajayi; A. Masoner’ A.S. Confort 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT

  10. Vehicle-to-vehicle communications : readiness of V2V technology for application.

    Science.gov (United States)

    2014-08-01

    The purpose of this research report is to assess the readiness for application of vehicle-to-vehicle (V2V) : communications, a system designed to transmit basic safety information between vehicles to facilitate warnings to : drivers concerning impend...

  11. Dynamic vehicle routing problems: Three decades and counting

    DEFF Research Database (Denmark)

    Psaraftis, Harilaos N.; Wen, Min; Kontovas, Christos A.

    2016-01-01

    of DVRP papers according to 11 criteria. These are (1) type of problem, (2) logistical context, (3) transportation mode, (4) objective function, (5) fleet size, (6) time constraints, (7) vehicle capacity constraints, (8) the ability to reject customers, (9) the natureof the dynamic element, (10......Since the late 70s, much research activity has taken place on the class of dynamic vehicle routing problems (DVRP), with the time period after year 2000 witnessing areal explosion in related papers. Our paper sheds more light into work in this area over more than 3 decades by developing a taxonomy......) the nature of the stochasticity (if any), and (11) the solution method. We comment on technological vis-à-vis methodological advances for this class of problems and suggest directions for further research. The latter include alternative objective functions, vehicle speed as decision variable, more explicit...

  12. Mobility in Turkey. Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Yazgan, M. [Embassy of the Kingdom of the Netherlands, Turan Gunes Bulvari, Hollanda Caddesi, No.5,06550 Yildiz-Ankara (Turkey)

    2013-01-15

    The purpose of this report is to provide information about electric vehicles (EVs) and e-mobility as an emerging market in Turkey. EVs receive attention from the Turkish government for a number of reasons: Turkey has a strong automotive industry and needs to follow the technological developments taking place regarding intelligent vehicles and intelligent transport systems, as well as electric transportation technologies. Secondly, a considerable amount of carbon emissions from motor vehicles is of great concern in relation to climate change. EVs might be an alternative which can break the dependence of Turkey on imported fuel that has a negative influence on its current account deficit (CAD). On top of these factors, the Prime Minister of Turkey has a desire to have a 'Local Brand Vehicle' before the 100th year of the establishment of the Republic in 2023 and preferably an 'EV'. EVs are included in the strategy documents and action plans of almost all ministries and public institutions. Among all ministries, the Ministry of Science, Industry and Technology (MoSI and T) takes a leading position. It holds bi-annual meetings with stakeholders to monitor and evaluate progress about the level of actualization of the identified policies on e-mobility. MoSI and T's related institution of the Scientific and Technological Research Council of Turkey (TUBITAK) co-ordinates the R and D activities and provides generous R and D incentives. EVs have been put on sale in Turkey in 2012 and are still very limited in number. Public institutions are taking the lead by converting their vehicle fleet to EVs. EVs are also more suitable for businesses/ duties with a fixed/short route; therefore it is expected that the growth of the sector will mainly come from the vehicle fleet of the public organisations and institutions, followed by the private vehicle fleet of companies, e.g. freight companies. Although there are some on-going test drives, it is not yet proven

  13. Storage evaporator for vehicles with start-stop technology; Speicherverdampfer fuer Fahrzeuge mit Start-Stopp-Funktion

    Energy Technology Data Exchange (ETDEWEB)

    Wawzyniak, Markus; Link, Joachim [Behr GmbH und Co. KG, Stuttgart (Germany)

    2013-04-15

    Today, the use of engine start-stop technology - a system designed to cut fuel consumption when the vehicle stops or, in future applications, when vehicles are in coasting or ''sailing'' mode - is gaining ground in more and more vehicle classes. Shutting off the internal combustion engine, though, detrimentally affects cabin air conditioning because the belt-driven A/C compressor is likewise deactivated, thus bringing the vapor compression process to a standstill. As a result, during extended stop periods and in warm weather vent temperatures and air humidity rapidly increase.

  14. Distributed Electrical Power Generation: Summary of Alternative Available Technologies

    National Research Council Canada - National Science Library

    Scott, Sarah

    2003-01-01

    .... While distributed generation (DG) technologies offer many of the benefits of alternative, efficient energy sources, few DG systems can currently be commercially purchased "off the shelf", and complicated codes and standards deter potential users...

  15. Comparative economics of natural gas vehicles and other vehicles

    International Nuclear Information System (INIS)

    Biederman, R.T.; Blazek, C.F.

    1992-01-01

    The utilization of alternative fuels for transportation applications is now a certainty. The only real questions that remain to be answered involve the type of fuel (or fuels) to be adopted most extensively. While some alternative fuel advocates suggest that a niche will exist for all alternative fuels, the most likely scenario will involve widespread use of only a few major fuel types. Undoubtedly, reformulated gasoline will be a major force as an interim fuel, due to inertia and a predominant bias toward liquid fuels. The prospects for utilization of ethanol, methanol, MTBE, and ETBE appear to be most promising in the area of blending with gasoline to meet the needs of reformulated gasoline and flexible fueled vehicles (FFV's). Propane fueled vehicles will continue to grow in popularity, especially with fleets, but will never become a major force in the transportation market in the U.S. due to unresolvable supply limitations. The clear winner in the alternative fuels transportation market appears to be natural gas. Either in compressed or liquefied form, natural gas enjoys low costs, tremendous availability, and impressive environmental benefits. As shown in this analysis, natural gas competes favorably with gasoline in terms of economics. Natural gas is also preferential to other alternative fuels in terms of safety and heath issues as well as operational issues. Adoption of natural gas as a standard transportation fuel will probably require market segmentation characterized by compressed natural gas utilization in light-duty vehicles and liquefied natural gas utilization in heavy-duty vehicles. The most significant barrier to natural gas utilization will continue to be the creation of a refueling infrastructure. As these problems are resolved, however, natural gas will emerge as the transportation fuel of the future

  16. Cradle-to-Grave Lifecycle Analysis of U.S. Light-Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025-2030) Technologies

    International Nuclear Information System (INIS)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Marcus; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy J.

    2016-01-01

    This study provides a comprehensive life-cycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume ''CURRENT TECHNOLOGY'' cases (nominally 2015) and a high-volume ''FUTURE TECHNOLOGY'' lower-carbon case (nominally 2025-2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.

  17. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  18. Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet

    Energy Technology Data Exchange (ETDEWEB)

    Daley, R.; Nangle, J.; Boeckman, G.; Miller, M.

    2014-05-01

    Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewable Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.

  19. Alternative Fuel Vehicle Forecasts : Final report.

    Science.gov (United States)

    2016-04-01

    Federal and state fuel taxes account for the largest share of the Texas State Highway Fund at 48 percent and 29 percent, respectively, in Fiscal Year 2015. These taxes are levied on a per-gallon basis, meaning that as vehicles get more fuel efficient...

  20. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    Energy Technology Data Exchange (ETDEWEB)

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  1. Evaluating driver reactions to new vehicle technologies intended to increase safety and mobility across the lifespan.

    Science.gov (United States)

    2013-05-01

    Personal vehicle manufactures are introducing a wide range of new technologies that are : intended to increase the safety, comfort, and mobility of drivers of all ages. Examples range from : semi-autonomous technologies such as adaptive cruise contro...

  2. Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S.; Stephens, T.; McManus, W.

    2013-03-01

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  3. Transportation Energy Futures Series. Vehicle Technology Deployment Pathways. An Examination of Timing and Investment Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, Steve [Argonne National Lab. (ANL), Argonne, IL (United States); Stephens, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); McManus, Walter [Oakland Univ., Rochester, MI (United States)

    2013-03-01

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  4. White paper: Preliminary assessment of LNG vehicle technology, economics, and safety issues (Revision 1). Topical report, April-August 1991

    International Nuclear Information System (INIS)

    Powars, C.; Lucher, D.; Moyer, C.; Browning, L.

    1992-01-01

    The objective of the study is to evaluate the potential of LNG as a vehicle fuel, to determine market niches, and to identify needed technology improvements. The white paper is being issued when the work is approximately 30 percent complete to preview the study direction, draw preliminary conclusions, and make initial recommendations. Interim findings relative to LNG vehicle technology, economics, and safety are presented. It is important to decide if heavier hydrocarbons should be allowed in LNG vehicle fuel. Development of suitable refueling couplings and vehicle fuel supply pressure systems are recommended. Initial economics analyses considered transit buses and pickup and delivery trucks fueled via onsite liquefiers and imported LNG. Net user costs were more than (but in some cases close to) those for diesel fuel and gasoline. Lowering the cost of small-scale liquefiers would significantly improve the economics of LNG vehicles. New emissions regulations may introduce considerations beyond simple cost comparisons. LNG vehicle safety and available accident data are reviewed. Consistent codes for LNG vehicles and refueling facilities are needed

  5. A brief review on key technologies in the battery management system of electric vehicles

    Science.gov (United States)

    Liu, Kailong; Li, Kang; Peng, Qiao; Zhang, Cheng

    2018-04-01

    Batteries have been widely applied in many high-power applications, such as electric vehicles (EVs) and hybrid electric vehicles, where a suitable battery management system (BMS) is vital in ensuring safe and reliable operation of batteries. This paper aims to give a brief review on several key technologies of BMS, including battery modelling, state estimation and battery charging. First, popular battery types used in EVs are surveyed, followed by the introduction of key technologies used in BMS. Various battery models, including the electric model, thermal model and coupled electro-thermal model are reviewed. Then, battery state estimations for the state of charge, state of health and internal temperature are comprehensively surveyed. Finally, several key and traditional battery charging approaches with associated optimization methods are discussed.

  6. A Storable, Hybrid Mars Ascent Vehicle Technology Demonstrator for the 2020 Launch Opportunity

    Science.gov (United States)

    Chandler, A. A.; Karabeyoglu, M. A.; Cantwell, B. J.; Reeve, R.; Goldstein, B. G.; Hubbard, G. S.

    2012-06-01

    A Phoenix sized mission including a reduced payload, two-stage, hybrid Mars Ascent Vehicle technology demonstrator is proposed for the 2020 opportunity. The hybrid MAV is storable on Mars and would retire risk for a Mars Sample Return campaign.

  7. Assessment of 25 kW free-piston Stirling technology alternatives for solar applications

    Science.gov (United States)

    Erbeznik, Raymond M.; White, Maurice A.; Penswick, L. B.; Neely, Ronald E.; Ritter, Darren C.; Wallace, David A.

    1992-01-01

    The final design, construction, and testing of a 25-kW free-piston advanced Stirling conversion system (ASCS) are examined. The final design of the free-piston hydraulic ASCS consists of five subsystems: heat transport subsystem (solar receiver and pool boiler), free-piston hydraulic Stirling engine, hydraulic subsystem, cooling subsystem, and electrical and control subsystem. Advantages and disadvantages are identified for each technology alternative. Technology alternatives considered are gas bearings vs flexure bearings, stationary magnet linear alternator vs moving magnetic linear alternator, and seven different control options. Component designs are generated using available in-house procedures to meet the requirements of the free-piston Stirling convertor configurations.

  8. Alternative food safety intervention technologies: flash pasteurization of finfish

    Science.gov (United States)

    Alternative nonthermal and thermal food safety interventions are gaining acceptance by the food processing industry and consumers. These technologies include high pressure processing, ultraviolet and pulsed light, ionizing radiation, pulsed and radiofrequency electric fields, cold atmospheric plasm...

  9. A Comprehensive Study of Key Electric Vehicle (EV Components, Technologies, Challenges, Impacts, and Future Direction of Development

    Directory of Open Access Journals (Sweden)

    Fuad Un-Noor

    2017-08-01

    Full Text Available Electric vehicles (EV, including Battery Electric Vehicle (BEV, Hybrid Electric Vehicle (HEV, Plug-in Hybrid Electric Vehicle (PHEV, Fuel Cell Electric Vehicle (FCEV, are becoming more commonplace in the transportation sector in recent times. As the present trend suggests, this mode of transport is likely to replace internal combustion engine (ICE vehicles in the near future. Each of the main EV components has a number of technologies that are currently in use or can become prominent in the future. EVs can cause significant impacts on the environment, power system, and other related sectors. The present power system could face huge instabilities with enough EV penetration, but with proper management and coordination, EVs can be turned into a major contributor to the successful implementation of the smart grid concept. There are possibilities of immense environmental benefits as well, as the EVs can extensively reduce the greenhouse gas emissions produced by the transportation sector. However, there are some major obstacles for EVs to overcome before totally replacing ICE vehicles. This paper is focused on reviewing all the useful data available on EV configurations, battery energy sources, electrical machines, charging techniques, optimization techniques, impacts, trends, and possible directions of future developments. Its objective is to provide an overall picture of the current EV technology and ways of future development to assist in future researches in this sector.

  10. Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel

    Science.gov (United States)

    Vehicles in Vermont Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont to someone by E -mail Share Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont on Facebook Tweet about Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel Vehicles in

  11. Comparison of Vehicle Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Thomas S. [Argonne National Lab. (ANL), Argonne, IL (United States); Levinson, Rebecca S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Changzheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lin, Zhenhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Birky, Alicia [Energetics Incorporated, Columbia, MD (United States); Kontou, Eleftheria [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-10-01

    Five consumer vehicle choice models that give projections of future sales shares of light-duty vehicles were compared by running each model using the same inputs, where possible, for two scenarios. The five models compared — LVCFlex, MA3T, LAVE-Trans, ParaChoice, and ADOPT — have been used in support of the Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office in analyses of future light-duty vehicle markets under different assumptions about future vehicle technologies and market conditions. The models give projections of sales shares by powertrain technology. Projections made using common, but not identical, inputs showed qualitative agreement, with the exception of ADOPT. ADOPT estimated somewhat lower advanced vehicle shares, mostly composed of hybrid electric vehicles. Other models projected large shares of multiple advanced vehicle powertrains. Projections of models differed in significant ways, including how different technologies penetrated cars and light trucks. Since the models are constructed differently and take different inputs, not all inputs were identical, but were the same or very similar where possible.

  12. Automotive Security Functions; The Use of New Technologies to Tackle Vehicle-Related Crime

    NARCIS (Netherlands)

    Knapik, Peter

    2016-01-01

    Daily life is increasingly penetrated by new technologies. Advanced driver assistance systems with sophisticated sensors are increasingly available in all classes of vehicles. Moreover, mobile devices, such as smartphones, have become our daily companions. With the help of wireless communication

  13. Vehicle electrification. Quo vadis?

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, N. [GM Global Research and Development, Warren, MI (United States); Eberle, U.; Formanski, V.; Grebe, U.D.; Matthe, R. [General Motors Europe, Ruesselsheim (Germany)

    2012-11-01

    This publication describes the development of electrified propulsion systems from the invention of the automobile to the present and then provides an outlook on expected technology progress. Vehicle application areas for the various systems are identified based on a range of energy supply chains and the technological limits of electric powertrain components. GM anticipates that vehicle electrification will increase in the future. Battery-electric vehicles will become competitive for some applications, especially intra-urban, short-distance driving. Range-extended electric vehicles provide longer driving range and offer full capability; with this technology, electric vehicles can serve as the prime vehicle for many customers. Hydrogen-powered fuel cell-electric powertrains have potential for application across most of the vehicle segments. They produce zero emissions during all phases of operation, offer short refueling times, but have powertrain cooling and hydrogen storage packaging constraints. While the market share of electrified vehicles is expected to increase significantly, GM expects conventional powertrains with internal combustion engines to also have a long future - however, a lot of them will be supported by various levels of electrification. (orig.)

  14. Yeager Airport Hydrogen Vehicle Test Project

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Williams [West Virginia University Research Corporation, Morgantown, WV (United States)

    2015-10-01

    The scope of this project was changed during the course of the project. Phase I of the project was designed to have the National Alternative Fuels Training Consortium (NAFTC), together with its partners, manage the Hydrogen Vehicle Test Project at the Yeager Airport in conjunction with the Central West Virginia Regional Airport Authority (CWVRAA) in coordination with the United States Department of Energy National Energy Technology Laboratory (U.S. DOE NETL). This program would allow testing and evaluation of the use of hydrogen vehicles in the state of West Virginia utilizing the hydrogen fueling station at Yeager Airport. The NAFTC and CWVRAA to raise awareness and foster a greater understanding of hydrogen fuel and hydrogen-powered vehicles through a targeted utilization and outreach and education effort. After initial implementation of the project, the project added, determine the source(s) of supply for hydrogen powered vehicles that could be used for the testing. After completion of this, testing was begun at Yeager Airport. During the course of the project, the station at Yeager Airport was closed and moved to Morgantown and the West Virginia University Research Corporation. The vehicles were then moved to Morgantown and a vehicle owned by the CWVRAA was purchased to complete the project at the new location. Because of a number of issues detailed in the report for DE-FE0002994 and in this report, this project did not get to evaluate the effectiveness of the vehicles as planned.

  15. Presentation of electric motor and motor control technology for electric vehicles and hybrid vehicles; Denki jidosha hybrid sha yo motor oyobi motor seigyo gijutsu no shokai

    Energy Technology Data Exchange (ETDEWEB)

    Matsudaira, N.; Masakik, R.; Tajima, F. [Hitachi, Ltd., Tokyo (Japan)

    1999-02-01

    The authors have developed a motor drive system for electric vehicles and hybrid vehicles. This system consists of a permanent magnet type synchronous motor, an inverter using insulated gate bipolar transistors (IGBTs) and a controller based on a single-chip microcomputer. To achieve a compact and light weight synchronous motor, an internal permanent magnet type rotor structure was designed. This paper presents motor control technology for electric vehicles, such as an optimization method of field weakening control and a new current control method. (author)

  16. Scheduling and location issues in transforming service fleet vehicles to electric vehicles

    DEFF Research Database (Denmark)

    Mirchandani, Pitu; Madsen, Oli B.G.; Adler, Jonathan

    There is much reason to believe that fleets of service vehicles of many organizations will transform their vehicles that utilize alternative fuels which are more sustainable. The electric vehicle is a good candidate for this transformation, especially which “refuels” by exchanging its spent...... batteries with charged ones. This paper discusses the issues that must be addressed if a transit service were to use electric vehicles, principally the issues related to the limited driving range of each electric vehicle’s set of charged batteries and the possible detouring for battery exchanges....... In particular, the paper addresses the optimization and analysis of infrastructure design alternatives dealing with (1) the number of battery-exchange stations, (2) their locations, (3) the recharging capacity and inventory management of batteries at each facility, and (4) routing and scheduling of the fleet...

  17. Alternative technology of containment construction for WWER 1000 nuclear power plant

    International Nuclear Information System (INIS)

    Chalus, Z.

    1982-01-01

    A number of alternatives was assessed for the assembly of the steel elements of the cylindrical part of containment. Alternative 1 is based on the common technology of manufacture, transport and assembly of reinforced concrete blocks of ca. 3x12 m in size, used for building leak-proof walls of WWER 440 nuclear power plants. Alternative 2 is based on reinforced concrete blocks using 12x12 m blocks assembled from individual elements on the building. site. Alternative 3 is a specific variant of the previous alternative. Alternative 4 envisages the assembly of a prefabricated support structure made of steel. Alternative 5 is based on the gradual assembly of partial elements mounted onto a support structure. Alternative 6 only differs from 5 in the method of assembly and manufacture of the support structure. All alternatives are shown in diagrams. (J.B.)

  18. Mixed waste focus area alternative technologies workshop

    International Nuclear Information System (INIS)

    Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A.

    1995-01-01

    This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ''wise'' configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE's mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), the Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities

  19. Measuring the distribution of equity in terms of energy, environmental, and economic costs in the fuel cycles of alternative fuel vehicles with hydrogen pathway scenarios

    Science.gov (United States)

    Meyer, Patrick E.

    Numerous analyses exist which examine the energy, environmental, and economic tradeoffs between conventional gasoline vehicles and hydrogen fuel cell vehicles powered by hydrogen produced from a variety of sources. These analyses are commonly referred to as "E3" analyses because of their inclusion of Energy, Environmental, and Economic indicators. Recent research as sought a means to incorporate social Equity into E3 analyses, thus producing an "E4" analysis. However, E4 analyses in the realm of energy policy are uncommon, and in the realm of alternative transportation fuels, E4 analyses are extremely rare. This dissertation discusses the creation of a novel E4 simulation tool usable to weigh energy, environmental, economic, and equity trade-offs between conventional gasoline vehicles and alternative fuel vehicles, with specific application to hydrogen fuel cell vehicles. The model, dubbed the F uel Life-cycle Analysis of Solar Hydrogen -- Energy, Environment, Economic & Equity model, or FLASH-E4, is a total fuel-cycle model that combines energy, environmental, and economic analysis methodologies with the addition of an equity analysis component. The model is capable of providing results regarding total fuel-cycle energy consumption, emissions production, energy and environmental cost, and level of social equity within a population in which low-income drivers use CGV technology and high-income drivers use a number of advanced hydrogen FCV technologies. Using theories of equity and social indicators conceptually embodied in the Lorenz Curve and Gini Index, the equity of the distribution of societal energy and environmental costs are measured for a population in which some drivers use CGVs and other drivers use FCVs. It is found, based on baseline input data representative of the United States (US), that the distribution of energy and environmental costs in a population in which some drivers use CGVs and other drivers use natural gas-based hydrogen FCVs can be

  20. Dynamic behavior of gasoline fuel cell electric vehicles

    Science.gov (United States)

    Mitchell, William; Bowers, Brian J.; Garnier, Christophe; Boudjemaa, Fabien

    As we begin the 21st century, society is continuing efforts towards finding clean power sources and alternative forms of energy. In the automotive sector, reduction of pollutants and greenhouse gas emissions from the power plant is one of the main objectives of car manufacturers and innovative technologies are under active consideration to achieve this goal. One technology that has been proposed and vigorously pursued in the past decade is the proton exchange membrane (PEM) fuel cell, an electrochemical device that reacts hydrogen with oxygen to produce water, electricity and heat. Since today there is no existing extensive hydrogen infrastructure and no commercially viable hydrogen storage technology for vehicles, there is a continuing debate as to how the hydrogen for these advanced vehicles will be supplied. In order to circumvent the above issues, power systems based on PEM fuel cells can employ an on-board fuel processor that has the ability to convert conventional fuels such as gasoline into hydrogen for the fuel cell. This option could thereby remove the fuel infrastructure and storage issues. However, for these fuel processor/fuel cell vehicles to be commercially successful, issues such as start time and transient response must be addressed. This paper discusses the role of transient response of the fuel processor power plant and how it relates to the battery sizing for a gasoline fuel cell vehicle. In addition, results of fuel processor testing from a current Renault/Nuvera Fuel Cells project are presented to show the progress in transient performance.

  1. Design study of flat belt CVT for electric vehicles

    Science.gov (United States)

    Kumm, E. L.

    1980-01-01

    A continuously variable transmission (CVT) was studied, using a novel flat belt pulley arrangement which couples the high speed output shaft of an energy storage flywheel to the drive train of an electric vehicle. A specific CVT arrangement was recommended and its components were selected and sized, based on the design requirements of a 1700 KG vehicle. A design layout was prepared and engineering calculations made of component efficiencies and operating life. The transmission efficiency was calculated to be significantly over 90% with the expected vehicle operation. A design consistent with automotive practice for low future production costs was considered, together with maintainability. The technology advancements required to develop the flat belt CVT were identified and an estimate was made of how the size of the flat belt CVT scales to larger and smaller design output torques. The suitability of the flat belt CVT for alternate application to an electric vehicle powered by an electric motor without flywheel and to a hybrid electric vehicle powered by an electric motor with an internal combustion engine was studied.

  2. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs

  3. Preliminary Sizing Completed for Single- Stage-To-Orbit Launch Vehicles Powered By Rocket-Based Combined Cycle Technology

    Science.gov (United States)

    Roche, Joseph M.

    2002-01-01

    Single-stage-to-orbit (SSTO) propulsion remains an elusive goal for launch vehicles. The physics of the problem is leading developers to a search for higher propulsion performance than is available with all-rocket power. Rocket-based combined cycle (RBCC) technology provides additional propulsion performance that may enable SSTO flight. Structural efficiency is also a major driving force in enabling SSTO flight. Increases in performance with RBCC propulsion are offset with the added size of the propulsion system. Geometrical considerations must be exploited to minimize the weight. Integration of the propulsion system with the vehicle must be carefully planned such that aeroperformance is not degraded and the air-breathing performance is enhanced. Consequently, the vehicle's structural architecture becomes one with the propulsion system architecture. Geometrical considerations applied to the integrated vehicle lead to low drag and high structural and volumetric efficiency. Sizing of the SSTO launch vehicle (GTX) is itself an elusive task. The weight of the vehicle depends strongly on the propellant required to meet the mission requirements. Changes in propellant requirements result in changes in the size of the vehicle, which in turn, affect the weight of the vehicle and change the propellant requirements. An iterative approach is necessary to size the vehicle to meet the flight requirements. GTX Sizer was developed to do exactly this. The governing geometry was built into a spreadsheet model along with scaling relationships. The scaling laws attempt to maintain structural integrity as the vehicle size is changed. Key aerodynamic relationships are maintained as the vehicle size is changed. The closed weight and center of gravity are displayed graphically on a plot of the synthesized vehicle. In addition, comprehensive tabular data of the subsystem weights and centers of gravity are generated. The model has been verified for accuracy with finite element analysis. The

  4. Assessment of the State of the Art of Integrated Vehicle Health Management Technologies as Applicable to Damage Conditions

    Science.gov (United States)

    Reveley, Mary S.; Kurtoglu, Tolga; Leone, Karen M.; Briggs, Jeffrey L.; Withrow, Colleen A.

    2010-01-01

    A survey of literature from academia, industry, and other Government agencies assessed the state of the art in current integrated vehicle health management (IVHM) aircraft technologies. These are the technologies that are used for assessing vehicle health at the system and subsystem level. This study reports on how these technologies are employed by major military and commercial platforms for detection, diagnosis, prognosis, and mitigation. Over 200 papers from five conferences from the time period of 2004 to 2009 were reviewed. Over 30 of these IVHM technologies are then mapped into the 17 different adverse event damage conditions identified in a previous study. This study illustrates existing gaps and opportunities for additional research by the NASA IVHM Project.

  5. Natural gas vehicles in public transport. A regional empiric investigation on economic, technical and environment-related factors in the use of the technology of natural gas vehicles at taxi companies; Erdgasfahrzeuge im oeffentlichen Personennahverkehr. Eine regionale empirische Untersuchung zu wirtschaftlichen, technischen und umweltbezogenen Faktoren im Einsatz von Erdgasfahrzeugtechnik bei Taxiunternehmen

    Energy Technology Data Exchange (ETDEWEB)

    Goldmann, Andreas Gerhard

    2009-07-01

    The author of the book under consideration tries to figure out how taxi drivers in the Berlin area assess the introduction of natural gas driven vehicles as a whole and assess how they probably will behave in the future. Hence, the potential of the alternative fuel technology to natural gas driven vehicles are gathered. The results of quantitative studies are discussed in five chapters. The result-related topics are reflected as significant in comparison with subjective assessments and objective scientific research. Supporters regard natural gas driven vehicles in operation as more environmental friendly as opponents. The relevant research results supply a mixed picture on this statement, depending on the number, composition, survey and weighting of individual environmental factors. This does not result in a meaningful overall picture of the arguments that could explain the relevant issues comprehensively.

  6. Reducing automotive emissions—The potentials of combustion engine technologies and the power of policy

    International Nuclear Information System (INIS)

    Berggren, Christian; Magnusson, Thomas

    2012-01-01

    Reducing transport emissions, in particular vehicular emissions, is a key element for mitigating the risks of climate change. In much of the academic and public discourse the focus has been on alternative vehicle technologies and fuels (e.g. electric cars, fuel cells and hydrogen), whereas vehicles based on internal combustion engines have been perceived as close to their development limits. This paper offers a different perspective by demonstrating the accelerated improvement processes taking place in established combustion technologies as a result of a new competition between manufacturers and technologies, encouraged both by more stringent EU legislation and new CAFE levels in the US. The short-term perspective is complemented by an analysis of future improvement potentials in internal combustion technologies, which may be realized if efficient regulation is in place. Based on a comparison of four different regulatory approaches, the paper identifies the need for a long-term technology-neutral framework with stepwise increasing stringencies, arguing that this will encourage continual innovation and diffusion in the most effective way. - Highlights: ► From 1990 to 2008, CO 2 emissions from road transportation in the EU increased by 21%. ► Alternative vehicles are important, but internal combustion engines (ICE) will remain dominant. ► The paper shows how competition and new regulation accelerate the improvement of ICE-vehicles. ► The key factor for long-term emissions reduction is appropriate regulation, not technology. ► Most effective is a technology-neutral framework with stepwise increasing stringencies.

  7. Technological development with reference to hydro-power, nuclear, and alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Burns, T R; Baumgartner, T

    1985-01-01

    This report outlines a theoretical framework for describing and analyzing the introduction of new technologies and the development of socio-technical systems associated with such innovations. While the report is largely theoretical in nature, it refers to certain strategic aspects of the development of nuclear, hydro-power and alternative energy systems. The ease with which technological innovation and development occur, the directions they take, and the impacts they have on the social and physical environments depend not only on purely technical and economic factors. Barriers, regulators and facilitators are inherent in the socio-political, institutional and cultural structures within which any attempts at innovation and technological development take place. The final section of the report explores some of the implications of the theory for policy and strategy, including consideration of environmental policy.

  8. Sustainable Federal Fleets: Deploying Electric Vehicles and Electric Vehicle Supply Equipment

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) helps federal agencies reduce petroleum consumption and increase alternative fuel use through its resources for Sustainable Federal Fleets. To assist agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory's (NREL's) EVSE Tiger Teams.

  9. Evaluating the accuracy of vehicle tracking data obtained from Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Giuseppe Guido

    2016-10-01

    Full Text Available This paper presents a methodology for tracking moving vehicles that integrates Unmanned Aerial Vehicles with video processing techniques. The authors investigated the usefulness of Unmanned Aerial Vehicles to capture reliable individual vehicle data by using GPS technology as a benchmark. A video processing algorithm for vehicles trajectory acquisition is introduced. The algorithm is based on OpenCV libraries. In order to assess the accuracy of the proposed video processing algorithm an instrumented vehicle was equipped with a high precision GPS. The video capture experiments were performed in two case studies. From the field, about 24,000 positioning data were acquired for the analysis. The results of these experiments highlight the versatility of the Unmanned Aerial Vehicles technology combined with video processing technique in monitoring real traffic data.

  10. Environmental sustainability assessment of family house alternatives and application of green technologies

    Science.gov (United States)

    Moňoková, A.; Vilčeková, S.; Mečiarová, Ľ.; Krídlová Burdová, E.

    2017-10-01

    Transition to environmentally friendly technologies provides a comprehensive solution to problem of creating an economic value without destroying the nature. Buildings using green technologies lead to lower operating costs, healthier living and working environment and protect the environment more. The aim of this paper is to assess the environmental impact of two alternatives of family house designed as conventional building and building with green technologies. Evaluated family house are located in village Kokšov Bakša, which is situated 12 km south-east from city of Košice, a metropolis of eastern Slovakia. This analysis investigates the role of applied green technologies in single family houses for impact categories: global warming potential (GWP), acidification potential (AP) and eutrophication potential (EP) expressed as CO2eq, SO2eq and PO4 3- eq within “Cradle to Grave” boundary by using the LCA assessment method. The main contribution of the study is a proof that green technologies have significant part in the reduction of environmental impacts. Results show that alternative of family house designed as green one contributes to CO2eq, SO2eq and PO4 3- eq emissions by 81%, 73% and 35% less than alternative of conventional family house, respectively.

  11. Anticipatory vehicle routing using delegate multi-agent systems

    OpenAIRE

    Weyns, Danny; Holvoet, Tom; Helleboogh, Alexander

    2007-01-01

    This paper presents an agent-based approach, called delegate multi-agent systems, for anticipatory vehicle routing to avoid traffic congestion. In this approach, individual vehicles are represented by agents, which themselves issue light-weight agents that explore alternative routes in the environment on behalf of the vehicles. Based on the evaluation of the alternatives, the vehicles then issue light-weight agents for allocating road segments, spreading the vehicles’ intentions and coordi...

  12. Remotely Operated Vehicle (ROV) System for Horizontal Tanks. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The U.S. Department of Energy (DOE) is responsible for cleaning and closing over 300 small and large underground tanks across the DOE complex that are used for storing over 1-million gal of high- and low-level radioactive and mixed waste (HLW, LLW, and MLLW). The contents of these aging tanks must be sampled to analyze for contaminants to determine final disposition of the tank and its contents. Access to these tanks is limited to small-diameter risers that allow for sample collection at only one discrete point below this opening. To collect a more representative sample without exposing workers to tank interiors, a remote-controlled retrieval method must be used. Many of the storage tanks have access penetrations that are 18 in. in diameter and, therefore, are not suitable for deployment of large vehicle systems like the Houdini (DOE/EM-0363). Often, the tanks offer minimal headspace and are so cluttered with pipes and other vertical obstructions that deployment of long-reach manipulators becomes an impractical option. A smaller vehicle system is needed that can deploy waste retrieval, sampling, and inspection tools into these tanks. The Oak Ridge National Laboratory (ORNL), along with ROV Technologies, Inc., and The Providence Group, Inc., (Providence) has developed the Scarab III remotely operated vehicle system to meet this need. The system also includes a containment and deployment structure and a jet pump-based, waste-dislodging and conveyance system to use in these limited-access tanks. The Scarab III robot addresses the need for a vehicle-based, rugged, remote-controlled system for collection of representative samples of tank contents. This document contains information on the above-mentioned technology, including description, applicability, cost, and performance data

  13. Technology and alternative cancer therapies: an analysis of heterodoxy and constructivism.

    Science.gov (United States)

    Hess, D J

    1996-12-01

    Theories of the construction of technology are reviewed from the wider interdisciplinary conversation known as science and technology studies (STS) and from the growing field of the anthropology of science and technology. These theories are used to contribute to research situated at the intersection of the anthropology of alternative medicine and of medical technologies. Cases drawn from the research tradition on microbial theories of cancer are considered to show how unorthodox medical theories become embedded in technologies through choices in microscope design and treatment technologies. In turn, the technologies contribute to the heterodox standing of the researchers, their research, and their therapies.

  14. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad [Argonne National Laboratory, Argonne, Illinois 60439, United States; Han, Jeongwoo [Argonne National Laboratory, Argonne, Illinois 60439, United States; Ward, Jacob [United States Department of Energy, Washington, D.C. 20585, United States; Joseck, Fred [United States Department of Energy, Washington, D.C. 20585, United States; Gohlke, David [Argonne National Laboratory, Argonne, Illinois 60439, United States; Lindauer, Alicia [United States Department of Energy, Washington, D.C. 20585, United States; Ramsden, Todd [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Biddy, Mary [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Alexander, Mark [Electric Power Research Institute, Palo; Barnhart, Steven [FCA US LLC, Auburn Hills, Michigan 48326, United States; Sutherland, Ian [General Motors, Pontiac, Michigan 48340, United States; Verduzco, Laura [Chevron Corporation, Richmond, California 94802, United States; Wallington, Timothy J. [Ford Motor Company, Dearborn, Michigan 48121, United States

    2018-01-30

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, and BEVs range from 300-350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.

  15. U.S. Light-duty Vehicle Air Conditioning Fuel Use and the Impact of Four Solar/Thermal Control Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kekelia, Bidzina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kreutzer, Cory J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Titov, Eugene V [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-28

    The U.S. uses 7.6 billion gallons of fuel per year for vehicle air conditioning (A/C), equivalent to 5.7 percent of the total national light-duty vehicle (LDV) fuel use. This equates to 30 gallons/year per vehicle, or 23.5 grams (g) of carbon dioxide (CO2) per mile, for an average U.S. vehicle. A/C is a significant contribution to national fuel use; therefore, technologies that reduce A/C loads may reduce operational costs, A/C fuel use, and CO2 emissions. Since A/C is not operated during standard EPA fuel economy testing protocols, EPA provides off-cycle credits to encourage OEMs to implement advanced A/C technologies that reduce fuel use in the real world. NREL researchers assessed thermal/solar off-cycle credits available in the U.S. Environmental Protection Agency's (EPA's) Final Rule for Model Year 2017 and Later Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy. Credits include glazings, solar reflective paint, and passive and active cabin ventilation. Implementing solar control glass reduced CO2 emissions by 2.0 g/mi, and solar reflective paint resulted in a reduction of 0.8 g/mi. Active and passive ventilation strategies only reduced emissions by 0.1 and 0.2 g/mi, respectively. The national-level analysis process is powerful and general; it can be used to determine the impact of a wide range of new vehicle thermal technologies on fuel use, EV range, and CO2 emissions.

  16. Environmental potential of the alternative automotive fuels biogas, ethanol, methanol, natural gas, rape oil methyl ester, and dimethyl ether

    International Nuclear Information System (INIS)

    Egebaeck, K.E.; Westerholm, R.

    1997-09-01

    The aim of the project was to estimate the future emission levels when using alternative fuels, as a contribution to the Committee for Evaluation of Alternative Automotive Fuels (organized by the Swedish Ministry of Environment). The method used for the project was to use the today's knowledge about the emission levels and the emission control technology as a base for the estimation of what additional potential there is to decrease the emissions by coming development of vehicles and the emission control technology. The results of the analysis and the estimations show that there exist a positive development for all types of vehicles and alternative fuels. However, there will be a difference between the different fuel alternatives depending on chemical and physical differences between the different fuels. There will also be a difference in the possibilities of the different fuels to capture a market which will have certain impact on the willingness and the economic possibilities for the car manufacturers to invest in the development needed to reach low emission levels. 124 refs

  17. Research on the theory and application of adsorbed natural gas used in new energy vehicles: A review

    Science.gov (United States)

    Nie, Zhengwei; Lin, Yuyi; Jin, Xiaoyi

    2016-09-01

    Natural gas, whose primary constituent is methane, has been considered a convincing alternative for the growth of the energy supply worldwide. Adsorbed natural gas (ANG), the most promising methane storage method, has been an active field of study in the past two decades. ANG constitutes a safe and low-cost way to store methane for natural gas vehicles at an acceptable energy density while working at substantially low pressures (3.5-4.0 MPa), allowing for conformable store tank. This work serves to review the state-of-the-art development reported in the scientific literature on adsorbents, adsorption theories, ANG conformable tanks, and related technologies on ANG vehicles. Patent literature has also been searched and discussed. The review aims at illustrating both achievements and problems of the ANG technologies- based vehicles, as well as forecasting the development trends and critical issues to be resolved of these technologies.

  18. Why has the introduction of natural gas vehicles failed in Germany?—Lessons on the role of market failure in markets for alternative fuel vehicles

    International Nuclear Information System (INIS)

    Peters von Rosenstiel, Dirk; Heuermann, Daniel F.; Hüsig, Stefan

    2015-01-01

    Despite private investments exceeding two billion Euros and tax incentives of more than 500 million Euros, the market share of natural gas vehicles (NGVs) in Germany has lagged far behind expectations and behind market developments in other countries. With total cost of ownership being on average lower for NGVs than for gasoline and diesel vehicles this raises the question of the existence of market failure in the German NGV-market. We use a case study approach where we combine quantitative data with insights from a multi-industry expert panel and in-depth interviews with experts from industry, government and civil society in order to examine whether and how different types of market failure contribute to the status quo in the German market for NGVs. We conclude that coordination failure in complementary markets, an artificially created monopoly of service stations at motorways, imperfect information, bounded consumer rationality, and principle-agent-problems are the most prominent market failures inhibiting the development of a functioning market for NGVs. Our results are instructive for the design of effective public policies and investor strategies aiming to create markets for alternative fuel vehicles. - Highlights: • We analyze market failure in the German market for natural gas vehicles. • Coordination failure is the most important reason for market failure to arise. • Minor factors: regulatory deficits, imperfect information, bounded rationality. • Policies encompass stabilizing expectations and supporting actor coordination. • Our results are instructive for policies and investor strategies in AFV-markets

  19. Phase I of the Near-Term Hybrid Passenger-Vehicle Development Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    Under contract to the Jet Propulsion Laboratory of the California Institute of Technology, Minicars conducted Phase I of the Near-Term Hybrid Passenger Vehicle (NTHV) Development Program. This program led to the preliminary design of a hybrid (electric and internal combustion engine powered) vehicle and fulfilled the objectives set by JPL. JPL requested that the report address certain specific topics. A brief summary of all Phase I activities is given initially; the hybrid vehicle preliminary design is described in Sections 4, 5, and 6. Table 2 of the Summary lists performance projections for the overall vehicle and some of its subsystems. Section 4.5 gives references to the more-detailed design information found in the Preliminary Design Data Package (Appendix C). Alternative hybrid-vehicle design options are discussed in Sections 3 through 6. A listing of the tradeoff study alternatives is included in Section 3. Computer simulations are discussed in Section 9. Section 8 describes the supporting economic analyses. Reliability and safety considerations are discussed specifically in Section 7 and are mentioned in Sections 4, 5, and 6. Section 10 lists conclusions and recommendations arrived at during the performance of Phase I. A complete bibliography follows the list of references.

  20. Managing the Diffusion of Low Emission Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Van der Vooren, A.; Alkemade, F. [Innovation Studies Group, Copernicus Institute of Sustainable Development, Utrecht University, 3508TC Utrecht (Netherlands)

    2012-03-13

    There is significant uncertainty among technology providers, governments, and consumers about which technology will be the vehicle technology of the future. Governments try to stimulate the diffusion of low emission vehicles with diverse policy measures such as purchase price subsidies. However, the effect of such support measures on the speed and direction of technological change is unclear as different vehicle technologies might be preferred under different policy conditions. Decision makers, such as firm actors involved in green technology management, are thus strongly dependent on government policy when making strategic decisions. For these firm actors, determining their strategy regarding low emission vehicles is a complex task in a changing environment of coevolving consumer preferences, technology characteristics, and green technology policies. This paper presents an agent-based model of the competition between several emerging and market-ready low emission vehicle technologies and the dominant fossil-fuel-based internal combustion engine vehicles. The simulations illustrate the effects of different policy measures on technological change and their implications for the strategic actions of firm actors. More specifically, collaboration and standardization strategies can lead to synergies that contribute to technological change without risking early lock-in.

  1. Intelligent Vehicle Health Management

    Science.gov (United States)

    Paris, Deidre E.; Trevino, Luis; Watson, Michael D.

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of INM. These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the INM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission

  2. 77 FR 14482 - Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets

    Science.gov (United States)

    2012-03-12

    ...-road or non-road vehicle. \\2\\ The definition of the term ``low-speed electric vehicle,'' as used... alternative fuel used in Federal fleet motor vehicles. This report also would include the alternative fuel...-- (1) a motor vehicle that operates solely on alternative fuel; or (2) a low-speed electric vehicle. (g...

  3. Alternative Solvents and Technologies for Precision Cleaning of Aerospace Components

    Science.gov (United States)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Hintze, Paul

    2014-01-01

    Precision cleaning solvents for aerospace components and oxygen fuel systems, including currently used Vertrel-MCA, have a negative environmental legacy, high global warming potential, and have polluted cleaning sites. Thus, alternative solvents and technologies are being investigated with the aim of achieving precision contamination levels of less than 1 mg/sq ft. The technologies being evaluated are ultrasonic bath cleaning, plasma cleaning and supercritical carbon dioxide cleaning.

  4. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology

    Science.gov (United States)

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M.

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications. PMID:26107174

  5. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.

    Science.gov (United States)

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications.

  6. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV Technology.

    Directory of Open Access Journals (Sweden)

    Jorge Torres-Sánchez

    Full Text Available The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1 generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV technology and 2 use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications.

  7. Energy-environment policy modeling of endogenous technological change with personal vehicles. Combining top-down and bottom-up methods

    International Nuclear Information System (INIS)

    Jaccard, Mark; Murphy, Rose; Rivers, Nic

    2004-01-01

    The transportation sector offers substantial potential for greenhouse gas (GHG) emission abatement, but widely divergent cost estimates complicate policy making; energy-economy policy modelers apply top-down and bottom-up cost definitions and different assumptions about future technologies and the preferences of firms and households. Our hybrid energy-economy policy model is technology-rich, like a bottom-up model, but has empirically estimated behavioral parameters for risk and technology preferences, like a top-down model. Unlike typical top-down models, however, it simulates technological change endogenously with functions that relate the financial costs of technologies to cumulative production and adjust technology preferences as market shares change. We apply it to the choice of personal vehicles to indicate, first, the effect on cost estimates of divergent cost definitions and, second, the possible response to policies that require a minimum market share for low emission vehicles

  8. Alternative fuels: how real? how soon?

    International Nuclear Information System (INIS)

    Tertzakian, P.

    2003-01-01

    Nations of the Organization for Economic Cooperation and Development (OECD) are looking for politically stable sources of oil in response to the ever growing demand for fuel. World oil consumption has reached 76.5 MMB/d and demand is expected to be 80 MMB/d by 2005. More restrictive environmental policies are resulting in improved conversion efficiency of oil dependent supply chains and the switching to alternative fuels. The adoption of new fuels however, depends on many factors such as the economic advantage, technological superiority, and convenience. The dominant electrical supply chains at the moment are nuclear, coal, hydropower, hydrocarbons, and renewable energy alternatives such as wind, solar and hydrogen fuels. The paper presented graphs illustrating adoption patterns for various fuels over the past century and presented a potential adoption pattern for fuel cell vehicles. Also included in this presentation were graphs depicting how price can drive supply chain demand and allow other fuels to gain market share. The impact of fuel substitution, efficiency and price effects was mentioned along with the impact of recent policy changes on vehicle fuel efficiency and carbon dioxide emissions. The role of government incentives to promote alternative fuel sales was also discussed along with a broad assessment of renewable supply chains. It was noted that most new fuels are linked to hydrocarbons. For example, hydrogen generation through water electrolysis requires petroleum generated electricity or the steam reforming of natural gas. Ethanol processes also require hydrocarbon consumption indirectly. It was noted that the average efficiencies of coal and natural gas plants has increased in the past decade and the incumbent price trends in electricity in the United States have decreased for fuels such as oil, gas, coal and nuclear energy. With ongoing innovation in the internal combustion engine in the past 30 years, the incumbents have also improved with

  9. OHVT Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A.

    2001-10-22

    The U.S. Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) was created in March 1996 to address the public-interest transportation-energy aspects of a set of customers who at that time had been largely unrecognized, namely, the manufacturers, suppliers, and users of heavy transport vehicles (trucks, buses, rail, and inland marine). Previously, the DOE had focused its attention on meeting the needs of the personal-transport-vehicle customer (automobile manufacturers, suppliers, and users). Those of us who were of driving age at the time of the 1973 oil embargo and the 1979 oil price escalation vividly recall the inconvenience and irritation of having to wait in long lines for gasoline to fuel our cars. However, most of us, other than professional truck owners or drivers, were unaware of the impacts that these disruptions in the fuel supply had on those whose livelihoods depend upon the transport of goods. Recognizing the importance of heavy vehicles to the national economic health, the DOE created OHVT with a mission to conduct, in collaboration with its industry partners and their suppliers, a customer-focused national program to research and develop technologies that will enable trucks and other heavy vehicles to be more energy-efficient and able to use alternative fuels while reducing emissions. The Office of Heavy Vehicle Technologies convened a workshop in April 1996 to elicit input from DOE's heavy vehicle industry customers, including truck and bus manufacturers, diesel-engine manufacturers, fuel producers, suppliers to these industries, and the trucking industry. The preparation of a ''technology roadmap'' was one of the key recommendations by this customer group. Therefore, the OHVT Technology Roadmap* was developed in 1996 as a first step in crafting a common vision for a government research and development (R and D) partnership in this increasingly important transportation sector. The approach used in

  10. USING OF NON-CONVENTIONAL FUELS IN HYBRID VEHICLE DRIVES

    Directory of Open Access Journals (Sweden)

    Dalibor Barta

    2016-12-01

    Full Text Available Electric or hybrid vehicles are becoming increasingly common on roads. While electric vehicles are still more or less intended for city traffic, hybrid vehicles allow normal use due to wider driving range. The use of internal combustion engines in hybrid drives is still an inspiration to find the way to reduce the produc-tion of emissions. Numbers of alternative energy resources were studied as a substitution of conventional fuels for hybrid vehicles drives worldwide. The paper deals with the possibility of using alternative fuels as CNG, LPG and LNG in combination with hybrid drive of a midibus with the capacity of 20 passengers. Various aspects and techniques of hybrid vehicles from energy management system, propulsion system and using of various alternative fuels are explored in this paper. Other related fields of hybrid vehicles such as changes of vehicle weight or influence of electric energy sources on the total vehicle emission production are also included.

  11. Well-to-wheel greenhouse gas emissions and energy use analysis of hypothetical fleet of electrified vehicles in Canada and the U.S

    Science.gov (United States)

    Maduro, Miguelangel

    The shift to strong hybrid and electrified vehicle architectures engenders controversy and brings about many unanswered questions. It is unclear whether developed markets will have the infrastructure in place to support and successfully implement them. To date, limited effort has been made to comprehend if the energy and transportation solutions that work well for one city or geographic region may extend broadly. A region's capacity to supply a fleet of EVs, or plug-in hybrid vehicles with the required charging infrastructure, does not necessarily make such vehicle architectures an optimal solution. In this study, a mix of technologies ranging from HEV to PHEV and EREV through to Battery Electric Vehicles were analyzed and set in three Canadian Provinces and 3 U.S. Regions for the year 2020. Government agency developed environmental software tools were used to estimate greenhouse gas emissions and energy use. Projected vehicle technology shares were employed to estimate regional environmental implications. Alternative vehicle technologies and fuels are recommended for each region based on local power generation schemes.

  12. The Alternate Technology Program for Aluminum Research Reactor Spent Fuel

    International Nuclear Information System (INIS)

    Barlow, M.W.

    1998-01-01

    This paper describes the program for disposition of aluminum-based RRSNF, including the requirements for road-ready dry storage and repository disposal and the criteria to be considered in selecting among the alternative technologies

  13. Efficiency versus cost of alternative fuels from renewable resources: outlining decision parameters

    International Nuclear Information System (INIS)

    Kaul, Sanjay; Edinger, Raphael

    2004-01-01

    In the discussion of traditional versus renewable energies and alternatives to conventional crude oil-based fuels in the transportation sector, efficiency calculations are but one decision making parameter. Comparing the assets and liabilities of fossil-based and renewable fuels in the transportation sector, further aspects such as centralized versus decentralized technologies, cost evaluations, taxation, and ecological/social benefits have to be taken into account. This paper outlines the driving parameters for shifting toward alternative fuels based on fossil or renewable resources and their use in innovative vehicle technologies such as advanced internal combustion and fuel cell electric drive systems. For the decision in favor or against an alternative fuel to be introduced to the mass market, automotive technologies and the energy supply system have to be examined in an integrated way. From an economic and technological perspective, some fuels may be even incompatible with the trend toward using renewable resources that have advantages in decentralized systems. Beyond efficiency calculations, political and industrial interests arise and may be influential to reshaping our currently crude oil-based mobility sector

  14. Alternative Fuels Data Center: Vermont Transportation Data for Alternative

    Science.gov (United States)

    alternative fuels Fuel Public Private Biodiesel (B20 and above) 3 0 Compressed Natural Gas (CNG) 1 2 Electric Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont Recycled Cooking Oil Powers Biodiesel Vehicles in sold per GGE Biodiesel (B20) $2.79/gallon $2.54/GGE $2.84/gallon $2.58/GGE Biodiesel (B99-B100) $2.47

  15. Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle

    Science.gov (United States)

    2015-08-03

    AND SUBTITLE Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle...Center program to be able to expose Science Technology, Engineering and Mathematics (STEM) space-inspired science centers for DC Metro beltway schools

  16. A STUDY ON LIMITATION OF GOVERNMENT INITIATIVE MODEL FOR ALTERNATIVE FUEL VEHICLE (AFV PROMOTION IN CHINA

    Directory of Open Access Journals (Sweden)

    Byunghun Choi

    2016-04-01

    Full Text Available Chinese responsibility for reducing Greenhouse Gas or carbon dioxide emission increases continuously. Chinese government suggested two targets; Alternative Fuel Vehicle output volume 500 thousand and AFV market share 5% by the end of 2011. However any of two targets did not come true. Therefore this study accessed the question, ‘why Chinese government initiative model for AFV promotion has been so poor?’ This study reviewed the transition process for AFV policies in China and made a structural analysis for three key policies since 2009. As a result the number of articles for related industries or factor endowments was relatively more than firm strategy or demand conditions. Also this study accessed the AFV strategy of Six SOEs from the perspective of social responsibility. Six SOEs have more concentrated on electric vehicle rather than hybrid vehicle with following the government leadership. However major EV or HEV models of them mostly were made by Joint Ventures being under control of foreign makers and the JVs have actually controlled over AFV business. So the limitation of Chinese government initiative model resulted from supplier-centric approach with targeting for public transportation and institution consumer, and it caused a failure to create the demand conditions of general customers.

  17. Hybrid and plug-in hybrid electric vehicle performance testing by the US Department of Energy Advanced Vehicle Testing Activity

    Science.gov (United States)

    Karner, Donald; Francfort, James

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.

  18. Public attitudes towards and demand for hydrogen and fuel cell vehicles. A review of the evidence and methodological implications

    International Nuclear Information System (INIS)

    Yetano Roche, Maria; Mourato, Susana; Fischedick, Manfred; Pietzner, Katja; Viebahn, Peter

    2010-01-01

    It is now widely recognized that effective communication and demand-side policies for alternative energy require sound knowledge of preferences and determinants of demand of the public and consumers. To date, public attitudes towards new transport technologies have been studied under very different conceptual frameworks. This paper gives an overview of the various conceptual frameworks and methodologies used, where four main approaches can be distinguished: general attitudinal surveys, risk perception studies, non-market economic valuation studies, and other approaches such as those based on semiotic theory. We then review the findings of the recent literature on acceptance, attitudes and preferences for hydrogen and fuel cell end-use technologies, focusing on vehicles. These studies are then contrasted with related research into alternative fuel vehicles. The paper finally discusses the main trends in research and avenues for further work in this field. We recommend, among other things, the use of approaches that build knowledge and familiarity with the technology prior to the exploration of attitudes, and the set up of studies that take a whole-systems perspective of hydrogen technologies and that look at hydrogen in the context of other competing clean technologies. (author)

  19. Public attitudes towards and demand for hydrogen and fuel cell vehicles. A review of the evidence and methodological implications

    Energy Technology Data Exchange (ETDEWEB)

    Yetano Roche, Maria [Wuppertal Institute for Climate, Energy and Environment, PO BOX 100480, 42004 Wuppertal (Germany); Department of Geography and Environment, London School of Economics and Political Science (United Kingdom); Mourato, Susana [Department of Geography and Environment, London School of Economics and Political Science (United Kingdom); Fischedick, Manfred; Pietzner, Katja; Viebahn, Peter [Wuppertal Institute for Climate, Energy and Environment, PO BOX 100480, 42004 Wuppertal (Germany)

    2010-10-15

    It is now widely recognized that effective communication and demand-side policies for alternative energy require sound knowledge of preferences and determinants of demand of the public and consumers. To date, public attitudes towards new transport technologies have been studied under very different conceptual frameworks. This paper gives an overview of the various conceptual frameworks and methodologies used, where four main approaches can be distinguished: general attitudinal surveys, risk perception studies, non-market economic valuation studies, and other approaches such as those based on semiotic theory. We then review the findings of the recent literature on acceptance, attitudes and preferences for hydrogen and fuel cell end-use technologies, focusing on vehicles. These studies are then contrasted with related research into alternative fuel vehicles. The paper finally discusses the main trends in research and avenues for further work in this field. We recommend, among other things, the use of approaches that build knowledge and familiarity with the technology prior to the exploration of attitudes, and the set up of studies that take a whole-systems perspective of hydrogen technologies and that look at hydrogen in the context of other competing clean technologies. (author)

  20. Public attitudes towards and demand for hydrogen and fuel cell vehicles: A review of the evidence and methodological implications

    Energy Technology Data Exchange (ETDEWEB)

    Yetano Roche, Maria, E-mail: maria.yetano@wupperinst.or [Wuppertal Institute for Climate, Energy and Environment, PO BOX 100480, 42004 Wuppertal (Germany) and Department of Geography and Environment; London School of Economics and Political Science, Houghton Street, London WC2A 2AE (United Kingdom); Mourato, Susana [Department of Geography and Environment, London School of Economics and Political Science, Houghton Street, London WC2A 2AE (United Kingdom); Fischedick, Manfred; Pietzner, Katja; Viebahn, Peter [Wuppertal Institute for Climate, Energy and Environment, PO BOX 100480, 42004 Wuppertal (Germany)

    2010-10-15

    It is now widely recognized that effective communication and demand-side policies for alternative energy require sound knowledge of preferences and determinants of demand of the public and consumers. To date, public attitudes towards new transport technologies have been studied under very different conceptual frameworks. This paper gives an overview of the various conceptual frameworks and methodologies used, where four main approaches can be distinguished: general attitudinal surveys, risk perception studies, non-market economic valuation studies, and other approaches such as those based on semiotic theory. We then review the findings of the recent literature on acceptance, attitudes and preferences for hydrogen and fuel cell end-use technologies, focusing on vehicles. These studies are then contrasted with related research into alternative fuel vehicles. The paper finally discusses the main trends in research and avenues for further work in this field. We recommend, among other things, the use of approaches that build knowledge and familiarity with the technology prior to the exploration of attitudes, and the set up of studies that take a whole-systems perspective of hydrogen technologies and that look at hydrogen in the context of other competing clean technologies.

  1. Electric vehicles and India's low carbon passenger transport: A long-term co-benefits assessment

    DEFF Research Database (Denmark)

    Dhar, Subash; Pathak, Minal; Shukla, Priyadarshi

    2017-01-01

    Electric vehicles have attracted the attention of India's policy makers as clean technology alternatives due to their multiple advantages like higher efficiency and lower air pollution in short to medium term and reduced CO2 emissions as electricity gets decarbonized in the long-run under low...... carbon scenarios. This paper uses an energy system model ANSWER-MARKAL to analyse the role of electric vehicles (EV) in India. The modelling assessment spans the period 2010 to 2050 and analyses future EV demand in India under three scenarios: i) a ‘Reference’ scenario which includes the continuation...

  2. Evaluation of Alternative Technologies to Supply Drinking Water to Marines in Forward Deployed Locations

    Science.gov (United States)

    2010-03-01

    Afghanistan.” 2009. http://www.coleparmer.com/techinfo/techinfo.asp?htmlfile= water - afghanistan.htm&ID=964. Christ- wasser . “RO, EDI and optional UF...Cover, Single-Author Thesis EVALUATION OF ALTERNATIVE TECHNOLOGIES TO SUPPLY DRINKING WATER TO MARINES IN FORWARD DEPLOYED...AFIT/GES/ENV/10-M02 EVALUATION OF ALTERNATIVE TECHNOLOGIES TO SUPPLY DRINKING WATER TO MARINES IN FORWARD DEPLOYED

  3. Advanced microsystems for automotive applications 2013 smart systems for safe and green vehicles

    CERN Document Server

    Meyer, Gereon

    2013-01-01

    The road vehicle of the future will embrace innovations from three major automotive technology fields: driver assistance systems, vehicle networking and alternative propulsion. Smart systems such as adaptive ICT components and MEMS devices, novel network architectures, integrated sensor systems, intelligent interfaces and functional materials form the basis of these features and permit their successful and synergetic integration. They increasingly appear to be the key enabling technologies for safe and green road mobility. For more than fifteen years the International Forum on Advanced Microsystems for Automotive Applications (AMAA) has been successful in detecting novel trends and in discussing the technological implications from early on. The topic of the AMAA 2013 will be “Smart Systems for Safe and Green Vehicles”. This book contains peer-reviewed papers written by leading engineers and researchers which all address the ongoing research and novel developments in the field. www.amaa.de.

  4. Guide to Federal Funding, Financing, and Technical Assistance for Plug-in Electric Vehicles and Charging Stations

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-07-29

    The U.S. Department of Energy and the U.S. Department of Transportation have published a guide to highlight examples of federal support and technical assistance for plug-in electric vehicles (PEVs) and charging stations. The guide provides a description of each opportunity and a point of contact to assist those interested in advancing PEV technology. The Department of Energy’s Alternative Fuels Data Center provides a comprehensive database of federal and state programs that support plug-in electric vehicles and infrastructure.

  5. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment.

    Science.gov (United States)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Mark; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy J

    2018-02-20

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ∼450 gCO 2 e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H 2 FCEVs, and BEVs range from 300-350 gCO 2 e/mi. Future vehicle efficiency gains are expected to reduce emissions to ∼350 gCO 2 /mi for ICEVs and ∼250 gCO 2e /mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.

  6. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad [Argonne National Laboratory, Argonne, Illinois 60439, United States; Han, Jeongwoo [Argonne National Laboratory, Argonne, Illinois 60439, United States; Ward, Jacob [United States Department of Energy, Washington, D.C. 20585, United States; Joseck, Fred [United States Department of Energy, Washington, D.C. 20585, United States; Gohlke, David [Argonne National Laboratory, Argonne, Illinois 60439, United States; Lindauer, Alicia [United States Department of Energy, Washington, D.C. 20585, United States; Ramsden, Todd [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Biddy, Mary [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Alexander, Mark [Electric Power Research Institute, Palo; Barnhart, Steven [FCA US LLC, Auburn Hills, Michigan 48326, United States; Sutherland, Ian [General Motors, Pontiac, Michigan 48340, United States; Verduzco, Laura [Chevron Corporation, Richmond, California 94802, United States; Wallington, Timothy J. [Ford Motor Company, Dearborn, Michigan 48121, United States

    2018-01-30

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025–2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, and BEVs range from 300–350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25–$1.00/mi depending on timeframe and vehicle-fuel technology. In all cases, vehicle cost represents the major (60–90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.

  7. Vehicle Emissions Risk Management

    International Nuclear Information System (INIS)

    Ibrahem, L.G.

    2004-01-01

    Vehicle emissions are considered as a main source for air pollution. Emissions regulation is now well developed in most countries to meet cleaner air quality. Reducing emissions by using cleaner fuels, which meet certain specification, is not enough to get cleaner air, yet the vehicle technology is not improved. Here we will outline the following: - development in fuel specification and emissions regulation. main facts linking vehicle emissions, fuel properties and air quality. catalytic converter technology. Emissions sources: In modem cities, vehicle traffic is potentially a major source of emissions. However sometimes other sources of emissions from industry and other stationary sources can be equally important and include emissions that are of greater toxicity than those from vehicles

  8. Natural gas vehicles: Technical assessment and overview of world situation

    International Nuclear Information System (INIS)

    Klimstra, J.

    1992-01-01

    In evaluating commercialization prospects for natural gas fuelled vehicles, this paper compares the performance and emission quality of these innovative vehicles with those using conventional fuels - gasoline and diesel fuels. Assessments are made of the state-of-the-art of current technology relative to fuel storage, air/fuel mixture preparation, in cylinder combustion processes and pollution control. The analysis evidences that while natural gas is an excellent fuel for spark ignition engines, in transport applications its use is hampered by large storage volume requirements and weight. Moreover, the air/fuel mixture preparation, combustion process and exhaust-gas cleaning require a greater research and development effort to make this alternative fuel economically and environmentally competitive with conventional fuels

  9. Non-cable vehicle guidance

    Energy Technology Data Exchange (ETDEWEB)

    Daugela, G.C.; Willott, A.M.; Chopiuk, R.G.; Thornton, S.E.

    1988-06-01

    The purpose is to determine the most promising driverless mine vehicle guidance systems that are not dependent on buried cables, and to plan their development. The project is presented in two phases: a preliminary study and literature review to determine whether suitable technologies exist to justify further work; and an in-depth assessment and selection of technologies for vehicle guidance. A large number of guidance elements are involved in a completely automated vehicle. The technologies that hold the best potential for development of guidance systems for mine vehicles are ultrasonics, radar, lasers, dead reckoning, and guidance algorithms. The best approach to adaptation of these technologies is on a step by step basis. Guidance modules that are complete in themselves and are designed to be integrated with other modules can provide short term benefits. Two modules are selected for development: the dragline operations monitor and automated machine control for optimized mining (AMCOM). 99 refs., 20 figs., 40 tabs.

  10. Natural gas application in light- and heavy-duty vehicles in Brazil: panorama, technological routes and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Guilherme Bastos, Cordeiro de Melo, Tadeu Cavalcante; Leao, Raphael Riemke de Campos Cesar; Iaccarino, Fernando Aniello; Figueiredo Moreira, Marcia

    2007-07-01

    The Brazilian CNG light-duty vehicle fleet has currently reached more than 1,300,000 units. This growth increased in the late 1990's, when CNG was approved for use in passenger cars. In 2001, the IBAMA (Brazilian Institute for Environment and Natural Renewable Resources), concerned with this uncontrolled growth, published CONAMA (National Environmental Council, controlled by IBAMA) resolution 291, which establishes rules for CNG conversion kit environmental certification.This paper discusses the technological challenges for CNG-converted vehicles to comply with PROCONVE (Brazilian Program for Automotive Air Pollution Control) emission limits. In the 1980's, because of the oil crisis, Natural Gas (NG) emerged as a fuel with great potential to replace Diesel in heavy-duty vehicles. Some experiences were conducted for partial conversions from Diesel to NG (Diesel-gas). Other experiences using NG Otto Cycle buses were conducted in some cities, but have not expanded. Another technological route called 'Ottolization' (Diesel to Otto cycle convertion) appeared recently. Population increase and the great growth in vehicle fleet promote a constant concern with automotive emissions. More restrictive emission limits, high international oil prices, and the strategic interest in replacing Diesel imports, altogether form an interesting scenario for CNG propagation to public transportation in the main Brazilian metropolises.

  11. Modifications for use of methanol or methanol-gasoline blends in automotive vehicles, September 1976-January 1980

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, D.J.; Bolt, J.A.; Cole, D.E.

    1980-01-01

    Methanol or blends of methanol and gasoline as automotive fuels may be attractive means for extending the nation's petroleum reserves. The present study was aimed at identifying potential problems and solutions for this use of methanol. Retrofitting of existing vehicles as well as future vehicle design have been considered. The use of ethanol or higher alcohols was not addressed in this study but will be included at a later date. Several potentially serious problems have been identified with methanol use. The most attractive solutions depend upon an integrated combination of vehicle modifications and fuel design. No vehicle problems were found which could not be solved with relatively minor developments of existing technology providing the methanol or blend fuel was itself engineered to ameliorate the solution. Research needs have been identified in the areas of lubrication and materials. These, while apparently solvable, must precede use of methanol or methanol-gasoline blends as motor fuels. Because of the substantial costs and complexities of a retrofitting program, use of methanol must be evaluated in relation to other petroleum-saving alternatives. Future vehicles can be designed initially to operate satisfactorily on these alternate fuels. However a specific fuel composition must be specified around which the future engines and vehicles can be designed.

  12. Access to augmentative and alternative communication: new technologies and clinical decision-making.

    Science.gov (United States)

    Fager, Susan; Bardach, Lisa; Russell, Susanne; Higginbotham, Jeff

    2012-01-01

    Children with severe physical impairments require a variety of access options to augmentative and alternative communication (AAC) and computer technology. Access technologies have continued to develop, allowing children with severe motor control impairments greater independence and access to communication. This article will highlight new advances in access technology, including eye and head tracking, scanning, and access to mainstream technology, as well as discuss future advances. Considerations for clinical decision-making and implementation of these technologies will be presented along with case illustrations.

  13. Cradle-to-Grave Lifecycle Analysis of U.S. Light Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025-2030) Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Marcus; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy

    2016-06-01

    This study provides a comprehensive lifecycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.

  14. Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T.

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  15. Alternative Fuel Vehicle Publications | Transportation Research | NREL

    Science.gov (United States)

    vehicle evaluations. Biodiesel Regional Transit District Effect of B20 and Low Aromatic Diesel on Transit Buses Operated on Biodiesel Blends. Kenneth Proc, Robb Barnitt, Robert Hayes, Matthew Ratcliff, and Robert McCormick. (2006) Operating Experience and Teardown Analysis for Engines Operated on Biodiesel

  16. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  17. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Science.gov (United States)

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse

  18. The rise of alternative bread leavening technologies in the nineteenth century.

    Science.gov (United States)

    Cobbold, Carolyn Ann

    2018-01-01

    This article reveals how nineteenth-century chemists and health reformers tried to eradicate the use of yeast in bread, claiming they had devised healthier and more sanitary ways to raise bread. It describes the alternative technological solutions to baking bread, investigating factors that influenced their development and adaptation in the marketplace. A lack of scientific and cultural consensus surrounding yeast, what it was and what it did, fermented during this period. The conflict over yeast helped create a heterogeneous industrialization of the baking industry, changing processes and ingredients and creating new forms of bakery products. By examining the claims of promoters of rival scientific beliefs and technologies, as well as those of users and social commentators, we can see that technology's eventual adaptation and impact on society is not predictable at its outset. Exploring the relationship between differing scientific beliefs, cultural understandings and alternative technologies also shows how science and industry cannot be isolated from their social and cultural context. The examination of the nineteenth-century technological development of commonplace commodities such as bread, baking powder and yeast, also reveals and explores a story that has not been told before in the history of science and technology. Why it has not been told is as enlightening as the story itself, revealing as it does our own privileging of what is important in science and history.

  19. Control of Electric Vehicle

    OpenAIRE

    Huang, Qi; Chen, Yong; Li, Jian

    2010-01-01

    In this chapter, the modeling of electric vehicle is discussed in detail. Then, the control of electric vehicle driven by different motors is discussed. Both brushed and brushless DC (Direct Current) motors are discussed. And for AC (Alternative Current) motors, the discussion is focused on induction motor and permanent magnet synchronous motor. The design of controllers for different motor-driven electric vehicle is discussed in-depth, and the tested high-performance control strategies for d...

  20. NASA Alternate Access to Station Service Concept

    Science.gov (United States)

    Bailey, Michelle D.; Crumbly, Chris

    2001-01-01

    The evolving nature of the NASA space enterprise compels the agency to develop new and innovative space systems concepts. NASA, working with increasingly strained budgets and a declining manpower base, is attempting to transform from operational activities to procurement of commercial services. NASA's current generation reusable launch vehicle, the Shuttle, is in transition from a government owned and operated entity to a commercial venture to reduce the civil servant necessities for that program. NASA foresees its second generation launch vehicles being designed and operated by industry for commercial and government services. The "service" concept is a pioneering effort by NASA. The purpose the "service" is not only to reduce the civil servant overhead but will free up government resources for further research - and enable industry to develop a space business case so that industry can sustain itself beyond government programs. In addition, NASA desires a decreased responsibility thereby decreasing liability. The Second Generation Reusable Launch Vehicle (RLV) program is implementing NASA's Space Launch Initiative (SLI) to enable industry to develop the launch vehicles of the future. The Alternate Access to Station (AAS) project office within this program is chartered with enabling industry to demonstrate an alternate access capability for the International Space Station (ISS). The project will not accomplish this by traditional government procurement methods, not by integrating the space system within the project office, or by providing the only source of business for the new capability. The project funds will ultimately be used to purchase a service to take re-supply cargo to the ISS, much the same as any business might purchase a service from FedEx to deliver a package to its customer. In the near term, the project will fund risk mitigation efforts for enabling technologies. AAS is in some ways a precursor to the 2nd Generation RLV. By accomplishing ISS resupply

  1. NASA Alternate Access to Station Service Concept

    Science.gov (United States)

    Bailey, M. D.; Crumbly, C.

    2002-01-01

    The evolving nature of the NASA space enterprise compels the agency to develop new and innovative space systems concepts. NASA, working with increasingly strained budgets and a declining manpower base, is attempting to transform from operational activities to procurement of commercial services. NASA's current generation reusable launch vehicle, the Shuttle, is in transition from a government owned and operated entity to a commercial venture to reduce the civil servant necessities for that program. NASA foresees its second generation launch vehicles being designed and operated by industry for commercial and government services. The "service" concept is a pioneering effort by NASA. The purpose the "service" is not only to reduce the civil servant overhead but will free up government resources for further research and enable industry to develop a space business case so that industry can sustain itself beyond government programs. In addition, NASA desires a decreased responsibility thereby decreasing liability. The Second Generation Reusable Launch Vehicle (RLV) program is implementing NASA's Space Launch Initiative (SLI) to enable industry to develop the launch vehicles of the future. The Alternate Access to Station (AAS) project office within this program is chartered with enabling industry to demonstrate an alternate access capability for the International Space Station (ISS). The project will not accomplish this by traditional government procurement methods, not by integrating the space system within the project office, or by providing the only source of business for the new capability. The project funds will ultimately be used to purchase a service to take re-supply cargo to the ISS, much the same as any business might purchase a service from FedEx to deliver a package to its customer. In the near term, the project will fund risk mitigation efforts for enabling technologies. AAS is in some ways a precursor to the 2nd Generation RLV. By accomplishing ISS resupply

  2. The on-line electric vehicle wireless electric ground transportation systems

    CERN Document Server

    Cho, Dong

    2017-01-01

    This book details the design and technology of the on-line electric vehicle (OLEV) system and its enabling wireless power-transfer technology, the “shaped magnetic field in resonance” (SMFIR). The text shows how OLEV systems can achieve their three linked important goals: reduction of CO2 produced by ground transportation; improved energy efficiency of ground transportation; and contribution to the amelioration or prevention of climate change and global warming. SMFIR provides power to the OLEV by wireless transmission from underground cables using an alternating magnetic field and the reader learns how this is done. This cable network will in future be part of any local smart grid for energy supply and use thereby exploiting local and renewable energy generation to further its aims. In addition to the technical details involved with design and realization of a fleet of vehicles combined with extensive subsurface charging infrastructure, practical issues such as those involved with pedestrian safety are c...

  3. Environmental implication of electric vehicles in China.

    Science.gov (United States)

    Huo, Hong; Zhang, Qiang; Wang, Michael Q; Streets, David G; He, Kebin

    2010-07-01

    Today, electric vehicles (EVs) are being proposed in China as one of the potential options to address the dramatically increasing energy demand from on-road transport. However, the mass use of EVs could involve multiple environmental issues, because EVs use electricity that is generated primarily from coal in China. We examined the fuel-cycle CO(2), SO(2), and NO(x) emissions of EVs in China in both current (2008) and future (2030) periods and compared them with those of conventional gasoline vehicles and gasoline hybrids. EVs do not promise much benefit in reducing CO(2) emissions currently, but greater CO(2) reduction could be expected in future if coal combustion technologies improve and the share of nonfossil electricity increases significantly. EVs could increase SO(2) emissions by 3-10 times and also double NO(x) emissions compared to gasoline vehicles if charged using the current electricity grid. In the future, EVs would be able to reach the NO(x) emission level of gasoline vehicles with advanced emission control devices equipped in thermal power plants but still increase SO(2). EVs do represent an effective solution to issues in China such as oil shortage, but critical policy support is urgently needed to address the environmental issues caused by the use of EVs to make EVs competitive with other vehicle alternatives.

  4. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Wishart; Matthew Shirk

    2012-12-01

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real

  5. 76 FR 19829 - Clean Alternative Fuel Vehicle and Engine Conversions

    Science.gov (United States)

    2011-04-08

    ... INFORMATION CONTACT: Amy Bunker, Compliance and Innovative Strategies Division, U.S. Environmental Protection... Vehicle/Engine Selection D. Mixed-Fuel and Dual-Fuel Conversions E. Vehicle/Engine Labels, Packaging Labels, and Marketing F. Compliance 1. Emission Standards a. Light-Duty and Heavy-Duty Chassis Certified...

  6. Cradle-to-Grave Lifecycle Analysis of U.S. Light-Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025–2030) Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Ward, Jacob [Dept. of Energy (DOE), Washington DC (United States); Joseck, Fred [Dept. of Energy (DOE), Washington DC (United States); Gohlke, David [Dept. of Energy (DOE), Washington DC (United States); Lindauer, Alicia [Dept. of Energy (DOE), Washington DC (United States); Ramsden, Todd [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Alexander, Marcus [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Barnhart, Steven [Fiat Chrysler Automobiles (FCA) US LLC, Auburn Hills, MI (United States); Sutherland, Ian [General Motors, Warren, MI (United States); Verduzco, Laura [Chevron Corporation, San Ramon, CA (United States); Wallington, Timothy J. [Ford Motor Company, Dearborn, MI (United States)

    2016-09-01

    This study provides a comprehensive life-cycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.

  7. Ground Vehicle Convoying

    Science.gov (United States)

    Gage, Douglas W.; Pletta, J. Bryan

    1987-01-01

    Initial investigations into two different approaches for applying autonomous ground vehicle technology to the vehicle convoying application are described. A minimal capability system that would maintain desired speed and vehicle spacing while a human driver provided steering control could improve convoy performance and provide positive control at night and in inclement weather, but would not reduce driver manpower requirements. Such a system could be implemented in a modular and relatively low cost manner. A more capable system would eliminate the human driver in following vehicles and reduce manpower requirements for the transportation of supplies. This technology could also be used to aid in the deployment of teleoperated vehicles in a battlefield environment. The needs, requirements, and several proposed solutions for such an Attachable Robotic Convoy Capability (ARCC) system will be discussed. Included are discussions of sensors, communications, computers, control systems and safety issues. This advanced robotic convoy system will provide a much greater capability, but will be more difficult and expensive to implement.

  8. Electric vehicles: energy consumption and the comparision with other new vehicle technologies

    NARCIS (Netherlands)

    Weijer, C.J.T. van de; Schillemans, R.A.A.

    1996-01-01

    In the end of the 19th century the electric vehicle (EV) controlled the market for road transport. But with remarkable improvements in the performance of internal combustion engine vehicles (ICEVs), EVs had vanished from the scene by the 1930's. Since then, they have attracted interest from time to

  9. Characterization of alternative electric generation technologies for the SPS comparative assessment: volume 2, central-station technologies

    International Nuclear Information System (INIS)

    1980-08-01

    The SPS Concept Development and Evaluation Program includes a comparative assessment. An early first step in the assessment process is the selection and characterization of alternative technologies. This document describes the cost and performance (i.e., technical and environmental) characteristics of six central station energy alternatives: (1) conventional coal-fired powerplant; (2) conventional light water reactor (LWR); (3) combined cycle powerplant with low-Btu gasifiers; (4) liquid metal fast breeder reactor (LMFBR); (5) photovoltaic system without storage; and (6) fusion reactor

  10. Vehicle Lightweighting: Mass Reduction Spectrum Analysis and Process Cost Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mascarin, Anthony [IBIS Associates, Inc., Waltham, MA (United States); Hannibal, Ted [IBIS Associates, Inc., Waltham, MA (United States); Raghunathan, Anand [Energetics Inc., Columbia, MD (United States); Ivanic, Ziga [Energetics Inc., Columbia, MD (United States); Clark, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The U.S. Department of Energy’s Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. In the first two phases of this effort examined combinations of strategies aimed at achieving strategic targets of 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. These results have been reported in the Idaho National Laboratory report INL/EXT-14-33863 entitled Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling for Vehicle Lightweighting published in March 2015. The data for these strategies were drawn from many sources, including Lotus Engineering Limited and FEV, Inc. lightweighting studies, U.S. Department of Energy-funded Vehma International of America, Inc./Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, many United States Council for Automotive Research’s/United States Automotive Materials Partnership LLC lightweight materials programs, and IBIS Associates, Inc.’s decades of experience in automotive lightweighting and materials substitution analyses.

  11. Vehicle Lightweighting: Mass Reduction Spectrum Analysis and Process Cost Modeling

    International Nuclear Information System (INIS)

    Mascarin, Anthony; Hannibal, Ted; Raghunathan, Anand; Ivanic, Ziga; Clark, Michael

    2016-01-01

    The U.S. Department of Energy's Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. In the first two phases of this effort examined combinations of strategies aimed at achieving strategic targets of 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. These results have been reported in the Idaho National Laboratory report INL/EXT-14-33863 entitled Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling for Vehicle Lightweighting published in March 2015. The data for these strategies were drawn from many sources, including Lotus Engineering Limited and FEV, Inc. lightweighting studies, U.S. Department of Energy-funded Vehma International of America, Inc./Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, many United States Council for Automotive Research's/United States Automotive Materials Partnership LLC lightweight materials programs, and IBIS Associates, Inc.'s decades of experience in automotive lightweighting and materials substitution analyses.

  12. Developing hydrogen infrastructure through near-term intermediate technology

    International Nuclear Information System (INIS)

    Arthur, D.M.; Checkel, M.D.; Koch, C.R.

    2003-01-01

    The development of a vehicular hydrogen fuelling infrastructure is a necessary first step towards the widespread use of hydrogen-powered vehicles. This paper proposes the case for using a near-term, intermediate technology to stimulate and support the development of that infrastructure. 'Dynamic Hydrogen Multifuel' (DHM) is an engine control and fuel system technology that uses flexible blending of hydrogen and another fuel to optimize emissions and overall fuel economy in a spark ignition engine. DHM vehicles can enhance emissions and fuel economy using techniques such as cold-starting or idling on pure hydrogen. Blending hydrogen can extend lean operation and exhaust gas recirculation limits while normal engine power and vehicle range can be maintained by the conventional fuel. Essentially DHM vehicles are a near-term intermediate technology which provides significant emissions benefits in a vehicle which is sufficiently economical, practical and familiar to achieve significant production numbers and significant fuel station load. The factors leading to successful implementation of current hydrogen filling stations must also be understood if the infrastructure is to be developed further. The paper discusses important lessons on the development of alternative fuel infrastructure that have been learned from natural gas; why were natural gas vehicle conversions largely successful in Argentina while failing in Canada and New Zealand? What ideas can be distilled from the previous successes and failures of the attempted introduction of a new vehicle fuel? It is proposed that hydrogen infrastructure can be developed by introducing a catalytic, near-term technology to provide fuel station demand and operating experience. However, it is imperative to understand the lessons of historic failures and present successes. (author)

  13. Alternating-Current Motor Drive for Electric Vehicles

    Science.gov (United States)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  14. The valuation of air emission externalities of vehicles: a comparison between fossil fuels and ethanol in Brazil

    International Nuclear Information System (INIS)

    Fernandes, E.S.L.; Zylbersztain, D.

    1997-01-01

    The National Alcohol Program, Proalcool has had an important strategic role as an alternative fuel. Nevertheless, Proalcool has faced economic difficulties that endanger the Program's future. From the environmental point of view, the introduction of hydrated ethanol as an automobile fuel was beneficial because initially it reduced vehicle emissions. The lack of investment in technology for a neat-alcohol vehicle has delayed further development of an alcohol engine relative to the gasoline engine, which is reflected in current exhaust gas emissions. This paper discusses the evolution of ethanol vehicle emissions and the monetary effect of these emissions in the urban area of Sao Paulo, Brazil. (author)

  15. Hydrogen-Enhanced Natural Gas Vehicle Program

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  16. Transportation Energy Futures Series. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation. View all reports on the TEF Web page, http://www.eere.energy.gov/analysis/transportationenergyfutures/index.html.

  17. FY2015 Vehicle Systems Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-31

    The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles.

  18. Energy harvesting water vehicle

    KAUST Repository

    Singh, Devendra

    2018-01-04

    An efficient energy harvesting (EEH) water vehicle is disclosed. The base of the EEH water vehicle is fabricated with rolling cylindrical drums that can rotate freely in the same direction of the water medium. The drums reduce the drag at the vehicle-water interface. This reduction in drag corresponds to an increase in speed and/or greater fuel efficiency. The mechanical energy of the rolling cylindrical drums is also transformed into electrical energy using an electricity producing device, such as a dynamo or an alternator. Thus, the efficiency of the vehicle is enhanced in two parallel modes: from the reduction in drag at the vehicle-water interface, and from capturing power from the rotational motion of the drums.

  19. Analysis of the vehicle fleet in the Kathmandu Valley for estimation of environment and climate co-benefits of technology intrusions

    Science.gov (United States)

    Shrestha, Shreejan Ram; Kim Oanh, Nguyen Thi; Xu, Quishi; Rupakheti, Maheswar; Lawrence, Mark G.

    2013-12-01

    Technologies and activities of the on-road traffic fleets, including bus, van, 3-wheeler, taxi and motorcycle (MC) in the Kathmandu Valley, Nepal, during 2010, were investigated with the aim to produce emission estimates, using the International Vehicle Emission (IVE) model, for the base year and for an optimistic technology scenario. The parking lot survey, GPS monitoring and video camera monitoring were conducted over four typical road types (arterial, highway, residential and outskirt roads). The average age of vehicles in the bus, van, 3-wheeler, taxi and MC fleet was 9, 8.7, 11, 9.5 and 4 years, respectively. There were some extremely old buses (over 40 years old) which had extremely high emission factors. Except for MCs that had a large share of Euro III technology (75%), other types of surveyed vehicles were at most Euro II or lower. The average vehicle kilometers traveled (VKT) for each vehicle type was estimated based on odometer readings which showed comparable results with the GPS survey. The emission factors (EFs) produced by the IVE model for the driving and meteorological conditions in Kathmandu were used to estimate emissions for the base case of 2010. EFs in Kathmandu were higher than other developing cities, especially for PM and NOx from the bus fleet. Diurnal variations of the emissions were consistent with the diurnal vehicle density. From the fleet in 2010, total emissions of the major pollutants, i.e., CO, VOC, NOx, PM, BC, and CO2, were 31, 7.7, 16, 4.7, 2.1, and 1554 Gg, respectively. If the entire fleet in the Kathmandu Valley would comply with Euro III then the emission would decrease, as compared to the base case, by 44% for toxic air pollutants (excluding CO2) and 31% for climate-forcers in terms of the 20-year horizon CO2-equivalent. Future surveys should include other vehicle types such as trucks, personal cars, and non-road vehicles. The EFs obtained for the Euro III scenario in Kathmandu were well above those in other parts of the

  20. CRADA Final Report for CRADA Number NFE-10-02991 "Development and Commercialization of Alternative Carbon Precursors and Conversion Technologies"

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Rober [ORNL; Paulauskas, Felix [ORNL; Naskar, Amit [ORNL; Kaufman, Michael [ORNL; Yarborough, Ken [ORNL; Derstine, Chris [The Dow Chemical Company

    2013-10-01

    The overall objective of the collaborative research performed by the Oak Ridge National Laboratory (ORNL) and the Dow Chemical Company under this Cooperative Research And Development Agreement (CRADA NFE-10-02991) was to develop and establish pathways to commercialize new carbon fiber precursor and conversion technology. This technology is to produce alternative polymer fiber precursor formulations as well as scaled energy-efficient advanced conversion technology to enable continuous mode conversion to obtain carbonized fibers that are technically and economically viable in industrial markets such as transportation, wind energy, infrastructure and oil drilling applications. There have been efforts in the past to produce a low cost carbon fiber. These attempts have to be interpreted against the backdrop of the market needs at the time, which were strictly military aircraft and high-end aerospace components. In fact, manufacturing costs have been reduced from those days to current practice, where both process optimization and volume production have enabled carbon fiber to become available at prices below $20/lb. However, the requirements of the lucrative aerospace market limits further price reductions from current practice. This approach is different because specific industrial applications are targeted, most specifically wind turbine blade and light vehicle transportation, where aircraft grade carbon fiber is not required. As a result, researchers are free to adjust both manufacturing process and precursor chemistry to meet the relaxed physical specifications at a lower cost. This report documents the approach and findings of this cooperative research in alternative precursors and advanced conversion for production of cost-effective carbon fiber for energy missions. Due to export control, proprietary restrictions, and CRADA protected data considerations, specific design details and processing parameters are not included in this report.