WorldWideScience

Sample records for alternative vehicle technologies

  1. Advanced Technology and Alternative Fuel Vehicles

    International Nuclear Information System (INIS)

    Tuttle, J.

    2001-01-01

    This fact sheet provides a basic overview of today's alternative fuel choices--including biofuels, biodiesel, electricity, and hydrogen--alternative fuel vehicles, and advanced vehicle technology, such as hybrid electric vehicles, fuel cells and advanced drive trains

  2. Alternative fuels and advanced technology vehicles : issues in Congress

    Science.gov (United States)

    2009-02-13

    Alternative fuels and advanced technology vehicles are seen by proponents as integral to improving urban air quality, decreasing dependence on foreign oil, and reducing emissions of greenhouse gases. However, major barriers especially economics curre...

  3. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.

    Science.gov (United States)

    Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M

    2009-11-01

    This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed.

  4. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  5. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  6. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    1998-01-01

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions

  7. Alternative vehicle detection technologies for traffic signal systems : technical report.

    Science.gov (United States)

    2009-02-01

    Due to the well-documented problems associated with inductive loops, most jurisdictions have : replaced many intersection loops with video image vehicle detection systems (VIVDS). While VIVDS : have overcome some of the problems with loops such as tr...

  8. Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands

    International Nuclear Information System (INIS)

    Kyle, Page; Kim, Son H.

    2011-01-01

    This study assesses global light-duty vehicle (LDV) transport in the upcoming century, and the implications of vehicle technology advancement and fuel-switching on greenhouse gas emissions and primary energy demands. Five different vehicle technology scenarios are analyzed with and without a CO 2 emissions mitigation policy using the GCAM integrated assessment model: a reference internal combustion engine vehicle scenario, an advanced internal combustion engine vehicle scenario, and three alternative fuel vehicle scenarios in which all LDVs are switched to natural gas, electricity, or hydrogen by 2050. The emissions mitigation policy is a global CO 2 emissions price pathway that achieves 450 ppmv CO 2 at the end of the century with reference vehicle technologies. The scenarios demonstrate considerable emissions mitigation potential from LDV technology; with and without emissions pricing, global CO 2 concentrations in 2095 are reduced about 10 ppmv by advanced ICEV technologies and natural gas vehicles, and 25 ppmv by electric or hydrogen vehicles. All technological advances in vehicles are important for reducing the oil demands of LDV transport and their corresponding CO 2 emissions. Among advanced and alternative vehicle technologies, electricity- and hydrogen-powered vehicles are especially valuable for reducing whole-system emissions and total primary energy. - Highlights: → Alternative-fuel LDVs reduce whole-system CO 2 emissions, even without carbon pricing. → Alternative-fuel LDVs enhance the CO 2 mitigation capacity of the transportation sector. → Electric and hydrogen vehicles reduce whole-system primary energy supporting LDV transport.

  9. Electric vehicle propulsion alternatives

    Science.gov (United States)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  10. Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF`s) and alternative fuel vehicles (AFV`s) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There wig be true differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV`S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available ``practical``. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

  11. Well-to-wheels life-cycle analysis of alternative fuels and vehicle technologies in China

    International Nuclear Information System (INIS)

    Shen Wei; Han Weijian; Chock, David; Chai Qinhu; Zhang Aling

    2012-01-01

    A well-to-wheels life cycle analysis on total energy consumptions and greenhouse-gas (GHG) emissions for alternative fuels and accompanying vehicle technologies has been carried out for the base year 2010 and projected to 2020 based on data gathered and estimates developed for China. The fuels considered include gasoline, diesel, natural gas, liquid fuels from coal conversion, methanol, bio-ethanol and biodiesel, electricity and hydrogen. Use of liquid fuels including methanol and Fischer–Tropsch derived from coal will significantly increase GHG emissions relative to use of conventional gasoline. Use of starch-based bio-ethanol will incur a substantial carbon disbenefit because of the present highly inefficient agricultural practice and plant processing in China. Electrification of vehicles via hybrid electric, plug-in hybrid electric (PHEV) and battery electric vehicle technologies offers a progressively improved prospect for the reduction of energy consumption and GHG emission. However, the long-term carbon emission reduction is assured only when the needed electricity is generated by zero- or low-carbon sources, which means that carbon capture and storage is a necessity for fossil-based feedstocks. A PHEV that runs on zero- or low-carbon electricity and cellulosic ethanol may be one of the most attractive fuel-vehicle options in a carbon-constrained world. - Highlights: ► Data and estimates unique to China are used in this analysis. ► Use of starch-based bio-ethanol will incur a substantial carbon disbenefit in China. ► Use of methanol derived from coal will incur even more carbon disbenefit. ► Plug-in-hybrid with cellulosic ethanol and clean electricity may be a viable option.

  12. The importance of grid integration for achievable greenhouse gas emissions reductions from alternative vehicle technologies

    International Nuclear Information System (INIS)

    Tarroja, Brian; Shaffer, Brendan; Samuelsen, Scott

    2015-01-01

    Alternative vehicles must appropriately interface with the electric grid and renewable generation to contribute to decarbonization. This study investigates the impact of infrastructure configurations and management strategies on the vehicle–grid interface and vehicle greenhouse gas reduction potential with regard to California's Executive Order S-21-09 goal. Considered are battery electric vehicles, gasoline-fueled plug-in hybrid electric vehicles, hydrogen-fueled fuel cell vehicles, and plug-in hybrid fuel cell vehicles. Temporally resolved models of the electric grid, electric vehicle charging, hydrogen infrastructure, and vehicle powertrain simulations are integrated. For plug-in vehicles, consumer travel patterns can limit the greenhouse gas reductions without smart charging or energy storage. For fuel cell vehicles, the fuel production mix must be optimized for minimal greenhouse gas emissions. The plug-in hybrid fuel cell vehicle has the largest potential for emissions reduction due to smaller battery and fuel cells keeping efficiencies higher and meeting 86% of miles on electric travel keeping the hydrogen demand low. Energy storage is required to meet Executive Order S-21-09 goals in all cases. Meeting the goal requires renewable capacities of 205 GW for plug-in hybrid fuel cell vehicles and battery electric vehicle 100s, 255 GW for battery electric vehicle 200s, and 325 GW for fuel cell vehicles. - Highlights: • Consumer travel patterns limit greenhouse gas reductions with immediate charging. • Smart charging or energy storage are required for large greenhouse gas reductions. • Fuel cells as a plug-in vehicle range extender provided the most greenhouse gas reductions. • Energy storage is required to meet greenhouse gas goals regardless of vehicle type. • Smart charging reduces the required energy storage size for a given greenhouse gas goal

  13. Maintenance & Repair Cost Calculation and Assessment of Resale Value for Different Alternative Commercial Vehicle Powertrain Technologies

    OpenAIRE

    Kleiner, Florian; Friedrich, Horst E.

    2017-01-01

    For detailed evaluation of the Total Cost of Ownership, expenditures for Maintenance & Repair as well as the resale value are important to consider and should not be neglected. However, information on Maintenance & Repair costs as well as residual values for commercial vehicles with alternative powertrains is missing and data on this issue is rare. There is a lack of information and consolidated knowledge. In order to enable a holistic cost assessment for commercial vehicles, a comprehensive ...

  14. Development of a multi-criteria evaluation framework for alternative light-duty vehicles technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fazeli, R.; Leal, V.; Sousa, J.P.

    2011-07-15

    Multi-Attribute Utility Theory (MAUT) is very popular in the context of multi-criteria decision making because it easily incorporates the decision maker's preferences. The basic goal of MAUT is to replace available information by ''utility values'' allowing the comparison of alternatives. For the basic MCDA problem of choosing the best alternative, it is useful for a DM to start by eliminating those alternatives that do not seem to be interesting. This procedure is often called ''screening''. Screening helps by allowing the DM to concentrate on a smaller set that (very likely) contains the best alternative. In this work we have applied a sequential screening process, starting with a Pareto Optimal (PO) approach, followed by a Data Envelopment Analysis (DEA) based screening and Trade-off Weights (TW) procedure. To illustrate the approach, Portugal was chosen as a case study. Besides, at this preliminary stage of the research, we just considered alternatives with 100% of one specific fuel/technology combination (alternatives with fleets combining different shares of fuels/technologies will be analyzed in the next phase of the research). MAUT was applied to identify the utility values of each alternative for each group of attributes. Then the sequential screening approach was applied. The final screening set includes DICI-DME, Fuel Cell using Hydrogen, the Fuel Cell with reformer using Methanol, and Hybrid Gasoline. As a conclusion, preliminary results clearly show the potential of the developed approach in setting a framework for supporting better and sounder decision-making on which AFV technologies should be supported. (Author)

  15. Alternative vehicles and infrastructure requirements conference.

    Science.gov (United States)

    2011-11-01

    "A conference entitled Alternative Fuel / Advanced Vehicles Technologies & Infrastructure Requirements: Bringing Innovation to Our Streets was held in New York, NY at New York University on June 14, 2011. The conference addressed several of the...

  16. Technology updates from the OEMs (tires, rims, automation inflation systems, and alternative fuels for heavy vehicles)

    Energy Technology Data Exchange (ETDEWEB)

    White, N. [Charonic Canada Inc., Ottawa, ON (Canada)

    2001-07-01

    This power point presentation outlined a project at Charonic Canada Inc., which demonstrated and evaluated innovations in the areas of vehicle safety, operating economy and diesel fuel substitution. It also presented a range of results that demonstrate some of the trends that may be used on vehicles, particularly trucks, in the near future. The demonstration involved a 2 year observation of a five truck fleet hauling refuse from Toronto to Michigan. The trucks completed 2,500 round trips of 540 miles and used 115 tonnes of natural gas fuel replacing diesel fuel. Safety innovations included tire pressure monitoring, hazard locator radar system, anti-spray system, wheel nut and bearing temperature indicators and brake safe indicators. These features were reported as being worthwhile investments. Economy innovations included a dual-fuel engine system, wide base tires, light weight CNG tanks, centrifugal oil cleaner and an oil and lubrication system. Although the technology continues to improve, the dual-engine system requires further work. Difficulties were encountered when trying to meet performance, fuel economy and emission targets at the same time. 18 figs.

  17. Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes. [Public fleet groups--information needs

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF's) and alternative fuel vehicles (AFV's) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There wig be true differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV'S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available practical''. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

  18. Box Energy: rental of energy-storage systems and alternative fuel technologies for vehicles; Box-energy. Rental of energy. Storage systems and alternative-fuel. Technologies for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bautz, R.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of study on the rental of energy-storage systems and alternative fuel technologies for vehicles. Experience gained in the area of battery-rental is discussed. The aims of the 'Box Energy' project are described, as is its market environment. The 'Box Energy' concept is described and possible customers and partners listed. Logistics aspects are discussed. The organisation of 'Box Energy' is described and the concept's chances and weaknesses are discussed. The launching of a pilot project in Switzerland is discussed. Recommendations on further work to be done are made.

  19. Fuel cell vehicles: technological solution

    International Nuclear Information System (INIS)

    Lopez Martinez, J. M.

    2004-01-01

    Recently it takes a serious look at fuel cell vehicles, a leading candidate for next-generation vehicle propulsion systems. The green house effect and air quality are pressing to the designers of internal combustion engine vehicles, owing to the manufacturers to find out technological solutions in order to increase the efficiency and reduce emissions from the vehicles. On the other hand, energy source used by currently propulsion systems is not renewable, the well are limited and produce CO 2 as a product from the combustion process. In that situation, why fuel cell is an alternative of internal combustion engine?

  20. Review and analysis of potential safety impacts of and regulatory barriers to fuel efficiency technologies and alternative fuels in medium- and heavy-duty vehicles

    Science.gov (United States)

    2015-06-01

    This report summarizes a safety analysis of medium- and heavy-duty vehicles (MD/HDVs) equipped with fuel efficiency (FE) technologies and/or using alternative fuels (natural gas-CNG and LNG, propane, biodiesel and power train electrification). The st...

  1. Trust in vehicle technology

    OpenAIRE

    Walker, Guy, H.; Stanton, Neville, A.; Salmon, Paul

    2016-01-01

    Driver trust has potentially important implications for how vehicle technology is used and interacted with. In this paper it will be seen how driver trust functions and how it can be understood and manipulated by insightful vehicle design. It will review the theoretical literature to define steps that can be taken establish trust in vehicle technology in the first place, maintain trust in the long term, and even re-establish trust that has been lost along the way. The implication throughout i...

  2. 2014 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Diegel, Susan W [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    This is the sixth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. The discussion of Medium and Heavy Trucks offers information on truck sales and technologies specific to heavy trucks. The Technology section offers information on alternative fuel vehicles and infrastructure, and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible tables and figures.

  3. 2012 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

    2013-03-01

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  4. 2015 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert G. [Roltek, Inc., Clinton, TN (United States); Moore, Sheila [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    This is the seventh edition of the Vehicle Technologies Market Report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 22 and 23 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 27 through 63 offer snapshots of major light-duty vehicle brands in the United States and Figures 70 through 81 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 90 through 94) and fuel use (Figures 97 through 100). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 105 through 118), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 130 through 137). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets. Suggestions for future expansion, additional information, or other improvements are most welcome.

  5. Alternative Fuels Data Center: Natural Gas Vehicles

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles on Twitter Bookmark Alternative

  6. Vehicle Technologies Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-09-05

    Overview of the Vehicle Technologies Program including external assessment and market view; internal assessment, program history and progress; program justification and federal role; program vision, mission, approach, strategic goals, outputs, and outcomes; and performance goals.

  7. 2016 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    This is the seventh edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 27 through 69 offer snapshots of major light-duty vehicle brands in the United States and Figures 73 through 85 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 94 through 98) and fuel use (Figures 101 through 104). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 109 through 123), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 135 through 142). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets. Suggestions for future expansion, additional information, or other improvements are most welcome.

  8. 2013 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    This is the fifth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 24 through 51 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 56 through 64 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 73 through 75) and fuel use (Figures 78 through 81). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 84 through 95), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 106 through 110). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  9. Alternative fuels for vehicles; Alternative drivmidler

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-15

    Up until 2020 and onwards the analysis indicates that especially electricity, biogas and natural gas as propellants is economically attractive compared to conventional gasoline and diesel while other fuels have the same or higher costs for petrol and diesel. Especially biogas and electricity will also offer significant reductions in CO{sub 2} emissions, but also hydrogen, methanol, DME and to a lesser extent the second generation bioethanol and most of the other alternative fuels reduce CO{sub 2} emissions. Use of the traditional food-based first generation biofuels involves, at best, only modest climate benefits if land use changes are counted, and at worst, significant negative climate effects. Natural gas as a propellant involves a moderate climate gain, but may play a role for building infrastructure and market for gaseous fuels in large fleets, thereby contributing to the phasing in of biogas for transport. The electric-based automotive fuels are the most effective due to a high efficiency of the engine and an increasing proportion of wind energy in the electricity supply. The methanol track also has a relatively high efficiency. Among the others, the track based on diesel engines (biodiesel) is more effective than the track based on gasoline/Otto engines (gas and ethanol) as a result of the diesel engine's better efficiency. For the heavy vehicles all the selected alternative fuels to varying degrees reduce emissions of CO{sub 2}, particularly DME based on wood. The only exception to this is - as for passenger cars - the propellant synthetic diesel based on coal. (LN).

  10. Communication Technologies for Vehicles

    DEFF Research Database (Denmark)

    Vinel, Alexey

    This book constitutes the proceedings of the 8th International Workshop on Communication Technologies for Vehicles, Nets4Cars/Nets4Trains/Nets4Aircraft 2015, held in Sousse, Tunisia, in May 2015. The 20 papers presented in this volume were carefully reviewed and selected from 27 submissions....... The contributions are organized in topical sections named: road; rail; and air....

  11. 2011 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL

    2012-02-01

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and

  12. Heavy Vehicle Technologies Program Retrospective and Outlook

    International Nuclear Information System (INIS)

    James J. Eberhardt

    1999-01-01

    OHVT Mission is to conduct, in collaboration with our heavy vehicle industry partners and their suppliers, a customer-focused national program to research and develop technologies that will enable trucks and other heavy vehicles to be more energy efficient and able to use alternative fuels while simultaneously reducing emissions

  13. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Science.gov (United States)

    . A wide variety of hybrid electric vehicle models is currently available. Although HEVs are often -go traffic), further improving fuel economy. Mild hybrid systems cannot power the vehicle using Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric

  14. TAFV Alternative Fuels and Vehicles Choice Model Documentation; TOPICAL

    International Nuclear Information System (INIS)

    Greene, D.L.

    2001-01-01

    A model for predicting choice of alternative fuel and among alternative vehicle technologies for light-duty motor vehicles is derived. The nested multinomial logit (NML) mathematical framework is used. Calibration of the model is based on information in the existing literature and deduction based on assuming a small number of key parameters, such as the value of time and discount rates. A spreadsheet model has been developed for calibration and preliminary testing of the model

  15. Niobium technological alternatives

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Dainesi, C.R.

    1981-01-01

    The process-product matrix of Niobium is presented, through which the technological alternatives for Niobium are identified. It is shown that the three axes of Niobium application, steels, superalloys and metallic Niobium have a tendency to be economical by equivalent. The critical points where technological development of Niobium is needed are analyzed and results are presented on the following products: Nb 2 O 5 by volatilization, metalic Niobium, Niobium powder, bars and sheets, NbTi alloy, corrosion resistent Niobium alloys and superconductor cable and wires. (Author) [pt

  16. Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles

    Directory of Open Access Journals (Sweden)

    Nuri Cihat Onat

    2014-12-01

    Full Text Available Sustainable transportation and mobility are key components and central to sustainable development. This research aims to reveal the macro-level social, economic, and environmental impacts of alternative vehicle technologies in the U.S. The studied vehicle technologies are conventional gasoline, hybrid, plug-in hybrid with four different all-electric ranges, and full battery electric vehicles (BEV. In total, 19 macro level sustainability indicators are quantified for a scenario in which electric vehicles are charged through the existing U.S. power grid with no additional infrastructure, and an extreme scenario in which electric vehicles are fully charged with solar charging stations. The analysis covers all life cycle phases from the material extraction, processing, manufacturing, and operation phases to the end-of-life phases of vehicles and batteries. Results of this analysis revealed that the manufacturing phase is the most influential phase in terms of socio-economic impacts compared to other life cycle phases, whereas operation phase is the most dominant phase in the terms of environmental impacts and some of the socio-economic impacts such as human health and economic cost of emissions. Electric vehicles have less air pollution cost and human health impacts compared to conventional gasoline vehicles. The economic cost of emissions and human health impact reduction potential can be up to 45% and 35%, respectively, if electric vehicles are charged through solar charging stations. Electric vehicles have potential to generate income for low and medium skilled workers in the U.S. In addition to quantified sustainability indicators, some sustainability metrics were developed to compare relative sustainability performance alternative passenger vehicles. BEV has the lowest greenhouse gas emissions and ecological land footprint per $ of its contribution to the U.S. GDP, and has the lowest ecological footprint per unit of its energy consumption. The

  17. Reduction of the heat demand of cabins of electric-powered vehicles by means of an alternative glass technology; Reduzierung des Heizbedarfs von Elektrofahrzeugkabinen durch alternative Scheibentechnik

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Manuel; Spinnler, Markus; Sattelmayer, Thomas [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Thermodynamik

    2012-11-01

    Cruising range is a key factor in market penetration of electric vehicles (EVs) for the near future. Today, EVs achieve acceptable cruising range only through heavy and expensive batteries. Air-conditioning - and in temperate zones especially heating - of the passenger cabin are significant auxiliary loads that can reduce range substantially. At low ambient temperatures the necessary heating power can exceed the average drive power, thus reducing range by over 50%. This study, carried out in cooperation with AUDI AG under the BMBF research project ''e performance'' addresses measures that can potentially lead to a reduced heating demand. In addition to the rather poor insulation of today's vehicles, ventilation losses have been identified as a source of heating and defrosting load of up to 12kW in wintry conditions. At low ambient temperatures a high rate of air exchange is required to keep the humidity level low enough to avoid window fogging. Due to poor window insulation and high exterior heat transfer for a moving vehicle, temperatures at the inside surface of glass windows lie only slightly above the ambient temperature. Improving window insulation leads not only to reduced heat losses but also to higher allowable air humidity before condensation occurs, since the interior window surface is warmer. The air exchange rate can then be minimized as long as air quality standards remain satisfied. In this study steady-state air and window surface temperatures as well as humidity distributions in the cabin are determined by CFD-simulation of the interior flow-field. Window materials such as polycarbonate and double-pane glass are compared to glass at partly recirculated and fresh-air flow. (orig.)

  18. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Alternative vehicle fuel rating. 309.10... LABELING REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Duties of Importers, Producers, and Refiners of Non-Liquid Alternative Vehicle Fuels (other Than...

  19. Transportable Emissions Testing Laboratory for Alternative Vehicles Emissions Testing

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Nigel

    2012-01-31

    The overall objective of this project was to perform research to quantify and improve the energy efficiency and the exhaust emissions reduction from advanced technology vehicles using clean, renewable and alternative fuels. Advanced vehicle and alternative fuel fleets were to be identified, and selected vehicles characterized for emissions and efficiency. Target vehicles were to include transit buses, school buses, vocational trucks, delivery trucks, and tractor-trailers. Gaseous species measured were to include carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter. An objective was to characterize particulate matter more deeply than by mass. Accurate characterization of efficiency and emissions was to be accomplished using a state-of-the-art portable emissions measurement system and an accompanying chassis dynamometer available at West Virginia University. These two units, combined, are termed the Transportable Laboratory. An objective was to load the vehicles in a real-world fashion, using coast down data to establish rolling resistance and wind drag, and to apply the coast down data to the dynamometer control. Test schedules created from actual vehicle operation were to be employed, and a specific objective of the research was to assess the effect of choosing a test schedule which the subject vehicle either cannot follow or can substantially outperform. In addition the vehicle loading objective was to be met better with an improved flywheel system.

  20. Reusable Launch Vehicle Technology Program

    Science.gov (United States)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1997-01-01

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight test. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost effective, reusable launch vehicle systems.

  1. Modular Energy Storage System for Alternative Energy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna Electronics Inc., Auburn Hills, MI (United States); Ervin, Frank [Magna Electronics Inc., Auburn Hills, MI (United States)

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  2. Combat Vehicle Technology Report

    Science.gov (United States)

    1992-05-01

    reducing fuel storage under armor , and using manual instead of automatic transmissions, these decisions involve definite operational trade-offs...turn. 20 The application of ceramic materials has made possible the adiabatic -aiesel concept that reduces under - armor cooling system size requirements...systems will eliminate all conventional torsion bar suspension volume under armor space claim, and will have a very direct effect on reducing vehicle

  3. 2010 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Jacob [U.S. Department of Energy; Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

    2011-06-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  4. 2008 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.; Davis, S.

    2009-07-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  5. Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

    Science.gov (United States)

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center : Diesel Vehicles Using Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

  6. Environmental and Financial Evaluation of Passenger Vehicle Technologies in Belgium

    OpenAIRE

    Messagie, Maarten; Lebeau, Kenneth; Coosemans, Thierry; Macharis, Cathy; Mierlo, Joeri van

    2013-01-01

    Vehicles with alternative drive trains are regarded as a promising substitute for conventional cars, considering the growing concern about oil depletion and the environmental impact of our transportation system. However, “clean” technologies will only be viable when they are cost-efficient. In this paper, the environmental impacts and the financial costs of different vehicle technologies are calculated for an average Belgian driver. Environmentally friendly vehicles are compared with conventi...

  7. Demand for alternative-fuel vehicles when registration taxes are high

    DEFF Research Database (Denmark)

    Mabit, Stefan Lindhard; Fosgerau, Mogens

    2011-01-01

    This paper investigates the potential futures for alternative-fuel vehicles in Denmark, where the vehicle registration tax is very high and large tax rebates can be given. A large stated choice dataset has been collected concerning vehicle choice among conventional, hydrogen, hybrid, bio......-diesel, and electric vehicles. We estimate a mixed logit model that improves on previous contributions by controlling for reference dependence and allowing for correlation of random effects. Both improvements are found to be important. An application of the model shows that alternative-fuel vehicles with present...... technology could obtain fairly high market shares given tax regulations possible in the present high-tax vehicle market....

  8. Connected Vehicle Technologies for Efficient Urban Transportation

    Science.gov (United States)

    2016-10-24

    Connected vehicle technology is employed to optimize the vehicle's control system in real-time to reduce congestion, improve fuel economy, and reduce emissions. This project's goal was to develop a two-way communication system to upload vehicle data ...

  9. Exchange program. Alternative options for purchase of environmentally friendly vehicles in Stockholm

    Energy Technology Data Exchange (ETDEWEB)

    Rader Olsson, Amy [Inregia AB, Stockholm (Sweden); Elam, N. [Atrax Energi AB, Goeteborg (Sweden)

    1999-11-01

    The city of Stockholm has decided to exchange 300 of its gasoline-driven vehicles for vehicles which emit fewer hazardous pollutants. A vehicle exchange program is being developed based on analyses which describe the driving patterns of Stockholm's vehicles, alternative fuel technology status, and financing alternatives. This report comprises the first two analyses, that of Stockholm's fleet driving patterns and alternative fuel technology options. The report has four major sections: * a technical analysis of the status of certain fuels and vehicles, including prognoses of availability in Sweden and the future development potential of each. (electric, biogas, ethanol, RME), * a driving study, which identifies those vehicles currently in Stockholm's fleet which could be exchanged for alternatively-fueled vehicles, * an analysis of five purchase package alternatives, and * a location analysis, which describes the accessibility of vehicles in each alternative to alternative fuel refueling facilities in Stockholm. Given current prices and availability of the alternative fuels and vehicles studied, we recommend a high share of electric and biogas vehicles for purchases during 1997. The cost-effectiveness of different vehicle types in their reduction of various hazardous pollutants, may however change dramatically as prices and availability of vehicles changes and the market for alternative fuels develops. Accessibility to alternative fuel refueling facilities is adequate in Stockholm, though not always ideal. To improve the accessibility of biogas vehicles further, we suggest a third biogas refueling facility in the city's northeastern area (Ropsten, Vaertahamnen). If MFO chooses to purchase a significant number of diesel passenger vehicles to be driven on RME; we propose that a facility in the northeastern area would improve accessibility more than another facility in southern Stockholm.

  10. Emissions deterioration for three alternative fuel vehicle types: Natural gas, ethanol, and methanol vehicles

    International Nuclear Information System (INIS)

    Winebrake, J.J.; Deaton, M.L.

    1997-01-01

    Although there have been several studies examining emissions from in-use alternative fuel vehicles (AFVs), little is known about the deterioration of these emissions over vehicle lifetimes and how this deterioration compares with deterioration from conventional vehicles (CVs). This paper analyzes emissions data from 70 AFVs and 70 CVs operating in the federal government fleet to determine whether AFV emissions deterioration differs significantly from CV emissions deterioration. The authors conduct the analysis on three alternative fuel types (natural gas, methanol, and ethanol) and on five pollutants (carbon monoxide, carbon dioxide, total hydrocarbons, non-methane hydrocarbons, and nitrogen oxides). They find that for most cases they studied, deterioration differences are not statistically significant; however, several exceptions suggest that air quality planners and regulators must further analyze AFV emissions deterioration in order to properly include these technologies into broader air quality management schemes

  11. California's experience with alternative fuel vehicles

    International Nuclear Information System (INIS)

    Sullivan, C.

    1993-01-01

    California is often referred to as a nation-state, and in many aspects fits that description. The state represents the seventh largest economy in the world. Most of California does not have to worry about fuel to heat homes in the winter. What we do worry about is fuel for our motor vehicles, approximately 24 million of them. In fact, California accounts for ten percent of new vehicle sales in the United States each year, much of it used in the transportation sector. The state is the third largest consumer of gasoline in the world, only exceeded by the United States as a whole and the former Soviet Union. California is also a leader in air pollution. Of the nine worst ozone areas in the country cited in the 1990 Clean Air Act Amendments, two areas the Los Angeles Basin and San Diego are located in California. Five of California's cities made the top 20 smoggiest cities in the United States. In reality, all of California's major metropolitan areas have air quality problems. This paper will discuss the beginnings of California's investigations of alternative fuels use in vehicles; the results of the state's demonstration programs; and future plans to improve California's air quality and energy security in the mobile sector

  12. Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries

    Science.gov (United States)

    for Solar Power Yellowstone Park Recycles Vehicle Batteries for Solar Power to someone by E -mail Share Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries for Solar Power on Facebook Tweet about Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries

  13. Environmental and Financial Evaluation of Passenger Vehicle Technologies in Belgium

    Directory of Open Access Journals (Sweden)

    Maarten Messagie

    2013-11-01

    Full Text Available Vehicles with alternative drive trains are regarded as a promising substitute for conventional cars, considering the growing concern about oil depletion and the environmental impact of our transportation system. However, “clean” technologies will only be viable when they are cost-efficient. In this paper, the environmental impacts and the financial costs of different vehicle technologies are calculated for an average Belgian driver. Environmentally friendly vehicles are compared with conventional petrol and diesel vehicles. The assessments are done from a life cycle perspective. The effect on human health, resources and ecosystems is considered when calculating the environmental impact. The total cost of ownership (TCO model includes the purchase price, registration and road taxes, insurance, fuel or electricity cost, maintenance, tires replacement, technical control, battery leasing and battery replacement. In the presented analysis different vehicle technologies and fuels are compared (petrol, diesel, hybrid electric vehicles (HEVs, battery electric vehicles (BEVs and plug-in hybrid electric vehicles (PHEVs on their level of environmental impact and cost per kilometer. The analysis shows a lower environmental impact for electric vehicles. However, electric vehicles have a higher total cost of ownership compared to conventional vehicles, even though the fuel operating costs are significantly lower. The purchase cost of electric vehicles is highly linked to the size of the battery pack, and not to the size of the electric vehicle. This explains the relative high cost for the electric city cars and the comparable cost for the medium and premium cars.

  14. Outlook on Standardization of Alternative Vehicle Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Rehnlund, B [Atrax Energi AB (Sweden)

    2008-10-15

    The use of fossil but in first hand biobased alternative fuels in transportation has increased over the last decades. This change is primarily driven by concerns about climate change that is caused by emissions of fossil carbon dioxide and other greenhouse gases, but also by the impact on health and environment, caused by emissions of regulated as well as non-regulated emissions from the transport sector. Most alternative fuels will help to reduce the emissions of regulated and non-regulated emissions, while alternative fuels based on biomass also will contribute to reduced net emissions of carbon dioxide. Since the mid 1990s, the use of biomass based fuels such as ethanol and biodiesel has reached levels high enough in for example Europe, Brazil and the U.S. to motivate national or regional specifications/standards. Especially from the vehicle/engine manufacturer's point of view standards are of high importance. From early 2000 onwards, the international trade of biofuels (for example from Brazil to the U.S. and Europe) has grown, and this has created a need for common international specifications/standards. This report presents information about national and regional standards for alternative fuels, but also, when existing and reported, standards on a global level are described and discussed. Ongoing work concerning new or revised standards on alternative fuels on national, regional or global level is also discussed. In this report we have covered standards on all kind of alternative fuels, exemplified below. However, the focus is on liquid biofuels for diesel engines and Otto engines. 1) Liquid fuels for diesel engines (compression ignition engines), such as Fatty Acid Methyl Esters (FAME), Fatty Acid Ethyl Esters (FAEE), alcohols, alcohol derivates and synthetic diesel fuels. 2) Liquid fuels for Otto engines (spark ignition engines), such as alcohols, ethers and synthetic gasoline. 3) Liquefied fossil petroleum gas (LPG). 4) Di-Methyl Ether (DME). 5) Fossil

  15. Outlook on Standardization of Alternative Vehicle Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Rehnlund, B. [Atrax Energi AB (Sweden)

    2008-10-15

    The use of fossil but in first hand biobased alternative fuels in transportation has increased over the last decades. This change is primarily driven by concerns about climate change that is caused by emissions of fossil carbon dioxide and other greenhouse gases, but also by the impact on health and environment, caused by emissions of regulated as well as non-regulated emissions from the transport sector. Most alternative fuels will help to reduce the emissions of regulated and non-regulated emissions, while alternative fuels based on biomass also will contribute to reduced net emissions of carbon dioxide. Since the mid 1990s, the use of biomass based fuels such as ethanol and biodiesel has reached levels high enough in for example Europe, Brazil and the U.S. to motivate national or regional specifications/standards. Especially from the vehicle/engine manufacturer's point of view standards are of high importance. From early 2000 onwards, the international trade of biofuels (for example from Brazil to the U.S. and Europe) has grown, and this has created a need for common international specifications/standards. This report presents information about national and regional standards for alternative fuels, but also, when existing and reported, standards on a global level are described and discussed. Ongoing work concerning new or revised standards on alternative fuels on national, regional or global level is also discussed. In this report we have covered standards on all kind of alternative fuels, exemplified below. However, the focus is on liquid biofuels for diesel engines and Otto engines. 1) Liquid fuels for diesel engines (compression ignition engines), such as Fatty Acid Methyl Esters (FAME), Fatty Acid Ethyl Esters (FAEE), alcohols, alcohol derivates and synthetic diesel fuels. 2) Liquid fuels for Otto engines (spark ignition engines), such as alcohols, ethers and synthetic gasoline. 3) Liquefied fossil petroleum gas (LPG). 4) Di-Methyl Ether (DME). 5

  16. 75 FR 29605 - Clean Alternative Fuel Vehicle and Engine Conversions

    Science.gov (United States)

    2010-05-26

    ... Part II Environmental Protection Agency 40 CFR Parts 85 and 86 Clean Alternative Fuel Vehicle and...-0299; FRL-9149-9] RIN 2060-AP64 Clean Alternative Fuel Vehicle and Engine Conversions AGENCY... streamline the process by which manufacturers of clean alternative fuel conversion systems may demonstrate...

  17. Alternative food safety intervention technologies

    Science.gov (United States)

    Alternative nonthermal and thermal food safety interventions are gaining acceptance by the food processing industry and consumers. These technologies include high pressure processing, ultraviolet and pulsed light, ionizing radiation, pulsed and radiofrequency electric fields, cold atmospheric plasm...

  18. Alternative Fuel Vehicles: How Do They Really Measure Up?

    Science.gov (United States)

    similar to that of comparable gasoline vehicles. The publication is available in .pdf format through DOE's Alternative Fuels Data Center home page on the World Wide Web. For a hard copy, call the National Alternative

  19. Preferences for alternative fuel vehicles by Dutch local governments

    NARCIS (Netherlands)

    Rijnsoever, F.J. van; Hagen, P.; Willems, M

    2013-01-01

    Using a choice model, we estimate the preferences for alternative fuel vehicles by Dutch local governments. The analysis shows that local governments are willing to pay between 25% and 50% extra for an alternative fuel vehicle without a serious loss of utility. Further, local emissions are an

  20. Alternative Fuel Fleet Vehicle Evaluations | Transportation Research | NREL

    Science.gov (United States)

    delivery, transit, and freight vehicles. Although biodiesel is the most commonly used alternative fuel in Diesel and Biodiesel Renewable diesel is a conventional petroleum diesel substitute produced from alternative to conventional diesel and does not require any vehicle modifications. Biodiesel is an oxygenated

  1. What Fleets Need to Know About Alternative Fuel Vehicle Conversions, Retrofits, and Repowers

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K.; Gonzales, J.

    2017-10-02

    Many fleet managers have opted to incorporate alternative fuels and advanced vehicles into their lineup. Original equipment manufacturers (OEMs) offer a variety of choices, and there are additional options offered by aftermarket companies. There are also a myriad of ways that existing vehicles can be modified to utilize alternative fuels and other advanced technologies. Vehicle conversions and retrofit packages, along with engine repower options, can offer an ideal way to lower vehicle operating costs. This can result in long term return on investment, in addition to helping fleet managers achieve emissions and environmental goals. This report summarizes the various factors to consider when pursuing a conversion, retrofit, or repower option.

  2. What Fleets Need to Know About Alternative Fuel Vehicle Conversions, Retrofits, and Repowers

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kay L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gonzales, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-10-17

    Many fleet managers have opted to incorporate alternative fuels and advanced vehicles into their lineup. Original equipment manufacturers (OEMs) offer a variety of choices, and there are additional options offered by aftermarket companies. There are also a myriad of ways that existing vehicles can be modified to utilize alternative fuels and other advanced technologies. Vehicle conversions and retrofit packages, along with engine repower options, can offer an ideal way to lower vehicle operating costs. This can result in long term return on investment, in addition to helping fleet managers achieve emissions and environmental goals. This report summarizes the various factors to consider when pursuing a conversion, retrofit, or repower option.

  3. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    OpenAIRE

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquified petroleum gas, compressed natural gas, and electricity. Vehicle emission es...

  4. Technological perspectives of clean vehicles

    International Nuclear Information System (INIS)

    Juanico, Luis

    2005-01-01

    The main characteristics of the different technologies of available commercially cars were studied (now or in the halfway through time limit) of smaller contaminants gases generation, with the objective to carry out a comparative evaluation of their competitiveness and feasibilities of real insertion.They were studied thus the self-electric 'pure' and hybrid, from motors of conventional combustion and of cells of fuels with reformers; as well as them fed by hydrogen, utilized in motors of combustion and in direct conversion fuels cells. It is appreciated that the cars hibridos conventional present large advantages that are permitting their effective insertion in the market. Of the remainders, only the conventional motor of hydrogen does not present technological obstacles and has real potentiality in the medium time limit.The electric cars have strong limitations owed al poor performance of the batteries set against the liquid fuels, that have shown do not they permit him to be inserted in the real market in spite of the enormous efforts carried out.The fuel cells continue being very costly. Being that the technologies selected for electric vehicles (of polimer membrane) use essentially hydrogen as fuel, which (besides other disadvantages) has a prohibitive cost set against the hydrocarbons, their possibility of massive insertion is little probable, still low environmental incentives.There are several reasons to think that the EVs with fuel cells of hydrogen (PEM) can run the same luck that the EVs of batteries.The use of internal converters of gasoline or the cells of metanol direct appear with an interesting horizon, although they will need still strong investments in basic investigations associates to be competitive.The hydrogen is a vector energy, not a resource, and being its main producing market and consumer the industry of the petroleum, very with difficulty this return competitive before an increase in the oil price.Their use in vehicles way the adaptation

  5. Consumer Views on Transportation and Advanced Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from countries around the globe are pursuing advanced vehicle technologies that aim to reduce gasoline and diesel consumption. This report details study findings of broad American public sentiments toward issues surrounding advanced vehicle technologies and is supported by the U.S. Department of Energy Vehicle Technology Office (VTO) in alignment with its mission to develop and deploy these technologies to improve energy security, increase mobility flexibility, reduce transportation costs, and increase environmental sustainability. Understanding and tracking consumer sentiments can influence the prioritization of development efforts by identifying barriers to and opportunities for broad acceptance of new technologies. Predicting consumer behavior toward developing technologies and products is inherently inexact. A person's stated preference given in an interview about a hypothetical setting may not match the preference that is demonstrated in an actual situation. This difference makes tracking actual consumer actions ultimately more valuable in understanding potential behavior. However, when developing technologies are not yet available and actual behaviors cannot be tracked, stated preferences provide some insight into how consumers may react in new circumstances. In this context this report provides an additional source to validate data and a new resource when no data are available. This report covers study data captured from December 2005 through June 2015 relevant to VTO research efforts at the time of the studies. Broadly the report covers respondent sentiments about vehicle fuel economy, future vehicle technology alternatives, ethanol as a vehicle fuel, plug-in electric vehicles, and willingness to pay for vehicle efficiency. This report represents a renewed effort to publicize study findings and make consumer sentiment data available to

  6. Does habitual behavior affect the choice of alternative fuel vehicles?

    DEFF Research Database (Denmark)

    Valeri, Eva; Cherchi, Elisabetta

    2016-01-01

    Because of the recent improvements in the electrification process of cars, several types of alternative fuel vehicles are appearing in the car market. However, these new engine technologies are not easily penetrating the market around the world and the conventional ones are still the leaders....... A vast literature has explored the reasons for such low market penetration, due mainly to car's features. Using a hybrid choice model approach, in this research we study if, and to which extent, habitual car use influences individual propensity to buy a specific type of engine technology. We found...... of a conventional one. The importance of taking into account this latent construct is demonstrated also with the results of the simulated elasticity measures. In fact, the exclusion of latent habitual effect significantly underestimates the elasticity of diesel and hybrid cars and overestimates the elasticity...

  7. An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles

    International Nuclear Information System (INIS)

    Yeh, Sonia

    2007-01-01

    The adoption of alternative fuel vehicles (AFVs) has been regarded as one of the most important strategies to address the issues of energy dependence, air quality, and, more recently, climate change. Despite decades of effort, we still face daunting challenges to promote wider acceptance of AFVs by the general public. More empirical analyses are needed to understand the technology adoption process associated with different market structures, the effectiveness of regulations and incentives, and the density of infrastructure adequate to reach sustainable commercial application. This paper compares the adoption of natural gas vehicles (NGVs) in eight countries: Argentina, Brazil, China, India, Italy, New Zealand, Pakistan, and the US. It examines the major policies aimed at promoting the use of NGVs, instruments for implementing those policies and targeting likely stakeholders, and a range of factors that influence the adoption of NGVs. The findings in this paper should be applicable to other AFVs

  8. Effects of alternative-fuel vehicles on air quality in Ontario, Canada

    International Nuclear Information System (INIS)

    Kantor, I.; Fowler, M.; Hajimiragha, A.; Canizares, C.; Elkamel, A.

    2009-01-01

    The economies of the developed world are increasingly including green technologies and processes that consider social, environmental and economic consequences. Hybrid electric vehicles and other fuel-efficient vehicle types can supply consumers with vehicles that decrease their ecological footprint and reduce the cost of fuel. However, one of the societal concerns often overlooked is the impact of alternative-fuel vehicle usage on the air quality in the urban environment. This paper presented a study that assessed the impact on air quality stemming from the operation of alternative fuel vehicles in urban environments. The study specifically focused on the province-wide emissions in Ontario and urban air pollution in the city of Toronto. The paper considered the life-cycle impacts of using alternative fuels for transportation purposes in terms of six major stressors for climate change, acidification and urban air quality. The two types of vehicles that were studied were plug-in hybrid electric vehicles (PHEVs) and fuel cell vehicles. Modeling of the penetration rates for both types of vehicles was completed based on the maximum capacity of the electrical grid including planned improvements. The scope of the study and discussion of health effects was first presented followed by data gathering and usage, methodology, results of supportable penetration and vehicle growth, and pollution abatement results. It was concluded that fuel cell vehicles have an advantage over, or near-equality with, PHEVs in almost every aspect of their emissions. 13 refs., 2 tabs., 10 figs

  9. Societal megatrends and trends in vehicle technologies

    OpenAIRE

    Duysinx, Pierre

    2018-01-01

    The confrence enviions the future trends in automotive technologies at the light of societal megatrends. Different emerging technologies for the vehicle powertrain are envisionned for the next decade: piston engines with natural gas, battery electric vehicles, plug-in hybrid electric vehicles, fuel cells systems. In addition one must also consider the arrival of autonomous driving and of the race for lightweight design of cars.

  10. Alternate-Fuel Vehicles and Their Application in Schools.

    Science.gov (United States)

    Taggart, Chip

    1991-01-01

    Alternative fuels are becoming increasingly attractive from environmental, energy independence, and economic perspectives. Addresses the following topics: (1) federal and state legislation; (2) alternative fuels and their attributes; (3) practical experience with alternative-fuel vehicles in pupil transportation; and (4) options for school…

  11. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  12. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  13. Electric and hybrid vehicle technology: TOPTEC

    Science.gov (United States)

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between 'refueling' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of 'Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  14. Vehicle positioning based on UWB technology

    Science.gov (United States)

    Hu, Siquan; Kang, Min; She, Chundong

    2017-08-01

    In recent years, with the rapid increase of the number of urban cars, the vehicle internet is becoming a trend of smart transportion. In such vehicle network, accurate location is very crucial in many new applications such as autopilot, semi-autopilot and Car-to-x communications. UWB technology has been used for indoor closed range positioning and ranging widely, while UWB outdoor positioning and ranging research is relatively less. This paper proposed UWB as the vehicle positioning technology and developed a method based on two-way-ranging (TWR) to solve the ranging problem between vehicles. At the same time, the improved TOA method was used to locate vehicles, which has higher precision compared with traditional GPS or LBS. A hardware module is introduced and the simulation results show that the modules are capable of precise positioning for vehicles in vehicle network.

  15. Sandy Hook : alternative access concept plan and vehicle replacement study

    Science.gov (United States)

    2009-06-01

    This study addresses two critical issues of concern to the Sandy Hook Unit of Gateway National : Recreational Area: (1) options for alternative access to Sandy Hook during peak summer season, : particularly when the park is closed to private vehicles...

  16. Alternative transportation fuels in the USA: government hydrogen vehicle programs

    International Nuclear Information System (INIS)

    Cannon, J.S.

    1993-01-01

    The linkage between natural gas-based transportation and hydrogen-based transportation strategies, two clean burning gaseous fuels, provides a strong policy rationale for increased government sponsorship of hydrogen vehicle research and demonstration programs. Existing federal and state government hydrogen vehicle projects are discussed in this paper: research at the NREL, alternate-fueled buses, Renewable Hydrogen for the State of Hawaii program, New York state alternative transportation fuels program, Colorado program. 9 refs

  17. Energy security and climate change: How oil endowment influences alternative vehicle innovation

    International Nuclear Information System (INIS)

    Kim, Jung Eun

    2014-01-01

    Fast growing global energy needs raise concerns on energy supply security and climate change. Although policies addressing the two issues sometimes benefit one at the expense of the other, technology innovation, especially in alternative energy, provides a win–win solution to tackle both issues. This paper examines the effect of oil endowment on the patterns of technology innovation in the transportation sector, attempting to identify drivers of technology innovation in alternative energy. The analysis employs panel data constructed from patent data on five different types of automobile-related technologies from 1990 to 2002: oil extraction, petroleum refining, fuel cells, electric and hybrid vehicles (EHV) and vehicle energy efficiency. I find that countries with larger oil endowments perform less innovation on refining and alternative technologies. Conversely, higher gasoline prices positively impact the patent counts of alternative technologies and energy efficiency technology. The findings highlight the challenges and importance of policy designs in international climate change agreements. - Highlights: • I examine the effect of oil endowment on technology innovation in the transportation sector. • An empirical model was developed for a cross-country analysis of oil endowments. • A country's oil endowment is a negative driver of alternative technologies. • Energy price is a positive driver of alternative technologies and energy efficiency technology. • Implications for domestic and international climate policy are discussed

  18. Alternative Fuel Vehicle Forecasts : Final report.

    Science.gov (United States)

    2016-04-01

    Federal and state fuel taxes account for the largest share of the Texas State Highway Fund at 48 percent and 29 percent, respectively, in Fiscal Year 2015. These taxes are levied on a per-gallon basis, meaning that as vehicles get more fuel efficient...

  19. Alternative Fuel Vehicle Publications | Transportation Research | NREL

    Science.gov (United States)

    vehicle evaluations. Biodiesel Regional Transit District Effect of B20 and Low Aromatic Diesel on Transit Buses Operated on Biodiesel Blends. Kenneth Proc, Robb Barnitt, Robert Hayes, Matthew Ratcliff, and Robert McCormick. (2006) Operating Experience and Teardown Analysis for Engines Operated on Biodiesel

  20. Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

  1. Innovative Vehicle Concept for the Integration of Alternative Power Trains

    OpenAIRE

    Steinle, Philipp; Kriescher, Michael; Friedrich, Horst E.

    2010-01-01

    Abstract: The Institute of Vehicle Concepts is developing a safe, modularisable vehicle concept in rib and space frame design for tomorrow’s vehicles with alternative power trains. The vehicle can be powered either by a fuel cell system, a free-piston linear generator developed at the DLR, or a traction battery. Taking into account the given boundary conditions, the challenge is to design a body structure that is light and performs well in the event of an accident. The rib and space fra...

  2. Life cycle cost analysis of alternative vehicles and fuels in Thailand

    International Nuclear Information System (INIS)

    Goedecke, Martin; Therdthianwong, Supaporn; Gheewala, Shabbir H.

    2007-01-01

    High crude oil prices and pollution problems have drawn attention to alternative vehicle technologies and fuels for the transportation sector. The question is: What are the benefits/costs of these technologies for society? To answer this question in a quantitative way, a web-based model (http://vehiclesandfuels.memebot.com) has been developed to calculate the societal life cycle costs, the consumer life cycle costs and the tax for different vehicle technologies. By comparing these costs it is possible to draw conclusions about the social benefit and the related tax structure. The model should help to guide decisions toward optimality, which refers to maximum social benefit. The model was applied to the case of Thailand. The life cycle cost of 13 different alternative vehicle technologies in Thailand have been calculated and the tax structure analyzed

  3. Transit signal priority with connected vehicle technology.

    Science.gov (United States)

    2014-01-01

    A new TSP logic was proposed, taking advantage of the resources provided by Connected Vehicle (CV) : technology, including two-way communication between the bus and the traffic signal controller, accurate bus : location detection and prediction, and ...

  4. Guide to alternative fuel vehicle incentives and laws: September 1998

    Energy Technology Data Exchange (ETDEWEB)

    Riley, C.; O' Connor, K.

    1998-12-22

    This guide provides information in support of the National Clean Cities Program, which will assist one in becoming better informed about the choices and options surrounding the use of alternative fuels and the purchase of alternative fuel vehicles. The information printed in this guide is current as of September 15, 1998. For recent additions or more up-to-date information, check the Alternative Fuels Data Center Web site at http://www.afdc.doe.gov

  5. Advanced protection technology for ground combat vehicles.

    Science.gov (United States)

    Bosse, Timothy G

    2012-01-01

    Just as highway drivers use radar detectors to attempt to stay ahead of police armed with the latest radar technology, the Armed Forces are locked in a spiral to protect combat vehicles and their crews against the latest threats in both the contemporary operating environment and the anticipated operating environment (ie, beyond 2020). In response to bigger, heavier, or better-protected vehicles, adversaries build and deploy larger explosive devices or bombs. However, making improvements to combat vehicles is much more expensive than deploying larger explosives. In addition, demand is increasing for lighter-weight vehicles capable of rapid deployment. Together, these two facts give the threat a clear advantage in the future. To protect vehicles and crews, technologies focusing on detection and hit avoidance, denial of penetration, and crew survivability must be combined synergistically to provide the best chance of survival on the modern battlefield.

  6. Disaggregate demand for conventional and alternative fuelled vehicles in the Census Metropolitan Area of Hamilton, Canada

    Science.gov (United States)

    Potoglou, Dimitrios

    The focus of this thesis is twofold. First, it offers insight on how households' car-ownership behaviour is affected by urban form and availability of local-transit at the place of residence, after controlling for socio-economic and demographic characteristics. Second, it addresses the importance of vehicle attributes, household and individual characteristics as well as economic incentives and urban form to potential demand for alternative fuelled vehicles. Data for the empirical analyses of the aforementioned research activities were obtained through an innovative Internet survey, which is also documented in this thesis, conducted in the Census Metropolitan Area of Hamilton. The survey included a retrospective questionnaire of households' number and type of vehicles and a stated choices experiment for assessing the potential demand for alternative fuelled vehicles. Established approaches and emerging trends in automobile demand modelling identified early on in this thesis suggest a disaggregate approach and specifically, the estimation of discrete choice models both for explaining car ownership and vehicle-type choice behaviour. It is shown that mixed and diverse land uses as well as short distances between home and work are likely to decrease the probability of households to own a large number of cars. Regarding the demand for alternative fuelled vehicles, while vehicle attributes are particularly important, incentives such as free parking and access to high occupancy vehicle lanes will not influence the choice of hybrids or alternative fuelled vehicles. An improved understating of households' behaviour regarding the number of cars as well as the factors and trade-offs for choosing cleaner vehicles can be used to inform policy designed to reduce car ownership levels and encourage adoption of cleaner vehicle technologies in urban areas. Finally, the Internet survey sets the ground for further research on implementation and evaluation of this data collection method.

  7. 77 FR 36423 - Labeling Requirements for Alternative Fuels and Alternative Fueled Vehicles

    Science.gov (United States)

    2012-06-19

    ... delivered to the following address: Federal Trade Commission, Office of the Secretary, Room H-113 (Annex N... cell, advanced lean burn, and hybrid motor vehicles) that were added to the definition of ``alternative... legislation (i.e., lean burn, hybrid, and fuel cell vehicles). No comments opposed this approach. Edison...

  8. X-43 Hypersonic Vehicle Technology Development

    Science.gov (United States)

    Voland, Randall T.; Huebner, Lawrence D.; McClinton, Charles R.

    2005-01-01

    NASA recently completed two major programs in Hypersonics: Hyper-X, with the record-breaking flights of the X-43A, and the Next Generation Launch Technology (NGLT) Program. The X-43A flights, the culmination of the Hyper-X Program, were the first-ever examples of a scramjet engine propelling a hypersonic vehicle and provided unique, convincing, detailed flight data required to validate the design tools needed for design and development of future operational hypersonic airbreathing vehicles. Concurrent with Hyper-X, NASA's NGLT Program focused on technologies needed for future revolutionary launch vehicles. The NGLT was "competed" by NASA in response to the President s redirection of the agency to space exploration, after making significant progress towards maturing technologies required to enable airbreathing hypersonic launch vehicles. NGLT quantified the benefits, identified technology needs, developed airframe and propulsion technology, chartered a broad University base, and developed detailed plans to mature and validate hypersonic airbreathing technology for space access. NASA is currently in the process of defining plans for a new Hypersonic Technology Program. Details of that plan are not currently available. This paper highlights results from the successful Mach 7 and 10 flights of the X-43A, and the current state of hypersonic technology.

  9. Evaluation of automated vehicle technology for transit.

    Science.gov (United States)

    2015-01-01

    The purpose of this report is to provide an overview of the state of automated vehicle (AV) technology : in transit. The Florida Department of Transportation (FDOT) wishes to know what AV technology is : currently available that could be used in tran...

  10. Electric vehicles: Technology assessment and commercialization

    International Nuclear Information System (INIS)

    Zabot, S.

    1991-01-01

    This article traces the history of commercialization efforts relative to electric vehicles, assesses the state-of-the-art of electric vehicle technology and identifies the industrial firms that are investing heavily in this field. The main design problems affecting the commercialization of these vehicles (e.g., battery weight, autonomy, operating safety and toxicity) are pointed out. Comparisons of commercialization prospects are made with those for hydrogen fuelled vehicles. With regard to investments in research programs, it is argued that, in addition to car manufacturers and oil companies, the usual active participants in the transport sector, new participants are needed to give added support to the development of electric vehicles, namely, electric utilities and battery manufacturers

  11. Exporting automatic vehicle SNM monitoring technology

    International Nuclear Information System (INIS)

    York, R.L.; Fehlau, P.E.; Close, D.A.

    1995-01-01

    Controlling the transportation of nuclear materials is still one of the most effective nuclear proliferation barriers. The recent increase of global nuclear material proliferation has expanded the application of vehicle monitor technology to prevent the diversion of special nuclear material across international borders. To satisfy this new application, a high-sensitivity vehicle monitor, which is easy to install and capable of operating in high-traffic areas, is required. A study of a new detector configuration for a drive-through vehicle monitor is discussed in this paper

  12. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    OpenAIRE

    Abbanat, Brian A.

    2001-01-01

    Compressed natural gas (CNG) vehicles have been used internationally by fleets and households for decades. The use of CNG vehicles results in less petroleum consumption, and fewer air pollutant and greenhouse gas emissions in most applications. In the United States, the adoption of CNG technology has been slowed by the availability of affordable gasoline and diesel fuel. This study addresses the potential market for CNG vehicles at the consumer level in California. Based on semi-structured pe...

  13. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  14. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  15. Gas detection for alternate-fuel vehicle facilities.

    Science.gov (United States)

    Ferree, Steve

    2003-05-01

    Alternative fuel vehicles' safety is driven by local, state, and federal regulations in which fleet owners in key metropolitan [table: see text] areas convert much of their fleet to cleaner-burning fuels. Various alternative fuels are available to meet this requirement, each with its own advantages and requirements. This conversion to alternative fuels leads to special requirements for safety monitoring in the maintenance facilities and refueling stations. A comprehensive gas and flame monitoring system needs to meet the needs of both the user and the local fire marshal.

  16. Potential demand for household alternative fuelled vehicles in Hamilton, Canada : a stated choices experiment and survey

    Energy Technology Data Exchange (ETDEWEB)

    Potoglou, D.; Kanaroglou, P.S. [McMaster Univ., Hamilton, ON (Canada). Centre for Spatial Analysis]|[McMaster Univ., Hamilton, ON (Canada). School of Geography and Earth Science

    2005-07-01

    Alternative fuelled vehicle (AFV) technologies are a key strategy towards improved air quality and sustainable development. These fuel-efficient, low- or zero-emission vehicles have the potential to reduce greenhouse gas emissions and other negative externalities linked with the transportation sector. They include battery electric vehicles, fuel cell vehicles, and hybrid electric vehicles with internal combustion engines. This paper discussed AFVs development trends and modelling the demand for AFVs. It was noted that before creating policy measures that promote new vehicle technologies, one should first evaluate the demand for AFVs and the effectiveness of incentives and marketing promotions. This paper discussed the design and application of a stated choices experiment in which urban level surveys were conducted on the Internet to obtain data and public opinion on the demand for AFVs. A Choice Internet Based Experiment for Research on Cars (CIBER-CARS) was designed. This self-administered online questionnaire was used in Hamilton, Ontario. The survey design was described in detail and its implementation and data collection procedures were reviewed. Measures for evaluating the efficiency of the Internet survey were also highlighted and the characteristics of the collected information were summarized with emphasis on the profiles of respondents and households. The purpose was to determine the impact of vehicle attributes and household characteristics to the actual choice of certain vehicles. 28 refs., 2 tabs., 4 figs.

  17. Technology Roadmap: Fuel Economy of Road Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    This roadmap explores the potential improvement of existing technologies to enhance the average fuel economy of motorised vehicles; the roadmap’s vision is to achieve a 30% to 50% reduction in fuel use per kilometre from new road vehicles including 2-wheelers, LDV s and HDV s) around the world in 2030, and from the stock of all vehicles on the road by 2050. This achievement would contribute to significant reductions in GHG emissions and oil use, compared to a baseline projection. Different motorised modes are treated separately, with a focus on LDV s, HDV s and powered two-wheelers. A section on in-use fuel economy also addresses technical and nontechnical parameters that could allow fuel economy to drastically improve over the next decades. Technology cost analysis and payback time show that significant progress can be made with low or negative cost for fuel-efficient vehicles over their lifetime use. Even though the latest data analysed by the IEA for fuel economy between 2005 and 2008 showed that a gap exists in achieving the roadmap’s vision, cutting the average fuel economy of road motorised vehicles by 30% to 50% by 2030 is achievable, and the policies and technologies that could help meet this challenge are already deployed in many places around the world.

  18. Vehicle technology under CO2 constraint: a general equilibrium analysis

    International Nuclear Information System (INIS)

    Schaefer, Andreas; Jacoby, Henry D.

    2006-01-01

    A study is presented of the rates of penetration of different transport technologies under policy constraints on CO 2 emissions. The response of this sector is analyzed within an overall national level of restriction, with a focus on automobiles, light trucks, and heavy freight trucks. Using the US as an example, a linked set of three models is used to carry out the analysis: a multi-sector computable general equilibrium model of the economy, a MARKAL-type model of vehicle and fuel supply technology, and a model simulating the split of personal and freight transport among modes. Results highlight the importance of incremental improvements in conventional internal combustion engine technology, and, in the absence of policies to overcome observed consumer discount rates, the very long time horizons before radical alternatives like the internal combustion engine hybrid drive train vehicle are likely to take substantial market share

  19. International Conference on Heavy Vehicles HVParis 2008 : Heavy Vehicle Transport Technology (HVTT 10)

    OpenAIRE

    JACOB, Bernard; NORDENGEN, Paul; O'CONNOR, Alan; BOUTELDJA, Mohamed

    2008-01-01

    Sommaire : Heavy vehicles and WIM technology, testing and standards. Interactions between heavy vehicles or trains and the infrastructure, environment and other system users. Heavy vehicle and road management information: measurements, data quality, data management. Freight mobility and safety. Vehicle classification, size and weight evaluation, regulations and enforcement. Traffic and road safety. WIM of road vehicles, trains and aeroplanes.

  20. Autonomous vehicles: from paradigms to technology

    Science.gov (United States)

    Ionita, Silviu

    2017-10-01

    Mobility is a basic necessity of contemporary society and it is a key factor in global economic development. The basic requirements for the transport of people and goods are: safety and duration of travel, but also a number of additional criteria are very important: energy saving, pollution, passenger comfort. Due to advances in hardware and software, automation has penetrated massively in transport systems both on infrastructure and on vehicles, but man is still the key element in vehicle driving. However, the classic concept of ‘human-in-the-loop’ in terms of ‘hands on’ in driving the cars is competing aside from the self-driving startups working towards so-called ‘Level 4 autonomy’, which is defined as “a self-driving system that does not requires human intervention in most scenarios”. In this paper, a conceptual synthesis of the autonomous vehicle issue is made in connection with the artificial intelligence paradigm. It presents a classification of the tasks that take place during the driving of the vehicle and its modeling from the perspective of traditional control engineering and artificial intelligence. The issue of autonomous vehicle management is addressed on three levels: navigation, movement in traffic, respectively effective maneuver and vehicle dynamics control. Each level is then described in terms of specific tasks, such as: route selection, planning and reconfiguration, recognition of traffic signs and reaction to signaling and traffic events, as well as control of effective speed, distance and direction. The approach will lead to a better understanding of the way technology is moving when talking about autonomous cars, smart/intelligent cars or intelligent transport systems. Keywords: self-driving vehicle, artificial intelligence, deep learning, intelligent transport systems.

  1. The reusable launch vehicle technology program

    Science.gov (United States)

    Cook, S.

    1995-01-01

    Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).

  2. The reusable launch vehicle technology program

    Science.gov (United States)

    Cook, S.

    Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).

  3. Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle

    Science.gov (United States)

    Send a link to Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle

  4. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Science.gov (United States)

    Conversions Hybrid and Plug-In Electric Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Twitter Bookmark Alternative

  5. Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to

    Science.gov (United States)

    Coast Hybrid and Electric Vehicles Boom Coast to Coast to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Twitter Bookmark Alternative

  6. Alternative Fuels Data Center: How Do Diesel Vehicles Work Using Biodiesel?

    Science.gov (United States)

    Diesel Vehicles Work Using Biodiesel? to someone by E-mail Share Alternative Fuels Data Center: How Do Diesel Vehicles Work Using Biodiesel? on Facebook Tweet about Alternative Fuels Data Center: How Do Diesel Vehicles Work Using Biodiesel? on Twitter Bookmark Alternative Fuels Data Center: How Do

  7. Multiple criteria decision making of alternative fuels for waste collection vehicles in southeast region of Serbia

    Directory of Open Access Journals (Sweden)

    Petrović Goran S.

    2016-01-01

    Full Text Available In this paper multiple criteria decision making approach of alternative fuels for waste collection vehicles in southeast region of Serbia was presented. Eight alternative fuels and advanced vehicle technologies were ranked according to thirteen criteria, including financial, socio-technical, and environmental. Assessment of alternatives was performed by using the weighted aggregated sum product assessment method and results were verified using multi-objective optimization on the basis of ratio analysis method. Considered criteria were obtained from previous researches and by assessment of professional experts from manufacturing industries, public utility companies, and academics institutions. The analysis showed that both biodiesel fuels - derived from used cooking oil or from vegetable oils are the best alternative fuels for Serbian waste collection vehicles in this point of time. Compressed natural gas-powered vehicles were also ranked high in this analysis, but due to the lack of financial capability for their purchase (especially in southeast region of Serbia, their gradual introduction into the waste collection fleet was proposed.

  8. Successes and Challenges in the Resale of Alternative Fuel Vehicles: July 2001 - March 2002

    Energy Technology Data Exchange (ETDEWEB)

    2002-05-01

    This report provides the outcome of Dorfman & O'Neal's effort to examine the resale market for automobiles as it relates to the resale of late-model, original equipment manufacture (OEM), alternative fuel vehicles. Auctions provide an exceptionally rapid, effective, and efficient market for the transfer of property between buyers and sellers at reasonable prices. The first automobile auction in the United States was successful because used cars were in reasonably constant supply, were uniformly packaged, and were easily graded for quality. Also, the auction had sufficient volume to significantly lower the handling and transaction costs for wholesalers and dealers. To this day, the automobile auction industry conducts business primarily with registered wholesalers and dealers. Except for the U.S. General Services Administration (GSA) auctions and some consignment auctions, nearly all automobile auctions are closed to the public. The auction system represents a near-perfect market, validated by the lack of statistical price differences in value of specific model cars between various regions of the country. However, specialty cars may be subject to arbitrage. The buyer purchases the vehicle believing that it can be sold immediately at a profit in another region. A variety of vehicle pricing services are available to serve the consumer and the wholesale automobile industry. Each has a different philosophy for collecting, analyzing, and reporting data. ''The Automobile Lease Guide'' (ALG) is clearly the authority on vehicle residual values. Auction companies continue to apply automated technologies to lower transaction costs. Automated technologies are the only way to track the increasing number of transactions in the growing industry. Nevertheless, people-to-people relationships remain critical to the success of all auction companies. Our assessment is that everyone in the secondary automobile market is aware of alternative fuel vehicles

  9. A Range-Based Vehicle Life Cycle Assessment Incorporating Variability in the Environmental Assessment of Different Vehicle Technologies and Fuels

    Directory of Open Access Journals (Sweden)

    Maarten Messagie

    2014-03-01

    Full Text Available How to compare the environmental performance of different vehicle technologies? Vehicles with lower tailpipe emissions are perceived as cleaner. However, does it make sense to look only to tailpipe emissions? Limiting the comparison only to these emissions denies the fact that there are emissions involved during the production of a fuel and this approach gives too much advantage to zero-tailpipe vehicles like battery electric vehicles (BEV and fuel cell electric vehicle (FCEV. Would it be enough to combine fuel production and tailpipe emissions? Especially when comparing the environmental performance of alternative vehicle technologies, the emissions during production of the specific components and their appropriate end-of-life treatment processes should also be taken into account. Therefore, the complete life cycle of the vehicle should be included in order to avoid problem shifting from one life stage to another. In this article, a full life cycle assessment (LCA of petrol, diesel, fuel cell electric (FCEV, compressed natural gas (CNG, liquefied petroleum gas (LPG, hybrid electric, battery electric (BEV, bio-diesel and bio-ethanol vehicles has been performed. The aim of the manuscript is to investigate the impact of the different vehicle technologies on the environment and to develop a range-based modeling system that enables a more robust interpretation of the LCA results for a group of vehicles. Results are shown for climate change, respiratory effects, acidification and mineral extraction damage of the different vehicle technologies. A broad range of results is obtained due to the variability within the car market. It is concluded that it is essential to take into account the influence of all the vehicle parameters on the LCA results.

  10. Food irradiation: an alternative technology

    Energy Technology Data Exchange (ETDEWEB)

    Loaharanu, P

    1986-12-31

    History has shown that man has continued to search for methods to protect his food from various spoilage agents. Traditional methods of food preservation such as drying, salting, fermentation, have been known for centuries and are being practised even today. Within the past century, modern technologies such as canning, freezing, refrigeration, the use of preservatives and pesticides, have further equipped man with an arsenal of methods to combat food losses and to increase the quantity, quality and safety of our food supplies. The most recent technology, irradiation, has gone through a great deal of research and development in the past 40 years and has shown a strong potential as another method for food preservation. As irradiation is still not familiar to the public at large, this paper attempts to inform scientists, officials, representatives of the food industry, and consumers of the global situation of the safety, benefits and applications of food irradiation by answering common questions often asked about the technology today. Special emphasis will be placed on the possible contribution of food irradiation to ASEAN

  11. Food irradiation: an alternative technology

    International Nuclear Information System (INIS)

    Loaharanu, P.

    1985-01-01

    History has shown that man has continued to search for methods to protect his food from various spoilage agents. Traditional methods of food preservation such as drying, salting, fermentation, have been known for centuries and are being practised even today. Within the past century, modern technologies such as canning, freezing, refrigeration, the use of preservatives and pesticides, have further equipped man with an arsenal of methods to combat food losses and to increase the quantity, quality and safety of our food supplies. The most recent technology, irradiation, has gone through a great deal of research and development in the past 40 years and has shown a strong potential as another method for food preservation. As irradiation is still not familiar to the public at large, this paper attempts to inform scientists, officials, representatives of the food industry, and consumers of the global situation of the safety, benefits and applications of food irradiation by answering common questions often asked about the technology today. Special emphasis will be placed on the possible contribution of food irradiation to ASEAN

  12. Technological alternatives for plutonium transport

    International Nuclear Information System (INIS)

    1978-12-01

    This paper considers alternative transport modes (air, sea, road, rail) for moving (1) plutonium from a reprocessing plant to a store or a fuel fabrication facility, and (2) MOX fuel from the latter to a reactor. These transport modes and differing forms of plutonium are considered in terms of: their proliferation resistance and safeguards; environmental and safety aspects; and economic aspects. It is tentatively proposed that the transport of plutonium could continue by air or sea where long distances are involved and by road or rail over shorter distances; this would be acceptable from the non-proliferation, environmental impact and economic aspects - there may be advantages in protection if plutonium is transported in the form of mixed oxide

  13. Innovative and Alternative Technology Assessment Manual

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    This four chapter, six appendix manual presents the procedures and methodology as well as the baseline costs and energy information necessary for the analysis and evaluation of innovative and alternative technology applications submitted for federal grant assistance under the innovative and alternative technology provisions of the Clean Water Act of 1977. The manual clarifies and interprets the intent of Congress and the Environmental Protection Agency in carrying out the mandates of the innovative and alternative provisions of the Clean Water Act of 1977. [DJE 2005

  14. Vehicle Technologies Fact of the Week 2013

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Roltek, Inc., Clinton, TN (United States)

    2014-03-01

    Each week the U.S. Department of Energy s Vehicle Technology Office (VTO) posts a Fact of the Week on their website: http://www1.eere.energy.gov/vehiclesandfuels/ . These Facts provide statistical information, usually in the form of charts and tables, on vehicle sales, fuel economy, gasoline prices, and other transportation-related trends. Each Fact is a stand-alone page that includes a graph, text explaining the significance of the data, the supporting information on which the graph was based, and the source of the data. A link to the current week s Fact is available on the VTO homepage, but older Facts are archived and still available at: http://www1.eere.energy.gov/vehiclesandfuels/facts/. This report is a compilation of the Facts that were posted during calendar year 2013. The Facts were written and prepared by staff in Oak Ridge National Laboratory's Center for Transportation Analysis.

  15. Spent Nuclear Fuel Alternative Technology Decision Analysis

    International Nuclear Information System (INIS)

    Shedrow, C.B.

    1999-01-01

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology

  16. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  17. Spent Nuclear Fuel Alternative Technology Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  18. Spent Nuclear Fuel Alternative Technology Risk Assessment

    International Nuclear Information System (INIS)

    Perella, V.F.

    1999-01-01

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment

  19. Transitioning to Low-GWP Alternatives in Motor Vehicle Air Conditioning Systems

    Science.gov (United States)

    This fact sheet provides information on low-GWP alternatives in newly manufactured motor vehicle air conditioning systems. It discusses HFC alternatives, market trends, challenges to market entry for alternatives, and potential solutions.

  20. Vehicle Technologies Fact of the Week 2015

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Diegel, Susan W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert G. [Roltek, Inc., Clinton, TN (United States)

    2016-05-01

    Each week the U.S. Department of Energy s Vehicle Technology Office (VTO) posts a Fact of the Week on their website: http://www1.eere.energy.gov/vehiclesandfuels/ . These Facts provide statistical information, usually in the form of charts and tables, on vehicle sales, fuel economy, gasoline prices, and other transportation-related trends. Each Fact is a stand-alone page that includes a graph, text explaining the significance of the data, the supporting information on which the graph was based, and the source of the data. A link to the current week s Fact is available on the VTO homepage, but older Facts (back to 2009) are archived and still available at: http://energy.gov/eere/vehicles/current-and-past-years-facts-week. Each Fact of the Week website page includes a link to an Excel file. That file contains the data from the Supporting Information section of the page so that researchers can easily use data from the Fact of the Week in their work. Beginning in August of 2015, a subscription list is available on the DOE website so that those interested can sign up for an email to be sent each Monday which includes the text and graphic from the current week s Fact. This report is a compilation of the Facts that were posted during calendar year 2015. The Facts were created, written and prepared by staff in Oak Ridge National Laboratory's Center for Transportation Analysis.

  1. Development of an Autonomous Navigation Technology Test Vehicle

    National Research Council Canada - National Science Library

    Tobler, Chad K

    2004-01-01

    .... In order to continue these research activities at CIMAR, a new Kawasaki Mule All-Terrain Vehicle was chosen to be automated as a test-bed for the purpose of developing and testing autonomous vehicle technologies...

  2. Potential vehicle fleet CO2 reductions and cost implications for various vehicle technology deployment scenarios in Europe

    International Nuclear Information System (INIS)

    Pasaoglu, Guzay; Honselaar, Michel; Thiel, Christian

    2012-01-01

    The continuous rise in demand for road transportation has a significant effect on Europe's oil dependency and emissions of greenhouse gases. Alternative fuels and vehicle technology can mitigate these effects. This study analyses power-train deployment scenarios for passenger cars and light commercial vehicles in EU-27 until 2050. It considers European policy developments on vehicle CO 2 emissions, bio-energy mandates and reductions in the CO 2 footprint of the European energy mix and translates these into comprehensive scenarios for the road transport sector. It quantifies and assesses the potential impact of these scenarios on well-to-wheel (WtW) CO 2 emission reductions primary energy demand evolution, and cost aspects for the prospective vehicle owners. The study reveals that, under the deployed scenarios, the use of bio-fuel blends, technological learning and the deployment of hybrids, battery electric, plug-in hybrid and fuel cell vehicles can decrease WtW CO 2 emissions in EU-27 passenger road transport by 35–57% (compared to 2010 levels) and primary energy demand by 29–51 Mtoe as they would benefit from a future assumed decarbonised electricity and hydrogen mix in Europe. Learning effects can lead to acceptable payback periods for vehicle owners of electric drive vehicles. - Highlights: ► Power-train penetration scenarios for 2010–2050 passenger road transport in Europe. ► A dedicated tool is developed to analyse H 2 production and distribution mix till 2050. ► Alternative vehicles can drastically reduce CO 2 emissions and energy demand. ► Electric vehicles could become cost competitive to conventional vehicles by 2030. ► Policies needed to create adequate momentum and guarantee decarbonised transport.

  3. Off-highway vehicle technology roadmap.; TOPICAL

    International Nuclear Information System (INIS)

    NONE

    2002-01-01

    The off-highway sector is under increasing pressure to reduce operating costs (including fuel costs) and to reduce emissions. Recognizing this, the Society of Automotive Engineers and the U.S. Department of Energy (DOE) convened a workshop in April 2001 (ANL 2001) to (1) determine the interest of the off-highway sector (consisting of agriculture, construction, surface mining, inland marine) in crafting a shared vision of off-highway, heavy machines of the future and (2) identify critical research and development (R and D) needs for minimizing off-highway vehicle emissions while cost-effectively maintaining or enhancing system performance. The workshop also enabled government and industry participants to exchange information. During the workshop, it became clear that the challenges facing the heavy, surface-based off-highway sector can be addressed in three major machine categories: (1) engine/aftertreatment and fuels/lubes, (2) machine systems, and (3) thermal management. Working groups convened to address these topical areas. The status of off-highway technologies was determined, critical technical barriers to achieving future emission standards were identified, and strategies and technologies for reducing fuel consumption were discussed. Priority areas for R and D were identified. Given the apparent success of the discussions at the workshop, several participants from industry agreed to help in the formation of a joint industry/government ''roadmap'' team. The U.S. Department of Energy's Office of Heavy Vehicle Technologies has an extensive role in researching ways to make heavy-duty trucks and trains more efficient, with respect to both fuel usage and air emissions. The workshop participants felt that a joint industry/government research program that addresses the unique needs of the off-highway sector would complement the current research program for highway vehicles. With industry expertise, in-kind contributions, and federal government funding (coupled with

  4. Future Vehicle Technologies : high performance transportation innovations

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, T. [Future Vehicle Technologies Inc., Maple Ridge, BC (Canada)

    2010-07-01

    Battery management systems (BMS) were discussed in this presentation, with particular reference to the basic BMS design considerations; safety; undisclosed information about BMS; the essence of BMS; and Future Vehicle Technologies' BMS solution. Basic BMS design considerations that were presented included the balancing methodology; prismatic/cylindrical cells; cell protection; accuracy; PCB design, size and components; communications protocol; cost of manufacture; and expandability. In terms of safety, the presentation addressed lithium fires; high voltage; high voltage ground detection; crash/rollover shutdown; complete pack shutdown capability; and heat shields, casings, and impact protection. BMS bus bar engineering considerations were discussed along with good chip design. It was concluded that FVTs advantage is a unique skillset in automotive technology and the development of speed and cost effectiveness. tabs., figs.

  5. Principles of topical treatment: advancement in gel vehicle technology.

    Science.gov (United States)

    Feldman, Steven R

    2014-04-01

    Topical treatment is a pillar of dermatologic practice. The delivery of drug by a topical vehicle is dependent on complex physical chemistry and on how well patients apply the product. The potency of topical agents is not solely dependent on the concentration of active drug in the vehicle. A corticosteroid molecule may have vastly different potency depending on what vehicle is used to deliver it. Similarly, a new gel vehicle is able to deliver considerably more active antifungal than an older vehicle technology and may represent a promising vehicle for other novel formulations. The use of new vehicles can provide more effective means for treating patients with skin disease.

  6. Routing strategies for efficient deployment of alternative fuel vehicles for freight delivery.

    Science.gov (United States)

    2017-02-01

    With increasing concerns on environmental issues, recent research on Vehicle Routing Problems : (VRP) has added new factors such as greenhouse gas emissions and alternative fuel vehicles into : the models. In this report, we consider one such promisi...

  7. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  8. Vehicle modeling and duty cycle analysis to validate technology feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, S. [National Centre for Advanced Transportation, Saint-Jerome, PQ (Canada)

    2010-07-01

    The National Centre for Advanced Transportation (CNTA) is a non-profit organization with a board consisting of representatives from the transportation industry, public service and public transit organizations, research and teaching institutions, and from municipal and economic development organizations. The objectives of the CNTA are to accelerate the introduction of electric and hybrid vehicles; act as a catalyst in projects; assist in increasing Canadian technology assets; initiate and support electric vehicle conversion projects; increase Canadian business for electric vehicles, hybrid vehicles, and plug-in electric vehicles; and provide a cost-effective solution and aggressive payback for road/off-road vehicles. This presentation provided an overview of the objectives and services of the CNTA. It discussed various road and off-road vehicles, duty cycle and technology of electric vehicles. Specific topics related to the technology were discussed, including configuration; controls and interface; efficiency maps; models and simulation; validation; and support. figs.

  9. 2012 DOE Vehicle Technologies Program Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-10-26

    The 2012 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting was held May 14-18, 2012 in Crystal City, Virginia. The review encompassed all of the work done by the Hydrogen Program and the Vehicle Technologies Program: a total of 309 individual activities were reviewed for Vehicle Technologies, by a total of 189 reviewers. A total of 1,473 individual review responses were received for the technical reviews.

  10. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Science.gov (United States)

    . Fueling and Driving Options Plug-in hybrid electric vehicle batteries can be charged by an outside sized hybrid electric vehicle. If the vehicle is driven a shorter distance than its all-electric range drives the wheels almost all of the time, but the vehicle can switch to work like a parallel hybrid at

  11. Evaluation Framework for Alternative Fuel Vehicles: Sustainable Development Perspective

    Directory of Open Access Journals (Sweden)

    Dong-Shang Chang

    2015-08-01

    Full Text Available Road transport accounts for 72.06% of total transport CO2, which is considered a cause of climate change. At present, the use of alternative fuels has become a pressing issue and a significant number of automakers and scholars have devoted themselves to the study and subsequent development of alternative fuel vehicles (AFVs. The evaluation of AFVs should consider not only air pollution reduction and fuel efficiency but also AFV sustainability. In general, the field of sustainable development is subdivided into three areas: economic, environmental, and social. On the basis of the sustainable development perspective, this study presents an evaluation framework for AFVs by using the DEMATEL-based analytical network process. The results reveal that the five most important criteria are price, added value, user acceptance, reduction of hazardous substances, and dematerialization. Price is the most important criterion because it can improve the popularity of AFVs and affect other criteria, including user acceptance. Additional, the energy usage criterion is expected to significantly affect the sustainable development of AFVs. These results should be seriously considered by automakers and governments in developing AFVs.

  12. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles

    Science.gov (United States)

    primary fuel or to improve the efficiency of conventional vehicle designs. Hybrid Electric Vehicles Icon cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Propane (LPG) Next Vehicle Cost

  13. Canadians' perceptions of electric vehicle technology : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-03-15

    While Canadians seem to appreciate some of the possible benefits of electric vehicle technology (EVT), they generally lack knowledge or understanding of EVTs, in terms of how they operate and what types of EVT vehicles are currently available. This paper described the challenges associated with the adoption of EVT in Canada. In particular, it described a research program that was designed to assess Canadians' attitudes towards electric vehicle technology, in order to provide input into the development of a technology roadmap and its implementation plan, to provide input into communications plans and strategies to promote greater awareness and acceptance of the technology, and to establish baseline attitudinal indicators that could be tracked over time. Specifically, the objectives of the paper were to measure the Canadian public's levels of awareness, knowledge and comfort with EVTs; determine the motivators to adoption of EVT; determine the barriers to broader acceptance and market diffusion of EVT; and identify key group differences. Topics that were discussed included public awareness and knowledge of electric vehicle technology; and interest in plug-in hybrid vehicles and battery-electric vehicles, including perceived advantages and barriers. A profile of drivers consisted of a review of vehicle type; vehicle use profile; size of vehicle; considerations when choosing a vehicle; personal orientation to vehicle ownership; attitudes about vehicle choice; and attitudes about vehicles and air quality. Descriptions of the quantitative and qualitative methods employed in conducting the research, as well as the survey questionnaire and discussion guide were included as appendices. It was concluded that the small proportion of Canadian drivers who see vehicles as a form of personal expression are more likely to be interested in a future plug-in hybrid electric vehicles purchase or rental. tabs., figs., appendices.

  14. Advanced technology mobile robotics vehicle fleet

    International Nuclear Information System (INIS)

    McGovern, D.E.

    1987-03-01

    A fleet of vehicles is being developed and maintained by Sandia National Laboratories for studies in remote control and autonomous operation. The vehicles range from modified commercial vehicles to specially constructed mobile platforms and are utilized as testbeds for developing concepts in the areas of remote control (teleoperation) and computer control (autonomy). Actuators control the vehicle speed, brakes, and steering via manual input from a remote driving station or through some level of digital computer control. On-board processing may include simple vehicle control functions or may allow for unmanned, autonomous operation. Communication links are provided for digital communication between control computers, television transmission for vehicle vision, and voice for local control. SNL can develop, test, and evaluate sensors, processing requirements, various methods of actuator implementation, operator controlled feedback requirements, and vehicle operations. A description of the major features and uses for each of the vehicles in the fleet is provided

  15. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alex [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-26

    Motor fuel taxes were established to finance our nation’s transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  16. Vehicle Technologies Office FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Transportation accounts for two-thirds of U.S. petroleum use, and on-road vehicles are responsible for nearly 85% of this amount. U.S. dependence on petroleum affects the national economy and potential for future growth—making it a high-value opportunity for change. The Vehicle Technologies Office (VTO) develops and overcomes barriers to the widespread use of advanced highway transportation technologies that reduce petroleum consumption and greenhouse gas emissions, while meeting or exceeding vehicle performance expectations.

  17. Prevalence, attitudes, and knowledge of in-vehicle technologies and vehicle adaptations among older drivers.

    Science.gov (United States)

    Eby, David W; Molnar, Lisa J; Zakrajsek, Jennifer S; Ryan, Lindsay H; Zanier, Nicole; Louis, Renée M St; Stanciu, Sergiu C; LeBlanc, David; Kostyniuk, Lidia P; Smith, Jacqui; Yung, Raymond; Nyquist, Linda; DiGuiseppi, Carolyn; Li, Guohua; Mielenz, Thelma J; Strogatz, David

    2018-04-01

    The purpose of the present study was to gain a better understanding of the types of in-vehicle technologies being used by older drivers as well as older drivers' use, learning, and perceptions of safety related to these technologies among a large cohort of older drivers at multiple sites in the United States. A secondary purpose was to explore the prevalence of aftermarket vehicle adaptations and how older adults go about making adaptations and how they learn to use them. The study utilized baseline questionnaire data from 2990 participants from the Longitudinal Research on Aging Drivers (LongROAD) study. Fifteen in-vehicle technologies and 12 aftermarket vehicle adaptations were investigated. Overall, 57.2% of participants had at least one advanced technology in their primary vehicle. The number of technologies in a vehicle was significantly related to being male, having a higher income, and having a higher education level. The majority of respondents learned to use these technologies on their own, with "figured-it-out-myself" being reported by 25%-75% of respondents across the technologies. Overall, technologies were always used about 43% of the time, with wide variability among the technologies. Across all technologies, nearly 70% of respondents who had these technologies believed that they made them a safer driver. With regard to vehicle adaptations, less than 9% of respondents had at least one vehicle adaptation present, with the number of adaptations per vehicle ranging from 0 to 4. A large majority did not work with a professional to make or learn about the aftermarket vehicle adaptation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Alternative Fuels Data Center: How Do Fuel Cell Electric Vehicles Work

    Science.gov (United States)

    vehicles. Hydrogen car image Key Components of a Hydrogen Fuel Cell Electric Car Battery (auxiliary): In an Using Hydrogen? Fuel Cell Electric Vehicles Work Using Hydrogen? to someone by E-mail Share Alternative Fuels Data Center: How Do Fuel Cell Electric Vehicles Work Using Hydrogen? on Facebook Tweet about

  19. Understanding the Distributional Impacts of Vehicle Policy : Who Buys New and Used Alternative Vehicles?

    Science.gov (United States)

    2018-02-02

    This research project explores the plug-in electric vehicle (PEV) market, including both Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs), and the sociodemographic characteristics of purchasing households. We use detailed...

  20. A Choice Experiment on Alternative Fuel Vehicle Preferences of Private Car Owners in the Netherlands

    NARCIS (Netherlands)

    Hoen, A.; Koetse, M.J.

    2014-01-01

    This paper presents results of an online stated choice experiment on preferences of Dutch private car owners for alternative fuel vehicles (AFVs) and their characteristics. Results show that negative preferences for alternative fuel vehicles are large, especially for the electric and fuel cell car,

  1. Mixed waste focus area alternative technologies workshop

    International Nuclear Information System (INIS)

    Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A.

    1995-01-01

    This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ''wise'' configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE's mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), the Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities

  2. Narrative text analysis to identify technologies to prevent motor vehicle crashes: examples from military vehicles.

    Science.gov (United States)

    Pollack, Keshia M; Yee, Nathan; Canham-Chervak, Michelle; Rossen, Lauren; Bachynski, Kathleen E; Baker, Susan P

    2013-02-01

    The purpose of this research is to describe the leading circumstances of military vehicle crashes to guide prioritization and implementation of crash avoidance and/or warning technologies. A descriptive study using narrative text analysis on 3,944 military vehicle crash narratives. Crash data on drivers, from 2001 to 2006, were assembled from the U.S. Army Combat Readiness/Safety Center. Reviewers collected information on the circumstances of crashes and determined if vehicle technology could have prevented the crash. Nearly 98% of the crashes were nonfatal; 63% occurred in the U.S. and 24% in Iraq. Among crash events where the direction of the impact was recorded, 32% were to the front of the vehicle and 16% involved a vehicle being rear-ended. Rollovers were mentioned in 20% of the narratives. Technology was determined to have the potential to prevent 26% of the crashes, with the forward collision warning system, rear end collision avoidance, emergency brake assistance, and rollover stability control system likely to have the greatest impacts. Some technologies available for civilian vehicles may prevent certain military crash circumstances. The results of this research are significant in light of ongoing global military operations that rely on military vehicles. Improving the preventive technology featured on military vehicles may be an effective strategy to reduce the occurrence of military crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Status and outlook for biofuels, other alternative fuels and new vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N -O; Aakko-Saksa, P; Sipilae, K

    2008-03-15

    The report presents an outlook for alternative motor fuels and new vehicles. The time period covered extends up to 2030. The International Energy Agency and the U.S. Energy Information Administration predict that the world energy demand will increase by over 50% from now to 2030, if policies remain unchanged. Most of the growth in demand for energy in general, as well as for transport fuels, will take place in non-OECD countries. Gasoline and diesel are projected to remain the dominant automotive fuels until 2030. Vehicle technology and high quality fuels will eventually solve the problem of harmful exhaust emissions. However, the problem with CO{sub 2} still remains, and much attention will be given to increase efficiency. Hybrid technology is one option to reduce fuel consumption. Diesel engines are fuel efficient, but have high emissions compared with advanced gasoline engines. New combustion systems combining the best qualities of gasoline and diesel engines promise low emissions as well as high efficiency. The scenarios for alternative fuels vary a lot. By 2030, alternative fuels could represent a 10- 30% share of transport fuels, depending on policies. Ambitious goals for biofuels in transport have been set. As advanced biofuels are still in their infancy, it seems probable that traditional biofuels will also be used in 2030. Ethanol is the fastest growing biofuel. Currently the sustainability of biofuels is discussed extensively. Synthetic fuels promise excellent end-use properties, reduced emissions, and if produced from biomass, also reduced CO{sub 2} emissions. The report presents an analysis of technology options to meet the requirements for energy security, reduced CO{sub 2} emissions, reduced local emissions as well as sustainability in general in the long run. In the short term, energy savings will be the main measure for CO{sub 2} reductions in transport, fuel switches will have a secondary role. (orig.)

  4. Alternative oxidation technologies for organic mixed waste

    International Nuclear Information System (INIS)

    Borduin, L.C.; Fewell, T.

    1998-01-01

    The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site (SRS), and direct chemical oxidation at Lawrence Livermore National Laboratory (LLNL). All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory (LBNL), and steam reforming, a commercial process being supported by the Department of Energy (DOE). Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented

  5. Vehicle technologies, fuel-economy policies, and fuel-consumption rates of Chinese vehicles

    International Nuclear Information System (INIS)

    Huo Hong; He Kebin; Wang, Michael; Yao Zhiliang

    2012-01-01

    One of the principal ways to reduce transport-related energy use is to reduce fuel-consumption rates of motor vehicles (usually measured in liters of fuel per 100 km). Since 2004, China has implemented policies to improve vehicle technologies and lower the fuel-consumption rates of individual vehicles. Policy evaluation requires accurate and adequate information on vehicle fuel-consumption rates. However, such information, especially for Chinese vehicles under real-world operating conditions, is rarely available from official sources in China. For each vehicle type we first review the vehicle technologies and fuel-economy policies currently in place in China and their impacts. We then derive real-world (or on-road) fuel-consumption rates on the basis of information collected from various sources. We estimate that the real-world fuel-consumption rates of vehicles in China sold in 2009 are 9 L/100 km for light-duty passenger vehicles, 11.4 L/100 km for light-duty trucks, 22 L/100 km for inter-city transport buses, 40 L/100 km for urban transit buses, and 24.9 L/100 km for heavy-duty trucks. These results aid in understanding the levels of fuel consumption of existing Chinese vehicle fleets and the effectiveness of policies in reducing on-road fuel consumption, which can help in designing and evaluating future vehicle energy-efficiency policies. - Highlights: ► Vehicle fuel-consumption rate (VFCR) data are rarely available in China. ► We review the fuel-economy policies currently in place in China and their impacts. ► We derive real-world VFCRs on the basis of information collected from various sources. ► Results aid in understanding the fuel consumption levels of Chinese vehicle fleets. ► Results help in designing and evaluating future vehicle energy-efficiency policies.

  6. Design and Implementation of an Emergency Vehicle Signal Preemption System Based on Cooperative Vehicle-Infrastructure Technology

    OpenAIRE

    Yinsong Wang; Zhizhou Wu; Xiaoguang Yang; Luoyi Huang

    2013-01-01

    Emergency vehicle is an important part of traffic flow. The efficiency, reliability, and safety of emergency vehicle operations dropped due to increasing traffic congestion. With the advancement of the wireless communication technologies and the development of the vehicle-to-vehicle (v2v) and vehicle-to-infrastructure (v2i) systems, called Cooperative Vehicle-Infrastructure System (CVIS), there is an opportunity to provide appropriate traffic signal preemption for emergency vehicle based on r...

  7. 76 FR 19829 - Clean Alternative Fuel Vehicle and Engine Conversions

    Science.gov (United States)

    2011-04-08

    ... INFORMATION CONTACT: Amy Bunker, Compliance and Innovative Strategies Division, U.S. Environmental Protection... Vehicle/Engine Selection D. Mixed-Fuel and Dual-Fuel Conversions E. Vehicle/Engine Labels, Packaging Labels, and Marketing F. Compliance 1. Emission Standards a. Light-Duty and Heavy-Duty Chassis Certified...

  8. 78 FR 31535 - Assistive Technology Alternative Financing Program

    Science.gov (United States)

    2013-05-24

    ... DEPARTMENT OF EDUCATION Assistive Technology Alternative Financing Program AGENCY: Office of Special Education and Rehabilitative Services, Department of Education. ACTION: Notice. Catalog of Federal... developed for the Assistive Technology (AT) Alternative Financing Program (AFP) in fiscal year (FY) 2012 to...

  9. Vehicle-to-Vehicle crash avoidance technology : public acceptance final report.

    Science.gov (United States)

    2015-12-01

    The Vehicle-to-Vehicle (V2V) Crash Avoidance Public Acceptance report summarizes data from a survey of the current level of awareness and acceptance of V2V technology. The survey was guided by findings from prior studies and 12 focus groups. A total ...

  10. 77 FR 73458 - Vehicle Technologies Program; Request for Information

    Science.gov (United States)

    2012-12-10

    ... improving the electronic tools it makes available to assist fleets and consumers in reducing petroleum consumption in vehicles. DOE is seeking partners interested in including customized versions of the electronic...-0049] Vehicle Technologies Program; Request for Information AGENCY: Office of Energy Efficiency and...

  11. The Reusable Launch Vehicle Technology Program and the X-33 Advanced Technology Demonstrator

    Science.gov (United States)

    Cook, Stephen A.

    1995-01-01

    The goal of the Reusable Launch Vehicle (RLV) technology program is formulated, and the primary objectives of RLV are listed. RLV technology program implementation phases are outlined. X-33 advanced technology demonstrator is described. Program management is addressed.

  12. 40 CFR 1051.650 - What special provisions apply for converting a vehicle to use an alternate fuel?

    Science.gov (United States)

    2010-07-01

    ... converting a vehicle to use an alternate fuel? 1051.650 Section 1051.650 Protection of Environment... vehicle to use an alternate fuel? A certificate of conformity is no longer valid for a vehicle if the... applies if such modifications are done to convert the vehicle to run on a different fuel type. Such...

  13. Evaluation of automated vehicle technology for transit : [summary].

    Science.gov (United States)

    2014-01-01

    Automated transportation has been portrayed in : futuristic literature since the 19th century, but : making vehicles truly autonomous has only been : possible in recent decades with advanced control : and computer technologies. Automating cars is a :...

  14. Review of automated vehicle technology : policy and implementation implications.

    Science.gov (United States)

    2016-03-14

    The goals of this project were to undergo a systematic review of automated vehicle technologies with a focus on policy : implications, methods of implementation, regulation by states, and developments occurring on legal fronts, ultimately creating a ...

  15. Performance evaluation of alternative fuel/engine concepts 1990- 1995. Final report including addendum of diesel vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.O.; Ikonen, M.; Kytoe, M.; Lappi, M.; Westerholm, M.; Laurikko, J. [VTT Energy, Espoo (Finland). Energy Use

    1996-12-31

    Annex V within the IEA Agreement on Alternative Motor Fuels is the first subtask to generate new experimental data. The objective of the task is to generate information on the emission potential of alternative fuels in severe operating conditions and to evaluate new emission measurement methods. The work was carried out in three phases, Engine Tests, Vehicle Tests and Addendum of Diesel Vehicles. The work was carried out at VTT (Technical Research Centre of Finland) as a cost shared operation. Participants were Belgium (Parts Two and Three), Canada (Parts One and Two), Finland, Italy (Part One), Japan, the Netherlands Sweden and USA. The United Kingdom also joined at the end of the Annex. The work included 143 different vehicle/fuel/temperature combinations. FTP type emission tests were run on 14 vehicles powered with different gasoline compositions, methanol (M50 and M85), ethanol (E85), LPG, CNG and diesel. Both regulated and unregulated emission components were measured using the most up-to-date emissions measurement technology. The results indicated, that today`s advanced gasoline vehicles must be considered rather clean. Diesel is comparable with gasoline in the case of CO and HC. M85 gives low emissions in warm conditions, but unburned methanol must be controlled. Natural gas and LPG are inherently clean fuels which, using up-to-date engine technology, give low emissions in all conditions. (orig.) (29 refs.)

  16. Implications of advanced vehicle technologies for older drivers.

    Science.gov (United States)

    Molnar, Lisa J; Eby, David W

    2017-09-01

    Advances are being made in vehicle technologies that may help older adults compensate for some of the declines in abilities associated with aging. These advances hold promise for increasing vehicle safety, reducing injuries, and making the driving task more comfortable. However, important research gaps remain with regard to how various advanced technologies impact the safety of older drivers, as well as older drivers' perceptions about these technologies. This special issue contains seven original contributions that address these issues. Specific topics include the: congruence of design guidelines with the needs and abilities of older drivers, transfer of control between automated and manual driving, use of in-vehicle monitoring technology, motivations for technology use and assigned meanings, technology valuation, and effects on driving behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Technology and implementation of electric vehicles and plug‐in hybrid electric vehicles

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Mathiesen, Brian Vad; Connolly, David

    2011-01-01

    In this report state of the art electric vehicle and plug‐in hybrid electric vehicle technology is presented to clarify the current and near term development. The current status of diffusion for electric vehicles in Denmark, Sweden and internationally is presented as well as the expected......‐2013). Also the power capabilities may increase meaning that e.g. acceleration capabilities will improve as well as the top speed. This development occurs due to new battery technology that may experience substantial improvements in the coming years. When looking at plug‐in hybrid electric vehicles...... developments. Different business models and policies are also outlined along with a description of the on‐going research and demonstration projects. An analysis of the current and near term electric and plug‐in hybrid electric vehicles indicate that the cost for family cars will not change much, while...

  18. Alternative deNOx catalysts and technologies

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    The present thesis entitled Alternative deNOx Catalysts and technologies revolves around the topic of removal of nitrogen oxides. Nitrogen oxides, NOx, are unwanted byproducts formed during combustion (e.g. in engines or power plants). If emitted to the atmosphere, they are involved...... in the formation of acid rain and photochemical smog. Some basic concepts and reactions regarding the formation and removal of NOx are presented in chapter 1 and 2. Two approaches are undertaken in the present work to reduce the emission of NOx: by means of catalytic removal, and by NO absorption in ionic liquids....... The commercial catalyst used for the selective catalytic reduction (SCR) of nitrogen oxides exhibits high activity and selectivity towards N2. However, the vanadia-titania-based catalyst used is very sensitive to deactivation by alkali-species (primarily potassium), which are typically present in high amounts...

  19. Hybrid drive train technologies for vehicles

    NARCIS (Netherlands)

    Hofman, T.; Folkson, R.

    This chapter provides a classification of electric hybrid systems for cars and describes the conflicting design challenges involved in designing advanced vehicle propulsion systems. In addition, the chapter provides an analysis of the solution methods currently provided in literature on the coupled

  20. 16 CFR 309.15 - Posting of non-liquid alternative vehicle fuel rating.

    Science.gov (United States)

    2010-01-01

    ... rating. (a) If you are a retailer who offers for sale or sells non-liquid alternative vehicle fuel (other... fuel. If you are a retailer who offers for sale or sells electricity to consumers through an electric... vehicle fuel dispensing system, either by letter or on the delivery ticket or other paper, or by a...

  1. Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, A.

    2011-04-01

    A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

  2. Hybrid vehicles - an alternative for the Swedish market; Hybridfordon - ett alternativ foer den svenska bilparken

    Energy Technology Data Exchange (ETDEWEB)

    Egebaeck, Karl-Erik; Bucksch, S

    2000-06-01

    The object of this report is to assemble information on and describe the situation for the development of hybrid vehicles and various alternatives within this field of development. In the report the description is concentrated mainly on the combination of combustion engine and electric battery, which is the most common combination in present day hybrid vehicles. In order to take a glimpse into the future even the combination of fuel cells and electric battery is described. The light duty electric hybrid vehicles which have been developed up to now are mainly parallel hybrids. If the development of hybrid systems takes place it will most certainly concern light duty vehicles which will come to be parallel hybrids equipped with an Otto or a diesel engine, depending on what the manufacturers wish to back. In the report the use of series hybrid vehicles is estimated to be limited to heavy-duty hybrid vehicles. Hybrids will not be likely to be relevant for heavy-duty vehicles, with the exception of those lorries which operate in city centres, i.e. lorries which are used to distribute goods to shops, garbage vehicles and certain types of working vehicle for service purposes. Continued development of the hybrid system for buses seems uncertain for various reasons. If there is a technical breakthrough in the manufacture of batteries and simultaneously the manufacturers increase their efforts to develop hybrid vehicles, the situation can be changed so that there is a speedier introduction of hybrid vehicles for heavy-duty vehicles.

  3. Alternating-Current Motor Drive for Electric Vehicles

    Science.gov (United States)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  4. Enhancing the Use of Vehicle Alcohol Interlocks With Emerging Technology.

    Science.gov (United States)

    Voas, Robert B

    2014-01-01

    Among the earliest applications of health technologies to a safety program was the development of blood alcohol content (BAC) tests for use in impaired-driving enforcement. This led to the development of miniature, highly accurate devices that officers could carry in their pockets. A natural extension of this technology was the vehicle alcohol interlock, which is used to reduce recidivism among drivers convicted of driving under the influence (DUI) by requiring them to install the devices (which will not allow someone with a positive BAC to drive) on their vehicles. While on the vehicle, interlocks have been shown to reduce recidivism by two-thirds. Use of these devices has been growing at the rate of 10 to 15 percent a year, and there currently are more than 300,000 units in use. This expansion in the application of interlocks has benefited from the integration of other emerging technologies into interlock systems. Such technologies include data systems that record both driver actions and vehicle responses, miniature cameras and face recognition to identify the user, Wi-Fi systems to provide rapid reporting on offender performance and any attempt to circumvent the device, GPS tracking of the vehicle, and more rapid means for monitoring the integrity of the interlock system. This article describes how these health technologies are being applied in interlock programs and the outlook for new technologies and new court sanctioning programs that may influence the growth in the use of interlocks in the future.

  5. Armored Combat Vehicles Science and Technology Plan

    Science.gov (United States)

    1982-11-01

    APPLICATION OF SENSORS Investigate the seismic, acoustic, and electromagnetic signatures of military and intruder -type targets and the theoretical aspects...a prototype sampling system which has the capability to monitor ambieut air both outside and inside vehicles and provide an early warning to the crew...and through various processing modules provide automated functions for simultaneous tracking of targets and automitic recognition, 74 f’," SENSING

  6. Life cycle assessment for next generating vehicles. Feasibility study of alternative fuel vehicles and electric vehicles; Jisedai jidosha no life cycle assessment. Daitai nenryo jidosha oyobi denki jidosha no feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, T; Iida, N [Keio University, Tokyo (Japan)

    1997-10-01

    To show environmental assessment of introduction of substitute fuel vehicles is important information to formulate the future vehicles policy. Life cycle assessment (LCA) is put forward to simulate such potential, allows us to state the reduction environmental impacts of substitute vehicles on their total life cycle. The purpose of this study is assessment and analysis of the life cycle CO2 emission for substitute fuel vehicles, such as, alternative fuel vehicles, electric vehicles, and hybrid electric vehicles. 8 refs., 9 figs., 3 tabs.

  7. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  8. Hybrid Vehicle Technologies and their potential for reducing oil use

    Science.gov (United States)

    German, John

    2006-04-01

    Vehicles with hybrid gasoline-electric powertrains are starting to gain market share. Current hybrid vehicles add an electric motor, battery pack, and power electronics to the conventional powertrain. A variety of engine/motor configurations are possible, each with advantages and disadvantages. In general, efficiency is improved due to engine shut-off at idle, capture of energy during deceleration that is normally lost as heat in the brakes, downsizing of the conventional engine, and, in some cases, propulsion on the electric motor alone. Ongoing increases in hybrid market share are dependent on cost reduction, especially the battery pack, efficiency synergies with other vehicle technologies, use of the high electric power to provide features desired by customers, and future fuel price and availability. Potential barriers include historically low fuel prices, high discounting of the fuel savings by new vehicle purchasers, competing technologies, and tradeoffs with other factors desired by customers, such as performance, utility, safety, and luxury features.

  9. Future orbital transfer vehicle technology study. Volume 2: Technical report

    Science.gov (United States)

    Davis, E. E.

    1982-01-01

    Missions for future orbit transfer vehicles (1995-2010) are identified and the technology, operations and vehicle concepts that satisfy the transportation requirements are defined. Comparison of reusable space and ground based LO2/LH2 OTV's was made. Both vehicles used advanced space engines and aero assist capability. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. Comparison of an all LO2/LH2 OTV fleet with a fleet of LO2/LH2 OTVs and electric OTV's was also made. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. This provided a 23% advantage in total transportation cost. The impact of accelerated technology was considered in terms of improvements in performance and cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on-orbit propellant storage and transfer and on-orbit maintenance capability.

  10. Assessment of Vehicle Sizing, Energy Consumption and Cost Through Large Scale Simulation of Advanced Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moawad, Ayman [Argonne National Lab. (ANL), Argonne, IL (United States); Kim, Namdoo [Argonne National Lab. (ANL), Argonne, IL (United States); Shidore, Neeraj [Argonne National Lab. (ANL), Argonne, IL (United States); Rousseau, Aymeric [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. This report reviews the results of the DOE VTO. It gives an assessment of the fuel and light-duty vehicle technologies that are most likely to be established, developed, and eventually commercialized during the next 30 years (up to 2045). Because of the rapid evolution of component technologies, this study is performed every two years to continuously update the results based on the latest state-of-the-art technologies.

  11. Alternative Hydrocarbon Propulsion for Nano / Micro Launch Vehicle, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The technical innovation proposed here is the application of an alternative hydrocarbon fuel – densified propylene, in combination with liquid oxygen (LOX) – that...

  12. Alternative Fuel Vehicles: What Do the Drivers Say?

    Science.gov (United States)

    survey of AFV fleet managers. Both the driver and the fleet manager reports are available in .pdf format through DOE's Alternative Fuels Data Center home page on the World Wide Web . For a hard copy, call the

  13. Review and evaluation of alternative chemical disposal technologies

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Engineering and Technical Systems; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    .... In light of the fact that alternative technologies have evolved since the 1994 study, this new volume evaluates five Army-chosen alternatives to the baseline incineration system for the disposal...

  14. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Science.gov (United States)

    2010-01-01

    ... Efficiency and Renewable Energy, EE-33, 1000 Independence Ave., SW., Washington, DC 20585, or to such other... 10 Energy 3 2010-01-01 2010-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM...

  15. Advancing electric-vehicle development with pure-lead-tin battery technology

    Science.gov (United States)

    O'Brien, W. A.; Stickel, R. B.; May, G. J.

    Electric-vehicle (EV) development continues to make solid progress towards extending vehicle range, reliability and ease of use, aided significantly by technological advances in vehicle systems. There is, however, a widespread misconception that current battery technologies are not capable of meeting even the minimum user requirements that would launch EVs into daily use. Existing pure-lead-tin technology is moving EVs out of research laboratories and onto the streets, in daily side-by-side operation with vehicles powered by conventional gasoline and alternative fuels. This commercially available battery technology can provide traffic-compatible performance in a reliable and affordable manner, and can be used for either pure EVs or hybrid electric vehicles (HEVs). Independent results obtained when applying lead-tin batteries in highly abusive conditions, both electrically and environmentally, are presented. The test fleet of EVs is owned and operated by Arizona Public Service (APS), an electric utility in Phoenix, AZ, USA. System, charger and battery development will be described. This gives a single charge range of up to 184 km at a constant speed of 72 km h -1, and with suitable opportunity charging, a 320 km range in a normal 8 h working day.

  16. Consumer Views: Fuel Economy, Plug-in Electric Vehicle Battery Range, and Willingness to Pay for Vehicle Technology

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-11

    This presentation includes data captured by the National Renewable Energy Laboratory (NREL) to support the U.S. Department of Energy's Vehicle Technologies Office (VTO) research efforts. The data capture consumer views on fuel economy, plug-in electric vehicle battery range, and willingness to pay for advanced vehicle technologies.

  17. Comparison of Vehicle Efficiency Technology Attributes and Synergy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Duleep, G. [ICF Incorporated, LLC., Fairfax, VA (United States)

    2011-02-01

    Analyzing the future fuel economy of light-duty vehicles (LDVs) requires detailed knowledge of the vehicle technologies available to improve LDV fuel economy. The National Highway Transportation Safety Administration (NHTSA) has been relying on technology data from a 2001 National Academy of Sciences (NAS) study (NAS 2001) on corporate average fuel economy (CAFE) standards, but the technology parameters were updated in the new proposed rulemaking (EPA and NHTSA 2009) to set CAFE and greenhouse gas standards for the 2011 to 2016 period. The update is based largely on an Environmental Protection Agency (EPA) analysis of technology attributes augmented by NHTSA data and contractor staff assessments. These technology cost and performance data were documented in the Draft Joint Technical Support Document (TSD) issued by EPA and NHTSA in September 2009 (EPA/NHTSA 2009). For these tasks, the Energy and Environmental Analysis (EEA) division of ICF International (ICF) examined each technology and technology package in the Draft TSD and assessed their costs and performance potential based on U.S. Department of Energy (DOE) program assessments. ICF also assessed the technologies, other relevant attributes based on data from actual production vehicles, and recently published technical articles in engineering journals. ICF examined technology synergy issues through an ICF in-house model that uses a discrete parameter approach.

  18. Comparison of Vehicle Efficiency Technology Attributes and Synergy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Duleep, G.

    2011-02-01

    Analyzing the future fuel economy of light-duty vehicles (LDVs) requires detailed knowledge of the vehicle technologies available to improve LDV fuel economy. The National Highway Transportation Safety Administration (NHTSA) has been relying on technology data from a 2001 National Academy of Sciences (NAS) study (NAS 2001) on corporate average fuel economy (CAFE) standards, but the technology parameters were updated in the new proposed rulemaking (EPA and NHTSA 2009) to set CAFE and greenhouse gas standards for the 2011 to 2016 period. The update is based largely on an Environmental Protection Agency (EPA) analysis of technology attributes augmented by NHTSA data and contractor staff assessments. These technology cost and performance data were documented in the Draft Joint Technical Support Document (TSD) issued by EPA and NHTSA in September 2009 (EPA/NHTSA 2009). For these tasks, the Energy and Environmental Analysis (EEA) division of ICF International (ICF) examined each technology and technology package in the Draft TSD and assessed their costs and performance potential based on U.S. Department of Energy (DOE) program assessments. ICF also assessed the technologies? other relevant attributes based on data from actual production vehicles and from recently published technical articles in engineering journals. ICF examined technology synergy issues through an ICF in-house model that uses a discrete parameter approach.

  19. Reusable Orbit Transfer Vehicle Propulsion Technology Considerations

    National Research Council Canada - National Science Library

    Perkins, Dave

    1998-01-01

    .... ROTV propulsion technologies to consider chemical rockets have limited mission capture, solar thermal rockets capture most missions but LH2 issues, and electric has highest PL without volume constraint...

  20. Unmanned Ground Vehicle Tactical Behaviors Technology Assessment

    National Research Council Canada - National Science Library

    Childers, Marshal A; Bodt, Barry A; Hill, Susan G; Camden, Richard; Dean, Robert M; Dodson, William F; Sutton, Lyle G; Sapronov, Leonid

    2009-01-01

    During 4-14 February 2008, the U.S. Army Research Laboratory and General Dynamics Robotic Systems conducted an unmanned systems tactical behaviors technology assessment at three training areas of Ft. Indiantown Gap, PA...

  1. Virtual Laboratory Enabling Collaborative Research in Applied Vehicle Technologies

    Science.gov (United States)

    Lamar, John E.; Cronin, Catherine K.; Scott, Laura E.

    2005-01-01

    The virtual laboratory is a new technology, based on the internet, that has had wide usage in a variety of technical fields because of its inherent ability to allow many users to participate simultaneously in instruction (education) or in the collaborative study of a common problem (real-world application). The leadership in the Applied Vehicle Technology panel has encouraged the utilization of this technology in its task groups for some time and its parent organization, the Research and Technology Agency, has done the same for its own administrative use. This paper outlines the application of the virtual laboratory to those fields important to applied vehicle technologies, gives the status of the effort, and identifies the benefit it can have on collaborative research. The latter is done, in part, through a specific example, i.e. the experience of one task group.

  2. Fuel and vehicle technology choices for passenger vehicles in achieving stringent CO2 targets: connections between transportation and other energy sectors.

    Science.gov (United States)

    Grahn, M; Azar, C; Williander, M I; Anderson, J E; Mueller, S A; Wallington, T J

    2009-05-01

    The regionalized Global Energy Transition (GET-R 6.0) model has been modified to include a detailed description of light-duty vehicle options and used to investigate the potential impact of carbon capture and storage (CCS) and concentrating solar power (CSP) on cost-effective fuel/vehicle technologies in a carbon-constrained world. Total CO2 emissions were constrained to achieve stabilization at 400-550 ppm, by 2100, at lowesttotal system cost The dominantfuel/vehicle technologies varied significantly depending on CO2 constraint future cost of vehicle technologies, and availability of CCS and CSP. For many cases, no one technology dominated on a global scale. CCS provides relatively inexpensive low-CO2 electricity and heatwhich prolongs the use of traditional ICEVs. CSP displaces fossil fuel derived electricity, prolongs the use of traditional ICEVs, and promotes electrification of passenger vehicles. In all cases considered, CCS and CSP availability had a major impact on the lowest cost fuel/vehicle technologies, and alternative fuels are needed in response to expected dwindling oil and natural gas supply potential by the end of the century.

  3. Review and evaluation of alternative chemical disposal technologies

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Engineering and Technical Systems; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    ... in comparison to the Army's baseline incineration system. The volume's main finding was that no alternative technology was preferable to incineration but that work should continue on the neutralization technologies under Army consideration...

  4. Review and Evaluation of Alternative Chemical Disposal Technologies

    National Research Council Canada - National Science Library

    2000-01-01

    ... in comparison to the Army's baseline incineration system. The volume's main finding was that no alternative technology was preferable to incineration but that work should continue on the neutralization technologies under Army consideration...

  5. Performance Evaluation of Lower-Energy Energy Storage Alternatives for Full-Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Cosgrove, J.; Pesaran, A.

    2014-02-11

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle fuel use. However, the incremental cost of HEVs such as the Toyota Prius or Ford Fusion Hybrid remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The b b b b battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can correspondingly improve the vehicle-level cost/benefit relationship. Such an improvement would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The United States Advanced Battery Consortium (USABC) and the U.S. Department of Energy (DOE) Energy Storage Program managers asked the National Renewable Energy Laboratory (NREL) to collaborate with a USABC Workgroup and analyze the trade-offs between vehicle fuel economy and reducing the decade-old minimum energy requirement for power-assist HEVs. NREL’s analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than the previous targets, which prompted USABC to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform, and laboratory as well as in-vehicle evaluation results with alternate energy storage configurations as compared to the production battery system. The alternate energy storage technologies considered include lithium-ion capacitors -- i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery

  6. Vehicle Technologies and Fuel Cell Technologies Program: Prospective Benefits Assessment Report for Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Taylor, C. H. [TA Engineering, Inc., Catonsville, MD (United States); Moore, J. S. [TA Engineering, Inc., Catonsville, MD (United States); Ward, J. [United States Department of Energy, Washington, DC (United States). Office of Energy Efficiency and Renewable Energy

    2016-02-23

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies offices of DOE’s Office of Energy Efficiency and Renewable Energy invest in research, development, demonstration, and deployment of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies. This report estimates the benefits of successfully developing and deploying these technologies (a “Program Success” case) relative to a base case (the “No Program” case). The Program Success case represents the future with completely successful deployment of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies. The No Program case represents a future in which there is no contribution after FY 2016 by the VTO or FCTO to these technologies. The benefits of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies were estimated on the basis of differences in fuel use, primary energy use, and greenhouse gas (GHG) emissions from light-, medium- and heavy-duty vehicles, including energy and emissions from fuel production, between the base case and the Program Success case. Improvements in fuel economy of various vehicle types, growth in the stock of fuel cell vehicles and other advanced technology vehicles, and decreased GHG intensity of hydrogen production and delivery in the Program Success case over the No Program case were projected to result in savings in petroleum use and GHG emissions. Benefits were disaggregated by individual program technology areas, which included the FCTO program and the VTO subprograms of batteries and electric drives; advanced combustion engines; fuels and lubricants; materials (for reduction in vehicle mass, or “lightweighting”); and, for medium- and heavy-duty vehicles, reduction in rolling and aerodynamic resistance. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 47% to 76

  7. Toxic emissions from mobile sources: a total fuel-cycle analysis for conventional and alternative fuel vehicles.

    Science.gov (United States)

    Winebrake, J J; Wang, M Q; He, D

    2001-07-01

    Mobile sources are among the largest contributors of four hazardous air pollutants--benzene, 1,3-butadiene, acetaldehyde, and formaldehyde--in urban areas. At the same time, federal and state governments are promoting the use of alternative fuel vehicles as a means to curb local air pollution. As yet, the impact of this movement toward alternative fuels with respect to toxic emissions has not been well studied. The purpose of this paper is to compare toxic emissions from vehicles operating on a variety of fuels, including reformulated gasoline (RFG), natural gas, ethanol, methanol, liquid petroleum gas (LPG), and electricity. This study uses a version of Argonne National Laboratory's Greenhouse Gas, Regulated Emissions, and Energy Use in Transportation (GREET) model, appropriately modified to estimate toxic emissions. The GREET model conducts a total fuel-cycle analysis that calculates emissions from both downstream (e.g., operation of the vehicle) and upstream (e.g., fuel production and distribution) stages of the fuel cycle. We find that almost all of the fuels studied reduce 1,3-butadiene emissions compared with conventional gasoline (CG). However, the use of ethanol in E85 (fuel made with 85% ethanol) or RFG leads to increased acetaldehyde emissions, and the use of methanol, ethanol, and compressed natural gas (CNG) may result in increased formaldehyde emissions. When the modeling results for the four air toxics are considered together with their cancer risk factors, all the fuels and vehicle technologies show air toxic emission reduction benefits.

  8. Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions

    International Nuclear Information System (INIS)

    Ou Xunmin; Zhang Xiliang; Chang Shiyan

    2010-01-01

    The rapid growth of vehicles has resulted in continuing growth in China's oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China's road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology.

  9. Emerging vehicle technologies & the search for urban mobility solutions

    Directory of Open Access Journals (Sweden)

    Jitendra N. Bajpai

    2016-01-01

    Full Text Available The convergence of the ongoing innovations to make vehicles driverless, carbon free and accessible on ‘as needed’ basis, is evolving fast. A review of available information suggests that these technologies have substantial potential to generate positive externalities by improving road safety, lowering of fuel consumption and emissions in vehicles, and providing mobility options for vulnerable population including young, old and persons with disability. However, given the limited commercialization it is difficult to discern the nature of impact these technologies will have in reducing the two negative travel externalities, road congestion and low density expansion of cities. Gradual mainstreaming of these technologies will offer opportunities for further research in understanding the behavioral responses of their end users, and the risks that these technologies may pose to manufacturers, consumers, and stakeholders.

  10. 2009 DOE Vehicle Technologies Program Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-01

    Annual Merit Review and Peer Evaluation Meeting to review the FY2008 accomplishments and FY2009 plans for the Vehicle Technologies Program, and provide an opportunity for industry, government, and academic to give inputs to DOE on the Program with a structured and formal methodology.

  11. Case Study – Idling Reduction Technologies for Emergency Service Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Owens, Russell J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    This case study explores the use of idle reduction technologies (IRTs) on emergency service vehicles in police, fire, and ambulance applications. Various commercially available IRT systems and approaches can decrease, or ultimately eliminate, engine idling. Fleets will thus save money on fuel, and will also decrease their criteria pollutant emissions, greenhouse gas emissions, and noise.

  12. Alternative and sustainable fuelling options for 2-wheeled vehicles

    International Nuclear Information System (INIS)

    Burke, P.; Al-Abdeli, Y.M.; Karri, V.

    2006-01-01

    This paper provided details of an experiment in which a small, single cylinder, 4-stroke motorcycle was converted to use hydrogen as its fuel. Emissions from the motorcycle's exhaust system were then compared with emissions from both gasoline and hydrogen engines. The thermal efficiencies and performance of the vehicles were also compared and evaluated. Design modifications included the use of port-mounted gaseous fuel injectors and a manifold assembled above the intake valves. The ignition system for the engine was based on a module that used a single pulse generator mounted at one end of the crankshaft to measure engine speed. A dedicated engine management system (EMS) was used to control the fuel injectors and the ignition timing. Thermal efficiencies were derived by dividing the ratio between power output from the engine and the power output associated with the mass flow rate of fuel consumed. Maximum exhaust emission quantities were compared at 2 different speeds. Results of the study showed that the hydrogen engine had a 30 to 50 per cent reduction in power compared to the gasoline engine. The thermal efficiency of the gasoline engine was between 50 to 65 per cent higher than the hydrogen engine at 30 km per hour. However, the hydrogen engine produced no traceable amounts of carbon monoxide (CO). It was concluded that further testing is needed to examine the mixture stoichiometry and the effects of additional engine tuning on the hydrogen engine. 13 refs., 2 tabs., 10 figs

  13. A Hydraulic Motor-Alternator System for Ocean-Submersible Vehicles

    Science.gov (United States)

    Aintablian, Harry O.; Valdez, Thomas I.; Jones, Jack A.

    2012-01-01

    An ocean-submersible vehicle has been developed at JPL that moves back and forth between sea level and a depth of a few hundred meters. A liquid volumetric change at a pressure of 70 bars is created by means of thermal phase change. During vehicle ascent, the phase-change material (PCM) is melted by the circulation of warm water and thus pressure is increased. During vehicle descent, the PCM is cooled resulting in reduced pressure. This pressure change is used to generate electric power by means of a hydraulic pump that drives a permanent magnet (PM) alternator. The output energy of the alternator is stored in a rechargeable battery that powers an on-board computer, instrumentation and other peripherals.The focus of this paper is the performance evaluation of a specific hydraulic motor-alternator system. Experimental and theoretical efficiency data of the hydraulic motor and the alternator are presented. The results are used to evaluate the optimization of the hydraulic motor-alternator system. The integrated submersible vehicle was successfully operated in the Pacific Ocean near Hawaii. A brief overview of the actual test results is presented.

  14. Policy of developing alternate vehicles; La politique de developpement des vehicules alternatifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-15

    In most western cities the present-day car is by far the principal mode of transport. The wrong side of it is that automobile circulation is a source of air-pollution, noise and traffic jam, inconveniences against which public opinion shows itself more and more susceptible. Facing this situation governments in succession have since several years encouraged by different measures the development of fitted or alternative vehicles: electric, natural gas (NG) fuelled and liquefied petroleum gas (LPG) vehicles. These vehicles have the advantage of responding both to pollution problem and energy diversification challenge. The present-day regulation system gathers a number of attractive provisions: - maintaining para-fiscal taxes upon gas fuels at a level much lower than for other fuels; - VAT refunding for these gas fuels and electricity consumed by vehicles of this type; - general councils can be totally or partially exonerated from automobile taxation; - assigning future green label allowing these vehicles to be excepted from traffic restrictions applied to cope with pollution peaks. Other additional advantages are provided by the law on air and rational use of energy of 30 December 1996. Merits and drawbacks of each of the mentioned types of alternative vehicles are reviewed. So, although entirely un-polluting the electric cars are not cheap and what is even more hindering is their very limited range which for current batteries does not exceed 80 km. Only little over 3000 electric vehicles were sold, a third of them to EDF. The natural gas is rather pure a fuel at burning of which the release of sulfur and solid particles are practically negligible. Due to its characteristics, the short and medium term development of this alternative seems to reside only in buses and service vehicles, the only able to support the supplementary load of high pressure gas tanks. Being formed of liquefied butane and propane at low pressure, LPG is as attractive as NG, with respect to the

  15. Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements

    Science.gov (United States)

    Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.; Jiang, Xun J.

    2013-01-01

    A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASAs science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of developing commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of an emerging commercially available capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).

  16. Assessment of a satellite power system and six alternative technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L.S.; Levine, E.; Tanzman, E.

    1981-04-01

    The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and insitutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included. (LEW)

  17. METEV: Measurement Technologies for Emissions from Ethanol Fuelled Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sandtroem-Dahl, Charlotte

    2009-11-15

    The interest of using alcohols, and especially ethanol, as vehicle fuel is high in Sweden. The advantages are many, such as; being renewable, the ethanol can be produced locally and it is easily mixed with gasoline. Alcohol fuels are considered to be a substantial part of the alternative fuel market, especially in Brazil, USA and Sweden. With this growing interest it is of most importance to investigate the emission performance of vehicles fuelled with alcohols. The focus in this study is on measurement and calculation of hydrocarbon emissions. The emission regulations in different countries have different ways to treat alcohol fuelled vehicles. When alcohols are used as blending components in gasoline, uncombusted alcohols from the fuel are emitted in the exhaust in various amounts. If a Flame Ionization Detector (FID) is used to measure hydrocarbons, the uncombusted alcohol will be included in the measurement. The alcohol is, per definition, however not a hydrocarbon (hydrocarbons contains only hydrogen and carbon). In the US regulations, the alcohol content is measured separately, and the FID measurement is adjusted for the alcohol part. This is not performed in the European regulations. The aim of this project is to highlight the need for a discussion regarding the methodology for measuring hydrocarbon and alcohol emissions from flexible fuelled vehicles operating on alcohol fuel blends.

  18. 40 CFR 80.583 - What alternative sampling and testing requirements apply to importers who transport motor vehicle...

    Science.gov (United States)

    2010-07-01

    ... requirements apply to importers who transport motor vehicle diesel fuel, NRLM diesel fuel, or ECA marine fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... alternative sampling and testing requirements apply to importers who transport motor vehicle diesel fuel, NRLM...

  19. Distributed Electrical Power Generation: Summary of Alternative Available Technologies

    National Research Council Canada - National Science Library

    Scott, Sarah

    2003-01-01

    .... While distributed generation (DG) technologies offer many of the benefits of alternative, efficient energy sources, few DG systems can currently be commercially purchased "off the shelf", and complicated codes and standards deter potential users...

  20. Economic and environmental impacts of alternative transportation technologies.

    Science.gov (United States)

    2013-04-01

    This project has focused on comparing alternative transportation technologies in terms of their : environmental and economic impacts. The research is data-driven and quantitative, and examines the : dynamics of impact. We have developed new theory an...

  1. The Alternate Technology Program for Aluminum Research Reactor Spent Fuel

    International Nuclear Information System (INIS)

    Barlow, M.W.

    1998-01-01

    This paper describes the program for disposition of aluminum-based RRSNF, including the requirements for road-ready dry storage and repository disposal and the criteria to be considered in selecting among the alternative technologies

  2. Alternative food safety intervention technologies: flash pasteurization of finfish

    Science.gov (United States)

    Alternative nonthermal and thermal food safety interventions are gaining acceptance by the food processing industry and consumers. These technologies include high pressure processing, ultraviolet and pulsed light, ionizing radiation, pulsed and radiofrequency electric fields, cold atmospheric plasm...

  3. MODULTEC - Modular technology for lightweight vehicles; MODULTEC - Modultechnologie fuer Leichtmobile

    Energy Technology Data Exchange (ETDEWEB)

    Horlacher, M.; Efler, T.; Wegmann, S.

    2003-07-01

    This final report for the Swiss Federal Office of Energy presents the results of two research projects (MODULTEC I and II) that were carried out between 1995 and 2002. The project's aims were to develop and assess components for light-weight car bodies, study and test novel reinforced plastic materials and to examine the industrial implementation of light-weight vehicles. The report presents details on prototype vehicles and transport systems, as well as crash tests. The development of compound plastics and appropriate adhesives is discussed as is the co-operation with various industrial partners. Various prototype components are described and other associated topics such as recycling, storage of alternative fuels and pedestrian protection issues are discussed.

  4. Survey on In-vehicle Technology Use: Results and Findings

    Directory of Open Access Journals (Sweden)

    Raj K. Kamalanathsharma

    2015-06-01

    Full Text Available The use of advanced technology in automobiles has increased dramatically in the past couple of years. Driver-assisting gadgets such as navigation systems, advanced cruise control, collision avoidance systems, and other safety systems have moved down the ladder from luxury to more basic vehicles. Concurrently, auto manufacturers are also designing and testing driving algorithms that can assist with basic driving tasks, many of which are being continuously scrutinized by traffic safety agencies to ensure that these systems do not pose a safety hazard. The research presented in this paper brings a third perspective to in-vehicle technology by conducting a two-stage survey to collect public opinion on advanced in-vehicle technology. Approximately 64 percent of the respondents used a smartphone application to assist with their travel. The top-used applications were navigation and real-time traffic information systems. Among those who used smartphones during their commutes, the top-used applications were navigation and entertainment.

  5. 76 FR 67287 - Alternative Fuel Transportation Program; Alternative Fueled Vehicle Credit Program (Subpart F...

    Science.gov (United States)

    2011-10-31

    ... additional credits for the use of biodiesel in blends of 20 percent biodiesel or greater and have provided an... discussion in Part II.A), the original program based upon AFV acquisitions and biodiesel use became known as... example, B20 (a 20 percent blend of biodiesel with 80 percent petroleum diesel) is not an alternative fuel...

  6. Refueling availability for alternative fuel vehicle markets: Sufficient urban station coverage

    International Nuclear Information System (INIS)

    Melaina, Marc; Bremson, Joel

    2008-01-01

    Alternative fuel vehicles can play an important role in addressing the challenges of climate change, energy security, urban air pollution and the continued growth in demand for transportation services. The successful commercialization of alternative fuels for vehicles is contingent upon a number of factors, including vehicle cost and performance. Among fuel infrastructure issues, adequate refueling availability is one of the most fundamental to successful commercialization. A commonly cited source reports 164,300 refueling stations in operation nationwide. However, from the perspective of refueling availability, this nationwide count tends to overstate the number of stations required to support the widespread deployment of alternative fuel vehicles. In terms of spatial distribution, the existing gasoline station networks in many urban areas are more than sufficient. We characterize a sufficient level of urban coverage based upon a subset of cities served by relatively low-density station networks, and estimate that some 51,000 urban stations would be required to provide this sufficient level of coverage to all major urban areas, 33 percent less than our estimate of total urban stations. This improved characterization will be useful for engineering, economic and policy analyses. (author)

  7. INERTIAL TECHNOLOGIES IN SYSTEMS FOR STABILIZATION OF GROUND VEHICLES EQUIPMENT

    Directory of Open Access Journals (Sweden)

    Olha Sushchenko

    2016-12-01

    Full Text Available Purpose: The vibratory inertial technology is a recent modern inertial technology. It represents the most perspective approach to design of inertial sensors, which can be used in stabilization and tracking systems operated on vehicles of the wide class. The purpose of the research is to consider advantages of this technology in comparison with laser and fiber-optic ones. Operation of the inertial sensors on the ground vehicles requires some improvement of the Coriolis vibratory gyroscope with the goal to simplify information processing, increase reliability, and compensate bias. Methods: Improvement of the Coriolis vibratory gyroscope includes introducing of the phase detector and additional excitation unit. The possibility to use the improved Coriolis vibratory gyroscope in the stabilization systems operated on the ground vehicles is shown by means of analysis of gyroscope output signal. To prove efficiency of the Coriolis vibratory gyroscope in stabilization system the simulation technique is used. Results: The scheme of the improved Coriolis vibratory gyroscope including the phase detector and additional excitation unit is developed and analyzed. The way to compensate bias is determined. Simulation of the stabilization system with the improved Coriolis vibratory gyroscope is carried out. Expressions for the output signals of the improved Coriolis vibratory gyroscope are derived. The error of the output signal is estimated and the possibility to use the modified Coriolis vibratory gyroscope in stabilization systems is proved. The results of stabilization system simulation are given. Their analysis is carried out. Conclusions: The represented results prove efficiency of the proposed technical decisions. They can be useful for design of stabilization platform with instrumental equipment operated on moving vehicles of the wide class.

  8. Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China

    International Nuclear Information System (INIS)

    Ou, Xunmin; Yan, Xiaoyu; Zhang, Xiliang; Liu, Zhen

    2012-01-01

    Highlights: ► We analyzed the life cycle energy intensity and GHG emissions of about 40 pathways of alternative vehicle fuels in China. ► Coal-based liquid fuel has higher life cycle energy intensities and first generation technology bio-fuel has relatively lower intensity. ► By 2020 electricity will have significantly lower GHG intensity and second generation technology bio-fuel will have near zero intensities. -- Abstract: Fossil energy consumption (FEC) and greenhouse gas (GHG) emission intensities of major alternative vehicle fuels (AVFs) in China are calculated and compared with conventional fuels by means of full life-cycle analysis. Currently most of the AVFs have not relatively obvious GHG emission reduction when compared to the gasoline pathway: (1) coal-based AVF has higher intensities in terms of both the FEC and GHG emissions; (2) electricity from the average Chinese grid has the GHG emission intensity similar to that of gasoline pathway although relatively lower FEC intensity; and (3) first generation technology bio-fuel has relatively lower GHG emission intensity and substantially lower FEC intensity. It is forecasted that by 2020 when still comparing to the gasoline pathway: (1) coal-based AVF will still have FEC and GHG emission intensities that are 1.5–1.8 and 1.8–2.5 time those of gasoline pathway, and the application of carbon capture and storage technology can reduce the GHG emission intensity of coal-based AVF; (2) electricity will have significantly lower GHG intensity; and (3) second generation technology bio-fuel will have near zero FEC and GHG intensities.

  9. Alternative food-preservation technologies: efficacy and mechanisms.

    Science.gov (United States)

    Lado, Beatrice H; Yousef, Ahmed E

    2002-04-01

    High-pressure processing, ionizing radiation, pulsed electric field and ultraviolet radiation are emerging preservation technologies designed to produce safe food, while maintaining its nutritional and sensory qualities. A sigmoid inactivation pattern is observed in most kinetic studies. Damage to cell membranes, enzymes or DNA is the most commonly cited cause of death of microorganisms by alternative preservation technologies.

  10. EHV systems technology - A look at the principles and current status. [Electric and Hybrid Vehicle

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1983-01-01

    An examination of the basic principles and practices of systems engineering is undertaken in the context of their application to the component and subsystem technologies involved in electric and hybrid vehicle (EHV) development. The limitations of purely electric vehicles are contrasted with hybrid, heat engine-incorporating vehicle technology, which is inherently more versatile. A hybrid vehicle concept assessment methodology is presented which employs current technology and yet fully satisfies U.S. Department of Energy petroleum displacement goals.

  11. Free Flight Rotorcraft Flight Test Vehicle Technology Development

    Science.gov (United States)

    Hodges, W. Todd; Walker, Gregory W.

    1994-01-01

    A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

  12. Future orbital transfer vehicle technology study. Volume 1: Executive summary

    Science.gov (United States)

    Davis, E. E.

    1982-01-01

    Reusable space and ground based LO2/LH2 OTV's, both advanced space engines and aero assist capability were compared. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. An all LO2/LH2 OTV fleet was also compared with a fleet of LO2/.H2 OTV's and electric OTV's. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. In this case, the LO2/LH2 OTV fleet provided a 23% advantage in total transportation cost. An accelerated technology LF2/LH2 OTV provided improvements in performance relative to LO2/.H2 OTV but has higher DDT&E cost which negated its cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but still did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on orbit propellant storage and transfer and on orbit maintenance capability.

  13. A propulsion technology challenge — An abortable. Continuous use vehicle

    Science.gov (United States)

    Czysz, Paul A.; Froning, H. David

    1996-02-01

    Propulsion is the enabling technology for an abortable, continuous use vehicle. Propulsion performance purchases margin in the other material, structural, and system requirements. But what is abortability, and continuous use? Why is it necessary? What are its characteristics? And, what specifically is required in the propulsion system to enable these characteristics? Is the cost of the launcher really trivial, or is that the incomplete cost analysis limited to expendables and rebuilt, reusables. This paper identifies what constitutes an abortable, continuous use vehicle, the propulsion characteristics required, and the technology necessary to provide those characteristics. The proposition resulting is that this is not a technology issue, it is a concept of operation and a bureaucratic issue. The required goal is not as distant as some might propose, and the technology not as unprepared for commercial application as some assumed. The conclusion is that clearly we cannot continue to base the next century's orbital operations on an expendable rebuilt for reuse concept. What is required is a rocket based combined cycle (RBCC) engine based on those now in space operation 1,2; not a combination of cycles that remains to be shown as a practical, achievable reality.

  14. The real-world safety potential of connected vehicle technology.

    Science.gov (United States)

    Doecke, Sam; Grant, Alex; Anderson, Robert W G

    2015-01-01

    This article estimates the safety potential of a current commercially available connected vehicle technology in real-world crashes. Data from the Centre for Automotive Safety Research's at-scene in-depth crash investigations in South Australia were used to simulate the circumstances of real-world crashes. A total of 89 crashes were selected for inclusion in the study. The crashes were selected as representative of the most prevalent crash types for injury or fatal crashes and had potential to be mitigated by connected vehicle technology. The trajectory, speeds, braking, and impact configuration of the selected in-depth cases were replicated in a software package and converted to a file format allowing "replay" of the scenario in real time as input to 2 Cohda Wireless MK2 onboard units. The Cohda Wireless onboard units are a mature connected vehicle technology that has been used in both the German simTD field trial and the U.S. Department of Transport's Safety Pilot project and have been tuned for low false alarm rates when used in the real world. The crash replay was achieved by replacing each of the onboard unit Global Positioning System (GPS) inputs with the simulated data of each of the involved vehicles. The time at which the Cohda Wireless threat detection software issued an elevated warning was used to calculate a new impact speed using 3 different reaction scenarios and 2 levels of braking. It was found that between 37 and 86% of the simulated crashes could be avoided, with highest percentage due a fully autonomous system braking at 0.7 g. The same system also reduced the impact speed relative to the actual crash in all cases. Even when a human reaction time of 1.2 s and moderate braking of 0.4 g was assumed, the impact speed was reduced in 78% of the crashes. Crash types that proved difficult for the threat detection engine were head-on crashes where the approach angle was low and right turn-opposite crashes. These results indicate that connected vehicle

  15. A Comparative Study on Emerging Electric Vehicle Technology Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Jonathan [Sentech, Inc.; Khowailed, Gannate [Sentech, Inc.; Blackburn, Julia [Sentech, Inc.; Sikes, Karen [Sentech, Inc.

    2011-03-01

    Numerous organizations have published reports in recent years that investigate the ever changing world of electric vehicle (EV) technologies and their potential effects on society. Specifically, projections have been made on greenhouse gas (GHG) emissions associated with these vehicles and how they compare to conventional vehicles or hybrid electric vehicles (HEVs). Similar projections have been made on the volumes of oil that these vehicles can displace by consuming large amounts of grid electricity instead of petroleum-based fuels. Finally, the projected rate that these new vehicle fleets will enter the market varies significantly among organizations. New ideas, technologies, and possibilities are introduced often, and projected values are likely to be refined as industry announcements continue to be made. As a result, over time, a multitude of projections for GHG emissions, oil displacement, and market penetration associated with various EV technologies has resulted in a wide range of possible future outcomes. This leaves the reader with two key questions: (1) Why does such a collective range in projected values exist in these reports? (2) What assumptions have the greatest impact on the outcomes presented in these reports? Since it is impractical for an average reader to review and interpret all the various vehicle technology reports published to date, Sentech Inc. and the Oak Ridge National Laboratory have conducted a comparative study to make these interpretations. The primary objective of this comparative study is to present a snapshot of all major projections made on GHG emissions, oil displacement, or market penetration rates of EV technologies. From the extensive data found in relevant publications, the key assumptions that drive each report's analysis are identified and 'apples-to-apples' comparisons between all major report conclusions are attempted. The general approach that was taken in this comparative study is comprised of six primary

  16. DoD use of Domestically-Produced Alternative Fuels and Alternative Fuel Vehicles

    Science.gov (United States)

    2014-04-10

    85 $21,927 Electric $171 Hydrogen $3 Liquefied Natural Gas (LNG) $4 Liquefied Petroleum Gas ( LPG ) $14 Total $25,053 Data source: GSA’s FAST Data...919 407 5,802 GAS PH 13 77 94 10 10 204 HYD DE 5 5 LNG BI 1 1 LPG BI 47 47 LPG DE 1 1 Conventional DSL DE 867 16,174 16,028 5,698 2,508 41,275...includes information on the status of: (1) use and potential use of domestically-produced alternative fuels including but not limited to, natural gas

  17. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    International Nuclear Information System (INIS)

    Henzlova, Daniela; Kouzes, R.; McElroy, R.; Peerani, P.; Baird, K.; Bakel, A.; Borella, M.; Bourne, M.; Bourva, L.; Cave, F.; Chandra, R.; Chernikova, D.; Croft, S.; Dermody, G.; Dougan, A.; Ely, J.; Fanchini, E.; Finocchiaro, P.; Gavron, Victor; Kureta, M.; Ianakiev, Kiril Dimitrov; Ishiyama, K.; Lee, T.; Martin, Ch.; McKinny, K.; Menlove, Howard Olsen; Orton, Ch.; Pappalardo, A.; Pedersen, B.; Plenteda, R.; Pozzi, S.; Schear, M.; Seya, M.; Siciliano, E.; Stave, S.; Sun, L.; Swinhoe, Martyn Thomas; Tagziria, H.; Takamine, J.; Weber, A.-L.; Yamaguchi, T.; Zhu, H.

    2015-01-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3 He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3 He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3 He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3 He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3 He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3 He-alternative technologies.

  18. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kouzes, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peerani, P. [European Commission, Ispra (Italy). Joint Research Centre; Aspinall, M. [Hybrid Instruments Ltd., Birmingham (United Kingdom); Baird, K. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Bakel, A. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Borella, M. [SCK.CEN, Mol (Belgium); Bourne, M. [Univ. of Michigan, Ann Arbor, MI (United States); Bourva, L. [Canberra Ltd., Oxford (United Kingdom); Cave, F. [Hybrid Instruments Ltd., Birmingham (United Kingdom); Chandra, R. [Arktis Radiation Detectors Ltd., Zurich (Sweden); Chernikova, D. [Chalmers Univ. of Technology (Sweden); Croft, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dermody, G. [Symetrica Inc., Maynard, MA (United States); Dougan, A. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Ely, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fanchini, E. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Finocchiaro, P. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Gavron, Victor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kureta, M. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Ianakiev, Kiril Dimitrov [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ishiyama, K. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Lee, T. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Martin, Ch. [Symetrica Inc., Maynard, MA (United States); McKinny, K. [GE Reuter-Stokes, Twinsburg, OH (United States); Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Orton, Ch. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Pappalardo, A. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Pedersen, B. [European Commission, Ispra (Italy). Joint Research Centre; Peranteau, D. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Plenteda, R. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Pozzi, S. [Univ. of Michigan, Ann Arbor, MI (United States); Schear, M. [Symetrica Inc., Maynard, MA (United States); Seya, M. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Siciliano, E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sun, L. [Proportional Technologies Inc., Houston, TX (United States); Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tagziria, H. [European Commission, Ispra (Italy). Joint Research Centre; Vaccaro, S. [DG Energy (Luxembourg); Takamine, J. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Weber, A. -L. [Inst. for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses (France); Yamaguchi, T. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Zhu, H. [National Nuclear Security Administration (NNSA), Washington, DC (United States)

    2015-12-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency {IAEA}, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3He-alternative

  19. Vehicle Technologies' Fact of the Week 2012

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Moore, Sheila A [ORNL; Boundy, Robert Gary [ORNL

    2013-02-01

    Each week the U.S. Department of Energy s Vehicle Technology Office (VTO) posts a Fact of the Week on their website: http://www1.eere.energy.gov/vehiclesandfuels/ . These Facts provide statistical information, usually in the form of charts and tables, on vehicle sales, fuel economy, gasoline prices, and other transportation-related trends. Each Fact is a stand-alone page that includes a graph, text explaining the significance of the data, the supporting information on which the graph was based, and the source of the data. A link to the current week s Fact is available on the VTO homepage, but older Facts are archived and still available at: http://www1.eere.energy.gov/vehiclesandfuels/facts/. This report is a compilation of the Facts that were posted during calendar year 2012. The Facts were written and prepared by staff in Oak Ridge National Laboratory's Center for Transportation Analysis.

  20. Vehicle Technologies' Fact of the Week 2011

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

    2012-04-01

    Each week the U.S. Department of Energy s Vehicle Technology Program (VTP) posts a Fact of the Week on their website: http://www1.eere.energy.gov/vehiclesandfuels/. These Facts provide statistical information, usually in the form of charts and tables, on vehicle sales, fuel economy, gasoline prices, and other transportation-related trends. Each Fact is a stand-alone page that includes a graph, text explaining the significance of the data, the supporting information on which the graph was based, and the source of the data. A link to the current Fact is available Monday through Friday on the VTP homepage, but older Facts are archived and still available at: http://www1.eere.energy.gov/vehiclesandfuels/facts/. This report is a compilation of the Facts that were posted during calendar year 2011. The Facts were written and prepared by staff in Oak Ridge National Laboratory's Center for Transportation Analysis.

  1. Alternative control technologies: Technologies de contrôle non conventionnelles

    National Research Council Canada - National Science Library

    Hudgins, Bernard

    1998-01-01

    .... Through different chapters, the various human factors issues related to the introduction of alternative control technologies into military cockpits are reviewed, in conjunction with more technical...

  2. Bantam: A Systematic Approach to Reusable Launch Vehicle Technology Development

    Science.gov (United States)

    Griner, Carolyn; Lyles, Garry

    1999-01-01

    The Bantam technology project is focused on providing a low cost launch capability for very small (100 kilogram) NASA and University science payloads. The cost goal has been set at one million dollars per launch. The Bantam project, however, represents much more than a small payload launch capability. Bantam represents a unique, systematic approach to reusable launch vehicle technology development. This technology maturation approach will enable future highly reusable launch concepts in any payload class. These launch vehicle concepts of the future could deliver payloads for hundreds of dollars per pound, enabling dramatic growth in civil and commercial space enterprise. The National Aeronautics and Space Administration (NASA) has demonstrated a better, faster, and cheaper approach to science discovery in recent years. This approach is exemplified by the successful Mars Exploration Program lead by the Jet Propulsion Laboratory (JPL) for the NASA Space Science Enterprise. The Bantam project represents an approach to space transportation technology maturation that is very similar to the Mars Exploration Program. The NASA Advanced Space Transportation Program (ASTP) and Future X Pathfinder Program will combine to systematically mature reusable space transportation technology from low technology readiness to system level flight demonstration. New reusable space transportation capability will be demonstrated at a small (Bantam) scale approximately every two years. Each flight demonstration will build on the knowledge derived from the previous flight tests. The Bantam scale flight demonstrations will begin with the flights of the X-34. The X-34 will demonstrate reusable launch vehicle technologies including; flight regimes up to Mach 8 and 250,000 feet, autonomous flight operations, all weather operations, twenty-five flights in one year with a surge capability of two flights in less than twenty-four hours and safe abort. The Bantam project will build on this initial

  3. Automated Mixed Traffic Vehicle (AMTV) technology and safety study

    Science.gov (United States)

    Johnston, A. R.; Peng, T. K. C.; Vivian, H. C.; Wang, P. K.

    1978-01-01

    Technology and safety related to the implementation of an Automated Mixed Traffic Vehicle (AMTV) system are discussed. System concepts and technology status were reviewed and areas where further development is needed are identified. Failure and hazard modes were also analyzed and methods for prevention were suggested. The results presented are intended as a guide for further efforts in AMTV system design and technology development for both near term and long term applications. The AMTV systems discussed include a low speed system, and a hybrid system consisting of low speed sections and high speed sections operating in a semi-guideway. The safety analysis identified hazards that may arise in a properly functioning AMTV system, as well as hardware failure modes. Safety related failure modes were emphasized. A risk assessment was performed in order to create a priority order and significant hazards and failure modes were summarized. Corrective measures were proposed for each hazard.

  4. 2015 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-11-01

    The 2015 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 8-12, 2015, in Arlington, Virginia. The review encompassed all of the work done by the FCTO and the VTO: 258 individual activities were reviewed for VTO, by 170 reviewers. A total of 1,095 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  5. 2014 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-11-01

    The 2014 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 16-20, 2014, in Washington, DC. The review encompassed all of the work done by the FCTO and the VTO: a total of 295 individual activities were reviewed for VTO, by a total of 179 reviewers. A total of 1,354 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  6. 2013 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-10-01

    The 2013 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held May 13-17, 2013, in Crystal City, Virginia. The review encompassed all of the work done by the FCTO and the VTO: a total of 287 individual activities were reviewed for VTO, by a total of 187 reviewers. A total of 1,382 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  7. Consumer preferences for alternative fuel vehicles: Comparing a utility maximization and a regret minimization model

    International Nuclear Information System (INIS)

    Chorus, Caspar G.; Koetse, Mark J.; Hoen, Anco

    2013-01-01

    This paper presents a utility-based and a regret-based model of consumer preferences for alternative fuel vehicles, based on a large-scale stated choice-experiment held among company car leasers in The Netherlands. Estimation and application of random utility maximization and random regret minimization discrete choice models shows that while the two models achieve almost identical fit with the data and differ only marginally in terms of predictive ability, they generate rather different choice probability-simulations and policy implications. The most eye-catching difference between the two models is that the random regret minimization model accommodates a compromise-effect, as it assigns relatively high choice probabilities to alternative fuel vehicles that perform reasonably well on each dimension instead of having a strong performance on some dimensions and a poor performance on others. - Highlights: • Utility- and regret-based models of preferences for alternative fuel vehicles. • Estimation based on stated choice-experiment among Dutch company car leasers. • Models generate rather different choice probabilities and policy implications. • Regret-based model accommodates a compromise-effect

  8. Zero-emission vehicle technology assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Woods, T.

    1995-08-01

    This is the final report in the Zero-Emission Vehicle (ZEV) Technology Assessment, performed for NYSERDA by Booz-Allen & Hamilton Inc. Booz-Allen wrote the final report, and performed the following tasks as part of the assessment: assembled a database of key ZEV organizations, their products or services, and plans; described the current state of ZEV technologies; identified barriers to widespread ZEV deployment and projected future ZEV technical capabilities; and estimated the cost of ZEVs from 1998 to 2004. Data for the ZEV Technology Assessment were obtained from several sources, including the following: existing ZEV industry publications and Booz-Allen files; major automotive original equipment manufacturers; independent electric vehicle manufacturers; battery developers and manufacturers; infrastructure and component developers and manufacturers; the U.S. Department of Energy, the California Air Resources Board, and other concerned government agencies; trade associations such as the Electric Power Research Institute and the Electric Transportation Coalition; and public and private consortia. These sources were contacted by phone, mail, or in person. Some site visits of manufacturers also were conducted. Where possible, raw data were analyzed by Booz-Allen staff and/or verified by independent sources. Performance data from standardized test cycles were used as much as possible.

  9. Potential alternative energy technologies on the Outer Continental Shelf.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Environmental Assessment

    2007-04-20

    This technical memorandum (TM) describes the technology requirements for three alternative energy technologies for which pilot and/or commercial projects on the U.S. Outer Continental Shelf (OCS) are likely to be proposed within the next five to seven years. For each of the alternative technologies--wind, wave, and ocean current--the TM first presents an overview. After each technology-specific overview, it describes the technology requirements for four development phases: site monitoring and testing, construction, operation, and decommissioning. For each phase, the report covers the following topics (where data are available): facility description, electricity generated, ocean area (surface and bottom) occupied, resource requirements, emissions and noise sources, hazardous materials stored or used, transportation requirements, and accident potential. Where appropriate, the TM distinguishes between pilot-scale (or demonstration-scale) facilities and commercial-scale facilities.

  10. Alternative technology for arsenic removal from drinking water

    Directory of Open Access Journals (Sweden)

    Purenović Milovan

    2007-01-01

    Full Text Available Arsenic is a naturally occurring element in water, food and air. It is known as a poison, but in very small quantities it is showed to be an essential element. Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1. Because of rivers and lakes pollution, in a number of plants for natural water purification, average concentrations of arsenic in water are up to 100 ug/1. According to MCL, present technologies are unadjusted for safely arsenic removal for concentrations below of 10 ug/1. This fact has inspired many companies to solve this problem adequately, by using an alternative technologies and new process able materials. In this paper the observation of conventional and the alternative technologies will be given, bearing in mind complex chemistry and electrochemistry of arsenic, formation of colloidal arsenic, which causes the biggest problems in water purification technologies. In this paper many results will be presented, which are obtained using the alternative technologies, as well as the newest results of original author's investigations. Using new nanomaterials, on Pilot plant "VALETA H2O-92", concentration of arsenic was removed far below MLC value.

  11. Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study

    NARCIS (Netherlands)

    van der Kam, M.J.; van Sark, Wilfried

    2015-01-01

    We present a model developed to study the increase of self-consumption of photovoltaic (PV) power by smart charging of electric vehicles (EVs) and vehicle-to-grid (V2G) technology. Whereas previous studies mostly use large EV fleets in their models, our focus is on a smaller scale. We apply the

  12. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  13. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  14. National arrangements in favour of the alternative vehicles: electrical , natural gas (NGV) and liquefied petroleum gases (LPG) vehicles; Dispositions nationales en faveur des vehicules alternatifs: vehicules electriques, au gaz naturel (GNv) et au gaz de petrole liquefie (GPLc)

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-01-01

    The public will find in this document all the financial assistances concerning the acquisition and the maintenance of an alternative vehicle, at the date of january 2000. The vehicles concerned are: all type of electrical vehicles, NGV vehicles and LPG vehicles. (A.L.B.)

  15. Hydrogen storage alternatives - a technological and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Joakim; Hjortsberg, Ove [Volvo Teknisk Utveckling AB, Goeteborg (Sweden)

    1999-12-01

    This study reviews state-of-the-art of hydrogen storage alternatives for vehicles. We will also discuss the prospects and estimated cost for industrial production. The study is based on published literature and interviews with active researchers. Among the alternatives commercially available today, we suggest using a moderate-pressure chamber for seasonal stationary energy storage; metal hydride vessels for small stationary units; a roof of high-pressure cylinders for buses, trucks and ferries; cryogenic high-pressure vessels or methanol reformers for cars and tractors; and cryogenic moderate-pressure vessels for aeroplanes. Initial fuel dispensing systems should be designed to offer hydrogen in pressurised form for good fuel economy, but also as cryogenic liquid for occasional needs of extended driving range and as methanol for reformer-equipped vehicles. It is probable that hydrogen can be stored efficiently in adsorbents for use in recyclable hydrogen fuel containers or rechargeable hydrogen vessels operating at ambient temperature and possibly ambient pressure by year 2004, and at reasonable or even low cost by 2010. The most promising alternatives involve various forms of activated graphite nanostructures. Recommendations for further research and standardisation activities are given.

  16. Energy storage technology for electric and hybrid vehicles. Matching technology to design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, J. [Sycon Energikonsult AB, Malmoe (Sweden)

    1999-12-01

    A central issue when dealing with electrical vehicles has always been how to store energy in sufficient quantities. On April 27 through 28 1999 a workshop was held on this matter at University of California Davis (UC Davis). Organizer and host was Dr. Andrew Burke and the Institute of Transportation Studies (ITS) at UC Davis. The workshop included battery technology, ultra capacitors and fly wheels, but did not include fuel cell technology. In this paper the conference is reviewed with the emphasis on battery development. A section on ultra capacitors and flywheels is also included. The overall observation made at the conference is that most of the effort on energy storage in electric and hybrid vehicles are put into batteries. There is some development on ultra capacitors but almost none on flywheels. The battery also seems to be the choice of the car industry at this point, especially the pulse battery for engine dominant hybrid vehicles, like the Toyota Prius. The battery manufacturers seem to focus more on technology development than cost reduction at this point. An important technological issue as of now is to improve thermal management in order to increase life of the batteries. But when the technological goals are met focus must shift to cost minimization and marketing if the battery electric vehicle shall make a market break through.

  17. Evaluation of EDAR vehicle emissions remote sensing technology.

    Science.gov (United States)

    Ropkins, Karl; DeFries, Timothy H; Pope, Francis; Green, David C; Kemper, Jim; Kishan, Sandeep; Fuller, Gary W; Li, Hu; Sidebottom, Jim; Crilley, Leigh R; Kramer, Louisa; Bloss, William J; Stewart Hager, J

    2017-12-31

    Despite much work in recent years, vehicle emissions remain a significant contributor in many areas where air quality standards are under threat. Policy-makers are actively exploring options for next generation vehicle emission control and local fleet management policies, and new monitoring technologies to aid these activities. Therefore, we report here on findings from two separate but complementary blind evaluation studies of one new-to-market real-world monitoring option, HEAT LLC's Emission Detection And Reporting system or EDAR, an above-road open path instrument that uses Differential Absorption LIDAR to provide a highly sensitive and selective measure of passing vehicle emissions. The first study, by Colorado Department of Public Health and Environment and Eastern Research Group, was a simulated exhaust gas test exercise used to investigate the instrumental accuracy of the EDAR. Here, CO, NO, CH 4 and C 3 H 8 measurements were found to exhibit high linearity, low bias, and low drift over a wide range of concentrations and vehicle speeds. Instrument accuracy was high (R 2 0.996 for CO, 0.998 for NO; 0.983 for CH 4 ; and 0.976 for C 3 H 8 ) and detection limits were 50 to 100ppm for CO, 10 to 30ppm for NO, 15 to 35ppmC for CH 4 , and, depending on vehicle speed, 100 to 400ppmC 3 for C 3 H 8 . The second study, by the Universities of Birmingham and Leeds and King's College London, used the comparison of EDAR, on-board Portable Emissions Measurement System (PEMS) and car chaser (SNIFFER) system measurements collected under real-world conditions to investigate in situ EDAR performance. Given the analytical challenges associated with aligning these very different measurements, the observed agreements (e.g. EDAR versus PEMS R 2 0.92 for CO/CO 2 ; 0.97 for NO/CO 2 ; ca. 0.82 for NO 2 /CO 2 ; and, 0.94 for PM/CO 2 ) were all highly encouraging and indicate that EDAR also provides a representative measure of vehicle emissions under real-world conditions. Copyright

  18. The worldwide growth of launch vehicle technology and services : Quarterly Launch Report : special report

    Science.gov (United States)

    1997-01-01

    This report will discuss primarily those vehicles being introduced by the newly emerging space nations. India, Israel, and Brazil are all trying to turn launch vehicle assets into profitable businesses. In this effort, they have found the technologic...

  19. Neural control systems for alternatively fuelled vehicles and natural gas fuel injection for DACIA NOVA

    Energy Technology Data Exchange (ETDEWEB)

    Sulatisky, M. [Saskatchewan Research Council, Saskatoon, SK (Canada); Ghelesel, A. [BC Gas International, Vancouver, BC (Canada)

    1999-07-01

    The elements of natural gas vehicle conversion technology are described as background to a discussion of the development of bi-fuel injection system for the Rumanian-manufactured DACIA-NOVA automobile. The bi-fuel injection system mirrors the fueling system installed by the original equipment manufacturer; it can also be easily installed on Ford, General Motors and DaimlerChrysler vehicles as well as on most imports.To meet emission standards after 2000, it is envisaged to install on the DACIA NOVA a neural control system (NCS) and a completely adaptive linear control system (ACLS). Details of natural gas vehicles development and the development of NCS and ACLS are discussed, including short-term and long-term objectives.

  20. Vehicle-to-vehicle communications : readiness of V2V technology for application.

    Science.gov (United States)

    2014-08-01

    The purpose of this research report is to assess the readiness for application of vehicle-to-vehicle (V2V) : communications, a system designed to transmit basic safety information between vehicles to facilitate warnings to : drivers concerning impend...

  1. Uncertainty-embedded dynamic life cycle sustainability assessment framework: An ex-ante perspective on the impacts of alternative vehicle options

    International Nuclear Information System (INIS)

    Onat, Nuri Cihat; Kucukvar, Murat; Tatari, Omer

    2016-01-01

    Alternative vehicle technologies have a great potential to minimize the transportation-related environmental impacts, reduce the reliance of the U.S. on imported petroleum, and increase energy security. However, they introduce new uncertainties related to their environmental, economic, and social impacts and certain challenges for widespread adoption. In this study, a novel method, uncertainty-embedded dynamic life cycle sustainability assessment framework, is developed to address both methodological challenges and uncertainties in transportation sustainability research. The proposed approach provides a more comprehensive, system-based sustainability assessment framework by capturing the dynamic relations among the parameters within the U.S. transportation system as a whole with respect to its environmental, social, and economic impacts. Using multivariate uncertainty analysis, likelihood of the impact reduction potentials of different vehicle types, as well as the behavioral limits of the sustainability potentials of each vehicle type are analyzed. Seven sustainability impact categories are dynamically quantified for four different vehicle types (internal combustion, hybrid, plug-in hybrid, and battery electric vehicles) from 2015 to 2050. Although impacts of electric vehicles have the largest uncertainty, they are expected (90% confidence) to be the best alternative in long-term for reducing human health impacts and air pollution from transportation. While results based on deterministic (average) values indicate that electric vehicles have greater potential of reducing greenhouse gas emissions, plug-in hybrid vehicles have the largest potential according to the results with 90% confidence interval. - Highlights: • Uncertainty-embedded dynamic sustainability assessment framework, is developed. • Methodological challenges and uncertainties are addressed. • Seven impact categories are quantified for four different vehicle types.

  2. 2017 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-31

    The 2017 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 5-9, 2017, in Washington, DC. The review encompassed work done by the Hydrogen and Fuel Cells Program and VTO: 263 individual activities were reviewed for VTO by 191 reviewers. Exactly 1,241 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  3. 2016 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-12-01

    The 2016 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 6-9, 2016, in Washington, DC. The review encompassed work done by the Hydrogen and Fuel Cells Program and VTO: 226 individual activities were reviewed for VTO, by 171 reviewers. A total of 1,044 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  4. Preferences for Alternative Fuel Vehicles of Lease Car Drivers in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Koetse, M.J.; Hoen, A.

    2012-04-15

    In this paper we aim to get insight into preferences of Dutch lease car drivers for alternative fuel vehicles (AFVs) and their characteristics. Since AFVs are either not yet available on the market or have only very limited market shares, we have to rely on stated preference research. We perform a state-of-the-art conjoint analysis, based on data obtained through an online choice experiment among Dutch lease car drivers. Results show that under current tax regulations the average lease car driver is indifferent between the conventional technology, flexifuel and the hybrid car, while negative preferences exist for the plug-in hybrid, the electric and the fuel cell car. When current tax regulations would be abolished, strong negative preferences would result for all AFCs, and especially for the electric and fuel cell car. Increases in driving range, reductions in refuelling time, and reductions in additional detour time for reaching an appropriate fuel station, increase AFV preferences substantially. On average the gap between conventional technologies and AFVs remains large, however. We also find that there is considerable heterogeneity in preferences of lease car drivers, and that various market segments and potential early adopters can be identified. In this respect the most interesting finding is that preferences for electric and fuel cell cars decrease substantially, and willingness to pay for driving range increases substantially, when annual mileage increases. Annual mileage also has a substantial impact on sensitivity to monthly costs. We therefore use simulations to assess market shares of electric and fuel cell cars for different annual mileage categories. We find that people with a relatively low annual mileage are more likely to adopt than people with a relatively high annual mileage, regardless of driving range and monthly costs. For the fuel cell car we find similar results, although when driving range is high and cost differences are large, lease car

  5. Alternative Solvents and Technologies for Precision Cleaning of Aerospace Components

    Science.gov (United States)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Hintze, Paul

    2014-01-01

    Precision cleaning solvents for aerospace components and oxygen fuel systems, including currently used Vertrel-MCA, have a negative environmental legacy, high global warming potential, and have polluted cleaning sites. Thus, alternative solvents and technologies are being investigated with the aim of achieving precision contamination levels of less than 1 mg/sq ft. The technologies being evaluated are ultrasonic bath cleaning, plasma cleaning and supercritical carbon dioxide cleaning.

  6. Motorcycle crashes potentially preventable by three crash avoidance technologies on passenger vehicles.

    Science.gov (United States)

    Teoh, Eric R

    2018-07-04

    The objective of this study was to identify and quantify the motorcycle crash population that would be potential beneficiaries of 3 crash avoidance technologies recently available on passenger vehicles. Two-vehicle crashes between a motorcycle and a passenger vehicle that occurred in the United States during 2011-2015 were classified by type, with consideration of the functionality of 3 classes of passenger vehicle crash avoidance technologies: frontal crash prevention, lane maintenance, and blind spot detection. Results were expressed as the percentage of crashes potentially preventable by each type of technology, based on all known types of 2-vehicle crashes and based on all crashes involving motorcycles. Frontal crash prevention had the largest potential to prevent 2-vehicle motorcycle crashes with passenger vehicles. The 3 technologies in sum had the potential to prevent 10% of fatal 2-vehicle crashes and 23% of police-reported crashes. However, because 2-vehicle crashes with a passenger vehicle represent fewer than half of all motorcycle crashes, these technologies represent a potential to avoid 4% of all fatal motorcycle crashes and 10% of all police-reported motorcycle crashes. Refining the ability of passenger vehicle crash avoidance systems to detect motorcycles represents an opportunity to improve motorcycle safety. Expanding the capabilities of these technologies represents an even greater opportunity. However, even fully realizing these opportunities can affect only a minority of motorcycle crashes and does not change the need for other motorcycle safety countermeasures such as helmets, universal helmet laws, and antilock braking systems.

  7. Evaluation of the efficiency of alternative enzyme production technologies

    DEFF Research Database (Denmark)

    Albæk, Mads Orla

    Enzymes are used in an increasing number of industries. The application of enzymes is extending into the production of lignocellulosic ethanol in processes that economically can compete with fossil fuels. Since lignocellulosic ethanol is based on renewable resources it will have a positive impact...... production of cellulases and hemi-cellulases. The aim of the thesiswas to use modeling tools to identify alternative technologies that have higher energy or raw material efficiency than the current technology. The enzyme production by T. reesei was conducted as an aerobic fed-batch fermentation. The process...... of the uncertainty and sensitivity of the model indicated the biological parameters to be responsible for most of the model uncertainty. A number of alternative fermentation technologies for enzyme production were identified in the open literature. Their mass transfer capabilities and their energy efficiencies were...

  8. Energy management in vehicles with alternative drives; Energiemanagement in Fahrzeugen mit alternativen Antrieben

    Energy Technology Data Exchange (ETDEWEB)

    Lange, S; Schimanski, M

    2007-11-21

    Within the next few years, the automotive industry will be confronted with many challenges, as for example stricter emission standards and increasing oil prices. To meet the challenges, alternative drive concepts are currently being developed and placed in the market. To ensure a secure and efficient operation of the electric components, the introduction of an integrated energy management is required. It comprises all planning, controlling and predictive measures. The first part of this dissertation presents a new system concept, which can make an online prognosis of expected driving situations, such as speed and altitude profiles by means of internal vehicle information during an operating cycle. Based on this the control strategy can calculate the future power requirement of the vehicle and initiate control commands to enable a more efficient driving. The basis of this system concept is the recognition of routes with characteristic steering angle information and the creation of a history database for the routes driven with the respective vehicle speeds and altitudes. On the basis of an extensive analysis of the vehicle's electrical system in the second part of the dissertation, different effects on the development process for dimensioning the electrical system power supply are discussed. From this follows the necessity to develop a tool chain based on simulations. The tool chain consists of commercial simulation tools and the software Avanti (Advanced Analysis Tool and Simulation Interface) which is developed within the scope of the dissertation. Avanti enables an automated and optimal procedure when dimensioning the vehicle's electrical system in consideration of different control algorithms. A substantial part of this tool chain is the integration of a verified VHDL-AMS model library for the electrical system components. (orig.)

  9. Energy management in vehicles with alternative drives; Energiemanagement in Fahrzeugen mit alternativen Antrieben

    Energy Technology Data Exchange (ETDEWEB)

    Lange, S.; Schimanski, M.

    2007-11-21

    Within the next few years, the automotive industry will be confronted with many challenges, as for example stricter emission standards and increasing oil prices. To meet the challenges, alternative drive concepts are currently being developed and placed in the market. To ensure a secure and efficient operation of the electric components, the introduction of an integrated energy management is required. It comprises all planning, controlling and predictive measures. The first part of this dissertation presents a new system concept, which can make an online prognosis of expected driving situations, such as speed and altitude profiles by means of internal vehicle information during an operating cycle. Based on this the control strategy can calculate the future power requirement of the vehicle and initiate control commands to enable a more efficient driving. The basis of this system concept is the recognition of routes with characteristic steering angle information and the creation of a history database for the routes driven with the respective vehicle speeds and altitudes. On the basis of an extensive analysis of the vehicle's electrical system in the second part of the dissertation, different effects on the development process for dimensioning the electrical system power supply are discussed. From this follows the necessity to develop a tool chain based on simulations. The tool chain consists of commercial simulation tools and the software Avanti (Advanced Analysis Tool and Simulation Interface) which is developed within the scope of the dissertation. Avanti enables an automated and optimal procedure when dimensioning the vehicle's electrical system in consideration of different control algorithms. A substantial part of this tool chain is the integration of a verified VHDL-AMS model library for the electrical system components. (orig.)

  10. Sustainable Mobility: Using a Global Energy Model to Inform Vehicle Technology Choices in a Decarbonized Economy

    Directory of Open Access Journals (Sweden)

    Timothy Wallington

    2013-04-01

    Full Text Available The reduction of CO2 emissions associated with vehicle use is an important element of a global transition to sustainable mobility and is a major long-term challenge for society. Vehicle and fuel technologies are part of a global energy system, and assessing the impact of the availability of clean energy technologies and advanced vehicle technologies on sustainable mobility is a complex task. The global energy transition (GET model accounts for interactions between the different energy sectors, and we illustrate its use to inform vehicle technology choices in a decarbonizing economy. The aim of this study is to assess how uncertainties in future vehicle technology cost, as well as how developments in other energy sectors, affect cost-effective fuel and vehicle technology choices. Given the uncertainties in future costs and efficiencies for light-duty vehicle and fuel technologies, there is no clear fuel/vehicle technology winner that can be discerned at the present time. We conclude that a portfolio approach with research and development of multiple fuel and vehicle technology pathways is the best way forward to achieve the desired result of affordable and sustainable personal mobility. The practical ramifications of this analysis are illustrated in the portfolio approach to providing sustainable mobility adopted by the Ford Motor Company.

  11. Two-wheeled motor vehicle technology in India: Evolution, prospects and issues

    International Nuclear Information System (INIS)

    Iyer, Narayan V.; Badami, Madhav G.

    2007-01-01

    By providing affordable mobility to millions of people, two-wheeled motor (M2W) vehicles play a vital role in urban transport in India and other low-income Asian countries. At the same time, these vehicles contribute significantly to urban transport impacts and energy consumption, and are characterized by high emissions and traffic mortalities per passenger-kilometre. Given the importance of technology in the popularity of these vehicles and their transport impacts, this paper discusses the evolution of M2W vehicle technology in India, and contributory factors including market forces, environmental regulation, and industry R and D efforts. It then discusses technologies that we expect to be implemented for M2W vehicles in India over the next two or three decades, the likely implications of these technologies in terms of vehicle price, emissions, fuel economy and service life, and issues related to vehicle technology development and implementation. The paper shows that while the Indian M2W vehicle industry has achieved a transformation in innovation, product development and quality in response to market demands and environmental concerns, various technological and institutional challenges need to be addressed by this and the oil and vehicle servicing industries, and government agencies at all levels, to successfully deploy advanced vehicle technologies

  12. Workshop on power conditioning for alternative energy technologies. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. R.

    1979-01-01

    As various alternative energy technologies such as photovoltaics, wind, fuel cells, and batteries are emerging as potential sources of energy for the future, the need arises for development of suitable power-conditioning systems to interface these sources to their respective loads. Since most of these sources produce dc electricity and most electrical loads require ac, an important component of the required power-conditioning units is a dc-to-ac inverter. The discussions deal with the development of power conditioners for each alternative energy technology. Discussion topics include assessments of current technology, identification of operational requirements with a comparison of requirements for each source technology, the identification of future technology trends, the determination of mass production and marketing requirements, and recommendations for program direction. Specifically, one working group dealt with source technology: photovoltaics, fuel cells and batteries, and wind followed by sessions discussing system size and application: large grid-connected systems, small grid-connected systems, and stand alone and dc applications. A combined group session provided an opportunity to discuss problems common to power conditioning development.

  13. Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

    2007-12-01

    This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

  14. A STUDY ON LIMITATION OF GOVERNMENT INITIATIVE MODEL FOR ALTERNATIVE FUEL VEHICLE (AFV PROMOTION IN CHINA

    Directory of Open Access Journals (Sweden)

    Byunghun Choi

    2016-04-01

    Full Text Available Chinese responsibility for reducing Greenhouse Gas or carbon dioxide emission increases continuously. Chinese government suggested two targets; Alternative Fuel Vehicle output volume 500 thousand and AFV market share 5% by the end of 2011. However any of two targets did not come true. Therefore this study accessed the question, ‘why Chinese government initiative model for AFV promotion has been so poor?’ This study reviewed the transition process for AFV policies in China and made a structural analysis for three key policies since 2009. As a result the number of articles for related industries or factor endowments was relatively more than firm strategy or demand conditions. Also this study accessed the AFV strategy of Six SOEs from the perspective of social responsibility. Six SOEs have more concentrated on electric vehicle rather than hybrid vehicle with following the government leadership. However major EV or HEV models of them mostly were made by Joint Ventures being under control of foreign makers and the JVs have actually controlled over AFV business. So the limitation of Chinese government initiative model resulted from supplier-centric approach with targeting for public transportation and institution consumer, and it caused a failure to create the demand conditions of general customers.

  15. Detuning Minimization of Induction Motor Drive System for Alternative Energy Vehicles

    Directory of Open Access Journals (Sweden)

    Habibur Rehman

    2015-08-01

    Full Text Available This paper evaluates different types of AC machines and various control techniques for their suitability for the drive system of Alternative Energy Vehicles (AEV. An Indirect Field Oriented (IFO drive system for the AEV application is chosen and its major problem of detuning is addressed by designing an offline and an online rotor resistance adaptation technique. The offline scheme sets the slip gain at various operating conditions based on the fact that if the rotor resistance is set correctly and field orientation is achieved, then there should be a linear relationship between the torque current and the output torque. The online technique is designed using Model Reference Adaptive System (MRAS for the rotor resistance adaptation. For an ideal field oriented machine, the rotor flux along the q-axis should be zero. This condition acts as a reference model for the proposed MRAS scheme. The current model flux observer in the synchronous frame of reference is selected as an adjustable model and its rotor resistance is tuned so that the flux along the q-axis becomes zero. The effectiveness of the offline tuning scheme is evident through performance validation of the drive system, which is implemented in a real Ford vehicle. The experimental results obtained while driving the test vehicle are included in the paper while the proposed online scheme is validated on a 3.75 kW prototype induction motor.

  16. Implementation and development of vehicle tracking and immobilization technologies.

    Science.gov (United States)

    2010-01-01

    Since the mid-1980s, limited use has been made of vehicle tracking using satellite communications to mitigate the security and safety risks created by the highway transportation of certain types of hazardous materials. However, vehicle-tracking techn...

  17. Auto-vehicles and environment: Emission limits and innovative technology

    International Nuclear Information System (INIS)

    Pinchera, G.

    1992-01-01

    Brief descriptions are given of the main design and performance characteristics and maintenance requirements of the principal types of catalytic converters currently being marketed in Italy. An assessment is made of the contribution of these devices to air pollution abatement in Italy as car owners conform to recently passed stricter emission limits. A historical review is made of trends in auto-vehicle pollution limits in the USA and Italy. Comparisons are made of efforts by industrialized countries to reduce air pollution in the transportation sector. Here, the author notes the slowness of Italy's response to the air pollution problem, in particular, this foreign-oil-dependent Nation's over-emphasis on energy consuming and highly polluting road transport systems, as well as, its lack of technology utilization and commercialization in the pollution equipment sector. Suggestions are made as to ways to overcome the worsening situation with regard to urban area traffic derived air pollution, e.g., the bolstering of mass transit systems and more R ampersand D investment in pollution abatement technologies

  18. Evaluating driver reactions to new vehicle technologies intended to increase safety and mobility across the lifespan.

    Science.gov (United States)

    2013-05-01

    Personal vehicle manufactures are introducing a wide range of new technologies that are : intended to increase the safety, comfort, and mobility of drivers of all ages. Examples range from : semi-autonomous technologies such as adaptive cruise contro...

  19. Complex multidisciplinary systems decomposition for aerospace vehicle conceptual design and technology acquisition

    Science.gov (United States)

    Omoragbon, Amen

    Although, the Aerospace and Defense (A&D) industry is a significant contributor to the United States' economy, national prestige and national security, it experiences significant cost and schedule overruns. This problem is related to the differences between technology acquisition assessments and aerospace vehicle conceptual design. Acquisition assessments evaluate broad sets of alternatives with mostly qualitative techniques, while conceptual design tools evaluate narrow set of alternatives with multidisciplinary tools. In order for these two fields to communicate effectively, a common platform for both concerns is desired. This research is an original contribution to a three-part solution to this problem. It discusses the decomposition step of an innovation technology and sizing tool generation framework. It identifies complex multidisciplinary system definitions as a bridge between acquisition and conceptual design. It establishes complex multidisciplinary building blocks that can be used to build synthesis systems as well as technology portfolios. It also describes a Graphical User Interface Designed to aid in decomposition process. Finally, it demonstrates an application of the methodology to a relevant acquisition and conceptual design problem posed by the US Air Force.

  20. METHOD OF CHOOSING THE TECHNOLOGY OF VEHICLE OPERATION ON DELIVERY ROUTES

    Directory of Open Access Journals (Sweden)

    Ye. Nagornyi

    2014-10-01

    Full Text Available A method for determining the technology of vehicles operation on delivery (team routes, which allows to determine the optimal sequence of cargo delivery to customers by vehicles of certain capacity in order to meet the requirements of cargo owners regarding the conditions of service is offered. Recommendations for creation of an automated system of forming the technology of vehicles operation on delivery routes are developed.

  1. U.S. advanced launch vehicle technology programs : Quarterly Launch Report : special report

    Science.gov (United States)

    1996-01-01

    U.S. firms and U.S. government agencies are jointly investing in advanced launch vehicle technology. This Special Report summarizes U.S. launch vehicle technology programs and highlights the changing : roles of government and industry players in pick...

  2. Reducing environmental damage through the use of unmanned aerial vehicles as the best available technology

    Science.gov (United States)

    Fedulova, E. A.; Akulov, A. O.; Rada, A. O.; Alabina, T. A.; Savina, Ju Ju

    2018-01-01

    The article examines the possibilities of using unmanned aerial vehicles as the best available technologies in the field of agriculture and mining. The object of the study is the use of unmanned aerial vehicles as the best available technology. The main areas of application of this technology are identified: agro technical operations, aerial photography of mining operations. The technology of unmanned aerial vehicles is compared with the technologies of ground agricultural machinery. The research methodology includes an expert evaluation of the unmanned aerial vehicle technology belonging to the class of the best available technologies by the criteria: the level of environmental impact, resource saving, the use of low-waste, non-waste processes, the existence of at least two objects, economic efficiency. Expert evaluations were processed using the apparatus of fuzzy sets, which make it possible to construct membership functions. This allowed us to prove that the technology of unmanned aerial vehicles belongs to a fuzzy set of the best available technologies. The results of the research show that the use of unmanned aerial vehicles provides a saving of resources, especially non-renewable combustible minerals, reduces emissions and discharges of pollutants into the atmosphere, and also reduces soil erosion. Unmanned aerial vehicles should be included in the national directories of the best available technologies for the mining industry and agriculture.

  3. Support to X-33/Reusable Launch Vehicle Technology Program

    Science.gov (United States)

    2000-01-01

    The Primary activities of Lee & Associates for the referenced Purchase Order has been in direct support of the X-33/Reusable Launch Vehicle Technology Program. An independent review to evaluate the X-33 liquid hydrogen fuel tank failure, which recently occurred after-test of the starboard tank has been provided. The purpose of the Investigation team was to assess the tank design modifications, provide an assessment of the testing approach used by MSFC (Marshall Space Flight Center) in determining the flight worthiness of the tank, assessing the structural integrity, and determining the cause of the failure of the tank. The approach taken to satisfy the objectives has been for Lee & Associates to provide the expertise of Mr. Frank Key and Mr. Wayne Burton who have relevant experience from past programs and a strong background of experience in the fields critical to the success of the program. Mr. Key and Mr. Burton participated in the NASA established Failure Investigation Review Team to review the development and process data and to identify any design, testing or manufacturing weaknesses and potential problem areas. This approach worked well in satisfying the objectives and providing the Review Team with valuable information including the development of a Fault Tree. The detailed inputs were made orally in real time in the Review Team daily meetings. The results of the investigation were presented to the MSFC Center Director by the team on February 15, 2000. Attached are four charts taken from that presentation which includes 1) An executive summary, 2) The most probable cause, 3) Technology assessment, and 4) Technology Recommendations for Cryogenic tanks.

  4. An assessment of electric vehicles: technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives.

    Science.gov (United States)

    Delucchi, M A; Yang, C; Burke, A F; Ogden, J M; Kurani, K; Kessler, J; Sperling, D

    2014-01-13

    Concerns about climate change, urban air pollution and dependence on unstable and expensive supplies of foreign oil have led policy-makers and researchers to investigate alternatives to conventional petroleum-fuelled internal-combustion-engine vehicles in transportation. Because vehicles that get some or all of their power from an electric drivetrain can have low or even zero emissions of greenhouse gases (GHGs) and urban air pollutants, and can consume little or no petroleum, there is considerable interest in developing and evaluating advanced electric vehicles (EVs), including pure battery-electric vehicles, plug-in hybrid electric vehicles and hydrogen fuel-cell electric vehicles. To help researchers and policy-makers assess the potential of EVs to mitigate climate change and reduce petroleum use, this paper discusses the technology of EVs, the infrastructure needed for their development, impacts on emissions of GHGs, petroleum use, materials use, lifetime costs, consumer acceptance and policy considerations.

  5. Utilization of the Flexibility Potential of Electric Vehicles - an Alternative to Distribution Grid Reinforcements.

    OpenAIRE

    Ager-Hanssen, Siri Bruskeland; Myhre, Siri Olimb

    2015-01-01

    Today, the transport sector accounts for a large share of global emissions. Electric vehicles have many environmental advantages compared to conventional petrol vehicles. Hence, if electric vehicles can replace petrol vehicles, the transportation sector's total emissions can be significantly reduced. In Norway, due to policy incentives, it is expected that the number of electric vehicles will increase considerably in the near future. Despite the great advantages of electric vehicles, large pe...

  6. Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ou Xunmin, E-mail: oxm07@mails.tsinghua.edu.c [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); Zhang Xiliang, E-mail: zhang_xl@tsinghua.edu.c [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Chang Shiyan [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China)

    2010-08-15

    The rapid growth of vehicles has resulted in continuing growth in China's oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China's road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology.

  7. Scenario analysis on alternative fuel/vehicle for China's future road transport. Life-cycle energy demand and GHG emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Xunmin [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); Zhang, Xiliang; Chang, Shiyan [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China)

    2010-08-15

    The rapid growth of vehicles has resulted in continuing growth in China's oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China's road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology. (author)

  8. Solar energised transport solution and customer preferences and opinions about alternative fuel Vehicles – the case of slovenia

    Directory of Open Access Journals (Sweden)

    Matjaž KNEZ

    2015-09-01

    Full Text Available Authorities in Slovenia and other EU member states are confronted with problems of city transportation. Fossil-fuel based transport poses two chief problems – local and global pollution, and dwindling supplies and ever increasing costs. An elegant solution is to gradually replace the present automobile fleet with low emission vehicles. This article first explores the economics and practical viability of the provision of solar electricity for the charging of electric vehicles by installation of economical available PV modules and secondly the customer preferences and opinions about alternative low emission vehicles. Present estimates indicate that for the prevailing solar climate of Celje – a medium-sized Slovenian town – the cost would be only 2.11€ cents/kWh of generated solar electricity. Other results have also revealed that the most relevant factor for purchasing low emission vehicle is total vehicle price.

  9. Minimizing the Carbon Footprint for the Time-Dependent Heterogeneous-Fleet Vehicle Routing Problem with Alternative Paths

    Directory of Open Access Journals (Sweden)

    Wan-Yu Liu

    2014-07-01

    Full Text Available Torespondto the reduction of greenhouse gas emissions and global warming, this paper investigates the minimal-carbon-footprint time-dependent heterogeneous-fleet vehicle routing problem with alternative paths (MTHVRPP. This finds a route with the smallestcarbon footprint, instead of the shortestroute distance, which is the conventional approach, to serve a number of customers with a heterogeneous fleet of vehicles in cases wherethere may not be only one path between each pair of customers, and the vehicle speed differs at different times of the day. Inheriting from the NP-hardness of the vehicle routing problem, the MTHVRPP is also NP-hard. This paper further proposes a genetic algorithm (GA to solve this problem. The solution representedbyour GA determines the customer serving ordering of each vehicle type. Then, the capacity check is used to classify multiple routes of each vehicle type, and the path selection determines the detailed paths of each route. Additionally, this paper improves the energy consumption model used for calculating the carbon footprint amount more precisely. Compared with the results without alternative paths, our experimental results show that the alternative path in this experimenthas a significant impact on the experimental results in terms of carbon footprint.

  10. Technology Improvement for the High Reliability LM-2F Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    QIN Tong; RONG Yi; ZHENG Liwei; ZHANG Zhi

    2017-01-01

    The Long March 2F (LM-2F) launch vehicle,the only launch vehicle designed for manned space flight in China,successfully launched the Tiangong 2 space laboratory and the Shenzhou ll manned spaceship into orbits in 2016 respectively.In this study,it introduces the technological improvements for enhancing the reliability of the LM-2F launch vehicle in the aspects of general technology,control system,manufacture and ground support system.The LM2F launch vehicle will continue to provide more contributions to the Chinese Space Station Project with its high reliability and 100% success rate.

  11. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs

    International Nuclear Information System (INIS)

    Askin, Amanda C.; Barter, Garrett E.; West, Todd H.; Manley, Dawn K.

    2015-01-01

    We present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 7–8 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. The model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed natural gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives. -- Highlights: •We present a parametric analysis of factors U.S. Class 7–8 trucks through 2050. •Conventional diesels will be more than 70% of U.S. heavy-duty vehicles through 2050. •CNG trucks are well suited to large, urban fleets with private refueling. •Ultra-efficient long haul diesel trucks are preferred over LNG at current fuel prices

  12. Assessment of the influence on vehicle emissions of driving style, vehicle technology and traffic measures

    NARCIS (Netherlands)

    Burgwal, H.C. van de; Gense, N.L.J.; Mierlo, J. van; Maggetto, G.

    2002-01-01

    The influence of traffic measures and driving style on different vehicle emissions and on primary energy consumption, and the definition of vehicle parameters influencing the relation between them, is an interesting issue to be assessed in order to allow more realistic estimations of the impact of

  13. Electric vehicles: energy consumption and the comparision with other new vehicle technologies

    NARCIS (Netherlands)

    Weijer, C.J.T. van de; Schillemans, R.A.A.

    1996-01-01

    In the end of the 19th century the electric vehicle (EV) controlled the market for road transport. But with remarkable improvements in the performance of internal combustion engine vehicles (ICEVs), EVs had vanished from the scene by the 1930's. Since then, they have attracted interest from time to

  14. Alternate applications of heavy water in biological and technological fields

    International Nuclear Information System (INIS)

    Bhaskaran, M.; Prakash, R.

    2005-01-01

    Deuterium and its various compounds like heavy water exhibit distinctly different properties when compared to hydrogen and its compounds. The differences in properties are due to the primary and secondary isotopic effects. Though heavy water has been used solely for nuclear applications so far, its applications in life sciences and high technology areas are fast emerging. Heavy Water Board has taken up development of alternate applications of heavy water. The study taken up has indicated superior thermal stability for oral polio vaccine prepared in heavy water. This study has revealed various opportunities for application of heavy water or deuterium in life sciences and the paper dwells on these possibilities. The higher stability of compounds with deuterium has also brought in its applications in various high technology areas. These are mainly in micro electronics. Use of deuterium in manufacture of high quality optical fibres has already been established. These are also included in the paper. (author)

  15. Evaluating Alternative Fuel Vehicles from Technical, Environmental and Economic Perspectives: Case of Light-Duty Vehicles in Iran

    OpenAIRE

    Vahid Aryanpur; Ehsan Shafiei

    2012-01-01

    This paper presents an environmental and technoeconomic evaluation of light duty vehicles in Iran. A comprehensive well-to-wheel (WTW) analysis is applied to compare different automotive fuel chains, conventional internal combustion engines and innovative vehicle powertrains. The study examines the competitiveness of 15 various pathways in terms of energy efficiencies, GHG emissions, and levelized cost of different energy carriers. The results indicate that electric vehic...

  16. Monitoring Technology for Vehicle Loading Status Based on the Analysis of Suspension Vibration Characters

    Directory of Open Access Journals (Sweden)

    Shiwu Li

    2014-01-01

    Full Text Available Monitoring and early warning of vehicle risk status was one of the key technologies of transportation security, and real-time monitoring load status could reduce the transportation accidents effectively. In order to obtain vehicle load status information, vehicle characters of suspension were analyzed and simulated under different working conditions. On the basis of this, the device that can detect suspension load with overload protection structure was designed and a method of monitored vehicle load status was proposed. The monitoring platform of vehicle load status was constructed and developed for a FAW truck and system was tested on level-A road and body twist lane. The results show that the measurement error is less than 5% and horizontal centre-of-mass of vehicle was positioned accurately. The platform enables providing technical support for the real-time monitoring and warning of vehicles risk status in transit.

  17. The advancement of electric vehicles - case: Tesla Motors. Disruptive technology requiring systemic innovating

    OpenAIRE

    Lehtinen, Petri

    2015-01-01

    Electric vehicles have existed for over 100 years as a disruptive innovation. Even though they have always been easier to use, quieter and cleaner, gasoline cars have beaten it in price, range and faster fueling. As gasoline cars have been the technological standard for the past 150 years there has been no motivation by car manufacturers to advance electric vehicles. By producing electric vehicles Tesla Motors has appropriately become the first successful startup car manufacturer in over 100 ...

  18. Design Concept for a Minimal Volume Spacecraft Cabin to Serve as a Mars Ascent Vehicle Cabin and Other Alternative Pressurized Vehicle Cabins

    Science.gov (United States)

    Howard, Robert L., Jr.

    2016-01-01

    The Evolvable Mars Campaign is developing concepts for human missions to the surface of Mars. These missions are round-trip expeditions, thereby requiring crew launch via a Mars Ascent Vehicle (MAV). A study to identify the smallest possible pressurized cabin for this mission has developed a conceptual vehicle referred to as the minimal MAV cabin. The origin of this concept will be discussed as well as its initial concept definition. This will lead to a description of possible configurations to integrate the minimal MAV cabin with ascent vehicle engines and propellant tanks. Limitations of this concept will be discussed, in particular those that argue against the use of the minimal MAV cabin to perform the MAV mission. However, several potential alternative uses for the cabin are identified. Finally, recommended forward work will be discussed, including current work in progress to develop a full scale mockup and conduct usability evaluations.

  19. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Directory of Open Access Journals (Sweden)

    Philippe Lebeau

    2015-01-01

    Full Text Available Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks and vehicle technology (petrol, hybrid, diesel, and electric vehicles. Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile.

  20. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Science.gov (United States)

    Lebeau, Philippe; De Cauwer, Cedric; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry

    2015-01-01

    Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile. PMID:26236769

  1. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Science.gov (United States)

    Lebeau, Philippe; De Cauwer, Cedric; Van Mierlo, Joeri; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry

    2015-01-01

    Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile.

  2. A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development

    OpenAIRE

    Fuad Un-Noor; Sanjeevikumar Padmanaban; Lucian Mihet-Popa; Mohammad Nurunnabi Mollah; Eklas Hossain

    2017-01-01

    Electric vehicles (EV), including Battery Electric Vehicle (BEV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), Fuel Cell Electric Vehicle (FCEV), are becoming more commonplace in the transportation sector in recent times. As the present trend suggests, this mode of transport is likely to replace internal combustion engine (ICE) vehicles in the near future. Each of the main EV components has a number of technologies that are currently in use or can become prominent in...

  3. Multipurpose Educational Modules to Teach Hydraulic Hybrid Vehicle Technologies

    Science.gov (United States)

    2007-09-01

    The goal of the overall project is to develop a software simulation for a hydraulic hybrid vehicle. The simulation will enable students to compare various hybrid configurations with conventional IC engine performance.

  4. Battery Technologies for Mass Deployment of Electric Vehicles

    Science.gov (United States)

    2018-03-23

    Electric vehicle (EV) batteries have significantly improved since their inception. However, lifetime of these batteries is still strongly dependent on the usage profiles. This report describes aspects of EV battery utilization, and their impact on ba...

  5. A Framework for Integration of IVHM Technologies for Intelligent Integration for Vehicle Management

    Science.gov (United States)

    Paris, Deidre E.; Trevino, Luis; Watson, Mike

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of IIVM. These real-time responses allow the IIVM to modify the effected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the IIVM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission

  6. Alternative alkali resistant deNO{sub x} technologies

    Energy Technology Data Exchange (ETDEWEB)

    Buus Kristensen, S.; Due-Hansen, J.; Putluru, S.S.R.; Kunov-Kruse, A.; Fehrmann, R.; Degn Jensen, A.

    2011-04-15

    The aim of the project is to identify, make and test possible alkali resistant deNO{sub x} catalysts for use in biomass, waste or fossil fuelled power plants, where the flue gas typically has a high level of potassium compounds, which rapidly de-activate the traditional V{sub 2}O{sub 5}/TiO{sub 2} catalyst. Furthermore, new technologies are investigated based on a protective coating of the catalyst elements and selective reversible absorption of NO{sub x} with ionic liquids. Several promising alternative deNO{sub x} catalyst types have been made during the project: 1) V, Fe, CU based nano-TiO{sub 2} and nano-TiO{sub 2}-SO{sub 4}{sup 2-} catalysts; 2) V/ZrO{sub 2}-SO{sub 2}- and V/ZrO{sub 2}-CeO{sub 2} catalysts; V, Fe, Cu based Zeolite catalysts; 4) V, Fe, Cu based Heteropoly acid catalysts. Several of these are promising alternatives to the state-of the art industrial reference catalyst. All catalysts prepared in the present project exhibit higher to much higher alkali resistance compared to the commercial reference. Furthermore, two catalysts, i.e. 20 wt% V{sub 2}O-3-TiO{sub 2} nano-catalyst and the 4 wt% CuO-Mordenite zeolite based catalyst have also a higher initial SCR activity compared to the commercial one before alkali poisoning. Thus, those two catalysts might be attractive for SCR deNO{sub x} purposes even under ''normal'' fuel conditions in power plants and elsewhere making them strong candidates for further development. These efforts regarding all the promising catalysts will be pursued after this project has expired through a one year Proof of Concept project granted by the Danish Agency for Science, Technology and Innovation. Also the severe rate of deactivation due to alkali poisons can be avoided by coating the vanadium catalyst with Mg. Overall, the protective coating of SCR catalysts developed in the project seems promising and a patent application has been filed for this technology. Finally, a completely different approach to

  7. A Storable, Hybrid Mars Ascent Vehicle Technology Demonstrator for the 2020 Launch Opportunity

    Science.gov (United States)

    Chandler, A. A.; Karabeyoglu, M. A.; Cantwell, B. J.; Reeve, R.; Goldstein, B. G.; Hubbard, G. S.

    2012-06-01

    A Phoenix sized mission including a reduced payload, two-stage, hybrid Mars Ascent Vehicle technology demonstrator is proposed for the 2020 opportunity. The hybrid MAV is storable on Mars and would retire risk for a Mars Sample Return campaign.

  8. The Innovative Technology Deployment (ITD)/ Commercial Vehicle Information Systems and Networks (CVISN) Program, 2016 annual report.

    Science.gov (United States)

    2017-06-01

    On December 4, 2015, the Fixing Americas Surface Transportation Act, 2015 (FAST Act) (Pub. L. 114-94) established the Innovative Technology Deployment (ITD) Grant Program, replacing the long-standing Commercial Vehicle Information Systems and Netw...

  9. Automotive Security Functions; The Use of New Technologies to Tackle Vehicle-Related Crime

    NARCIS (Netherlands)

    Knapik, Peter

    2016-01-01

    Daily life is increasingly penetrated by new technologies. Advanced driver assistance systems with sophisticated sensors are increasingly available in all classes of vehicles. Moreover, mobile devices, such as smartphones, have become our daily companions. With the help of wireless communication

  10. Production Costs of Alternative Transportation Fuels. Influence of Crude Oil Price and Technology Maturity

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, Pierpaolo; Morrison, Geoff; Kaneko, Hiroyuki; Cuenot, Francois; Ghandi, Abbas; Fulton, Lewis

    2013-07-01

    This study examines the production costs of a range of transport fuels and energy carriers under varying crude oil price assumptions and technology market maturation levels. An engineering ''bottom-up'' approach is used to estimate the effect of the input cost of oil and of various technological assumptions on the finished price of these fuels. In total, the production costs of 20 fuels are examined for crude oil prices between USD 60 and USD 150 per barrel. Some fuel pathways can be competitive with oil as their production, transport and storage technology matures, and as oil price increases. Rising oil prices will offer new opportunities to switch to alternative fuels for transport, to diversify the energy mix of the transport sector, and to reduce the exposure of the whole system to price volatility and potential distuption of supply. In a time of uncertainty about the leading vehicle technology to decarbonize the transport sector, looking at the fuel cost brings key information to be considered to keep mobility affordable yet sustainable.

  11. Daemen Alternative Energy/Geothermal Technologies Demonstration Program, Erie County

    Energy Technology Data Exchange (ETDEWEB)

    Beiswanger, Robert C. [Daemen College, Amherst, NY (United States)

    2013-02-28

    The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is available to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings that are quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center

  12. Energy and global warming impacts of CFC alternative technologies

    International Nuclear Information System (INIS)

    Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

    1992-01-01

    Chlorofluorocarbons (CFCs) are used in a number of applications, and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s. However, in the mid-1980s, it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric ozone. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFSs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of these alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects in the form of carbon dioxide emissions resulting from energy use for commercial and residential heating and cooling, household and commercial refrigeration, building and automobile air-conditioning, and general metal and electronics solvent cleaning. The discussion in this paper focuses on those aspects of the study relevant to refrigeration and air-conditioning. In general the use of hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) alternatives for CFCs lead to large and sometimes dramatic reduction in total equivalent warming impact (TEWI), lifetime equivalent CO 2 emission. Most of the reductions result from decreased direct effects without significant changes in energy use. 3 refs., 3 figs., 1 tab

  13. Alternative applications of atomic vapor laser isotope separation technology

    International Nuclear Information System (INIS)

    1991-01-01

    This report was commissioned by the Secretary of Energy. It summarizes the main features of atomic vapor laser isotope separation (AVLIS) technology and subsystems; evaluates applications, beyond those of uranium enrichment, suggested by Lawrence Livermore National Laboratory (LLNL) and a wide range of US industries and individuals; recommends further work on several applications; recommends the provision of facilities for evaluating potential new applications; and recommends the full involvement of end users from the very beginning in the development of any application. Specifically excluded from this report is an evaluation of the main AVLIS missions, uranium enrichment and purification of plutonium for weapons. In evaluating many of the alternative applications, it became clear that industry should play a greater and earlier role in the definition and development of technologies with the Department of Energy (DOE) if the nation is to derive significant commercial benefit. Applications of AVLIS to the separation of alternate (nonuranium) isotopes were considered. The use of 157 Gd as burnable poison in the nuclear fuel cycle, the use 12 C for isotopically pure diamond, and the use of plutonium isotopes for several nonweapons applications are examples of commercially useful products that might be produced at a cost less than the product value. Separations of other isotopes such as the elemental constituents of semiconductors were suggested; it is recommended that proposed applications be tested by using existing supplies to establish their value before more efficient enrichment processes are developed. Some applications are clear, but their production costs are too high, the window of opportunity in the market has passed, or societal constraints (e.g., on reprocessing of reactor fuel) discourage implementation

  14. Optimal environmental benefits of utilising alternative energy technologies in Jordan

    International Nuclear Information System (INIS)

    Mrayyan, B.

    2004-01-01

    With rapid population growth and increase in industrial activities, more energy is consumed, resulting in environmental pollution and economic difficulties. Therefore, the need for utilising renewable energy resources has emerged. Although Jordan does not have adequate fuel supplies (90% of its crude oil is imported), it is gifted with alternative resources. Because of the political and economical constraints that hinder the import of crude oil from neighbouring countries and of the fact that Jordan has limited fossil fuel resources, strategies to meet energy demand are being addressed and examined together with their consequences and the ways in which they could be utilised. This paper assesses for the first time, the potential of using alternative energy technologies in Jordan, including the utilisation of solar energy for water heating, for wind towers in rural areas and also for biogas production from waste. Approximately 2% of unconventional renewable energy resources are being utilised. The data and scenarios of this study were presented in a manner that would assist decision makers, funding agencies, researchers and other related parties to establish programmes that will be helpful in meeting the energy demand, while preserving the environment and maintaining sustainability. (author)

  15. The 'neighbor effect'. Simulating dynamics in consumer preferences for new vehicle technologies

    International Nuclear Information System (INIS)

    Mau, Paulus; Eyzaguirre, Jimena; Jaccard, Mark; Tiedemann, Kenneth; Collins-Dodd, Colleen

    2008-01-01

    Understanding consumer behaviour is essential in designing policies that efficiently increase the uptake of clean technologies over the long-run. Expert opinion or qualitative market analyses have tended to be the sources of this information. However, greater scrutiny on governments increasingly demands the use of reliable and credible evidence to support policy decisions. While discrete choice research and modeling techniques have been applied to estimate consumer preferences for technologies, these methods often assume static preferences. This study builds on the application of discrete choice research and modeling to capture dynamics in consumer preferences. We estimate Canadians' preferences for new vehicle technologies under different market assumptions, using responses from two national surveys focused on hybrid gas-electric vehicles and hydrogen fuel cell vehicles. The results support the relevance of a range of vehicle attributes beyond the purchase price in shaping consumer preferences towards clean vehicle technologies. They also corroborate our hypothesis that the degree of market penetration of clean vehicle technologies is an influence on people's preferences ('the neighbor effect'). Finally, our results provide behavioural parameters for the energy-economy model CIMS, which we use here to show the importance of including consumer preference dynamics when setting policies to encourage the uptake of clean technologies. (author)

  16. Diffusion of new automotive technologies for improving energy efficiency in Brazil's light vehicle fleet

    International Nuclear Information System (INIS)

    Bastin, Cristina; Szklo, Alexandre; Rosa, Luiz Pinguelli

    2010-01-01

    Historically, Brazil has promoted the development and sales of light duty vehicles running on ethanol (firstly, ethanol-dedicated cars, and recently flexfuel cars). In the 1990s, the country also favored the sales of compact cars to middle and low-income classes. However, in the last years, the profile of vehicles sold in Brazil has converged towards larger and less-efficient vehicles. In 2008, Brazil launched the vehicle labeling program. Based on the outcomes of the historical programs oriented towards the development of automotive innovations, and on a survey conducted with the country's main auto makers, this article evaluates whether the vehicle labeling program will both improve the energy efficiency of light vehicles, and introduce new technologies. Our results indicate that, despite its virtuous intentions, the program will not control the tendency of rising fuel consumption of passenger cars sold in Brazil. Therefore, other policies are needed to boost innovations in Brazil's automotive industry. (author)

  17. Vehicle test report: South Coast technology electric conversion of a Volkswagen Rabbit

    Science.gov (United States)

    Price, T. W.; Shain, T. W.; Bryant, J. A.

    1981-01-01

    The South Coast Technology Volkswagen Rabbit, was tested at the Jet Propulsion Laboratory's (JPL) dynamometer facility and at JPL's Edwards Test Station (ETS). The tests were performed to characterize certain parameters of the South Coast Rabbit and to provide baseline data that will be used for the comparison of near term batteries that are to be incorporated into the vehicle. The vehicle tests were concentrated on the electrical drive system; i.e., the batteries, controller, and motor. The tests included coastdowns to characterize the road load, maximum effort acceleration, and range evaluation for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle was made by comparing its constant speed range performance with those vehicles described in the document 'state of the Art assessment of Electric and Hybrid Vehicles'. The Rabbit performance was near to the best of the 1977 vehicles.

  18. Vehicle Technologies and Fuel Cell Technologies Office Research and Development Programs: Prospective Benefits Assessment Report for Fiscal Year 2018

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Birky, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Gohlke, David [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-01

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies Offices of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy invest in early-stage research of advanced batteries and electrification, engines and fuels, materials, and energy-efficient mobility systems; hydrogen production, delivery, and storage; and fuel cell technologies. This report documents the estimated benefits of successful development and implementation of advanced vehicle technologies. It presents a comparison of a scenario with completely successful implementation of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies (the Program Success case) to a future in which there is no contribution after Fiscal Year 2017 by the VTO or FCTO to these technologies (the No Program case). Benefits were attributed to individual program technology areas, which included FCTO research and development and the VTO programs of electrification, advanced combustion engines and fuels, and materials technology. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 24% to 30% higher than in the No Program case, while fuel economy for on-road medium- and heavy-duty vehicle stock could be as much as 13% higher. The resulting petroleum savings in 2035 were estimated to be as high as 1.9 million barrels of oil per day, and reductions in greenhouse gas emissions were estimated to be as high as 320 million metric tons of carbon dioxide equivalent per year. Projections of light-duty vehicle adoption indicate that although advanced-technology vehicles may be somewhat more expensive to purchase, the fuel savings result in a net reduction of consumer cost. In 2035, reductions in annual fuel expenditures for vehicles (both light- and heavy-duty) are projected to range from $86 billion to $109 billion (2015$), while the projected increase in new vehicle

  19. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  20. National measures fostering alternative vehicles: electric, natural gas, liquefied oil gas vehicles; Dispositions nationales en faveur des vehicules alternatifs: vehicules electriques, au gaz naturel (GNv) et au gaz de petrole liquefie (GPLc)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-07

    This document, issued by the French Ministry of Economy, Finances and Industry, presents national measures fostering alternative vehicles, i.e., electric, natural gas and liquefied oil gas vehicles. Financial supports for studies aiming at optimizing the fleet and choosing the alternative vehicles as well as for purchasing vehicles both by counter procedure and for demonstration programmes are provided. Amount of subsidies, conditions of obtaining and categories of addressees are indicated. The document contains also two relating studies. The first one is titled 'the policy of developing alternative vehicles'. The following four items are addressed: - the present frame favouring the alternative vehicles; - the electric vehicles; - natural gas fuelled vehicles (GNV); - liquefied oil gas fuelled vehicles (GPLc). Although non-polluting the electric vehicles are not tempting because of their rather limited range (80 Km at a battery charging). So far only around 3,000 vehicles were sold. Fifty GNV buses were ordered by RATP and the figure raised at 70 in 1998 and 1999. The GPLc fleet amounts up to 70,000 vehicles and by the end of 2000 it is foreseen to reach the level of 300,000 vehicles. The second study addresses to the issue of natural gas for vehicles. It presents: - its advantages; - its peculiarities; - the action of public authorities; -the current state and trends of GNV vehicles. In a joint effort public authorities and partners of this option are aiming at a fleet of 2500 light service vehicles and 300 bus for urban transport by the end of 1999.

  1. A summary of EHV propulsion technology. [Electric and Hybrid Vehicle

    Science.gov (United States)

    Schwartz, H. J.

    1983-01-01

    While the battery used by an electric vehicle is the primary determinant of range, and to a lesser extent of performance, the design of the vehicle's propulsion system establishes its performance level and is the greatest contributor to its purchase price. Propulsion system weight, efficiency and cost are related to the specific combination of components used. Attention is given to the development status of the U.S. Department of Energy's Electric and Hybrid Vehicle Program, through which propulsion component and system design improvements have been made which promise weight savings of 35-50 percent, efficiency gains of 25 percent, and lower costs, when compared to the state of the art at the program's inception.

  2. Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure

    Science.gov (United States)

    Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew

    2004-01-01

    This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.

  3. Evaluation of the efficiency of alternative enzyme production technologies

    Energy Technology Data Exchange (ETDEWEB)

    Albaek, M.O.

    2012-03-15

    Enzymes are used in an increasing number of industries. The application of enzymes is extending into the production of lignocellulosic ethanol in processes that economically can compete with fossil fuels. Since lignocellulosic ethanol is based on renewable resources it will have a positive impact on for example the emission of green house gasses. Cellulases and hemi-cellulases are used for enzymatic hydrolysis of pretreated lignocellulosic biomass, and fermentable sugars are released upon the enzymatic process. Even though many years of research has decreased the amount of enzyme needed in the process, the cost of enzymes is still considered a bottleneck in the economic feasibility of lignocellulose utilization. The purpose of this project was to investigate and compare different technologies for production of these enzymes. The filamentous fungus Trichoderma reesei is currently used for industrial production of cellulases and hemi-cellulases. The aim of the thesis was to use modeling tools to identify alternative technologies that have higher energy or raw material efficiency than the current technology. The enzyme production by T. reesei was conducted as an aerobic fed-batch fermentation. The process was carried out in pilot scale stirred tank reactors and based on a range of different process conditions, a process model was constructed which satisfactory described the course of fermentation. The process was governed by the rate limiting mass transfer of oxygen from the gas to the liquid phase. During fermentation, filamentous growth of the fungus lead to increased viscosity which hindered mass transfer. These mechanisms were described by a viscosity model based on the biomass concentration of the fermentation broth and a mass transfer correlation that incorporated a viscosity term. An analysis of the uncertainty and sensitivity of the model indicated the biological parameters to be responsible for most of the model uncertainty. A number of alternative

  4. 7th Conference Simulation and Testing for Vehicle Technology

    CERN Document Server

    Riese, Jens; Rüden, Klaus

    2016-01-01

    The book includes contributions on the latest model-based methods for the development of personal and commercial vehicle control devices. The main topics treated are: application of simulation and model design to development of driver assistance systems; physical and database model design for engines, motors, powertrain, undercarriage and the whole vehicle; new simulation tools, methods and optimization processes; applications of simulation in function and software development; function and software testing using HiL, MiL and SiL simulation; application of simulation and optimization in application of control devices; automation approaches at all stages of the development process.

  5. A forecast of household ownership and use of alternative fuel vehicles: A multiple discrete-continuous choice approach

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jiwoon [Korea Energy Economics Institute, Naeson 2-dong, Uiwang-si, Gyeonggi-do, 437-713 (Korea); Jeong, Gicheol [Technology Management, Economics and Policy Program, 37-402, College of Engineering, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul, 151-744 (Korea); Kim, Yeonbae [Technology Management, Economics and Policy Program, 37-318, College of Engineering, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, South Seoul, 151-744 (Korea)

    2008-09-15

    The paper analyzes how adding alternative fuel passenger cars to the market will affect patterns in demand for passenger cars. We use conjoint analysis and a multiple discrete-continuous choice model to estimate consumer preferences regarding alternative fuel vehicles, and based on the estimates we conduct a simulation to analyze changing rates of ownership and use of variously fueled passenger cars under the effect of the introduction of alternative fuel passenger cars. In addition, we estimate changes in overall fuel consumption and the emission of pollutants. The results show that gasoline-fueled cars will still be most consumers' first choice, but alternative fuel passenger cars will nevertheless compete and offer a substitute for the purchase and use of gasoline-fueled or diesel-fueled cars. Finally, results show that adding alternative fuel cars to the market would effectively lower gasoline and diesel fuel consumption and the emission of pollutants. (author)

  6. A forecast of household ownership and use of alternative fuel vehicles: A multiple discrete-continuous choice approach

    International Nuclear Information System (INIS)

    Ahn, Jiwoon; Jeong, Gicheol; Kim, Yeonbae

    2008-01-01

    The paper analyzes how adding alternative fuel passenger cars to the market will affect patterns in demand for passenger cars. We use conjoint analysis and a multiple discrete-continuous choice model to estimate consumer preferences regarding alternative fuel vehicles, and based on the estimates we conduct a simulation to analyze changing rates of ownership and use of variously fueled passenger cars under the effect of the introduction of alternative fuel passenger cars. In addition, we estimate changes in overall fuel consumption and the emission of pollutants. The results show that gasoline-fueled cars will still be most consumers' first choice, but alternative fuel passenger cars will nevertheless compete and offer a substitute for the purchase and use of gasoline-fueled or diesel-fueled cars. Finally, results show that adding alternative fuel cars to the market would effectively lower gasoline and diesel fuel consumption and the emission of pollutants. (author)

  7. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs

  8. Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, E.J.

    1997-07-31

    A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination. Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36`` diameter x 6` high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20` diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling

  9. Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)

    International Nuclear Information System (INIS)

    Berglin, E.J.

    1997-01-01

    A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination. Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36'' diameter x 6' high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20' diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling

  10. Testing Low-Energy, High-Power Energy Storage Alternatives in a Full-Hybrid Vehicle (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Cosgrove, J.; Gonger, J.

    2014-01-01

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle gasoline use. However, the battery cost in HEVs contribute to higher incremental cost of HEVs (a few thousand dollars) than the cost of comparable conventional vehicles, which has limited HEV market penetration. Significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost vs. benefit relationship for HEVs. Such an improvement could lead to larger HEV market penetration and greater aggregate gasoline savings. After significant analysis by the National Renewable Energy Laboratory (NREL), the United States Advanced Battery Consortium (USABC) and Department of Energy (DOE) Energy Storage program suggested a new set of requirements for ESS for power-assist HEVs for cost reduction without impacting performance and fuel economy significantly. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This poster will describe development of the LEESS HEV test platform, and LEESS laboratory as well as in-vehicle evaluation results. The first LEESS technology tested was lithium-ion capacitors (LICs) - i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). We will discuss the performance and fuel saving results with LIC with comparison with original NiMH battery.

  11. Prospects for Chinese electric vehicle technologies in 2016–2020: Ambition and rationality

    International Nuclear Information System (INIS)

    Du, Jiuyu; Ouyang, Minggao; Chen, Jingfu

    2017-01-01

    As the world's largest market for vehicles, China is facing challenges related to energy security and urban air pollution. The development of electric vehicles has been determined to be the national strategy for solving these problems. By the end of 2015, China had become the world's largest electric vehicles market, but its core technologies are still less competitive in the global marketplace. A scientific national strategy for 2016 to 2020 is expected to play a critical role in China becoming the global leader in the electric vehicle industry. The research process for this strategy includes a review of the technologies for electric vehicles, market analyses, benchmarking of the top levels in the field, and expert interviews. By these approaches, the strengths and weaknesses of China's electric vehicle technologies and industry are assessed. Competitive and feasible quantitative goals for key components and powertrains are proposed by this paper, and a core issue has been determined to be the need to improve the safety of high-energy density traction batteries. Improving the power density of electric control units is expected to the core for electric vehicles' electronics and control systems. Key problems for the fuel cell stacks used in cars and buses have been identified by this paper to be, respectively, power density and durability. Long-range plug-in hybrid electric powertrains are the optimal candidate for Chinese plug-in hybrid electric vehicles. Lightweight material, intelligent driving technologies and special electric chassis are set to be the focus for improving the energy efficiency of battery electric vehicles. Comprehensive safety and recyclable electric vehicle technologies are set to become key issues in the future, and the Chinese government should research and develop these in advance. - Highlights: • The key technologies of new energy vehicles are comprehensively reviewed. • The global technical status of key components is reviewed.

  12. Opportunities of the new technological model of light vehicle fuels in South America; Oportunidades futuras no novo modelo tecnologico de combustiveis para veiculos leves na America do Sul

    Energy Technology Data Exchange (ETDEWEB)

    Dourado, Jose Diamantino de A. [Centro Federal de Educacao Tecnologica Celso Sukow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil); Chaves, Hernani Aquini F.; Jones, Cleveland Maximino [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Dept. de Estratigrafia e Paleontologia (DEPA)

    2008-07-01

    The purpose of this work is to show which solutions the South American market is putting forth for the new technological model of the automotive fuel for light duty vehicles. A strong and irreversible trend is underway, which is seeking more environmentally friendly and economically attractive alternatives for the conventional automotive technology, based on the consumption of gasoline and diesel fuel. This trend is evident not only in Latin America, but also in many other countries and regions, and has resulted in a great number of vehicle conversions, so as to operate with vehicular natural gas. Another important way in which this trend has expressed itself is the commercial acceptance and success of the tetra fuel technology vehicles. (author)

  13. Using connected vehicle technology to deliver timely warnings to pedestrians.

    Science.gov (United States)

    2016-07-01

    Pedestrian injuries and deaths caused by collisions with motor vehicles are on the : rise in the U.S. One factor that may increase the risk of such collisions is pedestrian : mobile device use. Both field observations and controlled experiments indic...

  14. Vehicle Technology Simulation and Analysis Tools | Transportation Research

    Science.gov (United States)

    Analysis Tools NREL developed the following modeling, simulation, and analysis tools to investigate novel design goals (e.g., fuel economy versus performance) to find cost-competitive solutions. ADOPT Vehicle Simulator to analyze the performance and fuel economy of conventional and advanced light- and

  15. Total life-cycle cost analysis of conventional and alternative fueled vehicles

    International Nuclear Information System (INIS)

    Cardullo, M.W.

    1993-01-01

    Total Life-Cycle Cost (TLCC) Analysis can indicate whether paying higher capital costs for advanced technology with low operating and/or environmental costs is advantageous over paying lower capital costs for conventional technology with higher operating and/or environmental costs. While minimizing total life-cycle cost is an important consideration, the consumer often identifies non-cost-related benefits or drawbacks that make more expensive options appear more attractive. The consumer is also likely to heavily weigh initial capital costs while giving limited consideration to operating and/or societal costs, whereas policy-makers considering external costs, such as those resulting from environmental impacts, may reach significantly different conclusions about which technologies are most advantageous to society. This paper summarizes a TLCC model which was developed to facilitate consideration of the various factors involved in both individual and societal policy decision making. The model was developed as part of a US Department of Energy Contract and has been revised to reflect changes necessary to make the model more realistic. The model considers capital, operating, salvage, and environmental costs for cars, vans, and buses using conventional and alternative fuels. The model has been developed to operate on an IBM or compatible personal computer platform using the commercial spreadsheet program MicroSoft Excell reg-sign Version 4 for Windows reg-sign and can be easily kept current because its modular structure allows straightforward access to embedded data sets for review and update

  16. Why has the introduction of natural gas vehicles failed in Germany?—Lessons on the role of market failure in markets for alternative fuel vehicles

    International Nuclear Information System (INIS)

    Peters von Rosenstiel, Dirk; Heuermann, Daniel F.; Hüsig, Stefan

    2015-01-01

    Despite private investments exceeding two billion Euros and tax incentives of more than 500 million Euros, the market share of natural gas vehicles (NGVs) in Germany has lagged far behind expectations and behind market developments in other countries. With total cost of ownership being on average lower for NGVs than for gasoline and diesel vehicles this raises the question of the existence of market failure in the German NGV-market. We use a case study approach where we combine quantitative data with insights from a multi-industry expert panel and in-depth interviews with experts from industry, government and civil society in order to examine whether and how different types of market failure contribute to the status quo in the German market for NGVs. We conclude that coordination failure in complementary markets, an artificially created monopoly of service stations at motorways, imperfect information, bounded consumer rationality, and principle-agent-problems are the most prominent market failures inhibiting the development of a functioning market for NGVs. Our results are instructive for the design of effective public policies and investor strategies aiming to create markets for alternative fuel vehicles. - Highlights: • We analyze market failure in the German market for natural gas vehicles. • Coordination failure is the most important reason for market failure to arise. • Minor factors: regulatory deficits, imperfect information, bounded rationality. • Policies encompass stabilizing expectations and supporting actor coordination. • Our results are instructive for policies and investor strategies in AFV-markets

  17. Fiat Chrysler Application for Alternative Methodology for Off-Cycle Technology Credits: Engine and Transmission Warmup

    Science.gov (United States)

    FCA Group LLC request to the EPA regarding greenhouse gas, off-cycle CO2 credits for Active Engine Warm Up used in 2011-2013 model year vehicles and Active Transmission Warm Up Technologies used in 2013 model year vehicles.

  18. Expendable launch vehicles technology: A report to the US Senate and the US House of Representatives

    Science.gov (United States)

    1990-01-01

    As directed in Public Law 100-657, Commercial Space Launch Act Amendments of 1988, and consistent with National Space Policy, NASA has prepared a report on a potential program of research on technologies to reduce the initial and recurring costs, increase reliability, and improve performance of expendable launch vehicles for the launch of commercial and government spacecraft into orbit. The report was developed in consultation with industry and in recognition of relevant ongoing and planned NASA and DoD technology programs which will provide much of the required launch systems technology for U.S. Government needs. Additional efforts which could be undertaken to strengthen the technology base are identified. To this end, focus is on needs for launch vehicle technology development and, in selected areas, includes verification to permit private-sector new technology application at reduced risk. If such a program were to be implemented, it would entail both government and private-sector effort and resources. The additional efforts identified would augment the existing launch vehicle technology programs. The additional efforts identified have not been funded, based upon agency assessments of relative priority vis-a-vis the existing programs. Throughout the consultation and review process, the industry representatives stressed the overriding importance of continuing the DoD/NASA Advanced Launch Development activity and other government technology programs as a primary source of essential launch vehicle technology.

  19. Expendable launch vehicles technology: A report to the US Senate and the US House of Representatives

    Science.gov (United States)

    1990-07-01

    As directed in Public Law 100-657, Commercial Space Launch Act Amendments of 1988, and consistent with National Space Policy, NASA has prepared a report on a potential program of research on technologies to reduce the initial and recurring costs, increase reliability, and improve performance of expendable launch vehicles for the launch of commercial and government spacecraft into orbit. The report was developed in consultation with industry and in recognition of relevant ongoing and planned NASA and DoD technology programs which will provide much of the required launch systems technology for U.S. Government needs. Additional efforts which could be undertaken to strengthen the technology base are identified. To this end, focus is on needs for launch vehicle technology development and, in selected areas, includes verification to permit private-sector new technology application at reduced risk. If such a program were to be implemented, it would entail both government and private-sector effort and resources. The additional efforts identified would augment the existing launch vehicle technology programs. The additional efforts identified have not been funded, based upon agency assessments of relative priority vis-a-vis the existing programs. Throughout the consultation and review process, the industry representatives stressed the overriding importance of continuing the DoD/NASA Advanced Launch Development activity and other government technology programs as a primary source of essential launch vehicle technology.

  20. Development and use of GREET 1.6 fuel-cycle model for transportation fuels and vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    2001-01-01

    Since 1995, with funds from the U.S. Department of Energy's (DOE's) Office of Transportation Technologies (OTT), Argonne National Laboratory has been developing the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The model is intended to serve as an analytical tool for use by researchers and practitioners in estimating fuel-cycle energy use and emissions associated with alternative transportation fuels and advanced vehicle technologies. Argonne released the first version of the GREET mode--GREET 1.0--in June 1996. Since then, it has released a series of GREET versions with revisions, updates, and upgrades. In February 2000, the latest public version of the model--GREET 1.5a--was posted on Argonne's Transportation Technology Research and Development Center (TTRDC) Web site (www.transportation.anl.gov/ttrdc/greet)

  1. Proceedings of the 1993 Windsor Workshop on Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report contains viewgraph papers on the following topics on alternative fuels: availability of alternative fueled engines and vehicles; emerging technologies; overcoming barriers to alternative fuels commercialization; infrastructure issues; and new initiatives in research and development.

  2. Development of alternative energy technologies. Entrepreneurs, new technologies, and social change

    Energy Technology Data Exchange (ETDEWEB)

    Burns, T R

    1985-01-01

    This paper discusses the introduction and development of several alternative energy technologies in countries where the innovation process has enjoyed some measure of success: solar water heating (California, Israel), windmills (Denmark), wood and peat for co-generation (Northern New England, Finland) and geo-thermal power (California) as well as heat pumps designed to save energy (West Germany). It is argued that the introduction and development of new technologies - and the socio-technical systems which utilize these technologies - depend on the initiatives of entrepreneurs and social change agents. They engage in adapting and matching technology and social structure (laws, institutions, norms, political and economic forces and social structure generally). Successful developments - as well as blocked or retarded developments - are discussed in terms of such ''compatibility analysis''. Policy implications are also discussed. (orig.).

  3. Cost and benefit estimates of partially-automated vehicle collision avoidance technologies.

    Science.gov (United States)

    Harper, Corey D; Hendrickson, Chris T; Samaras, Constantine

    2016-10-01

    Many light-duty vehicle crashes occur due to human error and distracted driving. Partially-automated crash avoidance features offer the potential to reduce the frequency and severity of vehicle crashes that occur due to distracted driving and/or human error by assisting in maintaining control of the vehicle or issuing alerts if a potentially dangerous situation is detected. This paper evaluates the benefits and costs of fleet-wide deployment of blind spot monitoring, lane departure warning, and forward collision warning crash avoidance systems within the US light-duty vehicle fleet. The three crash avoidance technologies could collectively prevent or reduce the severity of as many as 1.3 million U.S. crashes a year including 133,000 injury crashes and 10,100 fatal crashes. For this paper we made two estimates of potential benefits in the United States: (1) the upper bound fleet-wide technology diffusion benefits by assuming all relevant crashes are avoided and (2) the lower bound fleet-wide benefits of the three technologies based on observed insurance data. The latter represents a lower bound as technology is improved over time and cost reduced with scale economies and technology improvement. All three technologies could collectively provide a lower bound annual benefit of about $18 billion if equipped on all light-duty vehicles. With 2015 pricing of safety options, the total annual costs to equip all light-duty vehicles with the three technologies would be about $13 billion, resulting in an annual net benefit of about $4 billion or a $20 per vehicle net benefit. By assuming all relevant crashes are avoided, the total upper bound annual net benefit from all three technologies combined is about $202 billion or an $861 per vehicle net benefit, at current technology costs. The technologies we are exploring in this paper represent an early form of vehicle automation and a positive net benefit suggests the fleet-wide adoption of these technologies would be beneficial

  4. Application of lap laser welding technology on stainless steel railway vehicles

    Science.gov (United States)

    Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo

    2016-10-01

    Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big

  5. Vehicle Technology for Civil Aviation: The Seventies and Beyond

    Science.gov (United States)

    1972-01-01

    The panel discussion on aviation technology for the seventies and beyond is reported. Topics discussed include: Government role in developing and applying new aeronautical technologies, noise and environmental problems, and congestion in the vicinity of major air terminals.

  6. Policy implications of emerging vehicle and infrastructure technology.

    Science.gov (United States)

    2014-08-01

    This report considers a broad range of emerging transportation technologies that have potential : for enhancing travel on and operations of the Texas transportation system. It provides an : overview of technology classifications and assesses the poli...

  7. Sustainable electric energy supply by decentralized alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zahedi, A., E-mail: Ahmad.Zahedi@jcu.edu.au [James Cook University, Queensland (Australia). School of Engineering and Physical Sciences

    2010-07-01

    The most available and affordable sources of energy in today's economic structure are fossil fuels, namely, oil, gas, and coal. Fossil fuels are non-renewable, have limited reserves, and have serious environmental problems associated with their use. Coal and nuclear energy are used in central and bulky power stations to produce electricity, and then this electricity is delivered to customers via expensive transmission lines and distribution systems. Delivering electric power via transmission and distribution lines to the electricity users is associated with high electric power losses. These power losses are costly burdens on power suppliers and users. One of the advantages of decentralized generation (DG) is that DG is capable of minimizing power losses because electric power is generated at the demand site. The world is facing two major energy-related issues, short term and long term. These issues are (i) not having enough and secure supplies of energy at affordable prices and (ii) environmental damages caused by consuming too much energy in an unsustainable way. A significant amount of the current world energy comes from limited resources, which when used, cannot be replaced. Hence the energy production and consumption do not seem to be sustainable, and also carries the threat of severe and irreversible damages to the environment including climate change.The price of energy is increasing and there are no evidences suggesting that this trend will reverse. To compensate for this price increase we need to develop and use high energy efficient technologies and focusing on energy technologies using renewable sources with less energy conversion chains, such as solar and wind. The world has the potential to expand its capacity of clean, renewable, and sustainable energy to offset a significant amount of greenhouse gas emissions from conventional power use. The increasing utilization of alternative sources such as hydro, biomass, geothermal, ocean energy, solar and

  8. Lightweight Materials for Vehicles: Needs, Goals, and Future Technologies

    Science.gov (United States)

    2010-08-01

    during heating, cooling, and deformation - Developing an improved understanding of the kinetics and mechanisms for tranisition Friction Stir Welding ...technology worthiness - Identify new gaps and opportunities Pre- competitive Research Solicitations and Demonstrations - Identify technology gaps...or processing . Key Technology Gaps Active Research . Gap: Microstructural damage during welding limits potential usefulness - Many

  9. Analysis of the Effects of Connected–Automated Vehicle Technologies on Travel Demand

    Energy Technology Data Exchange (ETDEWEB)

    Auld, Joshua [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439; Sokolov, Vadim [Department of Systems Engineering and Operations Research, Volgenau School of Engineering, George Mason University, MS 4A6, 4400 University Drive, Fairfax, VA 22030; Stephens, Thomas S. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439

    2017-01-01

    Connected–automated vehicle (CAV) technologies are likely to have significant effects not only on how vehicles operate in the transportation system, but also on how individuals behave and use their vehicles. While many CAV technologies—such as connected adaptive cruise control and ecosignals—have the potential to increase network throughput and efficiency, many of these same technologies have a secondary effect of reducing driver burden, which can drive changes in travel behavior. Such changes in travel behavior—in effect, lowering the cost of driving—have the potential to increase greatly the utilization of the transportation system with concurrent negative externalities, such as congestion, energy use, and emissions, working against the positive effects on the transportation system resulting from increased capacity. To date, few studies have analyzed the potential effects on CAV technologies from a systems perspective; studies often focus on gains and losses to an individual vehicle, at a single intersection, or along a corridor. However, travel demand and traffic flow constitute a complex, adaptive, nonlinear system. Therefore, in this study, an advanced transportation systems simulation model—POLARIS—was used. POLARIS includes cosimulation of travel behavior and traffic flow to study the potential effects of several CAV technologies at the regional level. Various technology penetration levels and changes in travel time sensitivity have been analyzed to determine a potential range of effects on vehicle miles traveled from various CAV technologies.

  10. Analysis of Electric Vehicle DC High Current Conversion Technology

    Science.gov (United States)

    Yang, Jing; Bai, Jing-fen; Lin, Fan-tao; Lu, Da

    2017-05-01

    Based on the background of electric vehicles, it is elaborated the necessity about electric energy accurate metering of electric vehicle power batteries, and it is analyzed about the charging and discharging characteristics of power batteries. It is needed a DC large current converter to realize accurate calibration of power batteries electric energy metering. Several kinds of measuring methods are analyzed based on shunts and magnetic induction principle in detail. It is put forward power batteries charge and discharge calibration system principle, and it is simulated and analyzed ripple waves containing rate and harmonic waves containing rate of power batteries AC side and DC side. It is put forward suitable DC large current measurement methods of power batteries by comparing different measurement principles and it is looked forward the DC large current measurement techniques.

  11. Air-Breathing Launch Vehicle Technology Being Developed

    Science.gov (United States)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  12. Impacts of Interior Permanent Magnet Machine Technology for Electric Vehicles

    Science.gov (United States)

    2012-01-01

    corrosion constraints of magnets  Minimum gear and more direct drive  Regenerative braking and short charging cycle of batteries  Impulse...be found in limited applications such as, antilock braking system (ABS) of the vehicles. Considering the performance enhancement and reliability of... system forms the backbone of modern society. Electricity and its accessibility is one of the major engineering achievements. In order to maintain and

  13. Future markets and technologies for natural gas vehicles; Futurs marches et technologies pour les vehicules au gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J. [Development Engineer, Lotus Engineering (United Kingdom); Carpenter, B. [Gas Applications, BG Technology (United Kingdom)

    2000-07-01

    Lotus Engineering and BG Technology recently collaborated on the conversion of the Lotus Elise for operation on natural gas. This paper considers the world-wide opportunities for natural gas as an automotive fuel by comparison with other fuels. It looks at how technology can be used to exploit this potential, by examining the special features of the gas fuelled Elise, and how other technologies such as hybrid vehicles and fuel cells can be expected to respond to this challenge in future. (authors)

  14. Bioleaching - an alternate uranium ore processing technology for India

    International Nuclear Information System (INIS)

    Abilash; Mehta, K.D.; Kumar, V.; Pandey, B.D.; Tamarakar, P.K.

    2010-01-01

    Meeting the feed supply of uranium fuel in the present and planned nuclear reactors calls for huge demand of uranium, which at the current rate of production, shows a mismatch. The processing methods at UCIL (DAE) needs to be modified/changed or re-looked into because of its very suitability in near future for low-index raw materials which are either unmined or stacked around if mined. There is practically no way to process tailings with still some values. Efforts were made to utilize such resources (low-index ore of Turamdih mines, containing 0.03% U 3 O 8 ) by NML in association with UCIL as a national endeavor. In this area, the R and D work showed the successful development of a bioleaching process from bench scale to lab scale columns and then finally to the India's first ever large scale column, from the view point of harnessing such a processing technology as an alternative for the uranium industry and nuclear sector in the country. The efforts culminated into the successful operation of large scale trials at the 2 ton level column uranium bioleaching that was carried out at the site of UCIL, Jaduguda yielding a maximum recovery of 69% in 60 days. This achievement is expected to pave the way for scaling up the activity to a 100T or even more heap bioleaching trials for realization of this technology, which needs to be carried out with the support of the nuclear sector in the country keeping in mind the national interest. (author)

  15. The effect of attitudes on reference-dependent preferences: Estimation and validation for the case of alternative-fuel vehicles

    DEFF Research Database (Denmark)

    Mabit, Stefan Lindhard; Cherchi, Elisabetta; Jensen, Anders Fjendbo

    2015-01-01

    reference-dependent preferences and attitudes together may explain individual choices. In a modelling framework based on a hybrid choice model allowing for both concepts, we investigate how attitudes and reference-dependent preferences interact and how they affect willingness-to-pay measures and demand...... elasticities. Using a data set with stated choices among alternative-fuel vehicles, we see that allowing for reference-dependent preferences improves our ability to explain the stated choices in the data and that the attitude (appreciation of car features) explains part of the preference heterogeneity across...... with varying attitudes and reference values will act differently when affected by policy instruments related to the demand for alternative-fuel vehicles, e.g. subsidies....

  16. Nonlinear approaches in engineering applications advanced analysis of vehicle related technologies

    CERN Document Server

    Dai, Liming

    2016-01-01

    This book looks at the broad field of engineering science through the lens of nonlinear approaches. Examples focus on issues in vehicle technology, including vehicle dynamics, vehicle-road interaction, steering, and control for electric and hybrid vehicles. Also included are discussions on train and tram systems, aerial vehicles, robot-human interaction, and contact and scratch analysis at the micro/nanoscale. Chapters are based on invited contributions from world-class experts in the field who advance the future of engineering by discussing the development of more optimal, accurate, efficient, and cost and energy effective systems. This book is appropriate for researchers, students, and practicing engineers who are interested in the applications of nonlinear approaches to solving engineering and science problems.

  17. 1991-92 Canadian directory of efficiency and alternative energy technologies

    International Nuclear Information System (INIS)

    1992-01-01

    The 1991-1992 Canadian Directory of efficiency and alternative energy technologies. The three main sections cover Alternative Energy Companies, Energy Efficiency Companies and Energy Service Companies. Contact and company information is provided

  18. 1991-92 Canadian directory of efficiency and alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The 1991-1992 Canadian Directory of efficiency and alternative energy technologies. The three main sections cover Alternative Energy Companies, Energy Efficiency Companies and Energy Service Companies. Contact and company information is provided.

  19. A trial of retrofitted advisory collision avoidance technology in government fleet vehicles.

    Science.gov (United States)

    Thompson, James P; Mackenzie, Jamie R R; Dutschke, Jeffrey K; Baldock, Matthew R J; Raftery, Simon J; Wall, John

    2018-06-01

    In-vehicle collision avoidance technology (CAT) has the potential to prevent crash involvement. In 2015, Transport for New South Wales undertook a trial of a Mobileye 560 CAT system that was installed in 34 government fleet vehicles for a period of seven months. The system provided headway monitoring, lane departure, forward collision and pedestrian collision warnings, using audio and visual alerts. The purpose of the trial was to determine whether the technology could change the driving behaviour of fleet vehicle drivers and improve their safety. The evaluation consisted of three components: (1) analysis of objective data to examine effects of the technology on driving behaviour, (2) analysis of video footage taken from a sample of the vehicles to examine driving circumstances that trigger headway monitoring and forward collision warnings, and (3) a survey completed by 122 of the 199 individuals who drove the trial vehicles to examine experiences with, and attitudes to, the technology. Analysis of the objective data found that the system resulted in changes in behaviour with increased headway and improved lane keeping, but that these improvements dissipated once the warning alerts were switched off. Therefore, the system is capable of altering behaviour but only when it is actively providing alerts. In-vehicle video footage revealed that over a quarter of forward collision warnings were false alarms, in which a warning event was triggered despite there being no vehicle travelling ahead. The surveyed drivers recognised that the system could improve safety but most did not wish to use it themselves as they found it to be distracting and felt that it would not prevent them from having a crash. The results demonstrate that collision avoidance technology can improve driving behaviour but drivers may need to be educated about the potential benefits for their driving in order to accept the technology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. AI technology and automobile. ; Toward vehicle autonomy. AI gijutsu to jidosha. ; Sharyo no jiritsuka ni mukatte

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, A. (Mazda Motor Corp., Hiroshima (Japan))

    1991-01-01

    This report describes the vehicle autonomy by using artificial intelligence (AI) technology. Owing to a remarkable progress of AI technology, it is forecasted that driving support system will be introduced into the market till 2000, and higher autonomous navigation system will be introduced since about 2010. Autonomous vehicles have capacities of recognizing the outside world and of navigating roads by themselves, and with their enfanced environment adaptability the road transportation in the future is expected to be much more safer than in the present. The autonomous vehicle can warn its driver of potential dangers and correct operational errors of the driver. In order to realize such autonomous vehicles, extensive researches on perception systems, decision making systems and driving support systems are needed. 9 refs., 10 figs., 1 tab.

  1. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and

  2. ITS Technologies in Military Wheeled Tactical Vehicles: Status Quo and the Future

    International Nuclear Information System (INIS)

    Knee, H.E.

    2001-01-01

    The U.S. Army operates and maintains the largest trucking fleet in the United States. Its fleet consists of over 246,000 trucks, and it is responsible for buying and developing trucks for all branches of the armed forces. The Army's tactical wheeled vehicle fleet is the logistical backbone of the Army, and annually, the fleet logs about 823 million miles. The fleet consists of a number of types of vehicles. They include eight different families of trucks from the High Mobility Multi-Purpose Wheeled Vehicles to M900 series line haul tractors and special bodies. The average age of all the trucks within the Army fleet is 15 years, and very few have more than traditional driving instrumentation on-board. Over the past decade, the Department of Transportation's (DOT's) Intelligent Transportation Systems (ITS) Program has conducted research and deployment activities in a number of areas including in-vehicle systems, communication and telematics technologies. Many current model passenger vehicles have demonstrated the assimilation of these technologies to enhance safety and trip quality. Commercial vehicles are also demonstrating many new electronic devices that are assisting in making them safer and more efficient. Moreover, a plethora of new technologies are about to be introduced to drivers that promise greater safety, enhanced efficiency, congestion avoidance, fuel usage reduction, and enhanced trip quality. The U.S. Army has special needs with regard to fleet management, logistics, sustainability, reliability, survivability, and fuel consumption that goes beyond similar requirements within the private industry. In order to effectively apply emerging ITS technologies to the special needs of the U.S. Army, planning for the conduct of the Army's Vehicle Intelligence Program (AVIP) has now commenced. The AVIP will be focused on the conduct of research that: (1) will apply ITS technologies to the special needs of the Army, and (2) will conduct research for special needs

  3. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Christophersen, Jon P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  4. US Department of Energy workshop on future fuel technology for heavy vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The objective of the workshop described in this report was to develop consensus on a program strategy for use of alternative fuels in heavy vehicles. Participants represented fuel providers, additive suppliers, the trucking industry, engine manufacturers, and government or national laboratory staff. Breakout sessions were co-facilitated by national laboratory staff and industry representatives.

  5. Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles.

    Science.gov (United States)

    Thiruvengadam, Arvind; Besch, Marc; Carder, Daniel; Oshinuga, Adewale; Pasek, Randall; Hogo, Henry; Gautam, Mridul

    2016-11-01

    The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions. Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to

  6. Technological development with reference to hydro-power, nuclear, and alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Burns, T R; Baumgartner, T

    1985-01-01

    This report outlines a theoretical framework for describing and analyzing the introduction of new technologies and the development of socio-technical systems associated with such innovations. While the report is largely theoretical in nature, it refers to certain strategic aspects of the development of nuclear, hydro-power and alternative energy systems. The ease with which technological innovation and development occur, the directions they take, and the impacts they have on the social and physical environments depend not only on purely technical and economic factors. Barriers, regulators and facilitators are inherent in the socio-political, institutional and cultural structures within which any attempts at innovation and technological development take place. The final section of the report explores some of the implications of the theory for policy and strategy, including consideration of environmental policy.

  7. Energy and cost saving results for advanced technology systems from the Cogeneration Technology Alternatives Study (CTAS)

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.

  8. Technology watch of fuel cells for vehicles in 2012; Teknikbevakning av braensleceller foer fordon 2012

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, Hans

    2013-03-15

    The report presents results from an international survey covering the status and development of tractionary fuel cells. Interviews, study visits, reports, journals, media coverage and participation in IEA Advanced Fuel Cells Annex 26 have served as main sources of information. The development in Korea has been devoted particular attention this period. The report covers the development during the second part of 2011 and the whole 2012. The transport sector must change to provide mobility for people and goods in a long-term sustainable way. Fuel cell technology offers an important opportunity for the vehicle manufacturer and the vehicle user to maintain the same level of performance, comfort and versatility without compromising the sustainability requirements. Fuel cell vehicles typically use polymer electrolyte fuel cells (PEFC) and pressurized hydrogen. They also use tractionary batteries for about the same reasons as other hybrid electric vehicles. For commercial vehicles fuel cells are developed for the production of auxiliary power, to be used when the vehicles are parked, for example. Until 2015, Hyundai aims at making up to 1,000 fuel cell vehicles. After 2015 the plan is for several thousand every year. Until 2025, Hyundai aims at a total delivery of more than 100,000 fuel cell vehicles and the technology is then expected to be fully competitive. A roadmap shows that Korea until 2015 has established 43 and until 2030, a total of 500 hydrogen refuelling stations are indicated. The Skaane Region has carried out the first Swedish procurement of fuel cell vehicles. Two Hyundai iX35 FCEV were purchased for delivery 2013. In addition, the city of Copenhagen has purchased 15 such vehicles. During the next few years three hydrogen refuelling stations will be established in the Copenhagen area. January 2012, the California Air Resources Board decided the new set of regulations Advanced Clean Cars. It comprises three parts; tailpipe emissions and greenhouse gases, Zero

  9. Design of a technology centre: A Vehicle for Industrial Development ...

    African Journals Online (AJOL)

    This paper deals with the design of a Technology Centre to meet the needs of industries and enhance the industrial development activities in Ethiopia. The article addresses problems and constraints of industries in developing countries with regards to raw materials, skills, technology master plan, R&D, maintenance and ...

  10. EXPERIENCES WITH ACQUIRING HIGHLY REDUNDANT SPATIAL DATA TO SUPPORT DRIVERLESS VEHICLE TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Z. Koppanyi

    2018-05-01

    Full Text Available As vehicle technology is moving towards higher autonomy, the demand for highly accurate geospatial data is rapidly increasing, as accurate maps have a huge potential of increasing safety. In particular, high definition 3D maps, including road topography and infrastructure, as well as city models along the transportation corridors represent the necessary support for driverless vehicles. In this effort, a vehicle equipped with high-, medium- and low-resolution active and passive cameras acquired data in a typical traffic environment, represented here by the OSU campus, where GPS/GNSS data are available along with other navigation sensor data streams. The data streams can be used for two purposes. First, high-definition 3D maps can be created by integrating all the sensory data, and Data Analytics/Big Data methods can be tested for automatic object space reconstruction. Second, the data streams can support algorithmic research for driverless vehicle technologies, including object avoidance, navigation/positioning, detecting pedestrians and bicyclists, etc. Crucial cross-performance analyses on map database resolution and accuracy with respect to sensor performance metrics to achieve economic solution for accurate driverless vehicle positioning can be derived. These, in turn, could provide essential information on optimizing the choice of geospatial map databases and sensors’ quality to support driverless vehicle technologies. The paper reviews the data acquisition and primary data processing challenges and performance results.

  11. Experiences with Acquiring Highly Redundant Spatial Data to Support Driverless Vehicle Technologies

    Science.gov (United States)

    Koppanyi, Z.; Toth, C. K.

    2018-05-01

    As vehicle technology is moving towards higher autonomy, the demand for highly accurate geospatial data is rapidly increasing, as accurate maps have a huge potential of increasing safety. In particular, high definition 3D maps, including road topography and infrastructure, as well as city models along the transportation corridors represent the necessary support for driverless vehicles. In this effort, a vehicle equipped with high-, medium- and low-resolution active and passive cameras acquired data in a typical traffic environment, represented here by the OSU campus, where GPS/GNSS data are available along with other navigation sensor data streams. The data streams can be used for two purposes. First, high-definition 3D maps can be created by integrating all the sensory data, and Data Analytics/Big Data methods can be tested for automatic object space reconstruction. Second, the data streams can support algorithmic research for driverless vehicle technologies, including object avoidance, navigation/positioning, detecting pedestrians and bicyclists, etc. Crucial cross-performance analyses on map database resolution and accuracy with respect to sensor performance metrics to achieve economic solution for accurate driverless vehicle positioning can be derived. These, in turn, could provide essential information on optimizing the choice of geospatial map databases and sensors' quality to support driverless vehicle technologies. The paper reviews the data acquisition and primary data processing challenges and performance results.

  12. Effective public resource allocation to escape lock-in: the case of infrastructure-dependent vehicle technologies

    NARCIS (Netherlands)

    Vooren, A. van der; Alkemade, F.; Hekkert, M.P.

    2012-01-01

    A multi-stage technological substitution model of infrastructure-dependent vehicle technologies is developed. This is used to examine how the allocation of public, financial resources to RD&D support and infrastructure development affects the replacement of a locked-in vehicle technology by more

  13. Processing mechanics of alternate twist ply (ATP) yarn technology

    Science.gov (United States)

    Elkhamy, Donia Said

    Ply yarns are important in many textile manufacturing processes and various applications. The primary process used for producing ply yarns is cabling. The speed of cabling is limited to about 35m/min. With the world's increasing demands of ply yarn supply, cabling is incompatible with today's demand activated manufacturing strategies. The Alternate Twist Ply (ATP) yarn technology is a relatively new process for producing ply yarns with improved productivity and flexibility. This technology involves self plying of twisted singles yarn to produce ply yarn. The ATP process can run more than ten times faster than cabling. To implement the ATP process to produce ply yarns there are major quality issues; uniform Twist Profile and yarn Twist Efficiency. The goal of this thesis is to improve these issues through process modeling based on understanding the physics and processing mechanics of the ATP yarn system. In our study we determine the main parameters that control the yarn twist profile. Process modeling of the yarn twist across different process zones was done. A computational model was designed to predict the process parameters required to achieve a square wave twist profile. Twist efficiency, a measure of yarn torsional stability and bulk, is determined by the ratio of ply yarn twist to singles yarn twist. Response Surface Methodology was used to develop the processing window that can reproduce ATP yarns with high twist efficiency. Equilibrium conditions of tensions and torques acting on the yarns at the self ply point were analyzed and determined the pathway for achieving higher twist efficiency. Mechanistic modeling relating equilibrium conditions to the twist efficiency was developed. A static tester was designed to zoom into the self ply zone of the ATP yarn. A computer controlled, prototypic ATP machine was constructed and confirmed the mechanistic model results. Optimum parameters achieving maximum twist efficiency were determined in this study. The

  14. A cost-benefit analysis of alternatively fueled buses with special considerations for V2G technology

    International Nuclear Information System (INIS)

    Shirazi, Yosef; Carr, Edward; Knapp, Lauren

    2015-01-01

    Motivated by climate, health and economic considerations, alternatively-fueled bus fleets have emerged worldwide. Two popular alternatives are compressed natural gas (CNG) and electric vehicles. The latter provides the opportunity to generate revenue through vehicle-to-grid (V2G) services if properly equipped. This analysis conducts a robust accounting of the costs of diesel, CNG and battery-electric powertrains for school buses. Both marginal and fleet-wide scenarios are explored. Results indicate that the marginal addition of neither a small CNG nor a small V2G-enabled electric bus is cost effective at current prices. Contrary to previous findings, a small V2G-enabled electric bus increases net present costs by $7,200/seat relative to diesel for a Philadelphia, PA school district. A small CNG bus increases costs by $1,200/seat relative to diesel. This analysis is the first to quantify and include the economic implications of cold temperature extremes on electric vehicle battery operations, and the lower V2G revenues that result. Additional costs and limitations imposed by electric vehicles performing V2G are frequently overlooked in the literature and are explored here. If a variety of technical, legal, and economic challenges are overcome, a future eBus may be economical. - Highlights: • We present a robust cost-benefit analysis of various bus technologies. • Diesel is a low-cost technology at current prices. • CNG represents slightly higher costs on a marginal bus basis. • V2G-enabled electric buses are not cost-effective at current prices. • We identify frequently overlooked costs and challenges to V2G implementation.

  15. Changing technology in transportation : automated vehicles in freight.

    Science.gov (United States)

    2017-06-27

    The world of transportation is on the verge of undergoing an impactful transformation. Over the past decade, automotive computing technology has progressed far more rapidly than anticipated. Most major auto manufacturers integrated automated features...

  16. Barriers and Opportunities for the Use of Alternative Technologies to Reduce Nitrogen in Coastal Estuaries

    Science.gov (United States)

    In coastal New England, many communities wrestling with nitrogen over-enrichment from insufficient wastewater management are considering alternative technologies to supplement traditional sewering technology. In particular, communities on Cape Cod, Massachusetts are actively comp...

  17. Environmental Evaluation of New Generation Vehicles and Vehicle Components

    Energy Technology Data Exchange (ETDEWEB)

    Schexnayder, S.M.

    2002-02-06

    This report documents assessments that address waste issues and life cycle impacts associated with the vehicle materials and vehicle technologies being developed under the Partnership for a New Generation of Vehicles (PNGV) program. We refer to these vehicles as 3XVs, referring to the PNGV goal that their fuel mileage be three times better than the baseline vehicle. To meet the program's fuel consumption goals, these vehicles substitute lightweight materials for heavier materials such as steel and iron that currently dominate the composition of vehicles, and use engineering and power system changes. Alternative power systems being developed through the PNGV program include batteries for hybrid electric vehicles and fuel cells. With respect to all these developments, it is imperative to learn what effects they will have on the environment before adopting these designs and technologies on a large-scale basis.

  18. Support to X-33/Resusable Launch Vehicle Technology Program

    Science.gov (United States)

    2000-01-01

    The X-33 Guidance, Navigation, and Control (GN&C) Peer Review Team (PRT) was formed to assess the integrated X-33 vehicle GN&C system in order to identify any areas of disproportionate risk for initial flight. The eventual scope of the PRT assessment encompasses the GN&C algorithms, software, avionics, control effectors, applicable models, and testing. The initial (phase 1) focus of the PRT was on the GN&C algorithms and the Flight Control Actuation Subsystem (FCAS). The PRT held meetings during its phase 1 assessment at X-33 assembly facilities in Palmdale, California on May 17-18, 2000 and at Honeywell facilities in Tempe, Arizona on June 7, 2000. The purpose of these meetings was for the PRT members to get background briefings on the X-33 vehicle and for the PRT team to be briefed on the design basis and current status of the X-33 GN&C algorithms as well as the FCAS. The following material is covered in this PRT phase 1 final report. Some significant GN&C-related accomplishments by the X-33 development team are noted. Some topics are identified that were found during phase 1 to require fuller consideration when the PRT reconvenes in the future. Some new recommendations by the PRT to the X-33 program will likely result from a thorough assessment of these subjects. An initial list of recommendations from the PRT to the X-33 program is provided. These recommendations stem from topics that received adequate review by the PRT in phase 1. Significant technical observations by the PRT members as a result of the phase 1 meetings are detailed. (These are covered in an appendix.) There were many X-33 development team members who contributed to the technical information used by the PRT during the phase 1 assessment, who supported presentations to the PRT, and who helped to address the many questions posed by the PRT members at and after the phase 1 meetings. In all instances the interaction between the PRT and the X-33 development team members was cordial and very

  19. Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV

    International Nuclear Information System (INIS)

    Zhang Yong; Yu Yifeng; Zou Bai

    2011-01-01

    The aim of this paper is to analyze consumers' awareness towards electric vehicle (EV) and examine the factors that are most likely to affect consumers' choice for EV in China. A comprehensive questionnaire survey has been conducted with 299 respondents from various driving schools in Nanjing. Three binary logistic regression models were used to determine the factors that contribute to consumers' acceptance of EVs, their purchase time and their purchase price. The results suggest that: (1)Whether a consumer chooses an EV is significantly influenced by the number of driver's licenses, number of vehicles, government policies and fuel price. (2)The timing of consumers' purchases of an EV is influenced by academic degree, annual income, number of vehicles, government policies, the opinion of peers and tax incentives. (3)The acceptance of purchase price of EVs is influenced by age, academic degree, number of family members, number of vehicles, the opinion of peers, maintenance cost and degree of safety. These findings will help understand consumer's purchase behavior of EVs and have important policy implications related to the promotions of EVs in China. - Highlights: → We survey 299 respondents from various driving schools in Nanjing. → We analyze consumer's awareness towards electric vehicle (EV). → The factors affecting consumers' choice for EV are examined by three binary logistic models. → Factors contributing to consumers' acceptance of EVs, purchase time and purchase price are indicated.

  20. 49 CFR 536.10 - Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538.

    Science.gov (United States)

    2010-10-01

    ... vehicles-consistency with 49 CFR part 538. 536.10 Section 536.10 Transportation Other Regulations Relating... vehicles—consistency with 49 CFR part 538. (a) Statutory alternative fuel and dual-fuel vehicle fuel... economy in a particular compliance category by more than the limits set forth in 49 U.S.C. 32906(a), the...

  1. ENVIRONMENTAL QUALITY, ENERGY, AND POWER TECHNOLOGY Task Order 0012: Plug In Electric Vehicle, Vehicle to Grid

    Science.gov (United States)

    2017-12-05

    Office (PAO) and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information... Chief Acquisitions Systems Support Branch Acquisitions Systems Support Branch Systems Support Division Systems Support Division Materials and...Fort Hood, Joint Base Andrews and Joint Base McGuire-Dix- Lakehurst. V2G technologies provide financial and operational incentives to use PEVs beyond

  2. Increasing the competitiveness of maintenance contract rates by using an alternative methodology for the calculation of average vehicle maintenance costs

    Directory of Open Access Journals (Sweden)

    Stephen Carstens

    2008-11-01

    Full Text Available Companies tend to outsource transport to fleet management companies to increase efficiencies if transport is a non-core activity. The provision of fleet management services on contract introduces a certain amount of financial risk to the fleet management company, specifically fixed rate maintenance contracts. The quoted rate needs to be sufficient and also competitive in the market. Currently the quoted maintenance rates are based on the maintenance specifications of the manufacturer and the risk management approach of the fleet management company. This is usually reflected in a contingency that is included in the quoted maintenance rate. An alternative methodology for calculating the average maintenance cost for a vehicle fleet is proposed based on the actual maintenance expenditures of the vehicles and accepted statistical techniques. The proposed methodology results in accurate estimates (and associated confidence limits of the true average maintenance cost and can beused as a basis for the maintenance quote.

  3. Planning of Vehicle Routing with Backup Provisioning Using Wireless Sensor Technologies

    Directory of Open Access Journals (Sweden)

    Noélia Correia

    2017-08-01

    Full Text Available Wireless sensor technologies can be used by intelligent transportation systems to provide innovative services that lead to improvements in road safety and congestion, increasing end-user satisfaction. In this article, we address vehicle routing with backup provisioning, where the possibility of reacting to overloading/overcrowding of vehicles at certain stops is considered. This is based on the availability of vehicle load information, which can be captured using wireless sensor technologies. After discussing the infrastructure and monitoring tool, the problem is mathematically formalized, and a heuristic algorithm using local search procedures is proposed. Results show that planning routes with backup provisioning can allow fast response to overcrowding while reducing costs. Therefore, sustainable urban mobility, with efficient use of resources, can be provided while increasing the quality of service perceived by users.

  4. Advanced testing and validation centre gets electric vehicle technology to market faster

    Energy Technology Data Exchange (ETDEWEB)

    Astil, T.; Girard, F. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2010-07-01

    The National Research Council (NRC) Institute for Fuel Cell Innovation is advancing Canada's clean energy advantage through NRC's technology cluster initiatives, which help Canadian small and medium enterprises achieve commercialization breakthroughs in key sectors. This presentation discussed the technology evaluation program (TEP) offered by the NRC Institute for Fuel Cell Innovation. The presentation discussed the TEPs mission, advanced testing and validation centre (ATVC), previous ATVC clients, environmental chamber, dynamometer, vibration table, electrochemical battery testing, and electrochemical testing laboratory. The ATVC is a specialized and safe environment for objective, reliable and accurate standardized testing applications of electric vehicle technologies. It offers independent test services to external organizations, making it easier to prove that electric vehicle technologies will perform under specific operating conditions. figs.

  5. Vehicle technologies program Government Performance and Results Act (GPA) report for fiscal year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.; Stephens, T. S.; Birky, A. K. (Energy Systems); (DOE-EERE); (TA Engineering)

    2012-08-10

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the on-road fuel economy of both light- and heavy-duty vehicles would improve by more than 20%, and that this positive impact would be accompanied by a reduction in oil consumption of nearly 2 million barrels per day and a reduction in greenhouse gas emissions of more than 300 million metric tons of CO{sub 2} equivalent per year. These benefits would have a significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.

  6. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism.

    Science.gov (United States)

    Srivastav, Deepanshu; Malhotra, Sahil

    2012-07-01

    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The

  7. Impact of Friction Reduction Technologies on Fuel Economy for Ground Vehicles

    Science.gov (United States)

    2009-08-13

    UNCLAS: Dist A. Approved for public release IMPACT OF FRICTION REDUCTION TECHNOLOGIES ON FUEL ECONOMY FOR GROUND VEHICLES G. R. Fenske , R. A. Erck...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) G.R. Fenske ; R.A. Erck; O.O. Ajayi; A. Masoner’ A.S. Confort 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT

  8. Alternative Fuels Data Center: How Do Bi-fuel Natural Gas Vehicles Work?

    Science.gov (United States)

    power vehicle electronics/accessories. Electronic control module (ECM) - (gasoline): The ECM controls ; safeguards the engine from abuse; and detects and troubleshoots problems. Electronic control module (ECM sensors: These monitor the pressure of the fuel supply and relay that information to the electronic

  9. Measuring the distribution of equity in terms of energy, environmental, and economic costs in the fuel cycles of alternative fuel vehicles with hydrogen pathway scenarios

    Science.gov (United States)

    Meyer, Patrick E.

    Numerous analyses exist which examine the energy, environmental, and economic tradeoffs between conventional gasoline vehicles and hydrogen fuel cell vehicles powered by hydrogen produced from a variety of sources. These analyses are commonly referred to as "E3" analyses because of their inclusion of Energy, Environmental, and Economic indicators. Recent research as sought a means to incorporate social Equity into E3 analyses, thus producing an "E4" analysis. However, E4 analyses in the realm of energy policy are uncommon, and in the realm of alternative transportation fuels, E4 analyses are extremely rare. This dissertation discusses the creation of a novel E4 simulation tool usable to weigh energy, environmental, economic, and equity trade-offs between conventional gasoline vehicles and alternative fuel vehicles, with specific application to hydrogen fuel cell vehicles. The model, dubbed the F uel Life-cycle Analysis of Solar Hydrogen -- Energy, Environment, Economic & Equity model, or FLASH-E4, is a total fuel-cycle model that combines energy, environmental, and economic analysis methodologies with the addition of an equity analysis component. The model is capable of providing results regarding total fuel-cycle energy consumption, emissions production, energy and environmental cost, and level of social equity within a population in which low-income drivers use CGV technology and high-income drivers use a number of advanced hydrogen FCV technologies. Using theories of equity and social indicators conceptually embodied in the Lorenz Curve and Gini Index, the equity of the distribution of societal energy and environmental costs are measured for a population in which some drivers use CGVs and other drivers use FCVs. It is found, based on baseline input data representative of the United States (US), that the distribution of energy and environmental costs in a population in which some drivers use CGVs and other drivers use natural gas-based hydrogen FCVs can be

  10. Alternative deNO{sub x} catalysts and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Due-Hansen, J.

    2010-06-15

    produced to evaluate the optimum mixing ratio. Based on these results, a monolith containing V{sub 2}O{sub 5}-SO{sub 4}2-ZrO{sub 2} in 25 wt% sepiolite was produced, and evaluated with respect to the influence of space velocity, reaction temperature, and NH{sub 3}/NO feed ratio on the NO reduction efficiency. The last part of this thesis deals with the non-catalytic sorption of NO{sub x} in ionic liquids, collected in chapter 5. Since no previous studies of the absorption of NO in ionic liquids have been reported, a preliminary study was conducted to identify suitable solvents. Two resulting imidazolium-based candidates, namely [BMIM]OAc and [BMIM]OTf, were selected due to their impressively high sorption capacities. Both solvents examined here revealed solubilities about twofold higher than those previously reported for e.g. CO{sub 2}-capture in ionic liquids. Especially the [BMIM]OAc demonstrated extraordinary absorption capabilities, being able to retain around four NO molecules per molecule ionic liquid. However, [BMIM]OTf exhibited promising behavior due to its reversible absorption/desorption properties. This in principle allows recycling of the ionic liquid as well as harvesting the NO. The accumulated NO could hereby be used in e.g. the synthesis of nitric acid allowing production of value-added chemicals from waste flue gas effluent. Although additional understanding of the mechanisms of the presented system is required, the perspective of a selective NO stripping technology is a very interesting alternative to the catalytic removal of NO from industrial flue gases. (Author)

  11. Ranking of sabotage/tampering avoidance technology alternatives

    International Nuclear Information System (INIS)

    Andrews, W.B.; Tabatabai, A.S.; Powers, T.B.

    1986-01-01

    Pacific Northwest Laboratory conducted a study to evaluate alternatives to the design and operation of nuclear power plants, emphasizing a reduction of their vulnerability to sabotage. Estimates of core melt accident frequency during normal operations and from sabotage/tampering events were used to rank the alternatives. Core melt frequency for normal operations was estimated using sensitivity analysis of results of probabilistic risk assessments. Core melt frequency for sabotage/tampering was estimated by developing a model based on probabilistic risk analyses, historic data, engineering judgment, and safeguards analyses of plant locations where core melt events could be initiated. Results indicate the most effective alternatives focus on large areas of the plant, increase safety system redundancy, and reduce reliance on single locations for mitigation of transients. Less effective options focus on specific areas of the plant, reduce reliance on some plant areas for safe shutdown, and focus on less vulnerable targets

  12. Ranking of sabotage/tampering avoidance technology alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, W.B.; Tabatabai, A.S.; Powers, T.B.; Daling, P.M.; Fecht, B.A.; Gore, B.F.; Overcast, T.D.; Rankin, W.R.; Schreiber, R.E.; Tawil, J.J.

    1986-01-01

    Pacific Northwest Laboratory conducted a study to evaluate alternatives to the design and operation of nuclear power plants, emphasizing a reduction of their vulnerability to sabotage. Estimates of core melt accident frequency during normal operations and from sabotage/tampering events were used to rank the alternatives. Core melt frequency for normal operations was estimated using sensitivity analysis of results of probabilistic risk assessments. Core melt frequency for sabotage/tampering was estimated by developing a model based on probabilistic risk analyses, historic data, engineering judgment, and safeguards analyses of plant locations where core melt events could be initiated. Results indicate the most effective alternatives focus on large areas of the plant, increase safety system redundancy, and reduce reliance on single locations for mitigation of transients. Less effective options focus on specific areas of the plant, reduce reliance on some plant areas for safe shutdown, and focus on less vulnerable targets.

  13. Design Anthropology, Emerging Technologies and Alternative Computational Futures

    DEFF Research Database (Denmark)

    Smith, Rachel Charlotte

    Emerging technologies are providing a new field for design anthropological inquiry that unite experiences, imaginaries and materialities in complex way and demands new approaches to developing sustainable computational futures.......Emerging technologies are providing a new field for design anthropological inquiry that unite experiences, imaginaries and materialities in complex way and demands new approaches to developing sustainable computational futures....

  14. Principles of sustainability science to assess alternative energy technologies

    CSIR Research Space (South Africa)

    Brent, AC

    2009-04-01

    Full Text Available , adaptive capacity, and complexity of social-ecological systems to assess the potential of such technologies for increasing the carrying capacity and improving the resilience of social-ecological systems, or to assess the resilience of the technological...

  15. Alternative technology of containment construction for WWER 1000 nuclear power plant

    International Nuclear Information System (INIS)

    Chalus, Z.

    1982-01-01

    A number of alternatives was assessed for the assembly of the steel elements of the cylindrical part of containment. Alternative 1 is based on the common technology of manufacture, transport and assembly of reinforced concrete blocks of ca. 3x12 m in size, used for building leak-proof walls of WWER 440 nuclear power plants. Alternative 2 is based on reinforced concrete blocks using 12x12 m blocks assembled from individual elements on the building. site. Alternative 3 is a specific variant of the previous alternative. Alternative 4 envisages the assembly of a prefabricated support structure made of steel. Alternative 5 is based on the gradual assembly of partial elements mounted onto a support structure. Alternative 6 only differs from 5 in the method of assembly and manufacture of the support structure. All alternatives are shown in diagrams. (J.B.)

  16. Characterization of particle bound organic carbon from diesel vehicles equipped with advanced emission control technologies.

    Science.gov (United States)

    Pakbin, Payam; Ning, Zhi; Schauer, James J; Sioutas, Constantinos

    2009-07-01

    A chassis dynamometer study was carried out by the University of Southern California in collaboration with the Air Resources Board (CARB) to investigate the physical, chemical, and toxicological characteristics of diesel emissions of particulate matter (PM) from heavy-duty vehicles. These heavy-duty diesel vehicles (HDDV) were equipped with advanced emission control technologies, designed to meet CARB retrofit regulations. A HDDV without any emission control devices was used as the baseline vehicle. Three advanced emission control technologies; continuously regenerating technology (CRT), zeolite- and vanadium-based selective catalytic reduction technologies (Z-SCRT and V-SCRT), were tested under transient (UDDS) (1) and cruise (80 kmph) driving cycles to simulate real-world driving conditions. This paper focuses on the characterization of the particle bound organic species from the vehicle exhaust. Physical and chemical properties of PM emissions have been reported by Biswas et al. Atmos. Environ. 2008, 42, 5622-5634) and Hu et al. (Atmos. Environ. 2008, submitted) Significant reductions in the emission factors (microg/mile) of particle bound organic compounds were observed in HDDV equipped with advanced emission control technologies. V-SCRT and Z-SCRT effectively reduced PAHs, hopanes and steranes, n-alkanes and acids by more than 99%, and often to levels below detection limits for both cruise and UDDS cycles. The CRT technology also showed similar reductions with SCRT for medium and high molecular weight PAHs, acids, but with slightly lower removal efficiencies for other organic compounds. Ratios of particle bound organics-to-OC mass (microg/g) from the baseline exhaust were compared with their respective ratios in diesel fuel and lubricating oil, which revealed that hopanes and steranes originate from lubricating oil, whereas PAHs can either form during the combustion process or originate from diesel fuel itself. With the introduction of emission control

  17. Access to augmentative and alternative communication: new technologies and clinical decision-making.

    Science.gov (United States)

    Fager, Susan; Bardach, Lisa; Russell, Susanne; Higginbotham, Jeff

    2012-01-01

    Children with severe physical impairments require a variety of access options to augmentative and alternative communication (AAC) and computer technology. Access technologies have continued to develop, allowing children with severe motor control impairments greater independence and access to communication. This article will highlight new advances in access technology, including eye and head tracking, scanning, and access to mainstream technology, as well as discuss future advances. Considerations for clinical decision-making and implementation of these technologies will be presented along with case illustrations.

  18. Analysis of alternative technologies stamping compressor blades of marine engines

    Directory of Open Access Journals (Sweden)

    Олександр Сергійович Аніщенко

    2015-10-01

    Full Text Available The author has made an analysis of several technologies stamping forgings compressor blades from titanium alloy ВT3-1. These technologies use different types of forming equipment: crank hot press, high-speed hammers, screw presses with hydraulic drive (SPHD, as well as isothermal forging hydraulic press. He pointed out the main advantages and disadvantages of the technology, noting that high-speed punching in the shipbuilding industry of Ukraine is not used for the manufacture of forgings blades. The article contains an economic analysis of the cost of forgings blades, which are made on four technologies: punching and calibration to crank hot press, stamping and calibration to press for isothermal forging, stamping and calibration on SPHD-press, stamping on SPHD-press and calibration to press for isothermal forging. The author has identified the effective use of these technologies. He showed that the use of SPHD-presses and hydraulic presses for isothermal forging reduces the cost of forging on the average 12% in comparison with the technology at the crank hot stamping press, increases the utilization of metal 1,3-1,5 times more, reduces power consumption 1,05-3,0 times less and complexity of manufacturing 1,8-4,2 times. However SPHD-press increases capital investment in the organization of stamping technology 2,6-5,3 times more and depreciation 2-4 times. Isothermal forging technology requires the cost of the stamps in 1,4-2,0 times higher than stamps for crank presses. The author argues that stamping forging blades technology improvement should be implemented saving basic materials first of all. Efficiency of isothermal stamping and calibration will be the higher, the more geometric dimensions of stamped forgings are

  19. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 2

    Science.gov (United States)

    Williams, R. W. (Compiler)

    1996-01-01

    This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  20. Hybrid vehicle turbine engine technology support (HVTE-TS) project. 1995--1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report presents a summary of technical work accomplished on the Hybrid Vehicle Turbine Engine--Technology Support (HVTE-TS) Project during calendar years 1995 and 1996. Work was performed under an initial National Aeronautics and Space Administration (NASA) contract DEN3-336. As of September 1996 the contract administration was transferred to the US Department of Energy (DoE) Chicago Operations Office, and renumbered as DE-AC02-96EE50553. The purpose of the HVTE-TS program is to develop gas turbine engine technology in support of DoE and automotive industry programs exploring the use of gas turbine generator sets in hybrid-electric automotive propulsion systems. The program focus is directed to the development of four key technologies to be applied to advanced turbogenerators for hybrid vehicles: Structural ceramic materials and processes; Low emissions combustion systems; Regenerators and seals systems; and Insulation systems and processes. 60 figs., 9 tabs.

  1. Atmospheric Photochemistry Studies of Pollutant Emissions from Transportation Vehicles Operating on Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jeffries, H.; Sexton, K.; Yu, J.

    1998-07-01

    This project was undertaken with the goal of improving our ability to predict the changes in urban ozone resulting from the widespread use of alternative fuels in automobiles. This report presents the results in detail.

  2. African Journal of Science and Technology (AJST) ALTERNATIVE ...

    African Journals Online (AJOL)

    NORBERT OPIYO AKECH

    1Tshwane University of Technology, Faculty of Engineering and the Build Environment,. Department of ... transfer associated with molecular collisions between the hot and cold ..... real high temperature reactors will also operate in turbulent.

  3. Assessment of 25 kW free-piston Stirling technology alternatives for solar applications

    Science.gov (United States)

    Erbeznik, Raymond M.; White, Maurice A.; Penswick, L. B.; Neely, Ronald E.; Ritter, Darren C.; Wallace, David A.

    1992-01-01

    The final design, construction, and testing of a 25-kW free-piston advanced Stirling conversion system (ASCS) are examined. The final design of the free-piston hydraulic ASCS consists of five subsystems: heat transport subsystem (solar receiver and pool boiler), free-piston hydraulic Stirling engine, hydraulic subsystem, cooling subsystem, and electrical and control subsystem. Advantages and disadvantages are identified for each technology alternative. Technology alternatives considered are gas bearings vs flexure bearings, stationary magnet linear alternator vs moving magnetic linear alternator, and seven different control options. Component designs are generated using available in-house procedures to meet the requirements of the free-piston Stirling convertor configurations.

  4. Alternative energy technologies an introduction with computer simulations

    CERN Document Server

    Buxton, Gavin

    2014-01-01

    Introduction to Alternative Energy SourcesGlobal WarmingPollutionSolar CellsWind PowerBiofuelsHydrogen Production and Fuel CellsIntroduction to Computer ModelingBrief History of Computer SimulationsMotivation and Applications of Computer ModelsUsing Spreadsheets for SimulationsTyping Equations into SpreadsheetsFunctions Available in SpreadsheetsRandom NumbersPlotting DataMacros and ScriptsInterpolation and ExtrapolationNumerical Integration and Diffe

  5. Comparing energy technology alternatives from an environmental perspective

    International Nuclear Information System (INIS)

    House, P.W.; Coleman, J.A.; Shull, R.D.; Matheny, R.W.; Hock, J.C.

    1981-02-01

    A number of individuals and organizations advocate the use of comparative, formal analysis to determine which are the safest methods for producing and using energy. Some have suggested that the findings of such analyses should be the basis upon which final decisions are made about whether to actually deploy energy technologies. Some of those who support formal comparative analysis are in a position to shape the policy debate on energy and environment. An opposing viewpoint is presented, arguing that for technical reasons, analysis can provide no definitive or rationally credible answers to the question of overall safety. Analysis has not and cannot determine the sum total of damage to human welfare and ecological communities from energy technologies. Analysis has produced estimates of particular types of damage; however, it is impossible to make such estimates comparable and commensurate across different classes of technologies and environmental effects. As a result of the deficiencies, comparative analysis connot form the basis of a credible, viable energy policy. Yet, without formal comparative analysis, how can health, safety, and the natural environment be protected. This paper proposes a method for improving the Nation's approach to this problem. The proposal essentially is that health and the environment should be considered as constraints on the deployment of energy technologies, constraints that are embodied in Government regulations. Whichever technologies can function within these constraints should then compete among themselves. This competition should be based on market factors like cost and efficiency and on political factors like national security and the questions of equity

  6. Technology and alternative cancer therapies: an analysis of heterodoxy and constructivism.

    Science.gov (United States)

    Hess, D J

    1996-12-01

    Theories of the construction of technology are reviewed from the wider interdisciplinary conversation known as science and technology studies (STS) and from the growing field of the anthropology of science and technology. These theories are used to contribute to research situated at the intersection of the anthropology of alternative medicine and of medical technologies. Cases drawn from the research tradition on microbial theories of cancer are considered to show how unorthodox medical theories become embedded in technologies through choices in microscope design and treatment technologies. In turn, the technologies contribute to the heterodox standing of the researchers, their research, and their therapies.

  7. Technology Roadmaps - Electric and plug-in hybrid electric vehicles (EV/PHEV)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    The mass deployment of electric and plug-in hybrid electric vehicles (EVs and PHEVs) that rely on low greenhouse gas (GHG) emission electricity generation has great potential to significantly reduce the consumption of petroleum and other high CO2-emitting transportation fuels. The vision of the Electric and Plug-in Hybrid (EV/PHEV) Vehicles Roadmap is to achieve by 2050 the widespread adoption and use of EVs and PHEVs, which together represent more than 50% of annual LDV (light duty vehicle) sales worldwide. In addition to establishing a vision, this roadmap sets strategic goals to achieve it, and identifies the steps that need to be taken to accomplish these goals. This roadmap also outlines the roles and collaboration opportunities for different stakeholders and shows how government policy can support the overall achievement of the vision. The strategic goals for attaining the widespread adoption and use of EVs and PHEVs worldwide by 2050 cover the development of the EV/PHEV market worldwide through 2030 and involve targets that align with global targets to stabilise GHG concentrations. These technology-specific goals include the following: Set targets for electric-drive vehicle sales; Develop coordinated strategies to support the market introduction of electric-drive vehicles; Improve industry understanding of consumer needs and behaviours; Develop performance metrics for characterising vehicles; Foster energy storage RD and D initiatives to reduce costs and address resource-related issues; and, Develop and implement recharging infrastructure. The roadmap outlines additional recommendations that must be considered in order to successfully meet the technology milestones and strategic goals. These recommendations include the following: Use a comprehensive mix of policies that provide a clear framework and balance stakeholder interests; Engage in international collaboration efforts; and, Address policy and industry needs at a national level. The IEA will work in an

  8. Driving with advanced vehicle technology: A qualitative investigation of older drivers' perceptions and motivations for use.

    Science.gov (United States)

    Gish, Jessica; Vrkljan, Brenda; Grenier, Amanda; Van Miltenburg, Benita

    2017-09-01

    For older drivers, in-vehicle technology offers much potential to improve safety and increase longevity of retaining both licensure and community mobility. However, little is known about how older drivers perceive Advanced Vehicle Technologies (AVTs) based on everyday driving experience. Interviews with 35 older drivers (20 men; 15 women) aged 60-85 who owned a vehicle with at least two AVTs (e.g., back-up camera, lane departure warning) were conducted to explore the meanings that older drivers assigned to AVTs and motivations for use, including whether age-related functional changes were part of their automobile purchase decision. Findings indicate that age-related changes are not a primary reason for why older adults seek out AVTs, but they still perceived and experienced AVTs to counteract age-related changes in driving performance based upon changes they felt occurring within the body. Older drivers also described AVTs as generating a sense of comfort behind-the-wheel. Comfort with this technology was equated with convenience, ease of use, and increased feelings of safety. Discussion emphasizes how assessments of the quality of driving performance and value of technology occur in relation to an aging body. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Technology Demonstration of Qualified Vehicle Modifier (QVM) Compressed Natural Gas (CNG) and Gasoline Fueled Ford F-150 Series Bifuel Prep Vehicles at Ft. Hood, TX

    National Research Council Canada - National Science Library

    Alvarez, R

    2000-01-01

    ...) of 1988, the Clean Air Act (CAA) Amendments of 1990, and the Energy Policy Act of 1992. The objectives of the program were to demonstrate the acceptability of alternative-fueled- vehicles in a Department of Defense (DOD) U.S...

  10. Hybrid electric vehicles and electrochemical storage systems — a technology push-pull couple

    Science.gov (United States)

    Gutmann, Günter

    In the advance of fuel cell electric vehicles (EV), hybrid electric vehicles (HEV) can contribute to reduced emissions and energy consumption of personal cars as a short term solution. Trade-offs reveal better emission control for series hybrid vehicles, while parallel hybrid vehicles with different drive trains may significantly reduce fuel consumption as well. At present, costs and marketing considerations favor parallel hybrid vehicles making use of small, high power batteries. With ultra high power density cells in development, exceeding 1 kW/kg, high power batteries can be provided by adapting a technology closely related to consumer cell production. Energy consumption and emissions may benefit from regenerative braking and smoothing of the internal combustion engine (ICE) response as well, with limited additional battery weight. High power supercapacitors may assist the achievement of this goal. Problems to be solved in practice comprise battery management to assure equilibration of individual cell state-of-charge for long battery life without maintenance, and efficient strategies for low energy consumption.

  11. Distributed Electrical Power Generation: Summary of Alternative Available Technologies

    Science.gov (United States)

    2003-09-01

    Vertical axis wind turbines are far less common than horizontal turbines . The only such turbine manufactured commercially at any volume is the Darrieus ...work reviews and describes various distributed generation technologies, including fuel cells, microturbines, wind turbines , photovoltaic arrays, and...12 3 Wind Turbines

  12. Knowledge Expansion in Engineering Education: Engineering Technology as an Alternative

    Directory of Open Access Journals (Sweden)

    Kamsiah Mohd Ismail

    2015-07-01

    Full Text Available Abstract. The current and rising challenges in engineering education demand graduate engineers who are well-prepared to provide innovative solutions as technical specialists, system integrators and change agents. Realizing the importance of producing a highly competent manpower, the Malaysian Government has put considerable pressure to the universities to produce engineers who are competitive in the global market. Hence, this assignment of developing a highly competence engineering technologist workforce in support of the government policy highlights issues pertaining to the development and offering of practical-oriented programs as a knowledge expansion in engineering education at universities as envisioned by the Malaysian Government.  This paper evaluates the current scenario and examines the application-oriented programs of engineering technology education as practice in local institutions in Malaysia in comparisons to some universities abroad. It also investigates the challenges faced by university management in dealing with issues concerning national quality assurance and accreditation pertaining to the engineering technology education programs. Specifically, it analyzes the faculty planning of pedagogies in term of hands-on skills in teaching and learning. A key conclusion of this research is that Malaysian universities need to evaluate its engineering technology education strategies if they aim for quality assurance and accreditation to be established and aspire for successful attempts towards the creation of the requisite knowledge workers that Malaysia needs.Keywords: application-oriented, engineering education, engineering technology, hands-on skills, knowledge expansion 

  13. EMERGING TECHNOLOGY SUMMARY: ELECTRO-PURE ALTERNATING CURRENT ELECTROCOAGULATION

    Science.gov (United States)

    The Superfund Innovative Technology Evaluation (SITE) Program was authorized as part of the 1986 amendments to the Superfund legislation. It represents a joint effort between the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development and Office of Solid W...

  14. Alternatives to Industrial Work Placement at Dublin Institute of Technology

    Science.gov (United States)

    Bates, Catherine; Gamble, Elena

    2011-01-01

    In the current economic crisis, higher education graduates need transferable professional skills more than ever. They need resourcefulness, an ability to work reflectively, a sense of civic awareness and an impressive curriculum vitae. This case study analyses how Dublin Institute of Technology's Programme for Students Learning With Communities…

  15. Presentation of electric motor and motor control technology for electric vehicles and hybrid vehicles; Denki jidosha hybrid sha yo motor oyobi motor seigyo gijutsu no shokai

    Energy Technology Data Exchange (ETDEWEB)

    Matsudaira, N.; Masakik, R.; Tajima, F. [Hitachi, Ltd., Tokyo (Japan)

    1999-02-01

    The authors have developed a motor drive system for electric vehicles and hybrid vehicles. This system consists of a permanent magnet type synchronous motor, an inverter using insulated gate bipolar transistors (IGBTs) and a controller based on a single-chip microcomputer. To achieve a compact and light weight synchronous motor, an internal permanent magnet type rotor structure was designed. This paper presents motor control technology for electric vehicles, such as an optimization method of field weakening control and a new current control method. (author)

  16. Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S.; Stephens, T.; McManus, W.

    2013-03-01

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  17. Transportation Energy Futures Series. Vehicle Technology Deployment Pathways. An Examination of Timing and Investment Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, Steve [Argonne National Lab. (ANL), Argonne, IL (United States); Stephens, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); McManus, Walter [Oakland Univ., Rochester, MI (United States)

    2013-03-01

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  18. SELENIUM TREATMENT/REMOVAL ALTERNATIVES DEMONSTRATION PROJECT - MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 20

    Science.gov (United States)

    This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...

  19. Hybrid electric vehicles TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  20. Evaluation of Alternative Technologies to Supply Drinking Water to Marines in Forward Deployed Locations

    Science.gov (United States)

    2010-03-01

    Afghanistan.” 2009. http://www.coleparmer.com/techinfo/techinfo.asp?htmlfile= water - afghanistan.htm&ID=964. Christ- wasser . “RO, EDI and optional UF...Cover, Single-Author Thesis EVALUATION OF ALTERNATIVE TECHNOLOGIES TO SUPPLY DRINKING WATER TO MARINES IN FORWARD DEPLOYED...AFIT/GES/ENV/10-M02 EVALUATION OF ALTERNATIVE TECHNOLOGIES TO SUPPLY DRINKING WATER TO MARINES IN FORWARD DEPLOYED

  1. The aluminum smelting process and innovative alternative technologies.

    Science.gov (United States)

    Kvande, Halvor; Drabløs, Per Arne

    2014-05-01

    The industrial aluminum production process is addressed. The purpose is to give a short but comprehensive description of the electrolysis cell technology, the raw materials used, and the health and safety relevance of the process. This article is based on a study of the extensive chemical and medical literature on primary aluminum production. At present, there are two main technological challenges for the process--to reduce energy consumption and to mitigate greenhouse gas emissions. A future step may be carbon dioxide gas capture and sequestration related to the electric power generation from fossil sources. Workers' health and safety have now become an integrated part of the aluminum business. Work-related injuries and illnesses are preventable, and the ultimate goal to eliminate accidents with lost-time injuries may hopefully be approached in the future.

  2. The Aluminum Smelting Process and Innovative Alternative Technologies

    Science.gov (United States)

    Drabløs, Per Arne

    2014-01-01

    Objective: The industrial aluminum production process is addressed. The purpose is to give a short but comprehensive description of the electrolysis cell technology, the raw materials used, and the health and safety relevance of the process. Methods: This article is based on a study of the extensive chemical and medical literature on primary aluminum production. Results: At present, there are two main technological challenges for the process—to reduce energy consumption and to mitigate greenhouse gas emissions. A future step may be carbon dioxide gas capture and sequestration related to the electric power generation from fossil sources. Conclusions: Workers' health and safety have now become an integrated part of the aluminum business. Work-related injuries and illnesses are preventable, and the ultimate goal to eliminate accidents with lost-time injuries may hopefully be approached in the future. PMID:24806723

  3. Barriers and possibilities for the emerging alternative lighting technologies

    DEFF Research Database (Denmark)

    Bjarklev, Araceli; Kjær, Tyge; Andersen, Jan

    2009-01-01

    the incandescent lamp; However, the emergence of other illumination technologies such as Light Emitting Diodes (LEDs) are currently raising in question, whether the fluorescent lamp is the technology that best can reduce the (large) illumination cological footprint. Europe and more specifically Denmark, a country......20% of the total electricity produced in the world today is used for illumination. Though the use of energy in Europe almost stagnated during the 1990ies, studies reveal that for the next 30 years the consumption of electricity will again increase making the 20% reduction of CO2 goal almost...... are the main possibilities and limitations for the Danish lighting Industry to help reducing the global illumination ecological footprint and what can be improved in the current illumination value chain in order to use the possibilities?...

  4. A brief review on key technologies in the battery management system of electric vehicles

    Science.gov (United States)

    Liu, Kailong; Li, Kang; Peng, Qiao; Zhang, Cheng

    2018-04-01

    Batteries have been widely applied in many high-power applications, such as electric vehicles (EVs) and hybrid electric vehicles, where a suitable battery management system (BMS) is vital in ensuring safe and reliable operation of batteries. This paper aims to give a brief review on several key technologies of BMS, including battery modelling, state estimation and battery charging. First, popular battery types used in EVs are surveyed, followed by the introduction of key technologies used in BMS. Various battery models, including the electric model, thermal model and coupled electro-thermal model are reviewed. Then, battery state estimations for the state of charge, state of health and internal temperature are comprehensively surveyed. Finally, several key and traditional battery charging approaches with associated optimization methods are discussed.

  5. Center for Alternative Energy Storage Research and Technology

    Science.gov (United States)

    2013-03-28

    and civilian markets . Research at CAESRT has been directed primarily at Defense Department (Army) applications to provide effective technology...applications are sensitive to the characteristics of the applications. Often it takes more than 3nS 2pS 4pS 1pS 3pS 2nS 4nS 1Li 3Li 1C 2C 3C 4C 5C 2Li

  6. Emissions from US waste collection vehicles

    International Nuclear Information System (INIS)

    Maimoun, Mousa A.; Reinhart, Debra R.; Gammoh, Fatina T.; McCauley Bush, Pamela

    2013-01-01

    Highlights: ► Life-cycle emissions for alternative fuel technologies. ► Fuel consumption of alternative fuels for waste collection vehicles. ► Actual driving cycle of waste collection vehicles. ► Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving

  7. Development of other oil-alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development efforts are being given on a large wind power generation system which has high reliability and economy and suits the actual situations in Japan. Verification tests will be conducted to establish control systems to realize load leveling against the increase in maximum power demand and the differences in demands between seasons, days and nights. Development will also be made on technologies for systems to operate devices optimally using nighttime power for household use. Solar light and heat energies will be introduced and used widely in housing to achieve efficient comprehensive energy utilization. Wastes, waste heat and unused energies locally available will be utilized to promote forming environment harmonious type energy communities. Photovoltaic and fuel cell power generation facilities will be installed on a trial basis to promote building a groundwork for full-scale installations. Photovoltaic power generation systems will be installed on actual houses to establish technologies to assess and optimize the load leveling effect. Attempts will be made on practical application of high-efficiency regional heat supply systems which utilize such unutilized energies as those from sea water and river water. Assistance will be given through preparing manuals on introduction of wastes power generation systems by local governments, and introduction of regional energy systems by using new discrete type power generation technologies and consumer-use cogeneration systems. 1 fig., 1 tab.

  8. Cogeneration technology alternatives study. Volume 1: Summary report

    Science.gov (United States)

    1980-01-01

    Data and information in the area of advanced energy conversion systems for industrial congeneration applications in the 1985-2000 time period was studied. Six current and thirty-one advanced energy conversion systems were defined and combined with appropriate balance-of-plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on-site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Overall, fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal-derived fuels, or coal with advanced fluid bed combustion or on-site gasification systems.

  9. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds

    Science.gov (United States)

    Poojary, Mahesha M.; Barba, Francisco J.; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A.; Juliano, Pablo

    2016-01-01

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability. PMID:27879659

  10. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds

    Directory of Open Access Journals (Sweden)

    Mahesha M. Poojary

    2016-11-01

    Full Text Available Marine microalgae and seaweeds (microalgae represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield, selectivity (purity, high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.

  11. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds.

    Science.gov (United States)

    Poojary, Mahesha M; Barba, Francisco J; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A; Juliano, Pablo

    2016-11-22

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.

  12. Securing Public Safety Vehicles: Reducing Vulnerabilities by Leveraging Smart Technology and Design Strategies

    Science.gov (United States)

    2013-12-01

    there are technologies available today that would reduce the risk of vehicle theft and misuse by fortifying vulnerabilities. They offer several levels...confirm identity by identify “what I am (what I do)” in the electronic context of “who am I?”80 Furthermore, biometrics is a digital representation of...can build a comprehensive and effective biometric identification system, improve overall performance, improve system robustness, and reduce the

  13. Fifth annual report to congress. Federal alternative motor fuels programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report presents the status of the US Department of Energy`s alternative fuel vehicle demonstration and performance tracking programs being conducted in accordance with the Energy Policy and Conservation Act. These programs comprise the most comprehensive data collection effort ever undertaken on alternative transportation fuels and alternative fuel vehicles. The report summarizes tests and results from the fifth year. Electric vehicles are not included in these programs, and the annual report does not include information on them. Since the inception of the programs, great strides have been made in developing commercially viable alternative fuel vehicle technologies. However, as is the case in the commercialization of all new technologies, some performance problems have been experienced on vehicles involved in early demonstration efforts. Substantial improvements have been recorded in vehicle practicality, safety, and performance in real-world demonstrations. An aspect of particular interest is emissions output. Results from light duty alternative fuel vehicles have demonstrated superior inservice emissions performance. Heavy duty alternative fuel vehicles have demonstrated dramatic reductions in particulate emissions. However, emissions results from vehicles converted to run on alternative fuel have not been as promising. Although the technologies available today are commercially viable in some markets, further improvements in infrastructure and economics will result in greater market expansion. Information is included in this report on light and heavy duty vehicles, transit buses, vehicle conversions, safety, infrastructure support, vehicle availability, and information dissemination.

  14. Air-cushion vehicles as an alternative to conventional industrial trucks

    International Nuclear Information System (INIS)

    Marr, E.

    2003-01-01

    Protective shieldings must be used for the transportation of radioactive materials, such as drums and containers within the control area, in order to observe the activity classes of the rooms. As a result of the change in the radiation protection ordinance, the operating areas of the floor conveyors have to be protected even more, i.e. transportation weights are becoming even bigger. When using pallet lift trucks without drive, weights over 2 tons are virtually unable to be operated. A fork-lift truck must be used for higher loads. If the transportation weight (transportation load and net weight of the lift truck) is doubled, usage within buildings is very restricted through the ceiling net load. This is the range of application of air cushion vehicles, in particular if positioning accuracy and remote-controlled driving become necessary. (orig.)

  15. A technological review on electric vehicle DC charging stations using photovoltaic sources

    Science.gov (United States)

    Youssef, Cheddadi; Fatima, Errahimi; najia, Es-sbai; Chakib, Alaoui

    2018-05-01

    Within the next few years, Electrified vehicles are destined to become the essential component of the transport field. Consequently, the charging infrastructure should be developed in the same time. Among this substructure, Charging stations photovoltaic-assisted are attracting a substantial interest due to increased environmental awareness, cost reduction and rise in efficiency of the PV modules. The intention of this paper is to review the technological status of Photovoltaic–Electric vehicle (PV-EV) charging stations during the last decade. The PV-EV charging station is divided into two categories, which are PV-grid and PV-standalone charging systems. From a practical point view, the distinction between the two architectures is the bidirectional inverter, which is added to link the station to the smart grid. The technological infrastructure includes the common hardware components of every station, namely: PV array, dc-dc converter provided with MPPT control, energy storage unit, bidirectional dc charger and inverter. We investigate, compare and evaluate many valuable researches that contain the design and control of PV-EV charging system. Additionally, this concise overview reports the studies that include charging standards, the power converters topologies that focus on the adoption of Vehicle-to grid technology and the control for both PV–grid and PV standalone DC charging systems.

  16. Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Alejandro Mendez

    2014-07-01

    Full Text Available Autonomous Underwater Vehicles (AUVs are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time, they are usually powered by lithium-ion secondary batteries, which have insufficient specific energies. In order for this technology to achieve a mature state, increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First, the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed, examining solutions adopted in the analogous aerial vehicle applications, as well as the underwater ones, to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally, some closing remarks on the future of this technology are given.

  17. Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.

    2012-01-01

    NASA s goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.

  18. Enriching stable isotopes: Alternative use for Urenco technology

    International Nuclear Information System (INIS)

    Rakhorst, H.; de Jong, P.G.T.; Dawson, P.D.

    1996-01-01

    The International Urenco Group utilizes a technologically advanced centrifuge process to enrich uranium in the fissionable isotope 235 U. The group operates plants in the United Kingdom, the Netherlands, and Germany and currently holds a 10% share of the multibillion dollar world enrichment market. In the early 1990s, Urenco embarked on a strategy of building on the company's uniquely advanced centrifuge process and laser isotope separation (LIS) experience to enrich nonradioactive isotopes colloquially known as stable isotopes. This paper summarizes the present status of Urenco's stable isotopes business

  19. Cogeneration technology alternatives study. Volume 2: Industrial process characteristics

    Science.gov (United States)

    1980-01-01

    Information and data for 26 industrial processes are presented. The following information is given for each process: (1) a description of the process including the annual energy consumption and product production and plant capacity; (2) the energy requirements of the process for each unit of production and the detailed data concerning electrical energy requirements and also hot water, steam, and direct fired thermal requirements; (3) anticipated trends affecting energy requirements with new process or production technologies; and (4) representative plant data including capacity and projected requirements through the year 2000.

  20. Technology Overview Using Case Studies of Alternative Landfill Technologies and Associated Regulatory Topics

    National Research Council Canada - National Science Library

    2003-01-01

    ... alternative landfill cover projects. The purpose of the case studies is to present examples of the flexibility used in the regulatory framework for approving alternative landfill cover designs, current research information about the use...

  1. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    Science.gov (United States)

    Pujotomo, Isworo

    2018-02-01

    Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  2. Energy and cost savings results for advanced technology systems from the Cogeneration Technology Alternatives Study /CTAS/

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.

  3. Systems Engineering Technology Readiness Assessment of Hybrid-Electric Technologies for Tactical Wheeled Vehicles

    Science.gov (United States)

    2014-09-01

    reasonable yield within this decade. Similarly, the permanent magnet motors , which are desirable for traction due to their high efficiency, must also be...degrees C and 180 degrees C (RDECOM Public Affairs 2014). Current electric drive vehicles, using permanent magnet motors , have thermal limitations well...performance and their good efficiency, benefits particularly applicable to permanent magnet motors . Synchronous motors with permanent magnets, in

  4. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.

    Science.gov (United States)

    Meyer, Patrick E; Green, Erin H; Corbett, James J; Mas, Carl; Winebrake, James J

    2011-03-01

    Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas).

  5. The Clean Development Mechanism as a Vehicle for Technology Transfer and Sustainable Development - Myth or Reality?

    Directory of Open Access Journals (Sweden)

    Gary Cox

    2010-09-01

    Full Text Available This paper critically examines the clean development mechanism (CDM established under Article 12 of the Kyoto Protocol in terms of its effectiveness as a vehicle for technology transfer to developing countries, a specific commitment under the UNFCCC. Fundamentally, the paper poses the question of whether technology transfer as part of the CDM is a myth or a reality in the broader context of sustainable development. Technology transfer between countries of the North and South is explored in a historical context and the emergence of technology transfer obligations is traced in multilateral environmental agreements. The architecture of the UNFCCC and the Kyoto Protocol are examined in relation to technology transfer obligations. Empirical studies are reviewed to gain an understanding of how CDM operates in practice, with a closer examination of a small number of recent CDM projects. There is an update on the Technology Mechanism being established under the Copenhagen Accord. The paper concludes with a summary of the benefits of CDM to date and its current limitations in achieving the scaling-up of affordable environmentally sound technology transfer envisaged in the Bali Action Plan. The conclusion is that technology transfer must be a much more explicit objective of CDM with better targeting of projects in order to achieve locally sustainable equitable outcomes. Furthermore, the link between CDM and technology transfer needs to be much more explicitly made in order that, in the long run, such interventions will lead to viable low emission development pathways in developing countries.

  6. Evaluating the development of life and progress of heavy vehicles ...

    African Journals Online (AJOL)

    Regarding the investigation of new technologies, we have to think to make changes in vehicle technology or finding alternative technology. According to the first priority, criteria and the weight of analytic hierarchy process, the technical criteria, first the action should be done in technical improvements of the vehicle, and also ...

  7. The Alternative Way of Creating Infographics Using SVG Technology

    Directory of Open Access Journals (Sweden)

    Sandra Pavazza

    2012-07-01

    Full Text Available The article develops new ways of creating and using interactive SVG infographics. The emphasis lies on the compatibility of SVG standard with other web standards, like XML, XSL, CSS, SMIL and ECMAScript, the advantages that it brings are particularly explored. There is a XSLT template developed which transforms XML data into SVG infographic, and the way of achieving complete control over data and data visualization is tested. This enabled the achieving of dynamic control of content and its presentation, and contributed to the results in reduced developing cost and time, better flexibility and reliability of the organizational system. The paper also studied the possibility to convey infographic message by adding interactivity, and explored technologies by means of which this can be achieved. The aspects of establishing a more efficient communication with end users, such as searchability and accessibility are also considered. SVG infographics are compared with other approaches for creating infographics in raster and vector techniques.

  8. Alternative control technology document for bakery oven emissions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, C.W.

    1992-12-01

    The document was produced in response to a request by the baking industry for Federal guidance to assist in providing a more uniform information base for State decision-making with regard to control of bakery oven emissions. The information in the document pertains to bakeries that produce yeast-leavened bread, rolls, buns, and similar products but not crackers, sweet goods, or baked foodstuffs that are not yeast leavened. Information on the baking processes, equipment, operating parameters, potential emissions from baking, and potential emission control options are presented. Catalytic and regenerative oxidation are identified as the most appropriate existing control technologies applicable to VOC emissions from bakery ovens. Cost analyses for catalytic and regenerative oxidation are included. A predictive formula for use in estimating oven emissions has been derived from source tests done in junction with the development of the document. Its use and applicability are described.

  9. IMPLEMENTING INFORMATION TECHNOLOGY: AN ALTERNATIVE FOR URBAN RESETTLEMENT PROGRAM

    Directory of Open Access Journals (Sweden)

    Bauni Hamid

    2001-01-01

    Full Text Available Revitalizing slum-area has been recognized as one of the most complicated parts in urban resettlement program. With such a context we need a particular mode of communication to initiate and generate the project based on people's own aspiration. There are problem characteristics here, which are usually executed by Information Technology (IT. It is a potential to overcome the problem by using IT based on its ability to manage abundant information with various variables. At least there are three prospective opportunities in applying IT in this area. Firstly, it is the role of visualization, where computer can execute several visual features of the projects, which will be more representative than the previous ones. Secondly, it is the role of IT in generating the customization process to everyone involved in the projects. The last is the role of IT as executing tool for project's database management.

  10. Final priority; Rehabilitation Services Administration--Assistive Technology Alternative Financing Program. Final priority.

    Science.gov (United States)

    2014-08-14

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Assistive Technology Alternative Financing Program administered by the Rehabilitation Services Administration (RSA). The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. This priority is designed to ensure that the Department funds high-quality assistive technology (AT) alternative financing programs (AFPs) that meet rigorous standards in order to enable individuals with disabilities to access and acquire assistive technology devices and services necessary to achieve education, community living, and employment goals.

  11. Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator

    Science.gov (United States)

    Stenger, F. J.

    1982-12-01

    The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.

  12. DOE FreedomCAR and vehicle technologies program advanced power electronic and electrical machines annual review report

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitch [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2006-10-11

    This report is a summary of the Review Panel at the FY06 DOE FreedomCAR and Vehicle Technologies (FCVT) Annual Review of Advanced Power Electronics and Electric Machine (APEEM) research activities held on August 15-17, 2006.

  13. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes

    Science.gov (United States)

    Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.

    1980-01-01

    Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.

  14. Hydrogen Production from Sea Wave for Alternative Energy Vehicles for Public Transport in Trapani (Italy

    Directory of Open Access Journals (Sweden)

    Vincenzo Franzitta

    2016-10-01

    Full Text Available The coupling of renewable energy and hydrogen technologies represents in the mid-term a very interesting way to match the tasks of increasing the reliable exploitation of wind and sea wave energy and introducing clean technologies in the transportation sector. This paper presents two different feasibility studies: the first proposes two plants based on wind and sea wave resource for the production, storage and distribution of hydrogen for public transportation facilities in the West Sicily; the second applies the same approach to Pantelleria (a smaller island, including also some indications about solar resource. In both cases, all buses will be equipped with fuel-cells. A first economic analysis is presented together with the assessment of the avoidable greenhouse gas emissions during the operation phase. The scenarios addressed permit to correlate the demand of urban transport to renewable resources present in the territories and to the modern technologies available for the production of hydrogen from renewable energies. The study focuses on the possibility of tapping the renewable energy potential (wind and sea wave for the hydrogen production by electrolysis. The use of hydrogen would significantly reduce emissions of particulate matter and greenhouse gases in urban districts under analysis. The procedures applied in the present article, as well as the main equations used, are the result of previous applications made in different technical fields that show a good replicability.

  15. Hydrocarbon emission fingerprints from contemporary vehicle/engine technologies with conventional and new fuels

    Science.gov (United States)

    Montero, Larisse; Duane, Matthew; Manfredi, Urbano; Astorga, Covadonga; Martini, Giorgio; Carriero, Massimo; Krasenbrink, Alois; Larsen, B. R.

    2010-06-01

    The present paper presents results from the analysis of 29 individual C 2-C 9 hydrocarbons (HCs) specified in the European Commission Ozone Directive. The 29 HCs are measured in exhaust from common, contemporary vehicle/engine/fuel technologies for which very little or no data is available in the literature. The obtained HC emission fingerprints are compared with fingerprints deriving from technologies that are being phased out in Europe. Based on the total of 138 emission tests, thirteen type-specific fingerprints are extracted (Mean ± SD percentage contributions from individual HCs to the total mass of the 29 HCs), essential for receptor modelling source apportionment. The different types represent exhaust from Euro3 and Euro4 light-duty (LD) diesel and petrol-vehicles, Euro3 heavy-duty (HD) diesel exhaust, and exhaust from 2-stroke preEuro, Euro1 and Euro2 mopeds. The fuels comprise liquefied petroleum gas, petrol/ethanol blends (0-85% ethanol), and mineral diesel in various blends (0-100%) with fatty acid methyl esters, rapeseed methyl esters palm oil methyl esters, soybean oil methyl or sunflower oil methyl esters. Type-specific tracer compounds (markers) are identified for the various vehicle/engine/fuel technologies. An important finding is an insignificant effect on the HC fingerprints of varying the test driving cycle, indicating that combining HC fingerprints from different emission studies for receptor modelling purposes would be a robust approach. The obtained results are discussed in the context of atmospheric ozone formation and health implications from emissions (mg km -1 for LD and mopeds and mg kW h -1 for HD, all normalised to fuel consumption: mg dm -3 fuel) of the harmful HCs, benzene and 1,3-butadiene. Another important finding is a strong linear correlation of the regulated "total" hydrocarbon emissions (tot-HC) with the ozone formation potential of the 29 HCs (ΣPO 3 = (1.66 ± 0.04) × tot-RH; r2 = 0.93). Tot-HC is routinely monitored in

  16. HTS machines as enabling technology for all-electric airborne vehicles

    International Nuclear Information System (INIS)

    Masson, P J; Brown, G V; Soban, D S; Luongo, C A

    2007-01-01

    Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development

  17. HTS machines as enabling technology for all-electric airborne vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Masson, P J [FAMU-FSU College of Engineering and the Center for Advanced Power Systems, Tallahassee, FL 32310 (United States); Brown, G V [NASA Glenn Research Center, Cleveland, OH (United States); Soban, D S [Aerospace System Design Laboratory/Georgia Tech, Atlanta, GA 32332 (United States); Luongo, C A [FAMU-FSU College of Engineering and the Center for Advanced Power Systems, Tallahassee, FL 32310 (United States)

    2007-08-15

    Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.

  18. Nanostructured liquid crystalline particles as an alternative delivery vehicle for plant agrochemicals.

    Science.gov (United States)

    Nadiminti, Pavani P; Dong, Yao D; Sayer, Chad; Hay, Phillip; Rookes, James E; Boyd, Ben J; Cahill, David M

    2013-03-13

    Agrochemical spray formulations applied to plants are often mixed with surfactants that facilitate delivery of the active ingredient. However, surfactants cause phytotoxicity and off-target effects in the environment. We propose the use of nanostructured liquid crystalline particles (NLCP) as an alternative to surfactant-based agrochemical delivery. For this, we have compared the application of commercial surfactants, di (2-ethylhexyl) sulfosuccinate and alkyl dimethyl betaine, with NLCP made from phytantriol, at concentrations of 0.1%, 1% and 5% on the adaxial surface of leaves of four plant species Ttriticum aestivum (wheat), Zea mays (maize), Lupinus angustifolius (lupin), and Arabidopsis thaliana. In comparison with the application of surfactants there was less phytotoxicity on leaves of each species following treatment with NLCP. Following treatment of leaves with NLCP analysis of cuticular wax micromorphology revealed less wax solubilization in the monocot species. The results clearly show that there are advantages in the use of NLCP rather than surfactants for agrochemical delivery.

  19. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    Science.gov (United States)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  20. Aerodynamic Drag Reduction Technologies Testing of Heavy-Duty Vocational Vehicles and a Dry Van Trailer

    Energy Technology Data Exchange (ETDEWEB)

    Ragatz, Adam [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thornton, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    This study focused on two accepted methods for quantifying the benefit of aerodynamic improvement technologies on vocational vehicles: the coastdown technique, and on-road constant speed fuel economy measurements. Both techniques have their advantages. Coastdown tests are conducted over a wide range in speed and allow the rolling resistance and aerodynamic components of road load force to be separated. This in turn allows for the change in road load and fuel economy to be estimated at any speed, as well as over transient cycles. The on-road fuel economy measurements only supply one lumped result, applicable at the specific test speed, but are a direct measurement of fuel usage and are therefore used in this study as a check on the observed coastdown results. Resulting coefficients were then used to populate a vehicle model and simulate expected annual fuel savings over real-world vocational drive cycles.

  1. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  2. Surveillance technology: an alternative to physical restraints? A qualitative study among professionals working in nursing homes for people with dementia.

    NARCIS (Netherlands)

    Zwijsen, S.A.; Depla, M.F.I.A.; Niemeijer, A.R.; Francke, A.L.; Hertogh, C.M.P.M.

    2012-01-01

    Background: Working with surveillance technology as an alternative to traditional restraints creates obvious differences in the way care is organised. It is not clear whether professional caregivers find working with surveillance technology useful and workable and whether surveillance technology is

  3. Remotely Operated Vehicle (ROV) System for Horizontal Tanks. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The U.S. Department of Energy (DOE) is responsible for cleaning and closing over 300 small and large underground tanks across the DOE complex that are used for storing over 1-million gal of high- and low-level radioactive and mixed waste (HLW, LLW, and MLLW). The contents of these aging tanks must be sampled to analyze for contaminants to determine final disposition of the tank and its contents. Access to these tanks is limited to small-diameter risers that allow for sample collection at only one discrete point below this opening. To collect a more representative sample without exposing workers to tank interiors, a remote-controlled retrieval method must be used. Many of the storage tanks have access penetrations that are 18 in. in diameter and, therefore, are not suitable for deployment of large vehicle systems like the Houdini (DOE/EM-0363). Often, the tanks offer minimal headspace and are so cluttered with pipes and other vertical obstructions that deployment of long-reach manipulators becomes an impractical option. A smaller vehicle system is needed that can deploy waste retrieval, sampling, and inspection tools into these tanks. The Oak Ridge National Laboratory (ORNL), along with ROV Technologies, Inc., and The Providence Group, Inc., (Providence) has developed the Scarab III remotely operated vehicle system to meet this need. The system also includes a containment and deployment structure and a jet pump-based, waste-dislodging and conveyance system to use in these limited-access tanks. The Scarab III robot addresses the need for a vehicle-based, rugged, remote-controlled system for collection of representative samples of tank contents. This document contains information on the above-mentioned technology, including description, applicability, cost, and performance data

  4. Secondary Organic Aerosol Production from Gasoline Vehicle Exhaust: Effects of Engine Technology, Cold Start, and Emission Certification Standard.

    Science.gov (United States)

    Zhao, Yunliang; Lambe, Andrew T; Saleh, Rawad; Saliba, Georges; Robinson, Allen L

    2018-02-06

    Secondary organic aerosol (SOA) formation from dilute exhaust from 16 gasoline vehicles was investigated using a potential aerosol mass (PAM) oxidation flow reactor during chassis dynamometer testing using the cold-start unified cycle (UC). Ten vehicles were equipped with gasoline direct injection engines (GDI vehicles) and six with port fuel injection engines (PFI vehicles) certified to a wide range of emissions standards. We measured similar SOA production from GDI and PFI vehicles certified to the same emissions standard; less SOA production from vehicles certified to stricter emissions standards; and, after accounting for differences in gas-particle partitioning, similar effective SOA yields across different engine technologies and certification standards. Therefore the ongoing, dramatic shift from PFI to GDI vehicles in the United States should not alter the contribution of gasoline vehicles to ambient SOA and the natural replacement of older vehicles with newer ones certified to stricter emissions standards should reduce atmospheric SOA levels. Compared to hot operations, cold-start exhaust had lower effective SOA yields, but still contributed more SOA overall because of substantially higher organic gas emissions. We demonstrate that the PAM reactor can be used as a screening tool for vehicle SOA production by carefully accounting for the effects of the large variations in emission rates.

  5. Performance Evaluation of Speech Recognition Systems as a Next-Generation Pilot-Vehicle Interface Technology

    Science.gov (United States)

    Arthur, Jarvis J., III; Shelton, Kevin J.; Prinzel, Lawrence J., III; Bailey, Randall E.

    2016-01-01

    During the flight trials known as Gulfstream-V Synthetic Vision Systems Integrated Technology Evaluation (GV-SITE), a Speech Recognition System (SRS) was used by the evaluation pilots. The SRS system was intended to be an intuitive interface for display control (rather than knobs, buttons, etc.). This paper describes the performance of the current "state of the art" Speech Recognition System (SRS). The commercially available technology was evaluated as an application for possible inclusion in commercial aircraft flight decks as a crew-to-vehicle interface. Specifically, the technology is to be used as an interface from aircrew to the onboard displays, controls, and flight management tasks. A flight test of a SRS as well as a laboratory test was conducted.

  6. Technology as a vehicle for inclusion of learners with attention deficits in mainstream schools

    DEFF Research Database (Denmark)

    Voldborg, Hanne; Sorensen, Elsebeth Korsgaard

    2015-01-01

    The potential of technology for supporting educational processes of participation, collaboration and creation is widely accepted. Likewise have digital tools proved to enhance learning processes for disabled learners. A currently topical group, politically and educationally, in the discourse...... of inclusion is learners with extensive developmental and attention deficit disorders. This paper investigates the potential of technology for supporting the inclusion of this group in the general school system, i.e. into mainstream classes, using technology as a tool to join, participate and contribute...... – and as a vehicle for general human growth in their learning community. The paper presents the primer results and describes and discusses the challenges of both teachers’ and learners’, involved in the inclusion process. Finally, on the basis of findings, a typology of tools is suggested, which may support...

  7. Clean Cities 2014 Vehicle Buyer's Guide (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-12-01

    This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  8. Advanced Vehicle Testing and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Garetson, Thomas [The Clarity Group, Incorporated, Chicago, IL (United States)

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  9. Pilot vehicle interface on the advanced fighter technology integration F-16

    Science.gov (United States)

    Dana, W. H.; Smith, W. B.; Howard, J. D.

    1986-01-01

    This paper focuses on the work load aspects of the pilot vehicle interface in regard to the new technologies tested during AMAS Phase II. Subjects discussed in this paper include: a wide field-of-view head-up display; automated maneuvering attack system/sensor tracker system; master modes that configure flight controls and mission avionics; a modified helmet mounted sight; improved multifunction display capability; a voice interactive command system; ride qualities during automated weapon delivery; a color moving map; an advanced digital map display; and a g-induced loss-of-consciousness and spatial disorientation autorecovery system.

  10. Development and use of GREET 1.6 fuel-cycle model for transportation fuels and vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    2001-01-01

    Since 1995, with funds from the U.S. Department of Energy's (DOE's) Office of Transportation Technologies (OTT), Argonne National Laboratory has been developing the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The model is intended to serve as an analytical tool for use by researchers and practitioners in estimating fuel-cycle energy use and emissions associated with alternative transportation fuels and advanced vehicle technologies. Argonne released the first version of the GREET model--GREET 1.0--in June 1996. Since then, it has released a series of GREET versions with revisions, updates, and upgrades. In February 2000, the latest public version of the model--GREET 1.5a--was posted on Argonne's Transportation Technology Research and Development Center (TTRDC) Web site (www.transportation.anl.gov/ttrdc/greet). Major publications that address GREET development are listed. These reports document methodologies, development, key default assumptions, applications, and results of the GREET model. They are also posted, along with additional materials for the GREET model, on the TTRDC Web site. For a given transportation fuel/technology combination, the GREET model separately calculates: (A)--Fuel-cycle energy consumption for the following three source categories: (1) Total energy (all energy sources), (2) Fossil fuels (petroleum, natural gas [NG], and coal), and (3) Petroleum. (B)--Fuel-cycle emissions of the following three greenhouse gases (GHGs): (1) Carbon dioxide (CO 2 ) (with a global warming potential [GWP] of 1), (2) Methane (CH 4 ) (with a GWP of 21), and (3) Nitrous oxide (N 2 O) (with a GWP of 310). (C)--Fuel-cycle emissions of the following five criteria pollutants (separated into total [T] and urban [U] emissions): (1) Volatile organic compounds (VOCs), (2) Carbon monoxide (CO), (3) Nitrogen oxides (NO x ), (4) Particulate matter with a mean aerodynamic diameter of 10 (micro)m or less (PM 10 ), and (5) Sulfur oxides

  11. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    Energy Technology Data Exchange (ETDEWEB)

    Donley, Tim [Cooper Tire & Rubber Company Incorporated, Findlay, OH (United States)

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  12. Critical analysis on hydrogen as an alternative to fossil fuels and biofuels for vehicles in Europe

    International Nuclear Information System (INIS)

    Sobrino, Fernando Hernandez; Monroy, Carlos Rodriguez; Perez, Jose Luis Hernandez

    2010-01-01

    In recent times, the global debate on the environment has been centered on CO 2 emissions. This gas is the major cause of the ''greenhouse effect'' and people are more concerned with the idea that the emissions of this gas should be minimized. As a result of this concern, the Kyoto Protocol was enacted and subscribed to by many countries, setting the maximum gas emissions for them. Fossil fuels are a major source of CO 2 emissions. For some years now The European Union has been seeking to promote some years now the use of biofuels as substitutes for diesel or petrol for transport purposes. As a result of this policy, in 2003 the European Union (EU) Directive 2003/30/EC was developed with the aim of promoting the use of biofuels as a substitute for diesel or gasoline among European Union countries as well as to contribute to fulfilling the commitments acquired on climate change, security of supply in environmentally friendly conditions and the promotion of renewable energy sources. In order to achieve these goals, the directive forces all EU members to ensure that before December 31 of 2010 at least 5.75% of all gasoline and diesel fuels sold for transport purposes are biofuels. European Union countries have social and economic characteristics unique to themselves. The energy dependence on foreign sources, the features of the agricultural sector or the degree of industrialization varies greatly from one country to another. In this context, it is questionable whether the obligation imposed by this directive is actually achieving in its application uniform and/or identical goals in each of the countries involved and whether the actions of the various governments are also aligned with these goals. All these ideas were developed in a previous report (Sobrino and Monroy (2009)). This report examines the possibility of using hydrogen as an alternative to fossil fuels and biofuels from a technical, economic and environmental point of view in the specific case of a European

  13. Evaluation of alternative nonflame technologies for destruction of hazardous organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Musgrave, B.C. [BC Musgrave, Inc. (United States); Drake, R.N. [Drake Engineering, Inc. (United States)

    1997-04-01

    The US Department of Energy`s Mixed Waste Focus Area (MWFA) commissioned an evaluation of mixed waste treatment technologies that are alternatives to incineration for destruction of hazardous organic wastes. The purpose of this effort is to evaluate technologies that are alternatives to open-flame, free-oxygen combustion (as exemplified by incinerators), and recommend to the Waste Type Managers and the MWFA which technologies should be considered for further development. Alternative technologies were defined as those that have the potential to: destroy organic material without use of open-flame reactions with free gas-phase oxygen as the reaction mechanism; reduce the offgas volume and associated contaminants (metals, radionuclides, and particulates) emitted under normal operating conditions; eliminate or reduce the production of dioxins and furans; and reduce the potential for excursions in the process that can lead to accidental release of harmful levels of chemical or radioactive materials. Twenty-three technologies were identified that have the potential for meeting these requirements. These technologies were rated against the categories of performance, readiness for deployment, and environment safety, and health. The top ten technologies that resulted from this evaluation are Steam Reforming, Electron Beam, UV Photo-Oxidation, Ultrasonics, Eco Logic reduction process, Supercritical Water oxidation, Cerium Mediated Electrochemical Oxidation, DETOX{sup SM}, Direct Chemical Oxidation (peroxydisulfate), and Neutralization/Hydrolysis.

  14. Evaluation of alternative nonflame technologies for destruction of hazardous organic waste

    International Nuclear Information System (INIS)

    Schwinkendorf, W.E.; Musgrave, B.C.; Drake, R.N.

    1997-04-01

    The US Department of Energy's Mixed Waste Focus Area (MWFA) commissioned an evaluation of mixed waste treatment technologies that are alternatives to incineration for destruction of hazardous organic wastes. The purpose of this effort is to evaluate technologies that are alternatives to open-flame, free-oxygen combustion (as exemplified by incinerators), and recommend to the Waste Type Managers and the MWFA which technologies should be considered for further development. Alternative technologies were defined as those that have the potential to: destroy organic material without use of open-flame reactions with free gas-phase oxygen as the reaction mechanism; reduce the offgas volume and associated contaminants (metals, radionuclides, and particulates) emitted under normal operating conditions; eliminate or reduce the production of dioxins and furans; and reduce the potential for excursions in the process that can lead to accidental release of harmful levels of chemical or radioactive materials. Twenty-three technologies were identified that have the potential for meeting these requirements. These technologies were rated against the categories of performance, readiness for deployment, and environment safety, and health. The top ten technologies that resulted from this evaluation are Steam Reforming, Electron Beam, UV Photo-Oxidation, Ultrasonics, Eco Logic reduction process, Supercritical Water oxidation, Cerium Mediated Electrochemical Oxidation, DETOX SM , Direct Chemical Oxidation (peroxydisulfate), and Neutralization/Hydrolysis

  15. Developing a 'Research Test Bed' to introduce innovative Emission Testing Technology to improve New Zealand's Vehicle Emission Standards

    International Nuclear Information System (INIS)

    Cox, Stephen J

    2012-01-01

    Vehicle exhaust emissions arise from the combustion of the fuel and air mixture in the engine. Exhaust emission gases generally include carbon monoxide (CO), oxides of nitrogen (NOx), hydrocarbons (HC), particulates, and the greenhouse gas carbon dioxide (CO2). In New Zealand improvements have occurred in emissions standards over the past 20 years however significant health related issues are now being discovered in Auckland as a direct effect of high vehicle emission levels. Pollution in New Zealand, especially via vehicle emissions are an increasing concern and threatens New Zealand's 'clean and green' image. Unitec Institute of Technology proposes establishing a Vehicle Emissions Testing Facility, and with an understanding with Auckland University, National Institute of Water and Atmosphere Research Ltd (NIWA) this research group can work collaboratively on vehicle emissions testing. New Zealand research providers would support an application in the UK led by the University of Huddersfield to a range of European Union Structural Funds. New Zealand has an ideal 'vehicle emissions research environment' supported by significant expertise in vehicle emission control technology and associated protocols at the University of Auckland, and the effects of high vehicle emissions on health at the National Institutes of Water and Atmosphere (NIWA).

  16. Indoor Autonomous Control of a Two-Wheeled Inverted Pendulum Vehicle Using Ultra Wide Band Technology.

    Science.gov (United States)

    Xia, Dunzhu; Yao, Yanhong; Cheng, Limei

    2017-06-15

    In this paper, we aimed to achieve the indoor tracking control of a two-wheeled inverted pendulum (TWIP) vehicle. The attitude data are acquired from a low cost micro inertial measurement unit (IMU), and the ultra-wideband (UWB) technology is utilized to obtain an accurate estimation of the TWIP's position. We propose a dual-loop control method to realize the simultaneous balance and trajectory tracking control for the TWIP vehicle. A robust adaptive second-order sliding mode control (2-RASMC) method based on an improved super-twisting (STW) algorithm is investigated to obtain the control laws, followed by several simulations to verify its robustness. The outer loop controller is designed using the idea of backstepping. Moreover, three typical trajectories, including a circle, a trifolium and a hexagon, have been designed to prove the adaptability of the control combinations. Six different combinations of inner and outer loop control algorithms have been compared, and the characteristics of inner and outer loop algorithm combinations have been analyzed. Simulation results demonstrate its tracking performance and thus verify the validity of the proposed control methods. Trajectory tracking experiments in a real indoor environment have been performed using our experimental vehicle to further validate the feasibility of the proposed algorithm in practice.

  17. Technology mix alternatives with high shares of wind power and photovoltaics—case study for Spain

    International Nuclear Information System (INIS)

    Zubi, Ghassan

    2011-01-01

    The shift to a low carbon society is an issue of highest priority in the EU. For electricity generation, such a target counts with three main alternatives: renewable energies, nuclear power and carbon capture and storage. This paper focuses on the renewables’ alternative. Due to resource availability, a technology mix with a high share of PV and wind power is gaining increasing interest as a major solution for several EU member states and in part for the EU collectively to achieve decarbonization and energy security with acceptable costs. Due to their intermittency, the integration of high shares of PV and wind power in the electricity supply is challenging. This paper presents a techno-economic assessment of technology mix alternatives with a high share of PV and wind power in Spain, as an example. Thereby, the focus is on the option of increasing wind curtailment versus substituting rigid baseload generation in favor of the more flexible gas turbines and combined cycle gas turbines. - Highlights: ► The potential of power generation from renewable energy resources in the EU is illustrated. ► The LEC of the different technologies considered is calculated for today and future scenarios. ► An excel-based model for the technology mix assessment is applied using Spanish data. ► Technology mix alternatives with a high share of PV and wind power are assessed. ► The focus is on increasing wind curtailment vs. relying on more flexible power generation units.

  18. An intelligent IoT emergency vehicle warning system using RFID and Wi-Fi technologies for emergency medical services.

    Science.gov (United States)

    Lai, Yeong-Lin; Chou, Yung-Hua; Chang, Li-Chih

    2018-01-01

    Collisions between emergency vehicles for emergency medical services (EMS) and public road users have been a serious problem, impacting on the safety of road users, emergency medical technicians (EMTs), and the patients on board. The aim of this study is to develop a novel intelligent emergency vehicle warning system for EMS applications. The intelligent emergency vehicle warning system is developed by Internet of Things (IoT), radio-frequency identification (RFID), and Wi-Fi technologies. The system consists of three major parts: a system trigger tag, an RFID system in an emergency vehicle, and an RFID system at an intersection. The RFID system either in an emergency vehicle or at an intersection contains a controller, an ultrahigh-frequency (UHF) RFID reader module, a Wi-Fi module, and a 2.4-GHz antenna. In addition, a UHF ID antenna is especially designed for the RFID system in an emergency vehicle. The IoT system provides real-time visual warning at an intersection and siren warning from an emergency vehicle in order to effectively inform road users about an emergency vehicle approaching. The developed intelligent IoT emergency vehicle warning system demonstrates the capabilities of real-time visual and siren warnings for EMS safety.

  19. CRADA Final Report for CRADA Number NFE-10-02991 "Development and Commercialization of Alternative Carbon Precursors and Conversion Technologies"

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Rober [ORNL; Paulauskas, Felix [ORNL; Naskar, Amit [ORNL; Kaufman, Michael [ORNL; Yarborough, Ken [ORNL; Derstine, Chris [The Dow Chemical Company

    2013-10-01

    The overall objective of the collaborative research performed by the Oak Ridge National Laboratory (ORNL) and the Dow Chemical Company under this Cooperative Research And Development Agreement (CRADA NFE-10-02991) was to develop and establish pathways to commercialize new carbon fiber precursor and conversion technology. This technology is to produce alternative polymer fiber precursor formulations as well as scaled energy-efficient advanced conversion technology to enable continuous mode conversion to obtain carbonized fibers that are technically and economically viable in industrial markets such as transportation, wind energy, infrastructure and oil drilling applications. There have been efforts in the past to produce a low cost carbon fiber. These attempts have to be interpreted against the backdrop of the market needs at the time, which were strictly military aircraft and high-end aerospace components. In fact, manufacturing costs have been reduced from those days to current practice, where both process optimization and volume production have enabled carbon fiber to become available at prices below $20/lb. However, the requirements of the lucrative aerospace market limits further price reductions from current practice. This approach is different because specific industrial applications are targeted, most specifically wind turbine blade and light vehicle transportation, where aircraft grade carbon fiber is not required. As a result, researchers are free to adjust both manufacturing process and precursor chemistry to meet the relaxed physical specifications at a lower cost. This report documents the approach and findings of this cooperative research in alternative precursors and advanced conversion for production of cost-effective carbon fiber for energy missions. Due to export control, proprietary restrictions, and CRADA protected data considerations, specific design details and processing parameters are not included in this report.

  20. Emission Control Research to Enable Fuel Efficiency: Department of Energy Heavy Vehicle Technologies

    International Nuclear Information System (INIS)

    Gurpreet Singh; Ronald L. Graves; John M. Storey; William P. Partridge; John F. Thomas; Bernie M. Penetrante; Raymond M. Brusasco; Bernard T. Merritt; George E. Vogtlin; Christopher L. Aardahl; Craig F. Habeger; M.L. Balmer

    2000-01-01

    The Office of Heavy Vehicle Technologies supports research to enable high-efficiency diesel engines to meet future emissions regulations, thus clearing the way for their use in light trucks as well as continuing as the most efficient powerplant for freight-haulers. Compliance with Tier 2 rules and expected heavy duty engine standards will require effective exhaust emission controls (after-treatment) for diesels in these applications. DOE laboratories are working with industry to improve emission control technologies in projects ranging from application of new diagnostics for elucidating key mechanisms, to development and tests of prototype devices. This paper provides an overview of these R and D efforts, with examples of key findings and developments

  1. Research on key technology of prognostic and health management for autonomous underwater vehicle

    Science.gov (United States)

    Zhou, Zhi

    2017-12-01

    Autonomous Underwater Vehicles (AUVs) are non-cable and autonomous motional underwater robotics. With a wide range of activities, it can reach thousands of kilometers. Because it has the advantages of wide range, good maneuverability, safety and intellectualization, it becomes an important tool for various underwater tasks. How to improve diagnosis accuracy of the AUVs electrical system faults, and how to repair AUVs by the information are the focus of navy in the world. In turn, ensuring safe and reliable operation of the system has very important significance to improve AUVs sailing performance. To solve these problems, in the paper the prognostic and health management(PHM) technology is researched and used to AUV, and the overall framework and key technology are proposed, such as data acquisition, feature extraction, fault diagnosis, failure prediction and so on.

  2. Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle

    Science.gov (United States)

    2015-08-03

    AND SUBTITLE Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle...Center program to be able to expose Science Technology, Engineering and Mathematics (STEM) space-inspired science centers for DC Metro beltway schools

  3. Driving behaviors in early stage dementia: a study using in-vehicle technology.

    Science.gov (United States)

    Eby, David W; Silverstein, Nina M; Molnar, Lisa J; LeBlanc, David; Adler, Geri

    2012-11-01

    According to the Alzheimer's Association (2011), (1) in 8 people age 65 and older, and about one-half of people age 85 and older, have Alzheimer's disease in the United States (US). There is evidence that drivers with Alzheimer's disease and related dementias are at an increased risk for unsafe driving. Recent advances in sensor, computer, and telecommunication technologies provide a method for automatically collecting detailed, objective information about the driving performance of drivers, including those with early stage dementia. The objective of this project was to use in-vehicle technology to describe a set of driving behaviors that may be common in individuals with early stage dementia (i.e., a diagnosis of memory loss) and compare these behaviors to a group of drivers without cognitive impairment. Seventeen drivers with a diagnosis of early stage dementia, who had completed a comprehensive driving assessment and were cleared to drive, participated in the study. Participants had their vehicles instrumented with a suite of sensors and a data acquisition system, and drove 1-2 months as they would under normal circumstances. Data from the in-vehicle instrumentation were reduced and analyzed, using a set of algorithms/heuristics developed by the research team. Data from the early stage dementia group were compared to similar data from an existing dataset of 26 older drivers without dementia. The early stage dementia group was found to have significantly restricted driving space relative to the comparison group. At the same time, the early stage dementia group (which had been previously cleared by an occupational therapist as safe to drive) drove as safely as the comparison group. Few safety-related behavioral errors were found for either group. Wayfinding problems were rare among both groups, but the early stage dementia group was significantly more likely to get lost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Characterization of alternative electric generation technologies for the SPS comparative assessment: volume 2, central-station technologies

    International Nuclear Information System (INIS)

    1980-08-01

    The SPS Concept Development and Evaluation Program includes a comparative assessment. An early first step in the assessment process is the selection and characterization of alternative technologies. This document describes the cost and performance (i.e., technical and environmental) characteristics of six central station energy alternatives: (1) conventional coal-fired powerplant; (2) conventional light water reactor (LWR); (3) combined cycle powerplant with low-Btu gasifiers; (4) liquid metal fast breeder reactor (LMFBR); (5) photovoltaic system without storage; and (6) fusion reactor

  5. Using vehicle-to-grid technology for frequency regulation and peak-load reduction

    Science.gov (United States)

    White, Corey D.; Zhang, K. Max

    This paper explores the potential financial return for using plug-in hybrid electric vehicles as a grid resource. While there is little financial incentive for individuals when the vehicle-to-grid (V2G) service is used exclusively for peak reduction, there is a significant potential for financial return when the V2G service is used for frequency regulation. We propose that these two uses for V2G technology are not mutually exclusive, and that there could exist a "dual-use" program that utilizes V2G for multiple uses simultaneously. In our proposition, V2G could be used for regulation on a daily basis to ensure profits, and be used for peak reduction on days with high electricity demand and poor ambient air quality in order to reap the greatest environmental benefits. The profits for the individual in this type of dual-use program are close to or even higher than the profits experienced in either of the single-use programs. More importantly, we argue that the external benefits of this type of program are much greater as well. At higher V2G participation rates, our analysis shows that the market for regulation capacity could become saturated by V2G-based regulation providers. At the same time, there is plenty of potential for widespread use of V2G technology, especially if the demand for regulation, reserves, and storage grows as more intermittent renewable resources are being incorporated into the power systems.

  6. How Safe is Vehicle Safety? The Contribution of Vehicle Technologies to the Reduction in Road Casualties in France from 2000 to 2010

    Science.gov (United States)

    Page, Yves; Hermitte, Thierry; Cuny, Sophie

    2011-01-01

    In France, over the last 10 years, road fatalities have decreased dramatically by 48%. This reduction is somewhat close to the target fixed by the European Commision in 2001 for the whole of Europe (−50 %). According to the French govnerment, 75% of this reduction was due to the implementation of automatic speed cameras on the roadsides from 2003 onwards. Yet, during this period, there was also a significantly increase in safety technology, new regulations in front and side impacts, and developments in Euro NCAP to improve passive safety in the vehicles. This paper set out to estimate the extent that vehicle safety technologies contributed to the road safety benefits over this decade. Using a combination of databases and fitment rates, the number of fatalities and hospitalized injuries saved in passenger car crashes was estimated for a number of safety technologies, individually and as a package including a 5 star EuroNCAP rating. The additional benefits from other public safety measures were also similarly estimated. The results showed that overall safety measures during this decade saved 240,676 fatalities + serious injuries, of which 173,663 were car occupants. Of these, 27,365 car occupants and 1,083 pedestrian savings could be attributed directly to vehicle safety improvements (11% overall). It was concluded that while public safety measures were responsible for the majority of the savings, enhanced vehicle safety technologies also made a significant improvement in the road toll in France during the last decade. As the take-up rate for these technologies improves, is expected to continue to provide even more benefits in the next 10-year period. PMID:22105388

  7. How Safe is Vehicle Safety? The Contribution of Vehicle Technologies to the Reduction in Road Casualties in France from 2000 to 2010.

    Science.gov (United States)

    Page, Yves; Hermitte, Thierry; Cuny, Sophie

    2011-01-01

    In France, over the last 10 years, road fatalities have decreased dramatically by 48%. This reduction is somewhat close to the target fixed by the European Commision in 2001 for the whole of Europe (-50 %). According to the French govnerment, 75% of this reduction was due to the implementation of automatic speed cameras on the roadsides from 2003 onwards. Yet, during this period, there was also a significantly increase in safety technology, new regulations in front and side impacts, and developments in Euro NCAP to improve passive safety in the vehicles. This paper set out to estimate the extent that vehicle safety technologies contributed to the road safety benefits over this decade. Using a combination of databases and fitment rates, the number of fatalities and hospitalized injuries saved in passenger car crashes was estimated for a number of safety technologies, individually and as a package including a 5 star EuroNCAP rating. The additional benefits from other public safety measures were also similarly estimated. The results showed that overall safety measures during this decade saved 240,676 fatalities + serious injuries, of which 173,663 were car occupants. Of these, 27,365 car occupants and 1,083 pedestrian savings could be attributed directly to vehicle safety improvements (11% overall). It was concluded that while public safety measures were responsible for the majority of the savings, enhanced vehicle safety technologies also made a significant improvement in the road toll in France during the last decade. As the take-up rate for these technologies improves, is expected to continue to provide even more benefits in the next 10-year period.

  8. Alternative Assessment Methods Based on Categorizations, Supporting Technologies, and a Model for Betterment

    Science.gov (United States)

    Ben-Jacob, Marion G.; Ben-Jacob, Tyler E.

    2014-01-01

    This paper explores alternative assessment methods from the perspective of categorizations. It addresses the technologies that support assessment. It discusses initial, formative, and summative assessment, as well as objective and subjective assessment, and formal and informal assessment. It approaches each category of assessment from the…

  9. Impact of alternative harvesting technologies on thinning entry and optimal rotation age for eastern hardwoods

    Science.gov (United States)

    Chris B. LeDoux

    2007-01-01

    A complete system simulation model is used to integrate alternative logging technologies, stand data, market prices, transportation costs, and economic concerns in a longterm continuous manner to evaluate thinning entry timing and optimal rotation age. Forest Inventory and Analysis (FIA) stand data for the oak/hickory forest type and time and motion study data for 70,...

  10. Connected vehicles and cybersecurity.

    Science.gov (United States)

    2016-01-01

    Connected vehicles are a next-generation technology in vehicles and in infrastructure that will make travel safer, cleaner, and more efficient. The advanced wireless technology enables vehicles to share and communicate information with each other and...

  11. Alternative Fuels Data Center: Federal Laws and Incentives for Electricity

    Science.gov (United States)

    and 49 U.S. Code 47136a) Advanced Technology Vehicle (ATV) and Alternative Fuel Infrastructure Manufacturing Loan Program website and the Alternative Fuel Infrastructure fact sheet. (Reference 42 U.S. Code vehicles and infrastructure. Projects supported with CMAQ funds must demonstrate emissions reductions, be

  12. The role of utilities in enabling technology innovation: The BC hydro alternative & emerging energy strategy

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Alex; Leclair, Donna; Morrison, Allison

    2010-09-15

    In order for renewable energy to play a dominant role in the global electricity supply mix, emerging renewable energy technologies - such as wave, tidal, enhanced geothermal, and 3rd generation photovoltaic technologies - must prove their technical merits and achieve cost parity with conventional sources of supply. BC Hydro, a government-owned electric utility, launched an Alternative and Emerging Energy Strategy that describes its role as an enabler of technology innovation. This paper describes BC Hydro's goal, objectives and actions to accelerate the commercialization that will yield a diversity of supply options and a growing, local clean-tech cluster.

  13. White paper: Preliminary assessment of LNG vehicle technology, economics, and safety issues (Revision 1). Topical report, April-August 1991

    International Nuclear Information System (INIS)

    Powars, C.; Lucher, D.; Moyer, C.; Browning, L.

    1992-01-01

    The objective of the study is to evaluate the potential of LNG as a vehicle fuel, to determine market niches, and to identify needed technology improvements. The white paper is being issued when the work is approximately 30 percent complete to preview the study direction, draw preliminary conclusions, and make initial recommendations. Interim findings relative to LNG vehicle technology, economics, and safety are presented. It is important to decide if heavier hydrocarbons should be allowed in LNG vehicle fuel. Development of suitable refueling couplings and vehicle fuel supply pressure systems are recommended. Initial economics analyses considered transit buses and pickup and delivery trucks fueled via onsite liquefiers and imported LNG. Net user costs were more than (but in some cases close to) those for diesel fuel and gasoline. Lowering the cost of small-scale liquefiers would significantly improve the economics of LNG vehicles. New emissions regulations may introduce considerations beyond simple cost comparisons. LNG vehicle safety and available accident data are reviewed. Consistent codes for LNG vehicles and refueling facilities are needed

  14. A Comprehensive Study of Key Electric Vehicle (EV Components, Technologies, Challenges, Impacts, and Future Direction of Development

    Directory of Open Access Journals (Sweden)

    Fuad Un-Noor

    2017-08-01

    Full Text Available Electric vehicles (EV, including Battery Electric Vehicle (BEV, Hybrid Electric Vehicle (HEV, Plug-in Hybrid Electric Vehicle (PHEV, Fuel Cell Electric Vehicle (FCEV, are becoming more commonplace in the transportation sector in recent times. As the present trend suggests, this mode of transport is likely to replace internal combustion engine (ICE vehicles in the near future. Each of the main EV components has a number of technologies that are currently in use or can become prominent in the future. EVs can cause significant impacts on the environment, power system, and other related sectors. The present power system could face huge instabilities with enough EV penetration, but with proper management and coordination, EVs can be turned into a major contributor to the successful implementation of the smart grid concept. There are possibilities of immense environmental benefits as well, as the EVs can extensively reduce the greenhouse gas emissions produced by the transportation sector. However, there are some major obstacles for EVs to overcome before totally replacing ICE vehicles. This paper is focused on reviewing all the useful data available on EV configurations, battery energy sources, electrical machines, charging techniques, optimization techniques, impacts, trends, and possible directions of future developments. Its objective is to provide an overall picture of the current EV technology and ways of future development to assist in future researches in this sector.

  15. Storage evaporator for vehicles with start-stop technology; Speicherverdampfer fuer Fahrzeuge mit Start-Stopp-Funktion

    Energy Technology Data Exchange (ETDEWEB)

    Wawzyniak, Markus; Link, Joachim [Behr GmbH und Co. KG, Stuttgart (Germany)

    2013-04-15

    Today, the use of engine start-stop technology - a system designed to cut fuel consumption when the vehicle stops or, in future applications, when vehicles are in coasting or ''sailing'' mode - is gaining ground in more and more vehicle classes. Shutting off the internal combustion engine, though, detrimentally affects cabin air conditioning because the belt-driven A/C compressor is likewise deactivated, thus bringing the vapor compression process to a standstill. As a result, during extended stop periods and in warm weather vent temperatures and air humidity rapidly increase.

  16. The technologies for heavy vehicles motors and their fuels; Les technologies des moteurs de vehicules lourds et leurs carburants

    Energy Technology Data Exchange (ETDEWEB)

    Plassat, G

    2005-07-01

    The heavy vehicles are those the total weight (charged) is more than 3,5 tons. This document provides a comparative and parametric analysis of the main technologies developed for the future buses. A detailed presentation is done for each technique, as the operating principles and the advantages and disadvantages facing the today solution. More particularly the author presents the evolution of the diesel-fuel motor, the motor optimization for specific fuel as the natural gas and the liquefied petroleum gas, the hybrid thermal-electric motor, the hydrogen fuel cells, the biofuels and the de-pollution systems to eliminate the NO{sub X} and the particles. (A.L.B.)

  17. Technological Determinism in Educational Technology Research: Some Alternative Ways of Thinking about the Relationship between Learning and Technology

    Science.gov (United States)

    Oliver, M.

    2011-01-01

    This paper argues that research on the educational uses of technology frequently overemphasizes the influence of technology. Research in the field is considered a form of critical perspective, and assumptions about technology are questioned. Technological determinism is introduced, and different positions on this concept are identified. These are…

  18. Proceedings of the 1991 Windsor workshop on alternative fuels

    International Nuclear Information System (INIS)

    1991-01-01

    A workshop was held to exchange information among engine and vehicle manufacturers, fuel suppliers, research organizations, and academic and regulatory bodies on various aspects of alternative transportation fuels development. Papers were presented on alternative fuels policies and programs, zero-emission vehicles, emission control technologies, field evaluations of alternative fuel systems, and heavy duty alternate-fuel engines. Separate abstracts have been prepared for nine papers from this workshop

  19. Alternative Fuel News, Vol. 2, No. 7

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    1999-05-20

    What's in store for alternative Fuels and advanced technology vehicles in the new millennium? The Clean Cities Coalitions now operate more than 240,000 alternative fuel vehicles in both public and private sectors and have access to more than 4,000 alternative refueling stations. DOE recently announced the selection of 15 proposals that will receive just under $1.7 million in financial assistance to help expand DOE's information dissemination and public outreach efforts for alternative fuels and advanced transportation technologies.

  20. Environmental sustainability assessment of family house alternatives and application of green technologies

    Science.gov (United States)

    Moňoková, A.; Vilčeková, S.; Mečiarová, Ľ.; Krídlová Burdová, E.

    2017-10-01

    Transition to environmentally friendly technologies provides a comprehensive solution to problem of creating an economic value without destroying the nature. Buildings using green technologies lead to lower operating costs, healthier living and working environment and protect the environment more. The aim of this paper is to assess the environmental impact of two alternatives of family house designed as conventional building and building with green technologies. Evaluated family house are located in village Kokšov Bakša, which is situated 12 km south-east from city of Košice, a metropolis of eastern Slovakia. This analysis investigates the role of applied green technologies in single family houses for impact categories: global warming potential (GWP), acidification potential (AP) and eutrophication potential (EP) expressed as CO2eq, SO2eq and PO4 3- eq within “Cradle to Grave” boundary by using the LCA assessment method. The main contribution of the study is a proof that green technologies have significant part in the reduction of environmental impacts. Results show that alternative of family house designed as green one contributes to CO2eq, SO2eq and PO4 3- eq emissions by 81%, 73% and 35% less than alternative of conventional family house, respectively.

  1. Technology as a Vehicle for Inclusion of Learners with Attention Deficits in Mainstream Schools

    DEFF Research Database (Denmark)

    Voldborg, Hanne; Sorensen, Elsebeth Korsgaard

    2016-01-01

    The potential of technology for supporting educational processes of participation, collaboration and creation is widely accepted. Likewise have digital tools proved to enhance learning processes for disabled learners (e.g. supporting dyslexia students with digital tools such as text-to-speakprogr......The potential of technology for supporting educational processes of participation, collaboration and creation is widely accepted. Likewise have digital tools proved to enhance learning processes for disabled learners (e.g. supporting dyslexia students with digital tools such as text......-to-speakprograms or writing-support programs). A currently topical group, politically and educationally, in the discourse of inclusion is learners with extensive developmental and attention deficit disorders (e.g. Attention Deficit Hyperactivity Disorder (ADHD), Attention Deficit Disorder (ADD), Autism Spectrum Disorder (ASD......), Autism etc.). This paper investigates the potential of technology for supporting the inclusion of this group in the general school system, i.e. into mainstream classes, using technology as a tool to join, participate and contribute – and as a vehicle for general human growth in their learning community...

  2. A market systems analysis of the U.S. Sport Utility Vehicle market considering frontal crash safety technology and policy.

    Science.gov (United States)

    Hoffenson, Steven; Frischknecht, Bart D; Papalambros, Panos Y

    2013-01-01

    Active safety features and adjustments to the New Car Assessment Program (NCAP) consumer-information crash tests have the potential to decrease the number of serious traffic injuries each year, according to previous studies. However, literature suggests that risk reductions, particularly in the automotive market, are often accompanied by adjusted consumer risk tolerance, and so these potential safety benefits may not be fully realized due to changes in consumer purchasing or driving behavior. This article approaches safety in the new vehicle market, particularly in the Sport Utility Vehicle and Crossover Utility Vehicle segments, from a market systems perspective. Crash statistics and simulations are used to predict the effects of design and policy changes on occupant crash safety, and discrete choice experiments are conducted to estimate the values consumers place on vehicle attributes. These models are combined in a market simulation that forecasts how consumers respond to the available vehicle alternatives, resulting in predictions of the market share of each vehicle and how the change in fleet mixture influences societal outcomes including injuries, fuel consumption, and firm profits. The model is tested for a scenario where active safety features are implemented across the new vehicle fleet and a scenario where the U.S. frontal NCAP test speed is modified. While results exhibit evidence of consumer risk adjustment, they support adding active safety features and lowering the NCAP frontal test speed, as these changes are predicted to improve the welfare of both firms and society. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology

    Science.gov (United States)

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M.

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications. PMID:26107174

  4. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.

    Science.gov (United States)

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications.

  5. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV Technology.

    Directory of Open Access Journals (Sweden)

    Jorge Torres-Sánchez

    Full Text Available The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1 generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV technology and 2 use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications.

  6. Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid technology, photovoltaic power and a residential building

    NARCIS (Netherlands)

    Robledo, C.B.; Oldenbroek, V.D.W.M.; Abbruzzese, F.; van Wijk, A.J.M.

    2018-01-01

    This paper presents the results of a demonstration project, including building-integrated photovoltaic (BIPV) solar panels, a residential building and a hydrogen fuel cell electric vehicle (FCEV) for combined mobility and power generation, aiming to achieve a net zero-energy residential building

  7. Alternative Fuel Guidelines for Alternative Transportation Systems.

    Science.gov (United States)

    2011-01-31

    The Volpe Center documented the increased use of alternative fuels on vehicles owned and operated by federal land management agencies. For each alternative fuel type, the Volpe Center documented the availability of vehicles, fueling mechanisms and pr...

  8. Clean Cities 2014 Vehicle Buyer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-01

    The Clean Cities 2014 Vehicle Buyer's Guide is an annual guide which features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  9. Preliminary Sizing Completed for Single- Stage-To-Orbit Launch Vehicles Powered By Rocket-Based Combined Cycle Technology

    Science.gov (United States)

    Roche, Joseph M.

    2002-01-01

    Single-stage-to-orbit (SSTO) propulsion remains an elusive goal for launch vehicles. The physics of the problem is leading developers to a search for higher propulsion performance than is available with all-rocket power. Rocket-based combined cycle (RBCC) technology provides additional propulsion performance that may enable SSTO flight. Structural efficiency is also a major driving force in enabling SSTO flight. Increases in performance with RBCC propulsion are offset with the added size of the propulsion system. Geometrical considerations must be exploited to minimize the weight. Integration of the propulsion system with the vehicle must be carefully planned such that aeroperformance is not degraded and the air-breathing performance is enhanced. Consequently, the vehicle's structural architecture becomes one with the propulsion system architecture. Geometrical considerations applied to the integrated vehicle lead to low drag and high structural and volumetric efficiency. Sizing of the SSTO launch vehicle (GTX) is itself an elusive task. The weight of the vehicle depends strongly on the propellant required to meet the mission requirements. Changes in propellant requirements result in changes in the size of the vehicle, which in turn, affect the weight of the vehicle and change the propellant requirements. An iterative approach is necessary to size the vehicle to meet the flight requirements. GTX Sizer was developed to do exactly this. The governing geometry was built into a spreadsheet model along with scaling relationships. The scaling laws attempt to maintain structural integrity as the vehicle size is changed. Key aerodynamic relationships are maintained as the vehicle size is changed. The closed weight and center of gravity are displayed graphically on a plot of the synthesized vehicle. In addition, comprehensive tabular data of the subsystem weights and centers of gravity are generated. The model has been verified for accuracy with finite element analysis. The

  10. The rise of alternative bread leavening technologies in the nineteenth century.

    Science.gov (United States)

    Cobbold, Carolyn Ann

    2018-01-01

    This article reveals how nineteenth-century chemists and health reformers tried to eradicate the use of yeast in bread, claiming they had devised healthier and more sanitary ways to raise bread. It describes the alternative technological solutions to baking bread, investigating factors that influenced their development and adaptation in the marketplace. A lack of scientific and cultural consensus surrounding yeast, what it was and what it did, fermented during this period. The conflict over yeast helped create a heterogeneous industrialization of the baking industry, changing processes and ingredients and creating new forms of bakery products. By examining the claims of promoters of rival scientific beliefs and technologies, as well as those of users and social commentators, we can see that technology's eventual adaptation and impact on society is not predictable at its outset. Exploring the relationship between differing scientific beliefs, cultural understandings and alternative technologies also shows how science and industry cannot be isolated from their social and cultural context. The examination of the nineteenth-century technological development of commonplace commodities such as bread, baking powder and yeast, also reveals and explores a story that has not been told before in the history of science and technology. Why it has not been told is as enlightening as the story itself, revealing as it does our own privileging of what is important in science and history.

  11. Solar Electric Propulsion Technologies Being Designed for Orbit Transfer Vehicle Applications

    Science.gov (United States)

    Sarver-Verhey, Timothy R.; Hoffman, David J.; Kerslake, Thomas W.; Oleson, Steven R.; Falck, Robert D.

    2002-01-01

    There is increasing interest in employing Solar Electric Propulsion (SEP) for new missions requiring transfer from low Earth orbit to the Earth-Moon Lagrange point, L1. Mission architecture plans place the Gateway Habitat at L1 in the 2011 to 2016 timeframe. The Gateway Habitat is envisioned to be used for Lunar exploration, space telescopes, and planetary mission staging. In these scenarios, an SEP stage, or "tug," is used to transport payloads to L1--such as the habitat module, lunar excursion and return vehicles, and chemical propellant for return crew trips. SEP tugs are attractive because they are able to efficiently transport large (less than 10,000 kg) payloads while minimizing propellant requirements. To meet the needs of these missions, a preliminary conceptual design for a general-purpose SEP tug was developed that incorporates several of the advanced space power and in-space propulsion technologies (such as high-power gridded ion and Hall thrusters, high-performance thin-film photovoltaics, lithium-ion batteries, and advanced high-voltage power processing) being developed at the NASA Glenn Research Center. A spreadsheet-based vehicle system model was developed for component sizing and is currently being used for mission planning. This model incorporates a low-thrust orbit transfer algorithm to make preliminary determinations of transfer times and propellant requirements. Results from this combined tug mass estimation and orbit transfer model will be used in a higher fidelity trajectory model to refine the analysis.

  12. Inertial Navigation System for India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD HEX) Mission

    Science.gov (United States)

    Umadevi, P.; Navas, A.; Karuturi, Kesavabrahmaji; Shukkoor, A. Abdul; Kumar, J. Krishna; Sreekumar, Sreejith; Basim, A. Mohammed

    2017-12-01

    This work presents the configuration of Inertial Navigation System (INS) used in India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) Program. In view of the specific features and requirements of the RLV-TD, specific improvements and modifications were required in the INS. A new system was designed, realised and qualified meeting the mission requirements of RLV-TD, at the same time taking advantage of the flight heritage attained in INS through various Launch vehicle Missions of the country. The new system has additional redundancy in acceleration channel, in-built inclinometer based bias update scheme for acceleration channels and sign conventions as employed in an aircraft. Data acquisition in micro cycle periodicity (10 ms) was incorporated which was required to provide rate and attitude information at higher sampling rate for ascent phase control. Provision was incorporated for acquisition of rate and acceleration data with high resolution for aerodynamic characterisation and parameter estimation. GPS aided navigation scheme was incorporated to meet the stringent accuracy requirements of the mission. Navigation system configuration for RLV-TD, specific features incorporated to meet the mission requirements, various tests carried out and performance during RLV-TD flight are highlighted.

  13. Are Green Vehicles Worth the Extra Cost? The Case of Diesel-Electric Hybrid Technology for Urban Delivery Vehicles

    Science.gov (United States)

    Krutilla, Kerry; Graham, John D.

    2012-01-01

    A central question for environmental policy is whether the long-term benefits of energy-saving technologies are sufficient to justify their short-term costs, and if so, whether financial incentives are needed to stimulate adoption. The fiscal effects of incentivizing new technologies, and the revenue effects of using the technology, are also…

  14. Heavy Duty Vehicle Futures Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Askin, Amanda Christine; Barter, Garrett.; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  15. Development of Sensors and Sensing Technology for Hydrogen Fuel Cell Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brosha, E L; Sekhar, P K; Mukundan, R; Williamson, T; Garzon, F H; Woo, L Y; Glass, R R

    2010-01-06

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features. Some of these devices (e.g. yaw sensors for dynamic stability control systems or tire presure warning RF-based devices) may be used on fuel cell vehicles without any modification. However the use of hydrogen as a fuel will dictate the development of completely new technologies for such requirements as the detection of hydrogen leaks, sensors and systems to continuously monitor hydrogen fuel purity and protect the fuel cell stack from poisoning, and for the important, yet often taken for granted, tasks such as determining the state of charge of the hydrogen fuel storage and delivery system. Two such sensors that rely on different transduction mechanisms will be highlighted in this presentation. The first is an electrochemical device for monitoring hydrogen levels in air. The other technology covered in this work, is an acoustic-based approach to determine the state of charge of a hydride storage system.

  16. Driver trust in five driver assistance technologies following real-world use in four production vehicles.

    Science.gov (United States)

    Kidd, David G; Cicchino, Jessica B; Reagan, Ian J; Kerfoot, Laura B

    2017-05-29

    Information about drivers' experiences with driver assistance technologies in real driving conditions is sparse. This study characterized driver interactions with forward collision warning, adaptive cruise control, active lane keeping, side-view assist, and lane departure warning systems following real-world use. Fifty-four Insurance Institute for Highway Safety employees participated and drove a 2016 Toyota Prius, 2016 Honda Civic, 2017 Audi Q7, or 2016 Infiniti QX60 for up to several weeks. Participants reported mileage and warnings from the technologies in an online daily-use survey. Participants reported their level of agreement with five statements regarding trust in an online post-use survey. Responses were averaged to create a composite measure of trust ranging from -2 (strongly disagree) to +2 (strongly agree) for each technology. Mixed-effect regression models were constructed to compare trust among technologies and separately among the study vehicles. Participants' free-response answers about what they liked least about each system were coded and examined. Participants reported driving 33,584 miles during 4 months of data collection. At least one forward collision warning was reported in 26% of the 354 daily reports. The proportion of daily reports indicating a forward collision warning was much larger for the Honda (70%) than for the Audi (18%), Infiniti (15%), and Toyota (10%). Trust was highest for side-view assist (0.98) and lowest for active lane keeping (0.20). Trust in side-view assist was significantly higher than trust in active lane keeping and lane departure warning (0.53). Trust in active lane keeping was significantly lower than trust in adaptive cruise control (0.67) and forward collision warning (0.71). Trust in adaptive cruise control was higher for the Audi (0.72) and Toyota (0.75) compared with the Honda (0.30), and significantly higher for the Infiniti (0.93). Trust in Infiniti's side-view assist (0.58) was significantly lower than

  17. How alternative are alternative fuels?

    OpenAIRE

    Soffritti, Tiziana; Danielis, Romeo

    1998-01-01

    Could alternative fuel vehicles contribute to a substantial reduction of air pollution? Is there a market for alternative fuel vehicles? Could a market be created via a pollution tax? The article answers these questions on the basis of the available estimates.

  18. Alternative response technology program for the Deepwater Horizon in the Gulf of Mexico - an overview

    International Nuclear Information System (INIS)

    Cortez, Michael J.; Rowe, Hunter G.

    2011-01-01

    The innovative approach utilized by the Alternative Response Technology (ART) Program for the MC252 Deepwater Horizon response in the Gulf of Mexico during 2010 was presented in this paper. The ART program is authorized by the Unified Area Command. This paper focuses on the spill response technologies that were implemented offshore, near shore and on-shore, and covers technologies related to booming, skimming, separation, sand cleaning, surveillance and detection. A process was designed and implemented for capturing ideas real time, which leveraged the public's ingenuity and entrepreneurial spirit. About 120,000 individual ideas were submitted by the public globally from more than 100 countries. About 40,000 of these ideas were related to addressing the spill response. There are about 100 new technologies related to spill response that were formally evaluated and/or field tested, and approximately 25 of those tested were successfully implemented across the spill response area.

  19. Alternative response technology program for the Deepwater Horizon in the Gulf of Mexico - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, Michael J.; Rowe, Hunter G. [BP - Gulf Coast Restoration (United States)], email: michael.cortez@bp.com

    2011-07-01

    The innovative approach utilized by the Alternative Response Technology (ART) Program for the MC252 Deepwater Horizon response in the Gulf of Mexico during 2010 was presented in this paper. The ART program is authorized by the Unified Area Command. This paper focuses on the spill response technologies that were implemented offshore, near shore and on-shore, and covers technologies related to booming, skimming, separation, sand cleaning, surveillance and detection. A process was designed and implemented for capturing ideas real time, which leveraged the public's ingenuity and entrepreneurial spirit. About 120,000 individual ideas were submitted by the public globally from more than 100 countries. About 40,000 of these ideas were related to addressing the spill response. There are about 100 new technologies related to spill response that were formally evaluated and/or field tested, and approximately 25 of those tested were successfully implemented across the spill response area.

  20. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    International Nuclear Information System (INIS)

    Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F.

    1991-09-01

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications