WorldWideScience

Sample records for alternating gradient synchrotron

  1. Theory of the Alternating-Gradient Synchrotron

    Science.gov (United States)

    Courant, E. D.; Snyder, H. S.

    2000-04-01

    The equations of motion of the particles in a synchrotron in which the field gradient indexn=-(r/B) ∂B/∂rvaries along the equilibrium orbit are examined on the basis of the linear approximation. It is shown that if n alternates rapidly between large positive and large negative values, the stability of both radial and vertical oscillations can be greatly increased compared to conventional accelerators in which n is azimuthally constant and must lie between 0 and 1. Thus aperture requirements are reduced. For practical designs, the improvement is limited by the effects of constructional errors; these lead to resonance excitation of oscillations and consequent instability if 2νx or 2νz or νx+νz is integral, where νx and νz are the frequencies of horizontal and vertical betatron oscillations, measured in units of the frequency of revolution. The mechanism of phase stability is essentially the same as in a conventional synchrotron, but the radial amplitude of synchrotron oscillations is reduced substantially. Furthermore, at a "transition energy" E1≈νxMc2 the stable and unstable equilibrium phases exchange roles, necessitating a jump in the phase of the radiofrequency accelerating voltage. Calculations indicate that the manner in which this jump is performed is not very critical.

  2. BNL alternating gradient synchrotron with four helical magnets to minimize the losses of the polarized proton beam

    Science.gov (United States)

    Tsoupas, N.; Huang, H.; MacKay, W. W.; Meot, F.; Roser, T.; Trbojevic, D.

    2013-04-01

    The principle of using multiple partial helical magnets to preserve the polarization of the proton beam during its acceleration was applied successfully to the alternating gradient synchrotron (AGS) which currently operates with two partial helical magnets. In this paper we further explore this idea by using four partial helical magnets placed symmetrically in the AGS ring. This provides many advantages over the present setup of the AGS, which uses two partial helical magnets. First, the symmetric placement of the four helical magnets and their relatively lower field of operation allows for better control of the AGS optics with reduced values of the beta functions especially near beam injection and allows both the vertical and horizontal tunes to be placed within the “spin tune gap,” therefore eliminating the horizontal and vertical intrinsic spin resonances of the AGS during the acceleration cycle. Second, it provides a wider spin tune gap. Third, the vertical spin direction during beam injection and extraction is closer to vertical. Although the spin tune gap, which is created with four partial helices, can also be created with a single or two partial helices, the high field strength of a single helical magnet which is required to generate such a spin tune gap makes the use of the single helical magnet impractical, and that of the two helical magnets rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare them with those from the present setup of the AGS that uses two partial helical magnets. Although in this paper we specifically discuss the effect of the four partial helices on the AGS, this method which can eliminate simultaneously the vertical and horizontal intrinsic spin resonances is a general method and can be applied to any medium energy synchrotron which operates in similar energy range like the AGS and provides the required space to accommodate the four

  3. Vertical orbit excursion fixed field alternating gradient accelerators

    Science.gov (United States)

    Brooks, Stephen

    2013-08-01

    Fixed field alternating gradient (FFAG) accelerators with vertical orbit excursion (VFFAGs) provide a promising alternative design for rings with fixed-field superconducting magnets. They have a vertical magnetic field component that increases with height in the vertical aperture, yielding a skew quadrupole focusing structure. Scaling-type VFFAGs are found with fixed tunes and no intrinsic limitation on momentum range. This paper presents the first multiparticle tracking of such machines. Proton driver rings to accelerate the 800 MeV beam from the ISIS synchrotron are presented, in terms of both magnet field geometry and longitudinal behavior during acceleration with space charge. The 12 GeV ring produces an output power of at least 2.18 MW. Possible applications of VFFAGs to waste transmutation, hadron therapy, and energy-recovery electron accelerators are also discussed.

  4. Fixed-Field Alternating-Gradient Accelerators

    CERN Document Server

    Sheehy, S L

    2016-01-01

    These notes provide an overview of Fixed-Field Alternating-Gradient (FFAG) accelerators for medical applications. We begin with a review of the basic principles of this type of accelerator, including the scaling and non-scaling types, highlighting beam dynamics issues that are of relevance to hadron ac- celerators. The potential of FFAG accelerators in the field of hadron therapy is discussed in detail, including an overview of existing medical FFAG designs. The options for FFAG treatment gantries are also considered.

  5. Heavy ion physics at the Brookhaven alternating gradient synchrotron

    Science.gov (United States)

    Sangster, T. C.

    1995-01-01

    The collision of large nuclei at relativistic energies is the only known mechanism for creating and studying the properties (equation-of-state, EOS) of extremely dense nuclear matter. At sufficiently high matter densities, one of the most exciting possibilities is the formation of a Quark Gluon Plasma (QGP). However, it is an extremely difficult task to determine the ultimate density achieved during these collisions due to the fleeting nature of the high density state (the lifetime of these states is typically a few times 10-24 ns). We must rely on detailed comparisons between experimental measurements and complex Monte Carlo simulations of the colliding nuclei in order to extract meaningful estimates of the nuclear matter EOS. Our approach has been to study the behavior of the spectator matter (those protons and neutrons which do not directly interact during the collision) to determine the dynamics of the high density state which must necessarily influence the spectator matter as it decays. This report summarizes some of the key results of our study.

  6. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients.

    Science.gov (United States)

    Siddiqui, Sanna F; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M; Bartsch, Marion; Raghavan, Seetha

    2013-08-01

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.

  7. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Sanna F.; Knipe, Kevin; Manero, Albert; Raghavan, Seetha [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Meid, Carla; Wischek, Janine; Bartsch, Marion [German Aerospace Center (DLR), Institute of Materials Research, 51147 Cologne (Germany); Okasinski, John; Almer, Jonathan [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Karlsson, Anette M. [Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 (United States)

    2013-08-15

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.

  8. Residual strain gradient determination in metal matrix composites by synchrotron X-ray energy dispersive diffraction

    Science.gov (United States)

    Kuntz, Todd A.; Wadley, Haydn N. G.; Black, David R.

    1993-01-01

    An X-ray technique for the measurement of internal residual strain gradients near the continuous reinforcements of metal matrix composites has been investigated. The technique utilizes high intensity white X-ray radiation from a synchrotron radiation source to obtain energy spectra from small (0.001 cu mm) volumes deep within composite samples. The viability of the technique was tested using a model system with 800 micron Al203 fibers and a commercial purity titanium matrix. Good agreement was observed between the measured residual radial and hoop strain gradients and those estimated from a simple elastic concentric cylinders model. The technique was then used to assess the strains near (SCS-6) silicon carbide fibers in a Ti-14Al-21Nb matrix after consolidation processing. Reasonable agreement between measured and calculated strains was seen provided the probe volume was located 50 microns or more from the fiber/matrix interface.

  9. Design of a nonscaling fixed field alternating gradient accelerator

    CERN Document Server

    Trbojevic, D; Blaskiewicz, M

    2005-01-01

    We present a design of nonscaling fixed field alternating gradient accelerators (FFAG) minimizing the dispersion action function H. The design is considered both analytically and via computer modeling. We present the basic principles of a nonscaling FFAG lattice and discuss optimization strategies so that one can accelerate over a broad range of momentum with reasonable apertures. Acceleration schemes for muons are discussed.

  10. Design of a nonscaling fixed field alternating gradient accelerator

    Science.gov (United States)

    Trbojevic, D.; Courant, E. D.; Blaskiewicz, M.

    2005-05-01

    We present a design of nonscaling fixed field alternating gradient accelerators (FFAG) minimizing the dispersion action function H. The design is considered both analytically and via computer modeling. We present the basic principles of a nonscaling FFAG lattice and discuss optimization strategies so that one can accelerate over a broad range of momentum with reasonable apertures. Acceleration schemes for muons are discussed.

  11. Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

    Science.gov (United States)

    Machida, S.; Barlow, R.; Berg, J. S.; Bliss, N.; Buckley, R. K.; Clarke, J. A.; Craddock, M. K.; D'Arcy, R.; Edgecock, R.; Garland, J. M.; Giboudot, Y.; Goudket, P.; Griffiths, S.; Hill, C.; Hill, S. F.; Hock, K. M.; Holder, D. J.; Ibison, M. G.; Jackson, F.; Jamison, S. P.; Johnstone, C.; Jones, J. K.; Jones, L. B.; Kalinin, A.; Keil, E.; Kelliher, D. J.; Kirkman, I. W.; Koscielniak, S.; Marinov, K.; Marks, N.; Martlew, B.; McIntosh, P. A.; McKenzie, J. W.; Méot, F.; Middleman, K. J.; Moss, A.; Muratori, B. D.; Orrett, J.; Owen, H. L.; Pasternak, J.; Peach, K. J.; Poole, M. W.; Rao, Y.-N.; Saveliev, Y.; Scott, D. J.; Sheehy, S. L.; Shepherd, B. J. A.; Smith, R.; Smith, S. L.; Trbojevic, D.; Tzenov, S.; Weston, T.; Wheelhouse, A.; Williams, P. H.; Wolski, A.; Yokoi, T.

    2012-03-01

    In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a `scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10mm in radius over an electron momentum range of 12-18MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

  12. Combined alternating gradient force magnetometer and susceptometer system

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, M.; Mendizábal Vázquez, I. de; Aroca, C. [Dpto. Física Aplicada, E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Madrid 28040 (Spain); Ranchal, R. [Dpto. Física de Materiales, Facultad Ciencias Físicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040 (Spain); Cobos, P. [ISOM, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Madrid 28040 (Spain)

    2015-01-15

    We report the design, fabrication, and characterization of a new system that combines the performances of two different types of magnetic characterization systems, Alternating Gradient Force Magnetometers (AGFM) and susceptometers. The flexibility of our system is demonstrated by its capability to be used as any of them, AGFM or susceptometer, without any modification in the experimental set-up because of the electronics we have developed. Our system has a limit of sensitivity lower than 5 × 10{sup −7} emu. Moreover, its main advantage is demonstrated by the possibility of measuring small quantities of materials under DC or AC magnetic fields that cannot properly be measured with a commercial vibrating sample magnetometers or AGFM.

  13. FIXED FIELD ALTERNATING GRADIENT LATTICE DESIGN WITHOUT OPPOSITE BEND.

    Energy Technology Data Exchange (ETDEWEB)

    TRBOJEVIC,D.; BLASKIEWICZ,M.; COURANT,E.D.; GARREN,A.

    2002-06-02

    This report presents an attempt of the lattice design with a fixed field alternating gradient (FFAG) magnets without the usual opposite bends. It should allow particle acceleration through a small aperture. An example was made for the muon beam acceleration in an energy range 10-20 GeV with distributed RF cavities. The dispersion function for the central energy of 15 GeV has maximum value of the order of 7 cm. The lattice is composed of a combined function elements and sextupoles. We present the magnet configuration, orbit, chromaticities, tunes, and betatron function dependence on momentum (energies) during acceleration. For the lattice design we used SYNCH an MAD programs. For these large momentum offsets {delta}p/p = +-33% we found discrepancies between analytical and codes' results. This will be corrected in the new versions of codes (MAD-X). Because of uncertainties of the programs MAD and SYNCH some details of the presented results might not be correct.

  14. Stress Gradient Induced Strain Localization in Metals: High Resolution Strain Cross Sectioning via Synchrotron X-Ray Diffraction (POSTPRINT)

    Science.gov (United States)

    2008-04-01

    steep train gradient is now highly feasible for certain classes of prob- ems in elastoplastic deformation of solids. In this paper, we em- loy one of...weight ratio, corrosion resistance, and igh temperature property stability 25. Ordinary fatigue and oreign-object-impact damage induced enhanced fatigue

  15. Dynamics of Particles in Non Scaling Fixed Field Alternating Gradient Accelerators

    Directory of Open Access Journals (Sweden)

    Jones J. K.

    2010-01-01

    Full Text Available Non scaling Fixed-Field Alternating Gradient (FFAG accelerators have an unprece- dented potential for muon acceleration, as well as for medical purposes based on car- bon and proton hadron therapy. They also represent a possible active element for an Accelerator Driven Subcritical Reactor (ADSR. Starting from first principle the Hamil- tonian formalism for the description of the dynamics of particles in non-scaling FFAG machines has been developed. The stationary reference (closed orbit has been found within the Hamiltonian framework. The dependence of the path length on the energy deviation has been described in terms of higher order dispersion functions. The latter have been used subsequently to specify the longitudinal part of the Hamiltonian. It has been shown that higher order phase slip coefficients should be taken into account to adequately describe the acceleration in non-scaling FFAG accelerators. A complete theory of the fast (serpentine acceleration in non-scaling FFAGs has been developed. An example of the theory is presented for the parameters of the Electron Machine with Many Applications (EMMA, a prototype electron non-scaling FFAG to be hosted at Daresbury Laboratory.

  16. Dynamics of Particles in Non Scaling Fixed Field Alternating Gradient Accelerators

    Directory of Open Access Journals (Sweden)

    Tzenov S. I.

    2010-01-01

    Full Text Available Non scaling Fixed-Field Alternating Gradient (FFAG accelerators have an unprecedented potential for muon acceleration, as well as for medical purposes based on carbon and proton hadron therapy. They also represent a possible active element for an Accelerator Driven Subcritical Reactor (ADSR. Starting from first principle the Hamiltonian formalism for the description of the dynamics of particles in non-scaling FFAG machines has been developed. The stationary reference (closed orbit has been found within the Hamiltonian framework. The dependence of the path length on the energy deviation has been described in terms of higher order dispersion functions. The latter have been used subsequently to specify the longitudinal part of the Hamiltonian. It has been shown that higher order phase slip coefficients should be taken into account to adequately describe the acceleration in non-scaling FFAG accelerators. A complete theory of the fast (serpentine acceleration in non-scaling FFAGs has been developed. An example of the theory is presented for the parameters of the Electron Machine with Many Applications (EMMA, a prototype electron non-scaling FFAG to be hosted at Daresbury Laboratory.

  17. Eigenmodes and mode competition in a high-gain free-electron laser including alternating-gradient focusing

    CERN Document Server

    Wu Ju Ha

    2001-01-01

    We solve the eigenvalue problem for a high gain free-electron laser in the 'water-bag' model including alternating-gradient focusing by a variational-solution-based (VSB) expansion method. Such VSB expansion method is very efficient for finding the eigenvalue. The results agree with those obtained by numerical simulation quite well. We further discuss the mode degeneracy and mode competition.

  18. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy?

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, K.; Adams, F. [Universitaire Instelling Antwerpen, Antwerp (Belgium). Dept. of Chemistry; Rivers, M.L.; Jones, K.W. [Brookhaven National Lab., Upton, NY (United States)

    1992-10-01

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ({mu}-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  19. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, K.; Adams, F. (Universitaire Instelling Antwerpen, Antwerp (Belgium). Dept. of Chemistry); Rivers, M.L.; Jones, K.W. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ([mu]-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  20. A Pulsed Synchrotron for Muon Acceleration at a Neutrino Factory

    CERN Document Server

    Summers, D J; Berg, J S; Palmer, R B

    2003-01-01

    A 4600 Hz pulsed synchrotron is considered as a means of accelerating cool muons with superconducting RF cavities from 4 to 20 GeV/c for a neutrino factory. Eddy current losses are held to less than a megawatt by the low machine duty cycle plus 100 micron thick grain oriented silicon steel laminations and 250 micron diameter copper wires. Combined function magnets with 20 T/m gradients alternating within single magnets form the lattice. Muon survival is 83%.

  1. A novel high-temperature furnace for combined in situ synchrotron X-ray diffraction and infrared thermal imaging to investigate the effects of thermal gradients upon the structure of ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, James B.; Brown, Leon D.; Jervis, Rhodri; Taiwo, Oluwadamilola O.; Millichamp, Jason; Mason, Thomas J.; Neville, Tobias P. [UCL, London WC1E 7JE (United Kingdom); Eastwood, David S. [Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Reinhard, Christina [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Lee, Peter D. [Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Brett, Daniel J. L.; Shearing, Paul R., E-mail: p.shearing@ucl.ac.uk [UCL, London WC1E 7JE (United Kingdom)

    2014-08-15

    A combined X-ray diffraction and thermal imaging technique is described to investigate the effect of thermal gradients on high-temperature composite materials. A new technique combining in situ X-ray diffraction using synchrotron radiation and infrared thermal imaging is reported. The technique enables the application, generation and measurement of significant thermal gradients, and furthermore allows the direct spatial correlation of thermal and crystallographic measurements. The design and implementation of a novel furnace enabling the simultaneous thermal and X-ray measurements is described. The technique is expected to have wide applicability in material science and engineering; here it has been applied to the study of solid oxide fuel cells at high temperature.

  2. An alternative treatment of phenomenological higher-order strain-gradient plasticity theory

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2010-01-01

    strain is discussed, applying a dislocation theory-based consideration. Then, a differential equation for the equivalent plastic strain-gradient is introduced as an additional governing equation. Its weak form makes it possible to deduce and impose extra boundary conditions for the equivalent plastic...

  3. ERL with non-scaling fixed field alternating gradient lattice for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hao, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The proposed eRHIC electron-hadron collider uses a "non-scaling FFAG" (NS-FFAG) lattice to recirculate 16 turns of different energy through just two beam lines located in the RHIC tunnel. This paper presents lattices for these two FFAGs that are optimized for low magnet field and to minimize total synchrotron radiation across the energy range. The higher number of recirculations in the FFAG allows a shorter linac (1.322GeV) to be used, drastically reducing cost, while still achieving a 21.2 GeV maximum energy to collide with one of the existing RHIC hadron rings at up to 250GeV. eRHIC uses many cost-saving measures in addition to the FFAG: the linac operates in energy recovery mode, so the beams also decelerate via the same FFAG loops and energy is recovered from the interacted beam. All magnets will be constructed from NdFeB permanent magnet material, meaning chillers and large magnet power supplies are not needed. This paper also describes a small prototype ERL-FFAG accelerator that will test all of these technologies in combination to reduce technical risk for eRHIC.

  4. Tune-stabilized, non-scaling, fixed-field, alternating gradient accelerator

    Science.gov (United States)

    Johnstone, Carol J.

    2011-02-01

    A FFAG is a particle accelerator having turning magnets with a linear field gradient for confinement and a large edge angle to compensate for acceleration. FODO cells contain focus magnets and defocus magnets that are specified by a number of parameters. A set of seven equations, called the FFAG equations relate the parameters to one another. A set of constraints, call the FFAG constraints, constrain the FFAG equations. Selecting a few parameters, such as injection momentum, extraction momentum, and drift distance reduces the number of unknown parameters to seven. Seven equations with seven unknowns can be solved to yield the values for all the parameters and to thereby fully specify a FFAG.

  5. Spherical tensor gradient operator method for integral rotation: a simple, efficient, and extendable alternative to Slater-Koster tables.

    Science.gov (United States)

    Giese, Timothy J; York, Darrin M

    2008-07-07

    We present a novel alternative to the use of Slater-Koster tables for the efficient rotation and gradient evaluation of two-center integrals used in tight-binding Hamiltonian models. The method recasts the problem into an exact, yet implicit, basis representation through which the properties of the spherical tensor gradient operator are exploited. These properties provide a factor of 3 to 4 speedup in the evaluation of the integral gradients and afford a compact code structure that easily extends to high angular momentum without loss in efficiency. Thus, the present work is important in improving the performance of tight-binding models in molecular dynamics simulations and has particular use for methods that require the evaluation of two-center integrals that involve high angular momentum basis functions. These advances have a potential impact for the design of new tight-binding models that incorporate polarization or transition metal basis functions and methods based on electron density fitting of molecular fragments.

  6. SYNCHROTRON RADIATION SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    HULBERT,S.L.; WILLIAMS,G.P.

    1998-07-01

    Synchrotron radiation is a very bright, broadband, polarized, pulsed source of light extending from the infrared to the x-ray region. It is an extremely important source of Vacuum Ultraviolet radiation. Brightness is defined as flux per unit area per unit solid angle and is normally a more important quantity than flux alone particularly in throughput limited applications which include those in which monochromators are used. It is well known from classical theory of electricity and magnetism that accelerating charges emit electromagnetic radiation. In the case of synchrotron radiation, relativistic electrons are accelerated in a circular orbit and emit electromagnetic radiation in a broad spectral range. The visible portion of this spectrum was first observed on April 24, 1947 at General Electric's Schenectady facility by Floyd Haber, a machinist working with the synchrotron team, although the first theoretical predictions were by Lienard in the latter part of the 1800's. An excellent early history with references was presented by Blewett and a history covering the development of the utilization of synchrotron radiation was presented by Hartman. Synchrotron radiation covers the entire electromagnetic spectrum from the infrared region through the visible, ultraviolet, and into the x-ray region up to energies of many 10's of kilovolts. If the charged particles are of low mass, such as electrons, and if they are traveling relativistically, the emitted radiation is very intense and highly collimated, with opening angles of the order of 1 milliradian. In electron storage rings there are three possible sources of synchrotron radiation; dipole (bending) magnets; wigglers, which act like a sequence of bending magnets with alternating polarities; and undulators, which are also multi-period alternating magnet systems but in which the beam deflections are small resulting in coherent interference of the emitted light.

  7. The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Tygier, S., E-mail: sam.tygier@hep.manchester.ac.uk [Cockcroft Accelerator Group, The University of Manchester (United Kingdom); Appleby, R.B., E-mail: robert.appleby@manchester.ac.uk [Cockcroft Accelerator Group, The University of Manchester (United Kingdom); Garland, J.M. [Cockcroft Accelerator Group, The University of Manchester (United Kingdom); Hock, K. [University of Liverpool (United Kingdom); Owen, H. [Cockcroft Accelerator Group, The University of Manchester (United Kingdom); Kelliher, D.J.; Sheehy, S.L. [STFC Rutherford Appleton Laboratory (United Kingdom)

    2015-03-01

    We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-use Python framework in order to allow simple construction, parameterisation, visualisation and optimisation of FFAG accelerator lattices. Its object oriented design gives it the flexibility and extensibility required for current novel FFAG design. We apply PyZgoubi to two example FFAGs; this includes determining the dynamic aperture of the PAMELA medical FFAG in the presence of magnet misalignments, and illustrating how PyZgoubi may be used to optimise FFAGs. We also discuss a robust definition of dynamic aperture in an FFAG and show its implementation in PyZgoubi.

  8. Fibroma induction in rat skin following single or multiple doses of 1.0 GeV/nucleon 56Fe ions from the Brookhaven Alternating Gradient Synchrotron (AGS)

    Science.gov (United States)

    Burns, F. J.; Zhao, P.; Xu, G.; Roy, N.; Loomis, C.

    2001-01-01

    Rat skin was exposed to the plateau region of the 1.0 GeV/nucleon 56Fe beam at the Brookhaven AGS. Rats were irradiated or not with single of split doses of 56Fe or argon; some 56Fe-exposed rats were fed 250 ppm retinyl acetate continuously in the lab chow beginning 1 week before irradiation. All lesions were noted, photographed and identified for eventual histological diagnosis. The preponderance of the tumors so far are fibromas. The data show that single doses of 56Fe ions are 2 or 3 fold more effective than argon in producing tumors at 4.5 Gy but are about equally effective at 3.0 Gy and 9.0 Gy. The presence of 250 ppm retinyl acetate in the lab chow reduced the incidence of tumors by about 50-60% in comparison to groups exposed only to the radiation. These are preliminary findings based on only about one-fourth the eventual number of tumors expected.

  9. Characterization techniques for fixed-field alternating gradient accelerators and beam studies using the KURRI 150 MeV proton FFAG

    Science.gov (United States)

    Sheehy, S. L.; Kelliher, D. J.; Machida, S.; Rogers, C.; Prior, C. R.; Volat, L.; Haj Tahar, M.; Ishi, Y.; Kuriyama, Y.; Sakamoto, M.; Uesugi, T.; Mori, Y.

    2016-07-01

    In this paper we describe the methods and tools used to characterize a 150 MeV proton scaling fixed field alternating gradient (FFAG) accelerator at Kyoto University Research Reactor Institute. Many of the techniques used are unique to this class of machine and are thus of relevance to any future FFAG accelerator. For the first time we detail systematic studies undertaken to improve the beam quality of the FFAG. The control of beam quality in this manner is crucial to demonstrating high power operation of FFAG accelerators in future.

  10. Design study of the large hadron electron collider and a rapid cycling synchrotron as alternative to the PS booster upgrade at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, Miriam

    2013-02-22

    With the Large Hadron Collider (LHC) the exploration of particle physics at center of mass energies at the TeV scale has begun. To extend the discovery potential of the LHC, a major upgrade is foreseen around 2020 of the LHC itself and the LHC injectors - the chain of accelerators preparing the beam for the LHC. One of the injectors - the second one in the chain - is the Proton Synchrotron (PS) Booster. Its performance is currently limited by the space-charge effect, which is the effect of the electromagnetic field of the particle beam on itself. This effect becomes weaker with higher energy, and therefore an energy upgrade of the PS Booster to 2 GeV maximum beam energy is foreseen. As the PS Booster is with its 40 years already an old machine, the construction of a new accelerator, a Rapid Cycling Synchrotron (RCS), to replace the PS Booster has been proposed. In this thesis different options for the beam guidance in the RCS - referred to as lattice and optics - are studied, followed by a more general comparison of different lattices and optics and their performance under consideration of the space-charge effect. To further complement the LHC physics program, also the possibility of deep inelastic lepton-nucleon scattering at the LHC has been suggested, referred to as Large Hadron Electron Collider (LHeC). In this case the proton beam of the LHC collides with the electron beam, which is accelerated in a separate newly built machine. Two options are considered as electron accelerator: a new energy recovery linac - the Linac-Ring option - and the installation of an electron ring in the existing LHC tunnel - the Ring-Ring option. One of the main challenges of the Ring-Ring option is the integration of the electron ring in the current LHC tunnel. A layout, lattice and optics of the electron accelerator is developed in this thesis, which meets the requirements with regard to integration and reaches the beam parameters demanded by the particle physics experiments.

  11. The Australian synchrotron; Le synchrotron australien

    Energy Technology Data Exchange (ETDEWEB)

    Farhi, R

    2005-06-15

    This document recalls the historical aspects of the Australian Synchrotron which will be implemented in 2007. It presents then the objectives of this program, the specifications of the ring and the light lines. (A.L.B.)

  12. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  13. 折射率正负梯度交替表面的研究∗%Study of p ositive and negative gradient refractive index alternant surface

    Institute of Scientific and Technical Information of China (English)

    刘晓波; 刘明黎; 陈建忠; 施宏宇; 陈博; 蒋延生; 徐卓; 张安学

    2015-01-01

    利用不均匀材料提出了一种折射率正负梯度交替表面,并利用几何光学法和电磁场数值仿真方法对其机理进行了研究与验证,发现其可以操控电磁波的传播:在一定的参数下,其可以将空间中的入射电磁波一直束缚在介质中,或在介质中传播一定距离后再实现电磁波的释放;同时该结构具有宽带、极化无关等特性。利用该结构可引导能流,减小后向散射截面,可用作隐身表面。%In this paper, we design a kind of positive and negative gradient refractive index alternating surface and discuss its physical mechanism by the geometrical optics method and the numerical simulation of electromagnetic field. This structure can control the propagation of electromagnetic waves by adjusting some parameters such as refractive gradient. Under certain parameters, electromagnetic waves from space can be confined mainly in the media all the time, or are released into the space after propagating a certain distance in the media. This structure is polarization-independent and wide-band. It means that this structure can be used as a stealth surface by reducing the scattering cross section. Finally, the characteristics of the structure are verified by the numerical simulation.

  14. Alternative respiratory path capacity in plant mitochondria: effect of growth temperature, the electrochemical gradient, and assay pH. [Zea mays L. , Vigna radiata L. , Symplocarpus foetidus L. , Sauromatum guttatum Schott

    Energy Technology Data Exchange (ETDEWEB)

    Elthon, T.E.; Stewart, C.R.; McCoy, C.A.; Bonner, W.D. Jr.

    1986-02-01

    Influence of growth temperature on the capacity of the mitochondrial alternative pathway of electron transport was investigated using etiolated corn (Zea mays L.) seedlings. These seedlings were grown to comparable size in either a warm (30/sup 0/C) or a cold (13/sup 0/C) temperature regime, and then their respiration rates were measured as O/sub 2/ uptake at 25/sup 0/C. The capacity of the alternative pathway (KCN-insensitive O/sub 2/ uptake) was found essentially to double in shoots of cold-grown seedlings. When mitochondria were isolated from the shoots a greater potential for flow through the alternative path was observed in mitochondria from the cold-grown seedlings with all substrates used (an average increase of 84%). Using exogenous NADH as the substrate, the effect of the electrochemical gradient on measurable capacities of the cytochrome and alternative pathways was investigated in mitochondria from both etiolated seedlings and thermogenic spadices. In corn shoot and mung bean (Vigna radiata L.) hypocotyl mitochondria increased flow through the cytochrome chain in the absence of the electrochemical gradient was found not to influence the potential for flow through the alternative path. However, in mitochondria from skunk cabbage (Symplocarpus foetidus L.) and voodoo lily (Sauromatum gutatum Schott) spadices increased flow through the cytochrome chain in the absence of the gradient occurred at the expense of flow through the alternative pathway. This experiment also revealed that the potential for respiratory control is largely dependent upon the assay pH.

  15. Inauguration of Proton Synchrotron

    CERN Multimedia

    1960-01-01

    On 5 February 1960, the Proton Synchrotron (PS) was formally inaugurated. The great Danish physicist, Niels Bohr, releases a bottle of champagne against a shielding block to launch the PS on its voyage in physics.

  16. Future Synchrotron Radiation Sources

    CERN Document Server

    Winick, Herman

    2003-01-01

    Sources of synchrotron radiation (also called synchrotron light) and their associated research facilities have experienced a spectacular growth in number, performance, and breadth of application in the past two to three decades. In 1978 there were eleven electron storage rings used as light sources. Three of these were small rings, all below 500 mega-electron volts (MeV), dedicated to this purpose; the others, with energy up to 5 giga-electron volts (GeV), were used parasitically during the operation of the ring for high energy physics research. In addition, at that time synchrotron radiation from nine cyclic electron synchrotrons, with energy up to 5 GeV, was also used parasitically. At present no cyclic synchrotrons are used, while about 50 electron storage rings are in operation around the world as fully dedicated light sources for basic and applied research in a wide variety of fields. Among these fields are structural molecular biology, molecular environmental science, materials, analytic chemistry, micr...

  17. Synchrotron-driven spallation sources

    CERN Document Server

    Bryant, P J

    1996-01-01

    The use of synchrotrons for pulsed neutron spallation sources is an example of scientific and technological spin-off from the accelerator development for particle physics. Accelerator-driven sources provide an alternative to the continuous-flux, nuclear reactors that currently furnish the majority of neutrons for research and development. Although the present demand for neutrons can be adequately met by the existing reactors, this situation is unlikely to continue due to the increasing severity of safety regulations and the declared policies of many countries to close down their reactors within the next decade or so. Since the demand for neutrons as a research tool is, in any case,expected to grow, there has been a corresponding interest in sources that are synchrotron-driven or linac-driven with a pulse compression ring and currently several design studies are being made. These accelerator-driven sources also have the advantage of a time structure with a high peak neutron flux. The basic requirement is for a...

  18. Compact synchrotron light sources

    CERN Document Server

    Weihreter, Ernst

    1996-01-01

    This book covers a new niche in circular accelerator design, motivated by the promising industrial prospects of recent micromanufacturing methods - X-ray lithography, synchrotron radiation-based micromachining and microanalysis techniques. It describes the basic concepts and the essential challenges for the development of compact synchrotron radiation sources from an accelerator designer's point of view and gives an outline of the actual state of the art. The volume is intended as an introduction and as a reference for physicists, engineers and managers involved in this rapidly developing fiel

  19. RF Gymnastics in Synchrotrons

    CERN Document Server

    Garoby, R

    2005-01-01

    The RF systems installed in synchrotrons can be used to change the longitudinal beam characteristics. "RF gymnastics" designates manipulations of the RF parameters aimed at providing such non-trivial changes. Some keep the number of bunches constant while changing bunch length, energy spread, emittance or distance between bunches. Others are used to change the number of bunches. After recalling the basics of longitudinal beam dynamics in a hadron synchrotron, this paper deals with the most commonly used gymnastics. Their principle is described as well as their performance and limitations.

  20. RF gymnastics in synchrotrons

    CERN Document Server

    Garoby, R

    2011-01-01

    The RF systems installed in synchrotrons can be used to change the longitudinal beam characteristics. 'RF gymnastics' designates manipulations of the RF parameters aimed at providing such non-trivial changes. Some keep the number of bunches constant while changing bunch length, energy spread, emittance, or distance between bunches. Others are used to change the number of bunches. After recalling the basics of longitudinal beam dynamics in a hadron synchrotron, this paper deals with the most commonly used gymnastics. Their principle is described as well as their performance and limitations.

  1. Synchrotron radiation in biosciences

    Science.gov (United States)

    Marinkovic, Nebojsa S.; Gupta, Sayan; Zhan, Chenyang; Chance, Mark R.

    2005-12-01

    The Center for Synchrotron Biosciences (CSB) operates five beamlines at the National Synchrotron Light Source (NSLS). Infrared (IR) micro-spectroscopy, X-ray absorption spectroscopy, structural proteomics and macromolecular footprinting are among the major technologies available through the Center. IR micro-spectroscopy is used to examine protein-folding in the microsecond time regime, image bone, neurons, seeds and other biological tissues, as well as image samples of interest in the chemical and environmental sciences. Structural proteomics research of New York Structural Genomics Research Consortium (NYSGRC) is steadily increasing the number of solved protein structures, with a goal to solve 100-200 structures per year. To speed up the research, a high-throughput method called 'metallomics' was implemented for NYSGRC crystallographers to detect intrinsic anomalous scatterers using X-ray absorption spectroscopy. Hydroxyl radical mediated X-ray footprinting is capable of resolving folding events of RNA, at single base resolution on millisecond timescales using a synchrotron white beam. The high brightness of synchrotron source is essential for CSB projects as it permits the use of smaller sample sizes and/or concentration, and allows studies of more complicated biological systems than with conventional sources.

  2. Synchrotron radiation in biosciences

    Energy Technology Data Exchange (ETDEWEB)

    Marinkovic, Nebojsa S. [Center for Synchrotron Biosciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Ullman 315, Bronx, NY 10461 (United States)]. E-mail: marinkov@bnl.gov; Gupta, Sayan [Center for Synchrotron Biosciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Ullman 315, Bronx, NY 10461 (United States); Zhan, Chenyang [Center for Synchrotron Biosciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Ullman 315, Bronx, NY 10461 (United States); Chance, Mark R. [Center for Synchrotron Biosciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Ullman 315, Bronx, NY 10461 (United States)

    2005-12-15

    The Center for Synchrotron Biosciences (CSB) operates five beamlines at the National Synchrotron Light Source (NSLS). Infrared (IR) micro-spectroscopy, X-ray absorption spectroscopy, structural proteomics and macromolecular footprinting are among the major technologies available through the Center. IR micro-spectroscopy is used to examine protein-folding in the microsecond time regime, image bone, neurons, seeds and other biological tissues, as well as image samples of interest in the chemical and environmental sciences. Structural proteomics research of New York Structural Genomics Research Consortium (NYSGRC) is steadily increasing the number of solved protein structures, with a goal to solve 100-200 structures per year. To speed up the research, a high-throughput method called 'metallomics' was implemented for NYSGRC crystallographers to detect intrinsic anomalous scatterers using X-ray absorption spectroscopy. Hydroxyl radical mediated X-ray footprinting is capable of resolving folding events of RNA, at single base resolution on millisecond timescales using a synchrotron white beam. The high brightness of synchrotron source is essential for CSB projects as it permits the use of smaller sample sizes and/or concentration, and allows studies of more complicated biological systems than with conventional sources.

  3. The Proton Synchrotron, going strong at fifty years

    CERN Multimedia

    Django Manglunki

    It was on the evening of 24 November 1959 that an incredulous Hildred Blewett, on detachment to CERN from the Brookhaven laboratory, exclaimed “Yes! We’re through transition!” The first beam of ten billion protons had not only broken through the 5.2 GeV barrier but gone on all the way to 24 GeV, the machine’s top energy at that time.   An operational screenshot from the PS, taken on its 50th anniversary. The three white peaks depict different phases (cycles) of the PS’s operation. In the first and third cycle, the PS is producing a very low-intensity beam for LHC commissioning. In the second cycle, protons are being spilled out for use in the East Area. Fifty years ago the PS, the first strong-focusing proton synchrotron using alternating gradient technology, first began to circulate beams at an unprecedented level of energy. Over the years, a complex of linear and circular accelerators and storage rings grew up around the PS. In the mid-1990s ...

  4. Synchrotron masers and fast radio bursts

    CERN Document Server

    Ghisellini, Gabriele

    2016-01-01

    Fast Radio Bursts (FRBs), with a typical duration of 1 ms and 1 Jy flux density at GHz frequencies, have brightness temperatures exceeding 1e33 K, requiring a coherent emission process. This can be achieved by bunching particles in volumes smaller than the typical wavelength, but this may be challenging. Alternatively, we can have maser emission. Under certain conditions, the synchrotron stimulated emission process can be more important than true absorption, and a synchrotron maser can be created. This occurs when the emitting electrons have a very narrow distribution of pitch angles and energies. This process overcomes the difficulties of having extremely dense bunches of particles and relaxes the light crossing time limits, since there is no simple relation between the actual size of the source and the observed variability timescale.

  5. Synchrotron radiation for direct analysis of metalloproteins on electrophoresis gels.

    Science.gov (United States)

    Ortega, Richard

    2009-03-01

    Metalloproteomics requires analytical techniques able to assess and quantify the inorganic species in metalloproteins. The most widely used methods are hyphenated techniques, based on the coupling of a high resolution chromatographic method with a high sensitivity method for metal analysis in solution. An alternative approach is the use of methods for solid sample analysis, combining metalloprotein separation by gel electrophoresis and direct analysis of the gels. Direct methods are based on beam analysis, such as lasers, ion beams or synchrotron radiation beams. The aim of this review article is to present the main features of synchrotron radiation based methods and their applications for metalloprotein analysis directly on electrophoresis gels. Synchrotron radiation X-ray fluorescence has been successfully employed for sensitive metal identification, and X-ray absorption spectroscopy for metal local structure speciation in proteins. Synchrotron based methods will be compared to ion beam and mass spectrometry for direct analysis of metalloproteins in electrophoresis gels.

  6. Synchrotrons for Hadrontherapy

    Science.gov (United States)

    Pullia, Marco G.

    Since 1990, when the world's first hospital-based proton therapy center opened in Loma Linda, California, interest in dedicated proton and carbon ion therapy facilities has been growing steadily. Today, many proton therapy centers are in operation, but the number of centers offering carbon ion therapy is still very low. This difference reflects the fact that protons are well accepted by the medical community, whereas radiotherapy with carbon ions is still experimental. Furthermore, accelerators for carbon ions are larger, more complicated and more expensive than those for protons only. This article describes the accelerator performance required for hadrontherapy and how this is realized, with particular emphasis on carbon ion synchrotrons.

  7. Measurement of electric fields induced in a human subject due to natural movements in static magnetic fields or exposure to alternating magnetic field gradients.

    Science.gov (United States)

    Glover, P M; Bowtell, R

    2008-01-21

    A dual dipole electric field probe has been used to measure surface electric fields in vivo on a human subject over a frequency range of 0.1-800 Hz. The low-frequency electric fields were induced by natural body movements such as walking and turning in the fringe magnetic fields of a 3 T magnetic resonance whole-body scanner. The rate-of-change of magnetic field (dB/dt) was also recorded simultaneously by using three orthogonal search coils positioned near to the location of the electric field probe. Rates-of-change of magnetic field for natural body rotations were found to exceed 1 T s(-1) near the end of the magnet bore. Typical electric fields measured on the upper abdomen, head and across the tongue for 1 T s(-1) rate of change of magnetic field were 0.15+/-0.02, 0.077+/-0.003 and 0.015+/-0.002 V m(-1) respectively. Electric fields on the abdomen and chest were measured during an echo-planar sequence with the subject positioned within the scanner. With the scanner rate-of-change of gradient set to 10 T m(-1) s(-1) the measured rate-of-change of magnetic field was 2.2+/-0.1 T s(-1) and the peak electric field was 0.30+/-0.01 V m(-1) on the chest. The values of induced electric field can be related to dB/dt by a 'geometry factor' for a given subject and sensor position. Typical values of this factor for the abdomen or chest (for measured surface electric fields) lie in the range of 0.10-0.18 m. The measured values of electric field are consistent with currently available numerical modelling results for movement in static magnetic fields and exposure to switched magnetic field gradients.

  8. Measurement of electric fields induced in a human subject due to natural movements in static magnetic fields or exposure to alternating magnetic field gradients

    Science.gov (United States)

    Glover, P. M.; Bowtell, R.

    2008-01-01

    A dual dipole electric field probe has been used to measure surface electric fields in vivo on a human subject over a frequency range of 0.1-800 Hz. The low-frequency electric fields were induced by natural body movements such as walking and turning in the fringe magnetic fields of a 3 T magnetic resonance whole-body scanner. The rate-of-change of magnetic field (dB/dt) was also recorded simultaneously by using three orthogonal search coils positioned near to the location of the electric field probe. Rates-of-change of magnetic field for natural body rotations were found to exceed 1 T s-1 near the end of the magnet bore. Typical electric fields measured on the upper abdomen, head and across the tongue for 1 T s-1 rate of change of magnetic field were 0.15 ± 0.02, 0.077 ± 0.003 and 0.015 ± 0.002 V m-1 respectively. Electric fields on the abdomen and chest were measured during an echo-planar sequence with the subject positioned within the scanner. With the scanner rate-of-change of gradient set to 10 T m-1 s-1 the measured rate-of-change of magnetic field was 2.2 ± 0.1 T s-1 and the peak electric field was 0.30 ± 0.01 V m-1 on the chest. The values of induced electric field can be related to dB/dt by a 'geometry factor' for a given subject and sensor position. Typical values of this factor for the abdomen or chest (for measured surface electric fields) lie in the range of 0.10-0.18 m. The measured values of electric field are consistent with currently available numerical modelling results for movement in static magnetic fields and exposure to switched magnetic field gradients.

  9. CIM(®) monolithic anion-exchange chromatography as a useful alternative to CsCl gradient purification of bacteriophage particles.

    Science.gov (United States)

    Adriaenssens, Evelien M; Lehman, Susan M; Vandersteegen, Katrien; Vandenheuvel, Dieter; Philippe, Didier L; Cornelissen, Anneleen; Clokie, Martha R J; García, Andrés J; De Proft, Maurice; Maes, Martine; Lavigne, Rob

    2012-12-20

    The use of anion-exchange chromatography was investigated as an alternative method to concentrate and purify bacterial viruses, and parameters for different bacteriophages were compared. Chromatography was performed with Convective Interactive Media(®) monoliths, with three different volumes and two matrix chemistries. Eleven morphologically distinct phages were tested, infecting five different bacterial species. For each of the phages tested, a protocol was optimized, including the choice of column chemistry, loading, buffer and elution conditions. The capacity and recovery of the phages on the columns varied considerably between phages. We conclude that anion-exchange chromatography with monoliths is a valid alternative to the more traditional CsCl purification, has upscaling advantages, but it requires more extensive optimization.

  10. Gradient networks

    Science.gov (United States)

    Toroczkai, Zoltán; Kozma, Balázs; Bassler, Kevin E.; Hengartner, N. W.; Korniss, G.

    2008-04-01

    Gradient networks are defined (Toroczkai and Bassler 2004 Nature 428 716) as directed graphs formed by local gradients of a scalar field distributed on the nodes of a substrate network G. We present the derivation for some of the general properties of gradient graphs and give an exact expression for the in-degree distribution R(l) of the gradient network when the substrate is a binomial (Erd{\\;\\kern -0.10em \\raise -0.35ex \\{{^{^{\\prime\\prime}}}}\\kern -0.57em \\o} s-Rényi) random graph, G_{N,p} , and the scalars are independent identically distributed (i.i.d.) random variables. We show that in the limit N \\to \\infty, p \\to 0, z = pN = \\mbox{const} \\gg 1, R(l)\\propto l^{-1} for l Bassler (2004 Nature 428 716).

  11. Regions compete for French synchrotron

    CERN Multimedia

    2000-01-01

    Ten regions in France have placed bids to host the planned national synchrotron Soleil. Leading contenders include a joint bid from Ile-de-France and Essonne for Orsay, offering FF 1 billion towards the construction costs (2 paragraphs).

  12. Reshuffle lifts French synchrotron hopes

    CERN Multimedia

    McCabe, H

    2000-01-01

    The sacking of Claude Allegre as research minister has raised doubts over the level of France's promised participation in the construction of Diamond but reawakened French hopes that the synchrotron Soleil may now be built (1 page).

  13. Spin echo in synchrotrons

    Science.gov (United States)

    Chao, Alexander W.; Courant, Ernest D.

    2007-01-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δνspin of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δνspin is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an analysis

  14. Spin Echo in Synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alexander W.; /SLAC; Courant, Ernest D.; /Brookhaven

    2006-12-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency {Delta}{nu}{sub spin} of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time {tau} between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference effect and a spin echo effect. This paper is to address these two effects. The interference effect occurs when {Delta}{nu}{sub spin} is too small, or when {tau} is too short, to complete the smearing process. In this case, the two resonance crossings interfere with each other, and the final polarization exhibits constructive or destructive patterns depending on the exact value of {tau}. Typically, the beam's energy spread is large and this interference effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time {tau} after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when {tau} is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving

  15. Magnetostrictive Alternator

    Science.gov (United States)

    Dyson, Rodger; Bruder, Geoffrey

    2013-01-01

    This innovation replaces the linear alternator presently used in Stirling engines with a continuous-gradient, impedance-matched, oscillating magnetostrictive transducer that eliminates all moving parts via compression, maintains high efficiency, costs less to manufacture, reduces mass, and eliminates the need for a bearing system. The key components of this new technology are the use of stacked magnetostrictive materials, such as Terfenol-D, under a biased magnetic and stress-induced compression, continuous-gradient impedance-matching material, coils, force-focusing metallic structure, and supports. The acoustic energy from the engine travels through an impedancematching layer that is physically connected to the magnetostrictive mass. Compression bolts keep the structure under compressive strain, allowing for the micron-scale compression of the magnetostrictive material and eliminating the need for bearings. The relatively large millimeter displacement of the pressure side of the impedance-matching material is reduced to micron motion, and undergoes stress amplification at the magnetostrictive interface. The alternating compression and expansion of the magnetostrictive material creates an alternating magnetic field that then induces an electric current in a coil that is wound around the stack. This produces electrical power from the acoustic pressure wave and, if the resonant frequency is tuned to match the engine, can replace the linear alternator that is commonly used.

  16. Towards synchrotron-based nanocharacterization

    Science.gov (United States)

    Bleuet, Pierre; Arnaud, Lucile; Biquard, Xavier; Cloetens, Peter; Doyen, Lise; Gergaud, Patrice; Lamontagne, Patrick; Lavayssière, Maylis; Micha, Jean-Sébastien; Renault, Olivier; Rieutord, François; Susini, Jean; Ulrich, Olivier

    2009-09-01

    The advent of 3rd generation synchrotron sources coupled with high efficiency x-ray focusing optics opened new nanocharacterization possibilities. This paper is an overview of synchrotron-based techniques that may be of interest for nanotechnology researchers. Although not exhaustive, it includes a general background of synchrotron principle and main x-ray interactions before addressing nanoimaging possibilities. Three-dimensional (3D) hard x-ray multimodal tomography is now doable that allows producing 3D morphological, chemical and crystalline images with a sub-100 nm resolution. Although the resolution is still limited with respect to electron imaging, it presents attractive features like depth resolution and non-destructive exam. Besides imaging, diffraction also allows strain determination within microstructures and is illustrated here on 100 nm copper lines. Surface analysis is illustrated through X-ray Photoelectron Emission Microscopy (XPEEM).

  17. Synchrotron radiation and structural proteomics

    CERN Document Server

    Pechkova, Eugenia

    2011-01-01

    This book presents an overview of the current state of research in both synchrotron radiation and structural proteomics from different laboratories worldwide. The book presents recent research results in the most advanced methods of synchrotron radiation analysis, protein micro- and nano crystallography, X-ray scattering and X-ray optics, coherent X-Ray diffraction, and laser cutting and contactless sample manipulation are described in details. The book focuses on biological applications and highlights important aspects such as radiation damage and molecular modeling.

  18. Optical systems for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Howells, M.R.

    1985-12-01

    Various fundamental topics which underlie the design and use of optical systems for synchrotron radiation are considered from the viewpoint of linear system theory. These topics include the damped harmonic oscillator, free space propagation of an optical field, electromagnetic theory of optical properties of materials, theory of dispersion, and the Kramers-Kronig relations. 32 refs., 5 figs. (LEW)

  19. Synchrotron radiation and biomedical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Luccio, A.

    1986-08-01

    In this lecture we describe the characteristics of Synchrotron radiation as a source of X rays. We discuss the properties of SR arc sources, wigglers, undulators and the use of backscattering of laser light. Applications to angiography, X ray microscopy and tomography are reviewed. 16 refs., 23 figs.

  20. DESY: Synchrotron and storage rings

    CERN Multimedia

    1972-01-01

    An improvement programme has been under way for several years at the 7.5 GeV électron synchrotron at DESY. In particular it has been designed to increase the accelerated beam intensity, to achieve better quality of the ejected électron beams and photon beams and to improve machine reliability.

  1. Biological physics and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Filhol, J.M.; Chavanne, J. [European Synchrotron Radiation Facility, 38 - Grenoble (France); Weckert, E. [Hasylab at Desy, Hamburg (Germany)] [and others

    2001-07-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  2. Medical Applications of Synchrotron Radiation

    Science.gov (United States)

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  3. Medical applications of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  4. Breast tomography with synchrotron radiation

    Science.gov (United States)

    Pani, Silvia; Arfelli, Fulvia; Dreossi, Diego; Montanari, Francesco; Longo, Renata; Olivo, Alessandro; Poropat, Paolo; Zanconati, Fabrizio; Palma, Ludovico D.; Castelli, Edoardo

    2002-05-01

    A feasibility study of breast CT with synchrotron radiation is currently being carried on at Elettra, the Trieste synchrotron radiation facility. Breast CT cannot be implemented easily with conventional radiographic tubes, due to the high dose that would be delivered to the breast by a polychromatic X-ray spectrum. The possibility of tuning the beam energy, available at a synchrotron radiation beamline, allows a significant reduction in the delivered dose, and at the same time the use of monochromatic beams avoids beam hardening artifacts on the reconstructed image. Images of in vitro breast tissue samples have been acquired by means of a high efficiency linear array detector coupled to a VLSI single photon counting readout electronics. The pixel width, determining the pixel size of the reconstructed image, is 200 micrometers , while the pixel height, determining the CT slice thickness, is 300 micrometers . Tomograms have been reconstructed by means of standard filtered backprojection algorithms. Images of normal and pathologic breast tissue samples show a good visibility of glandular structure. The delivered dose was in all cases comparable to the one delivered in clinical planar mammography. Due to the promising results we obtained, in vivo studies are under evaluation.

  5. Radiation emitted by transverse-gradient undulators

    Science.gov (United States)

    Bernhard, Axel; Braun, Nils; Rodríguez, Verónica Afonso; Peiffer, Peter; Rossmanith, Robert; Widmann, Christina; Scheer, Michael

    2016-09-01

    Conventional undulators are used in synchrotron light sources to produce radiation with a narrow relative spectral width as compared to bending magnets or wigglers. The spectral width of the radiation produced by conventional undulators is determined by the number of undulator periods and by the energy spread and emittance of the electron beam. In more compact electron sources like for instance laser plasma accelerators the energy spread becomes the dominating factor. Due to this effect these electron sources cannot in general be used for high-gain free electron lasers (FELs). In order to overcome this limitation, modified undulator schemes, so-called transverse gradient undulators (TGUs), were proposed and a first superconducting TGU was built at Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. In this paper simulations of the expected synchrotron radiation spectral distribution are presented. An experimental test with that device is under preparation at the laser wakefield accelerator at the JETI laser at the University of Jena, Germany.

  6. DESIGN OF A THIN QUADRUPOLE TO BE USED IN THE AGS SYNCHROTRON

    Energy Technology Data Exchange (ETDEWEB)

    TSOUPAS,N.; AHRENS, L.; ALFORQUE, R.; BAI, M.; BROWN, K.; COURANT, E.; ET AL.

    2007-06-25

    The Alternating Gradient Synchrotron (AGS) employs two partial helical snakes[l] to preserve the polarization of the proton beam during acceleration. In order to compensate for the focusing effect of the partial helical snakes on the beam optics in the AGS during acceleration of the beam, we introduced eight quadrupoles in straight sections of the AGS at the proximity of the partial snakes. At injection energies, the strength of each quad is set at a high value, and is ramped down to zero as the effect of the snakes diminishes by the square of beam's rigidity. Four of the eight compensation quadrupoles had to be placed in very short straight sections -30 cm in length, therefore the quadruples had be thin with an overall length of less than 30 cm. In this paper we will discus: (a) the mechanical and magnetic specifications of the ''thin'' quadrupole. (b) the method to minimize the strength of the dodecapole harmonic, (c) the method to optimize the thickness of the laminations that the magnet iron is made, (d) mechanical tolerances of the magnet, (e) comparison of the measured and calculated magnetic multipoles of the quadrupole.

  7. Sirepo for Synchrotron Radiation Workshop

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-25

    Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jinja, which is a secure and widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is the Synchrotron Radiation Workshop (SRW). SRW computes synchrotron radiation from relativistic electrons in arbitrary magnetic fields and propagates the radiation wavefronts through optical beamlines. SRW is open source and is primarily supported by Dr. Oleg Chubar of NSLS-II at Brookhaven National Laboratory.

  8. High pressure and synchrotron radiation satellite workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  9. Synchrotron radiation absorber for high density loads

    Science.gov (United States)

    Anashin, V. V.; Kuzminych, V. S.; Trakhtenberg, E. M.; Zholents, A. A.

    1991-10-01

    A design of a special synchrotron radiation absorber for the storage ring VEPP-4M is presented. The density of the synchrotron radiation power on the absorber surface is up to 500 W/mm 2. The absorber is made from a beryllium plate, brazed inside to the copper vacuum chamber, which is intensively water-cooled from outside.

  10. High-Intensity Synchrotron Radiation Effects

    CERN Document Server

    Suetsugu, Y

    2016-01-01

    Various effects of intense synchrotron radiation on the performance of particle accelerators, especially for storage rings, are discussed. Following a brief introduction to synchrotron radiation, the basic concepts of heat load, gas load, electron emission, and the countermeasures against these effects are discussed.

  11. Template fitting of WMAP 7-year data: anomalous dust or flattening synchrotron emission?

    CERN Document Server

    Peel, M W; Davies, R D; Banday, A J; Jaffe, T R; Jonas, J L

    2011-01-01

    Anomalous microwave emission at 20-40GHz has been detected across our Galactic sky. It is highly correlated with thermal dust emission and hence it is thought to be due to spinning dust grains. Alternatively, this emission could be due to synchrotron radiation with a flattening (hard) spectral index. We cross-correlate synchrotron, free- free and thermal dust templates with the WMAP 7-year maps using synchrotron templates at both 408MHz and 2.3GHz to assess the amount of flat synchrotron emission that is present, and the impact that this has on the correlations with the other components. We find that there is only a small amount of flattening visible in the synchrotron spectral indices by 2.3GHz, of around \\Delta{\\beta} \\approx 0.05, and that the significant level of dust-correlated emission in the lowest WMAP bands is largely unaffected by the choice of synchrotron template, particularly at high latitudes (it decreases by only ~7 per cent when using 2.3 GHz rather than 408 MHz). This agrees with expectation ...

  12. The local power of the gradient test

    CERN Document Server

    Lemonte, Artur

    2010-01-01

    The asymptotic expansion of the distribution of the gradient test statistic is derived for a composite hypothesis under a sequence of Pitman alternative hypotheses converging to the null hypothesis at rate $n^{-1/2}$, $n$ being the sample size. Comparisons of the local powers of the gradient, likelihood ratio, Wald and score tests reveal no uniform superiority property. The power performance of all four criteria in one-parameter exponential family is examined.

  13. Report of the Synchrotron Radiation Vacuum Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well.

  14. Experimental demonstration of the induction synchrotron.

    Science.gov (United States)

    Takayama, Ken; Arakida, Yoshio; Dixit, Tanuja; Iwashita, Taiki; Kono, Tadaaki; Nakamura, Eiji; Otsuka, Kazunori; Shimosaki, Yoshito; Torikai, Kota; Wake, Masayoshi

    2007-02-01

    We report an experimental demonstration of the induction synchrotron, the concept of which has been proposed as a future accelerator for the second generation of neutrino factory or hadron collider. The induction synchrotron supports a superbunch and a superbunch permits more charge to be accelerated while observing the constraints of the transverse space-charge limit. By using a newly developed induction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV booster ring and captured by the barrier bucket created by the induction step voltages was accelerated to 6 GeV in the KEK proton synchrotron.

  15. Resonant electron diffusion as a saturation process of the synchrotron maser instability. [of auroral kilometric radiation

    Science.gov (United States)

    Lee, M. C.; Kuo, S. P.

    1986-01-01

    The theory of resonant electron diffusion as an effective saturation process of the auroral kilometric radiation has been formulated. The auroral kilometric radiation is assumed to be amplified by the synchrotron maser instability that is driven by an electron distribution of the loss-cone type. The calculated intensity of the saturated radiation is found to have a significantly lower value in comparison with that caused by the quasi-linear diffusion process as an alternative saturation process. This indicates that resonant electron diffusion dominates over quasi-linear diffusion in saturating the synchrotron maser instability.

  16. Panel backs next-generation synchrotron

    CERN Multimedia

    Service, R F

    1999-01-01

    A key federal panel recommended continued research into development of a fourth-generation synchrotron. It would be capable of creating x-ray pulses billions of times more intense than current designs (1 page).

  17. Solenoid and Synchrotron radiation effects in CLIC

    CERN Document Server

    Dalena, B; Tomás, R; Angal-Kalinin, D

    2010-01-01

    The emission of Synchrotron Radiation in the CLIC BDS is one of the major limitations of the machine performance. An extensive revision of this phenomenon is presented with special emphasis on the Interaction point (IP) solenoid.

  18. Stanford Synchrotron Radiation Light Source (SSRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The SSRL at SLAC National Accelerator Laboratory was built in 1974 to take and use for synchrotron studies the intense x-ray beams from the SPEAR storage ring that...

  19. National Synchrotron Light Source annual report 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.; Lazarz, N.; Williams, G. (eds.)

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  20. Molecular photoemission studies using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Truesdale, C.M.

    1983-04-01

    The angular distributions of photoelectrons and Auger electrons were measured by electron spectroscopy using synchrotron radiation. The experimental results are compared with theoretical calculations to interpret the electronic behavior of photoionization for molecular systems.

  1. Simulation of synchrotron motion with rf noise

    Energy Technology Data Exchange (ETDEWEB)

    Leemann, B.T.; Forest, E.; Chattopadhyay, S.

    1986-08-01

    The theoretical formulation is described that is behind an algorithm for synchrotron phase-space tracking with rf noise and some preliminary simulation results of bunch diffusion under rf noise obtained by actual tracking.

  2. Synchrotron radiation from massless charge

    CERN Document Server

    Gal'tsov, D V

    2015-01-01

    Classical radiation power from an accelerated massive charge diverges in the zero-mass limit, while some general arguments suggest that strictly massless charge does not not radiate at all. On the other hand, the regularized classical radiation reaction force, though looking odd, is non-zero and finite. To clarify this controversy, we consider radiation problem in massless scalar quantum electrodynamics in the external magnetic field. In this framework, synchrotron radiation is found to be non-zero, finite, and essentially quantum. Its spectral distribution is calculated using Schwinger's proper time technique for {\\em ab initio} massless particle of zero spin. Provided $E^2\\gg eH$, the maximum in the spectrum is shown to be at $\\hbar \\omega=E/3$, and the average photon energy is $4E/9$. The normalized spectrum is universal, depending neither on $E$ nor on $H$. Quantum nature of radiation makes classical radiation reaction equation meaningless for massless charge. Our results are consistent with the view (sup...

  3. Synchrotron radiation from massless charge

    Directory of Open Access Journals (Sweden)

    D.V. Gal'tsov

    2015-07-01

    Full Text Available Classical radiation power from an accelerated massive charge diverges in the zero-mass limit, while some authors suggest that strictly massless charge does not radiate at all. On the other hand, the regularized classical radiation reaction force, though looking odd, is non-zero and finite. To clarify this controversy, we consider radiation problem in massless scalar quantum electrodynamics in the external magnetic field. In this framework, synchrotron radiation is found to be non-zero, finite, and essentially quantum. Its spectral distribution is calculated using Schwinger's proper time technique for ab initio massless particle of zero spin. Provided E2≫eH, the maximum in the spectrum is shown to be at ħω=E/3, and the average photon energy is 4E/9. The normalized spectrum is universal, depending neither on E nor on H. Quantum nature of radiation makes classical radiation reaction equation meaningless for massless charge. Classical theory is reliable only as providing the low-frequency part of the true quantum radiation spectrum.

  4. Wakefields in Coherent Synchrotron Radiation

    Science.gov (United States)

    Billinghurst, Brant E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; Dallin, L.; May, Tim E.; Vogt, J. M.; Wurtz, Ward A.; Warnock, Robert L.; Bizzozero, D. A.; Kramer, S.; Michaelian, K. H.

    2016-06-01

    When the electron bunches in a storage ring are sufficiently short the electrons act coherently producing radiation several orders of magnitude more intense than normal synchrotron radiation. This is referred to as Coherent Syncrotron Radiation (CSR). Due to the potential of CSR to provide a good source of Terahertz radiation for our users, the Canadian Light Source (CLS) has been researching the production and application of CSR. CSR has been produced at the CLS for many years, and has been used for a number of applications. However, resonances that permeate the spectrum at wavenumber intervals of 0.074 cm-1, and are highly stable under changes in the machine setup, have hampered some experiments. Analogous resonances were predicted long ago in an idealized theory. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber. The wakefield is observed directly in the 30-110 GHz range by rf diodes. These results are consistent with observations made by the interferometer in the THz range. Also discussed will be some practical examples of the application of CSR for the study of condensed phase samples using both transmission and Photoacoustic techniques.

  5. Precision Calibration of Infrared Synchrotron Radiation Detectors

    CERN Document Server

    Maltsev, A A; Maslova, M V

    2003-01-01

    The technique of calibration of synchrotron radiation precision detectors on a tungsten source based on similarity (close similarity) of character of spectral distributions of synchrotron and thermal radiations is given. The characteristics of various commonly used lamps, used as "standard" ones, are given. The errors of measurements are analyzed. The detectors are intended for absolute measurements of the number of electrons in a ring-shaped bunch.

  6. Modulation of synchrotron radiation by acoustic oscillations

    CERN Document Server

    Mkrtchyan, A R; Kocharyan, L A; Mirzoyan, V K

    1986-01-01

    By means of a quartz single crystal excited by piezoelectric oscillations, the modulation of synchrotron radiation reflected from the quartz planes (1011) is realized for frequencies ranging from 1 Hz to 15 kHz when the Bragg condition is satisfied. The wavelength of synchrotron radiation ranged from 0.3 to 12A. The patterns of modulated beams taken from oscillograph and analyzer screens are shown.

  7. Spatial Coherence of Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Marchesini, S; Coisson, R

    2003-10-30

    Synchrotron Radiation (SR) has been widely used since the 80's as a tool for many applications of UV, soft X rays and hard X rays in condensed matter physics, chemistry and biology. The evolution of SR sources towards higher brightness has led to the design of low-emittance electron storage rings (emittance is the product of beam size and divergence), and the development of special source magnetic structures, as undulators. This means that more and more photons are available on a narrow bandwidth and on a small collimated beam; in other words there is the possibility of getting a high power in a coherent beam. In most applications, a monochromator is used, and the temporal coherence of the light is given by the monochromator bandwidth. With smaller and smaller sources, even without the use of collimators, the spatial coherence of the light has become appreciable, first in the UV and soft X ray range, and then also with hard X rays. This has made possible new or improved experiments in interferometry, microscopy, holography, correlation spectroscopy, etc. In view of these recent possibilities and applications, it is useful to review some basic concepts about spatial coherence of SR, and its measurement and applications. In particular we show how the spatial coherence properties of the radiation in the far field can be calculated with simple operations from the single-electron amplitude and the electron beam angular and position spreads. The gaussian approximation will be studied in detail for a discussion of the properties of the far field mutual coherence and the estimate of the coherence widths, and the comparison with the VanCittert-Zernike limit.

  8. Future of gradient index optics

    Science.gov (United States)

    Hashizume, Hideki; Hamanaka, Kenjiro; Graham, Alan C., III; Zhu, X. Frank

    2001-11-01

    First developed over 30 years ago, gradient index lenses play an important role not only in telecommunications technology, but also in applications such as information interface and biomedical technology. Traditional manufacturing consists of doping a certain ion, A+ into the mother glass, drawing the glass into rods and then immersing the rods into s molten salt bath containing another certain ion B+. During a thermal ion exchange process, the original ion migrates out of the mother glass, and is replaced by the alternate ion, creating a refractive index variation. Current research is being conducted to improve the thermal ion exchange technology, and open new applications. This research includes extending working distances to greater than 100mm, decreasing the lens diameter, increasing the effective radius, and combining the technology with other technologies such as photolithographically etched masks to produce arrays of gradient index lenses. As a result of this ongoing research, the gradient index lens is expected to continue to be the enabling optical technology in the first decade of the new millennium and beyond.

  9. Improving the accuracy of pulsed field gradient NMR diffusion experiments: Correction for gradient non-uniformity

    Science.gov (United States)

    Connell, Mark A.; Bowyer, Paul J.; Adam Bone, P.; Davis, Adrian L.; Swanson, Alistair G.; Nilsson, Mathias; Morris, Gareth A.

    2009-05-01

    Pulsed field gradient NMR is a well-established technique for the determination of self-diffusion coefficients. However, a significant source of systematic error exists in the spatial variation of the applied pulsed field gradient. Non-uniform pulsed field gradients cause the decay of peak amplitudes to deviate from the expected exponential dependence on gradient squared. This has two undesirable effects: the apparent diffusion coefficient will deviate from the true value to an extent determined by the choice of experimental parameters, and the error estimated by the nonlinear least squares fitting will contain a significant systematic contribution. In particular, the apparent diffusion coefficient determined by exponential fitting of the diffusional attenuation of NMR signals will depend both on the exact pulse widths used and on the range of gradient amplitudes chosen. These problems can be partially compensated for if experimental attenuation data are fitted to a function corrected for the measured spatial dependence of the gradient and signal strength. This study describes a general alternative to existing methods for the calibration of NMR diffusion measurements. The dominant longitudinal variation of the pulsed field gradient amplitude and the signal strength are mapped by measuring pulsed field gradient echoes in the presence of a weak read gradient. These data are then used to construct a predicted signal decay function for the whole sample, which is parameterised as the exponential of a power series. Results are presented which compare diffusion coefficients obtained using the new calibration method with previous literature values.

  10. Synchrotron radiation applications in medical research

    Energy Technology Data Exchange (ETDEWEB)

    Thomlinson, W.

    1995-12-31

    The medical projects employing synchrotron radiation as discussed in this paper are, for the most part, still in their infancies and no one can predict the direction in which they will develop. Both the basic research and applied medical programs are sure to be advanced at the new facilities coming on line, especially the ESRF and Spring- 8. However, success is not guaranteed. There is a lot of competition from advances in conventional imaging with the development of digital angiography, computed tomography, functional magnetic resonance imaging and ultrasound. The synchrotron programs will have to provide significant advantages over these modalities in order to be accepted by the medical profession. Advances in image processing and potentially the development of compact sources will be required in order to move the synchrotron developed imaging technologies into the clinical world. In any event, it can be expected that the images produced by the synchrotron technologies will establish ``gold standards`` to be targeted by conventional modalities. A lot more work needs to be done in order to bring synchrotron radiation therapy and surgery to the level of human studies and, subsequently, to clinical applications.

  11. Synchrotron based spallation neutron source concepts

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.

    1998-07-01

    During the past 20 years, rapid-cycling synchrotrons (RCS) have been used very productively to generate short-pulse thermal neutron beams for neutron scattering research by materials science communities in Japan (KENS), the UK (ISIS) and the US (IPNS). The most powerful source in existence, ISIS in the UK, delivers a 160-kW proton beam to a neutron-generating target. Several recently proposed facilities require proton beams in the MW range to produce intense short-pulse neutron beams. In some proposals, a linear accelerator provides the beam power and an accumulator ring compresses the pulse length to the required {approx} 1 {micro}s. In others, RCS technology provides the bulk of the beam power and compresses the pulse length. Some synchrotron-based proposals achieve the desired beam power by combining two or more synchrotrons of the same energy, and others propose a combination of lower and higher energy synchrotrons. This paper presents the rationale for using RCS technology, and a discussion of the advantages and disadvantages of synchrotron-based spallation sources.

  12. Detection of Rifampin Resistance in Mycobacterium tuberculosis by Double Gradient-Denaturing Gradient Gel Electrophoresis

    Science.gov (United States)

    Scarpellini, Paolo; Braglia, Sergio; Carrera, Paola; Cedri, Maura; Cichero, Paola; Colombo, Alessia; Crucianelli, Rosella; Gori, Andrea; Ferrari, Maurizio; Lazzarin, Adriano

    1999-01-01

    We applied double gradient-denaturing gradient gel electrophoresis (DG-DGGE) for the rapid detection of rifampin (RMP) resistance from rpoB PCR products of Mycobacterium tuberculosis isolates and clinical samples. The results of this method were fully concordant with those of DNA sequencing and susceptibility testing analyses. DG-DGGE is a valid alternative to the other methods of detecting mutations for predicting RMP resistance. PMID:10508043

  13. Gradients are shaping up.

    Science.gov (United States)

    Bollenbach, Tobias; Heisenberg, Carl-Philipp

    2015-04-23

    In animal embryos, morphogen gradients determine tissue patterning and morphogenesis. Shyer et al. provide evidence that, during vertebrate gut formation, tissue folding generates graded activity of signals required for subsequent steps of gut growth and differentiation, thereby revealing an intriguing link between tissue morphogenesis and morphogen gradient formation.

  14. Paraxial Green's functions in Synchrotron Radiation theory

    CERN Document Server

    Geloni, G; Schneidmiller, E; Yurkov, M; Geloni, Gianluca; Saldin, Evgeni; Schneidmiller, Evgeni; Yurkov, Mikhail

    2005-01-01

    This work contains a systematic treatment of single particle Synchrotron Radiation and some application to realistic beams with given cross section area, divergence and energy spread. Standard theory relies on several approximations whose applicability limits and accuracy are often forgotten. We begin remarking that on the one hand, a paraxial approximation can always be applied without loss of generality and with ultra relativistic accuracy. On the other hand, dominance of the acceleration field over the velocity part in the Lienard-Wiechert expressions is not always granted and constitutes a separate assumption, whose applicability is discussed. Treating Synchrotron Radiation in paraxial approximation we derive the equation for the slow varying envelope function of the Fourier components of the electric field vector. Calculations of Synchrotron Radiation properties performed by others showed that the phase of the Fourier components of the electric field vector differs from the phase of a virtual point sourc...

  15. Fifth school on Magnetism and Synchrotron Radiation

    CERN Document Server

    Beaurepaire, Eric; Scheurer, Fabrice; Kappler, Jean-Paul; Magnetism and Synchrotron Radiation : New Trends

    2010-01-01

    Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials. At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale. With the Fifth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.

  16. Chemical applications of synchrotron radiation: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  17. Coherent Synchrotron Radiation: Theory and Simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Novokhatski, Alexander; /SLAC

    2012-03-29

    The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit

  18. 12 Experimental Techniques at Synchrotron Lightsource Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Peter L [US Department of Energy Office of Science Office Basic Energy Sciences; Rhyne, James J [US Department of Energy Office of Science Office of Basic Energy Sciences

    2015-01-01

    The unique properties of synchrotron radiation are its continuous spectrum, high flux and brightness, and high coherence, which make it an indispensable tool in the exploration of matter. The wavelengths of the emitted photons span a range of dimensions from the atomic level to biological cells, thereby providing incisive probes for advanced research in materials science, physical and chemical sciences, metrology, geosciences, environmental sciences, biosciences, medical sciences, and pharmaceutical sciences. The features of synchrotron radiation are especially well matched to the needs of nanoscience.

  19. Compact synchrotron light source of the HSRC.

    Science.gov (United States)

    Yoshida, K; Takayama, T; Hori, T

    1998-05-01

    A 700 MeV synchrotron radiation source optimized in order to be incorporated in the university laboratory is under commissioning at Hiroshima University. The storage ring is of a racetrack type with two long straight sections for installing undulators. The bending field is as strong as 2.7 T, produced by normal-conducting magnet technology, and delivers synchrotron radiation with a critical wavelength of 1.42 nm. The strong magnetic field also enables a low-energy injection scheme to be employed owing to the fast radiation damping. A 150 MeV microtron has been adopted as the injector.

  20. Aharonov-Bohm Effect in Synchrotron Radiation

    CERN Document Server

    Bagrov, V G; Levin, A; Tlyachev, V B

    2001-01-01

    Synchrotron radiation of a charged particle in a constant uniform magnetic field and in the presence of the Aharonov-Bohm solenoid field is studied in the frame of the relativistic quantum theory. First, to this end exact solutions of the Klein-Gordon and Dirac equations are found. Using such solutions, all characteristics of one photon spontaneous irradiation, such as its intensity and angular distribution and polarization were calculated and analyzed. It is shown that usual spectrum of the synchrotron radiation is essentially affected by the presence of the solenoid (the Aharonov-Bohm effect). We believe that this deformation may be observed by spectroscopic methods of measurement. It is shown that

  1. Update on synchrotron radiation TXRF: New results

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, S.; Pianetta, P.; Ghosh, S. [Stanford Univ., CA (United States). Stanford Synchrotron Radiation Lab.] [and others

    1998-12-31

    Synchrotron-based total-reflection x-ray fluorescence (SR-TXRF) has been developed as a leading technique for measuring wafer cleanliness. It holds advantages over other techniques in that it is non-destructive and allows mapping of the surface. The highest sensitivity observed thus far is 3 {times} 10{sup 8} atoms/cm{sup 2} ({approx} 3fg) for 1,000 second count time. Several applications of SR-TXRF are presented which take advantage of the energy tunability of the synchrotron source or the mapping capability.

  2. Alternative energies; Energies alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, J.; Rossetti, P

    2007-07-01

    The earth took millions years to made the petroleum, the gas the coal and the uranium. Only a few centuries will be needed to exhaust these fossil fuels and some years to reach expensive prices. Will the wold continue on this way of energy compulsive consumption? The renewable energies and some citizen attitudes are sufficient to break this spiral. This book proposes to discuss these alternative energies. It shows that this attitude must be supported by the government. It takes stock on the more recent information concerning the renewable energies. it develops three main points: the electricity storage, the housing and the transports. (A.L.B.)

  3. LED controlled flow photolysis for concentration gradients in microfluidic systems.

    Science.gov (United States)

    Potter, Oscar G; Thomas, Mark E; Breadmore, Michael C; Hilder, Emily F

    2010-05-21

    Many of the channels and reservoirs in microfluidic systems are used simply to allow liquids with different compositions to be delivered to where they are needed. An alternative approach is to use dissolved photochemicals and variable intensity LEDs to generate composition changes in situ. We applied this approach to generate concentration gradients of HCl for gradient ion chromatography.

  4. High density THz frequency comb produced by coherent synchrotron radiation

    CERN Document Server

    Tammaro, S; Roy, P; Lampin, J -F; Ducournau, G; Cuisset, A; Hindle, F; Mouret, G

    2014-01-01

    Frequency combs (FC) have radically changed the landscape of frequency metrology and high-resolution spectroscopy investigations extending tremendously the achievable resolution while increasing signal to noise ratio. Initially developed in the visible and near-IR spectral regions, the use of FC has been expanded to mid-IR, extreme ultra-violet and X-ray. Significant effort is presently dedicated to the generation of FC at THz frequencies. One solution based on converting a stabilized optical frequency comb using a photoconductive terahertz emitter, remains hampered by the low available THz power. Another approach is based on active mode locked THz quantum-cascade-lasers providing intense FC over a relatively limited spectral extension. Alternatively, here we show that dense powerful THz FC is generated over one decade of frequency by coherent synchrotron radiation (CSR). In this mode, the entire ring behaves in a similar fashion to a THz resonator wherein electron bunches emit powerful THz pulses quasi-synch...

  5. Alternative additives; Alternative additiver

    Energy Technology Data Exchange (ETDEWEB)

    2007-08-15

    In this project a number of industrial and agricultural waste products have been characterised and evaluated in terms of alkali-getter performance. The intended use is for biomass-fired power stations aiming at reducing corrosion or slagging related problems. The following products have been obtained, characterised and evaluated: 1) Brewery draff 2) Danish de-gassed manure 3) Paper sludge 4) Moulding sand 5) Spent bleaching earth 6) Anorthosite 7) Sand 8) Clay-sludge. Most of the above alternative additive candidates are deemed unsuitable due to insufficient chemical effect and/or expensive requirements for pre-treatment (such as drying and transportation). 3 products were selected for full-scale testing: de-gassed manure, spent bleaching earth and clay slugde. The full scale tests were undertaken at the biomass-fired power stations in Koege, Slagelse and Ensted. Spent bleaching earth (SBE) and clay sludge were the only tested additive candidates that had a proven ability to react with KCl, to thereby reduce Cl-concentrations in deposits, and reduce the deposit flux to superheater tubes. Their performance was shown to nearly as good as commercial additives. De-gassed manure, however, did not evaluate positively due to inhibiting effects of Ca in the manure. Furthermore, de-gassed manure has a high concentration of heavy metals, which imposes a financial burden with regard to proper disposal of the ash by-products. Clay-sludge is a wet clay slurring, and drying and transportation of this product entails substantial costs. Spent bleaching does not require much pre-treatment and is therefore the most promising alternative additive. On the other hand, bleaching earth contains residual plant oil which means that a range of legislation relating to waste combustion comes into play. Not least a waste combustion fee of 330 DKK/tonne. For all alternative (and commercial) additives disposal costs of the increase ash by-products represents a significant cost. This is

  6. Laboratory source of synchrotron radiation: TROLL-2

    Science.gov (United States)

    Anevsky, S. I.; Vernyi, A. E.; Panasjuk, V. S.; Khromchenko, V. B.

    1987-11-01

    A laboratory synchrotron radiation (SR) source TROLL-2 is described. Its main parameters are as follows: the energy of the accelerated particles = 24 MeV; the orbit radius = 20 mm; the SR pulse half-width = 2 ms, the maximum spectral radiant power (at λ = 350 nm) = 1.2×10 6 W/m.

  7. Optimization on Synchrotron Radiation Lattice of BEPCⅡ

    Institute of Scientific and Technical Information of China (English)

    SUN Yi-Peng; GAO Jie; GUO Zhi-Yu

    2007-01-01

    @@ The Beijing Electron and Positron Collider H (BEPCⅡ) is a double ring electron-positron collider, which can also be used as a synchrotron radiation (SR) light source. Since the BEPCⅡ will start commissioning with SR mode in November 2006, it is essential to have a satisfying SR lattice.

  8. Wellcome Trust backs Rutherford to host synchrotron

    CERN Multimedia

    Leder, N

    1999-01-01

    The Wellcome Trust has stated its preference for the site of the new Anglo-French synchrotron to be at RAL in Oxfordshire. But the statement coincides with an announcement from the UK government that a decision on the location of 'Diamond' will be delayed to allow two new reports on the canditate sites to be commissioned (1/2 page).

  9. The Synchrotron Radiation for Steel Research

    Directory of Open Access Journals (Sweden)

    Piyada Suwanpinij

    2016-01-01

    Full Text Available The synchrotron X-ray radiation is a great tool in materials characterization with several advantageous features. The high intensity allows clear interaction signals and high energy of X-ray yields higher sampling volume. The samples do not need extra preparation and the microstructure is therefore not affected. With the tunability of the X-ray energy, a large range of elements and features in the samples can be investigated by different techniques, which is a significant difference between a stand-alone X-ray tube and synchrotron X-ray. Moreover, any experimental equipment can be installed through which the synchrotron beam travels. This facilitates the so-called in situ characterization such as during heat treatment, hot deformation, chemical reaction or welding. Although steel which possesses rather high density requires very high energy X-ray for large interaction volume, lower energy is still effective for the investigation of local structure of nanoconstituents. This work picks up a couple examples employing synchrotron X-ray for the characterization of high strength steels. The first case is the quantification of precipitates in high strength low alloyed (HSLA steel by X-ray absorption spectroscopy. The other case is the in situ X-ray diffraction for phase fraction and carbon partitioning in multiphase steels such as transformation induced plasticity (TRIP steel.

  10. Polymer research and synchrotron radiation perspectives

    NARCIS (Netherlands)

    Portale, Giuseppe; Hermida-Merino, Daniel; Bras, Wim

    2016-01-01

    The developments in synchrotron radiation based polymer research have been profound over the last two decades. Not only have many more beamlines suitable for soft condensed matter research become available since the pioneering days but also the technical developments with respect to X-ray beam quali

  11. Assessing noise sources at synchrotron infrared ports.

    Science.gov (United States)

    Lerch, Ph; Dumas, P; Schilcher, T; Nadji, A; Luedeke, A; Hubert, N; Cassinari, L; Boege, M; Denard, J-C; Stingelin, L; Nadolski, L; Garvey, T; Albert, S; Gough, Ch; Quack, M; Wambach, J; Dehler, M; Filhol, J-M

    2012-01-01

    Today, the vast majority of electron storage rings delivering synchrotron radiation for general user operation offer a dedicated infrared port. There is growing interest expressed by various scientific communities to exploit the mid-IR emission in microspectroscopy, as well as the far infrared (also called THz) range for spectroscopy. Compared with a thermal (laboratory-based source), IR synchrotron radiation sources offer enhanced brilliance of about two to three orders of magnitude in the mid-IR energy range, and enhanced flux and brilliance in the far-IR energy range. Synchrotron radiation also has a unique combination of a broad wavelength band together with a well defined time structure. Thermal sources (globar, mercury filament) have excellent stability. Because the sampling rate of a typical IR Fourier-transform spectroscopy experiment is in the kHz range (depending on the bandwidth of the detector), instabilities of various origins present in synchrotron radiation sources play a crucial role. Noise recordings at two different IR ports located at the Swiss Light Source and SOLEIL (France), under conditions relevant to real experiments, are discussed. The lowest electron beam fluctuations detectable in IR spectra have been quantified and are shown to be much smaller than what is routinely recorded by beam-position monitors.

  12. Second gradient poromechanics

    CERN Document Server

    Sciarra, Giulio; Coussy, Olivier

    2010-01-01

    Second gradient theories have been developed in mechanics for treating different phenomena as capillarity in fluids, plasticity and friction in granular materials or shear band deformations. Here, there is an attempt of formulating a second gradient Biot like model for porous materials. In particular the interest is focused in describing the local dilatant behaviour of a porous material induced by pore opening elastic and capillary interaction phenomena among neighbouring pores and related micro-filtration phenomena by means of a continuum microstructured model. The main idea is to extend the classical macroscopic Biot model by including in the description second gradient effects. This is done by assuming that the surface contribution to the external work rate functional depends on the normal derivative of the velocity or equivalently assuming that the strain work rate functional depends on the porosity and strain gradients. According to classical thermodynamics suitable restrictions for stresses and second g...

  13. Laser textured surface gradients

    Science.gov (United States)

    Ta, Van Duong; Dunn, Andrew; Wasley, Thomas J.; Li, Ji; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Esenturk, Emre; Connaughton, Colm; Shephard, Jonathan D.

    2016-05-01

    This work demonstrates a novel technique for fabricating surfaces with roughness and wettability gradients and their subsequent applications for chemical sensors. Surface roughness gradients on brass sheets are obtained directly by nanosecond laser texturing. When these structured surfaces are exposed to air, their wettability decreases with time (up to 20 days) achieving both spatial and temporal wettability gradients. The surfaces are responsive to organic solvents. Contact angles of a series of dilute isopropanol solutions decay exponentially with concentration. In particular, a fall of 132° in contact angle is observed on a surface gradient, one order of magnitude higher than the 14° observed for the unprocessed surface, when the isopropanol concentration increased from 0 to 15.6 wt%. As the wettability changes gradually over the surface, contact angle also changes correspondingly. This effect offers multi-sensitivity at different zones on the surface and is useful for accurate measurement of chemical concentration.

  14. Dipole magnet of synchrotron source for national synchrotron centre of Ukraine

    CERN Document Server

    Gladkikh, P I; Muratov, V I; Peev, F A

    2001-01-01

    The paper contains the revised design of a dipole magnet for a synchrotron radiation source.Usage of such a magnet allows to reach the energy of electrons in a ring up to 1.2 GeV.In paper the result of simulation of a magnet for all modes of operations of a source are shown.The proposed variant of the dipole magnet considerably raises parameters of the synchrotron radiation source.

  15. Remote Synchrotron Light Instrumentation Using Optical Fibers

    Energy Technology Data Exchange (ETDEWEB)

    De Santis, S.; Yin, Y.

    2009-05-04

    By coupling the emitted synchrotron light into an optical fiber, it is possible to transmit the signal at substantial distances from the light port, without the need to use expensive beamlines. This would be especially beneficial in all those cases when the synchrotron is situated in areas not easily access because of their location, or due to high radiation levels. Furthermore, the fiber output can be easily switched, or even shared, between different diagnostic instruments. We present the latest results on the coupling and dispersion measurements performed at the Advanced Light Source in Berkeley. In several cases, coupling synchrotron light into optical fibers can substantially facilitate the use of beam diagnostic instrumentation that measures longitudinal beam properties by detecting synchrotron radiation. It has been discussed in with some detail, how fiberoptics can bring the light at relatively large distances from the accelerator, where a variety of devices can be used to measure beam properties and parameters. Light carried on a fiber can be easily switched between instruments so that each one of them has 100% of the photons available, rather than just a fraction, when simultaneous measurements are not indispensable. From a more general point of view, once synchrotron light is coupled into the fiber, the vast array of techniques and optoelectronic devices, developed by the telecommunication industry becomes available. In this paper we present the results of our experiments at the Advanced Light Source, where we tried to assess the challenges and limitations of the coupling process and determine what level of efficiency one can typically expect to achieve.

  16. High Gradient Accelerator Research

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  17. National Synchrotron Light Source 2010 Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.; Snyder, K. J.

    2010-12-29

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of

  18. Resonant diffraction of synchrotron radiation: New possibilities

    Science.gov (United States)

    Ovchinnikova, E. N.; Mukhamedzhanov, E. Kh.

    2016-09-01

    Resonant diffraction of synchrotron radiation (SR) is a modern method of studying the structure and properties of condensed matter that can be implemented on third-generation synchrotrons. This method allows one to investigate local properties of media (including magnetic and electronic ones) and observe thermal vibrations, defects, and orbital and charge orderings. A brief review of the advance provided by SR resonant diffraction is presented, and the capabilities of this method for analyzing phase transitions are considered in more detail by the example of potassium dihydrogen phosphate and rubidium dihydrogen phosphate crystals. It is shown that the investigation of the temperature dependence of forbidden reflections not only makes it possible to observe the transition from para- to ferroelectric phase, but also gives information about the proton distribution at hydrogen bonds.

  19. Synchrotron Applications of High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF.

  20. Synchrotron masers and fast radio bursts

    Science.gov (United States)

    Ghisellini, G.

    2017-02-01

    Fast radio bursts, with a typical duration of 1 ms and 1 Jy flux density at gigahertz frequencies, have brightness temperatures exceeding 1033 K, requiring a coherent emission process. This can be achieved by bunching particles in volumes smaller than the typical wavelength, but this may be challenging. Maser emission is a possibility. Under certain conditions, the synchrotron-stimulated emission process can be more important than true absorption, and a synchrotron maser can be created. This occurs when the emitting electrons have a very narrow distribution of pitch angles and energies. This process overcomes the difficulties of having extremely dense bunches of particles and relaxes the light-crossing time limits, since there is no simple relation between the actual size of the source and the observed variability time-scale.

  1. Radiation protection at synchrotron radiation facilities.

    Science.gov (United States)

    Liu, J C; Vylet, V

    2001-01-01

    A synchrotron radiation (SR) facility typically consists of an injector, a storage ring, and SR beamlines. The latter two features are unique to SR facilities, when compared to other types of accelerator facilities. The SR facilities have the characteristics of low injection beam power, but high stored beam power. The storage ring is generally above ground with people occupying the experimental floor around a normally thin concrete ring wall. This paper addresses the radiation issues, in particular the shielding design, associated with the storage ring and SR beamlines. Normal and abnormal beam losses for injection and stored beams, as well as typical storage ring operation, are described. Ring shielding design for photons and neutrons from beam losses in the ring is discussed. Radiation safety issues and shielding design for SR beamlines, considering gas bremsstrahlung and synchrotron radiation, are reviewed. Radiation source terms and the methodologies for shielding calculations are presented.

  2. Uniform gradient expansions

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, Massimo, E-mail: massimo.giovannini@cern.ch [Department of Physics, Theory Division, CERN, 1211 Geneva 23 (Switzerland); INFN, Section of Milan-Bicocca, 20126 Milan (Italy)

    2015-06-30

    Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  3. Uniform gradient expansions

    Directory of Open Access Journals (Sweden)

    Massimo Giovannini

    2015-06-01

    Full Text Available Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  4. The Synchrotron Radiation for Steel Research

    OpenAIRE

    Piyada Suwanpinij

    2016-01-01

    The synchrotron X-ray radiation is a great tool in materials characterization with several advantageous features. The high intensity allows clear interaction signals and high energy of X-ray yields higher sampling volume. The samples do not need extra preparation and the microstructure is therefore not affected. With the tunability of the X-ray energy, a large range of elements and features in the samples can be investigated by different techniques, which is a significant difference between a...

  5. Magnetoresponsive Photonic Microspheres with Structural Color Gradient.

    Science.gov (United States)

    Lee, Seung Yeol; Choi, Jongkook; Jeong, Jong-Ryul; Shin, Jung H; Kim, Shin-Hyun

    2017-02-06

    Photonic Janus particles are created by alternately sputtering silica and titania on microspheres in order to obtain a structural color gradient. In addition, the microspheres are rendered magnetoresponsive. The Janus microspheres with optical and magnetic anisotropy enable on-demand control over orientation and structural color through manipulation of an external magnetic field, thereby being useful as active color pigments for reflection-mode displays.

  6. Gradient systems and mechanical systems

    Institute of Scientific and Technical Information of China (English)

    Fengxiang Mei; Huibin Wu

    2016-01-01

    All types of gradient systems and their properties are discussed. Two problems connected with gradient sys-tems and mechanical systems are studied. One is the direct problem of transforming a mechanical system into a gradi-ent system, and the other is the inverse problem, which is transforming a gradient system into a mechanical system.

  7. Experimental comparison between speckle and grating-based imaging technique using synchrotron radiation X-rays.

    Science.gov (United States)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-08-08

    X-ray phase contrast and dark-field imaging techniques provide important and complementary information that is inaccessible to the conventional absorption contrast imaging. Both grating-based imaging (GBI) and speckle-based imaging (SBI) are able to retrieve multi-modal images using synchrotron as well as lab-based sources. However, no systematic comparison has been made between the two techniques so far. We present an experimental comparison between GBI and SBI techniques with synchrotron radiation X-ray source. Apart from the simple experimental setup, we find SBI does not suffer from the issue of phase unwrapping, which can often be problematic for GBI. In addition, SBI is also superior to GBI since two orthogonal differential phase gradients can be simultaneously extracted by one dimensional scan. The GBI has less stringent requirements for detector pixel size and transverse coherence length when a second or third grating can be used. This study provides the reference for choosing the most suitable technique for diverse imaging applications at synchrotron facility.

  8. Multipurpose furnace for in situ studies of polycrystalline materials using synchrotron radiation.

    Science.gov (United States)

    Sharma, Hemant; Wattjes, Alix C; Amirthalingam, Murugaiyan; Zuidwijk, Thim; Geerlofs, Nico; Offerman, S Erik

    2009-12-01

    We report a multipurpose furnace designed for studies using synchrotron radiation on polycrystalline materials, namely, metals, ceramics, and (semi)crystalline polymers. The furnace has been designed to carry out three-dimensional (3D) x-ray diffraction measurements but can also be used for other types of synchrotron radiation research. The furnace has a very low thermal gradient across the specimen (welding a thermocouple to the specimen. The furnace can be rotated over an angle of 90 degrees in order to determine the crystallographic orientation of each individual grain. It is possible to follow growth kinetics of all grains in the illuminated volume of the specimen. The specimen environment can be controlled varying from vacuum (up to 10(-5) mbar) to gas or air filled. The maximum temperature of operation is 1500 degrees C, with the possibility of achieving high heating (up to 20 degrees C/s) and cooling rates (up to 30 degrees C/s without quenching gas). 3D maps of the microstructure of the specimen can be generated at elevated temperatures by bringing the high-resolution detector close to the specimen. We show an example of a simulation of the heat affected zone during the thermal cycle of a weld in a transformation-induced plasticity steel carried out using the furnace. The unique characteristics of the furnace open possibility of new fields in materials research using synchrotron radiation.

  9. Synchrotron based mass spectrometry to investigate the molecular properties of mineral-organic associations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Suet Yi; Kleber, Markus; Takahashi, Lynelle K.; Nico, Peter; Keiluweit, Marco; Ahmed, Musahid

    2013-04-01

    Soil organic matter (OM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser Desorption Synchrotron Postionization (synchrotron-LDPI) mass spectrometry is introduced as a novel analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that when combined with Secondary Ion Mass Spectrometry (SIMS), can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions, verifies the consistency of our results with bulk analytical techniques. We further demonstrate that by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.

  10. MICROANALYSIS OF MATERIALS USING SYNCHROTRON RADIATION.

    Energy Technology Data Exchange (ETDEWEB)

    JONES,K.W.; FENG,H.

    2000-12-01

    High intensity synchrotron radiation produces photons with wavelengths that extend from the infrared to hard x rays with energies of hundreds of keV with uniquely high photon intensities that can be used to determine the composition and properties of materials using a variety of techniques. Most of these techniques represent extensions of earlier work performed with ordinary tube-type x-ray sources. The properties of the synchrotron source such as the continuous range of energy, high degree of photon polarization, pulsed beams, and photon flux many orders of magnitude higher than from x-ray tubes have made possible major advances in the possible chemical applications. We describe here ways that materials analyses can be made using the high intensity beams for measurements with small beam sizes and/or high detection sensitivity. The relevant characteristics of synchrotron x-ray sources are briefly summarized to give an idea of the x-ray parameters to be exploited. The experimental techniques considered include x-ray fluorescence, absorption, and diffraction. Examples of typical experimental apparatus used in these experiments are considered together with descriptions of actual applications.

  11. Tabletop synchrotron and its unique features

    CERN Document Server

    Yamada, H

    2002-01-01

    Two synchrotrons, AURORA and MIRRORCLE, were built in Ritsumeikan University. MIRRORCLE-20 is the smallest normal conduction synchrotron (15 cm orbit radius and 1.2 m outer diameter) in the world. It uses 2/3 resonance method for electron beam incidence but is not optimized for X-ray generation. MIRRORCLE-6 shall be optimized for X-ray generation. X-ray generated by MIRRORCLE shows very flat white light, rich in hard X-ray, pulse with width changeable from a few mu s to a few ms , wide radiation angle of 25 mrad at MIRRORCLE-20 and 80 mrad at MIRRORCLE-8 and high coherence. The feature such as pulsed light and high coherence is expected to new application which photon radiation cannot practice. Imaging experiments by MIRRORCLE were carried out by Cu plate, Al plate, Teflon and acryl plate. We took a photograph of insect, electric lamp, connector, and cyclotron. New X-ray generation mechanism, X-ray strength, development of tabletop synchrotron and features of X-ray beam are explained. (S.Y.)

  12. Development of nano structured diamond windows for application in synchrotron beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Campos, R.A.; Trava-Airoldi, V.J.; Corat, E.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Bagnato, O.R. [Laboratorio Nacional de Luz Sincroton (LNLS), Campinas, SP (Brazil); Moro, J.R. [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), SP (Brazil)

    2011-07-01

    Full text. Synchrotron light sources are important tools in the scientific field. In essence, they are rather like enormous super-microscopes capable of studying biological, chemical and material samples at very high resolution, down to the atomic and molecular level, by using synchrotron light. The intense synchrotron light is electromagnetic radiation produced by high-energy electrons in a particle accelerator. The configuration of the beamlines uses windows of material transparent to radiation. Beryllium (Be) is the standard material. In general, these windows serve both, as filters to absorb the photons of low energy and, as insulating barrier between the storage ring and the environment. The justification for the use of beryllium windows at synchrotron beamlines is that elements with low atomic number - (4) transmit more electromagnetic radiation. Besides all the qualities, beryllium has some drawbacks such as deterioration of spatial coherence due to surface roughness and defects. Another problem observed is the appearance of Fresnel diffraction due to manufacturing defects of the windows. In this paper, we propose the use of windows made of nano structured diamond with average roughness of 20nm, without the need to polish, with maximum thickness of around 3 {mu}m. Diamond also has a low atomic number - (6). Another quality of nano structured diamond films is its mechanical properties. It needs only 5-6% of the thickness of beryllium to withstand the same pressure gradient. The film morphology was characterized with the help of Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM-FEG). Diamond's quality was determined by Raman Spectroscopy

  13. PERFORMANCE ANALYSIS OF MULTI-TURN EXTRACTION FROM THE PROTON SYNCHROTRON TO THE SUPER PROTON SYNCHROTRON

    CERN Document Server

    Abernethy, Samuel

    2016-01-01

    Within CERN's accelerator complex, the extraction from the Proton Synchrotron to the Super Proton Synchrotron has been done using the so-called ``Continuous Transfer" (CT) method since the 1970's. A new technique, known as Multi-Turn Extraction (MTE), has now been implemented and is in full operation. This report examines a holistic performance analysis of the novel technique in multiple aspects of the accelerator complex, as well as a direct comparison with its predecessor, CT, from the implementation of MTE in 2010 until the end of 2015.

  14. New synchrotron radiation facility project. Panel on new synchrotron radiation facility project

    CERN Document Server

    Sato, S; Kimura, Y

    2003-01-01

    The project for constructing a new synchrotron radiation facility dedicated to the science in VUV (or EUV) and Soft X-ray (SX) region has been discussed for these two years at the Panel on New Synchrotron Radiation Facility Project. The Panel together with the Accelerator Design Working Group (WG), Beamline Design WG and Research Program WG suggested to the Ministry of Education, Science, Culture and Sports the construction of a 1.8 GeV electron storage ring suitable for 'Top-Up' operation and beamlines and monochromators designed for undulator radiation. The scientific programs proposed by nationwide scientists are summarized with their requirements of the characteristics of the beam. (author)

  15. Medical applications of synchrotron radiation at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Thomlinson, W.

    1992-10-01

    The overriding features of the synchrotron beams which make them applicable to medical research are their extremely high intensity and broadband energy spectrum. Several orders of magnitude separate the smooth, continuous spectrum of the synchrotron from the sharply peaked characteristic emission spectrum of a conventional source. Basically, the high intensity and tunability allow monochromatic beams to be generated at virtually any energy. The standard problem of beam hardening in both medical imaging and therapy is eliminated by the monochromatic beams since the energy spectrum does not change with passage through tissue. The tunable spectrum allows enhancement of images and therapeutic dose by selection of the most effective energy for a given procedure.

  16. Medical applications of synchrotron radiation at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Thomlinson, W.

    1992-01-01

    The overriding features of the synchrotron beams which make them applicable to medical research are their extremely high intensity and broadband energy spectrum. Several orders of magnitude separate the smooth, continuous spectrum of the synchrotron from the sharply peaked characteristic emission spectrum of a conventional source. Basically, the high intensity and tunability allow monochromatic beams to be generated at virtually any energy. The standard problem of beam hardening in both medical imaging and therapy is eliminated by the monochromatic beams since the energy spectrum does not change with passage through tissue. The tunable spectrum allows enhancement of images and therapeutic dose by selection of the most effective energy for a given procedure.

  17. Injection System design for a hadron therapy Synchrotron

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Quan; SONG Ming-Tao; WEI Bao-Wen

    2008-01-01

    A synchrotron is designed for tumour therapy with C6+ ions or proton.Its injector is a cyclotron, which delivers C5+or H+2 ions to the synchrotron.After comparing the methods of the single-turn injection, the multi-turn injection and the stripping injection,this paper chooses the stripping injection method.In addition,the concept design of the injection system is presented,in which the synchrotron lattice is optimized.

  18. Improvements of the TROLL-2 synchrotron and new developments

    Science.gov (United States)

    Anevsky, S. I.; Vernyi, A. E.; Panasyuk, V. S.; Khromchenko, V. B.

    1991-10-01

    Information on radical improvements of the TROLL-2 synchrotron, a specialized pulsed synchrotron radiation source, is presented in this article. Two new variants for particle injection from a solid electromagnet to a ring one, as a specialized continuous synchrotron radiation source are considered. Particle pre-acceleration from thermal velocities to injection energy herewith may take place both in the synchronous and in the isochrone regime.

  19. Bigravity from gradient expansion

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Yasuho [Yukawa Institute for Theoretical Physics, Kyoto University,606-8502, Kyoto (Japan); Tanaka, Takahiro [Yukawa Institute for Theoretical Physics, Kyoto University,606-8502, Kyoto (Japan); Department of Physics, Kyoto University,606-8502, Kyoto (Japan)

    2016-05-04

    We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.

  20. 150 MeV fixed field alternating gradient (FFAG) accelerator

    CERN Document Server

    Nakano, J

    2002-01-01

    150 MeV FFAG accelerator is prototype for practical use. Fundamental development of FFAG, research of FFAG accelerator and its application for therapy are investigated. 150 MeV ring consists of 12 sector magnets. The distribution of magnetic field of 12 sector magnets is almost same. 12 MeV proton beam is generated by cyclotron and injection to 150 MeV FFAG. The injection system consists of 2 bump magnets, kicker magnet and septum electrode. RF accelerating cavity system using high-permeability magnetic substance with high magnetic permeability accelerates proton beam to 150 MeV, then the first operation aims at 250 Hz. Return Yoke Free magnet was developed for adjustment. 150 MeV FFAG magnet is constructed and 12 MeV proton beam acceleration is conformed. The final state of 150 MeV FFAG magnet is explained by calculation results. On cancer therapy by proton beam, the three dimensions spot scan method is proposed. (S.Y.)

  1. An alternative solution to the gamma-ray Gradient problem

    CERN Document Server

    Gaggero, Daniele; Grasso, Dario; Maccione, Luca

    2011-01-01

    The Fermi-LAT collaboration recently confirmed EGRET finding of a discrepancy between the observed longitudinal profile of gamma-ray diffuse emission from the Galaxy and that computed with GALPROP assuming that cosmic rays are produced by Galactic supernova remnants. The accurate Fermi-LAT measurements make this anomaly hardly explainable in terms of conventional diffusion schemes. Here we use DRAGON numerical diffusion code to implement a physically motivated scenario in which the diffusion coefficient is spatially correlated to the source density. We show that under those conditions we are able to reproduce the observed flat emissivity profile in the outer Galaxy with no need to change the source term, the diffusion halo height, or the CO-H2 conversion factor (XCO) with respect to their preferred values/distributions. We also show that our models are compatible with gamma-ray longitudinal profiles measured by Fermi-LAT, and still provide a satisfactory fit of all observed secondary-to-primary ratios, such a...

  2. Increasing SLEDed Linac Gradient

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Zoltan D

    2001-11-08

    This note will show how to increase the SLED [1] gradient by varying Q{sub e}, the external Q of the SLED cavity, by increasing its Q{sub 0} and by increasing the compression ratio. If varying the external Q is to be effective, then the copper losses should be small so that Q{sub 0} >> Q{sub e}. Methods of varying Q{sub e} will be indicated but no experimental data will be presented. If we increase the klystron pulse width from 3.5 to 5 {micro}S and increase Q{sub 0} from the present 100000 to 300000, then the gradient increases by 19% and the beam energy increases from 50 to 60 GeV. This note will also discuss SLED operation at 11424 MHz, the NLC frequency. Without Q{sub e} switching, using SLED at 11424 MHz increases the SLAC gradient from 21 MV/m to 34 MV/m, and at the same repetition rate, uses about 1/5 of rf average power. If we also double the compression ratio, we reach 47 MV/m and over 100 GeV beam energy.

  3. Bystander Effects During Synchrotron Imaging Procedures?

    Science.gov (United States)

    Schültke, Elisabeth; Bewer, Brian; Wysokinski, Tomasz; Chapman, Dean; Nikkhah, Guido

    2010-07-01

    Using monochromatic beam and synchrotron phase-contrast technique at the biomedical beamline of the Italian synchrotron facility Elettra (SYRMEP), we have shown in a small animal model of malignant brain tumor that it is possible to obtain high-resolution images of very small tumors when they have developed from implanted tumor cells loaded with colloidal gold nanoparticles (GNP). All previous experiments were conducted in post-mortem samples. We have now designed a cell culture experiment to investigate the effects of synchrotron radiation with an energy and dose profile similar to that expected in our first in vivo imaging studies according to the protocol developed at SYRMEP. Materials and Methods: Culture flasks containing either gold-loaded or naïve C6 glioma cells were exposed to a dose of 0.5 Gy at 24 keV. The irradiated medium was aspirated and replaced with fresh growth medium. Twenty-four hours later this non-irradiated medium exposed to irradiated cells was aspirated, then added to non-irradiated C6 cells in order to investigate whether bystander effects are seen under the conditions of our image acquisition protocol. The irradiated medium was added to a number of other non-irradiated cell cultures. Cell counts were followed until 72 hrs after irradiation. Western blots were conducted with H2AX antibodies. This experiment was one of the first biomedical experiments conducted at BMIT, the new biomedical imaging and therapy beamline of the Canadian Light Source. Results: No significant differences in proliferation were seen between cells that were directly irradiated, exposed to irradiated medium or exposed to the non-irradiated 24-hr-medium from the irradiated cells. However, there was a tendency towards a higher number of double strand breaks in previously irradiated cells when they were exposed to non-irradiated medium that had been in contact with irradiated cells for 24 hrs.

  4. Laser synchrotron radiation and beam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Esarey, E.; Sprangle, P.; Ting, A. [Naval Research Lab., Washington, DC (United States)] [and others

    1995-12-31

    The interaction of intense {approx_gt} 10{sup 18} W/cm{sup 2}, short pulse ({approx_lt} 1 ps) lasers with electron beams and plasmas can lead to the generation of harmonic radiation by several mechanisms. Laser synchrotron radiation may provide a practical method for generating tunable, near monochromatic, well collimated, short pulse x-rays in compact, relatively inexpensive source. The mechanism for the generation of laser synchrotron radiation is nonlinear Thomson scattering. Short wavelengths can be generated via Thomson scattering by two methods, (i) backscattering from relativistic electron beams, in which the radiation frequency is upshifted by the relativistic factor 4{gamma}{sup 2}, and (ii) harmonic scattering, in which a multitude of harmonics are generated with harmonic numbers extending out to the critical harmonic number nc{approx_equal}a{sub 0}{sup 3} {much_gt} 1, where a{sub 0} {approx_equal}10{sup -9}{lambda}I{sup 1/2}, {lambda} is the laser wavelength in {mu}m and I is the laser intensity in W/cm{sup 2}. Laser synchrotron sources are capable of generating short ({approx_lt} ps) x-ray pulses with high peak flux ({approx_gt} 10{sup 21} photons/s) and brightness ({approx_gt}{sup 19} photons/s-mm{sup 2}-mrad{sup 2} 0.1%BW. As the electron beam radiates via Thomson scattering, it can subsequently be cooled, i.e., the beam emittance and energy spread can be reduced. This cooling can occur on rapid ({approximately} ps) time scales. In addition, electron distributions with sufficiently small axial energy spreads can be used to generate coherent XUV radiation via a laser-pumped FEL mechanism.

  5. Synchrotron radiation facilities in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Decker, G.

    1996-07-01

    With the successful commissioning and achievement of significant milestones at both the 7-GeV Advanced Photon Source (APS) and the 1.5- GeV Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory, synchrotron radiation research capability in the United States holds the promise of many important discoveries in the decade to come. An overview of current accelerator commissioning performance at the American third-generation light sources, state-of-the-art developments at first- and second-generation sources, and a preview of fourth-generation source progress is presented.

  6. Multi turn beam extraction from synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Tsoupas, Nicholaos

    2017-01-24

    This disclosure relates to apparatuses and methods for the extraction of particle beams while maintaining the energy levels and precision of the particles and the particle beam. Apparatuses and methods for extracting a charged particle beam from a central orbit in a synchrotron are provided, in which a particle beam is deflected from the central orbit. Parts of the deflected particle beam passes through a stripping foil placed in at least parts of the deflected path such that the particles that pass through the foil are stripped of at least one electron. The electron stripped particles and the non-stripped particles may be separated magnetically.

  7. Glancing angle synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cernik, R.J. [Daresbury Lab., Warrington, WA (United States)

    1996-09-01

    This paper describes in basic detail some of the techniques that can be used to study thin films and surfaces. These are all in the X-ray region and cover reflectivity, diffraction form polycrystalline films, textured films and single crystal films. Other effects such as fluorescence and diffuse scattering are mentioned but not discussed in detail. Two examples of the reflectivity from multilayers and the diffraction from iron oxide films are discussed. The advantages of the synchrotron for these studies is stressed and the experimental geometries that can be employed are described i detail. A brief bibliography is provided at the end to accompany this part of the 1996 Frascati school.

  8. Alternative nanostructures for thermophones

    Science.gov (United States)

    Mayo, Nathanael; Aliev, Ali; Baughman, Ray

    2015-03-01

    There is a large promise for thermophones in high power sonar arrays, flexible loudspeakers, and noise cancellation devices. So far, freestanding aerogel-like carbon nanotube sheets demonstrate the best performance as a thermoacoustic heat source. However, the limited accessibility of large size freestanding carbon nanotube sheets and other even more exotic materials published recently, hampers the field. We present here new alternative materials for a thermoacoustic heat source with high energy conversion efficiency, additional functionalities, environmentally friendly and cost effective production technologies. We discuss the thermoacoustic performance of alternative nanoscale materials and compare their spectral and power dependencies of sound pressure in air. The study presented here focuses on engineering thermal gradients in the vicinity of nanostructures and subsequent heat dissipation processes from the interior of encapsulated thermoacoustic projectors. Applications of thermoacoustic projectors for high power SONAR arrays, sound cancellation, and optimal thermal design, regarding enhanced energy conversion efficiency, are discussed.

  9. Reinforcement Learning by Value Gradients

    CERN Document Server

    Fairbank, Michael

    2008-01-01

    The concept of the value-gradient is introduced and developed in the context of reinforcement learning. It is shown that by learning the value-gradients exploration or stochastic behaviour is no longer needed to find locally optimal trajectories. This is the main motivation for using value-gradients, and it is argued that learning value-gradients is the actual objective of any value-function learning algorithm for control problems. It is also argued that learning value-gradients is significantly more efficient than learning just the values, and this argument is supported in experiments by efficiency gains of several orders of magnitude, in several problem domains. Once value-gradients are introduced into learning, several analyses become possible. For example, a surprising equivalence between a value-gradient learning algorithm and a policy-gradient learning algorithm is proven, and this provides a robust convergence proof for control problems using a value function with a general function approximator.

  10. Ferroelectrics under the Synchrotron Light: A Review

    Directory of Open Access Journals (Sweden)

    Luis E. Fuentes-Cobas

    2015-12-01

    Full Text Available Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS and X-ray absorption fine structure (XAFS experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described.

  11. Beam halo collimation in heavy ion synchrotrons

    Science.gov (United States)

    Strašík, I.; Prokhorov, I.; Boine-Frankenheim, O.

    2015-08-01

    This paper presents a systematic study of the halo collimation of ion beams from proton up to uranium in synchrotrons. The projected Facility for Antiproton and Ion Research synchrotron SIS100 is used as a reference case. The concepts are separated into fully stripped (e.g., 238U92+ ) and partially stripped (e.g., 238U28+ ) ion collimation. An application of the two-stage betatron collimation system, well established for proton accelerators, is intended also for fully stripped ions. The two-stage system consists of a primary collimator (a scattering foil) and secondary collimators (bulky absorbers). Interaction of the particles with the primary collimator (scattering, momentum losses, and nuclear interactions) was simulated by using fluka. Particle-tracking simulations were performed by using mad-x. Finally, the dependence of the collimation efficiency on the primary ion species was determined. The influence of the collimation system adjustment, lattice imperfections, and beam parameters was estimated. The concept for the collimation of partially stripped ions employs a thin stripping foil in order to change their charge state. These ions are subsequently deflected towards a dump location using a beam optical element. The charge state distribution after the stripping foil was obtained from global. The ions were tracked by using mad-x.

  12. Analytical fits to the synchrotron functions

    Institute of Scientific and Technical Information of China (English)

    Mourad Fouka; Saad Ouichaoui

    2013-01-01

    Accurate fitting formulae to the synchrotron function,F(x),and its complementary function,G(x),are performed and presented.The corresponding relative errors are less than 0.26% and 0.035% for F(x) and G(x),respectively.To this end we have,first,fitted the modified Bessel functions,K5/3(x) and K2/3(x).For all the fitted functions,the general fit expression is the same,and is based on the well known asymptotic forms for low and large values of x for each function.It consists of multiplying each asymptotic form by a function that tends to unity or zero for low and large values of x.Simple formulae are suggested in this paper,depending on adjustable parameters.The latter have been determined by adopting the Levenberg-Marquardt algorithm.The proposed formulae should be of great utility and simplicity for computing spectral powers and the degree of polarization for synchrotron radiation,both for laboratory and astrophysical applications.

  13. ANKA - Service-oriented synchrotron radiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Babayan, Ruben Albert; Birkel, Ingrid; Buth, Gernot [Forschungszentrum Karlsruhe, ANKA Project Group, Karlsruhe (DE)] [and others

    1999-06-01

    ANKA is a 2.5 GeV synchrotron radiation facility under construction at Forschungszentrum Karlsruhe. ANKA is based on a 2.5 GeV electron storage ring injected from a 500 MeV booster synchrotron and a 50 MeV racetrack microtron. Nominal circulating electron current will be 400 mA. The facility is scheduled to become operational in fall 2000. ANKA will deliver photons predominantly in the hard X-ray range but it will also feature both XUV and infrared beamlines. So far, all beamlines will use bending magnets as sources, while provision is made to install appropriate insertion devices later on. ANKA has a novel mission which is characterised by giving preference to providing service to customers while maintaining a significant fraction of research work. ANKA will offer full service in X-ray lithography, mainly for micro- and nanofabrication, and in analysing and investigating non-destructively various structural, mechanical, chemical, electronic, magnetic, and molecular properties of samples and components. (author)

  14. Synchrotrons for hadron therapy: Part I

    CERN Document Server

    Badano, L; Bryant, P; Crescenti, M; Holy, P; Knaus, P; Maier, A; Pullia, M; Rossi, S

    1999-01-01

    The treatment of cancer with accelerator beams has a long history with betatrons, linacs, cyclotrons and now synchrotrons being exploited for this purpose. Treatment techniques can be broadly divided into the use of spread-out beams and scanned 'pencil' beams. The Bragg-peak behaviour of hadrons makes them ideal candidates for the latter. The combination of precisely focused 'pencil' beams with controllable penetration (Bragg peak) and high, radio-biological efficiency (light ions) opens the way to treating the more awkward tumours that are radio-resistant, complex in shape and lodged against critical organs. To accelerate light ions (probably carbon) with pulse-to-pulse energy variation, a synchrotron is the natural choice. The beam scanning system is controlled via an on-line measurement of the particle flux entering the patient and, for this reason, the beam spill must be extended in time (seconds) by a slow-extraction scheme. The quality of the dose intensity profile ultimately depends on the uniformity o...

  15. Synchrotrons for hadron therapy, part 1

    CERN Document Server

    Badano, L; Bryant, P J; Crescenti, M; Holy, P; Knaus, P; Maier, A T; Pullia, M; Rossi, S

    1999-01-01

    The treatment of cancer with accelerator beams has a long history with linacs, cyclotrons and now synchrotrons being exploited for this purpose. Treatment techniques can be broadly divided into the use of spread-out beams and scanned 'pencil' beams. The Bragg-peak behaviour of hadrons makes them ideal candidates for the latter. The combination of precisely focused 'pencil' beams with controllable penetration (Bragg peak) and high, radio-biological efficiency (light ions) opens the way to treating the more awkward tumours that are radio-resistant, complex in shape and lodged against critical organs. To accelerate light ions (probably carbon) with pulse-to-pulse energy variation, a synchrotron is the natural choice. The beam scanning system is controlled via an on-line measurement of the particle flux entering the patient and, for this reason, the beam spill must be extended in time (seconds) by a slow-extraction scheme. The quality of the dose intensity profile ultimately depends on the uniformity of the beam ...

  16. Berkeley Lab's ALS generates femtosecond synchrotron radiation

    CERN Document Server

    Robinson, A L

    2000-01-01

    A team at Berkeley's Advanced Light Source has shown how a laser time-slicing technique provides a path to experiments with ultrafast time resolution. A Lawrence Berkeley National Laboratory team has succeeded in generating 300 fs pulses of synchrotron radiation at the ALS synchrotron radiation machine. The team's members come from the Materials Sciences Division (MSD), the Center for Beam Physics in the Accelerator and Fusion Research Division and the Advanced Light Source (ALS). Although this proof-of principle experiment made use of visible light on a borrowed beamline, the laser "time-slicing" technique at the heart of the demonstration will soon be applied in a new bend magnet beamline that was designed specially for the production of femtosecond pulses of X-rays to study long-range and local order in condensed matter with ultrafast time resolution. An undulator beamline based on the same technique has been proposed that will dramatically increase the flux and brightness. The use of X-rays to study the c...

  17. Injection Efficiency Monitor for the Australian Synchrotron

    Directory of Open Access Journals (Sweden)

    Rassool R. P.

    2012-10-01

    Full Text Available The Australian Synchrotron AS is moving towards a continuous injection mode called top-up. During top-up the linac and booster synchrotron injection system will be in continuous operation rather than usedevery eight hours the way they are used at present. In order to monitor the performance of the injection system areal-time injection efficiency monitoring system has been developed. The system consists of several Fast CurrentTransformers [1] and matching digitisers [2] and is designed to count every beam pulse and measure the transmission efficiency through the whole accelerator complex. After calibrating the system using a properly matchedFaraday Cup at the electron gun, a transmission efficiency is then calculated at each stage of transferring the beamfrom 90 keV out of the gun to 3 GeV in the storage ring. The system is used to optimise the injection process inorder to maximise the injection efficiency and as an early warning system when equipment starts to fail and theinjection efficiency decreases.

  18. Magnetic Field Structure from Synchrotron Polarization

    CERN Document Server

    Beck, R

    2006-01-01

    Total magnetic fields in spiral galaxies, as observed through their total synchrotron emission, are strongest (up to \\simeq 30\\mu G) in the spiral arms. The degree of radio polarization is low; the field in the arms must be mostly turbulent or tangled. Polarized synchrotron emission shows that the resolved regular fields are generally strongest in the interarm regions (up to \\simeq 15\\mu G), sometimes forming 'magnetic arms' parallel to the optical arms. The field structure is spiral in almost every galaxy, even in flocculent and bright irregular types which lack spiral arms. The observed large-scale patterns of Faraday rotation in several massive spiral galaxies reveal coherent regular fields, as predicted by dynamo models. However, in most galaxies observed so far no simple patterns of Faraday rotation could be found. Either many dynamo modes are superimposed and cannot be resolved by present-day telescopes, or most of the apparently regular field is in fact anisotropic random, with frequent reversals, due ...

  19. Analytical Fits to the Synchrotron Functions

    CERN Document Server

    Fouka, M

    2013-01-01

    Accurate fitting formulae to the synchrotron function, $F(x)$, and its complementary function, $G(x)$, are performed and presented. The corresponding relative errors are less than $0.26\\%$ and $0.035\\%$ for $F(x) $ and $G(x)$, respectively. To this aim we have, first, fitted the modified Bessel functions, $K_{5/3}(x)$ and $K_{2/3}(x)$. For all the fitted functions, the general fit expression is the same, and is based on the well known asymptotic forms for low and large $x$-values for each function. It consists of multiplying each asymptotic form by a function that tends to unity or zero for low and large $x$-values. Simple formulae are suggested in this paper, depending on adjustable parameters. The latter have been determined by adopting the Levenberg-Marquardt algorithm. The proposed formulae should be of great utility and simplicity for computing spectral powers and the degree of polarization for the synchrotron radiation, both for laboratory and astrophysical applications.

  20. Enhanced analysis of biomaterials by synchrotron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, K. [Cranfield Postgraduate Medical School, Cranfield University, Shrivenham, Swindon, Wiltshire, SN6 8LA (United Kingdom)]. E-mail: k.d.rogers@cranfield.ac.uk; Etok, S. [Cranfield Postgraduate Medical School, Cranfield University, Shrivenham, Swindon, Wiltshire, SN6 8LA (United Kingdom); Broadhurst, A. [Cranfield Postgraduate Medical School, Cranfield University, Shrivenham, Swindon, Wiltshire, SN6 8LA (United Kingdom); Scott, R. [Biomet-Europe, Dorcan Way, Swindon, Wiltshire, SN3 5HY (United Kingdom)

    2005-08-11

    There is an increasing body of evidence that prosthetic implants based upon titanium alloys attain improved performance when coated with calcium hydroxyapatite (HAP). Such coatings appear to promote osteointegration and bone in-growth. Plasma spraying is the most frequently employed route to coating fabrication. Detailed chemical and structural characterisation of these coatings is essential for (i) coating technology development (ii) ensuring consistent material quality and (iii) assessing coating performance. The work presented here employed combined conventional powder diffraction and glancing angle synchrotron diffraction to examine the in vitro performance of apatite coatings formed by plasma spraying. Coatings were exposed to simulated body fluid and foetal calf serum, and changes to the coating chemistry and structure determined. A new analysis method, synchrotron depth profiling tomography, has been applied to obtain structural features through the coating depth. The dissolution and re-precipitation behaviour of the coatings was found to be significantly different for each media. For the first time, it has been possible to identify and quantify the formation of a nanocrystalline, carbonated HAP phase. It has been possible to simultaneously model all coating phases apparent within the X-ray diffraction data and thus quantify changes to film composition. DPT has also revealed subtle changes in coating features with depth and these may have a significant impact on coating dissolution. The findings are discussed in the context of kinematic models for the coating behaviour and implications for the performance of such coatings in vivo.

  1. Physics design of SSRF synchrotron radiation security

    Institute of Scientific and Technical Information of China (English)

    XU Yi; DAI Zhi-Min; LIU Gui-Min

    2009-01-01

    High brightness of SSRF brings about synchrotron radiation security problems,which will be solved in physics design.The main radiations are generated from bending magnets and insertion devices.Since the fact that radiation power and radiating area are different in these two kinds of synchrotron radiation,the arrangements of photon absorbers,diaphragms and other vacuum components need to be treated distinctively.In addition.SSRF interlock protection threshold is defined and the beam orbit in the straight line is limited.Hence.beam orbit in the bending magnets and IDs are also restricted by the threshold.The orbit restriction is calculated and helps us to arrange the vacuum components.In this paper,beam orbit distortion restricted by interlock protection threshold,radiation power,radiation angle and illuminating area are calculated.From the calculation results,the physics designs in manufacture and installation vacuum components are put forward.By commissioning,it is shown that physics requirements are met rigidly in the engineering process.

  2. High-Gradient, Millimeter Wave Accelerating Structure

    CERN Document Server

    Kuzikov, S V; Peskov, N Yu

    2015-01-01

    The millimeter wave all-metallic accelerating structure, aimed to provide more than 100 MeV/m gradient and fed by feeding RF pulses of 20-30 ns duration, is proposed. The structure is based on a waveguide with small helical corrugation. Each section of 10-20 wavelengths long has big circular cross-section aperture comparable with wavelength. Because short wavelength structures are expected to be critical to wakefields excitation and emittance growth, we suggest to combine in one structure properties of a linear accelerator and a cooling damping ring simultaneously. It provides acceleration of straight on-axis beam as well as cooling of this beam due to the synchrotron radiation of particles in strong non-synchronous transverse fields. These properties are provided by specific slow eigen mode which consists of two partial waves, TM01 and TM11. Simulations show that shunt impedance can be as high as 100 MOhm/m. Results of the first low-power tests with 30 GHz accelerating section are analyzed.

  3. A synchrotron radiation facility for x-ray astronomy

    DEFF Research Database (Denmark)

    Hall, C.J.; Lewis, R.A.; Christensen, Finn Erland

    1997-01-01

    A proposal for an x-ray optics test facility based at a synchrotron radiation source is presented. The facility would incorporate a clean preparation area, and a large evacuable test area. The advantages of using a synchrotron as the source of the test radiation are discussed. These include the a...

  4. Synchrotron radiation in art and archaeology SRA 2005

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, A.M.; Janssens, K.; Artioli, G.; Young, M.L.; Casadio, F.; Schnepp, S.; Marvin, J.; Dunand, D.C.; Almer, J.; Fezzaa, K.; Lee, W.K.; Haeffner, D.R.; Reguer, S.; Dillmann, Ph.; Mirambet, F.; Susini, J.; Lagarde, P.; Pradell, T.; Molera, J.; Brunetti, B.; D' acapito, F.; Maurizio, C.; Mazzoldi, P.; Padovani, S.; Sgamellotti, A.; Garges, F.; Etcheverry, M.P.; Flank, A.M.; Lagarde, P.; Marcus, M.A.; Scheidegger, A.M.; Grolimund, D.; Pallot-Frossard, I.; Smith, A.D.; Jones, M.; Gliozzo, E.; Memmi-Turbanti, I.; Molera, J.; Vendrell, M.; Mcconachie, G.; Skinner, T.; Kirkman, I.W.; Pantos, E.; Wallert, A.; Kanngiesser, B.; Hahn, O.; Wilke, M.; NekaT, B.; Malzer, W.; Erko, A.; Chalmin, E.; Vignaud, C.; Farges, F.; Susini, J.; Menu, M.; Sandstrom, M.; Cotte, M.; Kennedy, C.J.; Wess, T.J.; Muller, M.; Murphy, B.; Roberts, M.A.; Burghammer, M.; Riekel, C.; Gunneweg, J.; Pantos, E.; Dik, J.; Tafforeau, P.; Boistel, R.; Boller, E.; Bravin, A.; Brunet, M.; Chaimanee, Y.; Cloetens, P.; Feist, M.; Hoszowska, J.; Jaeger, J.J.; Kay, R.F.; Lazzari, V.; Marivaux, L.; Nel, A.; Nemoz, C.; Thibault, X.; Vignaud, P.; Zabler, S.; Sciau, P.; Goudeau, P.; Tamura, N.; Doormee, E.; Kockelmann, W.; Adriaens, A.; Ryck, I. de; Leyssens, K.; Hochleitner, B.; Schreiner, M.; Drakopoulos, M.; Snigireva, I.; Snigirev, A.; Sanchez Del Rio, M.; Martinetto, P.; Dooryhee, E.; Suarez, M.; Sodo, A.; Reyes-Valerio, C.; Haro Poniatowski, E.; Picquart, M.; Lima, E.; Reguera, E.; Gunneweg, J.; Reiche, I.; Berger, A.; Bevers, H.; Duval, A

    2005-07-01

    Materials - bones, artifacts, artwork,.... - lie at the heart of both archaeology and art conservation. Synchrotron radiation techniques provide powerful ways to interrogate these records of our physical and cultural past. In this workshop we will discuss and explore the current and potential applications of synchrotron radiation science to problems in archaeology and art conservation. This document gathers the abstracts of the presentations.

  5. Energy in density gradient

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, J., E-mail: jvranjes@yahoo.com [Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife (Spain); Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife (Spain); Kono, M., E-mail: kono@fps.chuo-u.ac.jp [Faculty of Policy Studies, Chuo University, Tokyo (Japan)

    2015-01-15

    Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work, the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindrical configuration. This is of practical importance for drift wave instability in various plasmas, and, in particular, in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit volume (per second) in quiet regions in the corona. Consequently, within the life-time of a magnetic structure such energy losses can easily be compensated by the stochastic drift wave heating.

  6. Alternative metrics

    Science.gov (United States)

    2012-11-01

    As the old 'publish or perish' adage is brought into question, additional research-impact indices, known as altmetrics, are offering new evaluation alternatives. But such metrics may need to adjust to the evolution of science publishing.

  7. Comments on Landau damping due to synchrotron frequency spread

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-01-01

    An inductive/space-charge impedance shifts the synchrotron frequency downwards above/below transition, but it is often said that the coherent synchrotron frequency of the bunch is not shifted in the rigid-dipole mode. On the other hand, the incoherent synchrotron frequency due to the sinusoidal rf always spreads in the downward direction. This spread will therefore not be able to cover the coherent synchrotron frequency, implying that there will not be any Landau damping no matter how large the frequency spread is. By studying the dispersion relation, it is shown that the above argument is incorrect, and there will be Landau damping if there is sufficient frequency spread. The main reason is that the coherent frequency of the rigid-dipole mode will no longer remain unshifted in the presence of a synchrotron frequency spread.

  8. Quadrupole magnet for a rapid cycling synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  9. Helical magnetized wiggler for synchrotron radiation laser

    CERN Document Server

    Wang Mei; Hirshfield, J L

    1999-01-01

    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude.

  10. Optical substrate materials for synchrotron radiation beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Howells, M.R. [Lawrence Berkeley National Lab., CA (United States). Advanced Light Source; Paquin, R.A. [Univ. of Arizona, Tucson, AZ (United States). Optical Sciences Center

    1997-06-01

    The authors consider the materials choices available for making optical substrates for synchrotron radiation beam lines. They find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors they explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. They conclude that metals are best from an engineering and cost standpoint while the ceramics are best from a polishing standpoint. They then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, Glidcop{trademark}, aluminum, precipitation-hardening stainless steel, mild steel, invar and superinvar. Finally they summarize conclusions and propose ideas for further research.

  11. Real-time animation of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shintake, Tsumoru E-mail: shintake@spring8.or.jp

    2003-07-11

    New mathematical method has been developed to compute radiation field from a moving charge in free space. It is not based on the retarded potential or its derivation [R.Y. Tsien, Picture of dynamic electric fields, Am. J. Phys. 40, 1972]. It solves conformal mapping of electric field lines based on the following two facts: (1) once a wave is emitted from a particle, it propagates as a spherical wave. The wavelet (a part of the wave-front) runs with speed of the light, and does not change its direction, (2) the initial direction of the wavelet is determined by the Lorentz transformation between the electron-rest-frame to the laboratory frame, which gives the light aberration effect. 2D radiation simulator has been developed based on this method, which simulates synchrotron, undulator and dipole radiation in time domain [T. Shintake, Simulation of field lines generated by a moving charge, private note 1984 March 19 at KEK, not published].

  12. Brightness of synchrotron radiation from wigglers

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2014-01-01

    According to literature, while calculating the brightness of synchrotron radiation from wigglers, one needs to account for the so called `depth-of-field' effects. In fact, the particle beam cross section varies along the wiggler. It is usually stated that the effective photon source size increases accordingly, while the brightness is reduced. Here we claim that this is a misconception originating from an analysis of the wiggler source based on geometrical arguments, regarded as almost self-evident. According to electrodynamics, depth-of-field effects do not exist: we demonstrate this statement both theoretically and numerically, using a well-known first-principle computer code. This fact shows that under the usually accepted approximations, the description of the wiggler brightness turns out to be inconsistent even qualitatively. Therefore, there is a need for a well-defined procedure for computing the brightness from a wiggler source. We accomplish this task based on the use of a Wigner function formalism. I...

  13. 3D Detectors for Synchrotron Applications

    CERN Document Server

    Pennicard, D

    2009-01-01

    3D detectors are a novel variety of photodiode radiation detector, invented by Parker, Kenney and Segal (1997). Instead of having n- and p-type contacts on the front and back surfaces of a silicon substrate, like a standard photodiode, they have columns of doped material passing through the thickness of the silicon. This structure means that the detector can combine a reasonable substrate thickness with a very small electrode spacing, resulting in a low depletion voltage, fast charge collection and low charge sharing. These detectors have a couple of promising applications. Their fast charge collection and low depletion voltage should make them very radiation-tolerant. So, they could be used for future particle physics experiments at the Super Large Hadron Collider (SLHC), where high levels of radiation damage are expected. Also, their low charge sharing means they could potentially improve X-ray diffraction measurements at synchrotrons such as Diamond Light Source. This would allow these experiments, for exa...

  14. A guide to synchrotron radiation science

    CERN Document Server

    Sato, Shigeru; Munro, Ian; Lodha, G S

    2015-01-01

    Synchrotron Radiation (SR), as a light source is now in use around the world to provide brilliant radiation from the infrared into the soft and hard X-ray regions. It is an indispensible and essential tool to establish the physic-chemical characteristics of materials and surfaces from an atomic and molecular view point. It is being applied to topics which range from mineralogy to protein crystallography, embracing research in areas from the physical to the life sciences. This new guide is a concise yet comprehensive and easily readable introduction to an expanding area of science. It presents in a readily assimilable form the basic concepts of SR science from its generation principles, through source design and operation to the principles of instruments for SR exploitation followed by a survey of its actual applications in selected research fields, including spectroscopy, diffractometry, microanalysis and chemical processing.

  15. Silicon Pixel Detectors for Synchrotron Applications

    CERN Document Server

    Stewart, Graeme Douglas

    Recent advances in particle accelerators have increased the demands being placed on detectors. Novel detector designs are being implemented in many different areas including, for example, high luminosity experiments at the LHC or at next generation synchrotrons. The purpose of this thesis was to characterise some of these novel detectors. The first of the new detector types is called a 3D detector. This design was first proposed by Parker, Kenney and Segal (1997). In this design, doped electrodes are created that extend through the silicon substrate. When compared to a traditional photodiode with electrodes on the opposing surfaces, the 3D design can combine a reasonable detector thickness with a small electrode spacing resulting in fast charge collection and limited charge sharing. The small electrode spacing leads to the detectors having lower depletion voltages. This, combined with the fast collection time, makes 3D detectors a candidate for radiation hard applications. These applications include the upgra...

  16. Time-resolved spectroscopy using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Poliakoff, E.D.

    1979-08-01

    Work performed at the Stanford Synchrotron Radiation Laboratory (SSRL) is reported. The timing characteristics of the SPEAR beam (pulse width less than or equal to 0.4 nsec, pulse repetition period = 780 nsec) were exploited to determine dynamic behavior of atomic, molecular, excimeric, and photodissociative gas-phase species excited by vacuum-ultraviolet (VUV) radiation. Fast fluorescence timing measurements were done to determine excited-state lifetimes of Kr and Xe. Pressure-dependent timing studies on Xe gas at higher concentrations demonstrated some of the problems associated with previous kinetic modeling of the Xe/sub 2/ system. It was found that even qualitative agreement of observed Xe/sub 2/ lifetimes as a function of pressure required the assumption that the radiative lifetime was a strong function of internuclear separation. The radiative decays of chemically unstable fragments, CN* (B/sup 2/..sigma../sup +/) and XeF* (B/sup 2/..sigma../sup +/ and C/sup 2/ Pi/sub 3/2//), were studied by pulsed photodissociation of stable parent compounds, ICN and XeF/sub 2/. When the polarization of the CN* (B/sup 2/..sigma../sup +/) fragment fluorescence was measured, it was found to be non-zero and strongly dependent on excitation wavelength. This polarization is related to the symmetry of the photodissociative surface via a classical model, and the variations in the polarization with wavelength is attributed to symmetry and lifetime effects of a predissociating parent molecule. Despite the drawbacks of limited availability and low radiation flux, synchrotron radiation is definitely a useful spectroscopic tool for VUV studies of gas-phase systems.

  17. Generalized conjugate gradient squared

    Energy Technology Data Exchange (ETDEWEB)

    Fokkema, D.R.; Sleijpen, G.L.G. [Utrecht Univ. (Netherlands)

    1994-12-31

    In order to solve non-symmetric linear systems of equations, the Conjugate Gradient Squared (CGS) is a well-known and widely used iterative method. In practice the method converges fast, often twice as fast as the Bi-Conjugate Gradient method. This is what you may expect, since CGS uses the square of the BiCG polynomial. However, CGS may suffer from its erratic convergence behavior. The method may diverge or the approximate solution may be inaccurate. BiCGSTAB uses the BiCG polynomial and a product of linear factors in an attempt to smoothen the convergence. In many cases, this has proven to be very effective. Unfortunately, the convergence of BiCGSTAB may stall when a linear factor (nearly) degenerates. BiCGstab({ell}) is designed to overcome this degeneration of linear factors. It generalizes BiCGSTAB and uses both the BiCG polynomial and a product of higher order factors. Still, CGS may converge faster than BiCGSTAB or BiCGstab({ell}). So instead of using a product of linear or higher order factors, it may be worthwhile to look for other polynomials. Since the BiCG polynomial is based on a three term recursion, a natural choice would be a polynomial based on another three term recursion. Possibly, a suitable choice of recursion coefficients would result in method that converges faster or as fast as CGS, but less erratic. It turns out that an algorithm for such a method can easily be formulated. One particular choice for the recursion coefficients leads to CGS. Therefore one could call this algorithm generalized CGS. Another choice for the recursion coefficients leads to BiCGSTAB. It is therefore possible to mix linear factors and some polynomial based on a three term recursion. This way one may get the best of both worlds. The authors will report on their findings.

  18. Probing deformation substructure by synchrotron X-ray diffraction and dislocation dynamics modelling.

    Science.gov (United States)

    Korsunsky, Alexander M; Hofmann, Felix; Song, Xu; Eve, Sophie; Collins, Steve P

    2010-09-01

    Materials characterization at the nano-scale is motivated by the desire to resolve the structural aspects and deformation behavior at length scales relevant to those mechanisms that define the novel and unusual properties of nano-structured materials. A range of novel techniques has recently become accessible with the help of synchrotron X-ray beams that can be focused down to spot sizes of less than a few microns on the sample. The unique combination of tunability (energy selection), parallelism and brightness of synchrotron X-ray beams allows their use for high resolution diffraction (determination of crystal structure and transformations, analysis of dislocation sub-structures, orientation and texture analysis, strain mapping); small angle X-ray scattering (analysis of nano-scale voids and defects; orientation analysis) and imaging (radiography and tomography). After a brief review of the state-of-the-art capabilities for monochromatic and white beam synchrotron diffraction, we consider the usefulness of these techniques for the task of bridging the gap between experiment and modeling. Namely, we discuss how the experiments can be configured to provide information relevant to the validation and improvement of modeling approaches, and also how the results of various simulations can be post-processed to improve the possibility of (more or less) direct comparison with experiments. Using the example of some recent experiments carried out on beamline 116 at Diamond Light Source near Oxford, we discuss how such experimental results can be interpreted in view and in conjunction with numerical deformation models, particularly those incorporating dislocation effects, e.g., finite-element based pseudo-continuum strain gradient formulations, and discrete dislocation simulations. Post-processing of FE and discrete dislocation simulations is described, illustrating the kind of information that can be extracted from comparisons between modeling and experimental data.

  19. 3 GeV Booster Synchrotron Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Helmut

    2009-06-02

    Synchrotron light cna be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material science, biology, and medicine.

  20. Limitations on plasma acceleration due to synchrotron losses

    CERN Document Server

    Barletta, W A; Bonifacio, R; De Salvo, L

    1999-01-01

    In this letter we consider the effect of synchrotron radiation losses due to the betatron motion of the electron beam in its self-induced magnetic field in a plasma accelerator taking into account the charge neutralization factor. The most favorable case is where the plasma density is smaller than the beam density. The contrary regime is strongly disfavored by the synchrotron radiation loss for beams with characteristics for TeV energies. In both cases we find that upon increasing the plasma density the synchrotron losses kill the acceleration process, so that there are limitations on the maximum allowable plasma density.

  1. Optical systems for synchrotron radiation. Lecture 2. Mirror systems

    Energy Technology Data Exchange (ETDEWEB)

    Howells, M.R.

    1986-02-01

    The process of reflection of VUV and x-radiation is summarized. The functions of mirrors in synchrotron beamlines are described, which include deflection, filtration, power absorption, formation of a real image, focusing, and collimation. Fabrication of optical surfaces for synchrotron radiation beamlines are described, and include polishing of a near spherical surface as well as bending a cylindrical surface to toroidal shape. The imperfections present in mirrors, aberrations and surface figure inaccuracy, are discussed. Calculation of the thermal load of a mirror in a synchrotron radiation beam and the cooling of the mirror are covered briefly. 50 refs., 7 figs. (LEW)

  2. A novel gas-filled detector for synchrotron radiation applications

    Energy Technology Data Exchange (ETDEWEB)

    Kocsis, Menyhert [ESRF BP 220 38043 Grenoble (France)]. E-mail: kocsis@esrf.fr; Boesecke, P. [ESRF BP 220 38043 Grenoble (France); Carbone, D. [ESRF BP 220 38043 Grenoble (France); Herve, C. [ESRF BP 220 38043 Grenoble (France); Becker, B. [Bruker AXS, Inc 5465 East Cheryl Parkway, Madison, WI 53711 (United States); Diawara, Y. [Bruker AXS, Inc 5465 East Cheryl Parkway, Madison, WI 53711 (United States); Durst, R. [Bruker AXS, Inc 5465 East Cheryl Parkway, Madison, WI 53711 (United States); Khazins, D. [Bruker AXS, Inc 5465 East Cheryl Parkway, Madison, WI 53711 (United States); He, B. [Bruker AXS, Inc 5465 East Cheryl Parkway, Madison, WI 53711 (United States); Medved, S. [Bruker AXS, Inc 5465 East Cheryl Parkway, Madison, WI 53711 (United States); Sedov, V. [Bruker AXS, Inc 5465 East Cheryl Parkway, Madison, WI 53711 (United States); Thorson, T. [Bruker AXS, Inc 5465 East Cheryl Parkway, Madison, WI 53711 (United States); Wachter, G. [Bruker AXS, Inc 5465 East Cheryl Parkway, Madison, WI 53711 (United States)

    2006-07-01

    We describe in this paper the performance under synchrotron radiation of a sealed gaseous detector, Vantec-1, operating at high pressure and less prone to discharges. It is consequently operating at high gain (>10{sup 5}) at high local counting rates up to 10{sup 6} cps/mm{sup 2}. To achieve these characteristics, a thin resistive layer is used on a glass plate between the mesh and the readout anode. The performance achieved with this detector is suited for applications in X-ray diffraction and synchrotron radiation. This detector has shown high reliability over time under harsh synchrotron radiation environment and robustness in manufacturing environment.

  3. Proceedings of the workshop on LAMPF II synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.K. (comp.)

    1983-01-01

    Topics covered at the workshop include: considerations for a staged approach to synchrotron construction; consideration of energy and cost for a kaon and/or antiproton factory; changing the transition energy in the main ring for the Fermilab antiproton beam; a lattice with 50% undispersed straight sections; bunch width considerations in a stretcher ring; a self-consistent longitudinal distribution; rapid-cycling tuned rf cavity for synchrotron use; considerations on a high-shunt impedance tunable RF cavity; rotating condensers; low extraction from the stretcher ring; an antiproton source for LAMPF II; synchrotron magnet circuit; power supply and ring magnet options; and notes for a kaon factory design. (GHT)

  4. Growing Alternatives

    DEFF Research Database (Denmark)

    Bagger-Petersen, Mai Corlin

    2014-01-01

    From 2014, Anhui Province will pilot a reform of the residential land market in China, thus integrating rural Anhui in the national housing market. In contrast, artist and activist Ou Ning has proposed the Bishan time money currency, intending to establish an alternative economic circuit in Bishan...

  5. Alternative Treatments

    Science.gov (United States)

    ... triglyceride (fat) produced by processing coconut oil or palm kernel oil. The body breaks down caprylic acid into substances called “ketone bodies.” The theory behind Axona is that the ketone bodies derived from caprylic acid may provide an alternative energy source for brain cells that have lost ...

  6. Pore-scale evaporation-condensation dynamics resolved by synchrotron x-ray tomography

    Science.gov (United States)

    Shahraeeni, Ebrahim; Or, Dani

    2012-01-01

    Capillary processes greatly influence vapor mediated transport dynamics and associated changes in liquid phase content of porous media. Rapid x-ray synchrotron tomography measurements were used to resolve liquid-vapor interfacial dynamics during evaporation and condensation within submillimetric pores forming between sintered glass bead samples subjected to controlled ambient temperature and relative humidity. Evolution of gas-liquid interfacial shapes were in agreement with predictions based on our analytical model for interfacial dynamics in confined wedge-shaped pores. We also compared literature experimental data at the nanoscale to illustrate the capability of our model to describe early stages of condensation giving rise to the onset of capillary forces between rough surfaces. The study provides high resolution, synchrotron-based observations of capillary evaporation-condensation dynamics at the pore scale as the confirmation of the pore scale analytical model for capillary condensation in a pore and enables direct links with evolution of macroscopic vapor gradients within a sintered glass bead sample through their effect on configuration and evolution of the local interfaces. Rapid condensation processes play a critical role in the onset of capillary-induced friction affecting mechanical behavior of physical systems and industrial applications.

  7. SYNCHROTRON HEATING BY A FAST RADIO BURST IN A SELF-ABSORBED SYNCHROTRON NEBULA AND ITS OBSERVATIONAL SIGNATURE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuan-Pei; Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Zhang, Bing, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2016-03-01

    Fast radio bursts (FRBs) are mysterious transient sources. If extragalactic, as suggested by their relative large dispersion measures, their brightness temperatures must be extremely high. Some FRB models (e.g., young pulsar model, magnetar giant flare model, or supra-massive neutron star collapse model) suggest that they may be associated with a synchrotron nebula. Here we study a synchrotron-heating process by an FRB in a self-absorbed synchrotron nebula. If the FRB frequency is below the synchrotron self-absorption frequency of the nebula, electrons in the nebula would absorb FRB photons, leading to a harder electron spectrum and enhanced self-absorbed synchrotron emission. In the meantime, the FRB flux is absorbed by the nebula electrons. We calculate the spectra of FRB-heated synchrotron nebulae, and show that the nebula spectra would show a significant hump in several decades near the self-absorption frequency. Identifying such a spectral feature would reveal an embedded FRB in a synchrotron nebula.

  8. Hydride precipitation kinetics in Zircaloy-4 studied using synchrotron X-ray diffraction

    Science.gov (United States)

    Courty, Olivier F.; Motta, Arthur T.; Piotrowski, Christopher J.; Almer, Jonathan D.

    2015-06-01

    As a result of in-reactor corrosion during operation in nuclear reactors, hydrogen can enter the zirconium fuel cladding and precipitate as brittle hydride particles, which may reduce cladding ductility. Dissolved hydrogen responds to temperature gradients, resulting in transport and precipitation into cold spots so that the distribution of hydrides in the cladding is inhomogeneous. The hydrogen precipitation kinetics plays a strong role in the spatial distribution of the hydrides in the cladding. The precipitation rate is normally described as proportional to the supersaturation of hydrogen in solid solution. The proportionality constant, α2, for hydride precipitation in Zircaloy-4 is measured directly using in situ synchrotron X-Ray diffraction, at different temperatures and with three different initial hydrogen concentrations. The results validate the linear approximation of the phenomenological model and a near constant value of α2 = 4.5 × 10-4 s-1 was determined for the temperature range studied.

  9. Multiple energy synchrotron biomedical imaging system

    Science.gov (United States)

    Bassey, B.; Martinson, M.; Samadi, N.; Belev, G.; Karanfil, C.; Qi, P.; Chapman, D.

    2016-12-01

    A multiple energy imaging system that can extract multiple endogenous or induced contrast materials as well as water and bone images would be ideal for imaging of biological subjects. The continuous spectrum available from synchrotron light facilities provides a nearly perfect source for multiple energy x-ray imaging. A novel multiple energy x-ray imaging system, which prepares a horizontally focused polychromatic x-ray beam, has been developed at the BioMedical Imaging and Therapy bend magnet beamline at the Canadian Light Source. The imaging system is made up of a cylindrically bent Laue single silicon (5,1,1) crystal monochromator, scanning and positioning stages for the subjects, flat panel (area) detector, and a data acquisition and control system. Depending on the crystal’s bent radius, reflection type, and the horizontal beam width of the filtered synchrotron radiation (20-50 keV) used, the size and spectral energy range of the focused beam prepared varied. For example, with a bent radius of 95 cm, a (1,1,1) type reflection and a 50 mm wide beam, a 0.5 mm wide focused beam of spectral energy range 27 keV-43 keV was obtained. This spectral energy range covers the K-edges of iodine (33.17 keV), xenon (34.56 keV), cesium (35.99 keV), and barium (37.44 keV) some of these elements are used as biomedical and clinical contrast agents. Using the developed imaging system, a test subject composed of iodine, xenon, cesium, and barium along with water and bone were imaged and their projected concentrations successfully extracted. The estimated dose rate to test subjects imaged at a ring current of 200 mA is 8.7 mGy s-1, corresponding to a cumulative dose of 1.3 Gy and a dose of 26.1 mGy per image. Potential biomedical applications of the imaging system will include projection imaging that requires any of the extracted elements as a contrast agent and multi-contrast K-edge imaging.

  10. Clash over demand for more synchrotron sources in Europe

    CERN Multimedia

    Butler, D

    1998-01-01

    French synchrotron staff accused the science minister, Claude Allegre, of misleading the National Assembly over the need to replace LURE, Paris. Allegre believes all big science facilities should be European with national facilities the exception (1 page).

  11. The Scale Invariant Synchrotron Jet of Flat Spectrum Radio Quasars

    Indian Academy of Sciences (India)

    L. M. Du; J. M. Bai; Z. H. Xie; T. F. Yi; Y. B. Xu; R. Xue; X. H. Wang

    2015-06-01

    In this paper, the scale invariance of the synchrotron jet of Flat Spectrum Radio Quasars has been studied using a sample of combined sources from FKM04 and from SDSS DR3 catalogue. Since the research of scale invariance has been focused on sub-Eddington cases that can be fitted onto the fundamental plane, while near-Eddington sources such as FSRQs have not been explicitly studied. The extracted physical properties of synchrotron jet of FSRQs have been shown to be scale invariant using our sample. The results are in good agreement with theoretical expectations of Heinz & Sunyaev (2003). Therefore, the jet synchrotron is shown to be scale independent, regardless of the accretion modes. Results in this article thus lend support to the scale invariant model of the jet synchrotron throughout the mass scale of black hole systems.

  12. CERN PSB Beam Tests of CNAO Synchrotron's Digital LLRF

    CERN Document Server

    Angoletta, M E; De Martinis, C; Falbo, L; Findlay, A; Foglio, R; Hunt, S; Tourres, D; Vescovi, C

    2008-01-01

    The Italian National Centre for Oncological hAdrontherapy (CNAO), in its final construction phase, uses proton and carbon ion beams to treat patients affected by solid tumours. At the heart of CNAO is a 78- meter circumference synchrotron that accelerates particles to up to 400 MeV/u. The synchrotron relies on a digital LLRF system based upon Digital Signal Processors (DSPs) and Field Programmable Gate Array (FPGA). This system implements cavity servoing and beam control capabilities, such as phase and radial loops. Beam tests of the CNAO synchrotron LLRF system were carried out at CERN's Proton Synchrotron Booster (PSB) in autumn 2007, to verify the combined DSP/FPGA architecture and the beam control capabilities. For this, a prototype version of CNAO's LLRF system was adapted to the PSB requirements. This paper outlines the prototype system layout and describes the tests carried out and their results. In particular, system architecture and beam control capabilities were successfully proven by comparison wit...

  13. The use of slow-cycling synchrotrons in injection systems

    CERN Multimedia

    1966-01-01

    The PS improvement programme is concerned with increasing the potential of the PS for high energy physics. It involves developing the performance of the proton synchrotron itself and providing major items of experimental equipment to be used on the machine.

  14. Coherence Inherent in an Incoherent Synchrotron Radio Source

    Indian Academy of Sciences (India)

    Ashok K. Singal

    2011-12-01

    We show that a partial coherence due to antenna mechanism can be inherently present in any compact synchrotron source, which resolves many long-standing problems in the spectra and variability of compact extragalactic radio sources.

  15. Daresbury senses victory in battle for UK synchrotron

    CERN Multimedia

    Loder, N

    1999-01-01

    Scientists campaigning for the future synchrotron source, Diamond, to be sited at Daresbury rather than RAL, believe they have won their case following a meeting between the Office of Science & Technology and the director of the Welcome Trust (1 pg).

  16. Staff accuse bosses of secrecy over British synchrotron plans

    CERN Multimedia

    Loder, N

    1999-01-01

    Scientific staff at Daresbury who have worked on the Diamond project for many years, believe senior management has kept them in the dark over discussions about the possible siting of the synchrotron at RAL (1 page).

  17. Open Cell Conducting Foams for High Synchrotron Radiation Beam Liners

    CERN Document Server

    Petracca, Stefania

    2014-01-01

    The possible use of open-cell conductive foams in high synchrotron radiation particle accelerator beam liners is considered. Available materials and modeling tools are reviewed, potential pros and cons are discussed, and preliminary conclusions are drawn.

  18. Synchronization of Synchrotrons for bunch-to-bucket Transfers

    CERN Document Server

    Ferrand, Thibault; Damerau, Heiko; CERN. Geneva. ATS Department

    2015-01-01

    To reach high particle energies with synchrotrons, a chain of several accelerators is required, as the ratio of extraction and injection energy is in the range of 10 to 20 per synchrotron. Hence the beam must be transfered from one accelerator to the next one. This document deals with the bunch-to-bucket transfer method to inject particle bunches composing the beam from a source synchrotron to a target synchrotron. After we highlight the theoretical concept of the bunch-to-bucket transfer, we determine physical limitations due to the beam dynamics and the adiabatic aspect of the particle bunches. A summary of the currently performed bunch-to-bucket transfer scenarios between the accelerators at CERN is given and set in relation with the mentioned theoretical concepts.

  19. Alternative Compression Garments

    Science.gov (United States)

    Stenger, M. B.; Lee, S. M. C.; Ribeiro, L. C.; Brown, A. K.; Westby, C. M.; Platts, S. H.

    2011-01-01

    Orthostatic intolerance after spaceflight is still an issue for astronauts as no in-flight countermeasure has been 100% effective. Future anti-gravity suits (AGS) may be similar to the Shuttle era inflatable AGS or may be a mechanical compression device like the Russian Kentavr. We have evaluated the above garments as well as elastic, gradient compression garments of varying magnitude and determined that breast-high elastic compression garments may be a suitable replacement to the current AGS. This new garment should be more comfortable than the AGS, easy to don and doff, and as effective a countermeasure to orthostatic intolerance. Furthermore, these new compression garments could be worn for several days after space flight as necessary if symptoms persisted. We conducted two studies to evaluate elastic, gradient compression garments. The purpose of these studies was to evaluate the comfort and efficacy of an alternative compression garment (ACG) immediately after actual space flight and 6 degree head-down tilt bed rest as a model of space flight, and to determine if they would impact recovery if worn for up to three days after bed rest.

  20. Melanin concentration gradients in modern and fossil feathers.

    Directory of Open Access Journals (Sweden)

    Daniel J Field

    Full Text Available In birds and feathered non-avian dinosaurs, within-feather pigmentation patterns range from discrete spots and stripes to more subtle patterns, but the latter remain largely unstudied. A ∼55 million year old fossil contour feather with a dark distal tip grading into a lighter base was recovered from the Fur Formation in Denmark. SEM and synchrotron-based trace metal mapping confirmed that this gradient was caused by differential concentration of melanin. To assess the potential ecological and phylogenetic prevalence of this pattern, we evaluated 321 modern samples from 18 orders within Aves. We observed that the pattern was found most frequently in distantly related groups that share aquatic ecologies (e.g. waterfowl Anseriformes, penguins Sphenisciformes, suggesting a potential adaptive function with ancient origins.

  1. Synchrotron powder diffraction on Aztec blue pigments

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, M. [European Synchrotron Radiation Facility, B.P. 220, Grenoble Cedex (France); Gutierrez-Leon, A.; Castro, G.R.; Rubio-Zuazo, J. [Spanish CRG Beamline at the European Synchrotron Radiation Facility, SpLine, B.P. 220, Grenoble Cedex (France); Solis, C. [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Mexico, D.F. (Mexico); Sanchez-Hernandez, R. [INAH Subdireccion de Laboratorios y Apoyo Academico, Mexico, D.F. (Mexico); Robles-Camacho, J. [INAH Centro Regional Michoacan, Morelia, Michoacan (Mexico); Rojas-Gaytan, J. [INAH Direccion de Salvamento Arqueologico, Naucalpan de Juarez (Mexico)

    2008-01-15

    Some samples of raw blue pigments coming from an archaeological rescue mission in downtown Mexico City have been characterized using different techniques. The samples, some recovered as a part of a ritual offering, could be assigned to the late Aztec period (XVth century). The striking characteristic of these samples is that they seem to be raw pigments prior to any use in artworks, and it was possible to collect a few {mu}g of pigment after manual grain selection under a microscopy monitoring. All pigments are made of indigo, an organic colorant locally known as anil or xiuhquilitl. The colorant is always found in combination with an inorganic matrix, studied by powder diffraction. In one case the mineral base is palygorskite, a rare clay mineral featuring micro-channels in its structure, well known as the main ingredient of the Maya blue pigment. However, other samples present the minerals sepiolite (a clay mineral of the palygorskite family) and calcite. Another sample contains barite, a mineral never reported in prehispanic paints. We present the results of characterization using high resolution powder diffraction recorded at the European Synchrotron Radiation Facility (BM25A, SpLine beamline) complemented with other techniques. All of them gave consistent results on the composition. A chemical test on resistance to acids was done, showing a high resistance for the palygorskite and eventually sepiolite compounds, in good agreement with the excellent resistance of the Maya blue. (orig.)

  2. Golden Jubilee photos: The Proton Synchrotron

    CERN Multimedia

    2004-01-01

    Energy record Standing before the CERN personnel in the Main Auditorium on 25 November 1959, John Adams held not a bottle of champagne but a bottle of vodka. It had been presented to him a few months earlier during a visit to Dubna in the Soviet Union, where the world's most powerful accelerator had just been commissioned. He had been given strict instructions not to open the bottle until Dubna's energy record of 10 GeV had been broken. On 24 November, the record was smashed by CERN's brand new machine, the Proton Synchrotron, which accelerated protons at 24 GeV, over twice the energy of the Dubna machine. Before sending the empty bottle back to the Soviet Union, John Adams, who had headed the accelerator's construction, placed the recording of the signal in it as proof of the record. More than 40 years later, the PS is still going strong, delivering beams with particle densities a thousand times greater than when it first started operation. Over the years, other accelerators have grown up around it and the...

  3. Brightness of synchrotron radiation from wigglers

    Science.gov (United States)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2016-01-01

    According to the literature, while calculating the brightness of synchrotron radiation from wigglers, one needs to account for the so-called 'depth-of-field' effects. In fact, the particle beam cross-section varies along the wiggler. It is usually stated that the effective photon source size increases accordingly, while the brightness is reduced. Here we claim that this is a misconception originating from an analysis of the wiggler source based on geometrical arguments, regarded as almost self-evident. According to electrodynamics, depth-of-field effects do not exist: we demonstrate this statement both theoretically and numerically, using a well-known first-principle computer code. This fact shows that under the usually accepted approximations, the description of the wiggler brightness turns out to be inconsistent even qualitatively. Therefore, there is a need for a well-defined procedure for computing the brightness from a wiggler source. We accomplish this task based on the use of a Wigner function formalism. We exemplify this formalism in simple limiting cases. We consider the problem of the calculation of the wiggler source size by means of numerical simulations alone, which play the same role of an experiment. We report a significant numerical disagreement between exact calculations and approximations currently used in the literature.

  4. Characterization of Medipix3 With Synchrotron Radiation

    CERN Document Server

    Gimenez, E N; Marchal, J; Turecek, D; Ballabriga, R; Tartoni, N; Campbell, M; Llopart, X; Sawhney, K J S

    2011-01-01

    Medipix3 is the latest generation of photon counting readout chips of the Medipix family. With the same dimensions as Medipix2 (256 x 256 pixels of 55 mu m x 55 mu m pitch each), Medipix3 is however implemented in an 8-layer metallization 0.13 mu m CMOS technology which leads to an increase in the functionality associated with each pixel over Medipix2. One of the new operational modes implemented in the front-end architecture is the Charge Summing Mode (CSM). This mode consists of a charge reconstruction and hit allocation algorithm which eliminates event-by-event the low energy counts produced by charge-shared events between adjacent pixels. The present work focuses on the study of the CSM mode and compares it to the Single Pixel Mode (SPM) which is the conventional readout method for these kind of detectors and it is also implemented in Medipix3. Tests of a Medipix3 chip bump-bonded to a 300 mu m thick silicon photodiode sensor were performed at the Diamond Light Source synchrotron to evaluate the performan...

  5. The RF Cycle of the PIMMS Synchrotron

    CERN Document Server

    Crescenti, M; Rossi, S

    1999-01-01

    This paper deals with the study of the rf cycle of the synchrotron of the Proton-Ion Medical Machine Study (PIMMS) hosted at CERN. The cycle comprises the adiabatic trapping, the acceleration and the rf gymnastics, both for protons and fully stripped carbon ions. The injection energy is 20 MeV for protons and 7 MeV/u for carbon. The maximum extraction energies are 250 MeV for protons and 400 MeV/u for carbon ions. The reserved time is less than 1 s, with a maximum magnetic field ramp of less than 3 T/s. The simulations show that the beam stays inside the aperture of the machine, and that there are no longitudinal losses. At the end of the cycle the beam is ready for extraction with a Dp/p of 0.4 %. The peak rf voltage is 3 kV and the frequency range is from 0.49 to 2.85 MHz.

  6. TOWARDS FAST-PULSED SUPERCONDUCTING SYNCHROTRON MAGNETS.

    Energy Technology Data Exchange (ETDEWEB)

    MORITZ,G.; MUEHLE,C.; ANERELLA,M.; GHOSH,A.; SAMPSON,W.; WANDERER,P.; WILLEN,E.; AGAPOV,N.; KHODZHIBAGIYAN,H.; KOVALENKO,A.; HASSENZAHL,W.V.; WILSON,M.N.

    2001-06-18

    The concept for the new GSI accelerator facilities is based on a large synchrotron designed for operation at BR=200 Tm and with the short cycle-time of about one second to achieve high average beam intensities. Superconducting magnets may reduce considerably investment and operating costs in comparison with conventional magnets. A R and D program was initiated to develop these magnets for a maximum field of 2-4 Tesla and a ramp rate of 4 T/s. In collaboration with JINR (Dubna), the window-frame type Nuclotron dipole, which has been operated with 4 T/s at a maximum field of 2 Tesla, shall be developed to reduce heat losses and to improve the magnetic field quality. Another collaboration with BNL (Brookhaven) was established to develop the one-layer-coil cos{theta}-type RHIC arc dipole designed for operation at 3.5 Tesla with a rather slow ramp-rate of 0.07 T/s towards the design ramp-rate of 4 T/s. The design concepts for both R and D programs are reported.

  7. Synchrotron powder diffraction on Aztec blue pigments

    Science.gov (United States)

    Sánchez Del Río, M.; Gutiérrez-León, A.; Castro, G. R.; Rubio-Zuazo, J.; Solís, C.; Sánchez-Hernández, R.; Robles-Camacho, J.; Rojas-Gaytán, J.

    2008-01-01

    Some samples of raw blue pigments coming from an archaeological rescue mission in downtown Mexico City have been characterized using different techniques. The samples, some recovered as a part of a ritual offering, could be assigned to the late Aztec period (XVth century). The striking characteristic of these samples is that they seem to be raw pigments prior to any use in artworks, and it was possible to collect a few μg of pigment after manual grain selection under a microscopy monitoring. All pigments are made of indigo, an organic colorant locally known as añil or xiuhquilitl. The colorant is always found in combination with an inorganic matrix, studied by powder diffraction. In one case the mineral base is palygorskite, a rare clay mineral featuring micro-channels in its structure, well known as the main ingredient of the Maya blue pigment. However, other samples present the minerals sepiolite (a clay mineral of the palygorskite family) and calcite. Another sample contains barite, a mineral never reported in prehispanic paints. We present the results of characterization using high resolution powder diffraction recorded at the European Synchrotron Radiation Facility (BM25A, SpLine beamline) complemented with other techniques. All of them gave consistent results on the composition. A chemical test on resistance to acids was done, showing a high resistance for the palygorskite and eventually sepiolite compounds, in good agreement with the excellent resistance of the Maya blue.

  8. A Remote and Virtual Synchrotron Beamline

    Science.gov (United States)

    Jackson, J. M.; Alp, E.; Sturhahn, W.

    2012-12-01

    National facilities offer one-of-a-kind opportunities to apply state-of-the-art experimental techniques to the pressing scientific problems of today. Yet, few students are able to experience research projects at national facilities due to limited accessibility caused in part by limited involvement in the local academic institution, constrained working areas at the experimental stations, and/or travel costs. We present a virtual and remote beam-line for Earth science studies using nuclear resonant and inelastic x-ray scattering methods at Sector 3 of the Advanced Photon Source at Argonne National Laboratory. Off-site students have the capability of controlling their measurements via secure internet connections and webcams. Students can access a 'view only mode' for ease of interaction and safety-control. More experienced users have exclusive control of the experiment and can remotely change variables within the experimental setup. Students may also access the virtual aspects these experiments by simulating certain conditions with our newly developed software. We evaluate such a tool by giving "before" and "after" assignments to students at different levels. These levels include high-school students from the Pasadena and greater Los Angeles area school districts, undergraduate students from Caltech's SURF/MURF program, and graduate students at Caltech. We specifically target underrepresented groups. Our results thus far show that the capabilities offered by our remote and virtual beamline show improved knowledge and understanding of applying experimental-based studies at the synchrotron to solve problems in the Earth sciences.

  9. An introduction to synchrotron radiation techniques and applications

    CERN Document Server

    Willmott, Philip

    2011-01-01

    This book introduces the reader to the basic concepts of the generation and manipulation of synchrotron light, its interaction with matter, and the application of synchrotron light in the “classical” techniques, while including some of the most modern technological developments. As much as possible, complicated mathematical derivations and formulas are avoided. A more heuristic approach is adopted, whereby the general physical reasoning behind the equations is highlighted.

  10. Study of complex molecules of biological interest with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Prince, K.C. [Elettra-Sincrotrone Trieste, Strada Statale 14–km 163,5 in AREA Science Park, I-34149 Trieste (Italy); Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, in Area Science Park, I-34149 Trieste (Italy); Molecular Model Discovery Laboratory, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Melbourne, Victoria, 3122 (Australia); Bolognesi, P., E-mail: paola.bolognesi@cnr.it [CNR-ISM, Area della Ricerca di Roma 1, Via Salaria Km. 29,300, Monterotondo (Roma) (Italy); Feyer, V. [Elettra-Sincrotrone Trieste, Strada Statale 14–km 163,5 in AREA Science Park, I-34149 Trieste (Italy); Research Center Jülich, Peter Grünberg Institute (PGI-6), 52425 Jülich (Germany); Plekan, O. [Elettra-Sincrotrone Trieste, Strada Statale 14–km 163,5 in AREA Science Park, I-34149 Trieste (Italy); Avaldi, L. [CNR-ISM, Area della Ricerca di Roma 1, Via Salaria Km. 29,300, Monterotondo (Roma) (Italy)

    2015-10-15

    Synchrotron radiation and synchrotron based spectroscopic techniques have found important applications in the study of isolated molecular species of biological interest. In this paper, some examples of spectroscopic and dynamic studies of amino acids and small peptides, nucleobases and pharmaceuticals are reviewed. Opportunities offered by the advent of new radiation sources combined with novel methods for the production of beams of these molecules are also discussed.

  11. Synchrotron radiation from a curved plasma channel laser wakefield accelerator

    CERN Document Server

    Palastro, J P; Hafizi, B; Chen, Y -H; Johnson, L A; Penano, J R; Helle, M H; Mamonau, A A

    2016-01-01

    A laser pulse guided in a curved plasma channel can excite wakefields that steer electrons along an arched trajectory. As the electrons are accelerated along the curved channel, they emit synchrotron radiation. We present simple analytical models and simulations examining laser pulse guiding, wakefield generation, electron steering, and synchrotron emission in curved plasma channels. For experimentally realizable parameters, a ~2 GeV electron emits 0.1 photons per cm with an average photon energy of multiple keV.

  12. On the polarized beam acceleration in medium energy synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.

    1992-12-31

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined.

  13. Ribbon thickness dependence of the Magnetic Alloy core characteristics in the accelerating frequency region of the J-PARC synchrotrons

    Science.gov (United States)

    Nomura, M.; Shimada, T.; Tamura, F.; Yamamoto, M.; Hara, K.; Hasegawa, K.; Ohmori, C.; Takata, K.; Toda, M.; Yoshii, M.; Schnase, A.

    2014-06-01

    We employ Magnetic Alloy (MA) core loaded RF cavities for the J-PARC synchrotrons to achieve a high field gradient. The MA core has a laminated structure of 18 μm thick ribbon layers. We have been developing high shunt impedance MA cores to prepare for an increase of beam power. At low frequencies, it is well known that the eddy current loss in the ribbon is proportional to the square of the ribbon thickness. The MA core shunt impedance can be increased by using thinner ribbons. On the other hand, at high frequencies, the MA core magnetic characteristics are largely different from low frequencies. Using thinner ribbons might be effective to increase the MA core shunt impedance in the accelerating frequency region of the J-PARC synchrotrons. We reviewed the theoretical calculations of the ribbon thickness dependence of the MA core magnetic characteristics and we derived the ribbon thickness dependence from measured data. The measured data show that the MA core shunt impedance is inversely proportional to the ribbon thickness in the accelerating frequency region of the J-PARC synchrotrons, which is consistent with our calculations.

  14. Operation of the Australian Store.Synchrotron for macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Grischa R. [Monash University, Clayton, Victoria 3800 (Australia); Aragão, David; Mudie, Nathan J.; Caradoc-Davies, Tom T. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); McGowan, Sheena; Bertling, Philip J.; Groenewegen, David; Quenette, Stevan M. [Monash University, Clayton, Victoria 3800 (Australia); Bond, Charles S. [The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia (Australia); Buckle, Ashley M. [Monash University, Clayton, Victoria 3800 (Australia); Androulakis, Steve, E-mail: steve.androulakis@monash.edu [Monash Bioinformatics Platform, Monash University, Clayton, Victoria 3800 (Australia)

    2014-10-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community.

  15. Gradient zone boundary control in salt gradient solar ponds

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Downers Grove, IL)

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  16. Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction.

    Science.gov (United States)

    Knipe, Kevin; Manero, Albert; Siddiqui, Sanna F; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M; Bartsch, Marion; Raghavan, Seetha

    2014-07-31

    The mechanical behaviour of thermal barrier coatings in operation holds the key to understanding durability of jet engine turbine blades. Here we report the results from experiments that monitor strains in the layers of a coating subjected to thermal gradients and mechanical loads representing extreme engine environments. Hollow cylindrical specimens, with electron beam physical vapour deposited coatings, were tested with internal cooling and external heating under various controlled conditions. High-energy synchrotron X-ray measurements captured the in situ strain response through the depth of each layer, revealing the link between these conditions and the evolution of local strains. Results of this study demonstrate that variations in these conditions create corresponding trends in depth-resolved strains with the largest effects displayed at or near the interface with the bond coat. With larger temperature drops across the coating, significant strain gradients are seen, which can contribute to failure modes occurring within the layer adjacent to the interface.

  17. Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction

    Science.gov (United States)

    Knipe, Kevin; Manero, Albert; Siddiqui, Sanna F.; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Bartsch, Marion; Raghavan, Seetha

    2014-07-01

    The mechanical behaviour of thermal barrier coatings in operation holds the key to understanding durability of jet engine turbine blades. Here we report the results from experiments that monitor strains in the layers of a coating subjected to thermal gradients and mechanical loads representing extreme engine environments. Hollow cylindrical specimens, with electron beam physical vapour deposited coatings, were tested with internal cooling and external heating under various controlled conditions. High-energy synchrotron X-ray measurements captured the in situ strain response through the depth of each layer, revealing the link between these conditions and the evolution of local strains. Results of this study demonstrate that variations in these conditions create corresponding trends in depth-resolved strains with the largest effects displayed at or near the interface with the bond coat. With larger temperature drops across the coating, significant strain gradients are seen, which can contribute to failure modes occurring within the layer adjacent to the interface.

  18. Pushing the Frontiers of Science with Synchrotron Radiation: BESAC Panel on DOE Synchrotron Radiation Sources and Science

    Science.gov (United States)

    Birgeneau, Robert J.

    1998-04-01

    During 1997 a panel empowered by the Basic Energy Sciences Advisory Committee and chaired by the speaker carried out a comprehensive review of the four DOE synchrotron sources, the ALS, APS, NSLS and SSRL^1.(Report of Basic Energy Sciences Advisory Committee Panel on DOE Synchrotron Radiation Sources and Science, November 1997) We also reviewed the science and technology, past and present, carried out at these facilities. This included the areas of materials research, surface science, polymers and other forms of soft condensed matter, atomic, optical, and molecular physics and chemistry, molecular environmental science, the geosciences and structural biology. We also considered more cursorily ongoing and proposed research on fourth generation sources. The most straightforward and most important conclusion of this study is that over the past 20 years in the United States synchrotron radiation research has evolved from an esoteric endeavor practiced by a small number of scientists primarily from the fields of solid state physics and surface science to a mainstream activity which provides essential information in all of the above fields. The user community at U.S. synchrotron facilities continues to grow exponentially, having reached more than 4000 on-site users annually in FY97. The research carried out at the four DOE synchrotron sources is both very broad and often exceptionally deep. We will review the results of this study with emphasis on the current science and anticipated future research carried out at modern synchrotron sources.

  19. Nuclear dynamical diffraction using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.E.

    1993-05-01

    The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. From the multipole electric field expansion resulting from time-dependent nonrelativistic perturbation theory, a dynamical scattering theory is constructed. This theory is shown, in the many particle limit, to be equivalent to the semi-classical approach where a quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave equation. The Moessbauer specimen whose low-lying energy levels were probed is a ferromagnetic lattice of {sup 57}Fe embedded in a yttrium iron garnet (YIG) crystal matrix. The hyperfine fields in YIG thin films were studied at low and room temperature using time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats were measured using a fast plastic scintillator coincidence photodetector and associated electronics having a time resolution of 2.5 nsec. The variation of the quantum beat patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Moessbauer factor of 8.2{plus_minus}0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10] reflection revealed that one of the YIG crystals had bifurcated into two different layers. The dynamics of nuclear superradiance was explored. This phenomenon includes the radiative speedup exhibited by a collective state of particles, and, in striking concurrence, resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat frequency shift of 1{1/2} natural resonance linewidths were observed. Nuclear resonance scattering was also found to be a useful way of performing angular interferometry experiments, and it was used to observe the phase shift of a rotated quantum state. On the whole, nuclear dynamical diffraction theory has superbly explained many of the fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei.

  20. Conjugate Gradient with Subspace Optimization

    CERN Document Server

    Karimi, Sahar

    2012-01-01

    In this paper we present a variant of the conjugate gradient (CG) algorithm in which we invoke a subspace minimization subproblem on each iteration. We call this algorithm CGSO for "conjugate gradient with subspace optimization". It is related to earlier work by Nemirovsky and Yudin. We apply the algorithm to solve unconstrained strictly convex problems. As with other CG algorithms, the update step on each iteration is a linear combination of the last gradient and last update. Unlike some other conjugate gradient methods, our algorithm attains a theoretical complexity bound of $O(\\sqrt{L/l} \\log(1/\\epsilon))$, where the ratio $L/l$ characterizes the strong convexity of the objective function. In practice, CGSO competes with other CG-type algorithms by incorporating some second order information in each iteration.

  1. Flame Propagation Through Concentration Gradient

    Institute of Scientific and Technical Information of China (English)

    JunyaIINO; MitsuakiTANABE; 等

    2000-01-01

    The experiment was carried out in homogeneous propane-air mixture and in several concentration gradient of mixture.Igniter is put on the upper side of the combustion chamber,In concentration gradient experiment.ixture was ignited from lean side.An experimental study was conducted in a combustion chamber.The combustion chamber has glass windows for optical measurements at any side.For the measurement of distribution of fuel concentration,infraed absorption method using 3.39μm He-Ne laser was used,and for the observation of proagating flams,Schlieren method was employed.As a measurment result of flame propagation velocity and flammable limit,for a mixture of an identical local equivalence ratio.flame propagation velocity in concentration gradient is faster than that in homogeneous mixture,and rich flammable limit in concentration gradient shows a tendency to be higher than that in homogeneous mixture.

  2. Sobolev gradients and differential equations

    CERN Document Server

    Neuberger, John William

    1997-01-01

    A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling.

  3. Microstructural gradients in thin hard coatings -- tailor-made

    DEFF Research Database (Denmark)

    Pantleon, Karen; Oettel, Heinrich

    1998-01-01

    ) alternating sputtering with and without substrate voltage and (c) pulsed bias voltage. On the basis of X-ray diffraction measurements, it is demonstrated that residual stress gradients and texture gradients can be designed tailor-made. Furthermore, results of microhardness measurements and scratch tests......Microstructural modifications resulting from time dependent variations of the bias voltage during the deposition of thin hard coatings are discussed. TiN-coatings are produced by reactive magnetron sputtering in several modes: (a) stepwise increase of the bias voltage during the deposition, (b...

  4. Low-gradient aortic stenosis.

    Science.gov (United States)

    Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe

    2016-09-07

    An important proportion of patients with aortic stenosis (AS) have a 'low-gradient' AS, i.e. a small aortic valve area (AVA <1.0 cm(2)) consistent with severe AS but a low mean transvalvular gradient (<40 mmHg) consistent with non-severe AS. The management of this subset of patients is particularly challenging because the AVA-gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA-low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS.

  5. Long pendulums in gravitational gradients

    Energy Technology Data Exchange (ETDEWEB)

    Suits, B H [Physics Department, Michigan Technological University, Houghton, MI 49931 (United States)

    2006-03-01

    Previous results for long pendulums above a spherical Earth are generalized for arbitrary non-uniform gravitational fields in the limit of small oscillation. As is the case for the previous results, gravitational gradients are multiplied by the length of the string even though the string is assumed massless. The effect is shown to arise from the constraint on the motion imposed by the string. The significance of these results for real gradients is discussed. (letters and comments)

  6. Alternative Energies

    Energy Technology Data Exchange (ETDEWEB)

    Planting, A.; De saint Jacob, Y.; Verwijs, H.; Belin, H.; Preesman, L.

    2009-03-15

    In two articles, one interview and one column attention is paid to alternative energies. The article 'A new light on saving energy' discusses the option to save energy by modernising lighting systems in urban areas. The column 'View from Paris' focuses on investment decisions in France with regard to renewable energy and energy savings. The article 'Europe turns a blind eye to big battery' discusses developments in batteries to store energy. The interview concerns fuel cell expert and formerly President of UTC Power Jan van Dokkum. The last article gives a brief overview of the European Energy Research Alliance (EERA) and the challenges this alliance will have to face with regard to climate change and energy security.

  7. Graded/Gradient Porous Biomaterials

    Directory of Open Access Journals (Sweden)

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  8. Indentation Size Effects in Single Crystal Copper as Revealed by Synchrotron X-ray Microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Feng, G.; Budiman, A. S.; Nix, W. D.; Tamura, N.; Patel, J. R.

    2007-11-19

    The indentation size effect (ISE) has been observed in numerous nanoindentation studies on crystalline materials; it is found that the hardness increases dramatically with decreasing indentation size - a 'smaller is stronger' phenomenon. Some have attributed the ISE to the existence of strain gradients and the geometrically necessary dislocations (GNDs). Since the GND density is directly related to the local lattice curvature, the Scanning X-ray Microdiffraction ({mu}SXRD) technique, which can quantitatively measure relative lattice rotations through the streaking of Laue diffractions, can used to study the strain gradients. The synchrotron {mu}SXRD technique we use - which was developed at the Advanced Light Source (ALS), Berkeley Lab - allows for probing the local plastic behavior of crystals with sub-micrometer resolution. Using this technique, we studied the local plasticity for indentations of different depths in a Cu single crystal. Broadening of Laue diffractions (streaking) was observed, showing local crystal lattice rotation due to the indentation-induced plastic deformation. A quantitative analysis of the streaking allows us to estimate the average GND density in the indentation plastic zones. The size dependence of the hardness, as found by nanoindentation, will be described, and its correlation to the observed lattice rotations will be discussed.

  9. Mono-Energy Coronary Angiography with a Compact Synchrotron Source

    Science.gov (United States)

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noёl, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-02-01

    X-ray coronary angiography is an invaluable tool for the diagnosis of coronary artery disease. However, the use of iodine-based contrast media can be contraindicated for patients who present with chronic renal insufficiency or with severe iodine allergy. These patients could benefit from a reduced contrast agent concentration, possibly achieved through application of a mono-energetic x-ray beam. While large-scale synchrotrons are impractical for daily clinical use, the technology of compact synchrotron sources strongly advanced during the last decade. Here we present a quantitative analysis of the benefits a compact synchrotron source can offer in coronary angiography. Simulated projection data from quasi-mono-energetic and conventional x-ray tube spectra is used for a CNR comparison. Results show that compact synchrotron spectra would allow for a significant reduction of contrast media. Experimentally, we demonstrate the feasibility of coronary angiography at the Munich Compact Light Source, the first commercial installation of a compact synchrotron source.

  10. Vacuum chambers full of ideas for the Swedish synchrotron

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    CERN’s Vacuum, Surfaces and Coatings group has contributed to the development of vacuum chambers for the MAX IV synchrotron, which has just been officially opened in Sweden.   A section of the new 3 GeV MAX IV synchrotron at the time of installation. In the centre of the magnets you can see the vacuum chamber developed in collaboration with CERN. (Photo: Marek Grabski, MAX IV Vacuum group) On 21 June, the King and the Prime Minister of Sweden officially opened MAX IV, a brand-new synchrotron in Lund, Sweden. The summer solstice, the longest day of the year, was deliberately chosen for the ceremony: MAX IV, a cutting-edge synchrotron, will deliver the brightest X-rays ever produced to more than 2000 users. Some 1500 kilometres away, a team at CERN followed the opening ceremony with a touch of pride. The Vacuum, Surfaces and Coatings group in the Technology department (TE-VSC) participated in the construction of this new synchrotron. Its contribution lies at the very hea...

  11. Modelisation of synchrotron radiation losses in realistic tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Albajar, F.; Johner, J.; Granata, G

    2000-08-01

    Synchrotron radiation losses become significant in the power balance of high-temperature plasmas envisaged for next step tokamaks. Due to the complexity of the exact calculation, these losses are usually roughly estimated with expressions derived from a plasma description using simplifying assumptions on the geometry, radiation absorption, and density and temperature profiles. In the present article, the complete formulation of the transport of synchrotron radiation is performed for realistic conditions of toroidal plasma geometry with elongated cross-section, using an exact method for the calculation of the absorption coefficient, and for arbitrary shapes of density and temperature profiles. The effects of toroidicity and temperature profile on synchrotron radiation losses are analyzed in detail. In particular, when the electron temperature profile is almost flat in the plasma center, as for example in ITB confinement regimes, synchrotron losses are found to be much stronger than in the case where the profile is represented by its best generalized parabolic approximation, though both cases give approximately the same thermal energy contents. Such an effect is not included in present approximate expressions. Finally, we propose a seven-variable fit for the fast calculation of synchrotron radiation losses. This fit is derived from a large database, which has been generated using a code implementing the complete formulation and optimized for massively parallel computing. (author)

  12. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  13. National Synchrotron Light Source 2008 Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for

  14. DEVELOPMENTS IN SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY AT THE NATIONAL SYNCHROTRON LIGHT SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    DOWD,B.A.

    1999-07-23

    Last year, the X27A beamline at the National Synchrotron Light Source (NSLS) became dedicated solely to X-Ray Computed Microtomography (XCMT). This is a third-generation instrument capable of producing tomographic volumes of 1-2 micron resolution over a 2-3mm field of view. Recent enhancements will be discussed. These have focused on two issues: the desire for real-time data acquisition and processing and the need for highly monochromatic beam (.1 % energy bandpass). The latter will permit k-edge subtraction studies and will provide improved image contrast from below the Cr (6 keV) up to the Cs (36 keV) k-edge. A range of applications that benefit from these improvements will be discussed as well. These two goals are somewhat counterproductive, however; higher monochromaticity yields a lower flux forcing longer data acquisition times. To balance the two, a more efficient scintillator for X-ray conversion is being developed. Some testing of a prototype scintillator has been performed; preliminary results will be presented here. In the meantime, data reconstruction times have been reduced, and the entire tomographic acquisition, reconstruction and volume rendering process streamlined to make efficient use of synchrotron beam time. A Fast Filtered Back Transform (FFBT) reconstruction program recently developed helped to reduce the time to reconstruct a volume of 150 x 150 x 250 pixels{sup 3} (over 5 million voxels) from the raw camera data to 1.5 minutes on a dual R10,000 CPU. With these improvements, one can now obtain a ''quick look'' of a small tomographic volume ({approximately}10{sup 6}voxels) in just over 15 minutes from the start of data acquisition.

  15. Solution synchrotron x-ray diffraction reveals structural details of lipid domains in ternary mixtures

    Science.gov (United States)

    Yuan, Jing; Kiss, Alexander; Pramudya, Yohanes H.; Nguyen, Lam T.; Hirst, Linda S.

    2009-03-01

    The influence of cholesterol on lipid bilayer structure is significant and the effect of cholesterol on lipid sorting and phase separation in lipid-raft-forming model membrane systems has been well investigated by microscopy methods on giant vesicles. An important consideration however is the influence of fluorescence illumination on the phase state of these lipids and this effect must be carefully minimized. In this paper, we show that synchrotron x-ray scattering on solution lipid mixtures is an effective alternative technique for the identification and characterization of the lo (liquid ordered) and ld (liquid disordered) phases. The high intensity of synchrotron x rays allows the observation of up to 5 orders of diffraction from the lo phase, whereas only two are clearly visible when the ld phase alone is present. This data can be collected in ˜1min/sample , allowing rapid generation of phase data. In this paper, we measure the lamellar spacing in both the liquid-ordered and liquid-disordered phases simultaneously, as a function of cholesterol concentration in two different ternary mixtures. We also observe evidence of a third gel-phaselike population at 10-12mol% cholesterol and determine the thickness of the bilayer for this phase. Importantly we are able to look at phase coexistence in the membrane independent of photoeffects.

  16. Solution Synchrotron X-ray Diffraction Reveals Structural Details of Lipid Domains in Ternary Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, J.; Kiss, A; Pramudya, Y; Nguyen, L; Hirst, L

    2009-01-01

    The influence of cholesterol on lipid bilayer structure is significant and the effect of cholesterol on lipid sorting and phase separation in lipid-raft-forming model membrane systems has been well investigated by microscopy methods on giant vesicles. An important consideration however is the influence of fluorescence illumination on the phase state of these lipids and this effect must be carefully minimized. In this paper, we show that synchrotron x-ray scattering on solution lipid mixtures is an effective alternative technique for the identification and characterization of the l o (liquid ordered) and l d (liquid disordered) phases. The high intensity of synchrotron x rays allows the observation of up to 5 orders of diffraction from the l o phase, whereas only two are clearly visible when the l d phase alone is present. This data can be collected in approximately 1 min/sample, allowing rapid generation of phase data. In this paper, we measure the lamellar spacing in both the liquid-ordered and liquid-disordered phases simultaneously, as a function of cholesterol concentration in two different ternary mixtures. We also observe evidence of a third gel-phaselike population at 10-12 mol % cholesterol and determine the thickness of the bilayer for this phase. Importantly we are able to look at phase coexistence in the membrane independent of photoeffects.

  17. Dual-rail optical gradient echo memory

    CERN Document Server

    Higginbottom, Daniel B; Campbell, Geoff T; Hosseini, Mahdi; Cao, Ming Tao; Sparkes, Ben M; Bernu, Julian; Robins, Nick P; Lam, Ping Koy; Buchler, Ben C

    2016-01-01

    We introduce a scheme for the parallel storage of frequency separated signals in an optical memory and demonstrate that this dual-rail storage is a suitable memory for high fidelity frequency qubits. The two signals are stored simultaneously in the Zeeman-split Raman absorption lines of a cold atom ensemble using gradient echo memory techniques. Analysis of the split-Zeeman storage shows that the memory can be configured to preserve the relative amplitude and phase of the frequency separated signals. In an experimental demonstration dual-frequency pulses are recalled with 35% efficiency, 82% interference fringe visibility, and 6 degrees phase stability. The fidelity of the frequency-qubit memory is limited by frequency-dependent polarisation rotation and ambient magnetic field fluctuations, our analysis describes how these can be addressed in an alternative configuration.

  18. Transvenous coronary angiography in humans with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Thomlinson, W.

    1994-10-01

    The transvenous coronary angiography project at the National Synchrotron Light Source (NSLS) is presently undergoing a significant upgrade to the hardware and software in the synchrotron medical facility. When completed, the project will have reached a level of maturity in the imaging technology which will allow the research team to begin to concentrate on medical research programs. This paper will review the status of the project and imaging technology and will discuss the current upgrades and future advanced technology initiatives. The advantages of using the radiation from a synchrotron, over that from a standard x-ray source, were the motivation for the project. A total of 23 human imaging sessions have been carried out with in the project. The primary goals have been to establish the imaging parameters and protocol necessary to obtain clinically useful images.

  19. High Intensity Beam Issues in the CERN Proton Synchrotron

    CERN Document Server

    Aumon, Sandra; Rivkin, Leonid

    This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of its performance to match the future requirements. Beam instabilities driven by transverse impedance and aperture restrictions are important issues for the operation and for the High-Luminosity LHC upgrade which foresees an intensity increase delivered by the injectors. The main subject of the thesis concerns the study of a fast transverse instability occurring at transition energy. The proton beams crossing this energy range are particularly sensitive to wake forces because of the slow synchrotron motion. This instability can cause a strong vertical emittance blow-up and severe losses in less than a synchrotron period. Experimental observations show that the particles at the peak density of the beam longitudinal distribution oscillate in the vertical plane du...

  20. NATIONAL SYNCHROTRON LIGHT SOURCE MEDICAL PERSONNEL PROTECTION INTERLOCK

    Energy Technology Data Exchange (ETDEWEB)

    BUDA,S.; GMUR,N.F.; LARSON,R.; THOMLINSON,W.

    1998-11-03

    This report is founded on reports written in April 1987 by Robert Hettel for angiography operations at the Stanford Synchrotron Research Laboratory (SSRL) and a subsequent report covering angiography operations at the National Synchrotron Light Source (NSLS); BNL Informal Report 47681, June 1992. The latter report has now been rewritten in order to accurately reflect the design and installation of a new medical safety system at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). Known originally as the Angiography Personnel Protection Interlock (APPI), this system has been modified to incorporate other medical imaging research programs on the same beamline and thus the name has been changed to the more generic Medical Personnel Protection Interlock (MPPI). This report will deal almost exclusively with the human imaging (angiography, bronchography, mammography) aspects of the safety system, but will briefly explain the modular aspects of the system allowing other medical experiments to be incorporated.

  1. RF-knockout Extraction System for the CNAO Synchrotron

    CERN Document Server

    Carmignani, Nicola; Serio, Mario; Balbinot, Giovanni; Bressi, Erminia; Caldara, Michele; Pullia, Marco; Bosser, Jacques; Venchi, Giuseppe

    2010-01-01

    The National Centre for Oncological Hadrontherapy (CNAO) is a centre in Italy for the treatment of patients affected by tumours with proton and carbon ions beams accelerated in a synchrotron. The synchrotron extraction method is based on the use of a betatron core. This work aims to verify, through a theoretical study and a simulation, the possibility of using the RF-knockout extraction method exploiting the existing hardware. A simulation program has been written to simulate the extraction system of the synchrotron with the purpose to define the parameters of the radio frequency. Two types of radio frequencies have been compared in order to obtain a constant spill with the minimum ripple: a carrier wave with a frequency and amplitude modulation, and a gaussian narrow band noise modulated in amplitude. Results of the simulation and considerations on the kicker characteristics are presented

  2. Transfiguration of extracting mirror in synchrotron radiation system at SSRF

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The first extracting mirror is very important for synchrotron radiation monitor (SRM). The SRM system of SSRF (Shanghai Synchrotron Radiation Facility) should extract the visible light with low optical distortion. The analysis of SR power spectrum and heat transfiguration based on Matlab is introduced in this paper, which will be used in calibration. One beryllium mirror with water-cooling is used to transmit X-ray and reflect visible light to satisfy the measurement request. The existing system suffers from a dynamic problem in some beam physics study. The system includes optics, image acquisition and interferometers. One of the instruments is a digital camera providing the image of the beam transverse profile. The hardware configuration will be summarized. The synchrotron radiation measurement system has been in operation in SSRF for more than one year.

  3. Applications of synchrotron radiation techniques to materials science 4

    Energy Technology Data Exchange (ETDEWEB)

    Mini, S.M. [ed.] [Northern Illinois Univ., DeKalb, IL (United States)]|[Argonne National Lab., IL (United States); Stock, S.R. [ed.] [Georgia Inst. of Tech., Atlanta, GA (United States); Perry, D.L. [ed.] [Lawrence Berkeley National Lab., CA (United States); Terminello, L.J. [ed.] [Lawrence Livermore National Lab., CA (United States)

    1998-12-31

    As more synchrotron facilities are constructed and go online both in the US and in other countries, even more applications of synchrotron radiation will be realized. Both basic and applied research possibilities are manifold, including studies of materials mentioned below and those that are yet to be discovered. Also, the combination of synchrotron-based spectroscopic techniques with ever increasing high-resolution microscopy allows researchers to study very small domains of materials in an attempt to understand their chemical and electronic properties. This is especially important in the areas of composites and other related materials involving material bonding interfaces. The topics covered in this symposium include surfaces, interfaces, electronic materials, metal oxides, solar cells, thin films, carbides, polymers, alloys, nanoparticles, and graphitic materials. Results reported at this symposium relate recent advances in X-ray absorption and scattering, imaging, tomography, microscopy, and topography methods.

  4. HSC5: synchrotron radiation and neutrons for cultural heritage studies

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Anne [Institut Neel - CNRS, 38 - Grenoble (France); Artioli, G. [Padova Univ. (Italy); Bleuet, P.; Cotte, M.; Tafforeau, P.; Susini, J. [European Synchrotron Radiation Facility, 38 - Grenoble (France); Dumas, P.; Somogyl, A. [SOLEIL Synchrotron, 91 - Gif sur Yvette (France); Cotte, M. [Centre de Recherche et de Restauration des Musees de France, UMR171, 75 - Paris (France)]|[European Synchrotron Radiation Facility, 38 - Grenoble (France); Kockelmann, W. [Science and Technology Facilities Council, Rutherford Appleton Lab. (United Kingdom); Kolar, J. [Ljubljana Univ., Morana RTD, Slovenia, Faculty of Chemistry and Chemical Technology (Slovenia); Areon, I. [Nova Gorica Univ. (Slovenia); Meden, A.; Strlie, M. [Ljubljana Univ., Faculty of Chemistry and Chemical Technology (Slovenia); Pantos, M. [Daresbury Laboratory, Warrington (United Kingdom); Vendrell, M. [Barcelona Univ., dept. of Crystallography and Mineralogy (Spain); Wess, T. [Cardiff Univ., School of Optometry and Institute of Vision (Ireland); Gunneweg, J. [Hebrew Univ., Jerusalem (Israel)

    2007-07-01

    Synchrotron and neutron sources offer recent and additional insight into the records of our cultural past. Over the last years, there has been an increasing demand for access to synchrotron radiation- and neutron-based techniques, and their applications in the fields of archaeological science and cultural heritage. The purpose of this Hercules Specialized Course is to give the participants an introduction to the basic principles of synchrotron radiation and neutron techniques (imaging, microscopy, diffraction, absorption and fluorescence, IR spectroscopy). The school provides cross-disciplinary examples illustrating the abilities of these techniques in a representative range of scientific cases concerning painting, archaeological artefacts, inks, pigments, fossils and the Dead Sea scrolls. This document gathers only the resumes of the lectures.

  5. Phase contrast image guidance for synchrotron microbeam radiotherapy

    Science.gov (United States)

    Pelliccia, Daniele; Crosbie, Jeffrey C.; Larkin, Kieran G.

    2016-08-01

    Recent image guidance developments for preclinical synchrotron microbeam radiotherapy represent a necessary step for future clinical translation of the technique. Image quality can be further improved using x-ray phase contrast, which is readily available at synchrotron facilities. We here describe a methodology for phase contrast image guidance at the Imaging and Medical Beamline at the Australian Synchrotron. Differential phase contrast is measured alongside conventional attenuation and used to improve the image quality. Post-processing based on the inverse Riesz transform is employed on the measured data to obtain noticeably sharper images. The procedure is extremely well suited for applications such as image guidance which require both visual assessment and sample alignment based on semi automatic image registration. Moreover, our approach can be combined with all other differential phase contrast imaging techniques, in all cases where a quantitative evaluation of the refractive index is not required.

  6. Synchrotron X-ray induced solution precipitation of nanoparticles

    CERN Document Server

    Lee, H J; Hwu, Y; Tsai, W L

    2003-01-01

    By irradiating a solution in electroless Ni deposition using synchrotron X-rays, Ni composite was found to nucleate homogeneously and eventually precipitate in the form of nanoparticles. The size of the nanoparticles precipitated is rather uniform (100-300 nm depending on the applied temperature). By the addition of an organic acid, well-dispersed nanoparticles could be effectively deposited on glass substrate. The hydrated electrons (e sub a sub q sup -), products of radiolysis of water molecules by synchrotron X-rays, may be responsible for the effective reduction of the metal ions, resulting in homogeneous nucleation and nanoparticle formation. Our results suggest that synchrotron X-ray can be used to induce solution precipitation of nanoparticles and therefore lead to a new method of producing nanostructured particles and coating.

  7. 6th International School “Synchrotron Radiation and Magnetism”

    CERN Document Server

    Bulou, Hervé; Joly, Loic; Scheurer, Fabrice; Magnetism and Synchrotron Radiation : Towards the Fourth Generation Light Sources

    2013-01-01

     Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials. At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale. With the Sixth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.

  8. K-Edge Subtraction Angiography with Synchrotron X-Rays

    CERN Document Server

    Giacomini, J C

    1996-01-01

    The purpose of this project was to utilize dual energy, monochromatic X-rays produced from synchrotrons radiation in order to obtain noninvasive medical imaging. The application of synchrotrons radiation to medical imaging is based on the principle of iodine dichromography, first described by Bertil Jacobson of the Karolinska Institute in 1953. Medical imaging using synchrotrons radiation and K-edge dichromography was pioneered at Stanford University under the leadership of Dr. Ed Rubenstein, and the late Nobel Laureate in Physics, Dr. Robert Hofstadter. With progressive refinements in hardware, clinical-quality images were obtained of human coronary arteries utilizing peripheral injections of iodinated contrast agent. These images even now are far superior to those being presented by investigators using MRI as an imaging tool for coronary arteries. However, new supplies and instruments in the cardiac catheterization laboratory have served to transform coronary angiography into an outpatient procedure, with r...

  9. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-03-14

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  10. Rising dough and baking bread at the Australian synchrotron

    Science.gov (United States)

    Mayo, S. C.; McCann, T.; Day, L.; Favaro, J.; Tuhumury, H.; Thompson, D.; Maksimenko, A.

    2016-01-01

    Wheat protein quality and the amount of common salt added in dough formulation can have a significant effect on the microstructure and loaf volume of bread. High-speed synchrotron micro-CT provides an ideal tool for observing the three dimensional structure of bread dough in situ during proving (rising) and baking. In this work, the synchrotron micro-CT technique was used to observe the structure and time evolution of doughs made from high and low protein flour and three different salt additives. These experiments showed that, as expected, high protein flour produces a higher volume loaf compared to low protein flour regardless of salt additives. Furthermore the results show that KCl in particular has a very negative effect on dough properties resulting in much reduced porosity. The hundreds of datasets produced and analysed during this experiment also provided a valuable test case for handling large quantities of data using tools on the Australian Synchrotron's MASSIVE cluster.

  11. Simulation of a Microfluidic Gradient Generator using Lattice Boltzmann Methods

    CERN Document Server

    Simon, Tanaka

    2013-01-01

    Microfluidics provides a powerful and versatile technology to accurately control spatial and temporal conditions for cell culturing and can therefore be used to study cellular responses to gradients. Here we use Lattice Boltzmann methods (LBM) to solve both the Navier-Stokes equation (NSE) for the fluid and the coupled convection-diffusion equation (CDE) for the compounds that form the diffusion-based gradient. The design of a microfluidic chamber for diffusion-based gradients must avoid flow through the cell chamber. This can be achieved by alternately opening the source and the sink channels. The fast toggling of microfluidic valves requires switching between different boundary conditions. We demonstrate that the LBM is a powerful method for handling complex geometries, high Peclet number conditions, discontinuities in the boundary conditions, and multiphysics coupling.

  12. Electrohydromechanical analysis based on conductivity gradient in microchannel

    Institute of Scientific and Technical Information of China (English)

    Jiang Hong-Yuan; Ren Yu-Kun; Ao Hong-Rui; Antonio Ramos

    2008-01-01

    Fluid manipulation is very important in any lab-on-a-chip system. This paper analyses phenomena which use the alternating current (AC) electric field to deflect and manipulate coflowing streams of two different electrolytes (with conductivity gradient) within a microfluidic channel. The basic theory of the electrohydrodynamics and simulation of the analytical model are used to explain the phenomena. The velocity induced for different voltages and conductivity gradient are computed. The results show that when the AC electrical signal is applied on the electrodes, the fluid with higher conductivity occupies a larger region of the channel and the interface of the two fluids is deflected. It will provide some basic reference for people who want to do more study in the control of different fluids with conductivity gradient in a microfluidic channel.

  13. Combustion study with synchrotron radiation single photon ionization technique

    Institute of Scientific and Technical Information of China (English)

    YANG Rui; WANG Jing; HUANG Chaoqun; YANG Bin; WEI Lixia; SHAN Xiaobin; SHENG Liusi; ZHANG Yunwu; QI Fei

    2005-01-01

    Here we report a combustion endstation at National Synchrotron Radiation Laboratory (NSRL) and some primary experimental results. Synchrotron radiation can provide the tunable vacuum ultraviolet (VUV) photon with the high intensity and the good collimation. VUV photoionization is a single-photon ionization process. Combined with molecular-beam mass spectrometry (MBMS), the VUV single-photon ionization can be applied to detect the combustion products, especially the intermediates and free radicals produced from combustion process. This method is proved to be a powerful tool for combustion study, which could be helpful for developing combustion kinetic models and understanding the mechanism of combustion reactions.

  14. Design of a compact synchrotron for medical applications

    CERN Document Server

    Harbi, N A

    2003-01-01

    An optimal design of a low energy (300 MeV) proton synchrotron for medical applications is addressed. The machine has the following properties: (1) The transition energy is higher than the targets final proton beam energy of 300 MeV; (2) the betatron tunes are chosen such that the machine is free of systematic resonances; (3) the machine can accommodate both slow and fast extraction systems; and (4) the machine can provide rapid cycling operations depending on the rf cavity voltage. Applications of this low energy synchrotron are discussed. (10 refs).

  15. Observation of wide rf induced synchrotron sideband depolarizing resonances.

    Science.gov (United States)

    Bychkov, M. A.; Anferov, V. A.; Blinov, B. B.; Courant, E. D.; Crandell, D. A.; Derbenev, Ya. S.; Kaufman, W. A.; Krisch, A. D.; Lorenzon, W.; Nurushev, T. S.; Phelps, R. A.; Wong, V. K.; Caussyn, D. D.; Chu, C. M.; Ellison, T. J. P.; Lee, S. Y.; Rinckel, T.; Schwandt, P.; Sperisen, F.; Stephenson, E. J.; von Przewoski, B.; Ohmori, C.; Minty, M. G.; Russell, A. D.

    1997-04-01

    In a recent experiment with a stored 104.1 MeV vertically polarized proton beam at the IUCF Cooler Ring, we depolarized the beam using an rf solenoid with a magnetic field of about 1.3\\cdot10-3T\\cdotm. We observed the two expected rf depolarizing resonances centered around the protons' 1.5 MHz circulation frequency as in previous experiments. Near each of these resonances, we also found synchrotron sidebands which are caused by the proton's energy oscillations. The strengths and widths of the synchrotron resonances were quite different for the sidebands above and below the circulation frequency.

  16. Extended 1D Method for Coherent Synchrotron Radiation including Shielding

    CERN Document Server

    Sagan, David; Mayes, Christopher; Sae-Ueng, Udom

    2008-01-01

    Coherent Synchrotron Radiation can severely limit the performance of accelerators designed for high brightness and short bunch length. Examples include light sources based on ERLs or FELs, and bunch compressors for linear colliders. In order to better simulate Coherent Synchrotron Radiation, the established 1-dimensional formalism is extended to work at lower energies, at shorter bunch lengths, and for an arbitrary configuration of multiple bends. Wide vacuum chambers are simulated by means of vertical image charges. This formalism has been implemented in the general beam dynamics code "Bmad" and its results are here compared to analytical approximations, to numerical solutions of the Maxwell equations, and to the simulation code "elegant".

  17. Synchrotron radiation as a light source in confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    van der Oord, C.J.R.; Gerritsen, H.C.; Levine, Y.K. (University of Utrecht, P.O. Box 80.000, 3508 TA Utrecht (Netherlands)); Myring, W.J.; Jones, G.R.; Munro, I.H. (Daresbury Laboratory (United Kingdom))

    1992-01-01

    The optical properties of a confocal scanning microscope that was designed to utilize a synchrotron as light source are presented. The usable spectral range is from 200 nm up to 700 nm. Using 325-nm laser light, it is shown that the lateral resolution is about 125 nm, and the axial resolution better than 250 nm. After transport of the microscope from Utrecht to the Daresbury Synchrotron Source, 200-nm excitation can be applied, and the lateral resolution will drop to below 100 nm.

  18. SYNCHROTRON RADIATION XRF MICROPROBE STUDY OF HUMAN BONE TUMOR SLICE

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The experimental apparatus of X-ray fluorescence (XRF) microprobe analysis at Beijing Synchrotron Radiation Facility (BSRF) is described Using the bovine liver as the standard reference.the minimum detection limit(MDL) of trace element was measured to determine the capability of biological sample analysis by synchrotron radiation XRF microprobe.The relative change of the content of the major or trace element in the normal and tumor part of human bone tissue slice was investigated The experimental result relation to the clinical medicine was also discussed.

  19. Gradient expansion for anisotropic hydrodynamics

    Science.gov (United States)

    Florkowski, Wojciech; Ryblewski, Radoslaw; Spaliński, Michał

    2016-12-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of nonhydrodynamic modes.

  20. Gradient expansion for anisotropic hydrodynamics

    CERN Document Server

    Florkowski, Wojciech; Spaliński, Michał

    2016-01-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.

  1. Nonchaotic stagnant motion in a marginal quasiperiodic gradient system.

    Science.gov (United States)

    Mitsui, Takahito

    2008-08-01

    A one-dimensional dynamical system with a marginal quasiperiodic gradient is presented as a mathematical extension of a nonuniform oscillator. The system exhibits a nonchaotic stagnant motion, which is reminiscent of intermittent chaos. In fact, the density function of residence times near stagnation points obeys an inverse-square law, due to a mechanism similar to type-I intermittency. However, unlike intermittent chaos, in which the alternation between long stagnant phases and rapid moving phases occurs in a random manner, here the alternation occurs in a quasiperiodic manner. In particular, in the case of a gradient with the golden ratio, the renewal of the largest residence time occurs at positions corresponding to the Fibonacci sequence. Finally, the asymptotic long-time behavior, in the form of a nested logarithm, is theoretically derived. Compared with the Pomeau-Manneville intermittency, a significant difference in the relaxation property of the long-time average of the dynamical variable is found.

  2. Bond Growth under Temperature Gradient.

    Directory of Open Access Journals (Sweden)

    P.K. Satyawali

    1999-12-01

    Full Text Available Grain and bond growth for dry snow are determined by the distribution of temperature andtemperature gradient in the snow matrix. From the standpoint of particle approach and based oncubic packing structure, a bond growth model has been developed for TG metamorphism. The paper.highlights the importance of bond formation and its effect on snow viscosity and finally on the rateof settlement. This is very important for developing a numerical snow pack model if microstructureis considered to be a basic parameter. A few experiments have been carried out to validate bond formation under temperature gradient.

  3. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  4. Design and optimization of the lattice of the superconducting synchrotron SIS300 for slow extraction

    Energy Technology Data Exchange (ETDEWEB)

    Saa Hernandez, Angela

    2011-10-15

    The superconducting synchrotron SIS300 is planned to be built at the new Facility for Antiproton and Ion Research (FAIR), at GSI-Darmstadt. SIS300 will be a versatile machine, which by means of a low-energy stretcher-mode or a high-energy ramped-mode will provide slowly extracted heavy ion beams towards the experimental areas. To reach the required maximum field of 4.5 T, cos({theta}) magnets are necessary. Thus, SIS300 will become the first superconducting synchrotron worldwide with cos({theta}) magnets providing resonant slow extraction. Since SIS300 will be installed in the same tunnel as the SIS100 synchrotron, the dipole layout of SIS300 cannot be freely chosen. Thus, a standard lattice cannot be applied. A redesign of the SIS300 lattice accepting compromises concerning the positions and phase advances between the optical elements has been proposed. Using the analytical model of the slow extraction, firstly proposed by Kobayashi, and the analytical description of the resonance driving modes, a multiobjective optimization algorithm has been developed for the optimization of the lattice under the given boundary conditions. The final goal of the lattice optimization is a higher efficiency of the slow extraction. The results are evaluated by means of tracking simulations performed with the code Elegant. The field quality in superconducting cos({theta}) magnets is determined by the positions of the superconducting cable and the static and time-dependent effects of the current in the cable. Furthermore, the fast ramp rates of 1 T/s in the dipoles, which are fifty times faster than in any other superconducting cos({theta}) magnet, together with the fact that the aperture is smaller than in conventional accelerator magnets, makes it extremely difficult to obtain a high-quality magnetic field. The unavoidable field errors affect the beam dynamics and worsen the slow extraction efficiency. Therefore, the field errors in the SIS300 dipoles have been estimated, and their

  5. Looking for an Alternative.

    Science.gov (United States)

    Kennedy, Jack

    1999-01-01

    Argues that high school newspapers might do well to create stronger ties with alternative weeklies. Discusses issues of niche marketing, alternative content, and alternative presentation. Notes that high school papers could learn a lot from alternative newspapers. (SR)

  6. Mathematical modelling of digit specification by a sonic hedgehog gradient

    KAUST Repository

    Woolley, Thomas E.

    2013-11-26

    Background: The three chick wing digits represent a classical example of a pattern specified by a morphogen gradient. Here we have investigated whether a mathematical model of a Shh gradient can describe the specification of the identities of the three chick wing digits and if it can be applied to limbs with more digits. Results: We have produced a mathematical model for specification of chick wing digit identities by a Shh gradient that can be extended to the four digits of the chick leg with Shh-producing cells forming a digit. This model cannot be extended to specify the five digits of the mouse limb. Conclusions: Our data suggest that the parameters of a classical-type morphogen gradient are sufficient to specify the identities of three different digits. However, to specify more digit identities, this core mechanism has to be coupled to alternative processes, one being that in the chick leg and mouse limb, Shh-producing cells give rise to digits; another that in the mouse limb, the cellular response to the Shh gradient adapts over time so that digit specification does not depend simply on Shh concentration. Developmental Dynamics 243:290-298, 2014. © 2013 Wiley Periodicals, Inc.

  7. Reinforcement Learning Through Gradient Descent

    Science.gov (United States)

    1999-05-14

    Reinforcement learning is often done using parameterized function approximators to store value functions. Algorithms are typically developed for...practice of existing types of algorithms, the gradient descent approach makes it possible to create entirely new classes of reinforcement learning algorithms

  8. The geomagnetic field gradient tensor

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Olsen, Nils

    2012-01-01

    We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independe...... of the small-scale structure of the Earth’s lithospheric field....

  9. Compositional gradients in Gramineae genes

    DEFF Research Database (Denmark)

    Wong, Gane Ka-Shu; Wang, Jun; Tao, Lin

    2002-01-01

    In this study, we describe a property of Gramineae genes, and perhaps all monocot genes, that is not observed in eudicot genes. Along the direction of transcription, beginning at the junction of the 5'-UTR and the coding region, there are gradients in GC content, codon usage, and amino-acid usage...

  10. GOCE level 2 gravity gradients

    NARCIS (Netherlands)

    Bouman, J.; Fiorot, S.; Fuchs, M.; Gruber, T.; Schrama, E.J.O.; Tscherning, C.C.; Veicherts, M.; Visser, P.N.A.M.

    2011-01-01

    Two of the GOCE Level 2 products are the gravity gradients (GGs) in the Gradiometer Reference Frame (GRF) and the GGs in the Local North-Oriented Frame (LNOF). The GRF is an instrument frame and the GGs are derived from the L1b GGs. The L1b to L2 GG processing involves corrections for temporal gravi

  11. Surface gradients under electrochemical control

    NARCIS (Netherlands)

    Krabbenborg, Sven Olle

    2014-01-01

    Gradients are systems in which the physicochemical properties of a solution and/or surface change gradually in space and/or time. They are used for a myriad of technological and biological applications, for example for high-throughput screening, or for the investigation of biological systems. The de

  12. Characterizing THz Coherent Synchrotron Radiation at Femtosecond Linear Accelerator

    Institute of Scientific and Technical Information of China (English)

    LIN Xu-Ling; ZHANG Jian-Bing; LU YU; LUO Feng; LU Shan-Liang; YU Tie-Min; DAI Zhi-Min

    2009-01-01

    The generation and observation of coherent THz synchrotron radiation from femtosecond electron bunches in the Shanghai Institute of Applied Physics femtosecond accelerator device is reported.We describe the experiment setup and present the first result of THz radiation properties such as power and spectrum.

  13. Cored Rutherford cables for the GSI fast ramping synchrotron

    NARCIS (Netherlands)

    Wilson, M.N.; Ghosh, A.K.; Haken, ten B.; Hassenzahl, W.V.; Kaugerts, J.; Moritz, G.; Muehle, C.; Ouden, den A.; Soika, R.; Wanderer, P.; Wessel, W.A.J.

    2003-01-01

    The new heavy ion synchrotron facility proposed by GSI will have two superconducting magnet rings in the same tunnel, with rigidities of 200 T/spl middot/m and 100 T/spl middot/m. Fast ramp times are needed, which can cause significant problems for the magnets, particularly in the areas of ac loss a

  14. Design of slow extraction system for therapy synchrotron

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Quan; SONG Ming-Tao; WEI Bao-Wen

    2009-01-01

    Based on the optimized design of the lattice for therapy synchrotron and considering the requirement of radiation therapy,the third order resonant extraction is adopted.Using the momentum-amplitude selection method,the extraction system is designed and optimized.An extraction efficiency of more than 97%and a momentum spread less than 0.11%are obtained.

  15. Dazzling new light source opens at Stanford synchrotron radiation laboratory

    CERN Multimedia

    2004-01-01

    SPEAR3, the Stanford Positron Electron Asymmetric Ring, was formally opened at a dedication ceremony at the Stanford Linear Accelerator Center on Jan. 29. It incorporates the latest technology to make it competitive with the best synchrotron sources in the world (1/2 page)

  16. Research by industry at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The world`s foremost facility for research using x-rays and ultraviolet and infrared radiation, is operated by the National Synchrotron Light Source dept. This pamphlet described the participating research teams that built most of the beam lines, various techniques for studying materials, treatment of materials, and various industrial research (catalysis, pharmaceuticals, etc.).

  17. A new method of depth profile determination by synchrotron radiation

    Science.gov (United States)

    Abbas, K.; Midy, P.; Brissaud, I.; Chevallierr, P.

    1992-08-01

    We propose a new method of depth profile determination using X-ray fluorescence analysis induced by synchrotron radiation. We show that uncertainties introduced in the solution of the system can be overcome using a calculation techniques based on a singular value decomposition of the matrix. This method may also apply to many other problems dealing with poorly conditioned systems.

  18. Surface Reactions Studied by Synchrotron Based Photoelectron Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hrbek, J.

    1998-11-03

    The goal of this article is to illustrate the use of synchrotron radiation for investigating surface chemical reactions by photoelectron spectroscopy. A brief introduction and background information is followed by examples of layer resolved spectroscopy, oxidation and sulfidation of metallic, semiconducting and oxide surfaces.

  19. Polarized galactic synchrotron and dust emission and their correlation

    CERN Document Server

    Choi, Steve K

    2015-01-01

    We present an analysis of the level of polarized dust and synchrotron emission using the WMAP9 and Planck data. The primary goal of this study is to inform the assessment of foreground contamination in the cosmic microwave background (CMB) measurements below $\\ell\\sim200$ from 23 to 353 GHz. We compute angular power spectra as a function of sky cut based on the Planck 353 GHz polarization maps. Our primary findings are the following. (1) There is a spatial correlation between the dust emission as measured by Planck at 353 GHz and the synchrotron emission as measured by WMAP at 23 GHz with $\\rho\\approx0.4$ or greater for $\\ell<20$ and $f_{\\mathrm{sky}}\\geq0.5$, dropping to $\\rho\\approx0.2$ for $30<\\ell<200$. (2) A simple foreground model with dust, synchrotron, and their correlation fits well to all possible cross spectra formed with the WMAP and Planck 353 GHz data given the current uncertainties. (3) In the 50$\\%$ cleanest region of the polarized dust map, the ratio of synchrotron to dust amplitudes...

  20. Synchrotron Radiation in eRHIC Interaction Region

    CERN Document Server

    Beebe-Wang, Joanne; Montag, Christoph; Rondeau, Daniel J; Surrow, Bernd

    2005-01-01

    The eRHIC currently under study at BNL consists of an electron storage ring added to the existing RHIC complex. The interaction region of this facility has to provide the required low-beta focusing while accommodating the synchrotron radiation generated by beam separation close to the interaction point. In the current design, the synchrotron radiation caused by 10GeV electrons bent by low-beta triplet magnets will be guided through the interaction region and dumped 5m downstream. However, it is unavoidable to stop a fraction of the photons at the septum where the electron and ion vacuum system are separated. In order to protect the septum and minimize the backward scattering of the synchrotron radiation, an absorber and collimation system will be employed. In this paper, we first present the overview of the current design of the eRHIC interaction region with special emphasis on the synchrotron radiation. Then the initial design of the absorber and collimation system, including their geometrical and physical p...

  1. Operation of the Australian Store.Synchrotron for macromolecular crystallography.

    Science.gov (United States)

    Meyer, Grischa R; Aragão, David; Mudie, Nathan J; Caradoc-Davies, Tom T; McGowan, Sheena; Bertling, Philip J; Groenewegen, David; Quenette, Stevan M; Bond, Charles S; Buckle, Ashley M; Androulakis, Steve

    2014-10-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community.

  2. The national synchrotron ray of hope or ring of fire?

    CERN Document Server

    Hollis, T

    2002-01-01

    While most agree the synchrotron will be a boost for Australian science, the author reports on concerns about the cost of building and operating the project Biotech industry representatives want to know how that $100 million will be used and want to see the government's justification for pouring more than a third of its total technology budget for 2001/2 into the synchrotron. They, and the opposition, also want to know where the private money will come from to make up the balance or whether the state will ultimately have to pitch in the rest itself. Indeed, an Auditor-General's report released last week warned of the need for comprehensive financial risk management of the facility. The National Synchrotron, to be built at Monash University, will be a hollow ring of about 60 metres diameter and initially housing nine beamlines, each capable of performing independent experiments simultaneously. According to Dr Richard Garrett, director of the Australian Synchrotron Research Program (http://www.ansto.gov.au/natf...

  3. Science minister puts French synchrotron back on the agenda

    CERN Multimedia

    2000-01-01

    The new French minister of Science has said that he would pursue plans to build a synchrotron in France, reversing the decision of his predecessor. He is still intending to participate in the British project Diamond though (1/2 page).

  4. Spatially Varying X-ray Synchrotron Emission in SN 1006

    CERN Document Server

    Dyer, K K; Borkowski, K; Petre, R; Dyer, Kristy; Reynolds, Stephen P; Borkowski, Kazik; Petre, Rob

    2001-01-01

    A growing number of both galactic and extragalactic supernova remnants show non-thermal (non-plerionic) emission in the X-ray band. New synchrotron models, realized as SRESC and SRCUT in XSPEC 11, which use the radio spectral index and flux as inputs and include the full single-particle emissivity, have demonstrated that synchrotron emission is capable of producing the spectra of dominantly non-thermal supernova remnants with interesting consequences for residual thermal abundances and acceleration of particles. In addition, these models deliver a much better-constrained separation between the thermal and non-thermal components, whereas combining an unconstrained powerlaw with modern thermal models can produce a range of acceptable fits. While synchrotron emission can be approximated by a powerlaw over small ranges of energy, the synchrotron spectrum is in fact steepening over the X-ray band. Having demonstrated that the integrated spectrum of SN 1006, a remnant dominated by non-thermal emission, is well desc...

  5. Initial scientific uses of coherent synchrotron radiation inelectron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Basov, D.N.; Feikes, J.; Fried, D.; Holldack, K.; Hubers, H.W.; Kuske, P.; Martin, M.C.; Pavlov, S.G.; Schade, U.; Singley, E.J.; Wustefeld, G.

    2004-11-23

    The production of stable, high power, coherent synchrotron radiation at sub-terahertz frequency at the electron storage ring BESSY opens a new region in the electromagnetic spectrum to explore physical properties of materials. Just as conventional synchrotron radiation has been a boon to x-ray science, coherent synchrotron radiation may lead to many new innovations and discoveries in THz physics. With this new accelerator-based radiation source we have been able to extend traditional infrared measurements down into the experimentally poorly accessible sub-THz frequency range. The feasibility of using the coherent synchrotron radiation in scientific applications was demonstrated in a series of experiments: We investigated shallow single acceptor transitions in stressed and unstressed Ge:Ga by means of photoconductance measurements below 1 THz. We have directly measured the Josephson plasma resonance in optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} for the first time and finally we succeeded to confine the sub-THz radiation for spectral near-field imaging on biological samples such as leaves and human teeth.

  6. Practical application of noise diffusion in U-70 synchrotron

    Science.gov (United States)

    Ivanov, S. V.; Lebedev, O. P.

    2016-12-01

    This paper briefly outlines the physical substantiation and the engineering implementation of technological systems in the U-70 synchrotron based on controllable noise diffusion of the beam. They include two systems of stochastic slow beam extraction (for high and intermediate energy) and the system of longitudinal noise RF gymnastics designated for flattening the bunch distribution over the azimuth.

  7. Moessbauer optics of synchrotron radiation at an isotope interface

    CERN Document Server

    Belyakov, V A

    2000-01-01

    Coherent inelastic Moessbauer scattering (CIMS) of synchrotron radiation (SR) at an isotope interface (plane interface between two regions differing only in the concentration of the Moessbauer isotope) is investigated theoretically. Main attention is paid to the CIMS component resulting from SR quanta absorption by Moessbauer nuclei accompanied by creation or annihilation of the phonons in sample and following recoilless reemission of Moessbauer quanta.

  8. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguang [Columbia Univ., New York, NY; Frenkel, Anatoly [Yeshiva Univ., New York, NY (United States); Rodriguez, Jose [Brookhaven National Lab. (BNL), Upton, NY (United States); Adzic, Radoslav [Brookhaven National Lab. (BNL), Upton, NY (United States); Bare, Simon R. [UOP LLC, Des Plaines, IL (United States); Hulbert, Steve L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karim, Ayman [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mullins, David R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Overbury, Steve [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, and to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.

  9. Applying Frequency Map Analysis to the Australian Synchrotron Storage Ring

    CERN Document Server

    Tan, Yaw-Ren E; Le Blanc, Gregory Scott

    2005-01-01

    The technique of frequency map analysis has been applied to study the transverse dynamic aperture of the Australian Synchrotron Storage Ring. The results have been used to set the strengths of sextupoles to optimise the dynamic aperture. The effects of the allowed harmonics in the quadrupoles and dipole edge effects are discussed.

  10. Reminder of the edge effect in Synchrotron radiation

    CERN Document Server

    Burkhardt, H

    1998-01-01

    The synchrotron radiation in the LHC will be rather soft and weak, compared to high energy electron machines. Still it is expected to generate non negligible heating and photon-induced gas desorption. A summary of standard formulas and numbers for the LHC have been collected in this note, including a very rough discussion of the spectrum shift expected by the edge effect.

  11. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2010-02-15

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 {mu}m to 110 {mu}m. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 {mu}m to 160 {mu}m were done. (orig.)

  12. Beam model for non-planar orbits in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Month, M.

    1984-03-26

    A framework has been developed for a beam model in the case of synchrotron orbits not confined to a plane. An appropriate moving reference system for the analysis of beam stability has been introduced. As examples of strong perturbations to median plane symmetry, two geometries for the overpass for the Tevatron collider are considered.

  13. Sensitivity of transient synchrotron radiation to tokamak plasma parameters

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, N.J.; Kritz, A.H.

    1988-12-01

    Synchrotron radiation from a hot plasma can inform on certain plasma parameters. The dependence on plasma parameters is particularly sensitive for the transient radiation response to a brief, deliberate, perturbation of hot plasma electrons. We investigate how such a radiation response can be used to diagnose a variety of plasma parameters in a tokamak. 18 refs., 13 figs.

  14. Monochromator on a synchrotron undulator source for liquid surface studies

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Freund, A.K.

    1992-01-01

    a monochromator made of a beryllium mosaic crystal using the (002) reflection in Laue geometry placed in undulator beams of DORIS III at the Hamburger Synchrotronstrahlungslabor and of the European Synchrotron Radiation Facility. An analysis of the diffraction properties in terms of mosaic spread, heat load...

  15. Refraction-contrast bone imaging using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Koichi; Sekine, Norio; Sato, Hitoshi; Shikano, Naoto [Ibaraki Prefectural Univ. of Health Sciences, Ami (Japan); Shimao, Daisuke [Ibaraki Prefectural Univ. of Health Sciences, Ami (Japan). Graduate School of Health Sciences; Shiwaku, Hideaki [Japan Atomic Energy Research Inst., Mikazuki, Hyogo (Japan). Synchrotron Radiation Research Center; Hyodo, Kazuyuki [High Energy Accelerator Research Org., Tsukuba, Ibaraki (Japan). Inst. of Material Structure Sciences; Oka, Hiroshi [St. Marianna Univ., Kawasaki, Kanagawa (Japan). School of Medicine

    2002-03-01

    The X-ray refraction-contrast imaging using synchrotron radiation with some X-ray energies is successfully performed at B120B2 of SPring-8. The refraction-contrast images of bone samples such as human dried proximal phalanx, wrist, upper cervical vertebrae and sella turcica and as mouse proximal femur using the synchrotron X-ray are always better in image contrast and resolution than those of the absorption-contrast images using the synchrotron X-ray and/or the conventional X-ray tube. There is much likeness in the image contrast and resolution of trabeculae bone in the human dried proximal phalanx between X-ray energy of 30 keV at sample-to-film distance of 1 m and those of 40, 50 keV at those of 4,5 m, respectively. High-energy refraction-contrast imaging with suitable sample-to-film distance could reduce the exposure dose in human imaging. In the refraction-contrast imaging of human wrist, upper cervcal vertebrae, sella turcica and mouse proximal femur using the synchrotron X-ray, we can obtain better image contrast and resolution to correctly extract morphological information for diagnosis corresponding to each of the clinical field than those of the absorption-contrast images. (author)

  16. Turn-By Beam Extraction during Acceleration in a Synchrotron

    Science.gov (United States)

    Tsoupas, Nicholaos; Trbojevic, Dejan

    2014-02-01

    A synchrotron to accelerate protons or carbon ions for medical applications is being designed at Brookhaven National Laboratory (BNL). Single beam bunches with maximum beam energy of 1.18 GeV and 400 MeV/u for protons and carbon ions respectively will be extracted from the synchrotron at 15 Hz. For protons, the maximum required energy for irradiating a tumor is ˜206 MeV. A pencil-like proton beam containing ˜5.4×107 p/bunch delivers a therapeutic dose of 2.5 Gy in ˜1.5 minutes to treat a tumor of 1 liter volume. It will take ˜80 minutes with bunches containing 4.5×104 ions/bunch to deliver the same dose of 2.5 Gy with a 400 MeV/u pencil-like carbon beam. This extended treatment time when using carbon ions is not acceptable. In addition, the synchrotron cannot be controlled with a beam bunch containing such a low number of carbon ions. To overcome these two problems of the extended treatment time and the low bunch intensity required for the treatment when carbon ions are used, we have devised a method to “peel” the required 4.5×104 carbon-ions/bunch from the accelerating carbon beam bunch containing ˜108 ions/bunch and deliver them to the tumor on a “turn-by-turn” basis. Unlike other methods of beam extraction from a synchrotron, such as resonance extraction, this method does not allow for any beam losses during the extraction and the carbon beam can be peeled off in less than 15 ms during the acceleration or deceleration cycle of the synchrotron. Thus, this turn-by-turn beam extraction method provides beam with variable energy and precisely controlled beam current during the 30 ms acceleration or deceleration time.

  17. Hard X-ray Sources for the Mexican Synchrotron Project

    Science.gov (United States)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  18. Efficiency of Synchrotron Radiation from Rotation-powered Pulsars

    Science.gov (United States)

    Kisaka, Shota; Tanaka, Shuta J.

    2017-03-01

    Synchrotron radiation is widely considered to be the origin of the pulsed non-thermal emissions from rotation-powered pulsars in optical and X-ray bands. In this paper, we study the synchrotron radiation emitted by the created electron and positron pairs in the pulsar magnetosphere to constrain the energy conversion efficiency from the Poynting flux to the particle energy flux. We model two pair creation processes, two-photon collision, which efficiently works in young γ-ray pulsars (≲106 year), and magnetic pair creation, which is the dominant process to supply pairs in old pulsars (≳106 year). Using the analytical model, we derive the maximum synchrotron luminosity as a function of the energy conversion efficiency. From the comparison with observations, we find that the energy conversion efficiency to the accelerated particles should be an order of unity in the magnetosphere, even though we make a number of the optimistic assumptions to enlarge the synchrotron luminosity. In order to explain the luminosity of the non-thermal X-ray/optical emission from pulsars with low spin-down luminosity L sd ≲ 1034 erg s‑1, non-dipole magnetic field components should be dominant at the emission region. For the γ-ray pulsars with L sd ≲ 1035 erg s‑1, observed γ-ray to X-ray and optical flux ratios are much higher than the flux ratio between curvature and the synchrotron radiations. We discuss some possibilities such as the coexistence of multiple accelerators in the magnetosphere as suggested from the recent numerical simulation results. The obtained maximum luminosity would be useful to select observational targets in X-ray and optical bands.

  19. ILUBCG2-11: Solution of 11-banded nonsymmetric linear equation systems by a preconditioned biconjugate gradient routine

    Science.gov (United States)

    Chen, Y.-M.; Koniges, A. E.; Anderson, D. V.

    1989-10-01

    The biconjugate gradient method (BCG) provides an attractive alternative to the usual conjugate gradient algorithms for the solution of sparse systems of linear equations with nonsymmetric and indefinite matrix operators. A preconditioned algorithm is given, whose form resembles the incomplete L-U conjugate gradient scheme (ILUCG2) previously presented. Although the BCG scheme requires the storage of two additional vectors, it converges in a significantly lesser number of iterations (often half), while the number of calculations per iteration remains essentially the same.

  20. Bacterial accumulation in viscosity gradients

    Science.gov (United States)

    Waisbord, Nicolas; Guasto, Jeffrey

    2016-11-01

    Cell motility is greatly modified by fluid rheology. In particular, the physical environments in which cells function, are often characterized by gradients of viscous biopolymers, such as mucus and extracellular matrix, which impact processes ranging from reproduction to digestion to biofilm formation. To understand how spatial heterogeneity of fluid rheology affects the motility and transport of swimming cells, we use hydrogel microfluidic devices to generate viscosity gradients in a simple, polymeric, Newtonian fluid. Using video microscopy, we characterize the random walk motility patterns of model bacteria (Bacillus subtilis), showing that both wild-type ('run-and-tumble') cells and smooth-swimming mutants accumulate in the viscous region of the fluid. Through statistical analysis of individual cell trajectories and body kinematics in both homogeneous and heterogeneous viscous environments, we discriminate passive, physical effects from active sensing processes to explain the observed cell accumulation at the ensemble level.

  1. Vertebrate pressure-gradient receivers

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jakob

    2011-01-01

    The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum and stro......The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum....... Recent vertebrates form a continuum from perfect interaural transmission (0 dB in a certain frequency band) and pronounced eardrum directionality (30-40 dB) in the lizards, over somewhat attenuated transmission and limited directionality in birds and frogs, to the strongly attenuated interaural...

  2. Multilayer coating for high gradients

    CERN Document Server

    Kubo, Takayuki

    2016-01-01

    The multilayer coating for high gradients is reviewed. Not only the S-I-S structure, but also the S-S bilayer structure are also treated. This is an incomplete manuscript of an invited article which will be submitted to a journal. I have uploaded this version in order to help the understanding on my talk at the TESLA Technology Collaboration meeting at Saclay, France.

  3. Biomimetic Gradient Index (GRIN) Lenses

    Science.gov (United States)

    2006-01-01

    optics include single lenses inspired by cephalopod (octopus) eyes and a three-lens, wide field of view, optical system for a surveillance sensor...camera. Details are easily resolv- able with the polymer lens. This lens system was installed on an Evolution unmanned aerial vehicle (UAV) with a...lens system was installed in an NRL Evolution UAV and used to record video images at a height of up to 1000 ft. The index gradients in the polymer

  4. Beam dumps design and local radiation protection at TERA synchrotron.

    Science.gov (United States)

    Porta, A; Campi, F; Agosteo, S

    2005-01-01

    The realisation of the National Center of Hadrontherapy was funded by the Italian Government in 2002. The Centre will be built in the area of Pavia (Italy). The synchrotron designed in the framework of this programme will accelerate protons and carbon ions up to 250 MeV and 400 MeV u(-1), respectively. Some of the main aspects which were taken into account in the design of the acceleration system are the patient's safety and the beam control. From this point of view an important role is played by the beam dumps in the synchrotron ring and upstream of the extraction system. In particular, an horizontal and a vertical beam dump will be installed in the synchrotron ring: the former will be used for lowering the beam intensity and the latter for beam abortion. The dump at the extraction will absorb the particles during the mounting and the falling ramps of the synchrotron magnetic cycle, thus extracting only the flat top of the ion spill. Beam dumps can produce intense fields of secondary radiation (neutrons, charged light-hadrons and photons) and high rates of induced activity, since they can absorb the beam completely. Usually they have to be shielded to protect the electronics during machine operation and to attenuate the radiation dose below the limits imposed by the law when the personnel access to the synchrotron hall. The part of the shielding design of the beam dumps concerning with the acceleration of protons was made using Monte Carlo simulations with the FLUKA code. Both induced activity and secondary radiation were taken into account. The shields against secondary radiation produced by carbon ions were designed, referring only to secondary neutrons, taking double-differential distributions from the literature as sources for the FLUKA simulations. The induced activity from carbon ions interactions was estimated analytically, using the data generated by the EPAX 2 code. The dose-equivalent rates from the induced radionuclides were calculated at 1 m from the

  5. Primordial vorticity and gradient expansion

    CERN Document Server

    Giovannini, Massimo

    2012-01-01

    The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the $\\Lambda$CDM paradigm the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the or...

  6. Primordial vorticity and gradient expansion

    Science.gov (United States)

    Giovannini, Massimo; Rezaei, Zahra

    2012-02-01

    The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the ΛCDM paradigm, the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the order of 10-37 G over the typical comoving scales ranging between 1 and 10 Mpc. While the obtained results seem to be irrelevant for seeding a reasonable galactic dynamo action, they demonstrate how the proposed fully inhomogeneous treatment can be used for the systematic scrutiny of pre-decoupling plasmas beyond the conventional perturbative expansions.

  7. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects.

    Science.gov (United States)

    Yip, Ngai Yin; Brogioli, Doriano; Hamelers, Hubertus V M; Nijmeijer, Kitty

    2016-11-15

    Combining two solutions of different composition releases the Gibbs free energy of mixing. By using engineered processes to control the mixing, chemical energy stored in salinity gradients can be harnessed for useful work. In this critical review, we present an overview of the current progress in salinity gradient power generation, discuss the prospects and challenges of the foremost technologies - pressure retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix) and provide perspectives on the outlook of salinity gradient power generation. Momentous strides have been made in technical development of salinity gradient technologies and field demonstrations with natural and anthropogenic salinity gradients (for example, seawater-river water and desalination brine-wastewater, respectively), but fouling persists to be a pivotal operational challenge that can significantly ebb away cost-competitiveness. Natural hypersaline sources (e.g., hypersaline lakes and salt domes) can achieve greater concentration difference and, thus, offer opportunities to overcome some of the limitations inherent to seawater-river water. Technological advances needed to fully exploit the larger salinity gradients are identified. While seawater desalination brine is a seemingly attractive high salinity anthropogenic stream that is otherwise wasted, actual feasibility hinges on the appropriate pairing with a suitable low salinity stream. Engineered solutions are foulant-free and can be thermally regenerative for application in low-temperature heat utilization. Alternatively, PRO, RED, and CapMix can be coupled with their analog separation process (reverse osmosis, electrodialysis, and capacitive deionization, respectively) in salinity gradient flow batteries for energy storage in chemical potential of the engineered solutions. Rigorous techno-economic assessments can more clearly identify the prospects of low-grade heat conversion and large-scale energy storage

  8. High Gradient Multilayer Insulator Technology

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, S E; Caporaso, G J; Nunnally, W C; Sanders, D M; Watson, J A; Krogh, M L; Anderson, H U

    2004-06-03

    We are investigating a novel insulator concept that involves the use of alternating layers of conductors and insulators with periods less than 1 mm. These structures perform 1.5 to 4 times better than conventional insulators in long pulse, short pulse, and alternating polarity applications. We survey our ongoing studies investigating the performance under long pulse electron beam, short pulse, and full reversing conditions.

  9. High-resolution MRI encoding using radiofrequency phase gradients.

    Science.gov (United States)

    Sharp, Jonathan C; King, Scott B; Deng, Qunli; Volotovskyy, Vyacheslav; Tomanek, Boguslaw

    2013-11-01

    Although MRI offers highly diagnostic medical imagery, patient access to this modality worldwide is very limited when compared with X-ray or ultrasound. One reason for this is the expense and complexity of the equipment used to generate the switched magnetic fields necessary for MRI encoding. These field gradients are also responsible for intense acoustic noise and have the potential to induce nerve stimulation. We present results with a new MRI encoding principle which operates entirely without the use of conventional B0 field gradients. This new approach--'Transmit Array Spatial Encoding' (TRASE)--uses only the resonant radiofrequency (RF) field to produce Fourier spatial encoding equivalent to conventional MRI. k-space traversal (image encoding) is achieved by spin refocusing with phase gradient transmit fields in spin echo trains. A transmit coil array, driven by just a single transmitter channel, was constructed to produce four phase gradient fields, which allows the encoding of two orthogonal spatial axes. High-resolution two-dimensional-encoded in vivo MR images of hand and wrist were obtained at 0.2 T. TRASE exploits RF field phase gradients, and offers the possibility of very low-cost diagnostics and novel experiments exploiting unique capabilities, such as imaging without disturbance of the main B0 magnetic field. Lower field imaging (imaging are favorable application domains as, in both cases, it is technically easier to achieve the short RF pulses desirable for long echo trains, and also to limit RF power deposition. As TRASE is simply an alternative mechanism (and technology) of moving through k space, there are many close analogies between it and conventional B0 -encoded techniques. TRASE is compatible with both B0 gradient encoding and parallel imaging, and so hybrid sequences containing all three spatial encoding approaches are possible.

  10. Community and ecosystem responses to elevational gradients

    DEFF Research Database (Denmark)

    Sundqvist, Maja K.; Sanders, Nate; Wardle, David A.

    2013-01-01

    Community structure and ecosystem processes often vary along elevational gradients. Their responses to elevation are commonly driven by changes in temperature, and many community- and ecosystem-level variables therefore frequently respond similarly to elevation across contrasting gradients. There...

  11. On the structure of gradient Yamabe solitons

    CERN Document Server

    Cao, Huai-Dong; Zhang, Yingying

    2011-01-01

    We show that every complete nontrivial gradient Yamabe soliton admits a special global warped product structure with a one-dimensional base. Based on this, we prove a general classification theorem for complete nontrivial locally conformally flat gradient Yamabe solitons.

  12. Experience with interactive control software at the CERN proton synchrotron

    CERN Document Server

    Carpenter, B E

    1973-01-01

    The computer system includes, in addition to the central computer, a Varian 620 used for real-time function generation and two Imlac PDS1 display mini-computers used as operator consoles. The configuration is being expanded to include 3 PDP-11/45's and links with various other online computers associated with the synchrotron, and the present survey of interactive control software in use with the old configuration was carried out as part of the planning of this expansion. This paper describes the various means of computer access available to the synchrotron operators and development engineers, and outlines the associated software. One of the more flexible pieces of software, an on-line syntax handler, is discussed in more detail. (3 refs).

  13. Synchrotron-based FTIR spectromicroscopy: Cytotoxicity and heating considerations

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2002-12-13

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

  14. A vacuum ultraviolet filtering monochromator for synchrotron-based spectroscopy

    Science.gov (United States)

    Janik, Ireneusz; Marin, Timothy W.

    2013-01-01

    We describe the design, characterization, and implementation of a vacuum ultraviolet (VUV) monochromator for use in filtering stray and scattered light from the principal monochromator output of the Stainless Steel Seya VUV synchrotron beam line at the Synchrotron Radiation Center, University of Wisconsin-Madison. We demonstrate a reduction of three orders of magnitude of stray and scattered light over the wavelength range 1400-2000 Å with minimal loss of light intensity, allowing for over six orders of magnitude of dynamic range in light detection. We suggest that a similar filtering scheme can be utilized in any variety of spectroscopic applications where a large dynamic range and low amount of background signal are of import, such as in transmittance experiments with very high optical density.

  15. Diffuse scattering measurements with synchrotron radiation: Instrumentation and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, E.; Georgopoulos, P.

    1985-12-01

    The analysis of diffuse scattering from single crystalline specimens in the reflection mode has generally been acknowledged as a very powerful means of obtaining structural information on local atomic arrangements in disordered alloys, intermetallics and ceramics. However, owing to the low intensities encountered and the large number of measurements required for such an analysis, experiments have been extremely time consuming and few have been attempted. Synchrotron radiation makes it possible to conduct such experiments in a matter of hours and much higher quality data can be obtained than in the laboratory. This paper describes the experimental procedures and methods applied to a study of Al-Cu age hardening alloys conducted at the Cornell Synchrotron Source (CHESS). (orig.).

  16. Anticlastic curvature measurements on unribbed crystal optics for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, J.P.; Dolin, Y.; Georgopoulos, P. (DND-CAT Synchrotron Research Center, APS/ANL Sector 5, Building 400, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)); Kushnir, V.I. (APS/XFD, Bldg. 362, 9700 South Cass Ave., Argonne, Illinois 60439 (United States))

    1995-02-01

    Various methods have been proposed for measuring the distortion in perfect crystals using double-crystal methods. The majority of these methods rely on making comparisons between double-crystal rocking curve measurements under the spatial extent of an extended x-ray beam. Unless the beam is large and parallel (such as at a synchrotron bending magnet), these methods are not easily scalable to large crystals (e.g., crystal focusing elements for synchrotron beamlines) due to the mechanical inaccuracies inherent in moving the various optical components. We present a method based on a scanning source which simplifies the problems in scaling double-crystal methods to large optics. In addition, results using this method are presented on a ribless sagittal focusing Si(111) crystal demonstrating that the anticlastic deviation can be made to be less than [plus minus]1 s of arc over a 1-cm-long section parallel to the sagittal axis.

  17. Incoherent synchrotron emission of laser-driven plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Serebryakov, D. A., E-mail: dmserebr@gmail.com; Nerush, E. N.; Kostyukov, I. Yu. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950 (Russian Federation); Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod 603950 (Russian Federation)

    2015-12-15

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau–Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  18. Incoherent synchrotron emission of laser-driven plasma edge

    Science.gov (United States)

    Serebryakov, D. A.; Nerush, E. N.; Kostyukov, I. Yu.

    2015-12-01

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau-Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  19. Incoherent synchrotron emission of laser-driven plasma edge

    CERN Document Server

    Serebryakov, D A; Kostyukov, I Yu

    2015-01-01

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau-Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  20. Synchrotron radiation of self-collimating relativistic MHD jets

    CERN Document Server

    Porth, Oliver; Meliani, Zakaria; Vaidya, Bhargav

    2011-01-01

    The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow magnetosonic launching surface of the disk up to 6000^2 Schwarzschild radii allowing to reach highly relativistic Lorentz factors. The Poynting dominated disk wind develops into a jet with Lorentz factors of 8 and is collimated to 1 degree. In addition to the disk jet, we evolve a thermally driven spine jet, emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive VLBI radio and (sub-) mm diagnostics such as core shift, polarization structure, intensity maps, spectra and Faraday rotation measure (RM), directly from the Stokes parameters. We also investigate...

  1. New synchrotron powder diffraction facility for long-duration experiments.

    Science.gov (United States)

    Murray, Claire A; Potter, Jonathan; Day, Sarah J; Baker, Annabelle R; Thompson, Stephen P; Kelly, Jon; Morris, Christopher G; Yang, Sihai; Tang, Chiu C

    2017-02-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world's first dedicated facility for long-term studies (weeks to years) using synchrotron radiation.

  2. Application of X-ray synchrotron microscopy instrumentation in biology

    Energy Technology Data Exchange (ETDEWEB)

    Gasperini, F. M. [Medical Science Program, Fluminense Federal Univ., Niteroi (Brazil); Pereira, G. R. [Dept. of Metallurgical and Materials Engineering, Federal Univ. of Rio de Janeiro (Brazil); Granjeiro, J. M. [Molecular and Cell Biology Dept., Fluminense Federal Univ., Niteroi, Rio de Janeiro (Brazil); Calasans-Maia, M. D. [Oral Surgery Dept., Fluminense Federal Univ., Niteroi, Rio de Janeiro (Brazil); Rossi, A. M. [Biomaterials Laboratory, Brazilian Center of Physics Research, Rio de Janeiro (Brazil); Perez, C. A. [Brazilian Synchrotron Laboratory, Campinas, Sao Paulo (Brazil); Lopes, R. T.; Lima, I. [Nuclear Engineering Laboratory, Federal Univ. of Rio de Janeiro (Brazil)

    2011-07-01

    X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazil working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)

  3. Diffuse Synchrotron Emission from Galactic Cosmic Ray Electrons

    CERN Document Server

    Di Bernardo, Giuseppe; Evoli, Carmelo; Gaggero, Daniele

    2015-01-01

    Synchrotron diffuse radiation (SDR) emission is one of the major Galactic components, in the 100 MHz up to 100 GHz frequency range. Its spectrum and sky map provide valuable measure of the galactic cosmic ray electrons (GCRE) in the relevant energy range, as well as of the strength and structure of the Galactic magnetic fields (GMF), both regular and random ones. This emission is an astrophysical sky foreground for the study of the Cosmic Microwave Background (CMB), and the extragalactic microwave measurements, and it needs to be modelled as better as possible. In this regard, in order to get an accurate description of the SDR in the Galaxy, we use - for the first time in this context - 3-dimensional GCRE models obtained by running the DRAGON code. This allows us to account for a realistic spiral arm pattern of the source distribution, demanded to get a self-consistent treatment of all relevant energy losses influencing the final synchrotron spectrum.

  4. Rapid cycling medical synchrotron and beam delivery system

    Science.gov (United States)

    Peggs, Stephen G.; Brennan, J. Michael; Tuozzolo, Joseph E.; Zaltsman, Alexander

    2008-10-07

    A medical synchrotron which cycles rapidly in order to accelerate particles for delivery in a beam therapy system. The synchrotron generally includes a radiofrequency (RF) cavity for accelerating the particles as a beam and a plurality of combined function magnets arranged in a ring. Each of the combined function magnets performs two functions. The first function of the combined function magnet is to bend the particle beam along an orbital path around the ring. The second function of the combined function magnet is to focus or defocus the particle beam as it travels around the path. The radiofrequency (RF) cavity is a ferrite loaded cavity adapted for high speed frequency swings for rapid cycling acceleration of the particles.

  5. Optical Synchrotron Radiation Beam Imaging with a Digital Mask

    Energy Technology Data Exchange (ETDEWEB)

    Fiorito, R. B. [University of Maryland, College Park, MD (United States); Zhang, H. D. [University of Maryland, College Park, MD (United States); Corbett, W. J. [SLAC, Menlo Park, CA (United States); Fisher, A. S. [SLAC, Menlo Park, CA (United States); Mok, W. Y. [SLAC, Menlo Park, CA (United States); Tian, K. [SLAC, Menlo Park, CA (United States); Douglas, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Wilson, F. G. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Mitsuhashi, T. M. [KEK, Tsukuba (Japan); Shkvarunets, A. G. [University of Maryland, College Park, MD (United States)

    2012-11-01

    We have applied a new imaging/optical masking technique, which employs a digital micro-mirror device (DMD) and optical synchrotron radiation (OSR), to perform high dynamic range (DR) beam imaging at the JLAB Energy Recovery Linac and the SLAC/SPEAR3 Synchrotron Light Source. The OSR from the beam is first focused onto the DMD to produce a primary image; selected areas of this image are spatially filtered by controlling the state of individual micro-mirrors; and finally, the filtered image is refocused onto a CCD camera. At JLAB this technique has been used successfully to view the beam halo with a DR ~ 105. At SPEAR3 the DMD was used to filter out the bright core of the stored beam to study the turn-by-turn dynamics of the 10-3 weaker injected beam. We describe the optical performance, present limitations and our plans to improve the DR of both experimental systems.

  6. New synchrotron powder diffraction facility for long-duration experiments

    Science.gov (United States)

    Murray, Claire A.; Potter, Jonathan; Day, Sarah J.; Baker, Annabelle R.; Thompson, Stephen P.; Kelly, Jon; Morris, Christopher G.; Tang, Chiu C.

    2017-01-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world’s first dedicated facility for long-term studies (weeks to years) using synchrotron radiation. PMID:28190992

  7. Surface modification of fluorocarbon polymers by synchrotron radiation

    CERN Document Server

    Kanda, K; Matsui, S; Ideta, T; Ishigaki, H

    2003-01-01

    The surface modification of a poly (tetrafluoroethylene) sheet was carried out by synchrotron radiation in the soft X-ray region. The poly (tetrafluoroethylene) substrate was exposed to synchrotron radiation while varying the substrate temperature from room temperature to 200degC. The contact angle of the modified surfaces with a water drop decreased from 96deg to 72deg by the irradiation at room temperature, while the contact angle increased to 143deg by the irradiation at the substrate temperature of 200degC. Scanning electron microscopy suggested that this repellence was ascribable to the microstructure of the poly (tetrafluoroethylene) surface. We succeeded in controlling the wettability of the poly (tetrafluoroethylene) surface from hydrophobic to hydrophilic by irradiation of the soft X-ray light. (author)

  8. Estimation of presampling modulation transfer function in synchrotron radiation microtomography

    CERN Document Server

    Mizutani, Ryuta; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-01

    The spatial resolution achieved by recent synchrotron radiation microtomographs should be estimated from the modulation transfer function (MTF) on the micrometer scale. Step response functions of a synchrotron radiation microtomograph were determined by the slanted edge method by using high-precision surfaces of diamond crystal and ion-milled aluminum wire. Tilted reconstruction was introduced to enable any edge to be used as the slanted edge by defining the reconstruction pixel matrix in an arbitrary orientation. MTFs were estimated from the step response functions of the slanted edges. The obtained MTFs coincided with MTF values estimated from square-wave patterns milled on the aluminum surface. Although x-ray refraction influences should be taken into account to evaluate MTFs, any flat surfaces with nanometer roughness can be used to determine the spatial resolutions of microtomographs.

  9. Study on Atomic Fluorescence Spectrometry Excited by Synchrotron Radiation

    Institute of Scientific and Technical Information of China (English)

    Jia-jia Guo; Wu-er Gan; Guo-bin Zhang; Qing-de Su

    2008-01-01

    A novel analysis approach using atomic fluorescence excited by synchrotron radiation is presented. A system for synchrotron radiation-atomic fluorescence spectrometry is developed, and experimental conditions such as flow rate, analyte acidity, concentration of pre-reducing and hydrogenation system are optimized. The proposed method is successfully applied to get an excitation spectrum of arsenic. Seven of ten primary spectral lines, four of which have never been reported by means of atomic fluorescence spectrometry, agree well with the existing reports. The other three are proposed for the first time. Excitation potentials and possible transitions are investigated. Especially for the prominent line at 234.99 nm, the mechanism of generation is discussed and a model of energy transition processes is proposed.

  10. High pressure x-ray diffraction techniques with synchrotron radiation

    Institute of Scientific and Technical Information of China (English)

    刘景

    2016-01-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefl y introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented.

  11. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    CERN Document Server

    Thurman-Keup, R; Hahn, A; Hurh, P; Lorman, E; Lundberg, C; Meyer, T; Miller, D; Pordes, S; Valishev, A

    2011-01-01

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. However, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measur...

  12. Synchrotron-based FTIR spectromicroscopy Cytotoxicity and heating considerations

    CERN Document Server

    Holman, H Y N; McKinney, W R

    2002-01-01

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

  13. An education gradient in health, a health gradient in education, or a confounded gradient in both?

    Science.gov (United States)

    Lynch, Jamie L; von Hippel, Paul T

    2016-04-01

    There is a positive gradient associating educational attainment with health, yet the explanation for this gradient is not clear. Does higher education improve health (causation)? Do the healthy become highly educated (selection)? Or do good health and high educational attainment both result from advantages established early in the life course (confounding)? This study evaluates these competing explanations by tracking changes in educational attainment and Self-rated Health (SRH) from age 15 to age 31 in the National Longitudinal Study of Youth, 1997 cohort. Ordinal logistic regression confirms that high-SRH adolescents are more likely to become highly educated. This is partly because adolescent SRH is associated with early advantages including adolescents' academic performance, college plans, and family background (confounding); however, net of these confounders adolescent SRH still predicts adult educational attainment (selection). Fixed-effects longitudinal regression shows that educational attainment has little causal effect on SRH at age 31. Completion of a high school diploma or associate's degree has no effect on SRH, while completion of a bachelor's or graduate degree have effects that, though significant, are quite small (less than 0.1 points on a 5-point scale). While it is possible that educational attainment would have greater effect on health at older ages, at age 31 what we see is a health gradient in education, shaped primarily by selection and confounding rather than by a causal effect of education on health.

  14. Gradient Flow Convolutive Blind Source Separation

    DEFF Research Database (Denmark)

    Pedersen, Michael Syskind; Nielsen, Chinton Møller

    2004-01-01

    Experiments have shown that the performance of instantaneous gradient flow beamforming by Cauwenberghs et al. is reduced significantly in reverberant conditions. By expanding the gradient flow principle to convolutive mixtures, separation in a reverberant environment is possible. By use of a circ......Experiments have shown that the performance of instantaneous gradient flow beamforming by Cauwenberghs et al. is reduced significantly in reverberant conditions. By expanding the gradient flow principle to convolutive mixtures, separation in a reverberant environment is possible. By use...

  15. Separated high-energy electron beams using synchrotron radiation

    CERN Document Server

    Farley, F J M; Picasso, Emilio

    1972-01-01

    Electrons with kinetic energy in the 100 GeV range may be separated from other particles by using their energy-loss due to synchrotron radiation in a high-field magnet. In this paper the associated fluctuations in energy and angle are shown to be small enough for the method to be useful. Detailed design formulae are presented for several magnet configurations. (7 refs).

  16. CCD sensors in synchrotron X-ray detectors

    Science.gov (United States)

    Strauss, M. G.; Naday, I.; Sherman, I. S.; Kraimer, M. R.; Westbrook, E. M.; Zaluzec, N. J.

    1988-04-01

    The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron X-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ˜ 1 CCD electron/X-ray photon, a peak saturation capacity of > 10 6 X-rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 × 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode X-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at a rate of ˜ 1 frame/s or a complete 3-dimensional data set from a single crystal in ˜ 2 min. In electron energy-loss spectroscopy (EELS), the CCD was used in a parallel detection mode which is similar to the mode array detectors are used in dispersive EXAFS. With a beam current corresponding to 3 × 10 9 electron/s on the detector, a series of 64 spectra were recorded on the CCD in a continuous sequence without interruption due to readout. The frame-to-frame pixel signal fluctuations had σ = 0.4% from which DQE = 0.4 was obtained, where the detector conversion efficiency was 2.6 CCD electrons/X-ray photon. These multiple frame series also showed the time-resolved modulation of the electron microscope optics by stray magnetic fields.

  17. Synchrotron Radiation Lithography and MEMS Technique at NSRL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two beamlines and stations for soft X-ray lithography and hard X-ray lithography at NSRL are presented. Synchrotron radiation lithography (SRL) and mask techniques are developed, and the micro-electro-mechanical systems (MEMS) techniques are also investigated at NSRL. In this paper, some results based on SRL and MEMS techniques are reported, and sub-micron and high aspect ratio microstructures are given. Some micro-devices, such as microreactors are fabricated at NSRL.

  18. Minimum emittance of isochronus rings for synchrotron light source

    CERN Document Server

    Shoji, Y

    1999-01-01

    Theoretically achievable minimum emittances of isochronus rings for synchrotron light source are calculated. The rings discussed in this paper consist of isochronus and achromatic bending cells, isochronus TBA (triple bend achromat) cells with negative dispersion, isochronus TBA cells with inverse bends or isochronus QBA (four bend achromat) cells. We show that the minimum emittances of these rings are roughly 2 or 3 times of those of the optimized non-isochronus rings.

  19. Synchrotron Radiation micro-XRD analysis of thin cross sections

    OpenAIRE

    Molas Pous, Bernat

    2015-01-01

    The object is the identification of the micro-crystalline precipitates appearing in historical painting layers produced during the production and also due to the reactivity of the various compounds. For this reason different procedures of preparation of the samples (polishing over glass a substratum or micro-tomming of the samples previously embodied in resin. Each has specific instrumental setups which will be developed in two experiments in the Alba Synchrotron, one in BL04-MSPD beamline (n...

  20. Control of synchrotron radiation effects during recirculation with bunch compression

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, David [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Benson, Stephen [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Li, Rui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Yves [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tennant, Christopher [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Krafft, Geoffrey [Old Dominion Univ., Norfolk, VA (United States); Terzic, Balsa [Old Dominion Univ., Norfolk, VA (United States); Tsai, Cheng [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2015-05-01

    Studies of beam quality during recirculation have been extended to an arc providing bunch compression with positive momentum compaction. It controls both incoherent and coherent synchrotron radiation (ISR and CSR) using methods including optics balance and generates little microbunching gain. We detail the dynamical basis for the design, discuss the design process, give an example, and provide simulations of ISR and CSR effects. Reference will be made to a complete analysis of microbunching effects.

  1. The European 400 GeV proton synchrotron

    CERN Document Server

    Middelkoop, Willem Cornelis

    1977-01-01

    On 19th February 1971, CERN decided to build a super proton synchrotron at a cost of 1150*10/sup 6/ Swiss francs. The design target of 400 GeV with a beam intensity of 10/sup 13/ protons/pulse was reached on the 4th of November 1976 within the original budget, allowing for inflation. The technical aspects of the SPS are reviewed, together with operating experience since May 1976. (2 refs).

  2. X-ray imaging detectors for synchrotron and XFEL sources

    OpenAIRE

    Takaki Hatsui; Heinz Graafsma

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivit...

  3. Polymer research at synchrotron radiation sources: symposium proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Russell, T.P.; Goland, A.N. (eds.)

    1985-01-01

    The twenty-two papers are arranged into eleven sessions entitled: general overviews; time-resolved x-ray scattering; studies using fluorescence, ion-containing polymers; time-resolved x-ray scattering; novel applications of synchrotron radiation; phase transitions in polymers; x-ray diffraction on polymers; recent detector advances; complementary light, x-ray and neutron studies; and neutron scattering studies. Seven of the papers are processed separately; three of the remainder have been previously processed. (DLC)

  4. Alternative medicine - pain relief

    Science.gov (United States)

    Alternative medicine refers to treatments that are used instead of conventional (standard) ones. If you use an alternative ... with conventional medicine or therapy, it is considered complementary therapy. There are many forms of alternative medicine. Acupuncture ...

  5. A sparsity-based iterative algorithm for reconstruction of micro-CT images from highly undersampled projection datasets obtained with a synchrotron X-ray source

    Science.gov (United States)

    Melli, S. Ali; Wahid, Khan A.; Babyn, Paul; Cooper, David M. L.; Gopi, Varun P.

    2016-12-01

    Synchrotron X-ray Micro Computed Tomography (Micro-CT) is an imaging technique which is increasingly used for non-invasive in vivo preclinical imaging. However, it often requires a large number of projections from many different angles to reconstruct high-quality images leading to significantly high radiation doses and long scan times. To utilize this imaging technique further for in vivo imaging, we need to design reconstruction algorithms that reduce the radiation dose and scan time without reduction of reconstructed image quality. This research is focused on using a combination of gradient-based Douglas-Rachford splitting and discrete wavelet packet shrinkage image denoising methods to design an algorithm for reconstruction of large-scale reduced-view synchrotron Micro-CT images with acceptable quality metrics. These quality metrics are computed by comparing the reconstructed images with a high-dose reference image reconstructed from 1800 equally spaced projections spanning 180°. Visual and quantitative-based performance assessment of a synthetic head phantom and a femoral cortical bone sample imaged in the biomedical imaging and therapy bending magnet beamline at the Canadian Light Source demonstrates that the proposed algorithm is superior to the existing reconstruction algorithms. Using the proposed reconstruction algorithm to reduce the number of projections in synchrotron Micro-CT is an effective way to reduce the overall radiation dose and scan time which improves in vivo imaging protocols.

  6. Methods for lipid nanostructure investigation at neutron and synchrotron sources

    Science.gov (United States)

    Kiselev, M. A.

    2011-03-01

    A lipid membrane is a main component of biological membranes. Contemporary bionanotechnologies use phospholipids and ceramides as basic components of drugs and cosmetic preparations. Phospholipids-based nanoparticles are used as drug carriers. Effective development of bionanotechnologies in Russia calls for creation of physical methods to diagnose the particle nanostructure which would be promising for application in pharmacology. Radiation with wavelengths of 1-10 Å is an adequate instrument for detecting the nanostructure of lipid bi- and monolayers. The review deals with methods that apply neutron scattering and synchrotron radiation for studying nanostructures of lipid membranes, phospholipid nanoparticles, and phospholipid monolayers on a water surface by techniques of diffraction, small-angle scattering, and reflectometry. The importance of the mutually complementary application of neutron and synchrotron radiation for solving urgent problems of membrane biophysics, microbiology, dermapharmacology, and bionanotechnologies is demonstrated by particular examples of studies of phospholipid membranes and ceramide-based membranes. The efficiency of development and application of new methods for solving urgent problems of biophysics is shown. The review is written on the basis of results obtained over the period of 1999-2010 at the Joint Institute for Nuclear Research (JINR) Laboratory of Neutron Physics in collaboration with the Pharmaceutical Departments of universities of France (Paris-Sud, Chatenay Malabry) and Germany (Martin Luther University, Halle). The experiments were performed at various European and Russian neutron and synchrotron sources.

  7. Synchrotron UV-visible multispectral luminescence microimaging of historical samples.

    Science.gov (United States)

    Thoury, Mathieu; Echard, Jean-Philippe; Réfrégiers, Matthieu; Berrie, Barbara; Nevin, Austin; Jamme, Frédéric; Bertrand, Loïc

    2011-03-01

    UV-visible luminescence techniques are fre-quently used for the study of cultural heritage materials, despite their limitations for identification and discrimination in the case of complex heterogeneous materials. In contrast to tabletop setups, two methods based on the vacuum ultraviolet (VUV)-UV-visible emission generated at a bending magnet of a synchrotron source are described. The main advantages of the source are the extended wavelength range attained, the continuous tunability of the source, and its brightness, leading to a submicrometer lateral resolution. Raster-scanning microspectroscopy and full-field microimaging were implemented and tested at the DISCO beamline (synchrotron SOLEIL, France). Investigative measurements were performed on a sample from a varnished musical instrument and a paint sample containing the pigment zinc white (ZnO) in order to illustrate some of the challenges analyzing heterogeneous cultural heritage cross-section samples with the novel imaging approach. The data sets obtained proved useful for mapping organic materials at the submicrometer scale and visualizing heterogeneities of the semiconductor pigment material. We propose and discuss the combined use of raster-scanning microspectroscopy and full-field microimaging in an integrated analytical methodology. Synchrotron UV luminescence appears as a novel tool for identification of craftsmen's and artists' materials and techniques and to assess the condition of artifacts, from the precise identification and localization of luminescent materials.

  8. Longitudinal tracking studies for a high intensity proton synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Lessner, E.; Cho, Y.; Harkay, K.; Symon, K. [Argonne National Laboratory, 9700 Cass Ave., Argonne, Illinois 60439 (United States)

    1996-06-01

    Results from longitudinal tracking studies for a high intensity proton synchrotron designed for a 1-MW spallation source are presented. The machine delivers a proton beam of 0.5 mA time-averaged current at a repetition rate of 30 Hz. The accelerator is designed to have radiation levels that allow hands-on-maintenance. However, the high beam intensity causes strong space charge fields whose effects may lead to particle loss and longitudinal instabilities. The space charge fields modify the particle distribution, distort the stable bucket area and reduce the rf linear restoring force. Tracking simulations were conducted to analyze the space charge effects on the dynamics of the injection and acceleration processes and means to circumvent them. The tracking studies led to the establishment of the injected beam parameters and rf voltage program that minimized beam loss and longitudinal instabilities. Similar studies for a 10-GeV synchrotron that uses the 2-GeV synchrotron as its injector are also discussed. {copyright} {ital 1996 American Institute of Physics.}

  9. 40 CFR 230.25 - Salinity gradients.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Salinity gradients. 230.25 Section 230... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity... fresh or salt water may change existing salinity gradients. For example, partial blocking of...

  10. Mineral density volume gradients in normal and diseased human tissues.

    Directory of Open Access Journals (Sweden)

    Sabra I Djomehri

    Full Text Available Clinical computed tomography provides a single mineral density (MD value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca to phosphorus (P and Ca to zinc (Zn elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males contained significant mineral density variations (enamel: 2820-3095 mg/cc, bone: 570-1415 mg/cc, cementum: 1240-1340 mg/cc, dentin: 1480-1590 mg/cc, cementum affected by periodontitis: 1100-1220 mg/cc, hypomineralized carious dentin: 345-1450 mg/cc, hypermineralized carious dentin: 1815-2740 mg/cc, and dental calculus: 1290-1770 mg/cc. A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49, hypomineralized dentin (0.32-0.46, cementum (1.51, and bone (1.68 were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765 and in cementum (595-990, highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.

  11. Temperature Gradient in Hall Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    D. Staack; Y. Raitses; N.J. Fisch

    2003-11-24

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons.

  12. Stringy bounces and gradient instabilities

    CERN Document Server

    Giovannini, Massimo

    2017-01-01

    Bouncing solutions are obtained from a generally covariant action characterized by a potential which is a nonlocal functional of the dilaton field at two separated space-time points. Gradient instabilities are shown to arise in this context but they are argued to be nongeneric. After performing a gauge-invariant and frame-invariant derivation of the evolution equations of the fluctuations, a heuristic criterium for the avoidance of pathological instabilities is proposed and corroborated by a number of explicit examples that turn out to be compatible with a quasi-flat spectrum of curvature inhomogeneities for typical wavelengths larger than the Hubble radius.

  13. A phase-space beam position monitor for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Nazanin, E-mail: nazanin.samadi@usask.ca [University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK (Canada); Bassey, Bassey; Martinson, Mercedes [University of Saskatchewan, 116 Science Place, Saskatoon, SK (Canada); Belev, George; Dallin, Les; Jong, Mark de [Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK (Canada); Chapman, Dean [University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK (Canada)

    2015-06-25

    A system has been developed to measure the vertical position and angle of the electron beam at a single location from a synchrotron source. The system uses a monochromator tuned to the absorption edge of a contrast material and has a sensitivity comparable with other beam position monitors. The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam’s position and angle, and thus infer the electron beam’s position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered

  14. Application of Synchrotron Radiation in the Geological and Environmental Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith W.

    1999-09-01

    A survey of some of the different ways that synchrotrons x-ray beams can be used to study geological materials is presented here. This field developed over a period of about 30 years, and it is clear that the geological community has made major use of the many synchrotrons facilities operating around the world during this time period. This was a time of rapid change in the operational performance of the synchrotrons facilities and this in itself has made it possible for geologists to develop new and more refined types of experiments that have yielded many important results. The advance in experimental techniques has proceeded in parallel with a revolution in computing techniques that has made it possible to cope with the great amount of data accumulated in the experiments. It is reasonable, although risky, to speculate about what might be expected to develop in the field during the next five- to ten-year period. It does seem plausible that the rate of change in the performance of what might now be called conventional x-ray storage rings will slow. There are no new facilities that are superior to the ESRF, ALS, APS, or SPring8 facilities under construction or about to come into operation. Thus, performance increments in the characteristics of the x-ray sources may come through the introduction of specialized devices in existing storage rings. The free electron laser is one example of a developing new technology that should take us into new regions of performance for radiation sources and stimulate new types of experimental applications. It is also likely that major advances will come through the introduction of more sophisticated experimental devices developed for use with the very recently operational undulator or wiggler sources at the newer rings. Improved x-ray optics and x-ray detectors and more powerful computation and high-speed data transmission can bring about more refined experiments and make the synchrotrons facilities more widely available to the

  15. Gradient change in the acquisition of phonology.

    Science.gov (United States)

    Hewlett, Nigel; Waters, Daphne

    2004-01-01

    The prevailing view of phonological development is that changes in pronunciation are driven by phonological changes. This view (it is argued here) derives from the particular form of the data that has most often been used in studies of phonological development, namely broad phonetic transcriptions. Transcribing an earlier pronunciation with one phoneme symbol and a later pronunciation with a different symbol encourages the interpretation that the child has made a flip from one category to another. However, broad transcriptions may have misrepresented the facts of speech development. We review some auditory-based studies which have used a more fine-grained phonetic transcription and discuss the significance of findings on the development of long-lag plosives. We argue that gradient change is the typical fashion in which children's speech output development progresses; that it is therefore not appropriate to use rules of the sort that are employed for morphophonemic alternations in adult phonology to explain revisions over time in children's pronunciations; and that a child's speech output is not the best guide to their phonology.

  16. Mechanisms of FGF gradient formation during embryogenesis.

    Science.gov (United States)

    Balasubramanian, Revathi; Zhang, Xin

    2016-05-01

    Fibroblast growth factors (FGFs) have long been attributed to influence morphogenesis in embryonic development. Signaling by FGF morphogen encodes positional identity of tissues by creating a concentration gradient over the developing embryo. Various mechanisms that influence the development of such gradient have been elucidated in the recent past. These mechanisms of FGF gradient formation present either as an extracellular control over FGF ligand diffusion or as a subcellular control of FGF propagation and signaling. In this review, we describe our current understanding of FGF as a morphogen, the extracellular control of FGF gradient formation by heparan sulfate proteoglycans (HSPGs) and mechanisms of intracellular regulation of FGF signaling that influence gradient formation.

  17. Use of a Synchrotron Radiation X-Ray Microprobe for Elemental Analysis at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, B. M.

    1980-04-01

    The National Synchrotron Light Source (NSLS) is a facility consisting of a 700 MeV and a 2.5 GeV electron storage ring and dedicated to providing synchrotron radiation in the energy range from the vacuum ultraviolet to high energy x rays. Some of the properties of synchrotron radiation that contribute to its usefulness for x-ray fluorescence are: a continuous, tunable energy spectrum, strong collimation in the horizontal plane, high polarization in the storage ring plane, and relatively low energy deposition. The highest priority is for the development of an x-ray microprobe beam line capable of trace analysis in the parts per million range with spatial resolution as low as one micrometer. An eventual capability for bulk sample analysis is also planned with sensitivities in the more favorable cases being as low as 50 parts per billion in dry biological tissue. The microprobe technique has application to a variety of fields including the geological, medical, materials and environmental sciences. Examples of investigations include multielemental trace analysis across grain boundaries for the study of diffusion and cooling processes in geological and materials sciences samples; in leukocytes and other types of individual cells for studying the relationship between trace element concentrations and disease or nutrition; and in individual particles in air pollution samples.

  18. NIF optics phase gradient specfication

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W.; Auerbach, J.; Hunt, J.; Lawson, L.; Manes, K.; Orth, C.; Sacks, R.; Trenholme, J.; Wegner, P.

    1997-05-02

    A root-mean-square (rms) phase gradient specification seems to allow a good connection between the NIP optics quality and focal spot requirements. Measurements on Beamlet optics individually, and as a chain, indicate they meet the assumptions necessary to use this specification, and that they have a typical rms phase gradient of {approximately}80 {angstrom}/cm. This may be sufficient for NIP to meet the proposed Stockpile Stewardship Management Program (SSMP) requirements of 80% of a high- power beam within a 200-250 micron diameter spot. Uncertainties include, especially, the scale length of the optics phase noise, the ability of the adaptive optic to correct against pump-induced distortions and optics noise, and the possibility of finding mitigation techniques against whole-beam self-focusing (e.g. a pre- correction optic). Further work is needed in these areas to better determine the NIF specifications. This memo is a written summary of a presentation on this topic given by W. Williams 24 April 1997 to NIP and LS&T personnel.

  19. ORAL ISSUE OF THE JOURNAL "USPEKHI FIZICHESKIKH NAUK": Ginzburg's invention of undulators and their role in modern synchrotron radiation sources and free electron lasers

    Science.gov (United States)

    Kulipanov, Gennadii N.

    2007-04-01

    Undulators — periodic magnetic structures that were originally introduced by Vitalii Ginzburg in 1947 for electromagnetic radiation generation using relativistic electrons — are among the key elements of modern synchrotron radiation sources and free electron lasers (FELs). In this talk, the history of three generations of storage ring-based synchrotron X-ray sources using wigglers and undulators is briefly traced. Prospects for two types of next-generation space-coherent X-ray sources are discussed, which use long undulators and energy recovery accelerators or, alternatively, employ linear accelerator-based FELs. The recently developed Novosibirsk terahertz FEL facility, currently the world' s most powerful terahertz source, is described. It was the generation of electromagnetic radiation in this range that Ginzburg discussed in his 1947 work.

  20. All About Alternatives

    Science.gov (United States)

    Barr, Robert D.; And Others

    1972-01-01

    A primer on alternative schools. Described are existing programs in different areas, philosophy of the alternative schools, funding, student behavior, community relations, accountability, State regulations, management, and the environment of the alternative school. A list of sources of additional information on alternative schools is included.…

  1. Dynamic ADI methods for elliptic equations with gradient dependent coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Doss, S.

    1977-04-01

    The dynamic alternating direction implicit (DADI) methods, previously introduced and applied to elliptic problems with linear and nonlinear coefficients (a(u)), are applied here to elliptic problems with nonlinear gradient-dependent coefficients (a(grad u)), such as the minimal surface equation, the capillary surface equation, and the magnetostatic equation. Certain improvements of these methods are developed, and they are extended to ''3-directional'' or ''3-dimensional'' situations. 28 figures, 6 tables.

  2. Wnt Secretion and Gradient Formation

    Directory of Open Access Journals (Sweden)

    Vladimir L. Katanaev

    2013-03-01

    Full Text Available Concentration gradients formed by the lipid-modified morphogens of the Wnt family are known for their pivotal roles during embryogenesis and adult tissue homeostasis. Wnt morphogens are also implicated in a variety of human diseases, especially cancer. Therefore, the signaling cascades triggered by Wnts have received considerable attention during recent decades. However, how Wnts are secreted and how concentration gradients are formed remains poorly understood. The use of model organisms such as Drosophila melanogaster has provided important advances in this area. For instance, we have previously shown that the lipid raft-associated reggie/flotillin proteins influence Wnt secretion and spreading in Drosophila. Our work supports the notion that producing cells secrete Wnt molecules in at least two pools: a poorly diffusible one and a reggie/flotillin-dependent highly diffusible pool which allows morphogen spreading over long distances away from its source of production. Here we revise the current views of Wnt secretion and spreading, and propose two models for the role of the reggie/flotillin proteins in these processes: (i reggies/flotillins regulate the basolateral endocytosis of the poorly diffusible, membrane-bound Wnt pool, which is then sorted and secreted to apical compartments for long-range diffusion, and (ii lipid rafts organized by reggies/flotillins serve as “dating points” where extracellular Wnt transiently interacts with lipoprotein receptors to allow its capture and further spreading via lipoprotein particles. We further discuss these processes in the context of human breast cancer. A better understanding of these phenomena may be relevant for identification of novel drug targets and therapeutic strategies.

  3. Synchrotron X-Ray Diffraction Analysis of Meteorites in Thin Section: Preliminary Results

    Science.gov (United States)

    Treiman, A. H.; Lanzirotti, A.; Xirouchakis, D.

    2004-01-01

    X-ray diffraction is the pre-eminent technique for mineral identification and structure determination, but is difficult to apply to grains in thin section, the standard meteorite preparation. Bright focused X-ray beams from synchrotrons have been used extensively in mineralogy and have been applied to extraterrestrial particles. The intensity and small spot size achievable in synchrotron X-ray beams makes them useful for study of materials in thin sections. Here, we describe Synchrotron X-ray Diffraction (SXRD) in thin section as done at the National Synchrotron Light Source, and cite examples of its value for studies of meteorites in thin section.

  4. Discussing the processes constraining the Jovian synchrotron radio emission's features

    Science.gov (United States)

    Santos-Costa, Daniel; Bolton, Scott J.

    2008-03-01

    Our recent analysis and understanding of the Jovian synchrotron radio emission with a radiation-belt model is presented. In this work, the electron population is determined by solving the Fokker-Planck diffusion equation and considering different physical processes. The results of the modeling are first compared to in situ particle data, brightness distributions, radio spectrum, and beaming curves to verify the simulated particle distributions. The dynamics of high-energy electrons in Jupiter's inner magnetosphere and their related radio emission are then examined. The results demonstrate that the Jovian moons set the extension and intensity of the synchrotron emission's brightness distribution along the magnetic equator. Simulations show that moons and dust both control the transport toward the planet by significantly reducing the abundance of particles constrained to populate, near the equator and inside 1.8 Jovian radii, the innermost region of the magnetosphere. Due to interactions with dust and synchrotron mechanism, radiation-belt electrons are moved along field lines, between Metis (1.79 Jovian radii) and Amalthea (2.54 Jovian radii), toward high latitudes. The quantity of particles transported away from the equator is sufficient to produce measurable secondary radio emissions. Among all the phenomena acting in the inner magnetosphere, the moons (Amalthea and Thebe) are the primary moderator for the radiation's intensity at high latitudes. Moon losses also affect the characteristics of the total radio flux with longitude. The sweeping effect amplifies the 10-h modulation of the beaming curve's amplitude while energy resonances occurring near Amalthea and Thebe belong to phenomena adjusting it to the right level. Interactions with dust do not significantly constrain radio spectrum features. Resonances near Amalthea and Thebe are responsible for the Jovian radio spectrum's particular slope.

  5. Stanford Synchrotron Radiation Laboratory activity report for 1986

    Energy Technology Data Exchange (ETDEWEB)

    Cantwell, K. [ed.

    1987-12-31

    1986 was another year of major advances for SSRL as the ultimate capabilities of PEP as a synchrotron radiation source became more apparent and a second PEP beam line was initiated, while effective development and utilization of SPEAR proceeded. Given these various PEP developments, SSRL abandoned its plans for a separate diffraction limited ring, as they abandoned their plans for a 6--7 GeV ring of the APS type last year. It has become increasingly apparent that SSRL should concentrate on developing SPEAR and PEP as synchrotron radiation sources. Consequently, initial planning for a 3 GeV booster synchrotron injector for SPEAR was performed in 1986, with a proposal to the Department of Energy resulting. As described in Chapter 2, the New Rings Group and the Machine Physics Group were combined into one Accelerator Physics Group. This group is focusing mainly on the improvement of SPEAR`s operating conditions and on planning for the conversion of PEP into a fourth generation x-ray source. Considerable emphasis is also being given to the training of accelerator physics graduate students. At the same time, several improvements of SSRL`s existing facilities were made. These are described in Chapter 3. Chapter 4 describes new SSRL beam lines being commissioned. Chapter 5 discusses SSRL`s present construction projects. Chapter 6 discusses a number of projects presently underway in the engineering division. Chapter 7 describes SSRL`s advisory panels while Chapter 8 discusses SSRL`s overall organization. Chapter 9 describes the experimental progress reports.

  6. High resolution 3D imaging of synchrotron generated microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  7. Room-temperature macromolecular serial crystallography using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Francesco Stellato

    2014-07-01

    Full Text Available A new approach for collecting data from many hundreds of thousands of microcrystals using X-ray pulses from a free-electron laser has recently been developed. Referred to as serial crystallography, diffraction patterns are recorded at a constant rate as a suspension of protein crystals flows across the path of an X-ray beam. Events that by chance contain single-crystal diffraction patterns are retained, then indexed and merged to form a three-dimensional set of reflection intensities for structure determination. This approach relies upon several innovations: an intense X-ray beam; a fast detector system; a means to rapidly flow a suspension of crystals across the X-ray beam; and the computational infrastructure to process the large volume of data. Originally conceived for radiation-damage-free measurements with ultrafast X-ray pulses, the same methods can be employed with synchrotron radiation. As in powder diffraction, the averaging of thousands of observations per Bragg peak may improve the ratio of signal to noise of low-dose exposures. Here, it is shown that this paradigm can be implemented for room-temperature data collection using synchrotron radiation and exposure times of less than 3 ms. Using lysozyme microcrystals as a model system, over 40 000 single-crystal diffraction patterns were obtained and merged to produce a structural model that could be refined to 2.1 Å resolution. The resulting electron density is in excellent agreement with that obtained using standard X-ray data collection techniques. With further improvements the method is well suited for even shorter exposures at future and upgraded synchrotron radiation facilities that may deliver beams with 1000 times higher brightness than they currently produce.

  8. Quantitative X-ray microtomography with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Donath, T. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2007-07-01

    Synchrotron-radiation-based computed microtomography (SR{sub {mu}}CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR{sub {mu}}CT measurements have been further improved by enhancements that were made to the SR{sub {mu}}CT apparatus and to the reconstruction chain. For high-resolution SR{sub {mu}}CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR{sub {mu}}CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  9. Finite element analysis of osteoporosis models based on synchrotron radiation

    Science.gov (United States)

    Xu, W.; Xu, J.; Zhao, J.; Sun, J.

    2016-04-01

    With growing pressure of social aging, China has to face the increasing population of osteoporosis patients as well as the whole world. Recently synchrotron radiation has become an essential tool for biomedical exploration with advantage of high resolution and high stability. In order to study characteristic changes in different stages of primary osteoporosis, this research focused on the different periods of osteoporosis of rats based on synchrotron radiation. Both bone histomorphometry analysis and finite element analysis were then carried on according to the reconstructed three dimensional models. Finally, the changes of bone tissue in different periods were compared quantitatively. Histomorphometry analysis showed that the structure of the trabecular in osteoporosis degraded as the bone volume decreased. For femurs, the bone volume fraction (Bone volume/ Total volume, BV/TV) decreased from 69% to 43%. That led to the increase of the thickness of trabecular separation (from 45.05μ m to 97.09μ m) and the reduction of the number of trabecular (from 7.99 mm-1 to 5.97mm-1). Simulation of various mechanical tests with finite element analysis (FEA) indicated that, with the exacerbation of osteoporosis, the bones' ability of resistance to compression, bending and torsion gradually became weaker. The compression stiffness of femurs decreased from 1770.96 Fμ m-1 to 697.41 Fμ m-1, the bending and torsion stiffness were from 1390.80 Fμ m-1 to 566.11 Fμ m-1 and from 2957.28N.m/o to 691.31 N.m/o respectively, indicated the decrease of bone strength, and it matched the histomorphometry analysis. This study suggested that FEA and synchrotron radiation were excellent methods for analysing bone strength conbined with histomorphometry analysis.

  10. Study of silicon pixel sensor for synchrotron radiation detection

    Science.gov (United States)

    Li, Zhen-Jie; Jia, Yun-Cong; Hu, Ling-Fei; Liu, Peng; Yin, Hua-Xiang

    2016-03-01

    The silicon pixel sensor (SPS) is one of the key components of hybrid pixel single-photon-counting detectors for synchrotron radiation X-ray detection (SRD). In this paper, the design, fabrication, and characterization of SPSs for single beam X-ray photon detection is reported. The designed pixel sensor is a p+-in-n structure with guard-ring structures operated in full-depletion mode and is fabricated on 4-inch, N type, 320 μm thick, high-resistivity silicon wafers by a general Si planar process. To achieve high energy resolution of X-rays and obtain low dark current and high breakdown voltage as well as appropriate depletion voltage of the SPS, a series of technical optimizations of device structure and fabrication process are explored. With optimized device structure and fabrication process, excellent SPS characteristics with dark current of 2 nA/cm2, full depletion voltage 150 V are achieved. The fabricated SPSs are wire bonded to ASIC circuits and tested for the performance of X-ray response to the 1W2B synchrotron beam line of the Beijing Synchrotron Radiation Facility. The measured S-curves for SRD demonstrate a high discrimination for different energy X-rays. The extracted energy resolution is high (10 keV) and the linear properties between input photo energy and the equivalent generator amplitude are well established. It confirmed that the fabricated SPSs have a good energy linearity and high count rate with the optimized technologies. The technology is expected to have a promising application in the development of a large scale SRD system for the Beijing Advanced Photon Source. Supported by Prefabrication Research of Beijing Advanced Photon Source (R&D for BAPS) and National Natural Science Foundation of China (11335010)

  11. Advanced Materials Research with 3RD Generation Synchrotron Light

    Science.gov (United States)

    Soukiassian, P.; D'angelo, M.; Enriquez, H.; Aristov, V. Yu.

    H and D surface nanochemistry on an advanced wide band gap semiconductor, silicon carbide is investigated by synchrotron radiation-based core level and valence band photoemission, infrared absorption and scanning tunneling spectroscopy, showing the 1st example of H/D-induced semiconductor surface metallization, that also occurs on a pre-oxidized surface. These results are compared to recent state-of-the-art ab-initio total energy calculations. Most interestingly, an amazing isotopic behavior is observed with a smaller charge transfer from D atoms suggesting the role of dynamical effects. Such findings are especially exciting in semiconductor physics and in interface with biology.

  12. Space Charge Effects and Limitations in the CERN Proton Synchrotron

    CERN Document Server

    Wasef, R; Damerau, H; Gilardoni, S; Hancock, S; Hernalsteens, C; Huschauer, A; Schmidt, F; Franchetti, G

    2013-01-01

    Space charge produces a large incoherent tune-spread which, in presence of betatronic resonances, could lead to beam losses and emittance growth. In the CERN Proton Synchrotron, at the current injection kinetic energy (1.4 GeV) and even at the future kinetic energy (2 GeV), space charge is one of the main limitations for high brightness beams and especially for the future High- Luminosity LHC beams. Several detailed studies and measurements have been carried out to improve the understanding of space charge limitations to determine the maximum acceptable tune spread and identify the most important resonances causing losses and emittance growth.

  13. Scaling behavior of circular colliders dominated by synchrotron radiation

    Science.gov (United States)

    Talman, Richard

    2015-08-01

    The scaling formulas in this paper — many of which involve approximation — apply primarily to electron colliders like CEPC or FCC-ee. The more abstract “radiation dominated” phrase in the title is intended to encourage use of the formulas — though admittedly less precisely — to proton colliders like SPPC, for which synchrotron radiation begins to dominate the design in spite of the large proton mass. Optimizing a facility having an electron-positron Higgs factory, followed decades later by a p, p collider in the same tunnel, is a formidable task. The CEPC design study constitutes an initial “constrained parameter” collider design. Here the constrained parameters include tunnel circumference, cell lengths, phase advance per cell, etc. This approach is valuable, if the constrained parameters are self-consistent and close to optimal. Jumping directly to detailed design makes it possible to develop reliable, objective cost estimates on a rapid time scale. A scaling law formulation is intended to contribute to a “ground-up” stage in the design of future circular colliders. In this more abstract approach, scaling formulas can be used to investigate ways in which the design can be better optimized. Equally important, by solving the lattice matching equations in closed form, as contrasted with running computer programs such as MAD, one can obtain better intuition concerning the fundamental parametric dependencies. The ground-up approach is made especially appropriate by the seemingly impossible task of simultaneous optimization of tunnel circumference for both electrons and protons. The fact that both colliders will be radiation dominated actually simplifies the simultaneous optimization task. All GeV scale electron accelerators are “synchrotron radiation dominated”, meaning that all beam distributions evolve within a fraction of a second to an equilibrium state in which “heating” due to radiation fluctuations is canceled by the “cooling” in

  14. Calculation of the characteristics of infrared synchrotron radiation

    CERN Document Server

    Maslova, M V; Maltsev, M A

    2005-01-01

    Subroutines for calculating the spectral and angular characteristics of infrared synchrotron radiation are developed. Corresponding calculations are carried out for a number of proton and electron accelerators. The results obtained enable methods to be developed for beam diagnostics as well as highly sensitive detectors of infrared radiation for remote contactless nondestructive diagnostics and for investigating bunches and high-speed processes in ring-type (CERN /SEPS-LHC) and linear (GSI bunch target) accelerators, and also the thermal fields in nuclear power plants.

  15. Beam Diagnostics for the J-PARC Main Ring Synchrotron

    CERN Document Server

    Toyama, Takeshi; Hashimoto, Yoshinori; Hayashi, Naoki; Kishiro, Junichi; Lee, Seishu; Miura, Takako; Muto, Suguru; Toyokawa, Ryoji

    2005-01-01

    Beam diagnostics: beam intensity monitors (DCCT, SCT, FCT, WCM), beam position monitors (ESM), beam loss monitors (proportional chamber, air ion chamber), beam profile monitors (secondary electron emission, gas-sheet) have been designed, tested, and will be installed for the Main Ring synchrotron of J-PARC (Japan Proton Accelerator Research Complex). This paper describes the basic design principle and specification of each monitor, with a stress on how to cope with high power beam (average circulation current of ~12 A) and low beam loss operation (less than 1 W/m except a collimator region). Some results of preliminary performance test using present beams and a radiation source will be reported.

  16. Beam loss monitors comparison at the CERN Proton Synchrotron

    CERN Document Server

    Gilardoni, S S; Effinger, E; Gil-Flores, J; Wienands, U

    2011-01-01

    CERN is planning the renovation and upgrade of the beam loss detection system for the Proton Synchrotron (PS). Improved performance in speed–to be able to monitor beam loss on a bunch-by-bunch basis–and in longterm stability–to reduce or avoid the need for periodic calibration–are aimed for. To select the most suitable technology, different detectors were benchmarked in the machine with respect to the same beam loss. The characteristics of the different detectors, the results of the measurement campaign and their suitability as future monitors for the PS are presented.

  17. Current schemes for National Synchrotron Light Source UV beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.P.; Howells, M.R.; McKinney, W.R.

    1979-01-01

    We describe in some detail four beamlines proposed for the National Synchrotron Light Source uv ring at Brookhaven National Laboratory. Three grazing-incidence instruments, one of the plane grating Mijake type and two with toroidal gratings at grazing angles of 2-1/2/sup 0/ and 15/sup 0/ are described. Two normal incidence instruments, one using the source as entrance slit and accepting 75 milliradians horizontally are also discussed. In each case we have estimated the output fluxes expected from such beamlines.

  18. Facilities for small-molecule crystallography at synchrotron sources.

    Science.gov (United States)

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  19. Emittance Adapter for a Diffraction Limited Synchrotron Radiation Source

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alexander Wu; /SLAC; Raimondi, Pantaleo; /Frascati

    2012-03-01

    We investigate the possibility of reaching very small horizontal and vertical emittances inside an undulator in a storage ring, by means of a local exchange of the apparent horizontal and vertical emittances, performed with a combination of skew quadrupoles and one solenoid in a dedicated insertion line in the storage ring. The insertion leaves the ring parameters and its optical properties unaffected. This scheme could greatly relax the emittance requirements for a diffraction limited synchrotron light source. The lattice derivation and design is described.

  20. In situ ALD experiments with synchrotron radiation photoelectron spectroscopy

    Science.gov (United States)

    Tallarida, Massimo; Schmeisser, Dieter

    2012-07-01

    In this contribution, we describe some features of atomic layer deposition (ALD) investigated by means of synchrotron radiation photoelemission spectroscopy (SR-PES). In particular, we show how the surface sensitivity of SR-PES combined with the in situ nature of our investigations can point out interactions between the substrate and ALD precursors. We observed changes on all substrates investigated, included Si, GaAs, Ru and their surface oxides. These interactions are extremely important during the first ALD cycles and induce modifications in the substrate, which might lead to its functionality enhancement.

  1. Optical systems for synchrotron radiation. Lecture 1. Introductory topics. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Howells, M.R.

    1986-02-01

    Various fundamental topics are considered which underlie the design and use of optical systems for synchrotron radiation. The point of view of linear system theory is chosen which acts as a unifying concept throughout the series. In this context the important optical quantities usually appear as either impulse response functions (Green's functions) or frequency transfer functions (Fourier Transforms of the Green's functions). Topics include the damped harmonic oscillator, free-space optical field propagation, optical properties of materials, dispersion, and the Kramers-Kronig relations.

  2. Synchrotron signature of a relativistic blast wave with decaying microturbulence

    CERN Document Server

    Lemoine, M

    2012-01-01

    Microphysics of weakly magnetized relativistic collisionless shock waves, corroborated by recent high performance numerical simulations, indicate the presence of a microturbulent layer of large magnetic field strength behind the shock front, which must decay beyond some hundreds of skin depths. The present paper discusses the dynamics of such microturbulence, borrowing from these same numerical simulations, and calculates the synchrotron signature of a powerlaw of shock accelerated particles. The decaying microturbulent layer is found to leave distinct signatures in the spectro-temporal evolution of the spectrum $F_\

  3. Fifty years of the CERN Proton Synchrotron Volume 2

    CERN Document Server

    CERN. Geneva; Manglunki, Django; Burnet, Jean-Paul; Carli, Christian; Chanel, Michel; Garoby, Roland; Giovannozzi, Massimo; Hancock, Steven; Haseroth, Helmut; Hübner, Kurt; Küchler, Detlef; Lewis, Julian; Lombardi, Alessandra; Martini, Michel; Maury, Stephan; Métral, Elias; Möhl, Dieter; Plass, Günther; Rinolfi, Louis; Scrivens, Richard; Steerenberg, Rende; Steinbach, Charles; Vretenar, Maurizio; Zickler, Thomas

    2013-01-01

    This report sums up in two volumes the first 50 years of operation of the CERN Proton Synchrotron. After an introduction on the genesis of the machine, and a description of its magnet and powering systems, the first volume focuses on some of the many innovations in accelerator physics and instrumentation that it has pioneered, such as transition crossing, RF gymnastics, extractions, phase space tomography, or transverse emittance measurement by wire scanners. The second volume describes the other machines in the PS complex: the proton linear accelerators, the PS Booster, the LEP pre-injector, the heavy-ion linac and accumulator, and the antiproton rings.

  4. Fifty years of the CERN Proton Synchrotron Volume 1

    CERN Document Server

    CERN. Geneva; Carli, Christian; Chanel, Michel; Garoby, Roland; Gilardoni, Simone; Giovannozzi, Massimo; Hancock, Steven; Haseroth, Helmut; Hübner, Kurt; Küchler, Detlef; Lewis, Julian; Lombardi, Alessandra; Manglunki, Django; Martini, Michel; Maury, Stephan; Métral, Elias; Möhl, Dieter; Plass, Günther; Rinolfi, Louis; Scrivens, Richard; Steerenberg, Rende; Steinbach, Charles; Vretenar, Maurizio; Zickler,Thomas

    2011-01-01

    This report sums up in two volumes the first 50 years of operation of the CERN Proton Synchrotron. After an introduction on the genesis of the machine, and a description of its magnet and powering systems, the first volume focuses on some of the many innovations in accelerator physics and instrumentation that it has pioneered, such as transition crossing, RF gymnastics, extractions, phase space tomography, or transverse emittance measurement by wire scanners. The second volume describes the other machines in the PS complex: the proton linear accelerators, the PS Booster, the LEP pre-injector, the heavy-ion linac and accumulator, and the antiproton rings.

  5. Automated tuning of the advanced photon source booster synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Biedron, S.G.; Milton, S.V.

    1997-08-01

    The acceleration cycle of the Advanced Photon Source (APS) booster synchrotron is completed within 223 ms and is repeated at 2 Hz. Unless properly corrected, transverse and longitudinal injection errors can lead to inefficient booster performance. In order to simplify daily operation, automated tuning methods have been developed. Through the use of beam position monitor (BPM) reading, transfer line corrector magnets, magnet ramp timing, and empirically determined response functions, the injection process is optimized by correcting the first turn trajectory to the measured closed orbit. These tuning algorithms and their implementation are described here along with an evaluation of their performance.

  6. Radio data and synchrotron emission in consistent cosmic ray models

    CERN Document Server

    Bringmann, Torsten; Lineros, Roberto A

    2011-01-01

    We consider the propagation of electrons in phenomenological two-zone diffusion models compatible with cosmic-ray nuclear data and compute the diffuse synchrotron emission resulting from their interaction with galactic magnetic fields. We find models in agreement not only with cosmic ray data but also with radio surveys at essentially all frequencies. Requiring such a globally consistent description strongly disfavors both a very large (L>15 kpc) and small (L<1 kpc) effective size of the diffusive halo. This has profound implications for, e.g., indirect dark matter searches.

  7. Producing Terahertz Conherent Synchrotron Radiation Based On Hefei Light Source

    CERN Document Server

    De-Rong, Xu; Yan, Shao

    2014-01-01

    This paper theoretically proves that an electron storage ring can generate coherent radiation in THz region using a quick kicker magnet and an ac sextupole magnet. When the vertical chromaticity is modulated by the ac sextupole magnet, the vertical beam collective motion excited by the kicker produces a wavy spatial structure after a number of longitudinal oscillation periods. We calculate the radiation spectral distribution from the wavy bunch in Hefei Light Source(HLS). If we reduce electron energy to 400MeV, it can produce extremely strong coherent synchrotron radiation(CSR) at 0.115THz.

  8. Measurement of parameters in Indus-2 synchrotron radiation source.

    Science.gov (United States)

    Ghodke, A D; Husain, Riyasat; Kumar, Pradeep; Yadav, Surendra; Puntambekar, T A

    2012-10-01

    The paper presents the measurement of optics parameters in Indus-2 synchrotron radiation source, which include betatron tune, beta function, dispersion function, natural chromaticity, corrected chromaticity, central RF frequency, momentum compaction factor, and linear betatron coupling. Two methods were used for beta function measurement; a conventional quadrupole scan method and a method using the fitting of the orbit response matrix. A robust Levenberg-Marquardt algorithm was used for nonlinear least square fitting of the orbit response matrix. In this paper, detailed methods for the parameter measurements are described. The measured results are discussed and compared with the theoretical values obtained using accelerator simulation code Accelerator Toolbox in MATLAB.

  9. Magnetic X-Ray Scattering with Synchrotron Radiation

    DEFF Research Database (Denmark)

    Moncton, D. E.; Gibbs, D.; Bohr, Jakob

    1986-01-01

    With the availability of high-brilliance synchrotron radiation from multiple wigglers, magnetic X-ray scattering has become a powerful new probe of magnetic structure and phase transitions. Similar to the well-established magnetic neutron scattering technique, magnetic X-ray scattering methods have...... many complementary advantages. A brief review is presented of the history of magnetic X-ray scattering as well as recent results obtained in studies of the rare-earth magnet holmium with emphasis on instrumentational aspects. In particular, the development of a simple polarization analyzer...

  10. Biomimetic Gradient Polymers with Enhanced Damping Capacities.

    Science.gov (United States)

    Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian

    2016-04-01

    Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures.

  11. Mathematics of Experimentally Generated Chemoattractant Gradients.

    Science.gov (United States)

    Postma, Marten; van Haastert, Peter J M

    2016-01-01

    Many eukaryotic cells move in the direction of a chemical gradient. Several assays have been developed to measure this chemotactic response, but no complete mathematical models of the spatial and temporal gradients are available to describe the fundamental principles of chemotaxis. Here we provide analytical solutions for the gradients formed by release of chemoattractant from a point source by passive diffusion or forced flow (micropipettes) and gradients formed by laminar diffusion in a Zigmond chamber. The results show that gradients delivered with a micropipette are formed nearly instantaneously, are very steep close to the pipette, and have a steepness that is strongly dependent on the distance from the pipette. In contrast, gradients in a Zigmond chamber are formed more slowly, are nearly independent of the distance from the source, and resemble the temporal and spatial properties of the natural cAMP wave that Dictyostelium cells experience during cell aggregation.

  12. Three-dimensional labeling of newly formed bone using synchrotron radiation barium K-edge subtraction imaging

    Science.gov (United States)

    Panahifar, Arash; Swanston, Treena M.; Pushie, M. Jake; Belev, George; Chapman, Dean; Weber, Lynn; Cooper, David M. L.

    2016-07-01

    Bone is a dynamic tissue which exhibits complex patterns of growth as well as continuous internal turnover (i.e. remodeling). Tracking such changes can be challenging and thus a high resolution imaging-based tracer would provide a powerful new perspective on bone tissue dynamics. This is, particularly so if such a tracer can be detected in 3D. Previously, strontium has been demonstrated to be an effective tracer which can be detected by synchrotron-based dual energy K-edge subtraction (KES) imaging in either 2D or 3D. The use of strontium is, however, limited to very small sample thicknesses due to its low K-edge energy (16.105 keV) and thus is not suitable for in vivo application. Here we establish proof-of-principle for the use of barium as an alternative tracer with a higher K-edge energy (37.441 keV), albeit for ex vivo imaging at the moment, which enables application in larger specimens and has the potential to be developed for in vivo imaging of preclinical animal models. New bone formation within growing rats in 2D and 3D was demonstrated at the Biomedical Imaging and Therapy bending magnet (BMIT-BM) beamline of the Canadian Light Source synchrotron. Comparative x-ray fluorescence imaging confirmed those patterns of uptake detected by KES. This initial work provides a platform for the further development of this tracer and its exploration of applications for in vivo development.

  13. Wireless SAW Based Temperature Gradient Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Prime Photonics proposes design and development of a surface acoustic wave (SAW) based temperature gradient sensor for instrumentation of thermal protection systems...

  14. On lower order strain gradient plasticity theories

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2003-01-01

    the tangent moduli governing increments of stress and strain. It is shown that the modification is far from benign from a mathematical standpoint, changing the qualitative character of solutions and leading to a new type of localization that is at odds with what is expected from a strain gradient theory......By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter....... The findings raise questions about the physical acceptability of this class of strain gradient theories....

  15. INFLUENCES OF SLOPE GRADIENT ON SOIL EROSION

    Institute of Scientific and Technical Information of China (English)

    刘青泉; 陈力; 李家春

    2001-01-01

    The main factors influencing soil erosion include the net rain excess, the water depth, the velocity, the shear stress of overland flows , and the erosion-resisting capacity of soil. The laws of these factors varying with the slope gradient were investigated by using the kinematic wave theory. Furthermore, the critical slope gradient of erosion was driven. The analysis shows that the critical slope gradient of soil erosion is dependent on grain size , soil bulk density , surface roughness, runoff length, net rain excess, and the friction coefficient of soil, etc. The critical slope gradient has been estimated theoretically with its range between 41. 5 °~ 50°.

  16. Consumer Health: Alternative Therapy

    Science.gov (United States)

    Healthy Lifestyle Consumer health What's considered an alternative therapy is a moving target. Get the facts about what CAM means and ... Original article: http://www.mayoclinic.org/healthy-lifestyle/consumer-health/in-depth/alternative-medicine/art-20045267 . Mayo ...

  17. On intrinsic nonlinear particle motion in compact synchrotrons

    Science.gov (United States)

    Hwang, Kyung Ryun

    Due to the low energy and small curvature characteristics of compact synchrotrons, there can be unexpected features that were not present or negligible in high energy accelerators. Nonlinear kinetics, fringe field effect, and space charge effect are those features which become important for low energy and small curvature accelerators. Nonlinear kinematics can limit the dynamics aperture for compact machine even if it consists of all linear elements. The contribution of the nonlinear kinematics on nonlinear optics parameters are first derived. As the dipole bending radius become smaller, the dipole fringe field effect become stronger. Calculation of the Lie map generator and corresponding mapping equation of dipole fringe field is presented. It is found that the higher order nonlinear potential is inverse proportional to powers of fringe field extent and correction to focusing and low order nonlinear potential is proportional to powers of fringe field extent. The fringe field also found to cause large closed orbit deviation for compact synchrotrons. The 2:1 and 4:1 space charge resonances are known to cause beam loss, emittance growth and halo formation for low energy high intensity beams. By numerical simulations, we observe a higher order 6:2 space charge resonance, which can successfully be understood by the concatenation of 2:1 and 4:1 resonances via canonical perturbation. We also develop an explicit symplectic tracking method for compact electrostatic storage rings and explore the feasibility of electric dipole moment (EDM) measurements.

  18. Scaling Behavior of Circular Colliders Dominated by Synchrotron Radiation

    CERN Document Server

    Talman, Richard

    2015-01-01

    The quite low Higgs particle mass makes it natural for the next high energy facility to be a circular e+e- Higgs factory and, after that, a next-generation p,p collider in the same tunnel. Surveying the luminosity-limiting phenomena of synchrotron radiation power loss, beam-beam interaction limitations, and beamstrahlung, scaling laws are established that fix all parameters of the Higgs factory, as functions of assumed radius $r$, and RF power $P$. at least to a first approximation. Historically the accelerator formalisms of electron and hadron rings have been distinguished largely by the importance of synchrotron radiation for electrons, and its unimportance for protons. While electron beams equilibrate within seconds, proton beam distributions have survived largely intact for extended periods. For future hadron colliders, this distinction will no longer be valid. This will have a large impact on the design of the future FCC-pp proton collider whose parameters can be extrapolated using formulas previously ap...

  19. High pressure x-ray diffraction techniques with synchrotron radiation

    Science.gov (United States)

    Jing, Liu

    2016-07-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 10875142, 11079040, and 11075175). The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20, KJCX2-SW-N03, and SYGNS04).

  20. Phase contrast imaging of breast tumours with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Olivo, A. [Department of Medical Physics and Bioengineering, University College London, Malet Place, Gower Street, London WC1E 6BT (United Kingdom)], E-mail: aolivo@medphys.ucl.ac.uk; Rigon, L. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Area Science Park, Padriciano 99, 34012 Trieste (Italy)], E-mail: rigon@ts.infn.it; Vinnicombe, S.J. [Department of Radiology, St. Bartholomews Hospital, Barts and the London NHS Trust, West Smithfield, London EC1A 7BE (United Kingdom)], E-mail: s.j.vinnicombe@qmul.ac.uk; Cheung, K.C. [STFC Daresbury Laboratory, Keckwick Lane, Warrington, Cheshire WA4 4AD (United Kingdom)], E-mail: k.c.cheung@dl.ac.uk; Ibison, M. [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)], E-mail: m.ibison@dl.ac.uk; Speller, R.D. [Department of Medical Physics and Bioengineering, University College London, Malet Place, Gower Street, London WC1E 6BT (United Kingdom)], E-mail: rspeller@medphys.ucl.ac.uk

    2009-06-15

    Even though the potential of phase contrast (PC) imaging has been demonstrated in a number of biological tissue samples, the availability of free-space propagation phase contrast images of real breast tumours is still limited. The aim of this study was to obtain phase contrast images of two different pathological breast specimens containing tumours of differing morphological type at two synchrotron radiation (SR) facilities, and to assess any qualitative improvements in the evaluation and characterisation of the masses through the use of phase contrast imaging. A second aim was to assess the effects of parameters such as detector resolution, beam energy and sample-to-detector distance on image quality using the same breast specimens, as to date these effects have been modelled and discussed only for geometric phantoms. At each synchrotron radiation facility a range of images was acquired with different detectors and by varying the above parameters. Images of the same samples were also acquired with the absorption-based approach to allow a direct comparison and estimation of the advantages specifically ascribable to the PC technique.

  1. Design and Performance of the Upgraded LHC Synchrotron Light Monitor

    CERN Document Server

    Goldblatt, A; Roncarolo, F; Trad, G

    2013-01-01

    The LHC is equipped with two synchrotron radiation systems, one per beam, used to measure the transverse bunch distributions. The light emitted by a superconducting undulator and/or by a dipole magnet (depending on beam energy) is intercepted by an extraction mirror in vacuum and sent through a viewport to the imaging Beam Synchrotron Radiation Telescope (BSRT). The first version of the telescope, used from 2009 to mid 2012, was based on spherical focusing mirrors in order to minimize chromatic aberrations. However, this required a very complicated delay line in order to switch the focus between the two different light sources as a function of beam energy. A new system based on optical lenses was designed and installed in mid 2012 in order to simplify the optical line and thus reduce misalignment and focusing errors. The first results with LHC beam using this new system showed a significant reduction in the correction factor required to match the emittance as measured by wire scanners. This contribution discu...

  2. Synchrotron radiation shielding design and ICRP radiological protection quantities.

    Science.gov (United States)

    Bassey, Bassey; Moreno, Beatriz; Chapman, Dean

    2015-06-01

    Protection and operational quantities as defined by the International Commission on Radiological Protection (ICRP) and the International Commission on Radiation Units and Measurements (ICRU) are the two sets of quantities recommended for use in radiological protection for external radiation. Since the '80s, the protection quantities have evolved from the concept of dose equivalent to effective dose equivalent to effective dose, and the associated conversion coefficients have undergone changes. In this work, the influence of three different versions of ICRP photon dose conversion coefficients in the synchrotron radiation shielding calculations of an experimental enclosure has been examined. The versions are effective dose equivalent (ICRP Publication 51), effective dose (ICRP Publication 74), and effective dose (ICRP Publication 116) conversion coefficients. The sources of the synchrotron radiation white beam into the enclosure were a bending magnet, an undulator and a wiggler. The ranges of photons energy from these sources were 10-200 keV for the bending magnet and undulator, and 10-500 keV for the wiggler. The design criterion aimed a radiation leakage less than 0.5 µSv h(-1) from the enclosure. As expected, larger conversion coefficients in ICRP Publication 51 lead to higher calculated dose rates. However, the percentage differences among the calculated dose rates get smaller once shielding is added, and the choice of conversion coefficients set did not affect the final shielding decision.

  3. Magnetic Reconnection with Strong Synchrotron Cooling in Pulsar Magnetospheres

    Science.gov (United States)

    Uzdensky, Dmitri; Spitkovsky, Anatoly

    2012-10-01

    The magnetosphere of a rotating pulsar naturally develops a current sheet beyond the light cylinder (LC). Magnetic reconnection in this current sheet inevitably dissipates a nontrivial fraction of the pulsar spin-down power within a few LC radii. In this presentation, a basic physical picture of reconnection in this environment is developed. It is shown that reconnection proceeds in the plasmoid-dominated regime, via an hierarchical chain of multiple secondary islands/flux ropes. The inter-plasmoid reconnection layers are subject to strong synchrotron cooling, leading to significant plasma compression. The basic parameters of these current layers --- temperature, density, and layer thickness --- are estimated in terms of the upstream magnetic field. It is argued that, after accounting for the bulk Doppler boosting, the synchrotron and inverse-Compton emission mechanisms can explain the observed pulsed high-energy (GeV) and VHE (˜ 100 GeV) radiation, respectively. The motions of the secondary plasmoids may contribute to the pulsar's radio emission.

  4. Microprobe analysis of teeth by synchrotron radiation: environmental contamination

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, T. E-mail: murmur@itn1.itn.pt; Carvalho, M.L.; Casaca, C.; Barreiros, M.A.; Cunha, A.S.; Chevallier, P

    1999-09-02

    An X-ray fluorescence set-up with microprobe capabilities, installed at the Laboratoire pour l'Utilisation du Rayonnement Electromagnetique (LURE) synchrotron (France) was used for elemental determination in teeth. To evaluate the influence of living habits in dental elemental composition nine teeth collected post-mortem were analysed, five from a miner and four from a fisherman. All teeth from the fisherman were healthy. From the miner some teeth were carious and one of them was filled with metallic amalgam. Teeth were sliced under the vertical plane and each slice was scanned from the root to the enamel for elemental profile determination. The synchrotron microprobe resolution was of 100 {mu}m and incident photons of 18 keV energy were used. The elemental concentration values found suggest heterogeneity of the teeth material. Moreover, the distinct profiles for Mn, Sr, Br and Pb were found when teeth from the miner and from the fisherman are compared which can be associated with dietary habits and environmental influence. Higher concentrations of Mn and Sr were found for the fisherman teeth. In addition, Br was only observed in this group of teeth. Pb levels are higher for the miner teeth in particular for dentine regions. The influence of amalgam, such as, increase of Zn and Hg contents in the teeth material, is only noticed for the immediate surroundings of the treated cavity.

  5. Stanford Synchrotron Radiation Laboratory activity report for 1987

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, S.; Cantwell, K. [eds.

    1988-12-31

    During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

  6. Dark Matter and Synchrotron Emission from Galactic Center Radio Filaments

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Tim [Univ. of California, Santa Cruz, CA (United States); Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Yusef-Zadeh, Farhad [Northwestern Univ., Evanston, IL (United States)

    2011-11-10

    The inner degrees of the Galactic center contain a large population of filamentary structures observed at radio frequencies. These so-called non-thermal radio filaments (NRFs) trace magnetic field lines and have attracted significant interest due to their hard (S_v ~ -0.1 +/- 0.4) synchrotron emission spectra. The origin of these filaments remains poorly understood. We show that the electrons and positrons created through the annihilations of a relatively light (~5-10 GeV) dark matter particle with the cross section predicted for a simple thermal relic can provide a compelling match to the intensity, spectral shape, and flux variation of the NRFs. Furthermore, the characteristics of the dark matter particle necessary to explain the synchrotron emission from the NRFs is consistent with those required to explain the excess gamma-ray emission observed from the Galactic center by the Fermi-LAT, as well as the direct detection signals observed by CoGeNT and DAMA/LIBRA.

  7. Measurement of Beam Loss at the Australian Synchrotron

    CERN Document Server

    Holzer, EB; Kastriotou, M; Boland, MJ; Jackson, PD; Rasool, RP; Schmidt, J; Welsch, CP

    2014-01-01

    The unprecedented requirements that new machines are setting on their diagnostic systems is leading to the development of new generation of devices with large dynamic range, sensitivity and time resolution. Beam loss detection is particularly challenging due to the large extension of new facilities that need to be covered with localized detector. Candidates to mitigate this problem consist of systems in which the sensitive part of the radiation detectors can be extended over long distance of beam lines. In this document we study the feasibility of a BLM system based on optical fiber as an active detector for an electron storage ring. The Australian Synchrotron (AS) comprises a 216m ring that stores electrons up to 3GeV. The Accelerator has recently claimed the world record ultra low transverse emittance (below pm rad) and its surroundings are rich in synchrotron radiation. Therefore, the AS provides beam conditions very similar to those expected in the CLIC/ILC damping rings. A qualitative benchmark of beam l...

  8. Electron cloud observations at the ISIS Proton Synchrotron

    CERN Document Server

    Pertica, A

    2013-01-01

    The build up of electron clouds inside a particle accelerator vacuum chamber can produce strong transverse and longitudinal beam instabilities which in turn can lead to high levels of beam loss often requiring the accelerator to be run below its design specification. To study the behaviour of electron clouds at the ISIS Proton Synchrotron, a Micro-Channel Plate (MCP) based electron cloud detector has been developed. The detector is based on the Retarding Field Analyser (RFA) design and consists of a retarding grid, which allows energy analysis of the electron signal, and a MCP assembly placed in front of the collector plate. The MCP assembly provides a current gain over the range 300 to 25K, thereby increasing the signal to noise ratio and dynamic range of the measurements. This paper presents the first electron cloud observations at the ISIS Proton Synchrotron. These results are compared against signals from a beam position monitor and a fast beam loss monitor installed at the same location.

  9. Synchrotron radiation in transactinium research report of the workshop

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe{sub 2} and U-S; the laser plasma laboratory light source: a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.

  10. Synchrotron radiation in transactinium research report of the workshop

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe[sub 2] and U-S; the laser plasma laboratory light source: a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.

  11. Optical synchrotron radiation beam imaging with a digital mask

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [Univ. of Maryland, College Park, MD (United States); Fiorito, Ralph [Univ. of Maryland, College Park, MD (United States); Corbett, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shkvarunets, Anatoly [Univ. of Maryland, College Park, MD (United States); Tian, Kai [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fisher, Alan [SLAC National Accelerator Lab., Menlo Park, CA (United States); Douglas, D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wilson, F. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mok, W. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mitsuhashi, T. [KEK, Tsukuba (Japan)

    2016-01-01

    The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500mA circulating in the storage ring (equivalently 392nC). Each injection pulse contains only 40-80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during User operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by re-imaging visible synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as an optical mask to block out light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera makes it is possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam.

  12. Atmospheric pressure photoionization using tunable VUV synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Giuliani, A., E-mail: alexandre.giuliani@synchrotron-soleil.fr [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); INRA, U1008 CEPIA, Rue de la Geraudiere, F-44316 Nantes (France); Giorgetta, J.-L.; Ricaud, J.-P. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); Jamme, F. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); INRA, U1008 CEPIA, Rue de la Geraudiere, F-44316 Nantes (France); Rouam, V.; Wien, F. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); Laprevote, O. [Laboratoire de Spectrometrie de Masse, ICSN-CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette (France); Laboratoire de Chimie-Toxicologie Analytique et cellulaire, IFR 71, Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France); Refregiers, M. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Coupling of an atmospheric pressure photoionization source with a vacuum ultra-violet (VUV) beamline. Black-Right-Pointing-Pointer The set up allows photoionization up to 20 eV. Black-Right-Pointing-Pointer Compared to classical atmospheric pressure photoionization (APPI), our set up offers spectral purity and tunability. Black-Right-Pointing-Pointer Allows photoionization mass spectrometry on fragile and hard to vaporize molecules. - Abstract: We report here the first coupling of an atmospheric pressure photoionization (APPI) source with a synchrotron radiation beamline in the vacuum ultra-violet (VUV). A commercial APPI source of a QStar Pulsar i from AB Sciex was modified to receive photons from the DISCO beamline at the SOLEIL synchrotron radiation facility. Photons are delivered at atmospheric pressure in the 4-20 eV range. The advantages of this new set up, termed SR-APPI, over classical APPI are spectral purity and continuous tunability. The technique may also be used to perform tunable photoionization mass spectrometry on fragile compounds difficult to vaporize by classical methods.

  13. Evaporative gold nanorod assembly on chemically stripe-patterned gradient surfaces

    NARCIS (Netherlands)

    Ahmad, I.; Jansen, H.P.; Swigchem, van J.; Ganser, C.; Teichert, C.; Zandvliet, H.J.W.; Kooij, E.S.

    2015-01-01

    Experimentally we explore the potential of using pre-defined motion of a receding contact line to control the deposition of nanoparticles from suspension. Stripe-patterned wettability gradients are employed, which consist of alternating hydrophilic and hydrophobic stripes with increasing macroscopic

  14. Use of high-gradient magnetic fishing for reducing proteolysis during fermentation

    DEFF Research Database (Denmark)

    Maury, Trine Lütken; Ottow, Kim Ekelund; Brask, Jesper

    2012-01-01

    Proteolysis during fermentation may have a severe impact on the yield and quality of a secreted product. In the current study, we demonstrate the use of high-gradient magnetic fishing (HGMF) as an efficient alternative to the more conventional methods of preventing proteolytic degradation...

  15. Critical slowing down and the gradient flow coupling in the Schroedinger functional

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsch, Patrick; Stollenwerk, Felix [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Ramos, Alberto [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2013-11-15

    We study the sensitivity of the gradient flow coupling to sectors of different topological charge and its implications in practical situations. Furthermore, we investigate an alternative definition of the running coupling that is expected to be less sensitive to the problems of the HMC algorithm to efficiently sample all topological sectors.

  16. Considerations on low frequency high gradient cavities for muon capture and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Spazzaro, B.; Tazzioli, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Rome (Italy)

    2001-01-01

    In this note are discussed some alternatives in the design of low frequency cavities for Muon capture and cooling in a Neutrino Factory. Both solutions with closed and open irises are considered. The comparison between the various solutions is based on dimensions and power per unit length, for a given accelerating gradient.

  17. Vertebrate pressure-gradient receivers.

    Science.gov (United States)

    Christensen-Dalsgaard, Jakob

    2011-03-01

    The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum and strongly dependent on interaural transmission attenuation. Even though the tympanic middle ear has originated independently in the major tetrapod groups, in each group the ancestral condition probably was that the two middle ears were exposed in the mouth cavity with relatively high interaural transmission. Recent vertebrates form a continuum from perfect interaural transmission (0 dB in a certain frequency band) and pronounced eardrum directionality (30-40 dB) in the lizards, over somewhat attenuated transmission and limited directionality in birds and frogs, to the strongly attenuated interaural transmission and functionally isolated pressure receiver ears in the mammals. Since some of the binaural interaction already takes place at the eardrum in animals with strongly coupled ears, producing enhanced interaural time and level differences, the subsequent neural processing may be simpler. In robotic simulations of lizards, simple binaural subtraction (EI cells, found in brainstem nuclei of both frogs and lizards) produces strongly lateralized responses that are sufficient for steering the animal robustly to sound sources.

  18. Engineering optical gradient force from coupled surface plasmon polariton modes in nanoscale plasmonic waveguides

    Science.gov (United States)

    Lu, Jiahui; Wang, Guanghui

    2016-11-01

    We explore the dispersion properties and optical gradient forces from mutual coupling of surface plasmon polariton (SPP) modes at two interfaces of nanoscale plasmonic waveguides with hyperbolic metamaterial cladding. With Maxwell’s equations and Maxwell stress tensor, we calculate and compare the dispersion relation and optical gradient force for symmetric and antisymmetric SPP modes in two kinds of nanoscale plasmonic waveguides. The numerical results show that the optical gradient force between two coupled hyperbolic metamaterial waveguides can be engineered flexibly by adjusting the waveguide structure parameters. Importantly, an alternative way to boost the optical gradient force is provided through engineering the hyperbolic metamaterial cladding of suitable orientation. These special optical properties will open the door for potential optomechanical applications, such as optical tweezers and actuators. Project supported by the National Natural Science Foundation of China (Grant No. 11474106) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313439).

  19. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams

    Energy Technology Data Exchange (ETDEWEB)

    Coquelle, Nicolas [Université Grenoble Alpes, IBS, 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France); Brewster, Aaron S. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Burghammer, Manfred, E-mail: burgham@esrf.fr [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Ghent University, Ghent B-9000 (Belgium); Colletier, Jacques-Philippe, E-mail: burgham@esrf.fr [Université Grenoble Alpes, IBS, 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France)

    2015-05-01

    A raster scanning serial protein crystallography approach is presented, that consumes as low ∼200–700 nl of sedimented crystals. New serial data pre-analysis software, NanoPeakCell, is introduced. High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.

  20. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams.

    Science.gov (United States)

    Coquelle, Nicolas; Brewster, Aaron S; Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta; Burghammer, Manfred; Colletier, Jacques Philippe

    2015-05-01

    High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.

  1. Analysis of the hydration water around bovine serum albumin using terahertz coherent synchrotron radiation.

    Science.gov (United States)

    Bye, Jordan W; Meliga, Stefano; Ferachou, Denis; Cinque, Gianfelice; Zeitler, J Axel; Falconer, Robert J

    2014-01-09

    Terahertz spectroscopy was used to study the absorption of bovine serum albumin (BSA) in water. The Diamond Light Source operating in a low alpha mode generated coherent synchrotron radiation that covered a useable spectral bandwidth of 0.3-3.3 THz (10-110 cm(-1)). As the BSA concentration was raised, there was a nonlinear change in absorption inconsistent with Beer's law. At low BSA concentrations (0-1 mM), the absorption remained constant or rose slightly. Above a concentration of 1 mM BSA, a steady decrease in absorption was observed, which was followed by a plateau that started at 2.5 mM. Using a overlapping hydration layer model, the hydration layer was estimated to extend 15 Å from the protein. Calculation of the corrected absorption coefficient (αcorr) for the water around BSA by subtracting the excluded volume of the protein provides an alternative approach to studying the hydration layer that provides evidence for complexity in the population of water around BSA.

  2. Synchronizing femtosecond laser with x-ray synchrotron operating at arbitrarily different frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Wonhyuk [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Lee, Sooheyong, E-mail: sooheyong@gmail.com [Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of); Eom, Intae, E-mail: neplus@postech.ac.kr [Pohang Accelerator Laboratory, Pohang 790-784 (Korea, Republic of); Landahl, Eric C. [Department of Physics, DePaul University, Chicago, Illinois 60614 (United States)

    2014-12-15

    The ability to synchronize a femtosecond laser to x-ray pulses is crucial for performing ultrafast time-resolved x-ray scattering experiments at synchrotrons. Conventionally, the task has been achieved by locking a harmonic frequency of the laser oscillator to the storage ring master radio-frequency (RF). However, when the frequency mismatch between the two sources cannot be compensated by small adjustments to the laser cavity length, synchronization to a harmonic frequency requires modifying the optical components of the laser system. We demonstrate a novel synchronization scheme, which is a flexible alternative for synchronizing these two sources operating at arbitrarily different frequencies. First, we find the greatest common divisor (GCD) of the two frequencies that is still within the limited tuning range of the laser cavity length. The GCD is generated by dividing down from the storage ring RF, and is separately multiplied up to provide a feedback signal for synchronizing the laser cavity. Unique to our scheme, the GCD also serves as a harmonic RF source for the laser amplifier such that only laser oscillator pulses at fixed integer multiples of the storage ring RF are selected for amplification and delivery to experiments. Our method is implemented at the Photon Test Facility beamline of Pohang Light Source where timing-jitter less than 4 ps (r.m.s.) is measured using a new shot-to-shot method.

  3. Evaluating the microstructure of human brain tissues using synchrotron radiation-based micro-computed tomography

    Science.gov (United States)

    Schulz, Georg; Morel, Anne; Imholz, Martha S.; Deyhle, Hans; Weitkamp, Timm; Zanette, Irene; Pfeiffer, Franz; David, Christian; Müller-Gerbl, Magdalena; Müller, Bert

    2010-09-01

    Minimally invasive deep brain neurosurgical interventions require a profound knowledge of the morphology of the human brain. Generic brain atlases are based on histology including multiple preparation steps during the sectioning and staining. In order to correct the distortions induced in the anisotropic, inhomogeneous soft matter and therefore improve the accuracy of brain atlases, a non-destructive 3D imaging technique with the required spatial and density resolution is of great significance. Micro computed tomography provides true micrometer resolution. The application to post mortem human brain, however, is questionable because the differences of the components concerning X-ray absorption are weak. Therefore, magnetic resonance tomography has become the method of choice for three-dimensional imaging of human brain. Because the spatial resolution of this method is limited, an alternative has to be found for the three-dimensional imaging of cellular microstructures within the brain. Therefore, the present study relies on the synchrotron radiationbased micro computed tomography in the recently developed grating-based phase contrast mode. Using data acquired at the beamline ID 19 (ESRF, Grenoble, France) we demonstrate that grating-based tomography yields premium images of human thalamus, which can be used for the correction of histological distortions by 3D non-rigid registration.

  4. Observation of Synchrotron Radiation Using Low Noise Block (LNB) at ANKA

    CERN Document Server

    Judin, V; Hofmann, A; Huttel, E; Kehrer, B; Klein, M; Marsching, S; Muller, A-S; Smale, N; Caspers, F

    2011-01-01

    Generally Coherent Synchrotron Radiation (CSR) is emitted for wavelengths longer than or equal the bunch length, so for CSR in the THz-range short bunches are required. There are two types of detectors in this range of the spectrum: slow detectors like a golay cell or pyrometric detectors (used for e.g. imaging, spectroscopy) and fast detectors like superconducting bolometer detector systems and Schottky Barrier diodes (used for e.g. the investigation of dynamic processes in accelerator physics). The hot electron bolometer (HEB) detector system is a member of second group. It is very fast and has broad spectral characteristics, but unfortunately very expensive and have to be cooled using liquid helium. If the broad spectral response is not important, it will be suitably to use a Schottky Barrier diode instead. These detectors are massively cheaper but also slower. As an alternative to a Schottky diode a LNB (Low Noise Block) can be also used. It is usually used in standard TV-SAT-receivers. Due to mass produc...

  5. Synchrotron Emission on the Largest Scales: Radio Detection of the Cosmic-Web

    Indian Academy of Sciences (India)

    Shea D. Brown

    2011-12-01

    Shocks and turbulence generated during large-scale structure formation are predicted to produce large-scale, low surface-brightness synchrotron emission. On the largest scales, this emission is globally correlated with the thermal baryon distribution, and constitutes the `synchrotron cosmic-web’. I present the observational prospects and challenges for detecting this faint emission with upcoming SKA pathfinders.

  6. Fatigue Micromechanism Characterization in Carbon Fibre Reinforced Polymers Using Synchrotron Radiation Computed Tomography

    Science.gov (United States)

    2014-12-18

    AFRL-AFOSR-UK-TR-2015-0002 Fatigue micromechanism characterization in carbon fibre reinforced polymers using synchrotron radiation computed...SUBTITLE Fatigue micromechanism characterization in carbon fibre reinforced polymers using synchrotron radiation computed tomography 5a. CONTRACT...particularly within the aerospace sector due to their high specific stiffness and strength. CFRPs are widely identified as being very fatigue resistant, but

  7. New developments in the application of synchrotron radiation to material science.

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S. K.

    1999-04-21

    Recent developments in the application of synchrotrons radiation to materials science are discussed, using techniques which exploit the high brilliance of the newer synchrotrons sources, such as microbeam techniques and correlation spectroscopy. These include studies of environmental systems, residual stress, slow dynamics of condensed matter systems and studies of liquid surfaces and thin magnetic films.

  8. Synchrotron radiation X-ray microfluorescence techniques and biological applications

    Indian Academy of Sciences (India)

    R T Lopes; I Lima; G R Pereira; C A Perez

    2011-02-01

    Synchrotron X-ray imaging systems with fluorescence techniques was developed for biomedical researches in Brazilian Synchrotron Laboratory. An X-ray fluorescence microtomography system was implemented to analyse human prostate and breast samples and an X-ray microfluorescence system was implemented to study bone sites of human and animal samples with and without bone disorders.

  9. Using Jupiter's Synchrotron Radiation as a Probe into Jupiter's Inner Radiation Belts

    Science.gov (United States)

    Bolton, S. J.; Gulkis, S.; Klein, M. J.; Thorne, R. M.

    1995-01-01

    The Jovian decimetric emission is caused by the combined emission of synchrotron radiation originating from the relativistic electrons trapped in Jupiter's 'Van Allen radiation belts' and thermal emission from the planet's atmosphere. Synchrotron radiation characteristics and variations (which provides insight into the physical properties of Jupiter's inner radiation belts) will be amplified and discussed.

  10. Synchrotron and simulations techniques applied to problems in materials science: catalysts and Azul Maya pigments.

    Science.gov (United States)

    Chianelli, Russell R; Perez De la Rosa, Myriam; Meitzner, George; Siadati, Mohammed; Berhault, Gilles; Mehta, Apurva; Pople, John; Fuentes, Sergio; Alonzo-Nuñez, Gabriel; Polette, Lori A

    2005-03-01

    Development of synchrotron techniques for the determination of the structure of disordered, amorphous and surface materials has exploded over the past 20 years owing to the increasing availability of high-flux synchrotron radiation and the continuing development of increasingly powerful synchrotron techniques. These techniques are available to materials scientists who are not necessarily synchrotron scientists through interaction with effective user communities that exist at synchrotrons such as the Stanford Synchrotron Radiation Laboratory. In this article the application of multiple synchrotron characterization techniques to two classes of materials defined as 'surface compounds' is reviewed. One class of surface compounds are materials like MoS(2-x)C(x) that are widely used petroleum catalysts, used to improve the environmental properties of transportation fuels. These compounds may be viewed as 'sulfide-supported carbides' in their catalytically active states. The second class of 'surface compounds' are the 'Maya blue' pigments that are based on technology created by the ancient Maya. These compounds are organic/inorganic 'surface complexes' consisting of the dye indigo and palygorskite, common clay. The identification of both surface compounds relies on the application of synchrotron techniques as described here.

  11. An Inexpensive Digital Gradient Controller for HPLC.

    Science.gov (United States)

    Brady, James E.; Carr, Peter W.

    1983-01-01

    Use of gradient elution techniques in high performance liquid chromatography (HPLC) is often essential for direct separation of complex mixtures. Since most commercial controllers have features that are of marginal value for instructional purposes, a low-cost controller capable of illustrating essential features of gradient elution was developed.…

  12. Density Gradient Stabilization of Electron Temperature Gradient Driven Turbulence in a Spherical Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Y; Mazzucato, E; Guttenfelder, W; Bell, R E; Domier, C W; LeBlanc, B P; Lee, K C; Luhmann Jr, N C; Smith, D R

    2011-03-21

    In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k⊥ρs ≤10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.

  13. Summer-time blues French researchers, angry and upset over last week's synchrotron decision, deserve a full explanation

    CERN Multimedia

    1999-01-01

    Allegre needs to produce a detailed description of the calculations he used to make his decision to support the British synchrotron project. French researchers had been hoping to build their own synchrotron 'Soleil' on French territory (4 paragraphs)

  14. Dual fuel gradients in uranium silicide plates

    Energy Technology Data Exchange (ETDEWEB)

    Pace, B.W. [Babock and Wilcox, Lynchburg, VA (United States)

    1997-08-01

    Babcock & Wilcox has been able to achieve dual gradient plates with good repeatability in small lots of U{sub 3}Si{sub 2} plates. Improvements in homogeneity and other processing parameters and techniques have allowed the development of contoured fuel within the cladding. The most difficult obstacles to overcome have been the ability to evaluate the bidirectional fuel loadings in comparison to the perfect loading model and the different methods of instilling the gradients in the early compact stage. The overriding conclusion is that to control the contour of the fuel, a known relationship between the compact, the frames and final core gradient must exist. Therefore, further development in the creation and control of dual gradients in fuel plates will involve arriving at a plausible gradient requirement and building the correct model between the compact configuration and the final contoured loading requirements.

  15. High order compact schemes for gradient approximation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, we propose three gradient recovery schemes of higher order for the linear interpolation. The first one is a weighted averaging method based on the gradients of the linear interpolation on the uniform mesh, the second is a geometric averaging method constructed from the gradients of two cubic interpolation on macro element, and the last one is a local least square method on the nodal patch with cubic polynomials. We prove that these schemes can approximate the gradient of the exact solution on the symmetry points with fourth order. In particular, for the uniform mesh, we show that these three schemes are the same on the considered points. The last scheme is more robust in general meshes. Consequently, we obtain the superconvergence results of the recovered gradient by using the aforementioned results and the supercloseness between the finite element solution and the linear interpolation of the exact solution. Finally, we provide several numerical experiments to illustrate the theoretical results.

  16. Phase transformations in Ni/Ti multilayers investigated by synchrotron radiation-based x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cavaleiro, A.J., E-mail: andre.cavaleiro@dem.uc.pt [CEMUC, Department of Mechanical Engineering, University of Coimbra, R. Luís Reis Santos, 3030-788 Coimbra (Portugal); Ramos, A.S. [CEMUC, Department of Mechanical Engineering, University of Coimbra, R. Luís Reis Santos, 3030-788 Coimbra (Portugal); Martins, R.M.S. [CENIMAT/I3N, Department of Materials Science, Faculty of Sciences and Technology, University Nova de Lisboa, 2829-516 Caparica (Portugal); Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LATR/IST/CTN – Campus Tecnológico e Nuclear, Estrada Nacional 10 ao km 139.7, 2695-066 Bobadela LRS (Portugal); Fernandes, F.M. Braz [CENIMAT/I3N, Department of Materials Science, Faculty of Sciences and Technology, University Nova de Lisboa, 2829-516 Caparica (Portugal); Morgiel, J. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Cracow (Poland); Baehtz, C. [Helmholtz Zentrum Dresden Rossendorf HZDR, Institute of Ion Beam Physics and Materials Research, D-01314 Dresden (Germany); Vieira, M.T. [CEMUC, Department of Mechanical Engineering, University of Coimbra, R. Luís Reis Santos, 3030-788 Coimbra (Portugal)

    2015-10-15

    X-ray diffraction using synchrotron radiation was used for real-time investigation of the phase evolution of Ni/Ti multilayer thin films during annealing. These multilayers were deposited onto Ti–6Al–4V substrates by dc magnetron sputtering from pure Ni and Ti targets. The deposition parameters were adjusted in order to obtain a near equiatomic chemical composition and modulation periods (Λ) below 25 nm. Along the entire thickness of the films, well-defined structures with alternate Ni- and Ti-rich layers are observed, even for Λ = 4 nm. In this case, a halo characteristic of an amorphous structure is obtained, while for Λ of 12 and 25 nm the as-deposited thin films are nanocrystalline being possible to identify the (111) Ni and (002) Ti diffraction peaks. The nanolayered structure vanishes during annealing due to interdiffusion followed by reaction. The reaction between Ni and Ti to produce NiTi in the cubic B2 structure occurs in a short delay of time and within a narrow temperature range. For Λ of 25, 12 and 4 nm, the reaction temperature is close to 320, 350 and 385 °C, respectively. For higher temperatures, in addition to the austenitic phase, the NiTi{sub 2} phase is identified. The diffusion of Ti from the substrate and Ni towards the substrate could favour the precipitation of NiTi{sub 2}. - Highlights: • Alternate Ni- and Ti-rich layers are observed, even for short periods. • Phase evolution was studied using synchrotron radiation XRD during annealing. • Ni and Ti reacted at ∼300–400 °C to form B2–NiTi in a single step. • The higher the period the lower the reaction temperature. • At higher temperatures NiTi{sub 2} was detected due to Ni diffusion towards Ti{sub 6}Al{sub 4}V.

  17. FROST: an ASIC for digital mammography with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, A. E-mail: bergamaschi@ts.infn.it; Prest, M.; Vallazza, E.; Arfelli, F.; Dreossi, D.; Longo, R.; Olivo, A.; Pani, S.; Castelli, E

    2003-09-01

    The FRONTier RADiography (FRONTRAD) collaboration is developing a digital system for mammography at the Elettra Synchrotron Light Source in Trieste. The system is based on a silicon microstrip detector array. The ASIC FROST (FRONTRAD Read Out sySTem) was developed as a collaboration between INFN Trieste and Aurelia Microelettronica and is designed to operate in single photon counting mode. FROST provides low-noise and high-gain performances and is able to work at incident photon rates higher than 100 kHz with almost 100% efficiency. The ASIC has been tested and the first images of mammographic test objects will be shown. The acquisition time per breast image should be of about 10 s.

  18. Photolysis of rac-leucine with circularly polarized synchrotron radiation.

    Science.gov (United States)

    Meierhenrich, Uwe J; Filippi, Jean-Jacques; Meinert, Cornelia; Hoffmann, Søren V; Bredehöft, Jan Hendrik; Nahon, Laurent

    2010-06-01

    Amino acids that pass the RNA machinery in living organisms occur in L-configuration. The question on the evolutionary origin of this biomolecular asymmetry remains unanswered to this day. Amino acids were detected in artificially produced interstellar ices, and L-enantiomer-enriched amino acids were identified in CM-type meteorites. This hints at a possible interstellar/circumstellar origin of the amino acids themselves as well as their stereochemical asymmetry. Based upon the current knowledge about the occurrence of circularly-polarized electromagnetic radiation in interstellar environments, we subjected rac-leucine to far-UV circularly-polarized synchrotron radiation. Asymmetric photolysis was followed by an analysis in an enantioselective GC/MS system. Here, we report on an advanced photolysis rate of more than 99% for leucine. The results indicate that high photolysis rates can occur under the chosen conditions, favoring enantioselective photolysis. In 2014, the obtained results will be reexamined by cometary mission Rosetta.

  19. Synchrotron refractive-index microradiography of human liver cancer tissue

    Institute of Scientific and Technical Information of China (English)

    TONG Yongpeng; ZHANG Guilin; LI Yan; HWU Yeukuang; TSAI Wenli; JE Jung Ho; Margaritondo G.; YUAN Dong

    2005-01-01

    Three human liver tissue samples (~5 mm × 40 mm × 20 mm) were excised from a cancer patient's liver during surgery. The microradiology analysis was performed with a non-standard approach on a synchrotron. High-resolution refractive-index edge-enhanced microradiographs that cover a larger volume of the liver tissue sample were obtained. The cancer tissue and normal tissue could be clearly identified and distinguished based on their different textures. Furthermore, new blood vessel hyperplasia was found near the cancer area. Blood vessels with a diameter smaller than 20 μm could be identified. These findings were fully consistent with the histopathological examination of the same area. Microradiographs of the newly formed blood vessels at different angles were also obtained. This result shows that it is possible to further develop this approach into a technique of microradiographic imaging for clinic diagnosis of liver cancer at the early stage.

  20. Synchrotron radiation in strongly coupled conformal field theories

    CERN Document Server

    Athanasiou, Christiana; Liu, Hong; Nickel, Dominik; Rajagopal, Krishna

    2010-01-01

    Using gauge/gravity duality, we compute the energy density and angular distribution of the power radiated by a quark undergoing circular motion in strongly coupled ${\\cal N}=4$ supersymmetric Yang-Mills (SYM) theory. We compare the strong coupling results to those at weak coupling, finding them to be very similar. In both regimes, the angular distribution of the radiated power is in fact similar to that of synchrotron radiation produced by an electron in circular motion in classical electrodynamics: the quark emits radiation in a narrow beam along its velocity vector with a characteristic opening angle $\\alpha \\sim 1/\\gamma$. To an observer far away from the quark, the emitted radiation appears as a short periodic burst, just like the light from a lighthouse does to a ship at sea. Our strong coupling results are valid for any strongly coupled conformal field theory with a dual classical gravity description.

  1. Bounding Isotropic Lorentz Violation Using Synchrotron Losses at LEP

    CERN Document Server

    Altschul, Brett

    2009-01-01

    Some deviations from special relativity--especially isotropic effects--are most efficiently constrained using particles with velocities very close to 1. While there are extremely tight bounds on some of the relevant parameters coming from astrophysical observations, many of these rely on our having an accurate understanding of the dynamics of high-energy sources. It is desirable to have reliable laboratory constraints on these same parameters. The fastest-moving particles in a laboratory were electrons and positrons at LEP. The energetics of the LEP beams were extremely well understood, and measurements of the synchrotron emission rate indicates that that any isotropic deviation of the speed of light from 1 must be smaller than 1.2 x 10^(-15).

  2. Bounding isotropic Lorentz violation using synchrotron losses at LEP

    Science.gov (United States)

    Altschul, Brett

    2009-11-01

    Some deviations from special relativity—especially isotropic effects—are most efficiently constrained using particles with velocities very close to 1. While there are extremely tight bounds on some of the relevant parameters coming from astrophysical observations, many of these rely on our having an accurate understanding of the dynamics of these high-energy sources. It is desirable to have reliable laboratory constraints on these same parameters. The fastest-moving particles in a laboratory were electrons and positrons at LEP. The energetics of the LEP beams were extremely well understood, and measurements of the synchrotron emission rate indicate that the isotropic Lorentz violation coefficient |κ˜tr-(4)/(3)c00| must be smaller than 5×10-15.

  3. Physical Analysis of the Jovian Synchrotron Radio Emission

    Science.gov (United States)

    Santos-Costa, D.; Bolton, S. J.; Levin, S. M.; Thorne, R. M.

    2006-12-01

    We present results of our recent investigation of the Jovian synchrotron emission based on a particle transport code. The features of the two-dimensional brightness distributions, radio spectra and beaming curves are correlated to the different phenomena driven the dynamics of the electron radiation belts. The adiabatic invariant theory was used for performing this analysis work. The theoretical approach first enabled us to describe the electron radiation belts by modeling the interactions between high-energy trapped particles and plasmas, neutrals, moons, dust and magnetic field. Then radio observations were used to discuss the computed particle distributions in the inner magnetosphere of Jupiter. The simulated brightness mappings were compared with VLA observations made at two wavelengths (20 and 6 cm). The beaming curve comparisons at 13-cm wavelength were performed for different epochs in order to evaluate the dependence of the model to the geometric factor De. The computed radio spectra were discussed with measurements made in the [0.5-20] GHz radio band. The simulation results match the different remote observations very well and thus allowed us to study the phenomenology of the Jovian synchrotron radio emission. The analysis of the Jovian synchrotron emission demonstrates that during the inward particle transport, local losses associated with the Jovian moons set the extension and intensity of the synchrotron radiation along the magnetic equator. Close to the planet, trapped electrons suffer from the interactions with dust and magnetic field, resulting in the transport of particles toward the high latitudes. The quantity of particles transported away from the equator is sufficient to produce the measurable secondary radio emissions. The simulations show that the moon sweeping effect controls both the transport toward the planet and at high latitudes by reducing the abundance of particles constrained to populate the regions out of the equator. Among the

  4. NanoESCA, a new nanospectroscopy tool with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Patt, Marten; Wiemann, Carsten; Krug, Ingo; Schneider, Claus Michael [PGI-6, Forschungszentrum Juelich GmbH, Juelich (Germany); Escher, Matthias; Weber, Nils; Merkel, Michael [Focus GmbH, Huenstetten (Germany)

    2011-07-01

    Nanotechnology and nanoscience are developing more and more to smaller length scales. We face the need for the characterization of surface electronic and magnetic states in these reduced dimensions with a new energy-filtered photoelectron emission microscope (PEEM), which we have recently installed at the ELETTRA synchrotron facility (Italy). The instrument features a novel electrostatic lens system with 30 kV extraction voltage, enabling spatially resolved photoelectron imaging with a lateral resolution smaller than 100 nm and combines it with a double-hemispherical energy filter, a single-event counting detector unit and a liquid helium cooled sample manipulator with five degrees of freedom. A second operation mode provides the mapping of the angular distribution (k-space microscopy) of the photoelectrons. We discuss the capabilities and the performance of the instrument with respect to its lateral and energy resolution, sensitivity and signal-to-noise-ratio.

  5. Error reduction techniques for measuring long synchrotron mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Irick, S.

    1998-07-01

    Many instruments and techniques are used for measuring long mirror surfaces. A Fizeau interferometer may be used to measure mirrors much longer than the interferometer aperture size by using grazing incidence at the mirror surface and analyzing the light reflected from a flat end mirror. Advantages of this technique are data acquisition speed and use of a common instrument. Disadvantages are reduced sampling interval, uncertainty of tangential position, and sagittal/tangential aspect ratio other than unity. Also, deep aspheric surfaces cannot be measured on a Fizeau interferometer without a specially made fringe nulling holographic plate. Other scanning instruments have been developed for measuring height, slope, or curvature profiles of the surface, but lack accuracy for very long scans required for X-ray synchrotron mirrors. The Long Trace Profiler (LTP) was developed specifically for long x-ray mirror measurement, and still outperforms other instruments, especially for aspheres. Thus, this paper focuses on error reduction techniques for the LTP.

  6. Automated Tuning of the Advanced Photon Source Booster Synchrotron

    Science.gov (United States)

    Biedron, S. G.; Carwardine, J. A.; Milton, S. V.

    1997-05-01

    The acceleration cycle of the Advanced Photon Source (APS) booster synchrotron is completed within 250 ms and is repeated at 2 Hz. Unless properly corrected, transverse and longitudinal injection errors can lead to inefficient booster performance. Ramped-magnet tracking errors can also lead to losses during the acceleration cycle. In order to simplify daily operation, automated tuning methods have been developed. Through the use of empirically determined response functions, transfer line corrector magnets, and beam position monitor readings, the injection process is optimized by correcting the first turn trajectory to the measured closed orbit. An automated version of this correction technique has been implemented using the feedback-based program sddscontrollaw. Further automation is used to adjust and minimize tracking errors between the five main ramped power supplies. These tuning algorithms and their implementation are described here along with an evaluation of their! performance.

  7. New Pulsed Orbit Bump Magnets for the Fermilab Booster Synchrotron

    CERN Document Server

    Lackey, James; John, Carson; Kashikhin, Vladimir; Makarov, Alexander; Prebys, Eric

    2005-01-01

    The beam from the Fermilab Linac is injected onto a bump in the closed orbit of the Booster Synchrotron where a carbon foil strips the electrons from the Linac’s negative ion hydrogen beam. Although the Booster itself runs at 15Hz, heat dissipation in the orbit bump magnets has been one limitation to the fraction of the cycles that can be used for beam. New, 0.28T pulsed window frame dipole magnets have been constructed that will fit into the same space as the old ones, run at the full repetition rate of the Booster, and provide a larger bump to allow a cleaner injection orbit. The new magnets use a high saturation flux density Ni-Zn ferrite in the yoke rather than laminated steel. The presented magnetic design includes two and three dimensional magnetic field calculations with eddy currents and ferrite nonlinear effects.

  8. New Developments of a Laser Ion Source for Ion Synchrotrons

    CERN Document Server

    Kondrashev, S; Konukov, K; Sharkov, B Yu; Shumshurov, A V; Camut, O; Chamings, J A; Kugler, H; Scrivens, R; Charushin, A; Makarov, K; Satov, Yu; Smakovskii, Yu

    2004-01-01

    Laser Ion Sources (LIS) are well suited to filling synchrotron rings with highly charged ions of almost any element in a single turn injection mode. We report the first measurements of the LIS output parameters for Pb27+ ions generated by the new 100 J/1 Hz Master Oscillator - Power Amplifier CO2-laser system. A new LIS has been designed, built and tested at CERN, as an ion source for ITEP-TWAC accelerator/accumulator facility, and as a possible future source for an upgrade of the Large Hadron Collider (LHC) injector chain. The use of the LIS based on 100 J/1 Hz CO2-laser together with the new ion LINAC, as injector for ITEP-TWAC project, is discussed..

  9. CERN Proton Synchrotron Complex High-Level Controls Renovation

    CERN Document Server

    Deghaye, S; Garcia Quintas, D; Gourber-Pace, M; Kruk, G; Kulikova, O; Lezhebokov, V; Pasinelli, S; Peryt, M; Roderick, C; Roux, E; Sobczak, M; Steerenberg, R; Wozniak, J; Zaharieva, Z

    2009-01-01

    After a detailed study of the Proton Synchrotron (PS) complex requirements by experts of CERN controls & operation groups, a proposal to develop a new system, called Injector Controls Architecture (InCA), was presented to and accepted by the management late 2007. Aiming at the homogenisation of the control systems across CERN accelerators, InCA is based on components developed for the Large Hadron Collider (LHC) but also new components required to fulfil operation needs. In 2008, the project was in its elaboration phase and we successfully validated its architecture and critical use-cases during several machine development sessions. After description of the architecture put in place and the components used, this paper describes the planning approach taken combining iterative development phases with deployment in operation for validation sessions.

  10. Unexpectedly wide rf-induced synchrotron sideband depolarizing resonances

    Science.gov (United States)

    Chu, C. M.; Ellison, T. J.; Lee, S. Y.; Rinckel, T.; Schwandt, P.; Sperisen, F.; von Przewoski, B.; Anferov, V. A.; Blinov, B. B.; Bychkov, M. A.; Caussyn, D. D.; Courant, E. D.; Crandell, D. A.; Derbenev, Ya. S.; Kaufman, W. A.; Krisch, A. D.; Lorenzon, W.; Nurushev, T. S.; Phelps, R. A.; Ratner, L. G.; Wong, V. K.; Ohmori, C.; Minty, M. G.; Martin, P. S.; Russell, A. D.; Sivers, D. W.

    1998-10-01

    Using an rf solenoid magnet, we studied the depolarization of a stored 104.1 MeV vertically polarized proton beam. The two primary rf depolarizing resonances were properly centered around the protons' circulation frequency fc, at fc(3-νs) and fc(νs-1), where νs is the spin tune; moreover, each resonance was roughly consistent with the expected width of about 720 Hz. Each primary rf resonance had two synchrotron sideband resonances at the expected frequencies. The two νs-1 sidebands were deep dips while the two 3-νs sidebands were very shallow; this was not expected. Moreover, all four sideband resonances were unexpectedly wider than the two primary resonances.

  11. Novel synchrotron based techniques for characterization of energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, H.F.; Nielsen, S.F.; Olsen, U.L.; Schmidt, S. (Risoe DTU, Materials Research Dept., Roskilde (Denmark)); Wright, J. (European Synchrotron Radiation Facility, Grenoble Cedex (France))

    2008-10-15

    Two synchrotron techniques are reviewed, both based on the use of high energy x-rays, and both applicable to in situ studies of bulk materials. Firstly, 3DXRD microscopy, which enables 3D characterization of the position, morphology, phase, elastic strain and crystallographic orientation of the individual embedded grains in polycrystalline specimens. In favourable cases, hundreds of grains can be studied simultaneously during processing. Secondly, plastic strain tomography: a unique method for determining the plastic strain field within materials during processing the potential applications of these techniques for basic and applied studies of four types of energy materials are discussed: polymer composites for wind turbines, solid oxide fuel cells, hydrogen storage materials and superconducting tapes. Furthermore, progress on new detectors aiming at improving the spatial and temporal resolution of such measurements is described. (au)

  12. Commissioning of a compact synchrotron radiation source at Hiroshima University

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, K.; Andreyashkin, M.; Goto, K. [Hiroshima Univ. (Japan)] [and others

    1998-11-01

    A 700 MeV synchrotron radiation source is under commissioning at Hiroshima University. The ring is of a racetrack type with two undulators, linear and helical ones, at the long straight sections. The bending field, produced by normal conducting magnet, is as strong as 2.7 Tesla, which generates as high radiation power as compatible with the one from usual 1.6 GeV ring. 14 beam-ports from the bending sections together with two from the undulators are prepared. The injector is a 150 MeV racetrack microtron, which is used also for other purposes than the beam injection into the storage ring. As of March 1998, the stored current is typically 100 mA at start and the beam lifetime is three hours. We expect the beam lifetime will be extended to be eight hours after degassing operation for another few months. (author)

  13. Modelling and control of neutron and synchrotron beamline positioning systems

    Science.gov (United States)

    Nneji, S. O.; Zhang, S. Y.; Kabra, S.; Moat, R. J.; James, J. A.

    2016-03-01

    Measurement of residual stress using neutron or synchrotron diffraction relies on the accurate alignment of the sample in relation to the gauge volume of the instrument. Automatic sample alignment can be achieved using kinematic models of the positioning system provided the relevant kinematic parameters are known, or can be determined, to a suitable accuracy. In this paper, the use of techniques from robotic calibration theory to generate kinematic models of both off-the-shelf and custom-built positioning systems is demonstrated. The approach is illustrated using a positioning system in use on the ENGIN-X instrument at the UK's ISIS pulsed neutron source comprising a traditional XYZΩ table augmented with a triple axis manipulator. Accuracies better than 100 microns were achieved for this compound system. Discussed here in terms of sample positioning systems these methods are entirely applicable to other moving instrument components such as beam shaping jaws and detectors.

  14. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Przemyslaw Nogly

    2015-03-01

    Full Text Available Lipidic cubic phases (LCPs have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX at X-ray free-electron lasers (XFELs. Here, the adaptation of this technology to perform serial millisecond crystallography (SMX at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway.

  15. On-line control of the nonlinear dynamics for synchrotrons

    Science.gov (United States)

    Bengtsson, J.; Martin, I. P. S.; Rowland, J. H.; Bartolini, R.

    2015-07-01

    We propose a simple approach to the on-line control of the nonlinear dynamics in storage rings, based on compensation of the nonlinear resonance driving terms using beam losses as the main indicator of the strength of a resonance. The correction scheme is built on the analysis of the resonance driving terms in first perturbative order and on the possibility of using independent power supplies in the sextupole magnets, which is nowadays present in many synchrotron light sources. Such freedom allows the definition of "smart sextupole knobs" attacking each resonance separately. The compensation scheme has been tested at the Diamond light source and proved to be effective in opening up the betatron tune space, resonance free, available to the electron beam and to improve the beam lifetime.

  16. Modelling and control of neutron and synchrotron beamline positioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Nneji, S.O., E-mail: Stephen.nneji@open.ac.uk [The Open University, Materials Engineering, Walton Hall, Milton Keynes, Buckinghamshire MK7 6AA (United Kingdom); Science and Technology Facility Council , Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX110QX Oxfordshire (United Kingdom); Zhang, S.Y.; Kabra, S. [Science and Technology Facility Council , Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX110QX Oxfordshire (United Kingdom); Moat, R.J.; James, J.A. [The Open University, Materials Engineering, Walton Hall, Milton Keynes, Buckinghamshire MK7 6AA (United Kingdom)

    2016-03-21

    Measurement of residual stress using neutron or synchrotron diffraction relies on the accurate alignment of the sample in relation to the gauge volume of the instrument. Automatic sample alignment can be achieved using kinematic models of the positioning system provided the relevant kinematic parameters are known, or can be determined, to a suitable accuracy. In this paper, the use of techniques from robotic calibration theory to generate kinematic models of both off-the-shelf and custom-built positioning systems is demonstrated. The approach is illustrated using a positioning system in use on the ENGIN-X instrument at the UK's ISIS pulsed neutron source comprising a traditional XYZΩ table augmented with a triple axis manipulator. Accuracies better than 100 microns were achieved for this compound system. Discussed here in terms of sample positioning systems these methods are entirely applicable to other moving instrument components such as beam shaping jaws and detectors.

  17. Synchrotron-based spectroscopy for solar energy conversion

    Science.gov (United States)

    Himpsel, F. J.; Cook, P. L.; Zegkinoglou, I.; Boukahil, Idris; Qiao, R.; Yang, W.; Pemmaraju, S. C.; Prendergast, D.; Kronawitter, C. X.; Kibria, M. G.; Mi, Zetian; Vayssieres, L.

    2015-09-01

    X-rays from synchrotron radiation enable incisive spectroscopic techniques which speed up the discovery of new materials for photovoltaics and photoelectrochemistry. A particularly useful method is X-ray absorption spectroscopy (XAS), which probes empty electronic states. XAS is element- and bond-specific, with the additional capability of determining the bond orientation. Close feedback from density functional calculations makes it possible to discover and exploit systematic trends in the electronic properties. Case studies are presented, such as solar cells that combine an absorber with an electron donor and an acceptor in one molecular complex and nanowire arrays serving as photoanodes for water splitting. In addition to the energy levels the lifetimes of the charge carriers play an essential role in device performance. A new generation of laser-like X-ray sources will make it possible to follow the fate of excited charge carriers traveling across a molecular complex or through a device structure in real time.

  18. Measurement and analysis of coherent synchrotron radiation effects at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Beutner, B.

    2007-12-15

    The vacuum-ultra-violet Free Electron Laser in Hamburg (FLASH) is a linac driven SASE-FEL. High peak currents are produced using magnetic bunch compression chicanes. In these magnetic chicanes, the energy distribution along an electron bunch is changed by eff ects of Coherent Synchrotron Radiation (CSR). Energy changes in dispersive bunch compressor chicanes lead to transverse displacements along the bunch. These CSR induced displacements are studied using a transverse deflecting RF-structure. Experiments and simulations concerning the charge dependence of such transverse displacements are presented and analysed. In these experiments an over-compression scheme is used which reduces the peak current downstream the bunch compressor chicanes. Therefore other self interactions like space charge forces which might complicate the measurements are suppressed. Numerical simulations are used to analyse the beam dynamics under the influence of CSR forces. The results of these numerical simulations are compared with the data obtained in the over-compression experiments at FLASH. (orig.)

  19. X-ray magnetic diffraction of ferromagnets with synchrotron radiation

    CERN Document Server

    Ito, M

    2002-01-01

    X-ray magnetic diffraction experiment of ferromagnets that utilizes elliptically polarized synchrotron radiation is presented. First we have reviewed shortly historical backgrounds and theoretical aspects of the experiment. We have presented how the magnetic form factors are measured and are separated into the spin-moment component and the orbital-moment component in this experiment. Peculiar features of the polarization factor of this experiment have been explained. We have introduced two examples of the experiment. One is the measurement of the spin-magnetic form factor of SmAl sub 2 with white X-rays from a bending magnet at the Photon Factory. The other is the measurement of the orbital-magnetic form factor of Holmium Iron Garnets with monochromatic X-rays from an undulator at the SPring-8. Finally we summarize the article and show some future prospects of this experiment. (author)

  20. Investigation of Diamonds defects with Synchrotron Radiation Faculty

    Institute of Scientific and Technical Information of China (English)

    YuWanli; TIANYulian

    2001-01-01

    Infrared absorption measurements showed that the samples belong to type Ia variety of diamond and contained varying concentrations of A and B froms of nitrogen aggregates as well as platelets.The synchrotron radiation was employed to study the structure of these specimens.Growth bands are observed near the center of the crystals situated within(001)and (010) planes in high crystalline quality diamonds and the growth bads parallel to (100)and (010) cyrstalline plane.In the imperfect cystals low-angle boundaries are observed and the angles were determined to be larger than 2.5 degrees,The perfection of diamond crystals has no obvious relationship with the concentration of nitrogen.

  1. The RF Cycle of the PIMMS Medical Synchrotron

    CERN Document Server

    Crescenti, M; Knaus, P

    2000-01-01

    This paper presents the design of the RF cycle of the medical synchrotron of the PIMMS (Proton-Ion Medical Machine Study) hosted at CERN. The cycle comprises adiabatic trapping, acceleration and RF gymnastics, for either protons or fully stripped carbon ions. The injection energy is 20 MeV for protons and 7 MeV/u for carbon. Maximum extraction energies are 250 MeV for protons and 400 MeV/u for carbon ions. The cycle duration is less than 1 s, with a maximum magnetic field ramp below 3 T/s. The simulations show that the beam stays inside the aperture of the machine, and that, theoretically, there are no longitudinal losses. At the end of the cycle, the beam is ready for extraction with a Dp/p = 0.4 %. The peak RF voltage is 3 kV and the frequency ranges from 0.4 to 3 MHz.

  2. Laser-heating-based active optics for synchrotron radiation applications

    CERN Document Server

    Yang, Fugui; Zhang, Xiaowei

    2016-01-01

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities, because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as sub-nanometer scale, and that variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a surface correction experiment. The developed method is a promising new approach towards effective x-ray active optics coupled with at-wavelength metrology techniques.

  3. A tracking code for injection and acceleration studies in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Lessner, E. [Argonne National Lab., IL (United States); Symon, K. [Argonne National Lab., IL (United States)]|[Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics

    1996-11-01

    CAPTURE-SPC is a Monte-Carlo-based tracking program that simulates the injection and acceleration processes in proton synchrotrons. The time evolution of a distribution of charged particles is implemented by a symplectic, second-order-accurate integration algorithm. The recurrence relations follow a time-stepping leap--frog method. The time-step can be varied optionally to reduce computer time. Space-charge forces are calculated by binning the phase-projected particle distribution. The statistical fluctuations introduced by the binning process are reduced by presmoothing the data by the cloud-in-cell method and by filtering. Both the bin size and amount of filtering can be varied during the acceleration cycle so that the bunch fine structure is retained while the short wavelength noise is attenuated. The initial coordinates of each macro particle together with its time of injection are retained throughout the calculations. This information is useful in determining low-loss injection schemes.

  4. Vavilov-Cherenkov and Synchrotron Radiation Foundations and Applications

    CERN Document Server

    Afanasiev, G. N

    2005-01-01

    The theory of the Vavilov-Cherenkov radiation observed by Cherenkov in 1934 was created by Tamm, Frank and Ginsburg who associated the observed blue light with the uniform charge motion of a charge at a velocity greater than the velocity of light in the medium. On the other hand, Vavilov, Cherenkov's teacher, attributed the observed blue light to the deceleration of electrons. This has given rise to the appearance of papers in which the radiation of a charge uniformly moving in a finite space interval was related to the Bremsstrahlung arising at the end points of the motion interval. This monograph is intended for students of the third year and higher, for postgraduates, for professional scientists (both experimentalists and theoreticians) dealing with Vavilov-Cherenkov and synchrotron radiation. An acquaintance with the three volumes of the Landau and Lifshitz course (Quantum Mechanics, Classical Field Theory and Macroscopic Electrodynamics) is sufficient for understanding the text.

  5. Application of silicon carbide to synchrotron-radiation mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, P.Z.; Hursman, T.L.; Williams, J.T.

    1983-09-01

    Damage to conventional mirror materials exposed to the harsh synchrotron radiation (SR) environment has prompted the SR user community to search for more suitable materials. Next-generation insertion devices, with their attendant flux increases, will make the problem of mirror design even more difficult. A parallel effort in searching for better materials has been underway within the laser community for several years. The technology for dealing with high thermal loads is highly developed among laser manufacturers. Performance requirements for laser heat exchangers are remarkably similar to SR mirror requirements. We report on the application of laser heat exchanger technology to the solution of typical SR mirror design problems. The superior performance of silicon carbide for laser applications is illustrated by various material trades studies, and its superior performance for SR applications is illustrated by means of model calculations.

  6. Dynamics of synchrotron VUV-induced intracluster reactions

    Energy Technology Data Exchange (ETDEWEB)

    Grover, J.R. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    Photoionization mass spectrometry (PIMS) using the tunable vacuum ultraviolet radiation available at the National Synchrotron Light Source is being exploited to study photoionization-induced reactions in small van der Waals mixed complexes. The information gained includes the observation and classification of reaction paths, the measurement of onsets, and the determination of relative yields of competing reactions. Additional information is obtained by comparison of the properties of different reacting systems. Special attention is given to finding unexpected features, and most of the reactions investigated to date display such features. However, understanding these reactions demands dynamical information, in addition to what is provided by PIMS. Therefore the program has been expanded to include the measurement of kinetic energy release distributions.

  7. Modeling Longitudinal Oscillations of Bunched Beams in Synchrotrons

    CERN Document Server

    Klingbeil, Harald; Mehler, Monika; Zipfel, Bernhard

    2010-01-01

    Longitudinal oscillations of bunched beams in synchrotrons have been analyzed by accelerator physicists for decades, and a closed theory is well-known [1]. The first modes of oscillation are the coherent dipole mode, quadrupole mode, and sextupole mode. Of course, these modes of oscillation are included in the general theory, but for developing RF control systems, it is useful to work with simplified models. Therefore, several specific models are analyzed in the paper at hand. They are useful for the design of closed-loop control systems in order to reach an optimum performance with respect to damping the different modes of oscillation. This is shown by the comparison of measurement and simulation results for a specific closed-loop control system.

  8. CORED RUTHERFORD CABLES FOR THE GSI FAST RAMPING SYNCHROTRON.

    Energy Technology Data Exchange (ETDEWEB)

    WILSON,M.N.; GHOSH,A.K.; TEN HAKEN,B.; HASSENZAHL,W.V.; KAUGERTS,J.; MORITZ,G.; MUEHLE,C.; DEN OUDEN,A.; SOIKA,R.; WANDERER,P.; WESSEL,W.A.J.

    2002-08-04

    The new heavy ion synchrotron facility proposed by GSI will have two superconducting magnet rings in the same tunnel, with rigidities of 200T-m and 100T.m. Fast ramp times are needed, which can cause significant problems for the magnets, particularly in the areas of s c loss and field distortion. This paper discusses the 200T.m ring, which will use Cos0 magnets based on the RHIC dipole design. We discuss the reasons for choosing Rutherford cable with a resistive core and report loss measurements carried out on cable samples. These measurements are compared with theoretical calculations using measured values of inter-strand resistance. Reasonably good agreement is found, but there are indications of non-uniformity in the adjacent resistance R,. Using these measured parameters, losses and temperature rise are calculated for a RHIC dipole in the operating cycle of the accelerator. A novel insulation scheme designed to promote efficient cooling is described.

  9. Theoretical foundations of synchrotron and storage ring RF systems

    CERN Document Server

    Klingbeil, Harald; Lens, Dieter

    2015-01-01

    This course-tested text is an ideal starting point for engineers and physicists entering the field of particle accelerators. The fundamentals are comprehensively introduced, derivations of essential results are provided, and a consistent notation style used throughout the book allows readers to quickly familiarize themselves with the field, providing a solid theoretical basis for further studies.   Emphasis is placed on the essential features of the longitudinal motion of charged particle beams, together with the corresponding RF generation and power amplification devices for synchrotron and storage ring systems. In particular, electrical engineering aspects such as closed-loop control of system components are discussed.   The book also offers a valuable resource for graduate students in physics, electronics engineering, or mathematics looking for an introductory and self-contained text on accelerator physics.

  10. X-ray imaging detectors for synchrotron and XFEL sources

    Directory of Open Access Journals (Sweden)

    Takaki Hatsui

    2015-05-01

    Full Text Available Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors.

  11. X-ray imaging detectors for synchrotron and XFEL sources.

    Science.gov (United States)

    Hatsui, Takaki; Graafsma, Heinz

    2015-05-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors.

  12. Evaluation of RBC aggregation using synchrotron X-ray speckles

    Science.gov (United States)

    Ha, Hojin; Nam, Kwon-Ho; Lee, Sang Joon

    2010-11-01

    When a coherent beam illuminates spatially-disordered particles, speckles are usually generated by the inference of the scattered light waves. The speckle has been known to contain the information of the objects under near-field condition. In this study, we hypothesized that the speckle patterns of the red blood cells are related to the aggregation shape and the size of RBCs in the medium. The speckle patterns of RBCs in static condition were investigated by transmitting the monochromatic synchrotron X-ray beam to the sample with varying hematocrit(10-80 %) and medium type(phosphate buffered saline, autologous plasma and 0.75 % polyvinylpyrrolidone 360 in phosphate buffered saline). The temporal variation of speckle patterns after sudden removal of shear rate was observed by stopping the blood flow in a tube. The size of aggregated RBCs is closely correlated with the characteristic features of the speckle patterns.

  13. Rietveld refinement of a natural cobaltian mansfieldite from synchrotron data

    Directory of Open Access Journals (Sweden)

    Giovanni Pratesi

    2009-02-01

    Full Text Available A structural refinement of a natural sample of a Co-bearing mansfieldite, AlAsO4·2H2O [aluminium orthoarsenate(V dihydrate], has been performed based on synchrotron powder diffraction data, with 5% of the octahedral Al sites replaced by Co. Mansfieldite is the aluminium analogue and an isotype of the mineral scorodite (FeAsO4·2H2O, with which it forms a solid solution. The framework structure is based on AsO4 tetrahedra sharing their vertices with AlO4(H2O2 octahedra. Three of the four H atoms belonging to the two water molecules in cis positions take part in O—H...O hydrogen bonding.

  14. Stanford Synchrotron Radiation Laboratory. Activity report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The April, 1990 SPEAR synchrotron radiation run was one of the two or three best in SSRL`s history. High currents were accumulated, ramping went easily, lifetimes were long, beam dumps were infrequent and the average current was 42.9 milliamps. In the one month of operation, 63 different experiments involving 208 scientists from 50 institutions received beam. The end-of-run summary forms completed by the experimenters indicated high levels of user satisfaction with the beam quality and with the outstanding support received from the SSRL technical and scientific staffs. These fine experimental conditions result largely from the SPEAR repairs and improvements performed during the past year and described in Section I. Also quite significant was Max Cornacchia`s leadership of the SLAG staff. SPEAR`s performance this past April stands in marked contrast to that of the January-March, 1989 run which is also described in Section I. It is, we hope, a harbinger of the operation which will be provided in FY `91, when the SPEAR injector project is completed and SPEAR is fully dedicated to synchrotron radiation research. Over the coming years, SSRL intends to give highest priority to increasing the effectiveness of SPEAR and its various beam lines. The beam line and facility improvements performed during 1989 are described in Section III. In order to concentrate effort on SSRL`s three highest priorities prior to the March-April run: (1) to have a successful run, (2) to complete and commission the injector, and (3) to prepare to operate, maintain and improve the SPEAR/injector system, SSRL was reorganized. In the new organization, all the technical staff is contained in three groups: Accelerator Research and Operations Division, Injector Project and Photon Research and Operations Division, as described in Section IV. In spite of the limited effectiveness of the January-March, 1989 run, SSRL`s users made significant scientific progress, as described in Section V of this report.

  15. Stanford Synchrotron Radiation Laboratory. Activity report for 1988

    Energy Technology Data Exchange (ETDEWEB)

    Cantwell, K. [ed.

    1996-01-01

    For SSRL operations, 1988 was a year of stark contrasts. The first extended PEP parasitic running since the construction of our two beam lines on that storage ring took place in November and December. Four experiments discussed below, were performed and detailed operational procedures which allowed synchrotron radiation an high energy users to coexist were established. SSRL anticipates that there will be significant amounts of beam time when PEP is run again for high energy physics. On the other hand, activity on SPEAR consisted of brief parasitic running on the VUV lines in December when the ring was operated at 1.85 GeV for colliding beam experiments. There was no dedicated SPEAR running throughout the entire calendar year. This is the first time since dedicated SPEAR operation was initiated in 1980 that there was no such running. The decision was motivated by both cost and performance factors, as discussed in Section 1 of this report. Fortunately, SLAC and SSRL have reached an agreement on SPEAR and PEP dedicated time charges which eliminates the cost volatility which was so important in the cancellation of the June-July dedicated SPEAR run. As discussed in Section 2, the 3 GeV SPEAR injector construction is proceeding on budget and on schedule. The injector will overcome the difficulties associated with the SLC-era constraint of only two injections per day. SSR and SLAC have also embarked on a program to upgrade SPEAR to achieve high reliability and performance. As a consequence, SSRL`s users may anticipate a highly effective SPEAR by 1991, at the latest. At that time, SPEAR is expected to be fully dedicated to synchrotron radiation research and operated by SSRL. Also contained in this report is a discussion of the improvements to SSRL`s experimental facilities and highlights of the experiments of the past year.

  16. Glass transition near the free surface studied by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sikorski, M.

    2008-06-15

    A comprehensive picture of the glass transition near the liquid/vapor interface of the model organic glass former dibutyl phthalate is presented in this work. Several surface-sensitive techniques using x-ray synchrotron radiation were applied to investigate the static and dynamic aspects of the formation of the glassy state from the supercooled liquid. The amorphous nature of dibutyl phthalate close to the free surface was confirmed by grazing incidence X-ray diffraction studies. Results from X-ray reflectivity measurements indicate a uniform electron density distribution close to the interface excluding the possibility of surface freezing down to 175 K. Dynamics on sub-{mu}m length-scales at the surface was studied with coherent synchrotron radiation via x-ray photon correlation spectroscopy. From the analysis of the dispersion relation of the surface modes, viscoelastic properties of the dibutyl phthalate are deduced. The Kelvin-Voigt model of viscoelastic media was found to describe well the properties of the liquid/vapor interface below room temperature. The data show that the viscosity at the interface matches the values reported for bulk dibutyl phthalate. The scaled relaxation rate at the surface agrees with the bulk data above 210 K. Upon approaching the glass transition temperature the free surface was observed to relax considerably faster close to the liquid/vapor interface than in bulk. The concept of higher relaxation rate at the free surface is also supported by the results of the quasielastic nuclear forward scattering experiment, during which dynamics on molecular length scales around the calorimetric glass transition temperature is studied. The data were analyzed using mode-coupling theory of the glass transition and the model of the liquid(glass)/vapor interface, predicting inhomogeneous dynamics near the surface. The quasielastic nuclear forward scattering data can be explained when the molecular mobility is assumed to decrease with the increasing

  17. Acquisition of powder diffraction data with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.E.; Toby, B.H.; Eddy, M.M.

    1987-01-01

    During the past year, a dedicated triple-axis powder diffractometer has been in routine operation at the Brookhaven National Synchrotron Light Source as a user-oriented facility. The diffractometer is designed to allow easy interchange between energy-dispersive and monochromatic beam experiments. In the latter mode of operation, high resolution data have been collected for a variety of samples with the use of the crystal-analyzer technique, and in several cases these data sets have been used successfully for structure solution and Rietveld refinement. Several aspects of data acquisition at a synchrotron beam-line are described, and some of the different types of scattering geometry which have been used are discussed. Simple expressions are given for the instrumental resolution function expressed as the angular variation of peak widths for each of these. The peak shapes observed for a reference sample of Si on the present triple-axis instrument are well-described by the convolution of Gaussian and Lorentzian functions, and the angular dependence of the Gaussian component is in excellent agreement with the corresponding calculated instrumental function. One of the most important considerations for each type of experiment is the necessary compromise between intensity and resolution over a wide range of scattering angles, and some of the available options will be discussed. In particular, the use of Ge(440) and LiF(400) analyzer crystals gives a focussing minimum at relatively high angles (2 THETA approx. = 50/sup 0/ at 1.54A), a highly desirable feature for Rietveld analysis of complex structures. Absolute intensities from reference samples of Si and CeO/sub 2/ are calculated for these and several other scattering configurations involving both flat-plate and capillary geometry to illustrate this compromise. 26 refs., 3 figs., 3 tabs.

  18. Satellite gravity gradient grids for geophysics.

    Science.gov (United States)

    Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel

    2016-02-11

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth's mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets.

  19. Intracellular chemical gradients: morphing principle in bacteria

    Directory of Open Access Journals (Sweden)

    Endres Robert G

    2012-09-01

    Full Text Available Abstract Advances in computational biology allow systematic investigations to ascertain whether internal chemical gradients can be maintained in bacteria – an open question at the resolution limit of fluorescence microscopy. While it was previously believed that the small bacterial cell size and fast diffusion in the cytoplasm effectively remove any such gradient, a new computational study published in BMC Biophysics supports the emerging view that gradients can exist. The study arose from the recent observation that phosphorylated CtrA forms a gradient prior to cell division in Caulobacter crescentus, a bacterium known for its complicated cell cycle. Tropini et al. (2012 postulate that such gradients can provide an internal chemical compass, directing protein localization, cell division and cell development. More specifically, they describe biochemical and physical constraints on the formation of such gradients and explore a number of existing bacterial cell morphologies. These chemical gradients may limit in vitro analyses, and may ensure timing control and robustness to fluctuations during critical stages in cell development.

  20. Microfludic device for creating ionic strength gradients over DNA microarrays for efficient DNA melting studies and assay development.

    Directory of Open Access Journals (Sweden)

    Jesper Petersen

    Full Text Available The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i the two stringency modulators generated melting curves that could be compared, (ii both led to increased assay robustness, and (iii both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients.

  1. On alternating quantum walks

    Science.gov (United States)

    Rousseva, Jenia; Kovchegov, Yevgeniy

    2017-03-01

    We study an inhomogeneous quantum walk on a line that evolves according to alternating coins, each a rotation matrix. For the quantum walk with the coin alternating between clockwise and counterclockwise rotations by the same angle, we derive a closed form solution for the propagation of probabilities, and provide its asymptotic approximation via the method of stationary phase. Finally, we observe that for a x03c0;/4 angle, this alternating rotation walk will replicate the renown Hadamard walk.

  2. Alternative Solar Indices

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, L.J.

    1980-07-01

    Possible alternative Solar Indices which could either be a perturbation from the currently defined Solar Index or possible indices based on current technologies for other media markets are discussed. An overview is given of the current project, including the logic that was utilized in defining its current structure and then alternative indices and definitions are presented and finally, recommendations are made for adopting alternative indices.

  3. On an Alternative Cosmology

    CERN Document Server

    Vankov, A

    1998-01-01

    The suggested alternative cosmology is based on the idea of barion symmetric universe, in which our home universe is a representative of multitude of typical matter and antimatter universes. This alternative concept gives a physically reasonable explanation of all major problems of the Standard Cosmological Model. Classification Code MSC: Cosmology 524.8 Key words: standard cosmological model, alternative cosmology, barionic symmetry, typical universe, quasars, cosmic rays.

  4. Strain gradient effects in surface roughening

    DEFF Research Database (Denmark)

    Borg, Ulrik; Fleck, N.A.

    2007-01-01

    A thin aluminium sheet comprising of large polycrystals is pulled in uniaxial tension and the resulting surface profile is measured in a scanning electron microscope. The surface profile near the grain boundaries reveals a local deformation pattern of width of a few micrometres and is strong...... evidence for strain gradient effects. Numerical analyses of a bicrystal undergoing in-plane tensile deformation are also studied using a strain gradient crystal plasticity theory and also by using a strain gradient plasticity theory for an isotropic solid. Both theories include an internal material length...

  5. Colour and stellar population gradients in galaxies

    CERN Document Server

    Tortora, C; Cardone, V F; Capaccioli, M; Jetzer, P; Molinaro, R

    2010-01-01

    We discuss the colour, age and metallicity gradients in a wide sample of local SDSS early- and late-type galaxies. From the fitting of stellar population models we find that metallicity is the main driver of colour gradients and the age in the central regions is a dominant parameter which rules the scatter in both metallicity and age gradients. We find a consistency with independent observations and a set of simulations. From the comparison with simulations and theoretical considerations we are able to depict a general picture of a formation scenario.

  6. GRADIENT ENERGY DETECTION OF LSB STEGANOGRAPHY

    Institute of Scientific and Technical Information of China (English)

    Li Zhi; Sui Aifen; Niu Xinxin; Yang Yixian

    2005-01-01

    The spatial Least Significant Bit (LSB) steganography results in the alteration of the smooth characteristics between adjoining pixels of the raw image. The relation between the length of embedded message and the gradient energy is theoretically analyzed, and then a steganalysis and detection method, named Gradient Energy-Flipping Rate (GEFR) detection is proposed. Based on the analysis of the variation of the gradient energy, which results from the LSB steganography in color and grayscale image, the secret message embedded in the target image is detected, and the length of the embedded message is estimated. The method is proved effective and accurate by simulation (detection rate reaches 0.01bit per pixel).

  7. Sound beam manipulation based on temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Feng [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500 (China); Quan, Li; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  8. A Resistivity Gradient Piezoelectric FGM Actuator

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A resistivity gradient actuator based on lead zirconate titanate ceramics was successfully developed and the bending deflections up to 140 μm were obtained. The actuator material was a matrix of PZT ceramic into which smooth gradient of piezoelectric activity was introduced. The application of an electric field then causes the actuator to bend due to differential strains induced by the piezoelectric effect. The resistivity gradient of the actuator was achieved by doping PZT with suitable donor and acceptor dopants. PZT powder was modified and synthesized by using two stage powder fabrication method. The actuator was fabricated by uniaxial pressing followed by isostatic pressing with two layers of different resistivities.

  9. Colour and stellar population gradients in galaxies

    Science.gov (United States)

    Tortora, C.; Napolitano, N. R.; Cardone, V. F.; Capaccioli, M.; Jetzer, P.; Molinaro, R.

    We discuss the colour, age and metallicity gradients in a wide sample of local SDSS early- and late-type galaxies. From the fitting of stellar population models we find that metallicity is the main driver of colour gradients and the age in the central regions is a dominant parameter which rules the scatter in both metallicity and age gradients. We find a consistency with independent observations and a set of simulations. From the comparison with simulations and theoretical considerations we are able to depict a general picture of a formation scenario.

  10. Brandmodstandsbidrag for alternative isoleringsmaterialer

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place

    2001-01-01

    Resume af rapport om alternative isoleringsmaterialers brandmodstandsbidrag, udarbejdet af Dansk Brandteknisk Institut under Energistyrelsens udviklingsprogram "Miljø- og arbejdsmiljøvenlig isolering"...

  11. X-ray analysis of residual stress gradients in TiN coatings by a Laplace space approach and cross-sectional nanodiffraction: a critical comparison.

    Science.gov (United States)

    Stefenelli, Mario; Todt, Juraj; Riedl, Angelika; Ecker, Werner; Müller, Thomas; Daniel, Rostislav; Burghammer, Manfred; Keckes, Jozef

    2013-10-01

    Novel scanning synchrotron cross-sectional nanobeam and conventional laboratory as well as synchrotron Laplace X-ray diffraction methods are used to characterize residual stresses in exemplary 11.5 µm-thick TiN coatings. Both real and Laplace space approaches reveal a homogeneous tensile stress state and a very pronounced compressive stress gradient in as-deposited and blasted coatings, respectively. The unique capabilities of the cross-sectional approach operating with a beam size of 100 nm in diameter allow the analysis of stress variation with sub-micrometre resolution at arbitrary depths and the correlation of the stress evolution with the local coating microstructure. Finally, advantages and disadvantages of both approaches are extensively discussed.

  12. Synchrotron radiation: a tool for chemical sciences investigation; Le rayonnement synchrotron au service des problematiques de la chimie

    Energy Technology Data Exchange (ETDEWEB)

    Sauvage-Simkin, M. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France)

    2011-07-01

    After recalling briefly the principles of synchrotron radiation production and its remarkable properties, the main investigation techniques used by the chemical science community is described and illustrated by recent examples of applications: X-ray absorption spectroscopy, X-ray diffraction and diffusion, electron spectroscopy, infrared spectroscopy. All these techniques have seen an enhancement of their ultimate performances in terms of acquisition rate and resolution (time, spatial, and energy domains) thanks to the sources optimization and the progress in instrumentation. The experimental possibilities offered by the most recent European sources are listed, with the emphasis on SOLEIL and ESRF, together with a brief survey of the future opportunities provided by the so-called fourth generation sources. (author)

  13. 50 GeV proton synchrotron for JAERI/KEK Joint project

    CERN Document Server

    Mori, Y

    2001-01-01

    This paper describes a design of a 50 GeV proton synchrotron for a JAERI-KEK Joint (JKJ) project which has been proposed by High Energy Research Organization (KEK) and Japan Atomic Energy Research Institute (JAERI). The site of the proposed accelerators is JAERI Tokai site. The JKJ project includes particle physics, nuclear physics, material science, life science and nuclear technology, using a new proton accelerator complex. The high beam power allows the production of a variety of intense secondary beams. The accelerator complex consists of the linac, 3 GeV synchrotron and 50 GeV synchrotron. The 3 GeV synchrotron is a rapid cycling synchrotron with the repetition rate of 25 Hz and provides a 1 MW beam for the spallation neutron source and muon facility. At the 50 GeV synchrotron, nuclear and particle physics experiments using anti- protons, kaons, hyperons and primary proton beam are planned. The long-baseline neutrino oscillation from JKJ to Super Kamiokande is also planned. The 50 GeV synchrotron will pr...

  14. An alternative tensiometer design for deep vadose zone monitoring

    Science.gov (United States)

    Moradi, A. B.; Kandelous, M. M.; Hopmans, J. W.

    2015-12-01

    The conventional tensiometer is among the most accurate devices for soil water matric potential measurements, as well as for estimations of soil water flux from soil water potential gradients. Uncertainties associated with conventional tensiometers such as caused by ambient temperature effects and the draining of the tensiometer tube, as well as their limitation for deep soil monitoring has prevented their widespread use for vadose zone monitoring, despite their superior accuracy, in general. We introduce an alternative tensiometer design that offers the accuracy of the conventional tensiometer, while minimizing afore-mentioned uncertainties and limitations. The proposed alternative tensiometer largely eliminates temperature-induced diurnal fluctuations and uncertainties associated with the draining of the tensiometer tube, and removes the limitation in installation depth. In addition, the manufacturing costs of this alternative tensiometer design is close to that of the conventional tensiometer, while it is especially suited for monitoring of soil water potential gradients as required for soil water flux measurements.

  15. Vegetation patterns and environmental gradients in Benin

    NARCIS (Netherlands)

    Adomou, A.

    2005-01-01

    Key words: West Africa, Benin, vegetation patterns, floristic areas, phytogeography, chorology, floristic gradients, climatic factors, water availability, Dahomey Gap, threatened plants, biodiversity, conservation.Understanding plant species distribution patterns and the underlying factors is a cruc

  16. On lower order strain gradient plasticity theories

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2002-01-01

    By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter the t...... the tangential moduli governing increments of stress and strain. It is shown that the modification is far from benign from a mathematical standpoint, changing the qualitative character of solutions and leading to a new type of localization that appears to be unphysical.......By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter...

  17. Unimodal and crossmodal gradients of spatial attention

    DEFF Research Database (Denmark)

    Föcker, J.; Hötting, K.; Gondan, Matthias

    2010-01-01

    Behavioral and event-related potential (ERP) studies have shown that spatial attention is gradually distributed around the center of the attentional focus. The present study compared uni- and crossmodal gradients of spatial attention to investigate whether the orienting of auditory and visual...... spatial attention is based on modality specific or supramodal representations of space. Auditory and visual stimuli were presented from five speaker locations positioned in the right hemifield. Participants had to attend to the innermost or outmost right position in order to detect either visual...... or auditory deviant stimuli. Detection rates and event-related potentials (ERPs) indicated that spatial attention is distributed as a gradient. Unimodal spatial ERP gradients correlated with the spatial resolution of the modality. Crossmodal spatial gradients were always broader than the corresponding...

  18. Artificial photosynthesis: Light-activated calcium gradients

    Science.gov (United States)

    Thompson, David H.

    2002-12-01

    Photosynthetic organisms use light to create chemical gradients across bilayer membranes that drive energetically unfavourable reactions. Synthetic systems that accomplish the same feat may find uses in a variety of biological and non-biological applications.

  19. CMB Anisotropies from a Gradient Mode

    CERN Document Server

    Mirbabayi, Mehrdad

    2014-01-01

    A pure gradient mode must have no observable dynamical effect at linear level. We confirm this by showing that its contribution to the dipolar power asymmetry of CMB anisotropies vanishes, if Maldacena's consistency condition is satisfied. To this end, the existing second order Sachs-Wolfe formula in the squeezed limit is extended to include a gradient in the long mode and to account for the change in the location of the last scattering surface induced by this mode. At second order, a gradient mode generated in Single-field inflation is shown to induce a quadrupole moment. For instance in a matter-dominated model it is equal to 5/18 times the square of the linear gradient part. This quadrupole can be cancelled by superposing a quadratic perturbation. The result is shown to be a non-linear extension of Weinberg's adiabatic modes: a long-wavelength physical mode which looks locally like a coordinate transformation.

  20. NEW STRAIN GRADIENT THEORY AND ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    Dake Yi; Tzu Chiang Wang; Shaohua Chen

    2009-01-01

    A new strain gradient theory which is based on energy nonlocal model is proposed in this paper, and the theory is applied to investigate the size effects in thin metallic wire torsion, ultra-thin beam bending and micro-indentation of polycrystalline copper. First, an energy nonlocal model is suggested. Second, based on the model, a new strain gradient theory is derived. Third, the new theory is applied to analyze three representative experiments.